
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

November 2022

A SYSTEM AND METHOD FOR API BASED FILE PROCESSING A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Prakhar Gangwar
visa

Shivam Mohan
Visa

Alok Roy
Visa

Neeraj Neeraj
Visa

Satyam Raj
Visa

See next page for additional authors

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Gangwar, Prakhar; Mohan, Shivam; Roy, Alok; Neeraj, Neeraj; Raj, Satyam; Sinha, Ravi Shanker Kumar; RC,
Shankar; Varshini, Kandikatla; Shetty, Prajna; and Banerjee, Prithwish, "A SYSTEM AND METHOD FOR API
BASED FILE PROCESSING", Technical Disclosure Commons, (November 14, 2022)
https://www.tdcommons.org/dpubs_series/5499

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5499?utm_source=www.tdcommons.org%2Fdpubs_series%2F5499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Inventor(s) Inventor(s)
Prakhar Gangwar, Shivam Mohan, Alok Roy, Neeraj Neeraj, Satyam Raj, Ravi Shanker Kumar Sinha,
Shankar RC, Kandikatla Varshini, Prajna Shetty, and Prithwish Banerjee

This article is available at Technical Disclosure Commons: https://www.tdcommons.org/dpubs_series/5499

https://www.tdcommons.org/dpubs_series/5499

A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

VISA

Prakhar Gangwar

Shivam Mohan

Alok Roy

Neeraj Surana

Satyam Raj

Ravi Shanker Kumar Sinha

Shankar RC

Kandikatla Varshini

Prajna Shetty

Prithwish Banerjee

2

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

FIELD OF INVENTION:

The present invention generally relates to the field of networking and API based file processing

systems. More particularly, but not specifically, the present invention relates to a system and

method for processing Application Programming Interface (API) transitions.

BACKGROUND:

These days systems are moving towards Application Programming Interface (API) based

solutions since API enables software services and products to communicate with each other for

large areas and/or longer time periods.

Generally, APIs exist as an intermediary layer between an application and the

webserver, that processes data transfer between system. Further, APIs extract data from

multiple APIs and / or multiple backend systems, in which the resulting activities can link

several microservices and other APIs. Consequently, an API call can invoke one or more serial

and parallel activities. So, the linking process of several microservices and other APIs grows

eventually as each API call further prompts other API calls. Therefore, the complexity of

handling each API transition multiplies exponentially and poses many challenges.

To handle these challenges efficiently, there were introduced batch processing to

schedule groups of loads (jobs) to be processed at the same time with or without human

intervention. Batch processing is typically used to process large amounts of data that

consolidates all the information from other batch processing systems and or with new sources

of data. Each job from a batch involves a precise volume or capacity of the processing machine

for a precise time. Further, the batch processing time is generally the longest processing times

of all the jobs in the corresponding batch. To increase the efficiency of batch processing the

makespan must be minimized. Makespan is the length of time that elapses from start of the

job to the end.

Therefore, there is need for an API based solution to minimize the makespan of batch

processing for API transitions which involves a large amount of data.

SUMMARY:

Various embodiments of the present invention provide a system and method for defining,

implementing, and / or executing batch processing of API transaction services and products.

3

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

Such API transitions access applications and services via the proposed system which processes

the API traffic in batches to solve the technical problems associated with the existing API file

processing environment. Thus, it is possible to envisage a tool which sits between API solutions

and client applications therefore reduces the long lag time to process the API traffic by

incorporating the present invention. Furthermore, the system provides capability to call API

for every line and / or bunch of lines and store output of all the results received in the output

file.

According to a further aspect of the present invention, there is provided a computer

implemented system for processing the input files with large amount of data associated with

API traffic in batches. The system comprising, one or more processors and one or more

memory communicatively coupled with the one or more processors. The one or more

processors of the said system may be configured to receive a plurality of file processing

requests associated with API traffic from one or more clients. The system further configured

to batch, one or more jobs associated with the plurality of file processing request for the API

traffic. Further, the processor within the system is configured to pick a request from one or

more jobs from the batch associated with the API traffic.

In an embodiment the processor is configured to initiate the process of executing the

API call associated with the API transitions. After picking a job from the batch, the processor

is configured to read the input file from the input storage associated with the job and further

splits the input file into plurality of chunks and invoke the API call associated with the

corresponding chunk from the plurality of APIs. The responses received from API transitions

invoked by the chunks related to API services and products being stored in chunks. The

processor within the system is configured to consolidate the plurality of responses stored in the

chunks and write the response to an output file.

Accordingly, in an embodiment, the present invention discloses a method for

processing the input files with large amount of data associated with API traffic in batches

comprising, receiving receive a plurality of file processing requests associated with API traffic

from one or more clients by a processor. The method further comprises the technique of

queueing / batching the one or more jobs associated with the plurality of file processing request

for the API traffic to form batches. Further, the method comprises picking a request from one

or more jobs from the batch associated with the API traffic.

4

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

In an embodiment the method further initiates the process of executing the API call

associated with the API transitions. After picking a job from the batch, the method performed

by the processor reads the input file from the input storage associated with the job and further

splits the input file into plurality of chunks based on the configuration parameters. Thus, the

method invokes the API call associated with the corresponding chunk from the plurality of

APIs. The responses received from API transitions invoked by the chunks related to API

services and products being stored in chunks. Further, the method comprises the process of

consolidating the plurality of responses stored in the chunks and writing the response to an

output file.

The foregoing summary is illustrative only and is not intended to be in any way limiting.

In addition to the illustrative aspects, embodiments, and features described above, further

aspects, embodiments, and features will become apparent by reference to the drawings and the

following detailed description. For a better understanding of exemplary embodiments of the

present invention, together with other and further features and advantages thereof, reference is

made to the following description, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this disclosure,

illustrate exemplary embodiments and together with the description, serve to explain the

disclosed principles. In the figures, the left-most digit(s) of a reference number identifies the

figure in which the reference number first appears. The embodiments of the disclosure itself,

however, as well as a preferred mode of use, further objectives, and advantages thereof, will

best be understood by reference to the following detailed description of an illustrative

embodiment. Some embodiments of system and/or method in accordance with embodiments

of the present subject matter are now described below, by way of example, and with reference

to the accompanying figures.

Figure 1 is an illustration of one of the existing system schematic of an exemplary

batch file processing system.

Figure 2 depicts a schematic diagram of an exemplary for defining, implementing, and

/ or executing batch processing of API transaction services and products in accordance with

the present invention.

5

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

Figure 3 depicts a schematic block diagram of an exemplary API based file processing

system for defining, implementing, and / or executing batch processing of API transaction

services and products in accordance with the present invention.

Figure 4 depicts a schematic block diagram of an exemplary transition and hybrid

support by migration from legacy file-based communication to hybrid model communication

in accordance with the present invention.

Figure 5 depicts a flow chart of an exemplary API based file processing system for

defining, implementing, and / or executing batch processing of API transaction services and

products in accordance with the present invention.

Figure 6 depicts a schematic block diagram of an exemplary computer system for

implementing various embodiments consistent with the present disclosure.

The figures depict embodiments of the disclosure for purpose of illustration only. One

skilled in the art will readily recognize from the following description that alternative

embodiments of the structures and methods illustrated herein may be employed without

departing from the principles of the disclosure herein.

It should be appreciated by those skilled in the art that any block diagrams herein

represent conceptual views of illustrative systems embodying the principles of the present

subject matter. Similarly, it will be appreciated that any flow charts, flow diagrams, state

transition diagrams, pseudo code, and the like represent various processes which may be

substantially represented in computer readable medium and executed by a computer or

processor, whether or not such computer or processor is explicitly shown.

DESCRIPTION

In the present document, the word "exemplary" is used herein to mean "serving as an example,

instance, or illustration." Any embodiment or implementation of the present subject matter

described herein as "exemplary" is not necessarily to be construed as preferred or advantageous

over other embodiments.

While the disclosure is susceptible to various modifications and alternative forms,

specific embodiment thereof has been shown by way of example in the drawings and will be

described in detail below. It should be understood, however that it is not intended to limit the

6

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

disclosure to the particular forms disclosed, but on the contrary, the disclosure is to cover all

modifications, equivalents, and alternative falling within the scope of the disclosure.

The terms “comprises”, “comprising”, or any other variations thereof, are intended to

cover a non-exclusive inclusion, such that a setup, device, or method that comprises a list of

components or steps does not include only those components or steps but may include other

components or steps not expressly listed or inherent to such setup or device or method. In other

words, one or more elements in a system or apparatus proceeded by “comprises… a” does not,

without more constraints, preclude the existence of other elements or additional elements in

the system or apparatus.

In the following detailed description of the embodiments of the disclosure, reference is

made to the accompanying drawings that form a part hereof, and in which are shown by way

of illustration specific embodiments in which the description may be practiced. These

embodiments are described in sufficient detail to enable those skilled in the art to practice the

disclosure, and it is to be understood that other embodiments may be utilized and that changes

may be made without departing from the scope of the present disclosure. The following

description is, therefore, not to be taken in a limiting sense.

Figure 1 depicts an exemplary illustration of one of the existing system schematics of

an exemplary batch file processing system. The environment comprises one or more input file

storage 101 (101.a, 101.b, 101.c), a one or more output file storage 102 (102.a, 102.b, 102.c),

a one or more process flow associated with API call request 103 (103.a, 104, 103.c) and one or

more process implementation and job invocation method and different I/O method 105 (105.a,

105.b, 105.c). The one or more Input / Output file storage system are associated with one or

more client applications which are demanding access to its corresponding APIs.

In the existing batch file processing systems, for each process flow being requested by

one or more client applications, there is a subsequent defined implementation and job

invocation method. So, these process flows are limited to each process requirement associated

with the Process request being invoked. Therefore, there exists a long lag time in transitioning

these API solutions from batch solution. Thus, in the existing network architecture each API

request /message received from a one or more client select an appropriate process

implementation and job invocation method and different I/O method which is limited to that

particular API. Therefore there is a need for a system and method for processing these API

requests received from one or more client applications with minimized lag time or makespan.

7

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

Figure 2 depicts a schematic diagram of an exemplary for defining, implementing, and

/ or executing batch processing of API transaction services and products in accordance with

the present invention. The environment comprises a computer system (202) configured to

define, implement, and / or execute batch file processing of API transaction services and

products in accordance with the present invention. The exemplary environment comprises one

or more client applications 201 (201.a, 201.b, 201.c) with one or more request to access one or

more API based services and products (203.a, 203.b, 203.c, 203.d) and the system 202 disposed

as network intermediate between one or more client applications 201 (201.a, 201.b, 201.c) and

one or more API based services and products (203.a, 203.b, 203.c, 203.d). Based on the

information received API requests from one or more clients, the system 202 processes the API

traffic in batches thus minimizes the time taken to complete the API transition invoked.

The system 202 is not a replacement of API solution but it will simplify the transitions

from batch to API solution. The system 202 is further configured to identify the corresponding

API based services and products (203.a, 203.b, 203.c, 203.d) based on one or more parameters

regarding client applications and API based solutions then invokes the corresponding API call.

Then the system processes the API based file in chunks and stores the responses received from

API based solutions. Furthermore, the system consolidates all the responses received for the

input file in chunks and writes the file with the consolidated output.

Figure 3 depicts a schematic block diagram (300) of an exemplary API based file

processing system for defining, implementing, and / or executing batch processing of API

transaction services and products in accordance with the present invention. As illustrated in

Fig.3, the API based file processing system includes one or more client applications 301 (301.a,

301.b, 301.c) and I/P file storage (305), O/P file storage (306), Requested job queue (302),

Processing request module (304), and API based solutions.

The system configured to initiate the process (304) for forwarding the received client

Application API request by picking a job from the batch (302), reading the input file from the

input file storage (305) and upon the input specification chunking and parsing the file to

identify corresponding API solution / API call. By invoking the corresponding API call, the

system is configured to receive the response from the API module and store the results in the

corresponding chunk. After processing all the chunks made from the input file, consolidate the

responses to write in the O/P file storage.

8

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

However, various versions of the modules involved for processing the API calls may

be equally configured or adapted to implement embodiments for various other types of file

processing systems. Therefore, the following examples are not intended to be limited as to

various types or formats of API based services and products or and or client applications.

In yet another embodiment the system configuration parameters comprise Input

specifications, API specifications, Output specifications, and Processing specifications. The

input specifications may include, but not limited to file name, location, file format, file parser

type, and fields to be extracted from input for API call. Similarly, the API specifications may

include but not limited to endpoint details, and arguments to be passed for each API call.

Likewise, the output specifications may include parameters such as, but not limited to output

fields specifications, such as but not limited to chunking logic, and processing parameters.

Figure 4 depicts a schematic block diagram of an exemplary transition and hybrid

support by migration from legacy file-based communication to hybrid model communication

in accordance with the present invention. As illustrated the system enables legacy file-based

models (402) to communicate with hybrid model (401) where both file and API communication

is supported. Therefore, the present invention provides a benefit of utilizing API based

communications and retire file-based communication for applications requiring to migrate.

In hybrid mode, the API-engine will not only act as an intermediary for applications

that use file-based communication to consume products that use API based communication

(404.a), but also allows the entire ecosystem to work in synergy even if few of the components

are still using file-based communication (404.b).

Figure 5 depicts a flow chart of an exemplary API based file processing system for

defining, implementing, and / or executing batch processing of API transaction services and

products in accordance with the present invention. The file processor enables the client

application to call various APIs based on the configuration provided. The system in accordance

with the present disclosure, takes all the configuration inputs to process the one or more API

request to access the API based solutions.

The configuration parameters may include but not limited to Input specifications, API

specifications, Output specifications, and Processing specifications. The input specifications

may include, but not limited to file name, location, file format, file parser type, and fields to be

extracted from input for API call. Similarly, the API specifications may include but not limited

to endpoint details, certificate details / credentials for accessing the APIs and arguments to be

9

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

passed for each API call. The processing specifications many include, but not limited to

chunking logic to be used, chunk size / micro batch size for calling API, sequential processing

/ parallel processing, and number of processors / threads to be used for processing. Likewise,

the output specifications may include parameters such as, but not limited to output fields

specifications, such as but not limited to output file format, output parameters extraction, and

errored records output file.

At step 501, the method receives a plurality of file processing requests associated with

API traffic from one or more clients by a processor. One or more files can be passed in one

processing flow. Further, the files can be processed in sequence or in parallel as required and

specified in processing specifications. Furthermore, the system, in accordance with the present

disclosure, supports multiple formats and can be extended to support new input files as required

as well as can be in different formats. The file formats may include but are not limited to text,

JSON, YAML, XML, etc.

 At step 503, the method further does queueing / batching the one or more jobs

associated with the plurality of file processing request for the API traffic to form batches.

Further, the method performs picking a request from one or more jobs from the batch associated

with the API traffic, at method step 505.

In an embodiment the method further initiates the process of executing the API call

associated with the API transitions. After picking a job from the batch, the method performed

by the processor reads the input file from the input storage associated with the job and further

splits the input file into plurality of chunks based on the configuration parameters at step 507.

Thus, the method invokes the API call associated with the corresponding chunk from the

plurality of APIs. The responses received from API transitions invoked by the chunks related

to API services and products being stored in chunks at step 509. Further, the method performs

the process of consolidating the plurality of responses stored in the chunks and writing the

response to an output file at step 511.

Computing System

Figure 6 illustrates a block diagram of an exemplary computer system 600 for implementing

embodiments consistent with the present disclosure. In an embodiment, the computer system

600 is used to implement the evaluating system for evaluating development of the at least one

plant. The computer system 600 may include a central processing unit (“CPU” or “processor”)

10

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

502. The processor 602 may include at least one data processor for executing processes in

Virtual Storage Area Network. The processor 602 may include specialized processing units

such as, integrated system (bus) controllers, memory management control units, floating point

units, graphics processing units, digital signal processing units, etc.

The processor 602 may be disposed in communication with one or more input/output

(I/O) devices 609 and 610 via I/O interface 601. The I/O interface 601 may employ

communication protocols/methods such as, without limitation, audio, analog, digital,

monaural, RCA, stereo, IEEE-1394, serial bus, universal serial bus (USB), infrared, PS/2,

BNC, coaxial, component, composite, digital visual interface (DVI), high-definition

multimedia interface (HDMI), radio frequency (RF) antennas, S-Video, VGA, IEEE 802.n

/b/g/n/x, Bluetooth, cellular (e.g., code-division multiple access (CDMA), high-speed packet

access (HSPA+), global system for mobile communications (GSM), long-term evolution

(LTE), WiMax, or the like), etc.

Using the I/O interface 601, the computer system 600 may communicate with one or

more I/O devices 609 and 610. For example, the input devices 609 may be an antenna,

keyboard, mouse, joystick, (infrared) remote control, camera, card reader, fax machine, dongle,

biometric reader, microphone, touch screen, touchpad, trackball, stylus, scanner, storage

device, transceiver, video device/source, etc. The output devices 610 may be a printer, fax

machine, video display (e.g., cathode ray tube (CRT), liquid crystal display (LCD), light-

emitting diode (LED), plasma, Plasma Display Panel (PDP), Organic light-emitting diode

display (OLED) or the like), audio speaker, etc.

The processor 602 may be disposed in communication with a communication network

611 via a network interface 603. The network interface 603 may communicate with the

communication network 611. The network interface 603 may employ connection protocols

including, without limitation, direct connect, Ethernet (e.g., twisted pair 10/100/1000 Base T),

transmission control protocol/internet protocol (TCP/IP), token ring, IEEE 802.11a/b/g/n/x,

etc. The communication network 611 may include, without limitation, a direct interconnection,

local area network (LAN), wide area network (WAN), wireless network (e.g., using Wireless

Application Protocol), the Internet, etc. Using the network interface 503 and the

communication network 611, the computer system 600 may communicate with at least one

user device 612 via communication network 611 to provide preference-based campaign page.

The network interface 603 may employ connection protocols include, but not limited to, direct

11

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

connect, Ethernet (e.g., twisted pair 10/100/1000 Base T), transmission control

protocol/internet protocol (TCP/IP), token ring, IEEE 802.11a/b/g/n/x, etc.

In an embodiment, the computer system (600) may receive plurality captured of images

related to the at least one plant and user first input via application installed in the at least one

user device (612) through the communication network (611).

The communication network 611 includes, but is not limited to, a direct

interconnection, an e-commerce network, a peer to peer (P2P) network, local area network

(LAN), wide area network (WAN), wireless network (e.g., using Wireless Application

Protocol), the Internet, Wi-Fi, and such. The first network and the second network may either

be a dedicated network or a shared network, which represents an association of the different

types of networks that use a variety of protocols, for example, Hypertext Transfer Protocol

(HTTP), Transmission Control Protocol/Internet Protocol (TCP/IP), Wireless Application

Protocol (WAP), etc., to communicate with each other. Further, the first network and the

second network may include a variety of network devices, including routers, bridges, servers,

computing devices, storage devices, etc.

In some embodiments, the processor 602 may be disposed in communication with a

memory 605 (e.g., RAM, ROM, etc. not shown in Figure 6) via a storage interface 604. The

storage interface 604 may connect to memory 605 including, without limitation, memory

drives, removable disc drives, etc., employing connection protocols such as, serial advanced

technology attachment (SATA), Integrated Drive Electronics (IDE), IEEE-1394, Universal

Serial Bus (USB), fiber channel, Small Computer Systems Interface (SCSI), etc. The memory

drives may further include a drum, magnetic disc drive, magneto-optical drive, optical drive,

Redundant Array of Independent Discs (RAID), solid-state memory devices, solid-state drives,

etc.

The memory 605 may store a collection of program or database components, including,

without limitation, user interface 606, an operating system 607, web browser 608 etc. In some

embodiments, computer system 600 may store user/application data, such as, the data,

variables, records, etc., as described in this disclosure. Such databases may be implemented as

fault-tolerant, relational, scalable, secure databases such as Oracle ® or Sybase®.

The operating system 607 may facilitate resource management and operation of the

computer system 600. Examples of operating systems include, without limitation, APPLE

12

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

MACINTOSH® OS X, UNIX®, UNIX-like system distributions (E.G., BERKELEY

SOFTWARE DISTRIBUTIONTM (BSD), FREEBSDTM, NETBSDTM, OPENBSDTM,

etc.), LINUX DISTRIBUTIONSTM (E.G., RED HATTM, UBUNTUTM, KUBUNTUTM,

etc.), IBMTM OS/2, MICROSOFTTM WINDOWSTM (XPTM, VISTATM/7/8, 10 etc.),

APPLE® IOSTM, GOOGLE® ANDROIDTM, BLACKBERRY® OS, or the like.

In some embodiments, the computer system 600 may implement a web browser 608

stored program component. The web browser 608 may be a hypertext viewing application,

such as Microsoft Internet Explorer, Google Chrome, Mozilla Firefox, Apple Safari, etc.

Secure web browsing may be provided using Hypertext Transport Protocol Secure (HTTPS),

Secure Sockets Layer (SSL), Transport Layer Security (TLS), etc. Web browsers 508 may

utilize facilities such as AJAX, DHTML, Adobe Flash, JavaScript, Java, Application

Programming Interfaces (APIs), etc. In some embodiments, the computer system 600 may

implement a mail server stored program component. The mail server may be an Internet mail

server such as Microsoft Exchange, or the like. The mail server may utilize facilities such as

ASP, ActiveX, ANSI C++/C#, Microsoft .NET, Common Gateway Interface (CGI) scripts,

Java, JavaScript, PERL, PHP, Python, WebObjects, etc. The mail server may utilize

communication protocols such as Internet Message Access Protocol (IMAP), Messaging

Application Programming Interface (MAPI), Microsoft Exchange, Post Office Protocol (POP),

Simple Mail Transfer Protocol (SMTP), or the like. In some embodiments, the computer

system 600 may implement a mail client stored program component. The mail client may be a

mail viewing application, such as Apple Mail, Microsoft Entourage, Microsoft Outlook,

Mozilla Thunderbird, etc.

Furthermore, one or more computer-readable storage media may be utilized in

implementing embodiments consistent with the present disclosure. A computer-readable

storage medium refers to any type of physical memory on which information or data readable

by a processor 602 may be stored. Thus, a computer-readable storage medium may store

instructions for execution by one or more processors, including instructions for causing the

processor(s) 602 to perform steps or stages consistent with the embodiments described herein.

The term “computer-readable medium” should be understood to include tangible items and

exclude carrier waves and transient signals, i.e., be non-transitory. Examples include Random

Access Memory (RAM), Read-Only Memory (ROM), volatile memory, non-volatile memory,

hard drives, Compact Disc (CD) ROMs, DVDs, flash drives, disks, and any other known

physical storage media.

13

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

The described operations may be implemented as a method, system or article of

manufacture using standard programming and/or engineering techniques to produce software,

firmware, hardware, or any combination thereof. The described operations may be

implemented as code maintained in a “non-transitory computer readable medium”, where a

processor 602 may read and execute the code from the computer readable medium. The

processor 602 is at least one of a microprocessor and a processor capable of processing and

executing the queries. A non-transitory computer readable medium may include media such as

magnetic storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CD-

ROMs, DVDs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs,

ROMs, PROMs, RAMs, DRAMs, SRAMs, Flash Memory, firmware, programmable logic,

etc.), etc. Further, non-transitory computer-readable media may include all computer-readable

media except for transitory. The code implementing the described operations may further be

implemented in hardware logic (e.g., an integrated circuit chip, Programmable Gate Array

(PGA), Application Specific Integrated Circuit (ASIC), etc.).

The illustrated steps are set out to explain the exemplary embodiments shown, and it

should be anticipated that ongoing technological development will change the manner in which

particular functions are performed. These examples are presented herein for purposes of

illustration, and not limitation. Further, the boundaries of the functional building blocks have

been arbitrarily defined herein for the convenience of the description. Alternative boundaries

can be defined so long as the specified functions and relationships thereof are appropriately

performed. Alternatives (including equivalents, extensions, variations, deviations, etc., of those

described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings

contained herein. Such alternatives fall within the scope and spirit of the disclosed

embodiments. Also, the words "comprising," "having," "containing," and "including," and

other similar forms are intended to be equivalent in meaning and be open ended in that an item

or items following any one of these words is not meant to be an exhaustive listing of such item

or items or meant to be limited to only the listed item or items. It must also be noted that as

used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural

references unless the context clearly dictates otherwise.

Furthermore, one or more computer-readable storage media may be utilized in

implementing embodiments consistent with the present disclosure. A computer readable

storage medium refers to any type of physical memory on which information or data readable

14

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

by a processor may be stored. Thus, a computer readable storage medium may store

instructions for execution by one or more processors, including instructions for causing the

processor(s) to perform steps or stages consistent with the embodiments described herein. The

term “computer readable medium” should be understood to include tangible items and exclude

carrier waves and transient signals, i.e., are non-transitory. Examples include random access

memory (RAM), read-only memory (ROM), volatile memory, non-volatile memory, hard

drives, CD ROMs, DVDs, flash drives, disks, and any other known physical storage media.

With respect to the use of substantially any plural and/or singular terms herein, those

having skill in the art can translate from the plural to the singular and/or from the singular to

the plural as is appropriate to the context and/or application. The various singular/plural

permutations may be expressly set forth herein for sake of clarity.

The enumerated listing of items does not imply that any or all of the items are mutually

exclusive, unless expressly specified otherwise. The terms "a", "an" and "the" mean "one or

more", unless expressly specified otherwise.

A description of an embodiment with several components in communication with each

other does not imply that all such components are required. On the contrary a variety of optional

components are described to illustrate the wide variety of possible embodiments of the

invention.

When a single device or article is described herein, it will be readily apparent that

more than one device/article (whether or not they cooperate) may be used in place of a single

device/article. Similarly, where more than one device or article is described herein (whether or

not they cooperate), it will be readily apparent that a single device/article may be used in place

of the more than one device or article, or a different number of devices/articles may be used

instead of the shown number of devices or programs. The functionality and/or the features of

a device may be alternatively embodied by one or more other devices which are not explicitly

described as having such functionality/features. Thus, other embodiments of the invention need

not include the device itself.

Finally, the language used in the specification has been principally selected for

readability and instructional purposes, and it may not have been selected to delineate or

circumscribe the inventive subject matter. It is therefore intended that the scope of the

15

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

invention be limited not by this detailed description, but rather by any claims that issue on an

application based here on.

While various aspects and embodiments have been disclosed herein, other aspects and

embodiments will be apparent to those skilled in the art. The various aspects and embodiments

disclosed herein are for purposes of illustration and are not intended to be limiting, with the

true scope being indicated by the following claims.

Reference Number Description

101 Input File Storage

102 Output File Storage

103 Process Flow

104 Process Request Flow

105 API based Process Methods

201 Client Applications

202 System (API based file

processing system)

302 Job queue

304 Processing request Module

401 Hybrid model client

402 Legacy model client

403 API based file processing system

404.a Products & Services using APIs

404.b Products & Services using batch

model

600 Computer system

602 Plurality of processors

601 I/O interface

605 Memory

603 Network interface

604 Storage interface

606 User interface

607 Operating System

16

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

608 Web server

611 Communication network

612 API based services and products

613, 614 Client Applications

17

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

ABSTRACT

Various embodiments of the present invention provide a system and method for defining,

implementing, and / or executing batch processing of API transaction services and products.

The system is configured to receive a plurality of file processing requests associated with API

traffic from one or more clients and batch, one or more jobs associated with the plurality of file

processing requests for the API traffic. Further, the system is configured to pick and initiate

the process of executing the API call associated with the API transitions. Furthermore, it splits

the input file into plurality of chunks and invokes the API call associated with the

corresponding chunk and receives responses from API transitions as well as store the same in

chunks. The processor within the system is configured to consolidate the plurality of responses

stored in the chunks and write the response to an output file.

[Figure 3]

18

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

Figure 1

(101.a)

(102.a)

(101.b)

(102.b)

(101.c)

(102.c)

(103.b)

(104)

(103.a)

(105.a)

)

 (103)

(105.b)

(105.c)

Process Method 1

(100)

Process Method 2

Process Method n

19

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

Figure 2

API 1

API 2

API 3

API n

(202)

(201.a)

(201.b)

(201.c)
(203.d)

(203.c)

(203.b)

(203.a)

•
•
•

(200)

20

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

Figure 3

I/P File

Storage

O/P File

Storage

 Process Request

Read file

API 1

API 2

API 3

API n
Split file in Chunk

Call API & Store

responses in Chunk

Finalize – Collect &

Write Response

(300)

(308)

(301.a)
(302)

(305)

(306)

(303)

(304)

(307)

(301.b)

(301.c)

21

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

Figure 4

(401)

(402)

(403)

(404.a)

(404.b)

(400)

22

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

Figure 5

Receive, a plurality of file processing request

associated with API traffic from one or more client

device,

 Consolidate, the plurality of responses processed in chunks and write

the response to an output file

Pick, a request from the one or more jobs from the

batch associated with the API traffic

Batch, one or more jobs associated with the plurality of

file processing request for the API traffic

Call, relevant API from the plurality of APIs and store the

response from API in chunks

Read, the input file from the input storage associated

with the job and split the file into plurality of chunks

(501)

(500)

(503)

(505)

(507)

(509)

(511)

23

Defensive Publications Series, Art. 5499 [2022]

https://www.tdcommons.org/dpubs_series/5499

Figure 6

(605)

(606)

(601)

(602) (603)

(609) (610)

(604)

(613)

(614)

(612)

(607)

(608)

(600)

(611)

24

Gangwar et al.: A SYSTEM AND METHOD FOR API BASED FILE PROCESSING

Published by Technical Disclosure Commons, 2022

	A SYSTEM AND METHOD FOR API BASED FILE PROCESSING
	Recommended Citation
	Inventor(s)

	IP68061_6330_Defensive Specification
	IP68061_6330_Drawings

