
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

November 2022

CONTAINER PATCHING AUTOMATION CONTAINER PATCHING AUTOMATION

BALASAHEB RAOSAHEB DENGALE
VISA

DILSHAD T
VISA

CHARAN RAMIREDDY
VISA

PANNEER PERUMAL
VISA

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
DENGALE, BALASAHEB RAOSAHEB; T, DILSHAD; RAMIREDDY, CHARAN; and PERUMAL, PANNEER,
"CONTAINER PATCHING AUTOMATION", Technical Disclosure Commons, (November 14, 2022)
https://www.tdcommons.org/dpubs_series/5501

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5501&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5501?utm_source=www.tdcommons.org%2Fdpubs_series%2F5501&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

1

CONTAINER PATCHING AUTOMATION

VISA

INVENTORS:

• BALASAHEB RAOSAHEB DENGALE

• DILSHAD T

• CHARAN RAMIREDDY

• PANNEER PERUMAL

2

DENGALE et al.: CONTAINER PATCHING AUTOMATION

Published by Technical Disclosure Commons, 2022

2

TECHNICAL FIELD

[0001] The present subject matter is, in general, related to Kubernetes patching systems, and

particularly, to a method and a system for automating patching of a container.

BACKGROUND

[0002] A container is a unit of software that packages code and its dependencies so the

application runs quickly and reliably across computing environments. The containers virtualize

an operating system and run anywhere, from a private data center to the public cloud or even

on a developer’s personal user devices. The container patching is a process of repairing a

vulnerability or a flaw in a software and an application after the release. In other words, the

container patching is a process of updating the software and the operating system and

subsequently, addressing the security vulnerabilities within a program or a product.

[0003] In the conventional methods, the patching is performed manually by the users or the

workers who continuously monitor Virtual Machines (VMs) and coordinate with Asknow

change to operation team. Subsequently, the operation team coordinates with multiple

application teams and patch all clusters with agreed maintenance window. This process exhibits

downtime for the cluster and the application in some of the cases, which is a drawback of the

conventional container patching methods.

[0004] In view of the above, there is a need for an automated container patching system that

reduces the downtime for the cluster and the application in the container patching.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The accompanying drawings, which are incorporated in and constitute a part of this

disclosure, illustrate exemplary embodiments and, together with the description, explain the

disclosed principles. In the figures, the left-most digit(s) of a reference number identifies the

figure in which the reference number first appears. The same numbers are used throughout the

figures to reference like features and components. Some embodiments of device or system

and/or methods in accordance with embodiments of the present subject matter are now

described, by way of example only, and with reference to the accompanying figures, in which:

[0006] Fig. 1 shows a flowchart illustrating a method of automatically patching the container

platform in accordance with some embodiments consistent with the present disclosure.

3

Defensive Publications Series, Art. 5501 [2022]

https://www.tdcommons.org/dpubs_series/5501

3

[0007] Fig. 2 shows a flowchart illustrating a method for updating a database (VMS) in

accordance with some embodiments consistent with the present disclosure.

[0008] Fig. 3 shows a flowchart illustrating a method for validating an application or a software

in accordance with some embodiments consistent with the present disclosure.

[0009] Fig. 4 illustrates a block diagram of an exemplary computer system for implementing

embodiments consistent with the present disclosure.

[0010] The figures depict embodiments of the disclosure for purposes of illustration only. One

skilled in the art will readily recognize from the following description that alternative

embodiments of the structures and methods illustrated herein may be employed without

departing from the principles of the disclosure described herein.

DESCRIPTION OF THE DISCLOSURE

[0011] In the present document, the word "exemplary" is used herein to mean "serving as an

example, instance, or illustration." Any embodiment or implementation of the present subject

matter described herein as "exemplary" is not necessarily to be construed as preferred or

advantageous over other embodiments.

[0012] While the disclosure is susceptible to various modifications and alternative forms,

specific embodiment thereof has been shown by way of example in the drawings and will be

described in detail below. It should be understood, however that it is not intended to limit the

disclosure to the particular forms disclosed, but on the contrary, the disclosure is to cover all

modifications, equivalents, and alternative falling within the spirit and the scope of the

disclosure.

[0013] The terms “comprises”, “comprising”, or any other variations thereof, are intended to

cover a non-exclusive inclusion, such that a setup, device, or method that comprises a list of

components or steps does not include only those components or steps but may include other

components or steps not expressly listed or inherent to such setup or device or method. In other

words, one or more elements in a device or system or apparatus proceeded by “comprises… a”

does not, without more constraints, preclude the existence of other elements or additional

elements in the device or system or apparatus.

4

DENGALE et al.: CONTAINER PATCHING AUTOMATION

Published by Technical Disclosure Commons, 2022

4

[0014] The terms "an embodiment", "embodiment", "embodiments", "the embodiment", "the

embodiments", "one or more embodiments", "some embodiments", and "one embodiment"

mean "one or more (but not all) embodiments of the invention(s)" unless expressly specified

otherwise.

[0015] The terms "including", "comprising", “having” and variations thereof mean "including

but not limited to", unless expressly specified otherwise.

[0016] The present disclosure relates to a method and an automation system for automatically

patching the container. The automation system in the present disclosure increases security by

keeping the platform patched. Further, the automation system reduces the downtime in the

container patching process. As a result, the present disclosure provides with complete end-to-

end hands of patching with control in a place. Furthermore, the present disclosure performs

pre-validations and post-validations to make sure that there is no impact before or after

patching the nodes to the cluster. The automation system stops the patching process through

the automatic control if suspicious failures crosses predefined limitations. Finally, the

automation system checks in place with graceful drain and API health checks.

[0017] Fig. 1 shows a flowchart illustrating a method of automatically patching the container

platform in accordance with some embodiments consistent with the present disclosure.

[0018] As illustrated in Fig. 1, the method 100 includes one or more blocks illustrating a

method for automatic patching of the container The order in which the method 100 is described

is not intended to be construed as a limitation, and any number of the described method blocks

can be combined in any order to implement the method. Additionally, individual blocks may

be deleted from the methods without departing from the scope of the subject matter described

herein. Furthermore, the method can be implemented in any suitable hardware, software,

firmware, or combination thereof.

[0019] At block 102, the method 100 includes performing pre-validations from Operating

System (OS) perspective. In an implementation, the pre-validations may comprise, without

limiting to, operations such as gathering facts, validating pre-request information such as

cluster, type master etc., validating connection and elevation and clustering.

5

Defensive Publications Series, Art. 5501 [2022]

https://www.tdcommons.org/dpubs_series/5501

5

[0020] At block 104, the method 100 includes pre-validating the cluster/node from Kubernetes

perspective and drain node. In an implementation, the pre-validating may include, without

limitation, validating application or cluster before patching, performing ready checks, and

performing backup and the like. The pre-validation is performed based on the Kubernetes and

the drain node.

[0021] At block 106, the method 100 includes patching the node and rebooting the node. In an

embodiment, the nodes may be updated before rebooted.

[0022] At block 108, the method 100 includes performing the post-validation operations from

the OS perspective. In an implementation, the post-validating may include, without limitation,

validating application or cluster after patching. The post-validation is performed based on the

cardon node.

[0023] At block 110, the method 100 includes post-validating the cluster or the node and re-

establishing the cluster. In an implementation, the post-validation of the cluster or node may

include, without limitation, cleaning up the nodes and performing health checks for the cluster.

[0024] Fig. 2 shows a flowchart illustrating a method for updating a database (VMS) in

accordance with some embodiments consistent with the present disclosure.

[0025] At step 201, a user may login to Vulnerability Management Self-service (VMS) using

predefined login credentials through a user device 105. As an example, the user may be, without

limitation, an operation team member, a worker in an organization, an engineer and the like.

As an example, the user credentials may include a username and a password authentication

token that is bound to a particular user for login. In an implementation, the user device may

include, without limitation, a smartphone, a tablet, a laptop, a desktop or a smart device

associated with the user.

[0026] At step 203, the VMS may schedule a remediation. It will create Asknow change to

follow ITIL process and schedule it after 24 hours. There will be sufficient controls in place to

trigger this change and send proper notifications to the support teams defined. This step will

trigger underline automations which is specific to container platform patching.

6

DENGALE et al.: CONTAINER PATCHING AUTOMATION

Published by Technical Disclosure Commons, 2022

6

[0027] At step 205, the VMS may select the servers. As an example, the VMS may select a

Virtual Machine (VM) server to host or run the VMs, which runs various operating systems

and acts as computing platforms on their own through emulation and virtualization.

[0028] At step 207, the VMS may select container packages. As an example, the container

packages may include a software that packages code and its dependencies to run application

fast and reliably across all the computing platforms.

[0029] At step 209, the VMS may submit a request and coordinate with an Asknow change as

shown in step 211.

[0030] At step 213, the servers move to a maintenance mode, and the VMS may release one

server at a time as shown in step 215.

[0031] At step 217, the released server may trigger the Ansible playbook. As an example, the

Ansible playbook is a list of tasks that automatically execute the tasks against the hosts. Each

module within the Ansible playbook performs a specific task, and each module contains

metadata which determines when and where a task is executed, as well as which user executes

it.

[0032] At step 219, a status of execution of the tasks is checked. If the status of the execution

of the tasks is completed, then the VMS (database) is updated as shown in step 221. If the status

of the execution of the tasks is still in progress, then the process of verifying the status is

continued.

[0033] Fig. 3 shows a flowchart illustrating a method for validating application or software in

accordance with some embodiments consistent with the present disclosure.

[0034] At step 301, a basic pre-request validation is performed. In an implementation, the basic

pre-request validation process comprises gathering facts, validating pre-request information,

validating connection and elevation and clustering. As an example, the pre-requisite

information may include, without limitation, a cluster, a type of cluster, a master node

information and the like.

[0035] At step 303, patching of prescripts is performed. In an implementation, the prescripts

are runbooks which can be attached to update deployment. The prescripts are run before the

7

Defensive Publications Series, Art. 5501 [2022]

https://www.tdcommons.org/dpubs_series/5501

7

patching occurs. For example, this includes sending planned maintenance notifications by an

email.

[0036] At step 305, it is verified whether the patching prescripts is successful or not. If the

patching prescripts are not successful, then the validation process is stopped. Alternatively, if

the patching prescripts are successfully performed, then an application is pre-validated as

shown in step 307.

[0037] At step 309, it is verified whether the pre-validation of the application is successful or

not. If the pre-validation of the application is not successful (or a failure), then the validation

process is stopped. Alternatively, if the pre-validation of the application is successful, then the

server is patched as shown in step 311. As an example, the patch server or server patching is a

process of updating the server’s software to fix errors, updating software versions or enhancing

performance and security on the server.

[0038] At step 313, patching of postscripts is performed. In an implementation, the postscripts

are runbooks which run after the deployment of update.

[0039] At step 315, it is verified whether the patching postscripts process is successful or not.

If the process is not successful, then the validation process is stopped. Whereas, if the patching

postscripts is successful, then the application is post-validated as shown in step 317.

[0040] At step 319, it is verified whether the post-validation of the application is successful or

not. If the post-validation process is not successful, then the validation process is stopped.

Alternatively, if the post-validation process is successful, then the basic post-validation is

performed on the application as shown in step 321.

General computer system:

[0041] Fig. 4 illustrates a block diagram of an exemplary computer system for implementing

embodiments consistent with the present disclosure.

[0042] In an embodiment, the computer system 400 may be used to implement the system. The

computer system 400 may include a central processing unit (“CPU” or “processor”) 402. The

processor 402 may include at least one data processor connected to a network interface 403 to

communicate with a communication network 409. The processor 402 may include specialized

8

DENGALE et al.: CONTAINER PATCHING AUTOMATION

Published by Technical Disclosure Commons, 2022

8

processing units such as integrated system (bus) controllers, memory management control

units, floating point units, graphics processing units, digital signal processing units, etc.

[0043] The processor 402 may be disposed in communication with one or more Input/Output

(I/O) devices (410 and 411) via I/O interface 401. The I/O interface 401 employ

communication protocols/methods such as, without limitation, audio, analog, digital,

monoaural, Radio Corporation of America (RCA) connector, stereo, IEEE-1394 high speed

serial bus, serial bus, Universal Serial Bus (USB), infrared, Personal System/2 (PS/2) port,

Bbayonet Neill-Concelman (BNC) connector, coaxial, component, composite, Digital Visual

Interface (DVI), High-Definition Multimedia Interface (HDMI), Radio Frequency (RF)

antennas, S-Video, Video Graphics Array (VGA), IEEE 802.11b/g/n/x, Bluetooth, cellular e.g.,

Code-Division Multiple Access (CDMA), High-Speed Packet Access (HSPA+), Global

System for Mobile communications (GSM), Long-Term Evolution (LTE), Worldwide

Interoperability for Microwave access (WiMax), or the like, etc.

[0044] Using the I/O interface 401, the computer system 400 may communicate with one or

more I/O devices such as input devices 410 and output devices 411. For example, the input

devices 410 may be an antenna, keyboard, mouse, joystick, (infrared) remote control, camera,

card reader, fax machine, dongle, biometric reader, microphone, touch screen, touchpad,

trackball, stylus, scanner, storage device, transceiver, video device/source, etc. The output

devices 413 may be a printer, fax machine, video display (e.g., Cathode Ray Tube (CRT),

Liquid Crystal Display (LCD), Light-Emitting Diode (LED), plasma, Plasma Display Panel

(PDP), Organic Light-Emitting Diode display (OLED) or the like), audio speaker, etc.

[0045] In some embodiments, the processor 402 may be disposed in communication with a

communication network 409 via a network interface 403. The network interface 403 may

communicate with the communication network 409. The network interface 403 may employ

connection protocols including, without limitation, direct connect, ethernet (e.g., twisted pair

10/100/1000 Base T), Transmission Control Protocol/Internet Protocol (TCP/IP), token ring,

IEEE 802.11a/b/g/n/x, etc. The communication network 409 may include, without limitation,

a direct interconnection, Local Area Network (LAN), Wide Area Network (WAN), wireless

network (e.g., using Wireless Application Protocol), the Internet, etc. A user 101 may

communicate with the communication system 400 through the communication network 409

using a user device 105. The network interface 403 may employ connection protocols include,

but not limited to, direct connect, ethernet (e.g., twisted pair 10/100/1000 Base T),

9

Defensive Publications Series, Art. 5501 [2022]

https://www.tdcommons.org/dpubs_series/5501

9

Transmission Control Protocol/Internet Protocol (TCP/IP), token ring, IEEE 802.11a/b/g/n/x,

etc.

[0046] The communication network 409 includes, but is not limited to, a direct interconnection,

a Peer-to-Peer (P2P) network, Local Area Network (LAN), Wide Area Network (WAN),

wireless network (e.g., using Wireless Application Protocol), the Internet, Wi-Fi and such. The

communication network 409 may either be a dedicated network or a shared network, which

represents an association of the different types of networks that use a variety of protocols, for

example, Hypertext Transfer Protocol (HTTP), Transmission Control Protocol/Internet

Protocol (TCP/IP), Wireless Application Protocol (WAP), etc., to communicate with each

other. Further, the communication network 409 may include a variety of network devices,

including routers, bridges, servers, computing devices, storage devices, etc.

[0047] In some embodiments, the processor 402 may be disposed in communication with a

memory 405 (e.g., RAM, ROM, etc. not shown in Fig. 3) via a storage interface 404. The

storage interface 404 may connect to memory 405 including, without limitation, memory

drives, removable disc drives, etc., employing connection protocols such as, Serial Advanced

Technology Attachment (SATA), Integrated Drive Electronics (IDE), IEEE-1394, Universal

Serial Bus (USB), fiber channel, Small Computer Systems Interface (SCSI), etc. The memory

drives may further include a drum, magnetic disc drive, magneto-optical drive, optical drive,

Redundant Array of Independent Discs (RAID), solid-state memory devices, solid-state drives,

etc.

[0048] The memory 405 may store a collection of program or database components, including,

without limitation, user interface 406, an operating system 407, etc. In some embodiments,

computer system 400 may store user/application data, such as, the data, variables, records, etc.,

as described in this disclosure. Such databases may be implemented as fault-tolerant, relational,

scalable, secure databases such as Oracle or Sybase.

[0049] The operating system 407 may facilitate resource management and operation of the

computer system 400. Examples of operating systems include, without limitation, AppleTM

Macintosh TM OS XTM, UNIXTM, Unix-like system distributions (e.g., Berkeley Software

Distribution (BSD), FreeBSDTM, Net BSDTM, Open BSDTM, etc.), Linux distributions (e.g.,

Red HatTM, UbuntuTM, K-UbuntuTM, etc.), International Business Machines (IBMTM) OS/2TM,

10

DENGALE et al.: CONTAINER PATCHING AUTOMATION

Published by Technical Disclosure Commons, 2022

10

Microsoft WindowsTM (XPTM, Vista/7/8, etc.), Apple iOSTM, Google AndroidTM, BlackberryTM

operating system (OS), or the like.

[0050] In some embodiments, the computer system 400 may implement web browser 308

stored program components. Web browser 408 may be a hypertext viewing application, such

as MicrosoftTM Internet ExplorerTM, Google ChromeTM, Mozilla FirefoxTM, AppleTM SafariTM,

etc. Secure web browsing may be provided using secure hypertext transport protocol (HTTPS),

Secure Sockets Layer (SSL), Transport Layer Security (TLS), etc. Web browsers 408 may

utilize facilities such as AJAX, DHTML, AdobeTM Flash, Javascript, Application

Programming Interfaces (APIs), etc. In some embodiments, the computer system 300 may

implement a mail server stored program component. The mail server may be an Internet mail

server such as Microsoft Exchange, or the like. The mail server may utilize facilities such as

ASP, ActiveX, ANSI C++/C#, Microsoft .NET, Common Gateway Interface (CGI) scripts,

Java, JavaScript, PERL, PHP, Python, WebObjects, etc. The mail server may utilize

communication protocols such as Internet Message Access Protocol (IMAP), Messaging

Application Programming Interface (MAPI), Microsoft Exchange, Post Office Protocol (POP),

Simple Mail Transfer Protocol (SMTP), or the like.

[0051] In some embodiments, the computer system 400 may implement a mail client stored

program component. The mail client may be a mail viewing application, such as Apple Mail,

Microsoft Entourage, Microsoft Outlook, Mozilla Thunderbird, etc.

[0052] Furthermore, one or more computer-readable storage media may be utilized in

implementing embodiments consistent with the present disclosure. A computer-readable

storage medium refers to any type of physical memory on which information or data readable

by a processor may be stored. Thus, a computer-readable storage medium may store

instructions for execution by one or more processors, including instructions for causing the

processor(s) to perform steps or stages consistent with the embodiments described herein. The

term “computer-readable medium” should be understood to include tangible items and exclude

carrier waves and transient signals, i.e., be non-transitory. Examples include Random Access

Memory (RAM), Read-Only Memory (ROM), volatile memory, non-volatile memory, hard

drives, Compact Disc (CD) ROMs, DVDs, flash drives, disks, and any other known physical

storage media.

11

Defensive Publications Series, Art. 5501 [2022]

https://www.tdcommons.org/dpubs_series/5501

11

[0053] The described operations may be implemented as a method, system or article of

manufacture using standard programming and/or engineering techniques to produce software,

firmware, hardware, or any combination thereof. The described operations may be

implemented as code maintained in a “non-transitory computer readable medium”, where a

processor may read and execute the code from the computer readable medium. The processor

is at least one of a microprocessor and a processor capable of processing and executing the

queries. A non-transitory computer readable medium may include media such as magnetic

storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CD-ROMs,

DVDs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs,

PROMs, RAMs, DRAMs, SRAMs, Flash Memory, firmware, programmable logic, etc.), etc.

Further, non-transitory computer-readable media may include all computer-readable media

except for a transitory. The code implementing the described operations may further be

implemented in hardware logic (e.g., an integrated circuit chip, Programmable Gate Array

(PGA), Application Specific Integrated Circuit (ASIC), etc.).

[0054] The illustrated steps are set out to explain the exemplary embodiments shown, and it

should be anticipated that ongoing technological development will change the manner in which

particular functions are performed. These examples are presented herein for purposes of

illustration, and not limitation. Further, the boundaries of the functional building blocks have

been arbitrarily defined herein for the convenience of the description. Alternative boundaries

can be defined so long as the specified functions and relationships thereof are appropriately

performed. Alternatives (including equivalents, extensions, variations, deviations, etc., of those

described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings

contained herein. Such alternatives fall within the scope and spirit of the disclosed

embodiments. It must also be noted that as used herein, the singular forms “a,” “an,” and “the”

include plural references unless the context clearly dictates otherwise.

[0055] Furthermore, one or more computer-readable storage media may be utilized in

implementing embodiments consistent with the present disclosure. A computer readable

storage medium refers to any type of physical memory on which information or data readable

by a processor may be stored. Thus, a computer readable storage medium may store

instructions for execution by one or more processors, including instructions for causing the

processor(s) to perform steps or stages consistent with the embodiments described herein. The

term “computer readable medium” should be understood to include tangible items and exclude

12

DENGALE et al.: CONTAINER PATCHING AUTOMATION

Published by Technical Disclosure Commons, 2022

12

carrier waves and transient signals, i.e., are non-transitory. Examples include Random Access

Memory (RAM), Read-Only Memory (ROM), volatile memory, non-volatile memory, hard

drives, CD ROMs, DVDs, flash drives, disks, and any other known physical storage media.

[0056] Finally, the language used in the specification has been principally selected for

readability and instructional purposes, and it may not have been selected to delineate or

circumscribe the inventive subject matter. Accordingly, the disclosure of the embodiments of

the disclosure is intended to be illustrative, but not limiting, of the scope of the disclosure.

[0057] With respect to the use of substantially any plural and/or singular terms herein, those

having skill in the art can translate from the plural to the singular and/or from the singular to

the plural as is appropriate to the context and/or application. The various singular/plural

permutations may be expressly set forth herein for sake of clarity.

13

Defensive Publications Series, Art. 5501 [2022]

https://www.tdcommons.org/dpubs_series/5501

13

CONTAINER PATCHING AUTOMATION

ABSTRACT

[0058] The present disclosure relates to a method and an automation system for automatically

patching a software container. In an embodiment, the present disclosure discloses the aspect of

performing pre-validations from Operating System (OS) perspective, and pre-validating

cluster/node from Kubernetes perspective and a drain node. Further, the present disclosure

discloses patching the node and rebooting the node and performing post-validation from the

OS perspective. Additionally, the present disclosure discloses the aspect of post-validating the

cluster/node and re-establishing the cluster.

14

DENGALE et al.: CONTAINER PATCHING AUTOMATION

Published by Technical Disclosure Commons, 2022

14

Perform pre-validations from OS perspective

Pre-validate cluster/node from kubernetes

perspective and drain node

Update/patch the node and reboot the node

Perform post-validations from OS perspective

Post-validate cluster/node and re-establish the

cluster

100

102

104

106

108

110

Fig. 1

15

Defensive Publications Series, Art. 5501 [2022]

https://www.tdcommons.org/dpubs_series/5501

15

Login to VMS

Schedule

remediation

Select servers

Select container

package

Trigger Ansible

playbook

Check status

 200

201

203

205

207

215

Start

Submit request
209

Asknow change
211

Servers in

maintenance mode

Release server

Update VMS

End

213

217

Progress

 Completed

219

221

Fig. 2

16

DENGALE et al.: CONTAINER PATCHING AUTOMATION

Published by Technical Disclosure Commons, 2022

16

Start

Basic pre-request

validation

Patch presrcripts

If success?

Pre-validate

application

If success?

Patch server

Patch postscripts

If success?

Post-validate

application

If success?

Basic post-

validation

Finish

Yes No

No

Yes No

Yes

No

Yes

301

303

305

307

309

311

313

315

317

319

321

Fig. 3

17

Defensive Publications Series, Art. 5501 [2022]

https://www.tdcommons.org/dpubs_series/5501

17

Input devices

410

Output devices

411

Processor

402

I/O Interface

401

Network

interface

403

Storage interface 404

RAM 412 ROM 413

User/Application 406

Operating system 407

Memory 405

TX/RX

Web browser 408

Communication

network 409

Computer system 400

User device

105

101

Fig. 4

18

DENGALE et al.: CONTAINER PATCHING AUTOMATION

Published by Technical Disclosure Commons, 2022

	CONTAINER PATCHING AUTOMATION
	Recommended Citation

	tmp.1668410717.pdf.7uF0W

