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ABSTRACT 

Structural magnetic resonance imaging (MRI) is a constitutive part of the clinical assessment 

of neurodegenerative patients. The routine neuroimaging evaluation of structural markers 

from preclinical to conspicuous stage is a key figure of how the disease is conceptualized, and 

will determine its imminent diagnosis and treatment to dementia. Atrophy, a late feature in 

the progression of the disease, is now a valid diagnostic marker to the neurodegenerative 

diseases. At the mild cognitive impairment stage of the Alzheimer disease (AD), the valid 

diagnostic marker is the atrophy of medical temporal structure [33]. In temporal lobe epilepsy 

(TLE), the atrophy of the subcortical brain structures specifically the size of the hippocampus 

is observed [34]. Apart from these neurodegenerative diseases, there is a significant evidence 

showing that the long-term ‘Ketum’ drug abuse also causes dementia which are profound 

impairments of learning and memory. These cognitive-impairing effects are revealed by the 

analysis of electroencephalogram (EEG) that shows a significant decline of delta power in the 

hippocampus [35]. Additionally, in the electrocorticography (ECoG) of the frontal cortex, it 

is found out that there is a complete suppression of the delta and theta bands [35]. Nonetheless, 

it is unclear whether it has a potential biomarker, just like AD and TLE have. Even if there is 

an evidence that shows the location of biomarker that can relate the atrophy by utilizing the 

conventional MRI technique based on diffusion-weighted imaging (DWI), it is unknown 

whether the cause of this atrophy is due to local degeneration of the nerve cells or caused by 

degeneration of the nerve connections or both. In this paper, a standardized protocol of white 

matter (WM) tractography is presented to reconstruct the highly directional architecture of the 

WM of the brain tissues based on a recent prominent approach of MRI technique, called 

diffusion tensor imaging (DTI). It also includes the development of integral visualization of 

3D WM geometry and structure with the 2D T1-weighted (T1W) images to investigate the 

status of the local degeneration of neurons in the Grey Matter (GM) with the effect of the drug 

addiction. Further, observational study of the WM of two-sample subjects is created as the 

complement to enhance the evidence of biomarker potential, by reflecting the value in 

differential diagnosis. Utmost importance, Tract-Based Spatial Statistics (TBSS) [52] is 

incorporated to study the local degeneration of fiber tracks of the drug addicted subjects, and 

to investigate the subcortical regions that encounters this anatomical distribution of WM 

microstructural damage.  
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1.0 INTRODUCTION 

1.1 Background 

In analogy to the electrical cable in electrical communication system, White Matter (WM) 

in the human brain is the transmission medium of the neurotransmission. Through the 

WM, the neurons communicate with each other by sending electrical impulses. These 

neurons spread on the surface of the brain and are referred to Grey Matter (GM). Damage 

to the WM and GM in the brain can result dementia. The dementia is the condition of the 

decline in brain cognitive functions. There includes the varying degree of memory loss, 

difficulty with problem solving, poor coordination and motor functions, and so on.  

The major root cause to the dementia is the neurodegenerative diseases. The 

neurodegenerative diseases are incurable. Since the neurons normally do not reproduce 

themselves, they are irreplaceable if they are damaged or die. And many of the 

neurodegenerative diseases are related to the progressive degeneration of neurons. 

Examples of neurodegenerative diseases are Alzheimer’s, Huntington’s, and Parkinson’s 

disease. Apart from the neurodegenerative diseases, according to the preclinical study 

from University Sains Malaysia (USM), overdose and addiction to mitragynine coming 

from the plant ‘Ketum’ also poses dementia [35].          

Early and accurate differential diagnosis of dementia can increase the likelihood of 

successful treatment. The sooner the diagnosis of the dementia is confirmed, the more 

effective the treatment of the reversible conditions. Even though some symptoms of the 

dementia are not reversible, the prompt treatments can slow or stop the rate of further 

cognitive decline of brain functions. Structural imaging based on magnetic resonance is 

crucial to clinician assessment of data acquisition to earlier diagnosis when the cognitive 

symptoms are first noticed.  

The current guidelines recognize the structural brain imaging along with a range of 

laboratory test to be the early diagnostic evaluation of patients with dementia [36].  The 

conventional MRI imaging is widely used as the diagnostic criteria for its remarkable 

presentation of the imaging markers [37]. It includes T1-weighted (T1W) gadolinium (Gd) 

enhanced and spin-echo T2-weighted imaging (T2W) scans. Nevertheless, it exists a 
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major drawback of the insufficient information of underlying neurodegenerative changes 

in grey-white brain tissue contrast picture [37], and the presented biomarkers are not 

always sufficiently overt to meet the clinical criteria for differential diagnosis.    

As the new neuroimaging approach, diffusion tensor imaging (DTI) is a sophisticated MRI 

technique that offers the information about the WM integrity. It is based on the anisotropic 

water diffusion to characterize the axonal connectivity of the brain network tropology in 

color maps. To reconstruct the neuronal tracts into 3D models from the eigenvector color 

maps, the technique is called the WM tractography. Owing to its clear and unique 

characterization of the microstructure and physiological information regarding to the WM 

tissues, it is a robust neuroimaging acquisition and analysis methods utilized for clinical, 

neuropsychological, and neuroimaging assessments.  

Studying the macroscopic axonal organization for brain structural connectivity with the 

DTI methodologies intensifies the value of imaging markers in the early diagnosis of 

neurodegenerative diseases. Any loss of axonal tracts that is discovered enables the 

locations of atrophy being identified as unusual biological events of interest occur. The 

examination of the axonal anatomy between the healthy and disease states reflects a new 

potential useful clinical assessment in structural imaging.  

However, tracking the axons that communicating with each other of more than 100 billion 

neurons is an impractical way to examine the marker from the entire brain. The series of 

steps in WM tractography, segmentation and clustering is labor-intensive, despite of the 

result intensifies the value of imaging marker. The complexity is another concern. Manual 

delineation of region of interest based on the tractography datasets is a widely-used 

approach in the research studies to reconstruct the pathways of interest and to investigate 

the pathological conditions, yet it is a great challenge to whom without extensive 

anatomical expertise. 

Simplification is the general preference of clinical assessment to obtain the result. 

Protocol standardization and automation in WM tractography to reconstruct the 3D 

geometric and structural WM nerve fibers is of crucial importance. Attempts to develop 

an integral visualization that incorporates the T1W with DTI structural imaging are 

incremental to the diagnostic significance in locating any unusual biological marker in 
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GM and WM. Observational study of WM fiber tracts of two-sample subjects as the 

adjunct to current neuroimaging assessment is highly useful to reflect the value in 

differential diagnosis. Since TBSS is well-known for its whole brain voxel-wise 

analysis, it is incorporated as a statistical approach to discover the structural marker of 

atrophy between two groups of subjects, and relate the findings to the anatomical 

distribution of WM microstructural damage or the microstructure brain changes in 

cortical GM. 
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1.2 Problem Statement 

The change of brain structural markers is the diagnostic feature for the most prevalent 

brain diseases. Developing a robust approach for early recognition of the disease at the 

prodromal stage is significantly required. At the mild cognitive impairment stage of the 

Alzheimer disease (AD), the valid diagnostic marker is the atrophy of medical temporal 

structure [33]. In temporal lobe epilepsy (TLE), the atrophy of the subcortical brain 

structures specifically the size of the hippocampus is observed [34]. Besides these 

neurodegenerative diseases, there is a significant evidence showing that the long-term 

‘Ketum’ drug abuse also causes dementia which are profound impairments of learning 

and memory. These cognitive-impairing effects are revealed by the analysis of 

electroencephalogram (EEG) that shows a significant decline of delta power in the 

hippocampus [35]. Additionally, in the electrocorticography (ECoG) of the frontal cortex, 

it is found out that there is a complete suppression of the delta and theta bands [35]. 

Nevertheless, it is unclear whether there exists a potential biomarker of this drug addiction 

in the DWI neuroimaging evaluation. Even if there is an evidence that shows the location 

of biomarker that can relate the atrophy, it is unknown whether the cause of this atrophy 

is due to local degeneration of the nerve cells or caused by degeneration of the nerve 

connections or both. Hence, there is a need to develop analytics, visualization and 

workflow tools that can enable investigation on the effect of this drug addiction with the 

precise locations of the biomarkers in MRI imaging. There is also a need to identify 

suitable connectivity metrics that will inform on the quality of the nerve connection 

between sub-cortical brain regions that can correlate the cause of local degeneration of the 

nerve cells or degeneration of the nerve connections. 
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1.3 Objective 

1. To provide a standardized protocol of WM tractography in reconstructing the 3D 

geometric and structural WM nerve fibers of the brain   

2. To automate the process of segmentation of the WM fiber tracks of interest between 

the sub-cortical brain regions  

3. To create an observational study of WM fiber tracts between the healthy subjects and 

the ‘Ketum’ drug addiction subjects for differential diagnosis 

4. To develop an integral visualization of WM fiber tracts with the subcortical GM 

regions as the neuroimaging evaluation of finding the diagnostic biomarker in ‘Ketum’ 

drug addiction group 

5. To be able in analyzing the atrophy of structural marker and relate to the anatomical 

distribution of WM microstructural damage or the microstructure brain changes in 

cortical GM 

 

 

1.4 Scope of Study 

• Methodology in obtaining the datasets of T1-w MRI and DT-MRI are understood 

and the preprocessing works on these datasets are explored. 

• The subjects of “Ketum” drug addiction is investigated to study its effect related 

to the neurodegeneration of nerve fibers and nerve cells. 

• Algorithms based on FSL and Dipy libraries are described to reconstruct the WM 

fiber tracts and the VTK library is utilized to create an analysis and visualization 

platform.  

• The status of the WM fiber tracts of the “Ketum” subjects is examined for the 

length and magnitude for the whole brain and for the region of interest. 

• Tract-Based Spatial Analysis (TBSS) is adopted to investigate the anatomical 

connectivity in the brains between the healthy and the “Ketum” groups. 
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2.0 LITERATURE REVIEW 

2.1 Brain Structures and functions 

The main organ of the human central nervous system is human brain. It is known as the 

command center to receive the information from the body sensors, interpret the 

information, and send the output to the body cells on how to response appropriately.   

Human brain can be categorized into three main sections [23]. The first part is known as 

the forebrain, the second is the midbrain, and the third is the hindbrain. The forebrain has 

the cerebrum, thalamus, and hypothalamus. On the other hands, the midbrain comprises 

of the tectum and tegmentum. The hindbrain consists of cerebellum, pons, and medulla. 

Usually, we refer the midbrain, and the pons and the medulla from the hindbrain together 

as the brainstem. 

 

Figure 1 : Brain Structures [23] 

The cerebrum, also cortex, is the biggest partition of the brain and the primary part of the 

forebrain. The cortex is involved in so many activities like thought and action. The cortex 

can be categorized into four lobes called the frontal lobe, the parietal lobe, the occipital 

lobe, and the temporal lobe [23]. The outer layer of the cortex, the cerebral cortex is highly 

folded to give a much larger surface area of the number of neurons in the confined volume. 

The cerebral cortex is made up of the gray matter. The gray matter comprises of mainly 

the cell bodies, unlike the white matter which is made up of the white myelinated sheaths 

of neural axons.   
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The cerebral cortex can be divided into two cortices, left and right cerebral hemispheres. 

Beneath the cerebral cortex is refered to as the subcortical structures. The subcortical 

regions includes the brainstem, cerebellum, hypothalamus, basal ganglia and so on. More 

detailed subcortical regions are illustrated in the Figure 2. 

 

 

Figure 2: Cortical and Subcortical Regions [38] 

 

To specifically describe the subcortical regions of the brain in imaging, the brain volume 

is normalized and segmented based on the location and intensity of the structures [39]. 

This is done by the FreeSurfer, a highly-automated brain image processing tool. By the 

segmentation, each voxel is automatically given by one of about 40 labels. These assigned 

labels are to differentiate different subcortical regions in the brain. which are Left-

Cerebral-White-Matter (labeled as 2), Left-Cerebral-Cortex (labeled as 3), Left-

Hippocampus (labeled as 17) etc [40]. The assignation of label (an integer value) in the 

subcortical brain regions allows different interested parts of the brain being segmented 

and studied in details of the brain neuroanatomy with the DTI data. A similar label found 

in the regions of the brain volume denotes the areas belong to the same region-of-interest.   
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2.2 Basic Neuron (Grey vs White) 

 

 

Figure 3 : Basic Neuron [8] 

Together with the spinal cord, the brain makes up the central nervous system (CNS). The 

brain contains of approximate 100 billion of neurons (nerve cells) that are further 

categorized into the grey and white matter [8]. The neuron is what makes you clever, 

because the neuron is responsible to gather and transmit electrochemical signals, analogy 

to the gates and wires in the processor. 

As shown in the Figure 3, typically, the neuron has a soma which is a cell body that has a 

cell nucleus, dendrites and a single axon [8]. To transmit the signal to other nerve cells, 

muscle cells and so on, achieved by electrochemical signal, the neuron transmits the pulses 

through the axon which is mostly covered by a layer of myelin sheath that can accelerate 

the transmission. For your information, there is only one axon in each of the neutron to 

transmit the signal from the cell body towards other neurons. The junction with which the 

two nerve cells make connection is called the synapses. The dendrites, appearing like the 

tree-like branching structure, is to collect information from other cells at synapses and 

relay the information into the soma. 
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Figure 4 : White vs Grey Matter in Neuron [7] 

To specify the white and the grey matter in the neutron [7], the dendrites, the synapses, 

the soma, and the nucleus make up the grey matter, whereas the axon and axons terminal 

build up the white matter, as shown in the Figure 4. The reasons of appearing in the grey-

brown color are the grey matter containing the neuronal cell bodies and capillary blood 

vessels, and being relative to the lack of myelin. On the other hands, the white matter 

looks white because of the large amounts of myelin sheath which is a fatty protein that 

serves as the insulating and protective coating around the nerve fibers. In other words, the 

white matter is a neuron that have myelinated nerve fibers which is axon and does not 

have dendrites.  

 

Figure 5 : White vs Grey Matter in Brain [20] 
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In fact, the grey matter has the most of the brain’s neuronal cell bodies. At the surface of 

the cerebral and cerebellar cortices, it is where the grey matter can be found. Besides, in 

the depth of the cerebrum, cerebellar, brainstem, and spinal grey matter, there are also 

grey matter, as shown in the Figure 5. Hence, it can be concluded that the grey matter is 

involved in many regions of the brain that is related to muscle control and sensory 

perceptions such as memory, decision making, hearing, seeing, speech, and emotions [20]. 

Described as the bundles of axons, also called the fiber tracts, the white matter connects 

various gray matter areas in the brain. Apart from building up the large part of the deeper 

brain matter, the white matter also forms the superficial layers of spinal cord [16]. There 

are three different kind of fiber tracts that links one part of the brain to another part of the 

brain and to the spinal cord, as shown in the Figure 6 and Figure 7. 

 

           

   

 

• Commissural fibers: Connecting two hemispheres (left and right) of the brain  

• Association fibers: Connecting cortical lobes within the same hemisphere of the 

brain 

• Projection fibers: Connecting cortex to other parts of the brain or to the spinal cord 

 

 

  

Figure 6: Fiber Tracts in Brain [62] Figure 7: Different Association Fiber Tracts [61] 
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2.3 Diffusion Weighted Imaging (DWI) 

Magnetic resonant imaging (MRI) is a scan that utilizes a powerful of magnet field and 

radio waves to form pictures of body organs and structures [11]. The digital images form 

the MRI scan are very useful to diagnose a variety of conditions of diseases. Unlike 

computerized tomography (CT) scan, the MRI scan is a non-ionizing radiation imaging 

modality to create informative diagnostic images.   

The main advantage of MRI scan is it creates multiple imaging contrast for different kinds 

of tissues. The different types of MRI contrast are created by the different sets of MRI 

protocols. To acquire these MRI images, multiple MRI pulse sequences are created, which 

are the different programed sets of changing magnetic fields executed in a series of 

commands by the computer software. There are numbers of parameters in each MRI pulse 

sequence [9]. These various MRI pulse sequences set by different parameters are grouped 

together into an MRI protocol, designed to specifically access different parts of human 

body [5].  

A popular form of MRI protocol, diffusion weighted imaging (DWI) constructs according 

the measurement of the random Brownian motion of water molecules per a voxel of tissues 

[15]. Diffusion-weighted imaging (DWI) are the conventional MRI sequences that are 

widely utilized by clinicians as the generally preferred neuroimaging examination based 

on the gray-white brain tissue contrast [2,4]. It includes T1-weighted (T1W) gadolinium 

(Gd) enhanced and spin-echo T2-weighted imaging (T2W) scans. 

By measuring the water molecules with diffusion-weighted MR pulse sequence, the mean 

diffusion within a voxel can be expressed as a 3-D diffusion tensor [10]. If the water 

molecules diffusion is found to be isotropic, the tensor will appear in a sphere. If the water 

molecules diffusion is found to be anisotropic, the tensor will appear in an ellipse.    

However, this motion described by the DWI is confined by the membranous membrane. 

Hence, diffusion tensor imaging (DTI) is the extension of DWI [6] that permits the data 

profiling according the white matter tract orientation. This is because along the white 

matter tract, the water diffusion flows along the pathway of least resistance, which builds 

up the final image consisting of the directions of maximum water diffusivity along the 
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fiber tracts. This final image is the 3D visualization of neuronal pathways giving the white 

matter information. 
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2.4 Diffusion Tensor Imaging (DTI) 

The diffusion tension imaging (DTI), being the new MRI technique, is to outline the 

axonal organization of the human brain. Since the image contrast in MRI is based on the 

signals from the proton which comes from the water molecules in our body, the DTI 

signals is controlled by the water protons. Hence, based on the physical properties of water 

molecules in our body, we can generate the MR contrast from the following simplified 

Equation 1 [18],  

𝑺 = 𝑷𝑫 (𝟏 − 𝒆 −
𝑻𝑹

𝑻𝟏
) 𝒆 −

𝑻𝑬

𝑻𝟐𝒆
− 𝒃𝑫     

Equation 1 

Where, 

• S is MR signal (S) in a spin-echo image 

• PD is proton density, representing water concentration 

• T1 and T2 is relaxation times, representing signal decay after time excitation 

• D is Diffusion Coefficients, representing Brownian motion of water molecules 

• TR is timing of excitation (repetition time) 

• TE is the preparation period (echo time) 

• b is the diffusion weighting factor 

It is important to note that the S magnitude that is obtained from the MR scanners is to 

delineate the physical properties of water molecules. On the other hands, the TR,TE, and 

b-factors are the control variables that are used to change the weighting (T1,T2,D) to the 

signal. Making the TE and TR times short, T1W image is produced with the contrast and 

brightness are predominately determined by T1 properties of tissues. In contrast, by 

making the time of TE and TR long, the T2W image is produced. To differentiate between 

T1W and T2W images, CSF is the best to be distinguished because of it appears dark in 

T1W image but bright in T2 image [42]. 

However, this equation is not enough to depict the diffusion orientation from a single 

intensity value, S in T1W and T2W images. Hence, we require the additional parameter, 

so-called the diffusion coefficients, D to denote the diffusion orientation.   
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To retrieve the diffusion orientation from the diffusion coefficients, D, it can be done by 

using the different b-factors in the Equation 1, and meanwhile keeping the other imaging 

parameters constant, such as TR and TE. To illustrate it clearly, let the b-factors as b1 and 

b2 in two experiments [18, 24]: 

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 1 ∶ 𝑆1 = 𝑃𝐷 (1 − 𝑒
−𝑇𝑅

𝑇1
⁄ ) 𝑒

−𝑇𝐸
𝑇2

⁄ 𝑒−𝑏1𝐷              

= 𝑆0𝑒−𝑏1𝐷                    

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 2 ∶ 𝑆2 = 𝑆0𝑒−𝑏2𝐷                                                         

𝑆2

𝑆1
= 𝑒−(𝑏2−𝑏1)𝐷                    

𝐷 = − ln (
𝑆2

𝑆1
) (𝑏2 − 𝑏1)⁄  

Equation 2 

Where,  

• S0 (MR signal at baseline) is the constant derived from PD,TR,TE  

• S1, S2 is the signal after the diffusion gradients have been applied      

Hence, the signal intensity differences can be used to find the diffusion coefficients, D. 

On the other hands, b-factor is a value that is derived from the strength, duration, and 

spacing of the gradient pulses or gradient.  
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Figure 8: Gradient Pulses [18] 

 

A schematic diagram above shows how the application of (X, Y, Z) gradient units 

illustrate the water motion in a pixel. Assume the gradient is applied at the horizontal 

orientation. Seeing each circle symbolizing water molecules at different locations, the 

vectors in each circle indicate the respective phases of the signal. After the first gradient 

pulse is finished to introduce a phase, the second gradient pulse is applied at 10 - 100ms 

after, to rewind the phase that has been introduced. If there is a movement of water 

molecules between two gradient applications, the rephrasing would fail at the application 

of second gradient, resulting the signal phase dispersion along the x-axis. This imperfect 

refocusing results the signal loss. Hence, this phase difference can be used to detect the 

water diffusion. 

By increasing the gradient amplitude and duration, a larger b-factor can be achieved to 

generate the stronger diffusion effects, yet the more signal loss we expect, because of the 

longer the interval between the gradient pulses allows more time for water to move around, 

resulting more signal loss [3] and [13]. In other words, consider the water molecules in a 

pixel, there higher the rate of water molecules diffusion, the more de-phased the water 

molecules are. Hence, there will be weaker the recorded S signal.  



16 
 

 

Figure 9: Color-coded Orientation Map [18] 

 

Now, solving the equation (2) at each pixel, a map of the D can be calculated for the 

overall picture as shown above Figure 9A, where the X gradient is only concerned. So, 

this is how the apparent diffusion coefficient (ADC) map is introduced along the X-axis. 

Seeing the ADC map, one can conclude that the intensity (mm2/s) of each pixel is 

proportional to the extent of diffusion. Combining the X, Y, Z gradients, the ADC along 

any X, Y, Z gradients is measurable, shown in the Figure 9B. To determine the orientation 

or color for each pixel based on the largest ADC, the red, blue, green colors are assigned 

into the respective X, Y, and Z axes. As a result, a color-coded orientation map [22] is 

formed shown in the Figure 9C to determine the water molecules along the axonal fibers. 

Put it another way, the largest ADC indicated by the color boxes illustrate the fiber 

orientation [17], yet the lower of the intensity signal in the DWI [19].  

Practically, to figure out the orientation with the largest ADC, there are thousands of axes 

to be measured, which become impossible to be implemented, because the fiber 

orientation is not always along or oblique to the X, Y, Z axes. Thanks to the concept of 

diffusion tensor introduced in early of 1990s [4]. The measurements along different axes 

can be good enough represented in a 3D ellipsoid which contain three eigenvalues, λ1, λ2, 
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and λ3 and three eigenvectors, v1, v2, and v3, defined by 6 parameters that are obtained at 

each pixel, and represented in 3x3 symmetric matrix [14]. 

 

 

Figure 10: Diffusion Tensor [18] 

 

Seeing the Figure 10, it can be summarized that the diffusion tensor for a single voxel can 

be obtained by imaging the diffusion in the six different gradient directions. Similarly, the 

other voxels in the entire MRI scan is being applied with the similar approach. From the 

diffusion tensor, the magnitude, the orientation of directional diffusion and the extent of 

anisotropy can be represented numerically [1], and it is expressed in the symmetric 3x3 

matrix in the diffusion ellipsoid [12].  
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2.5 T1W neuroimaging analysis 

T1W image best describes the brain structures and it is the most basic pulse sequence in 

MRI. Depending on the types of tissues, the signal appearing in the T1W image is different, 

from dark to bright. The dark region seen on the T1W image is mainly because of the 

tissues that have fast-flowing blood, whereas the bright region is owing to the fat, 

hydrogen-containing structures and slow-flowing blood. In other words, WM is bright and 

GM is dark in the T1W image. 

 

Figure 11 : T1-weighted MRI scan [42] 

T1W images exhibits the gray-white brain tissue contrast. The bright regions are the WM, 

whereas the grey regions are the GM. Meanwhile, CSF appears as the dark regions. 

 

Figure 12 : T1-weighted MRI with lesions [43] 

The unusual brighter and darker spots appear on the above T1W images is the marker of 

the lesions [43]. The lesions can be the result of the atrophy due to the neurodegenerative 

diseases.     
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2.6 DTI neuroimaging analysis 

The rate of water diffusion in brain along the tissues is different because of the type, 

architecture, integrity and presence of barriers [44]. Measuring the water diffusion 

quantifies the shape of the tensors in each voxel. Fractional Anisotropy (FA) is the most 

widely used measure. The FA represents the fraction of the tensor that indicates the extent 

of aligned structures. Ranging the FA value from zero to one, the isotropic water diffusion 

is assigned to zero, whereas the higher FA value denotes the increased directionality of 

diffusion, regardless of the rate of diffusion [45]. Despite of the FA is the DTI summary 

measure that is adequate for a board spectrum of pathological conditions, the FA alone is 

not enough to describe the full tensor shape [46].  

To demonstrate more specific information on the WM pathology, the axial diffusivity 

(AD), the radial diffusivity (RD), and the mean diffusivity (MD) are the quantitative 

methods besides the FA. Since MD is the mean of three eigenvalues within a voxel, it 

reflects the rate of water diffusion per voxel, regardless the directionality [45]. On the 

other hands, the RD constructs from the rate of water diffusion in the transverse direction 

per voxel, and the AD maps from the diffusion rate along the main axis of diffusion [44]. 

A recent developed measure, Geodesic Anisotropy (GA) is based on the distance of a 

diffusion tensor to the closet isotropic tensor [48].  The equations [47] of tensor 

quantification are shown below. 
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2.7 Fiber Tracking and Tractography 

Deterministic and Probabilistic fiber tracking are two important algorithms of white 

matter tractography to track the trajectories of fiber bundles. Depending on the purposes, 

one can work better than the other in linking and mapping the intervoxel connectivity 

based on the pattern of the anisotropic diffusion tensor of water flowing in the axonal 

directions [28].   

                                

Figure 13: Tractography Algorithms and 3D Tract Reconstruction [31, 18]  

The deterministic tractography algorithm maps out the white matter anatomical 

connections based upon the major eigenvector of the diffusion tensor from voxel to voxel 

in 3 dimensions. In fact, it can be done in three different kinds of fiber integration methods. 

First, Fiber Assignment by Continuous Tracking, known as FACT, is performed in linear 

step-wise integration methods, and alters the direction of streamline at every edge of voxel 

[31]. Similar to FACT, Euler method is done in linear step-wise integration methods. 

However, the fiber trajectory changes its direction at every fixed step size. On the other 

hands, Runge-Katta methods is a non-linear stepwise and high-order integration to give a 

smooth, more linear and more accurate solution to curved trajectories.   

Unlike the deterministic fiber tracking, the probabilistic fiber tracking includes the 

expected uncertainty into the algorithm by modelling the propagation direction as a 

probability density function on the principal diffusion direction to produce a connectivity 

metric for each voxel. These uncertainties in diffusion direction can be due to the 

probability of the co-existence of multiple fiber-crossing in a voxel, subject motion and 

image noise. By using the local probability distribution, the probability fiber tracking can 

identify multiple possible routes for a trajectory for the connection with any other voxel. 
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In fact, the probability fiber tracking can disperse more trajectories in lower SNR [30], 

especially in the case of crossing fibers.   

Regardless the probabilistic or the deterministic algorithms, both have their own pros and 

cons to reconstruct the 3D WM structures of the entire brain in research studies [25]. 
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2.8 Fiber Segmentation and Clustering  

Analyzing overall streamlines of around 1 million tracts in a human brain to study for his 

specific anatomical information is an impractical way. Therefore, WM segmentation is a 

critical step in measuring and visualizing the only-interested-streamlines that pass through 

a region-of-interest (ROI). The ROIs are the cortical and subcortical regions that have 

been assigned with labels early using Freesurfer tool. For example, the label of 2 indicates 

the region of Left-Cerebral-WM, the label of 41 indicates the region of Right Cerebral 

White Matter. By superposing the ROIs with the WM streamlines, the tracts that traverse 

through the ROIs are extracted. These tracts are called the bundles of interest (BOIs) [27]. 

The BOIs includes the left/right unicinate fasiculus, left/right longitudinal fasciculus, 

corpus callosum etc. By analyzing the BOI alone, any loss of axonal tracts can be the sign 

of a biomarker for assessing the WM abnormalities. 

To further reduce the level of WM tractography datasets in neuroimaging interpretation, 

clustering is incorporated to group a set of streamlines in such a way they are related to 

the nearby tracts. This approach in forming the clusters are based on the position, shape, 

and distance [27]. A cluster centroid is highlighted from the cluster to represent the 

average of all tracts in the cluster. Clustering is crucial to statistical data analysis, 

including data compression, pattern recognition, machine learning, image analysis etc [50]. 

 

 

 

 



23 
 

   

 

Figure 17: Loss of WM indicating Head Trauma [60] 

 

Figure 14: WM Streamlines [49] 

Figure 16: Segmented Streamlines [49] 

Figure 15: Clustered Streamlines [49] 
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2.9 Tract-Based Spatial Statistics (TBSS) 

Tract-Based Spatial Statistics (TBSS) is famous for its whole brain voxel-wise analysis 

for a group of diffusion tensor Fractional Anisotropy (FA) images. It is an approach that 

analyzes and compares the DTI subjects statistically by aligning the FA images from 

multiple subjects [52,53,54,55]. The result of the TBSS that suggests the global decrease 

of FA is a strong neuroimaging biomarker to investigate the WM changes between two 

groups of subjects [56]. 

The aim of this study is to investigate and compare the WM structures of a control group 

of healthy subjects with a group of ‘Ketum’ drug addiction subjects. To run the TBSS, the 

standard FSL TBSS pipeline [51] is used and specified as the Figure 18.  

 

 

Figure 18: TBSS pipeline [51] 

 

The step of TBSS starts with the eddy current correction to eliminate the unusual bright 

spots in the FA images, because of the eddy current-induced distortions in CSF voxels. 

Next, nonlinear registration is performed to register all the images into the most 

representative subject. After that, the co-registered images are upsampled to the MNI 

standard space. Masking of voxels which only includes the nonzero voxels in the images 

is then performed. As the final step of TBSS before running the voxelwise cross-subject 

stats, skeletonization is carried out to generate the FA skeleton mask. With the 4D 

skeletonized FA image, the groupwise statistical difference maps is performed to observe 

any change of WM structure between two groups.   
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3.0 METHODOLOGY  

3.1 Project Activities 

  

• Project title "Software Tool for Brain 
Connectivity Analysis"

Project title selection and 
allocation

• Study brain structures, neuron structures, 
DWI, DTI, Segmentation and Clustering 
Algorithm 

Literature review and 
background study

• 14 DTI datasets provided by USM used 
to study the effect of 'Ketum' drug 
addiction related to the dementia

Data Acquisition

• Understand the necessary of BET, 
MCFLIRT, Eddy_correct to MRI images

Data Pre-processing

• Study DIPY for WM tractography

• Compare tractography algorithm with 
DSI-Studio

WM Tractography 

• Compare the result of auto and manual 
WM segmentation algorithms

• Study Quickbundles Clstering to WM

WM Segmentation and 
Clustering

• Develop 3D-Observational Platform 
taking T1W image with WM streamlines  

• Develop 3D-Differential tool comparing 
two sets of WM streamlines 

GUI Development

• Analyze the length of WM streamlines

• Analyze the magnitude of WM 
streamlines

Fiber Intrepretation and 
Analysis

• Relate the WM streamlines to the 
cortical and subcortical regions

Streamline Metrics and 
Analysis

• Compare the anatomical connectivity 
between the healthy and the 'Ketum' drug 
addiction group using FA tensor models

Tract Based Spatial 
Statistics
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3.2 Gantt Chart  
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3.3 Data Acquisition  

Diffusion Tensor Imaging (DTI) datasets from two groups of subjects were acquired from 

Universiti Sains Malaysia (USM) to study the effect of ‘Ketum’ drug addiction related to 

early neurodegenerative symptoms. The images from the first group were provided by 7 

healthy subjects, and the following images of the latter were obtained from the 7 Ketum 

users. The degree of diffusion weighting (b-value) was 1000 s/mm2. Three non-diffusion 

sensitization (b=0) images were acquired in earliest of the MRI scan, following by the 30 

different directions of diffusion weighting. For fiber tracking, the files of b0, DTI, bval, 

bves, aparc+aseg are only needed and located in one database folder.  

 

 

Figure 19: Healthy and Ketum User Subjects [59] 
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3.4 Image Preprocessing 

Before working on the DTI datasets, the Brain Extraction Tool (BET) is applied on each 

of the subjects used to eliminate the non-brain issues which are mostly the external skull 

surface in MRI images. Motion artifacts pose a serious problem in accurately 

characterizing the size, shape, and tissue properties of brain structures [57]. MCFLIRT, 

the developed tool by FSL, is utilized to perform the motion correction on every T1W 

image to avoid any effect of motion artifacts and guarantee the voxel-wise correspondence. 

To DTI images, eddy current correction (eddy_correct by FSL) is required as a significant 

step of pre-processing. This is to avoid the distortions such as false fiber tracking, image 

intensity loss, and enhanced background in the subsequent steps of image processing [58]. 

 

                               

Figure 20:  T1W and DTI Pre-processed Data 
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3.5 Image Processing 

 

Figure 21: Brain Transverse Slices of ‘6297’ Subject 

Given the T1W medical image data, the brain volume of the subject is segmented into 

slices using ‘SimpleITK’ library. For example, the transverse image of the subject from 

slices 15th to 35th are segmented for the study of brain matter, soft-tissues, and 

anatomical structures.    

 

Figure 22: Diffusion Tensor Models of Subject ‘6297’ 

The scalar maps of different diffusivity measures in quantification of the local tensors 

are generated with the developed algorithm of Dipy library. The fractional anisotropy 

(FA) with RGB color, fractional anisotropy (FA), geodesic anisotropy (GA), axial 

diffusivity(AD), mean diffusivity (MD), and radial diffusivity (RD) are generated for 

each of the subjects. To show the tissues contrast among them, a simple interface is 

created to plot each slice of the scalar maps, which is useful to analyze the conditions of 

brain tissues described in every tensor model.   
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3.6 Fiber Tractography  

Euler Delta Crossings (EuDX) from the dipy library [49] is employed as the deterministic 

tracking algorithm to reconstruct the streamlines. To begin with, the input parameter of 

seeds is initiated to 8 seeds per voxel to grow the streamlines. The propagation step size 

is specified as 0.5 for the Euler integration. To terminate, the parameter of tensor FA with 

threshold 0.05 is set as the stopping criteria. To resolve multiple intravoxel fiber 

orientations in the MR images, Constant Solid Angle ODF (Q-Ball) is used as the 

reconstruction model in EuDx with the Spherical harmonics order (SH) set to 6.   

 

 

The WM tracks coming in different shapes, lengths, and positions, has been reconstructed 

throughout the brain using the deterministic tractography. As shown in the Figures 23, 24 

and 25, the WM tracts that belongs to the subject ‘6297’ is presented and color-coded in 

RGB. The local orientation of the fiber tracks is indicated in the combinations of RGB 

colors, where the red indicates a latero-lateral direction (left-right), the green indicates an 

anterior-posterior (front-back) direction and the blue indicates the dorsal-ventral (upper-

lower) direction, and the intermediate orientations is indicated with the other colors.    

  

  

Figure 23: WM Tracts 

in Sagittal Slice 

Figure 25: WM Tracts 

in Coronal Slice 
Figure 24: WM Tracts 

in Transverse Slice 
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3.7 Fiber Segmentation  

To compare the fiber bundles among the subjects, segmentation is processed to filter the 

fiber bundles of interest from the whole WM tracts for specific analysis. The whole WM 

tracts is first registered in the MNI standard space using FSL Linear Image Registration 

Tool (FLIRT) and then non-linear transformation using FSL Linear Image Registration 

Tool (FNIRT). This is to ensure every subject has the common space for analysis and 

interpretation. Next, the single-subject template called the WMPM TYPE II Eve Atlas (a 

32-year old healthy female) that contains the manual parcellation of 130 ROIs is used to 

segment the fiber bundles. The result is saved in ‘trk’ file format. To demonstrate the 

streamlines, the ‘trk’ files is read as the input and rendered in the VTK interface, as 

shown in Figures 26, 27, 28, 29 and 30. 

 

 

   

  

Figure 26: Left Uncinate Fasciculus 

Figure 27: Corpus Callosum 

Figure 28: Right Uncinate Fasciculus 

Figure 29: Left Superior 

Longitudinal Fasciculus 

Figure 30: Right Superior 

Longitudinal Fasciculus 
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3.8 Fiber Clustering  

Having all streamlines of the brain generated in densely packed, the clustering algorithm 

called Quick-Bundles (QB) in Dipy library is implemented to ease the interpretation. By 

implementing the QB algorithm, the tracks are down-sampled to 12 points without making 

changes to the length, and 10 mm distance threshold that determines the cluster size. The 

clusters’ centroids of the streamlines of every subject are generated, followed by the 

streamlines are color-coded with the corresponding centroids’ colors. To demonstrate the 

result, the Vtk library is utilized to create a rendering window to show every cluster of the 

streamlines and the pertinent clusters’ centroids.  

 

  

Figure 31:(Left) Segmented corpus callosum; (Right) Centroids after Clustering 
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3.9 Graphical User Interface (GUI)  

To summarize all the processing steps, it is illustrated in the flow chart below. A Graphical 

User Interface (GUI) is developed for being an easy-to-use tool to automate the 

complicated processing steps in reconstruction of the 3D WM structures and analysis. 

 

 

  

Figure 32: GUI flow Chart 
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Figure 33: GUI (Part 1) 
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Figure 34: GUI (Part 2) 
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4.0 RESULT AND DISCUSSION 

4.1 T1W Images Differential Analysis  

 

Figure 35: Transverse Slices of Subject ‘6297’ 

To improve the visualization interface of studying the T1W datasets of a single subject, a 

renderer is created with Dipy library to quick segment and demonstrate all slices of either 

the transverse, sagittal or coronal images. As shown in the Figures 35, the transverse slices 

of the ‘6297’ subject brain volume is rendered. Features like pressing ‘Shift’ at the 

meanwhile scrolling the mouse enables the images to be zoom in and zoom out. Pressing 

‘Shift’ at the meanwhile moving the mouse enables the specific image dragged to focused 

in camera view. Similar to the coronal and sagittal view of the T1W image of subject 

‘6297’, the slices of the brain volume are demonstrated. 
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Figure 36: Coronal Slices of Subject ‘6297’ 

 

Figure 37: Sagittal Slices of Subject ‘6297’ 

As the grey-white contrast depicted in the Figures 35, 36 and 37, the white brain tissues 

are bright, while the neurons appear dark-grey, and the CSF is black. By analyzing the 

T1W images across every subject of the healthy and the ‘Ketum’ group, one at a time, 

there is no unusual brighter and darker spots found.   

To ease the differential analysis in T1W image, an interface of viewing and comparing 

the similar axial, coronal, and sagittal slices of different subjects is significantly required. 

It allows the clinicians to interpret any usual difference in structures among the subjects 
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of study. As seen in the Figures 38, 39, and 40, the sagittal slices of two groups of subjects 

are plotted for the differential study. The first row of the figures is the healthy subjects of 

6571,6493,6572,6442,6549,6548,6530, whereas the second row is the ‘Ketum’ drug 

addiction subjects of 6375,6374,6297,6350,6308,6307,6443. 

 

Figure 38: Transverse Slices of All Subjects of Study 

 

 

 

Figure 39: Coronal Slices of All Subjects of Study 

 

 

 

Figure 40: Sagittal Slices of All Subjects of Study 

 

  



39 
 

4.2 DTI Tensor Models Interpretation   

Six tensor models are constructed based on five diffusion tensor measures of Fractional 

Anisotropy (FA), Geodesic Anisotropy (GA), Axial Diffusivity (AD), Mean Diffusivity 

(MD) and Radial Diffusivity (RD). They are RGB FA image, FA image, GA image, AD 

image, MD image, and RD image, and are generated for all the subjects of study. To 

demonstrate and meanwhile analyze the results of each subject, a visualization interface 

is created to show the tissue contrast of these images. Except for the color-coded RGB FA 

map, the grey-white contrast of the five following images indicates the presence of certain 

brain tissues.    

Based on the reconstructed DTI scalars of the subject ‘6297’, its biological microstructure 

especially the WM and GM exhibits in different grey-white contrast across the tensor 

models, except the RGB FA. 

• Looking at the RGB Fractional Anisotropy (FA) map, the microstructural integrity 

of WM is color-coded based on the fiber orientation. The X, Y, and Z axes of the 

map are color-assigned with red, blue, green, indicating the particular strong 

directional the local tract is.  

• Looking at the Fractional Anisotropy (FA) map, that depicts only grey-white 

contrast on the brain tissues, the microstructural integrity of WM appears bright 

and the GM appears dark, useful to study any damage in local tract structure 

• Looking at the Geodesic Anisotropy (GA) map, that also depicts grey-white 

contrast on the brain tissues, the microstructural integrity of WM appears light-

grey and the GM appears grey, also useful to study any damage in brain fiber 

microstructures 

• Looking at the Axial Diffusivity (AD) map, the apparent bright side of the images 

indicates the changes of White Matter and its pathology, and it correlates to WM 

maturation. 

• Looking at the Mean Diffusivity (MD) map, it is apparent that the bright side of 

the image indicates the cerebral spinal fluid (CSF), and useful to study axonal 

degeneration. 
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• Looking at the Radial Diffusivity (RD) map, the apparent bright side of the images 

indicates the presence of White Matter, and useful to study the WM demyelination. 

 

 

 

Figure 41: RGB FA, FA, GA, AD, MD, RD Tensor Models for Subject ‘6297’ 
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4.3 Fiber Bundles Observational Study 

Analyzing the T1W image alone is not enough to harness much of the information 

regarding to the structures of WM and GM. Hence, an integral visualization incorporated 

of the T1W image with the bundle of interest (BOI) is developed for the purpose of 

enhancing the biomarker potential. To demonstrate the usefulness of this interface, the 

corpus callosum of subject ‘6548’ is segmented as the BOI and superimposed with its 

T1W image. The result is rendered in the visualization interface, and shown in the Figures 

42 to 46.   

Besides rotating, zooming in and zooming out of the view of the T1W image with the BOI, 

there are additional features developed in the interface and controlled by the sliders and 

buttons. The sliders of ‘Moving-X’, ‘Moving-Y’, and ‘Moving-Z’ is to move the BOI to 

superimpose the T1W image. This is because the initial position of the BOI is not 

overlapped nicely with the T1W image. On the other hands, the sliders of ‘Axial’, 

‘Coronal’, and ‘Sagittal’ is to control the view of T1W image slice. The buttons of ‘+’ and 

‘-’ are to control the opacity of the streamlines so that it provides a condition for clinicians 

to only analyze the T1W image.   

With this interface, any unusual darker or brighter spot appears on the T1W image can be 

related to any loss of axonal tracts in the WM structures.  
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Move Streamlines 

into or out of the 

page  

Move Streamlines 

upwards or 

downwards 

Move Streamlines 

to left or right of 

the page  

Axes Marker to provide 

the reference of ‘RAS’ 

orientation  

Corpus Callosum   

T1W image  

Change axial or 

transverse slice 

of T1 image  

Change coronal 

slice of T1 

image  

Change sagittal 

slice of T1 

image  

Increase the 

opacity of 

streamlines  
Decrease the 

opacity of 

streamlines  

Figure 42: Integral Visualization tool (Part 1) 
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Figure 43: Integral Visualization Tool (Part 2) 

  

Corpus Callosum   

Axial or 

Transverse Slice 

of T1W image  

Change axial or 

transverse slice of 

T1W image to 18 Moving the Corpus 

Callosum to 

superimpose with 

the T1W image  
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Sagittal View of 

Corpus Callosum   

Sagittal Slice of 

T1W image  

Change sagittal 

slice of T1 

image to 305 

Figure 44: Integral Visualization Tool (Part 3) 
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Figure 45: Integral Visualization Tool (Part 4) 

 

 

 

 

Coronal View of 

Corpus Callosum   

Coronal Slice of 

T1W image  

Change Coronal 

slice of T1 

image to 234 
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Figure 46: Integral Visualization Tool (Part 5) 

 

 

 

 

Decrease the tract 

opacity to show 

only T1W image 

Only Coronal Slice 

of T1W image 

‘227’ shown  
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4.4 Fiber Bundles Clustering Interpretation   

Clustering allows the bundle of interest (BOI) to be analyzed further in small scale 

quantity of fibers. This interface demonstrates the result of fiber clustering. It contains the 

clustered BOI along with its centroids. By default, it shows only the centroids. When the 

next or previous button is pressed, the pertinent cluster is shown. With this interface, any 

loss of one or two or more axonal tracts that belongs to the BOI can be detected with ease, 

by comparing it to the streamlines of healthy subjects.  

 

Figure 47: Clustering Observational Study (Part 1) 

View the 

previous cluster 

with its centroid 

View the 

previous cluster 

with its centroid 

Centre part of 

Corpus Callosum 

after clustering, 

centroids color-

coded with random 

colors  
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Figure 48: Clustering Observational Study (Part 2) 

 

 

 

 

 

Button pressed 

to view the next 

cluster with its 

centroid 

Light Blue 

cluster of the 

Corpus Callosum 

shown after the 

‘Next’ button 

pressed 
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Figure 49: Clustering Observational Study (Part 3) 

  

Button pressed 

to view the 

previous cluster 

with its centroid 

Light Green cluster 

of the Corpus 

Callosum shown 

after the ‘Previous’ 

button pressed 
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4.5 Differential Study on Fiber Bundles 

Conventional differential study across the T1W images is not strong enough to find the 

neuroimaging biomarker. The differential study across the different subjects’ fiber 

bundles of interest (BOI) can be one step further to enhance the discover of potential WM 

neuroimaging biomarkers by comparing the relative tract length and tract density. For this 

purpose, an interface is developed to compare the BOIs of the healthy and the ‘Ketum’ 

groups. This interface can support up to 5 BOIs for differential study. The BOIs is color-

coded in the red, green, blue, yellow and neon blue. Colored with the same color as the 

BOIs, its corresponding slider widget is to move the BOIs leftwards and rightwards to 

superimpose together with others for quantitative comparison. 

 

 

 

 

Button pressed 
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Figure 50: WM Differential Study (Part I) 
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Figure 51: WM Differential Study (Part II) 

 

 

 

Figure 52: WM Differential Study (Part III)  
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4.4 Fiber Length and Connectivity Metrics Analysis  

With all the WM tracts, it is interested to group them in regions-of-interest(ROI) for 

surfaces and volumes. The regions are based on the aparc+aseg.mgz label map generated 

by FreeSurfer and are modified to create 89 regions of interest. Each region is associated 

with the subcortical structure of the cerebral cortex. To begin, the white matter voxel from 

the streamlines is filtered out with the label of 1 or 2. To have only the corpus callosum 

as the region of interest, the label value of 2 is used as the ROI parameter. After grouping 

the WM tracts in the ROIs, the connectivity matrix is plotted to show the connectivity 

among the subcortical regions. In other words, the total number of streamlines are counted 

based on the tracts that connect from the region A to region B.   

 

 

Figure 53: White matter labelled as 2 is segmented (shown in dark shaded region), 

overlapping with the MNI152 subject. 
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Healthy and ‘Ketum’ Group Connectivity Metrics 

The connectivity metrics are plotted across the healthy and the ‘Ketum’ drug addiction 

subjects. The color legend in the metrics indicates the magnitude of the quantity of the 

streamlines connecting among the subcortical regions that have been assigned early the 

labels from integers ‘2’ to ‘88’. Increasing color intensity starting from blue towards red 

indicates increasing magnitude.   

            

  

           

     

Healthy: 6530 

Healthy: 6442 

Healthy: 6549 

Healthy: 6493 

Figure 54: Connectivity Metrics (Part 1) 
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Healthy: 6571 Ketum: 6443 

Ketum: 6308 Ketum: 6350 

Ketum: 6297 Ketum: 6375 

Figure 55: Connectivity Metrics (Part 2) 
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Length Count of Corpus Callosum in Healthy and ‘Ketum’ Groups 

Analyzing the length in millimeter on the bundle of interest (BOI) is a crucial step to 

discover any damage to the WM microstructures, besides performing quantitative analysis 

on the BOI in the early step of the differential study. The length(mm) of the corpus 

callosum as the BOI across all the subjects are plotted in histograms. It is noticeable that 

the short length (0-10mm) of the streamlines are the most in the corpus callosum, 

regardless the subjects of study. 

                 

 

 

 

                    

     

 

Figure 56: Length Count (Part 1) 
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Figure 57: Length Count (Part 2) 
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4.6 Tract-Based Spatial Statistics (TBSS) 

TBSS is used to analyze the DTI data between two groups of subjects. They are the control 

group of 5 healthy subjects with a group of 5 ‘Ketum’ drug addiction subjects. The 

fractional anisotropy (FA) images of each subject are constructed using the Dipy library 

and are used as the inputs in TBSS analysis. The TBSS is performed via FSL tool. The 

objective is to figure out the areas where the WM tract skeleton between two groups of 

subjects are remarkably different. The very first step in TBSS is to eliminate the brain-

edge artefacts and zero the end slices, by running the tbss_1_preproc algorithm. Next, all 

the FA data across the subjects are registered in the 1mm x 1mm x1mm standard space 

called the Montreal Neurological Institute (MNI) space. In post-registration step, all the 

subject’s standard space nonlinearly aligned images are integrated into one 4D image file. 

The subsequent step in TBSS is to project all pre-aligned FA data onto the skeleton, by 

thresholding the mean FA skeleton image at 0.3 to create the binary skeleton mask for 

next step processing. Last, it is to run the voxelwise statistics on the skeletonized FA data. 

The generated result is overlapped with the standard space called MNI152_T1_1mm 

provided by the FSL tool. As shown in the Figure 58, it is remarkable that the presence of 

small ‘RED’ regions suggests that there is global decrease in FA with ‘Ketum’ drug 

addiction.  

 

     

 

Figure 58: (Left: Sagittal, Middle: Coronal, Right: Axial) Slices Containing the 

Affected Regions 
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To find out where the small ‘Red’ regions that encounter the global decrease of FA as a 

result of the effect of ‘Ketum’ drug addiction, a metric is created to map the ‘Red’ regions. 

The metric measures the regions based on the subcortical regions defined early by the 

freesurfer labels. In other words, each label or each integer number indicates a subcortical 

region in the human brain. To represent 3025 labels in metric, it is the sum of the x and y 

integers that tells the specific label. The color intensity in the metric begins from white 

and increases towards dark blue. It suggests the severity of the particular affected region. 

Dark blue indicates that the subcortical region encounters the highest global decrease of 

FA, whereas the white color indicates that the region is not affected. By mapping the small 

‘Red’ region into the developed metric, it is found out that the subcortical region of 

precentral cortex on left hemisphere is affected the most, by relating the label of 1024 to 

the defined freesurfer label provided in appendix, after summing up the numbers of 990 

and 34. This is followed by the subcortical regions of cortex in left hemisphere of 

caudalmiddlefrontal (1003), postcentral (1022), and superiorfrontal (1028), shown in 

Figure 59. 

 

Figure 59: Affected Regions Metric (FA) 
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Besides FA map, the Geodesic Anisotropy (GA) map is also famous to be used as the 

scalar measures of fiber integrity. Hence, similar procedures of TBSS is performed, but 

the inputs are the GA images of 5 healthy subjects and a group of 5 ‘Ketum’ drug addiction 

subjects. The objective is same to find out the global decrease of GA between two groups. 

With the generated result of the voxelwise statistical analysis performed via TBSS, it is 

mapped into the metric which shows the affected subcortical regions based on the intensity 

values. As shown in the Figure 60, the metric shows that the subcortical region of 

precentral cortex on left hemisphere is again affected the most, indicated as ‘1024’ in the 

freesurfer label. This result is identical to the result presented early using the FA images 

as the input to TBSS. Not only the ‘1024’ subcortical region is found out to be affected 

by the effect of ‘Ketum’ drug addiction in both FA and GA, but also the subcortical 

regions of cortex in left hemisphere of caudal-middle-frontal (1003) and superior-frontal 

(1028).  

 

Figure 60: Affected Region Metric (GA) 
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Figure 61: TBSS Connectivity Metric  

The left hemisphere of cortex precentral in ‘Ketum’ subject group is found out to 

encounter global decrease in the FA and the GA, compared to the healthy group. In other 

words, there is significant loss of axonal tracts that pass across this subcortical region. 

To further find out the tracts where they connect to, begin from the left hemisphere of 

cortex precentral, another metric is plotted out. This metric takes all the WM structures 

that belongs to different subjects of the healthy group and the ‘Ketum’ drug addiction 

group, generated early in WM tractography steps. The healthy subjects are the 6571, 

6493, 6442, 6549, 6548, 6530, whereas the ‘Ketum’ drug addiction subjects are 6375, 

6297, 6350, 6308, and 6443. Next, the metric indicates the left hemisphere of cortex 

precentral as the new label of ‘12’ with the respective subjects in its left, whereas the 

bottom of the metric indicates the 89 latest defined labels of subcortical regions. These 

new redefined labels can be found in the Appendix. As shown in the Figure 61, the 

intensity values in the column 42 decreases from red towards blue. This suggests that the 

healthy group possesses higher number of axonal tracts compared to the ‘Ketum’ drug 

addiction group. These tracts are connecting from the left hemisphere of cortex 

precentral to the subcortical region of left hippocampus, indicated as the new label ‘42’. 

The decline in the density of axonal tracts connecting from the left-hemisphere of cortex 

precentral that locates in the frontal lobe to the left hippocampus is the biomarker of the 

dementia caused by the ‘Ketum’ drug addiction. This result is evidently proven by the 

analysis of electroencephalogram (EEG) that has been performed by the USM [35], 

Decreased intensity values 

across the subjects indicates 

loss of axonal tract in ‘Ketum’ 

group  
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which has also shown profound cognitive impairments in the hippocampus and the 

electrocorticography (ECoG) of the frontal cortex [35].   
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5.0 CONCLUSION 

Memory loss is considered a symptom of dementia. The major root causes of the dementia 

are neurodegenerative diseases. Nonetheless, drug addiction also renders the dementia. 

Based on the preclinical study on the effect of ‘Ketum’ drug addiction [35], the chronic 

mitragynine administration extracted from the ‘Ketum’ plant led to impaired learning and 

memory. This is evident by the analysis of electroencephalogram (EEG) that has shown 

profound cognitive impairments in the hippocampus and the electrocorticography (ECoG) 

of the frontal cortex [35]. To locate the potential biomarker caused by the ‘Ketum’ drug 

addiction, these findings have developed several neuroimaging examinations in the easy-

used graphical user interface (GUI). It includes an integral visualization of 3D WM 

geometry and structure with the 2D T1W images, a differential diagnosis of the WM of 

two-sample subjects as the complement to enhance the evidence of biomarker potential, 

and the TBSS of diffusion tensor Fractional Anisotropy (FA) and Geodesic Anisotropy 

(GA). Lack of a neuroimaging specialist in this research study is the hindrance to achieve 

a great result with the first two developed algorithms. Besides, the datasets that are not in 

the High Angular Resolution Diffusion Imaging (HARDI) format are the factors that 

decrease the resolution of WM reconstruction. Nonetheless, the TBSS with the two 

widely-used scalar measures of FA and GA has proven that the axonal tracts in the 

subcortical regions of left hemisphere of cortex precentral, caudal-middle-frontal, and 

superior-frontal decrease. Moreover, it is discovered that the axonal tracts connecting 

from the left-hemisphere of cortex precentral to the subcortical region of the left 

hippocampus in the ‘Ketum’ drug addiction group are lesser, compared the healthy group. 

It is concluded that the decline in the tract density in these subcortical regions are the 

potential WM neuroimaging biomarkers that have caused the profound impairments in 

learning and memory in ‘Ketum’ drug addicted subjects. 
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7.0 APPENDIX 

new label, freesurfef label, freesurfer name 

1, 2, "Left-Cerebral-White-Matter" 

1, 41, "Right-Cerebral-White-Matter" 

1, 77, "WM-hypointensities" 

1, 85, "Optic-Chiasm" 

1, 1004, "ctx-lh-corpuscallosum" 

1, 2004, "ctx-rh-corpuscallosum" 

2, 251, "CC_Posterior" 

2, 252, "CC_Mid_Posterior" 

2, 253, "CC_Central" 

2, 254, "CC_Mid_Anterior" 

2, 255, "CC_Anterior" 

3, 1032, "ctx-lh-frontalpole" 

4, 1014, "ctx-lh-medialorbitofrontal" 

5, 1012, "ctx-lh-lateralorbitofrontal" 

6, 1019, "ctx-lh-parsorbitalis" 

7, 1020, "ctx-lh-parstriangularis" 

8, 1018, "ctx-lh-parsopercularis" 

9, 1027, "ctx-lh-rostralmiddlefrontal" 

10, 1003, "ctx-lh-caudalmiddlefrontal" 

11, 1028, "ctx-lh-superiorfrontal" 

12, 1024, "ctx-lh-precentral" 

13, 1017, "ctx-lh-paracentral" 

14, 1035, "ctx-lh-insula" 

15, 1026, "ctx-lh-rostralanteriorcingulate" 

16, 1002, "ctx-lh-caudalanteriorcingulate" 

17, 1023, "ctx-lh-posteriorcingulate" 

18, 1010, "ctx-lh-isthmuscingulate" 

19, 1006, "ctx-lh-entorhinal" 

20, 1007, "ctx-lh-fusiform" 

21, 1016, "ctx-lh-parahippocampal" 

22, 1009, "ctx-lh-inferiortemporal" 

23, 1033, "ctx-lh-temporalpole" 

24, 1015, "ctx-lh-middletemporal" 

25, 1030, "ctx-lh-superiortemporal" 

26, 1034, "ctx-lh-transversetemporal" 

27, 1001, "ctx-lh-bankssts" 

28, 1022, "ctx-lh-postcentral" 

29, 1031, "ctx-lh-supramarginal" 

30, 1008, "ctx-lh-inferiorparietal" 

31, 1029, "ctx-lh-superiorparietal" 

32, 1025, "ctx-lh-precuneus" 

33, 1005, "ctx-lh-cuneus" 

34, 1011, "ctx-lh-lateraloccipital" 

35, 1021, "ctx-lh-pericalcarine" 
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36, 1013, "ctx-lh-lingual" 

37, 11, "Left-Caudate" 

38, 12, "Left-Putamen" 

39, 13, "Left-Pallidum" 

40, 9, "Left-Thalamus" 

41, 10, "Left-Thalamus-Proper" 

42, 17, "Left-Hippocampus" 

43, 18, "Left-Amygdala" 

44, 26, "Left-Accumbens-area" 

45, 28, "Left-VentralDC" 

46, 2032, "ctx-rh-frontalpole" 

47, 2014, "ctx-rh-medialorbitofrontal" 

48, 2012, "ctx-rh-lateralorbitofrontal" 

49, 2019, "ctx-rh-parsorbitalis" 

50, 2020, "ctx-rh-parstriangularis" 

51, 2018, "ctx-rh-parsopercularis" 

52, 2027, "ctx-rh-rostralmiddlefrontal" 

53, 2003, "ctx-rh-caudalmiddlefrontal" 

54, 2028, "ctx-rh-superiorfrontal" 

55, 2024, "ctx-rh-precentral" 

56, 2017, "ctx-rh-paracentral" 

57, 2035, "ctx-rh-insula" 

58, 2026, "ctx-rh-rostralanteriorcingulate" 

59, 2002, "ctx-rh-caudalanteriorcingulate" 

60, 2023, "ctx-rh-posteriorcingulate" 

61, 2010, "ctx-rh-isthmuscingulate" 

62, 2006, "ctx-rh-entorhinal" 

63, 2007, "ctx-rh-fusiform" 

64, 2016, "ctx-rh-parahippocampal" 

65, 2009, "ctx-rh-inferiortemporal" 

66, 2033, "ctx-rh-temporalpole" 

67, 2015, "ctx-rh-middletemporal" 

68, 2030, "ctx-rh-superiortemporal" 

69, 2034, "ctx-rh-transversetemporal" 

70, 2001, "ctx-rh-bankssts" 

71, 2022, "ctx-rh-postcentral" 

72, 2031, "ctx-rh-supramarginal" 

73, 2008, "ctx-rh-inferiorparietal" 

74, 2029, "ctx-rh-superiorparietal" 

75, 2025, "ctx-rh-precuneus" 

76, 2005, "ctx-rh-cuneus" 

77, 2011, "ctx-rh-lateraloccipital" 

78, 2021, "ctx-rh-pericalcarine" 

79, 2013, "ctx-rh-lingual" 

80, 50, "Right-Caudate" 

81, 51, "Right-Putamen" 

82, 52, "Right-Pallidum" 
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83, 48, "Right-Thalamus" 

84, 49, "Right-Thalamus-Proper" 

85, 53, "Right-Hippocampus" 

86, 54, "Right-Amygdala" 

87, 58, "Right-Accumbens-area" 

88, 60, "Right-VentralDC" 

 

 

 

 

 

 


