
JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 2, November 2022 

Requirements Conflict Detection … | Delima, R., Wardoyo, R., Mustofa, K., 191 – 200  191 

 Requirements Conflict Detection and Resolution in 

AREM Using Intelligence System Approach  

Rosa Delima1, Retantyo Wardoyo2, Khabib Mustofa3  

1Departement of Informatics, Universitas Kristen Duta Wacana, Indonesia 
2,3Departement of Computer Science & Electronics, Universitas Gadjah Mada, Indonesia 

1rosadelima@staff.ukdw.ac.id, 2rw@ugm.ac.id, 3khabib@ugm.ac.id 

 
Abstract -  Requirements engineering (RE) is the process 

of defining user requirements that are used as the main 

reference in the system development process. The quality 

of the RE results is measured based on the consistency and 

completeness of the requirements. The collection of 

requirements from multiple stakeholders can cause 

requirements conflict and have an impact on the 

inconsistency and incompleteness of the resulting 

requirements model. In this study, a method for automatic 

conflict detection and resolution in the Automatic 

Requirements Engineering Model (AREM) was developed. 

AREM is a model that automates the process of elicitation, 

analysis, validation, and requirements specification. The 

requirement conflict detection method was developed 

using an intelligent agent approach combined with a 

Weighted Product approach. Meanwhile, Conflict 

resolution is made automatically using a rule-based model 

and clustering method. Testing the ability of the method to 

detect and resolve conflicting requirements was carried 

out through five data sets of requirements from five system 

development projects. Based on the test results, it is known 

that the system is able to produce a set of objects that have 

conflicts in the data requirements. For conflict resolution, 

experiments were conducted with five conflict resolution 

scenarios. The experimental results show that the method 

is able to resolve conflicts by producing the highest 

completeness value, but the results of conflict resolution 

also produce a number of soft goals. The success of the 

method in detecting and resolving conflicts in the model is 

able to overcome the problem of inconsistencies and 

incompleteness in the requirements model. 

 
Keywords: Requirements engineering; AREM; conflict 

detection; conflict resolution; intelligence 

agent; weight product; rule-based; K-means 

clustering 

I. INTRODUCTION 

Requirements Engineering (RE) is an important stage 

in the development of software. RE consists of several 

stages, such as elicitation, analysis, specification, 

validation, and requirement management [1]. 

Automation of several stages of the RE can increase the 

effectiveness of the RE. Automatic Requirements 

Engineering Model (AREM) is a model that automates 

the elicitation, analysis, specification, and validation 

stages on RE. AREM was developed by researchers with 

the aim of increasing the effectiveness of the RE process 

by minimizing the role of system analysis or 

requirements engineer on the RE. 

AREM was developed by integrating several 

approaches, namely Goal-Oriented Requirements 

Engineering (GORE), intelligent agents, text processing, 

decision support systems, rules-based, and intelligent 

systems approach. The model input is in the form of data 

requirements from each stakeholder. To obtain complete 

requirements data, it is necessary to collect requirements 

from various stakeholders. Stakeholders include 

organizational management and end-users. Differences 

in requirements between stakeholders are very likely to 

occur because each stakeholder has a definition of the 

requirements that may be different or even contradictory 

to the requirement of other stakeholders. 

The GORE approach is used as a standard form of 

input for the model. In GORE, there are several elements, 

namely goal, task, and operational [2]. The goal is the 

main element that represents the requirements of the 

stakeholders. Conflicting goals between stakeholders 

will affect the consistency and completeness of the model 

[3-4]. Therefore, AREM must be able to detect conflicts 

between elements in the data requirements and followed 

by requirements conflict resolution. 

Conflict detection is an essential part of the validation 

model [5]. In this study, a novel method was developed 

to detect conflict of requirements in AREM. The method 

was developed by integrating the intelligence agent and 

weighted product approaches. The intelligence agent 

approach is used to carry out the process of meeting the 

needs based on the behaviour of the agent from a number 

of test cases, while the weighted product is used to 

determine the fulfillment of goals with or relation. This 

research produces a set of goals or model elements that 

conflict with other elements. Based on the results of 

conflict detection in the model elements, an algorithm for 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 2, November 2022 

192  Requirements Conflict Detection … | Delima, R., Wardoyo, R., Mustofa, K., 191 – 200 

conflict handling has been developed so that the model 

can produce consistent and complete requirements. 

 Conflict resolution is automatically carried out by 

using the integration of the clustering method to cluster 

the level of conflict and a rule-based approach to conflict 

resolution. The success of conflict handling is measured 

by the completeness value generated by the model. 

This paper consists of four parts, beginning with an 

introduction which consists of background and related 

work. The second section contains the method 

development process and continues with experiments 

and results. The last section contains the conclusion of 

the research. 

Conflict of requirements is a problem that arises in 

multiple stakeholders [6]. Conflict of requirements 

occurs when there is an inconsistency between one 

requirement and another. A mild form of conflict is in 

the form of goal divergence. A set of goal statements 

(𝐺1, 𝐺2, . . . . , 𝐺𝑛) is declared to be divergent in the 

domain (𝐷𝑜𝑚) if it can be found that the boundary 

condition (B) is true, where the goals cannot be met 

simultaneously. It can be said that the requirements 

become logically inconsistent if the boundary condition 

(B) is true and the fulfillment of the goal is false. The 

logical notation for this condition can be seen in (1) [2].  

{𝐺1, 𝐺2, … … , 𝐺𝑛, 𝐵, 𝐷𝑜𝑚} ⊨ 𝐹𝑎𝑙𝑠𝑒                    (1) 

There are many causes of the conflict of 

requirements, such as there are many system’s 

requirements defined, a complex system will have 

complex requirements as well. Therefore, a conflict of 

requirements occurs, and requirements from multiple 

stakeholders are highly at risk for conflicts [4].  

Based on the literature study conducted by [4], it is 

known that many studies have been conducted to detect 

and resolve conflicts in RE. There are three conflict 

detection techniques, such as manual, automatic, and 

general framework. The manual technique performs 

conflict detection and handling manually or directly by 

requirements engineers. Meanwhile, in automatic 

techniques, tools were developed to detect and handle 

conflicts automatically. The general framework 

performs conflict detection using special techniques that 

cannot be categorized into manual or fully automated. In 

research [4], a review of 22 papers was conducted. They 

categorized them as follows: eleven papers proposed 

manual technique, nine papers proposed automatic 

technique, and two papers proposed a general framework 

for conflict detection. 

Detection of conflicts between objects in RE, 

particularly the GORE approach, is known as divergence 

analysis [2]. This process is very important, which will 

have an impact on the quality of requirements generated 

by the model. In the GORE study, this area has not 

received much attention [7]; some studies emphasize the 

use of obstacles for risk analysis and conflict detection 

[8-13]. Some others use a formal approach to detect 

conflicts  [14-16]. 

In this research, we have closeness with the research 

conducted by [15]. In research [15], they used a formal 

temporal logic approach to calculate goal conflict and 

then applied a string model counting technique to 

estimate the possibility of conflict. In this study, the 

conflict detection process was carried out using an agent 

approach to detect conflicts from a number of test cases. 

Then, the model will calculate the number of conflicts 

for each pair of objects so that a number of objects that 

experience conflict exceed the specified threshold value. 

Conflict resolution is an attempt to deal with conflicts 

that occur. In RE, conflict resolution is closely related to 

meeting the requirements defined by stakeholders. 

Conflict results in incompleteness in the fulfillment of 

requirements [9-10]. Therefore, conflict resolution must 

be carried out in order to obtain good quality 

requirements. 

In the GORE approach, completeness is notated as in 

(2), where all goals (G) are met through the fulfillment 

of requirements (𝑅𝑒𝑞) in the estimated environment 

(Asm) and the specified domain (Dom) [2]. 

{𝑅𝑒𝑞, Asm, 𝐷𝑜𝑚} ⊨ G                               (2) 

There are many studies on resolving conflicting 

requirements, including Rehman et.al. [17], who 

reviewed and applied communication and negotiation in 

conflict resolution. The same thing was also done by 

Maysoon and Djamal [3]; they reviewed a number of 

methods which were categorized into two conflict 

resolution techniques, namely negotiation between 

stakeholders and prioritizing requirements. Both of these 

techniques resolve conflicts manually by prioritizing the 

role of analysis systems in conflict resolution. For 

automatic conflict resolution, there are studies that apply 

rule-based and genetic algorithms methods [3,18]. 
In GORE, most of the studies apply the obstacle 

approach to conflict resolution [8-10]. This study, it 
contributes through the resolution of conflicting 
requirements by applying the rule-based method with K-
means clustering. 

II. METHOD 

The proposed method to detect conflict in AREM 
uses the intelligence agent approach. The agent 
architecture consists of an environment that provides 
input for agent behaviour which will then be stored in the 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 2, November 2022 

Requirements Conflict Detection … | Delima, R., Wardoyo, R., Mustofa, K., 191 – 200  193 

agent-behaviour data. The analysis process is carried out 
automatically through input from inference triggers in 
the form of tasks/operations run by agents. Then, the 
analysis process will be carried out through fact data to 
provide results in the form of status to triggers and input 
values for elements in the model. After completing the 
divergence analysis, then conflict detection is carried 
out; if a conflict is found, a list of pairs of elements 
experiencing conflict will be generated, and then conflict 
handling will be carried out. In the final stage, the agent 
will provide input back to the environment in the form of 
requirements data that have been refined and are ready to 
be used in the next sub-model. The architecture of the 
agent used can be seen in Fig. 1. 

The requirements conflict detection stage is carried 
out through four stages, such as generating test cases, 
generating agent behaviour, divergence analysis, 
calculating object pair conflicts, and producing an output 
in the form of a list of element pairs that experience 
conflicts in the model. The stages of requirements 
conflict detection can be seen in Fig. 2. 

A. Generate Test Cases for Agent Behaviour  

A test case is a collection of objects and relations 
between objects that are formed in the requirements 
elicitation and requirement refinement stages. In the 

GORE approach, the requirements data are in the form 
of a goal tree, where the root of the tree is the main goal. 
Each branch is a representation of each element of the 
requirements data. Fig. 3 is a goal tree that represents 
system requirements. 

In Fig. 3, it can be seen that the requirements data in 
the model consist of goal, task, operational, and 
resources (actor and resources). The relation to the 
element is in the form of the contribution that the element 
gives to the element above it. The lowest element is a set 
of facts that form the basis for tracking the fulfillment of 
goals on the model. In the agent approach (Fig. 1), the 
environment will provide input for agent behaviour. Test 
case generation is the generation of input values for agent 
behaviour. Input is generated randomly to determine the 
value of the behaviour agent. There are two possible 
values of the fact on the agent, such as true (T) and false 
(F). 

B. Divergence Analysis 

After the fact values are known, then a divergence 
analysis is carried out. The analysis was carried out using 
the forward chaining algorithm [19], starting from the 
facts (bottom of the tree) to the root (main goal). The 
forward-chaining algorithm applied can be seen in Fig. 4 
[19].

 

 

Fig 1. Agent architecture in AREM  

 

 

Fig 2. Conflict detection stages on model 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 2, November 2022 

194  Requirements Conflict Detection … | Delima, R., Wardoyo, R., Mustofa, K., 191 – 200 

 

 

Fig 3. Representation of requirements data in tree shapes  

 

Fig. 4 Forward chaining algorithm 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 2, November 2022 

Requirements Conflict Detection … | Delima, R., Wardoyo, R., Mustofa, K., 191 – 200  195 

In the divergence analysis process, there are two 

forms of rules that describe the relationship between 

objects such as AND and OR. As seen in figure 3, goal 

𝐺8 gets contribution from 𝐺10, 𝐺11, and 𝐺12 with the 

notation (𝐺10 ∧ 𝐺11)  ∨  𝐺12 ⟹ 𝐺8. The inference 

process for rules with OR relation is carried out using a 

Weighted Product (WP) decision support approach. WP 

is a method for dealing with multiple-criteria decision-

making problems [20]. In WP, the priority value of each 

object in the relation will be calculated. The stages of 

calculating the priority value of objects in WP can be 

seen in Fig. 5. 

In this research, there are three criteria in the WP 

method such as number of child nodes (𝐶1), the number 

of nodes associated with object down to operational 

element (𝐶2), and the number of nodes and resources 

needed to the value of the object (𝐶3). On WP, there are 

two kinds of criteria as profit criterion (𝐶1 and 𝐶2) and 

cost criterion (𝐶3). Then the weight value is determined 

for each criterion with the provisions of 4, 3, and 2 for 

each 𝐶1, 𝐶2, and 𝐶3.  

The next step is to normalize the weight (𝑊𝑖) and 

calculate the weight vector (𝑆𝑖). The formula for weight 

normalization can be seen in (3), where normalization is 

formulated by dividing the weight of the criteria by i 

(𝑊𝑖) by the number of weights criteria from 1 to n. The 

calculation of the weight vector can be seen in (4), where 

𝑋𝑖𝑗 is the value for alternative/object i and criteria j. The 

results of the vector calculation will produce an object 

priority order whose value will be used as a reference 

value for the parent node. 

𝑊𝑖 =
𝑊𝑖

∑ 𝑊𝑖
𝑛
𝑖=1

                                          (3) 

𝑆𝑖 = ∏ 𝑋𝑖𝑗
𝑊𝑗𝑛

𝑗=1                                       (4) 

C. Conflict Count 

After conducting a divergence analysis for all cases 
that have been generated, the conflict value calculation 
of each object in the model will be calculated. The 
conflict value calculation is done by generating all 
objects in the model and pairing one object with another 
object. Therefore, data pairs will be formed for all 
objects (𝑃(𝑖,𝑗)) owned by the model. The conflict value 
calculation is conducted by calculating the number of 
cases where node pair 𝑃(𝑖,𝑗), value i (𝑣𝑖)  is not equal 
with value j (𝑣𝑗) divided by the number of all test cases 

generated (n). The formulation of conflict_value can be 
seen in (5). 

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡_𝑣𝑎𝑙𝑢𝑒_𝑃(𝑖,𝑗) =  
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐𝑎𝑠𝑒_𝑤ℎ𝑒𝑟𝑒   𝑣𝑖 ≠ 𝑣𝑗

𝑛
     (5) 

The final result of the requirement conflict detection 
model is a list of object pairs that experience conflict 
with the conflict_value exceeding the set threshold. 

D. Conflict Resolution 

Conflict resolution is carried out through two stages, 

namely the stage of determining groups/clusters from 

conflicts and handling conflicts. The type of conflict 

handling for each object is based on two variables, such 

as the type of object and the magnitude of the conflict 

value on the object. The types of objects are divided into 

three types of objects, such as goals, tasks, and 

operations. Each object is assigned a value of 1, 2, and 3 

for goals, tasks, and operations. Meanwhile, the handling 

of conflict values is done by clustering conflict values. 

Conflict values are clustered into three clusters, such 

as cluster 1 for objects with small conflict values, cluster 

2 for objects with average or moderate conflict values, 

cluster 3 for objects with large conflict values. 

The clustering process is carried out using the K-

Means approach through the following stages [21] :  

 Early initiation. At this stage, the number of 

clusters is determined, followed by calculating the 

distance between the node and the initial centroid. 

 Repeat until there is no change in the centroid of 

the data. This stage begins with determining the 

data cluster according to the closest distance 

between the node and the centroid. Next, the new 

centroid is recalculated.  
 Perform final cluster data storage. This stage is 

carried out if the clustering has been convergent. 
The final result of the cluster becomes the cluster 
value of the conflict node. 

Cluster value generation is carried out using a quarter 

approach to statistics, namely quarter 1, quarter 2 

(median), and quarter 3  [22]. A quaternary approach is 

an approach that calculates the three midpoints of the 

data. The equation to determine the quarter can be seen 

in (6), where i is the i quarter and n is the number of data 

𝑄𝑖 =
𝑖×(𝑛+1)

4
       (6)

 

Fig. 5 Stages for weighted product method 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 2, November 2022 

196  Requirements Conflict Detection … | Delima, R., Wardoyo, R., Mustofa, K., 191 – 200 

To determine the distance of nodes in each cluster, the 

Euclidean distance approach is used as in (7), where the 

value of the cluster (𝑐𝑖) corresponds to the value of the 

data in Q1, Q2, and Q3 and 𝑥𝑖 is the value of the i node 

and 𝑐𝑖 is the value of the i cluster. 

𝐷(𝑥𝑖 , 𝑐𝑖) = √(𝑥𝑖 − 𝑐1)2                        (7) 

Conflict handling is carried out based on the type and 

cluster group of objects. There are three types of conflict 

handling. The first conflict handling is to make the object 

a soft element. The soft element is a requirements 

element in the model that has a lower level of fulfillment 

than the hard element. This means that the soft elements 

will be fulfilled after all the hard elements are met. The 

second conflict handling is to make an OR relation on the 

object experiencing the conflict. This handling is done 

through refinement resolution on the model, and the third 

conflict handling is not handling the conflict, meaning 

that the conflict will be ignored. The choice of the type 

of conflict resolution is carried out based on the rules that 

have been defined. The list of applied rules can be seen 

in table VIII, in section IV. 

III. RESULTS AND DISCUSSION 

The experiment was carried out using five system 

development projects, such as a cooperative information 

system, a staffing system, a lecture support system, and 

a financial dashboard system. The requirement 

elicitation is carried out using standard inputs developed 

with the GORE approach. Table I is a description of the 

number of objects in the project used as the experimental 

data. 

A. Data Preparation 

In running the algorithm for conflict detection, input 

data in the form of requirements data is necessary. Based 

on the requirements data, agent_behaviour data will be 

generated to support the analysis process. The result of 

the conflict detection process is a list of object pairs that 

experience conflict. Referring to the requirements data in 

the form of a tree in fig. 3, then the requirements data, 

agent_behaviour data, and the results of the requirements 

data can be formed, as can be seen in Tables II to IV. 

B. Requirements Conflict Detection Process  

The first step is to generate test cases. In the 

experiment, 100 test cases were generated for each 

project. Then, the agent behaviour is generated for each 

test case. Generating agent behaviour is carried out on all 

objects, which are the initial facts on the requirements 

data. The initial fact is the node in the requirement tree 

which is at the bottom, above the actors and resources. 

For example, in Fig. 3, there are fifteen nodes that are 

initial facts, namely resource objects (A1, A2, R1, R2, R3, 

R4, R5) and operational objects (O1 to O8). Generating 

True and False values in each case for agent behaviour is 

done by generating random values. 

The next step is a divergence analysis for each test 

case. The analysis is carried out by conducting a bottom-

up search on the requirements tree. The search is carried 

out based on the rules on the requirements data, which is 

a representation of the requirement tree. If the rule has an 

OR relation, the determination of the goal value will be 

based on the value of the node that has the highest 

priority. For example, in Fig. 3, there are two rules that 

have an OR relation, (G10 ∧ G11) ∨ G12 ⟹ G8 and  
(T1 ∧ T2) ∨ T3 ⟹ G10. To determine the value of G8 

priority values are calculated (G10 ∧ G11) and G12. The 

calculation of the priority value uses the WP method with 

stages such as Fig. 4. Based on 𝐶1, 𝐶2, and 𝐶3 which have 

been defined, the criteria values as in Table V are 

obtained. 

Then normalization of the weights is carried out using 

equation 3. It is known that if 𝑊 = (4,3,2) then the 

normalization results are 𝑊1 = 0.44, 𝑊2 = 0.33, and 

𝑊3 = 0.22. Based on the  criteria and weight values, the 

vector 𝑆𝑖 uses equation 4, and the obtained result is 𝑆1 =
(40.44)(80.33)(11−0.22) = 2.16 and 𝑆1 =
(10.44)(20.33)(3−0.22) = 0.99. Based on vector 

calculations, it is known that the priority value of the 

node (G10 ∧ G11) is more than G12 therefore the value of 

the node G8 will be determined by the value of the node 

(G10 ∧ G11).

TABLE I 

DATASET OF EXPERIMENTS 

Project 

Code 

Project Name The number of requirements data objects 

Goal Task Op Res 

P1 Cooperative information system 62 71 195 140 

P2 Staffing system 83 34 26 26 

P3 Lecture support system 145 119 174 230 

P4 Financial dashboard system 43 40 65 66 

P5 Human Resource Management System 218 218 448 470 

 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 2, November 2022 

Requirements Conflict Detection … | Delima, R., Wardoyo, R., Mustofa, K., 191 – 200  197 

TABLE II 

EXAMPLE OF REQUIREMENTS DATA 

Child Object Parent Object Child Type Parent Type 

G2 ^ G3 G1 Goal Goal 

G4 ^ G5 G2 Goal Goal 

T1 ^ T2 G10 Task Goal 

T3 G10 Task Goal 

TABLE III 

EXAMPLE OF AGENT-BEHAVIOUR DATA 

Object Object Pre-value Object Post-value 

A1 True True 

R1 True True 

O1 True False 

O2 True False 

TABLE IV 

EXAMPLE OF RESULT DATA 

Object 1 Object 2  Conflict Value 

G2 G3 0.56 

G2 G4 0.75 

G2 T1 0.60 

G3 T1 0.90 

TABLE V 

EXAMPLE OF CRITERIA VALUES 

Node C1 C2 C3 

G10 ^ G11 4 8 11 

G12 1 2 3 

 

The final step in conflict detection is to calculate the 

conflict value for each node pair. For example, from the 

results of the divergence analysis, data is obtained as in 

Table VI, it is known that there are six test cases and five 

of the value test cases nodes G5 and G6  have different 

values, so based on equation 4, the conflict value for the 

pair of nodes is 0.83. 

C. Conflict Detection Result and Conflict resolution 

The experiment was carried out by generating 100 

test cases for each project. The experimental results show 

that the number of pairs of nodes in each project is 

strongly influenced by the number of objects in the 

requirements data. It can be seen in table VII that the P3 

project has the highest number of objects, so this project 

will definitely produce the highest number of pair nodes. 

Likewise, with data processing time. The more objects, 

the longer the time needed to perform divergence 

analysis. 

Evaluation of the test results is carried out based on 

the threshold value of the conflict value. We used a 

threshold of 0.5 for conflict value. This threshold value 

means that the model will only handle 50% of conflicting 

nodes. This is based on the consideration, the more 

handling nodes that experience conflict, the more effort 

is needed for conflict handling, but too few nodes can 

lead to a lack of effectiveness in handling conflicts. 

After obtaining a list of nodes experiencing conflict, 

then conflict resolution is carried out. Conflict resolution 

is carried out based on the established rules. In this 

experiment, four conflict resolution scenarios were 

created. The rules for the four scenarios can be seen in 

Table VIII. The types of objects (Table 8) are divided 

into three types of objects, such as goals, tasks, and 

operations. Each object is assigned a value of 1, 2, and 3 

for goals, tasks, and operations. Meanwhile, Conflict 

values are clustered into three values, such as 1 for 

objects with small conflict values, 2 for objects with 

average or moderate conflict values, and 3 for objects 

with large conflict values. There are three ways to 

conflict resolution; the first conflict handling is to make 

the object a soft element assigned by conflict resolution 

= 1; The second conflict resolution is to make an OR 

relation on the object experiencing the conflict, assigned 

by conflict resolution = 2, and the third conflict 

resolution is letting the conflict persist, assigned by 

conflict resolution = 3. The four scenarios have different 

conflict handling characteristics. The first scenario is 

intended to determine whether the type of object and 

cluster of conflict does not affect the effectiveness of 

conflict resolution. The second scenario is intended to 

measure whether conflict resolution can avoid the 

formation of soft goals/soft elements. Scenario three is 

intended to determine the effectiveness of conflict 

management if only two conflict clusters are determined, 

and scenario four is intended to measure the 

effectiveness of conflict management based on cluster 

groups.

TABLE VI 

EXAMPLE OF DIVERGENCE ANALYSIS RESULTS 

Case Num. Object 1 Object 1 Value Object 2 Object 2 Value 

1 G5 True G6 False 

2 G5 False G6 False 

3 G5 True G6 False 

4 G5 False G6 True 

5 G5 True G6 False 

6 G5 False G6 True 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 2, November 2022 

198  Requirements Conflict Detection … | Delima, R., Wardoyo, R., Mustofa, K., 191 – 200 

D. Completeness Measure 

After handling the conflict, the completeness (Comp.) 

measurement is carried out on the model. Completeness 

is a measurement of meeting the requirements of all 

goals in the model. The value of completeness is 

measured by [0,1], where 0 means that there is no 

requirement that can be met by the model, and 1 means 

that all requirements can be met by the model. Table IX 

shows the level of completeness that is resulted after 

conflict resolution on the four tested scenarios. 

Based on the data in Table IX, it can be concluded 

that the way of handling conflict through changing 

elements into soft elements is able to increase the 

completeness value to the highest level. Based on the 

four scenarios carried out, the fourth scenario has the 

least number of soft goals, namely an average of 52.4 or 

47%. This scenario gives the best results from the four 

scenarios tested for the highest completeness value. 

However, if soft goals are important, then the second 

scenario is the best choice, but the completeness value 

only reaches 0.44. The completeness value of this score 

will reach the highest value if the conditions of all facts 

or all elements of tasks and operations can be met or 

valued true. 

IV. CONCLUSION 

In this study, a novel method was developed to detect 

and resolve requirements conflict in AREM. The method 

was developed using an intelligence agent approach 

combined with a weighted product for conflict detection 

and rule-based integrated with K-means clustering for 

conflict resolution. The input of the model is in the form 

of requirement data developed using the GORE 

approach. The data is in the form of a tree of 

requirements and is represented in the form of rules. 

Intelligent agents perform conflict detection through 

agent behaviour that is generated automatically through 

test cases. Conflict detection is carried out through 

divergence analysis for each case. This process produces 

a set of conflicting node pairs based on the specified 

threshold value.

TABLE VII 

NUMBER OF OBJECTS AND TIME ANALYSIS OF EACH TESTED DATA 

Project Code The Number of Objects Total Number of Pair Node 
Time Analysis for 100 cases 

(in a second) 

P1 468 17020 497 

P2 169 3741 153 

P3 668 30876 577 

P4 214 2775 129 

P5 1.354 101.025 1.044 

TABLE VIII 

CONFLICT RESOLUTION RULES 

Rule ID If Then 

Scenario 1  

1 All Type of object and all conflict_cluster  Conflict resolution = 1 

Scenario 2  

1 Type of object = 1 and conflict_cluster = 1 Conflict resolution = 3 

2 Type of object = 1 and conflict_cluster = 2 Conflict resolution = 2 

3 Type of object = 1 and conflict_cluster = 3 Conflict resolution = 2 

4 Type of object = 2 or Type of object = 3  Conflict resolution = 1 

Scenario 3  

1 Type of object = 1 and conflict_cluster = 1 Conflict resolution = 3 

2 Type of object = 1 and conflict_cluster = 2 Conflict resolution = 1 

3 Type of object = 1 and conflict_cluster = 3 Conflict resolution = 1 

4 Type of object = 2 or Type of object = 3  Conflict resolution = 1 

Scenario 4  

1 Type of object = 1 and conflict_cluster = 1 Conflict resolution = 3 

2 Type of object = 1 and conflict_cluster = 2 Conflict resolution = 2 

3 Type of object = 1 and conflict_cluster = 3 Conflict resolution = 1 

4 Type of object = 2 or Type of object = 3  Conflict resolution = 1 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 2, November 2022 

Requirements Conflict Detection … | Delima, R., Wardoyo, R., Mustofa, K., 191 – 200  199 

TABLE XI 

COMPLETENESS MEASURE AFTER CONFLICT RESOLUTION 

Project 
Code 

Comp. 
Baseline 

Number 
of Goals  

Completeness value after conflict resolution 

Scenario 1 Scenario 2  Scenario 3 Scenario 4  

Comp Soft Goal Comp. Soft Goal Comp Soft Goal Comp. Soft Goal 

P1 0.01 62 1 56 1 0 1 43 1 33 
P2 0.01 83 1 71 0.03 0 1 29 1 22 
P3 0.01 145 1 129 0.03 0 1 125 1 69 
P4 0.01 43 1 35 1 0 1 35 1 25 

P5 0,01 218 1 212 0,13 0 1 179 1 113 

Average 0.01 110.2 1 100.6 0.44 0 1 82.2 1 52.4 

Average Percent Soft goal  90%  0  75%  47% 

 

The method was tested on a dataset consisting of five 

software projects. The test results show that the method 

is able to detect the conflict of requirements in the five 

datasets by using a threshold value of 0.5. By handling 

the conflict, the model can increase the completeness 

value to the highest value. This means that the conflict 

detection and resolution method has succeeded in 

identifying a number of nodes that cause conflicts in 

requirements that have an impact on the quality of the 

model. The method is able to overcome the problem of 

inconsistency and incompleteness on AREM. 

 

ACKNOWLEDGEMENT 

The authors thank the Republic of Indonesia Ministry 

of Research and Higher Education through Universitas 

Gadjah Mada, which has funded this research with 

contract numbers: 2271/UN1/DITLIT/DIT-

LIT/PT/2021. The authors also thank The Faculty of 

Information Technology Universitas Kristen Duta 

Wacana for providing facilities and funding for 

publishing this article. 

 

REFERENCES 

[1] I. Sommerville, Software Engineering Ninth Edition, 

Ninth Edit. United States of America: Addison Wesley, 

2011. 

[2] A. van Lamsweerde, Requirements Engineering From 

System Goals to UML Models to Software Specifications. 

Wiley, 2009. 

[3] M. Aldekhail and D. Ziani, “Intelligent Method for 

Software Requirement Conflicts Identification and 

Removal: Proposed Framework and Analysis,” IJCSNS 

Int. J. Comput. Sci. Netw. Secur., vol. 17, no. 12, pp. 91–

98, 2017. 

[4] M. Aldekhail, A. Chikh, and D. Ziani, “Software 

Requirements Conflict Identification: Review and 

Recommendations,” Int. J. Adv. Comput. Sci. Appl., vol. 

7, no. 10, pp. 326–335, 2016, doi: 

10.14569/ijacsa.2016.071044. 

[5] W. Guo, L. Zhang, and X. Lian, “Automatically detecting 

the conflicts between software requirements based on 

finer semantic analysis,” arXiv, vol. abs/2103.0, 2021, 

[Online]. Available: http://arxiv.org/abs/2103.02255 

[6] A. Van Lamsweerde, R. Darimont, and E. Letier, 

“Managing conflicts in goal-driven requirements 

engineering,” IEEE Trans. Softw. Eng., vol. 24, no. 11, 

pp. 908–926, 1998, doi: 10.1109/32.730542. 

[7] R. Delima, R. Wardoyo, and K. Mustofa, “Goal-Oriented 

Requirements Engineering: State of the Art and Research 

Trend,” JUITA J. Inform., vol. 9, no. 1, pp. 105–114, 

2021, doi: 10.30595/juita.v9i1.9827. 

[8] A. van Lamsweerde and E. Letier, “Integrating obstacles 

in Goal-Driven Requirements Engineering,” in 

Proceedings - International Conference on Software 

Engineering, 1998, no. April, pp. 53–62. 

[9] A. Van Lamsweerde, “Handling obstacles in goal-

oriented requirements engineering,” IEEE Trans. Softw. 

Eng., vol. 26, no. 10, pp. 978–1005, 2000, doi: 

10.1109/32.879820. 

[10] D. Alrajeh, J. Kramer, A. Van Lamsweerde, A. Russo, 

and S. Uchitel, “Generating obstacle conditions for 

requirements completeness,” in Proceedings - 

International Conference on Software Engineering, 

2012, pp. 705–715. doi: 10.1109/ICSE.2012.6227147. 

[11] A. Cailliau and A. van Lamsweerde, “Assessing 

requirements-related risks through probabilistic goals 

and obstacles,” Requir. Eng., vol. 18, no. 2, pp. 129–146, 

2013, doi: 10.1007/s00766-013-0168-5. 

[12] S. Zardari, R. Bahsoon, and A. Ekárt, “Cloud adoption: 

Prioritizing obstacles and obstacles resolution tactics 

using AHP,” Proc. ACM Symp. Appl. Comput., pp. 1013–

1020, 2014, doi: 10.1145/2554850.2555067. 

[13] A. Cailliau and A. Van Lamsweerde, “Runtime 

Monitoring and Resolution of Probabilistic Obstacles to 

System Goals,” Proc. - 2017 IEEE/ACM 12th Int. Symp. 

Softw. Eng. Adapt. Self-Managing Syst. SEAMS 2017, pp. 

1–11, 2017, doi: 10.1109/SEAMS.2017.5. 

[14] R. Degiovanni, N. Ricci, D. Alrajehy, P. Castro, and N. 

Aguirre, “Goal-conflict detection based on temporal 

satisfiability checking,” ASE 2016 - Proc. 31st 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 2, November 2022 

200  Requirements Conflict Detection … | Delima, R., Wardoyo, R., Mustofa, K., 191 – 200 

IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 507–518, 

2016, doi: 10.1145/2970276.2970349. 

[15] R. Degiovanni, P. Castro, M. Arroyo, M. Ruiz, N. 

Aguirre, and M. Frias, “Goal-conflict likelihood 

assessment based on model counting,” Proc. - Int. Conf. 

Softw. Eng., pp. 1125–1135, 2018, doi: 

10.1145/3180155.3180261. 

[16] R. Degiovanni, G. Regis, F. Molina, and N. Aguirre, “A 

genetic algorithm for goal-conflict identification,” ASE 

2018 - Proc. 33rd ACM/IEEE Int. Conf. Autom. Softw. 

Eng., pp. 520–531, 2018, doi: 

10.1145/3238147.3238220. 

[17] M. B. Rehman, H. M. E. I. Dafallaa, N. Ahmad, I. 

Ahmad, M. Rashid, and R. Khan, “Requirement 

elicitation: Requirements conflict resolution and 

communication model for Telecommunication Sector,” 

in Proceedings of the 2nd International Conference on 

ICT for Digital, Smart, and Sustainable Development, 

ICIDSSD 2020, 2021, pp. 105–122. doi: 10.4108/eai.27-

2-2020.2303293. 

[18] Q. Khan, M. A. Khan, Q. Javaid, I. Ullah, K. Ullah, and 

M. Fawad, “A Rule Based Genetic Algorithm Technique 

for Conflicts Resolution in Requirements Engineering,” 

vol. 13, no. 11, pp. 8427–8433, 2016, doi: 

10.1166/jctn.2016.5993. 

[19] S. Russell and P. Norvig, Artificial Intelligence A 

Modern Approach Fourth Edition, Fourth. Pearson 

Series in Artificial Intelligence, 2020. 

[20] A. Kolios, V. Mytilinou, E. Lozano-Minguez, and K. 

Salonitis, “A comparative study of multiple-criteria 

decision-making methods under stochastic inputs,” 

Energies, vol. 9, no. 7, pp. 1–21, 2016, doi: 

10.3390/en9070566. 

[21] R. Cahyanto, A. R. Chrismanto, and D. Sebastian, 

“Pengelompokan Komentar Dataset Sentipol dengan 

Modified K-Means Clustering,” J. Tek. Inform. dan Sist. 

Inf., vol. 6, no. 3, pp. 531–540, 2020, doi: 

10.28932/jutisi.v6i3.3006. 

[22] P. S. Mann, “Introductory Statistics, 8th Ed,” John Wiley 

Sons, Inc., vol. 8, no. 11, p. 736, 2012. 

 

 


