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ABSTRACT 

 Hypertensive retinopathy is an ailment that is highly connected to hypertension 

which help in stroke prediction. The presence of hypertensive retinopathy is diagnosed 

through image processing on the fundus image to identify the possible microvascular 

retinal abnormalities signs that lead to hypertension. Arterio-Venous Ratio (AVR) value 

is one of the main indicator of hypertensive retinopathy, useful for grading severity of 

hypertensive retinopathy and for prediction of risk of stroke. Image preprocessing were 

performed in this work to extract vessels in fundus image. In this thesis, fundus images 

were acquired from VICAVR and DRIVE databases.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Project Background 

 Nothing strike faster than the sudden attack of stroke and it is undoubtedly the 

most prevalent cause of emotional complications and adult handicap. The most prevalent 

cause of severe disability and death is the assault from stroke [5]. If doctors are able to 

diagnose the probability of stroke affecting the patient, they could make the necessary 

arrangements to prevent the sudden assault of stroke and this would greatly save the 

patient life.  

Among all the cardiovascular diseases, hypertension is one of the most reliable 

indications of the occurrence of stroke [5]. Recent technology has enable doctors to 

study the retina for the severity of hypertension in the patient. Arteriovenous (AV) 

nicking is an abnormality in the eye when there is compression of the vein due to the 

crossing of artery and it is usually caused by hypertensive retinopathy [10]. 

 Arteriovenous nicking, narrowing of retinal arteriolar, increment of tortuosity of 

vascular, thickening of blood vessel, extravascular lesions (microanuerysms, cotton 

wool spot), shunt vessels and so on are the ocular effect of hypertension and has been 

disclosed to be related with brain illnesses and therefore fundus imaging is a prospective 

tool in diagnosis of stroke [2].  

Hypertensive retinopathy is an ailment that causes harm to the eye which is 

clearly related to high blood pressure. Hypertensive retinopathy result in drastic changes 

to the retina such as blood vessels narrowing, nicking of artery, leakage of fluid from 
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vessels, optic disc swelling and existence of exudates [3]. Hypertensive retinopathy can 

be identified through Arterio-Venous Ratio (AVR) estimation. 

 Hypertensive retinopathy identification in fundus images has huge prospective as 

the image analysis time is faster with a lesser cost. Besides that, there are various 

publicly available databases such as DRIVE and VICAVR which encourage researchers 

to choose fundus image. The narrowing of arteriolar is inversely associated with 

hypertension and is typically articulated by AVR. For the AVR computation, 

segmentation, classification and measurement of blood vessels are needed [1].  

In this thesis, emphasis is placed on the retinal vessel extraction towards 

estimation of AVR value which would be useful for the detection and grading of 

hypertensive retinopathy based on the grading done by Keith and Wegner (1939) [24].    

 

1.2 Problem Statement 

 Hypertensive retinopathy classification system has been associated with severity 

level of systemic hypertension and other systemic conditions. By identifying the 

presence and severity of hypertensive retinopathy, the probability of stroke assault could 

be foretold and measures could be taken to prevent the condition from deteriorating. 

Ophthalmologists would determine presence of hypertensive retinopathy by taking the 

patient’s fundus image and analyze the relevant microvascular sign. Many researches 

have been conducted to learn the occurrence of vital retinal signs due to hypertensive 

retinopathy through fundus image analysis.  

With the advancement in imaging technology, presence of ailments such as 

hypertensive retinopathy, diabetes retinopathy and so on could be identified from fundus 

image processing. However, the reliability and accuracy in imaging algorithm to detect 

the presence of hypertensive retinopathy microvascular sign (AV nicking) are still low 

i.e. 64.51% [7]. For higher accuracy, an excellent extraction of blood vessel is vital. The 

extraction of vessel usually is affected by the presence of noise i.e. salt and pepper noise, 

Gaussian noise, and grain noise in the original fundus image. Filtering must be done to 
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eliminate the noise for a clear and precise vessel extraction. Besides that, some of the 

vessels especially tiny vessels in the fundus image are not apparent and thus contrast of 

the vessels must be enhanced for good detection and extraction of the vessel. The 

background of the fundus image (area outside of the fundus boundary) is not totally 

black (pixel value not 0) and would affect the vessel extraction process. A fundus mask 

(binary image) could be used to make that area totally black (make pixel value to 0). 

Through the assessment of the hypertensive retinopathy condition, future endeavor on 

the creation of stroke prediction model could be realized.  

  

1.3 Objective & Scope of Study 

 This project aims to identify and extract vessels from fundus image with 

microvascular signs (refer Figure 1.3.1) which could be used for computation of AVR. 

Value of AVR should be used for the identification and assessment of hypertension 

which would be useful for future work in the prediction of stroke. This is because 

research shows that there is an evident relationship between existence of funduscopic 

abnormalities due to hypertensive retinopathy and stroke. In this project, the research 

was mainly focused on the field of image processing and analysis.  

 

Figure 1.3.1: Microvascular sign of retina [5]  

Hemorrhage 

Cotton Wool 

Spots 

Cotton Wool Spots 

AV Nicking 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Related Work 

2.1.1 Relationship between Retinal Signs and Stroke 

Michelle L. Baker et al. [5] had done a thorough study on the connection 

between stroke and retinal symptoms. Most retinal symptoms i.e. hypertensive 

retinopathy, retinal arteriolar emboli and diabetic retinopathy discussed in this paper 

are related to occurrence of stroke. Retinal signs (i.e. arterio-venous (AV) nicking 

and narrowing of arteriolar) due to hypertensive retinopathy are mostly related to 

assault from stroke. Based on Michelle L. Baker [5] hypertensive retinopathy signs 

are more convincing and consistent precursor of the risk of stroke.  

 

Figure 2.1.1.1: Fundus Images of Focal Arteriolar Narrowing (right) and Arteriovenous Nicking 

(left) [8] 

According to Tien Yin Wong et al. [8], there is an evident relationship 

between retinal signs (i.e. swelling of optic disc and hemorrhage) and stroke even 
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when factors affecting risk of stroke and blood pressure were taken into 

consideration. Based on a study conducted in Gothenburg, Sweden, men with age of 

50 with the presence of hypertensive retinopathy signs such as AV nicking and focal 

arteriolar narrowing (shown in Figure 2.1.1.1) would have an increased in 

cardiovascular mortality especially stroke [8]. 

Morillas P, Pallarés V et al. [12] conducted a study which included 887 

patients with hypertension (≥ 65 years) to compute the CHADS2 score to estimate 

stroke possibility. CHADS2 score are based on 5 factors (i.e. Congestive heart 

failure, Hypertension age ≥ 75, Diabetes mellitus, and prior Stroke attack) which 

amount to a total of 7 points (2 points for stroke section). It was found that CHADS2 

score is typically used for stroke prediction in patient with hypertension [12]. 

 

2.1.2 Hypertensive Retinopathy and Arterio-Venous Ratio (AVR)  

According to Uyen T. V. Nguyen et al. [10], studies have shown that AV 

nicking is greatly related to the presence of hypertension and stroke. They suggested 

a computer method of identifying the AV nicking severity based on artery-vein 

crossing in colour retinal images. Multi-scale line detection technique was used to 

extract the vascular network. The technique proposed is tested on 69 AV crossover 

points from Singapore Malay Eye Study (SiMES) retinal images. The algorithm used 

has an accuracy of (96.67%) for the classification of artery and vein. However, an 

accuracy of 100% is necessary for accurate detection of AV nicking. 

K. Narasimhan et al. [3] proposed an approach the identification of blood 

vessels through top hat transform and median filter on 76 fundus images from 

VICAV and 25 clinically obtained fundus images. The approach had the advantage 

of grading the severity of hypertensive retinopathy through the Arterio-Venous Ratio 

(AVR). Computation of AVR which would be used for defining the severity of 

hypertensive retinopathy as shown in Table 2.1.2.1 was done through vessel width 

approximation method. They had utilized Keith and Wegner (1939) [24] grading to 
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grade the hypertensive retinopathy into four grades i.e. grade 1 (mild hypertensive 

retinopathy), grade 2 (moderate hypertensive retinopathy), grade 3 (grade 1 and 

grade 2 combined) and grade 4 (accelerated hypertensive retinopathy) as shown in 

Table 2.1.2.1. Algorithm used managed to identify 22 out of 25 healthy fundus 

images and 72 out of 76 fundus images with hypertensive retinopathy. 

Table 2.1.2.1: AVR for different hypertensive retinopathy stages [3] 

Severity of 

Hypertensive 

Retinopathy 

AVR A/V Crossings 

Normal 0.667-0.75 None 

Grade 1 0.5 Mild compression of venules 

Grade 2 0.33 Compression or elevation of venules 

Grade 3 0.25 Right angled crossing of vessels, 

nicking 

Grade 4 Fine cords All above symptoms and distal 

congestion 

Behdad Dashtbozorg et al. [1] presented an automated technique on 

artery/vein (A/V) for detecting the changes in vasculature as well as computation of 

distinctive signs related to hypertension using the evaluation of graph obtained from 

the retinal vessels. Outcome of this approach is compared and tested with manual 

labeling for the three different databases i.e. VICAVR, INSPIREAVR and DRIVE 

with an accuracy of 89.8%, 88.3% and 87.4% based on the acquired images from 

mentioned databases respectively. Mohammed Al-Rawi et al. [4] applied matched 

filters for the identification of blood vessels. The result of the algorithm was tested 

using DRIVE database. Roy P. K et al. [7] suggested a method to classify the AV 

nicking severity automatically based on retinal venular width analysis where the 

width was computed using both intensity and edge information. The proposed 

technique was tested on 93 AV crossover points which had been categorized by two 

distinguished ophthalmologists into 4 classes. This method yielded an accuracy of 

64.51% in classifying AV nicking level of severity when compare to the 

contemporary method [22].  
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Manikis et al. [5] utilized a hessian based vessel extraction approach as well 

as thresholding. The result was tested on STARE and DRIVE databases. 

Unfortunately, technique used for optic disc localization was not discussed in detail. 

Table 2.1.1 shows the reviewed research papers for the related work in hypertensive 

retinopathy. It is vital to have a holistic review on all the relevant papers to save 

times of dealing with the same problems encountered by the previous researchers. 

The methods used in all those papers are noted to facilitate in the decision making of 

which methods would be more suitable. The merit and demerit parts of the research 

papers are vital to provide a clear guidance on how those problems could be tackled. 

Table 2.1.2.2: Comparison and Analysis of Related Work 

No  

 

Writer Year Title  Techniques 

used 

Implementati

on 

Advantages Disadvantages 

1 K.Narasimhan*, 
V.C.Neha, 

K.Vijayarekha [3] 

2012 Hypertensive 
Retinopathy 

Diagnosis from 

Fundus Images by 
Estimation of AVR 

 

Vessel width 
estimation 

(median filter, 

top hat 
transform)  

Diagnosis of 
hypertensive 

retinopathy 

stages 

Computing A/V ratio 
and determining the 

stages of hypertensive 

retinopathy  

No grading even 
with a large set of 

data  

2 Behdad Dashtbozorg, 

Ana Maria Mendonça 
and Aurélio Campilho 

[1] 

2013 An Automatic 

Graph-Based 
Approach for 

Artery/Vein 

Classification in 

Retinal Images 

Retinal 

vasculature 
graph 

examination  

Classification 

of artery or 
vein in retinal 

Able to classify whole 

retinal vasculature and 
not limited to specific 

region of interest 

No substantive 

assessment of 
hypertensive 

retinopathy  

3 Michelle L. Baker, 

Peter J. Hand, Jie Jin 
Wang, Tien Y. Wong 

[5] 

2008 Retinal Signs and 

Stroke (Revisiting 
the Link Between 

the Eye and Brain) 

Analysis of 

hypertensive 
retinopathy 

and diabetic 

retinopathy 
signs  

Prediction of 

stroke based 
on 

hypertensive 

retinopathy 
and diabetic 

retinopathy 

Utilizing retinal signs 

to anticipate the 
probability of stroke 

Lack of imaging 

processing 
methods on the 

fundus image for 

determining 
hypertensive 

retinopathy 

4 Pallab Kanti Roy, 

Uyen T. V. Nguyen, 
Alauddin Bhuiyan and 

Kotagiri 

Ramamohanarao [7] 

2014 An Effective 

Automated System 
for Grading Severity 

of Retinal 

Arteriovenous 
Nicking in Colour 

Retinal Images 

Vein width 

computation 
based on edge 

information 

and intensity 
of the vein 

Analyzing 

AV nicking 
level of 

severity 

Improved 

classification accuracy 
(64.51%) compared to 

classification accuracy 

(49.46%) by recent 
method [22] 

Mediocre 

classification 
accuracy  

5 Uyen T. V. Nguyen, 
Alauddin Bhuiyan, 

Laurence A. F. Park, 

Ryo Kawasaki, Tien 
Y. Wong, Jie J. Wang, 

Paul Mitchell, Kotagiri 

Ramamohanarao [10] 

2013 Automated 
Quantification of 

Retinal 

Arteriovenous 
Nicking from 

Colour Fundus 

Images 

Multi-scale 
detection 

Artery-vein 

identification  

Devise a 
computer 

method for 

detection of 
AV nicking 

automatically 

High (96.67%) artery-
vein identification and 

provide link between 

AV nicking with 
systemic and eye 

diseases   

Insufficient 
correlation data on 

hypertensive 

retinopathy and 
stroke 

6 Tien Yin Wong, 

Ronald Klein, Barbara 

E. K. Klein, James M. 
Tielsch, Larry 

Hubbard and F. Javier 

Nieto [8] 

2001 Retinal 

Microvascular 

Abnormalities and 
their Relationship 

with Hypertension, 

Cardiovascular 
Disease, and 

Mortality 

Reviewing 

methods used 

in measuring 
retinal vessel 

width 

Clinical 

implication of 

retinal 
microvascular 

abnormalities  

Provide a detailed 

relationship between 

abnormalities of 
microvascular in retina 

with stroke and 

hypertension  

Lengthy and no 

new imaging 

techniques for 
fundus image 
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2.2 Critical Analysis 

 From all the studies reviewed, AVR is a crucial element in the identification and 

grading of hypertensive retinopathy. AV nicking (precursor for stroke and hypertensive 

retinopathy) [7] plays a vital role as well in the identification of hypertensive retinopathy 

as various retinal microvascular abnormalities such as hemorrhage, swelling of optic 

disc and exudates are present in other cardiovascular diseases such as diabetic 

retinopathy. Therefore, existence of hypertensive retinopathy can be confirmed with the 

existence of AV nicking. Uyen T. V. Nguyen et al [10] method of artery-vein 

identification (accuracy of 96.67%) would be useful in the estimations of both AV 

nicking and AVR as both estimations required artery to be distinguished from vein. 

Through all the paper reviewed, generally three main steps (vessels extraction, 

vessels classification and vessels width measurement) were required to detect 

hypertensive retinopathy. AVR computation would be the key element for the 

identification of hypertensive retinopathy. Besides that, AVR value also could be used to 

grade the severity of hypertensive retinopathy. However, Keith and Wegner (1939) [24] 

grading used were not scientifically proven and certified although the grading was 

acknowledged by most practitioners. In this research, emphasis would be placed on the 

extraction of the blood vessel from fundus image. 

In the future work of stroke prediction, CHADS2 score could be used with 

several modifications where more emphasis should be placed on the hypertension as it is 

a vital and proven tool for stoke estimation in patients with nonvalvular atrial fibrillation 

[12]. CHADS2 score was chosen due to its simplicity as it requires 5 factors (i.e. heart 

failure, high blood pressure, lifespan, diabetes and stroke) only to predict stroke 

probability. Nevertheless, modification should be done in the future to simplify this 

score where only hypertension should be required for predicting stroke.  
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CHAPTER 3 

METHODOLOGY 

3.1 Process Methodology 

 Problems identification was done on the research project based on the objectives. 

To further deepen the understanding of the research topic, literature review was done 

where numerous credible research papers on the topic of retinal vasculature were studied 

and reviewed. This is a vital step to provide an exposure on the research focus and ease 

future endeavor on completing the research. 

 Once multiple research papers were reviewed, critical analysis was done to grasp 

the core of the problems and ideas on tackling the problems. This step also provides the 

strong and weak point of the previous researches done which facilitates in the 

modification and enhancement stage. The next step would be creating the project 

milestone and Gantt chart to ease the flow of the project. This step would help in time 

management and reduce unexpected roadblocks during the project completion. 

 Relevant data was of utmost importance in a research so that the researchers 

could test their hypothesis and theory. Therefore, the subsequent step would be finding 

the important data and fundus images. Fundus images are divided into two sections 

where the first section would be normal fundus images while the other would be fundus 

images of people with hypertensive retinopathy. Imaging techniques learnt would be 

implemented on the fundus images to extract out important region from the fundus. 

Algorithm would be used to ensure successful fundus images analysis.  
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3.2 Gantt Chart & Key Milestones 

Table 3.2.1 and 3.2.2 are the timeline (Gantt chart) with the important milestones for 

both FYP I and FYP II respectively.  

Table 3.2.1: FYP I Timeline 

No

. 

Tasks FYP 1 (Week) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Literature Review               

2 Methods Identification               

3 Gathering of fundus image 

databases (VICAVR, 

DRIVE, HRF) 

              

4 Digital image processing 

learning  

              

5 Testing of different 

proposed methods 

              

6 Finalize on the method to be 

used for the research 

              

7 Color extraction and 

morphological operation of 

fundus image 

              

8 Fundus image enhancement               

9 Creation of mask for fundus 

image  

              

10 Basic image preprocessing 

model (Matlab) 

              

11 Documentation Extended 

proposal 

              

Proposal 

Defense & 

Progress 

Evaluation 

              

Interim & 

Final 

Report 

              

     Key milestone 

      Process 

 



11 
 

Table 3.2.2: FYP II Proposed Timeline 

No. Tasks FYP II (Week) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Vessel enhancement 

algorithm 

               

2 Feature extraction 

algorithm for vessel 

identification 

               

3 Identification of artery and 

vein 

               

4 Estimation of vessel width 

and AVR ratio 

               

5 Hypertensive retinopathy 

identification model 

               

6 Implementation of the 

model 

               

7 Testing the algorithm                 

8 Poster Presentation                

9 Project Viva                

10 Documentation Progress 

Report 

               

Draft 

Final 

Report 

               

Dissertati

on (soft 

copy) 

               

Technical 

Paper 

               

Viva                

Dissertati

on (hard 

copy) 

               

      Key milestone 

   Process 
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3.3 Approach Overview  

The color fundus images were obtained from online DRIVE [6] and VICAVR 

[11] databases. Photographs from DRIVE have been obtained through a Cannon CR5 

non-mydriatic 3CCD camera with a resolution of 768x584. Images from VICAVR were 

obtained via a non-mydriatic camera (TopCon NW-100) at 768 by 584 pixels [11]. All 

the images from VICAVR were labelled by three experts in terms of vessels caliber and 

type (artery/vein).  

The labelling done by the experts were vital to compare and calculate the 

accuracy of this approach. In this research, an approach was proposed to extract vessel 

from fundus image which could be used to compute the Arterio-Venous Ratio (AVR) 

value to assess the presence and severity of hypertensive retinopathy. Four major stages 

were required for the implementation of this approach i.e. preprocessing, vessels 

extraction, vessels classification and vessels caliber measurement. Figure 3.3.1 

illustrates the block diagram of the overall structures of the proposed approach. 

However, the algorithm for the last two stages for the proposed approach i.e. artery/vein 

classification and AVR estimation were not completed successfully in this research. 

 

Figure 3.3.1: Block diagram of the Proposed Method 
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3.3.1 Preprocessing of Fundus Image  

Preprocessing of fundus images are implemented beforehand to ensure all the 

fundus images are uniform which would ease further processing and improve 

accuracy. In addition, preprocessing of fundus image will eliminate the background 

noise and enhance the image i.e. contrast for easier and better processing in the 

subsequent stage. In the preprocessing stage, the green intensity from the fundus 

image is separated to acquire a monochrome image.  

 

Figure 3.3.1.1: (a) Original Fundus Image, (b) Red Plane of Fundus Image, (c) Green Plane Fundus 

Image, (d) Blue Plane Fundus Image 

Figure 3.3.1.1 shows how the red, green and blue planes are acquired from 

the input fundus image. Green channel is chosen because green channel produces the 

best contrast (high intensity) for vessel compared to red which would make the 

vessel more prominent, while blue has a short dynamic range which would make the 

whole image darker and difficult to locate blood vessel. Besides, by extracting green 

channel most features are visible while in red channel only boundary is visible and 
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high presence of noise in the blue channel [17]. As we can see from Figure 3.3.1, 

separating green channel from the fundus image will make the blood vessel darker 

than the background and easier to identify. Formula for green channel extraction is  

Gc = 
𝐺𝑖

𝑅𝑖+𝐺𝑖+𝐵𝑖
 (1) 

Where Gc is green channel Ri, Gi and Bi are red, green and blue intensity respectively 

[20]. 

 

 

Figure 3.3.1.2: (a) Complementary Fundus Image, (b) CLAHE Transformation 

After extracting the green channel, complement function was used to enhance 

the retinal blood vessels as blood vessels are lighter than background. Median 

filtering with a 3x3 pixel neighborhood mask size was done to smoothen the fundus 

image prior to further processing. Histogram equalization function was utilized for 

improving the contrast of the complementary image. Figure 3.3.1.2 shows the fundus 

image that undergoes complement CLAHE functions where the image contrast was 

drastically improved making the edges i.e. blood vessels more evident which would 

greatly ease the detection of edges.  

Contrast-Limited Adaptive Histogram Equalization (CLAHE) technique was 

performed with the aim to enhance the image contrast where transformation was 

made to the image pixels in such a way that output histogram similar to the defined 

histogram. CLAHE would make the image details to be more prominent as it 

improves the global contrast and avoid over amplification of noise which would be 

useful for edges improvement [14].  

(a) (b) 
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Figure 3.3.1.3: Fundus Background Mask 

Creation of fundus mask is vital so that the boundaries structure of the image 

could be displayed [17]. A fundus background mask was created by extracting the 

red channel and thresholding was applied before converting it to binary image as 

shown in Figure 3.3.1.3 which would be used to eliminate the dark background noise 

from the green channel. Masking was also necessary for the subsequent 

transformation as the existence of noise in the dark background would be eliminated 

by the fundus mask when morphology operation i.e. top-hat transform was utilized as 

shown in Figure 3.3.1.4. This is necessary as the noise would be present in the vessel 

extraction stage if not removed. Figure 3.3.1.4(b) shows the result after the dark 

background noise (white arrow) is eliminated through masking.  

 

Figure 3.3.1.4: (a) Existence of Noise (white arrow) before Masking, (b) After Masking 

  

Dark background 
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3.3.2 Extraction of Blood Vessels 

After performing CLAHE transformation, the resulting image was 

morphologically transformed using top-hat approach with a disk-shaped (radius = 8 

pixels) structuring element. Top hat transform was performed to acquire tiny, bright 

details i.e. vessel by enhancing bright components and remove other components that 

are bigger than the structuring element from the fundus image and at the same time 

correct uneven illumination. Figure 3.3.1.4(b) shows the result after performing top-

hat filtering and it could be seen that only vessel was extracted while the other 

regions in the image was concealed.  

Besides that, bottom-hat transformation with a disk-shaped (radius = 8 pixels) 

structuring element was also implemented to the fundus image (after CLAHE 

transform). Bottom-hat operation has the opposite effect of top-hat operation as it 

enhances dark components in a bright background. Figure 3.3.1.5 shows the resulting 

image due to bottom hat filtering. In general, both top-hat and bottom-hat transforms 

were used to remove components that are larger than the structuring element. Result 

of bottom-hat transformation (Figure 3.3.1.5) would be deducted from the previously 

acquired top-hat transformed image (Figure 3.3.1.4(b)) and are shown in Figure 

3.3.1.6. This subtraction was done to remove other details i.e. not vessel from the 

image. 

 

Figure 3.3.2.1: Bottom-hat Transformation 
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Figure 3.3.2.2: Top-hat Bottom-hat Transform 

After performing top-hat bottom-hat transform and acquired resulting image 

(Figure 3.3.2.2), morphological open function with a structuring element of disk of 

15 pixels radius was applied to the filtered image for background removal. By 

performing morphological opening, tiny elements from the foreground was 

eliminated and placed in the background. Any component that is larger than the 

structuring element was removed resulting in Figure 3.3.2.3(b). Figure 3.3.2.3(a) 

shows the image after top-hat and bottom-hat transforms while Figure 3.3.2.3(b) 

shows the image after morphology opening where subtraction would be performed to 

both image for background removal.  

Figure 3.3.2.3(c) shows the resulting image (with adjustment done to the 

vessel intensity) due to the subtraction of both images in Figure 3.3.2.3(a) and (b).    

For Figure 3.3.2.3(c), the intensity was adjusted in such a way that there is a 1% 

saturation of data at small and large intensity value of the selected image. Therefore, 

the intensity of the vessel was increased albeit with some noise to make the vessel 

more apparent. This adjustment to the intensity would enable easier and better 

extraction of the vessels as it made the vasculature more prominent and apparent for 

thresholding. The next step for the vessel extraction would be the computation of the 

threshold value of the gray level.  

 



18 
 

 

Figure 3.3.2.3: (a) Filtered Image, (b) Background Image, (c) Resulting Image 

Thresholding is a method typically used to convert grayscale image into a 

binary image where a black pixel replacement will be done to the image if the 

intensity is lower than certain value or threshold and if exceed the threshold or value, 

a white pixel will be used for replacement i.e. binary 1(white) and binary 0 (black). 

For the threshold computation, Otsu’s method was implemented as the function for 

performing Otsu’s method of thresholding is available in Matlab. Otsu’s method 

would execute thresholding based on clustering methods i.e. gray intensities sections 

are grouped into 2 components (foreground and background). Once the threshold 

value of image from Figure 3.3.2.3(c) was calculated, binarization process would be 

done followed by removal of small components from the resulting binary image. 

Any components fewer than 30 pixels were removed from the image during the 

binarization process.  
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CHAPTER 4 

RESULT AND DISCUSSION 

 

4.1 Extracted Vessel  

 The approach implemented was compared and tested on both VICAVR and 

DRIVE databases. Four images were arbitrarily selected to demonstrate the results of the 

approach. Table 4.1.1 shows the result of the fundus images after the blood vessels were 

enhanced. The intensities of the vessels were adjusted through pixel scaling to improve 

the vessels. However, this result in some background noise as the noise was also 

amplified at the same time.  

The presence of noise in the enhanced images would not greatly affect the result 

of vessel extraction as thresholding would be done to eliminate the noise and convert the 

image into binary form. Improvement can still be done to the proposed approach so that 

the noise generated during pixel scaling could be greatly diminished creating a more 

ideal enhanced blood vessel image. 

Table 4.1.2 shows the fundus images of the extracted blood vessels. The 

limitation of this approach is the inability to extract tiny vessels completely which result 

in some discontinuity of the vasculature. Nonetheless, this would not have an adverse 

effect on the overall performance of the algorithm. For better extraction, modification 

could be done to the thresholding so that all the vessels (including tiny vessels) could be 

extracted during the binarization process. Table 4.1.3 shows the extracted centerline of 

the fundus image. Improvement could be done to the skeletonization process to improve 

the extracted centerline. Besides that, the result of the extracted centerline is related to 

the result of the extracted vessels.  
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Table 4.1.1: Corresponding Fundus Images with Enhanced Blood Vessels Images 

NO 

 

FUNDUS IMAGES 
ENHANCED BLOOD VESSELS 

IMAGES 

1 

  

2 

  

3 

  

4 
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Table 4.1.2: Corresponding Fundus Images with Extracted Blood Vessels Images 

NO 

 

FUNDUS IMAGES 
EXTRACTED BLOOD VESSELS 

IMAGES 

1 

  

2 

  

3 

  

4 
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Table 4.1.3: Corresponding Fundus Images with Extracted Centerline 

NO 
EXTRACTED BLOOD VESSELS 

IMAGES 
EXTRACTED CENTERLINE 

1 

  

2 

  

3 

  

4 
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4.2 Discussion on Standard Artery and Vein Classification  

Typically, artery is thinner and brighter than vein and this is because artery has 

higher central reflex and this is especially true in fundus image with hypertensive 

retinopathy. Figure 4.2.1 shows the image of both vein and artery where vein appear 

darker than artery. Besides, vein is also thicker than artery. This is an important feature 

for the blood vessels classification. The mean and standard deviation of vessel pixels 

were important features for the classification.  

 

Figure 4.2.1: Artery and Vein Image 

The blood vessels segmented should classified into arteries and veins and thus an 

accurate blood vessels classification was crucial as the effects of hypertensive 

retinopathy to arteries and veins vary. The point of entry of main blood vessels are 

located at the optic disc region. Due to timing constraint, automated classification was 

not created and only 2 fundus images from VICAVR (image 36 and image 37) were 

selected for the classification as the features are more apparent and vessel type was 

labelled by first expert from medical institution [11]. To classify blood vessel into artery 

or vein, the features extracted were based on features used by Dashtbozorg [1].  

➢ Red, Green and Blue intensities of extracted vessel 

➢ Saturation, Hue and Intensity of extracted vessel 

➢ Vessel mean intensities of Red, Green and Blue 

➢ Vessel mean intensities of Hue, Saturation and Intensity  

➢ Vessel standard deviation of Red, Green and Blue intensities 

➢ Vessel standard deviation of Hue, Saturation and Intensity 

➢ Vessel maximum and minimum intensities of Green and Red channels 

vein 

vein 

artery 

artery 
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(a) 

 
(b) 

 
(c) 

Figure 4.2.2: Histogram of (a) Red, (b) Green and (c) Blue of Extracted Vessel (image 37) 
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Figure 4.2.2 shows the histogram of Red, Green and Blue of extracted vessel 

from VICAVR (image 37). The maximum red intensities for the extracted vessels are 

207 (image 36) and 226 (image 37) while the minimum red intensities are 90 (image 36) 

and 108 (image 37). Maximum green intensities are 147 (image 36) and 149 (image 37) 

while minimum green intensities are 24 (image 36) and 37 (image 37). Based on the 

observation made, it was found that most arteries occupied the top 20% of the maximum 

red intensity while most veins are located below the top 20% of the maximum red 

intensity. From Figure 4.2.2, the pixels that occupied the top 20% of the maximum red 

intensity were lesser because veins are thicker and occupied more pixels than arteries. 

Besides that, arteries color channels i.e. red, green and blue intensities usually are larger 

than veins because arteries are brighter while veins are darker. 

The mean of red, green and blue intensities for the extracted vessels are 

149.7554, 51.9931 and 25.6558 (image 36) as well as 175.9211, 72.9174 and 31.9743 

(image 37) respectively. The mean of hue, saturation and intensity for extracted vessels 

are 0.0353, 0.8235 and 0.5852 (image 36) as well as 0.047, 0.6883 and 0.3654 (image 

37) respectively. The vessel standard deviation for red, green and blue channels were 

0.0588, 0.0853 and 0.0505 (image 36) as well as 0.0763, 0.0706 and 0.0394 (image 37) 

respectively. The vessel standard deviation for hue, saturation and intensity were 0.0505, 

0.0198 and 0.0478 (image 36) as well as 0.022, 0.0669 and 0.0506 (image 37) 

respectively. 

It was observed that most arteries had value larger than the mean of green and 

blue intensities as well as mean of hue and intensity while most veins had value lower 

than the mean of hue, intensity, green and blue values. The observations made should be 

used to classify blood vessel into artery or vein. Table 4.2.1 summarized the extracted 

intensities of red, green and blue in specific coordinates of different vessel types in two 

fundus images (image 36 and image 37). Table 4.2.2 summarized the extracted values of 

hue, saturation and intensity in specific coordinates of different vessel types in two 

fundus images (image 36 and image 37). The first expert in VICAVR database had 

labelled several coordinates with the vessel types and three coordinates were selected on 

each different artery and vein.      
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Table 4.2.1: Red, Green and Blue (RGB) Intensities of Artery and Vein 

 

Image 

X, Y Coordinates 

(vessel no) 
Red Green Blue 

Artery Vein Artery Vein Artery Vein Artery Vein 

 

 

36 

424, 255 

(26) 

330, 209 

(35) 

164 156 65 46 26 18 

314, 229 

(32) 

395, 210 

(36) 

167 161 60 42 18 21 

334, 432 

(41) 

468, 281 

(37) 

179 156 55 31 34 11 

 

 

37 

381, 214 

(46) 

397, 410 

(0) 

191 168 109 54 36 29 

455, 321 

(11) 

485, 288 

(39) 

189 178 106 56 38 16 

361, 408 

(7) 

357, 217 

(49) 

179 185 88 68 31 35 

Table 4.2.2: Hue, Saturation and Intensity (HSI) value of Artery and Vein 

 

Image 

X, Y Coordinates 

(vessel no) 
Hue Saturation Intensity 

Artery Vein Artery Vein Artery Vein Artery Vein 

 

 

36 

424, 255 

(26) 

330, 209 

(35) 

0.0423 0.0328 0.8625 0.8782 0.3124 0.2889 

314, 229 

(32) 

395, 210 

(36) 

0.0442 0.0226 0.8448 0.8284 0.3490 0.3216 

334, 432 

(41) 

468, 281 

(37) 

0.0264 0.023 0.8011 0.9177 0.3608 0.2667 

 

 

37 

381, 214 

(46) 

397, 410 

(0) 

0.0785 0.0257 0.8115 0.8047 0.439 0.3346 

455, 321 

(11) 

485, 288 

(39) 

0.0772 0.0360 0.8011 

 

0.9257 0.4301 0.3085 

361, 408 

(7) 

357, 217 

(49) 

0.0608 0.0336 0.8132 0.8098 0.3974 0.3712 

 

From Table 4.2.1 and Table 4.2.2, artery values for green intensity, blue intensity 

hue and intensity were above the mean for all these values. Therefore, by specifying the 

top 20% of maximum red intensity as well as mean values for green, blue, hue and 

intensity, artery could be classified. Based on the observations made, the features 

extracted could be fed to classifiers such as (k-NN, LDA, SVM and neural network) to 

distinguished between vein and artery from the fundus image. In this research, 

automated approach for this stage was not created due to timing constraint.  This stage is 
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a prerequisite for the final stage i.e. AVR computation. Figure 4.2.3 shows a simple 

classification done using mean of green intensity to classify blood vessel into artery (red 

line) or vein (blue line) for image 36 and image 37 in VICAVR database. Overlaying of 

classified vessel to the labelled images (36 and 37) by first expert were attached in the 

Appendix. Nonetheless, for better classification previous mentioned observations could 

be implemented into the classifier such as SVM, LDA and k-NN.    

 

Figure 4.2.3: Classified blood vessel (Artery-red, Vein-blue) for (a) Image 36 and (b) Image 37         

 

4.3 Discussion on Standard Estimation of Arterio-Venous Ratio (AVR)  

Alteration in venular caliber is an indication of diseases such as hypertensive 

retinopathy [3]. The grading used for assessing hypertensive retinopathy should be in 

accordance with the grading used by K. Narasimhan et al. [3] shown in Table 2.1.2.1. 

The acquired AVR should be computed based on the mean width of both arteries and 

veins where any image with AVR less than 0.667 should be classified as hypertensive 

retinopathy. The diameter of vein and artery should be estimated and AVR could be 

computed from the estimated values. Euclidean distance transform was implemented to 

the extracted centerline pixel to approximate the radius of the vessel width [3].   

Table 4.3.1 shows the vessel caliber [11] labelled by first expert and 

approximated vessel width using Euclidean distance transform for image 36 and image 

37 in VICAVR database. There is still plenty room for improvement that should be 

made to vessel width estimation such as better extraction of vessel so that centerline 
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pixels are more accurate as the result estimated vessel widths were not ideal. In this 

research, fully automated approach for the classification of artery and vein stage and the 

computation of AVR value stage was not completed. 

Table 4.3.1: Vessel Width Estimation for Image 36 and Image 37 in VICAVR Database [11] 

Image X, Y Coordinates 

(vessel no) 

Labelled vessel width 

by first expert 

Estimated vessel width 

Artery Vein Artery Vein Artery Vein 

36 424, 255 

(26) 

330, 209 

(35) 

4.845528 6.044902 2 6.3246 

314, 229 

(32) 

395, 210 

(36) 

4.021918 6.333801 4 7.2112 

334, 432 

(41) 

468, 281 

(37) 

5.264017 4.229671 2 6.3246 

37 381, 214 

(46) 

397, 410 

(0) 

4.677884 10.952332 4.4722 8.2462 

455, 321 

(11) 

485, 288 

(39) 

5.521891 5.287802 4 5.6568 

361, 408 

(7) 

357, 217 

(49) 

6.344262 9.084712 6 10 

 

4.4 Performance Analysis 

The results of the extracted vessel from the 20 images in DRIVE using proposed 

algorithm were attached in the Appendix section. Performance of the proposed vessel 

extraction results were compared with manually extracted vessel results (gold standard) 

from DRIVE database [6]. For performance analysis, 4 main parameters must be 

specified i.e. True Positive (TP), False Positive (FP), True Negative (TN) and False 

Negative (FN). True positive (TP) refers to the correctly identified blood vessels, false 

positive (FP) refers to the incorrectly identified blood vessels, and true negative (TN) 

and false negative (FN) refer to the correctly and incorrectly identified non-blood vessel 

pixels [28].  

This means that TP is the amount of correctly matched vessel (i.e. pixel = 1) in 

both proposed algorithm and gold standard. FP is the amount of incorrectly matched 

blood vessel i.e. blood vessel is detected (pixel = 1) using the proposed algorithm but in 
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the gold standard it is non-blood vessel (pixel = 0). TN is the amount of correctly 

matched non-blood vessel (pixel = 0) in both proposed algorithm and gold standard. FN 

is the amount of incorrectly matched non-blood vessel i.e. non-blood vessel is detected 

(pixel = 0) using the proposed algorithm but in the gold standard it is blood vessel (pixel 

= 1). Table 4.4.1 shows how TP, FP, TN and FN are categorized for performance 

analysis.  

 

 Blood Vessel  

(Positive) 

Nonblood Vessel 

(Negative) 

Blood Vessel  

(Positive) 

True Positive  

(TP) 

False Positive 

(FP) 

Nonblood Vessel 

(Negative) 

False Negative 

(FN) 

True Negative  

(TN) 

Table 4.4.1: Categorization of TP, FP, TN and FN 

Table 4.4.2 summarizes the value of TP, FP, TN and FN for the 20 fundus 

images from DRIVE. Table 4.4.3 shows the fraction value between TP, FP, TN and FN 

with gold standard from DRIVE. The fraction value for TP was computed by dividing 

TP value with all pixels with value 1 from extracted vessel. For fraction value for FP, 

the value obtained was divided with all pixels with value 1 from extracted vessel. The 

fraction value for TN was computed by dividing TN value with all pixels with value 0 

from extracted vessel. For fraction value for FN, the value obtained was divided with all 

pixels with value 0 from extracted vessel. Formulas for TP, FP, TN and FN as well as 

the fraction value for TP, FP, TN and FN [27] are  

𝑇𝑃 = ∑(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑉𝑒𝑠𝑠𝑒𝑙 (𝑝𝑖𝑥𝑒𝑙)×𝐺𝑜𝑙𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (𝑝𝑖𝑥𝑒𝑙) == 1) 

𝐹𝑃 = ∑(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑉𝑒𝑠𝑠𝑒𝑙 (𝑝𝑖𝑥𝑒𝑙) − 𝐺𝑜𝑙𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (𝑝𝑖𝑥𝑒𝑙) == 1)  

𝑇𝑁 =  ∑(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑉𝑒𝑠𝑠𝑒𝑙 (𝑝𝑖𝑥𝑒𝑙) + 𝐺𝑜𝑙𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (𝑝𝑖𝑥𝑒𝑙) == 0) 

𝐹𝑁 = ∑(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑉𝑒𝑠𝑠𝑒𝑙 (𝑝𝑖𝑥𝑒𝑙) − 𝐺𝑜𝑙𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (𝑝𝑖𝑥𝑒𝑙) == −1) 

GOLD STANDARD 

E
X

T
R

A
C

T
E

D
 

V
E

S
S

E
L
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𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑃 =
𝑇𝑃

∑(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑉𝑒𝑠𝑠𝑒𝑙 (𝑝𝑖𝑥𝑒𝑙) == 1)
 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑃 =
𝐹𝑃

∑(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑉𝑒𝑠𝑠𝑒𝑙 (𝑝𝑖𝑥𝑒𝑙) == 1)
 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑁 =
𝑇𝑁

∑(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑉𝑒𝑠𝑠𝑒𝑙 (𝑝𝑖𝑥𝑒𝑙) == 0)
 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑁 =
𝐹𝑁

∑(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑉𝑒𝑠𝑠𝑒𝑙 (𝑝𝑖𝑥𝑒𝑙) == 0)
 

 

Table 4.4.2: Value of TP, FP, TN and FN 

Image 

sequence 

True Positive 

(TP) 

False Positive 

(FP) 

True Negative 

(TN) 

False Negative 

(FN) 

1 16,977 1,809 193,128 12,463 

2 18,344 692 190,605 15,446 

3 16,847 1,284 191,550 16,046 

4 13,723 386 196,837 16,631 

5 14,690 676 196,105 16,222 

6 15,188 742 194,641 16,928 

7 14,359 1,139 196,384 15,793 

8 13,811 1,471 195,388 14,578 

9 13,003 914 200,005 13,738 

10 12,546 806 199,370 14,610 

11 14,728 1,248 197,027 14,811 

12 15,414 1,383 195,280 13,076 

13 14,424 513 197,732 17,835 

14 16,518 2,734 196,433 10,159 

(2) 
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15 12,821 2,275 201,505 10,793 

16 15,130 1,235 196,668 14,661 

17 14,783 1,863 196,169 13,069 

18 15,184 2,531 198,937 10,960 

19 16,658 953 199,064 10,713 

20 13,386 1,839 201,419 10,879 

 

Table 4.4.3: Fraction value of TP, FP, TN and FN 

Image 

sequence 

Fraction of 

True Positive 

(TP) 

Fraction of 

False Positive 

(FP) 

Fraction of 

True Negative 

(TN) 

Fraction of 

False Negative 

(FN) 

1 0.9307 0.0963 0.9394 0.0606 

2 0.9636 0.0364 0.9250 0.0750 

3 0.9292 0.0708 0.9227 0.0773 

4 0.9726 0.0274 0.9221 0.0779 

5 0.9560 0.0440 0.9236 0.0764 

6 0.9534 0.0466 0.9200 0.0800 

7 0.9265 0.0735 0.9256 0.0744 

8 0.9037 0.0963 0.9306 0.0694 

9 0.9343 0.0657 0.9357 0.0643 

10 0.9396 0.0604 0.9317 0.0683 

11 0.9219 0.0781 0.9301 0.0699 

12 0.9177 0.0823 0.9380 0.0620 

13 0.9657 0.0343 0.9161 0.0839 

14 0.8580 0.1420 0.9508 0.0492 

15 0.8493 0.1507 0.9492 0.0508 

16 0.9245 0.0755 0.9306 0.0694 
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17 0.8881 0.1119 0.9375 0.0625 

18 0.8571 0.1429 0.9478 0.0522 

19 0.9459 0.0541 0.9489 0.0511 

20 0.8792 0.1208 0.9488 0.0512 

 

  
Figure 4.4.1: Retinal Background Area 

The value of TN was large as it covered the whole retinal background (FOV) 

area to detect non-blood vessel pixel. As the blood vessel pixels only take up a small 

portion in the retinal background area (the rest are non-blood vessel pixels), this made 

the value of the TN much larger as compared to the value of TP, FP and FN. From the 

value of TP, FP, TN and FN, FP has the smallest value while TN has the largest value 

and value of TP and FN are close to each other. After obtaining the value for TP, FP, TN 

and FN, performance calculation could be done. Performance calculation was based on 

the parameters utilized in Marín et al. [27] which were: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸) =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃) =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃 + 𝑇𝑁

𝐹𝑂𝑉
 

(3) 
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Table 4.4.3 shows the results evaluation of the proposed vessel extraction 

algorithm with the manually extracted vessel results (gold standard) from DRIVE 

database. Field of view (FOV) area for every fundus image is obtained using mask 

image (i.e. pixel =1) provided for each respective fundus images in DRIVE database and 

values of FOV were provided in Table 4.4.4. SE and SP values should be close to 1 for 

superior results on vessel extraction. However, FOV values for all fundus images were 

set to 229,052 to normalized the results of the proposed vessel extraction algorithm. The 

proposed vessel extraction algorithm has an average 51.86% sensitivity rate and 

specificity rate of 99.33% as well as 93.26% accuracy rate respectively, in DRIVE 

database. 

The value of SE is quite low as the difference between both TP and FN values 

are small (large FN value). As shown in the formula, SE and ACC are dependent on TN 

value, thus the value of SE and ACC were high because the value of TN (TN pixels are 

non-blood vessel region which is the majority region of the image) is much larger as 

compared to FP and FN values. The value of FN is high and improvement could be 

made by minimizing the FN value for better performance. To have higher SE, SP and 

ACC, the value of TP and TN much be much larger than the value of FP and FN. 

Comparisons were done between the acquired results with other algorithms [27-33] and 

summarized in Table 4.4.4.  

Table 4.4.4: Results Evaluation with DRIVE Database 

IMAGE 

SEQUENCE 

SENSITIVITY SPECIFICITY ACCURACY FOV 

1 0.5767 0.9907 0.9173 224,377 

2 0.5429 0.9964 0.9122 225,087 

3 0.5122 0.9933 0.9098 225,727 

4 0.4521 0.9980 0.9193 227,577 

5 0.4752 0.9966 0.9203 227,693 

6 0.4729 0.9962 0.9161 227,499 

7 0.4762 0.9942 0.9201 227,675 

(3) 
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8 0.4865 0.9925 0.9133 225,248 

9 0.4863 0.9955 0.9300 227,660 

10 0.4620 0.9960 0.9252 227,332 

11 0.4986 0.9937 0.9245 227,814 

12 0.5410 0.9931 0.9306 227,605 

13 0.4471 0.9974 0.9131 227,500 

14 0.6192 0.9863 0.9297 225,854 

15 0.5429 0.9888 0.9357 227,394 

16 0.5079 0.9938 0.9247 227,694 

17 0.5308 0.9906 0.9210 225,884 

18 0.5808 0.9874 0.9348 227,612 

19 0.6086 0.9952 0.9418 227,388 

20 0.5517 0.9910 0.9378 227,523 

 

Table 4.4.5: Performance Calculation Comparisons 

Algorithm Sensitivity (%) Specificity (%) Accuracy (%) 

Proposed algorithm 51.86 99.33 93.26 

Marín et al. [27] (2011) 70.67 98.01 94.52 

Raja et al. [28] (2015) 93.99 98.37 98.08 

Fraz et al. [29] (2012) 74.06 98.07 94.8 

Xiao et al. [30] (2013) 75.13 97.92 95.29 

Budai et al. [31] (2013) 64.40 98.70 95.72 

Manoj et al. [32] (2013) 94.29 98.75 96.23 

Bansal and Dutta [33] (2006) 86.53 98.33 97.28 
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4.5 Future Work 

As mentioned previously there are 2 more stages that were not fully completed in 

this research i.e. artery/vein classification and AVR computation and should be the 

future work for this research i.e. to make an algorithm that automated the artery/vein 

classification and AVR estimation. A brief explanation was provided previously on the 

method that could be implemented to classify vessel into artery and vein. Once the 

classification was done, the final step could be executed i.e. computation of AVR which 

could be used to detect the presence and severity of hypertensive retinopathy. 

Diagnosing the presence of hypertensive retinopathy in patients through fundus image is 

a crucial step to pave the way for a more sophisticated stroke prediction model. 

Although with the rapid advancement in technology, there is still no simple and robust 

algorithm to foretell the assault from stroke. Even with the mentioned CHADS2 score, 

there are still many required parameters for stroke prediction. This research was done 

with the hope on creating an ideal model for stroke prediction where hypertensive 

retinopathy was the only parameter required for the model. Besides that, there are 

various room for improvements in the field of retinal image processing as the current 

technology is still not on par with manual labelling. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

 Early diagnosis of signs related to hypertensive retinopathy is crucial in 

preventing the condition from worsening to a stage where the damage caused is 

permanent and irreversible. Thus, a simple method was proposed to identify and extract 

vessels from fundus image. Arterio-Venous Ratio (AVR) could be obtained through 

venular caliber measurement from the fundus image and should be applied to assess the 

severity of the hypertensive retinopathy. Model for assessing the hypertensive 

retinopathy could be completed once the final two stages i.e. artery/vein classification 

and AVR computation were completed. 

 There is always room for improvement for the algorithm proposed in this paper. 

Improvement can also be made to the vessels to make it more apparent and at the same 

time eliminating noise present. Besides that, preprocessing stage of the fundus image 

could be further improved for clearer retinal signs by filtering background noise using 

multiple filters such as Gaussian filter, mean filter and median filter to remove different 

types of noise i.e. salt and pepper noise, grain noise and Gaussian noise.  

The author hopes that this paper would provide some insights and motivation to 

other researchers in the field of image processing. This paper was written with the 

intention to spark students’ interest in imaging and hope that the future work on stroke 

prediction will be taken by young promising researcher. The also author hopes that this 

paper would be beneficial to any researcher that is working on retinal image processing 

and analysis.   
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APPENDIX 

Code (Red, Green and Blue Channels extraction) 

% Getting input image 
In = imread('C:\Users\User\Documents\Degree\Final Final\FYP 1\Sample\VICAVR\images\original\Image1.jpg'); 
In = imresize(In,[500 700]); % Resizing image 
  
redc = In(:,:,1);                            % Storing Red Plane 
greenc = In(:,:,2);                          % Storing Green Plane 
bluec = In(:,:,3);                           % Storing Blue Plane 
subplot(2,2,1), imshow(In), title ('(a) Original Image'); 
subplot(2,2,2), imshow(redc), title ('(b) Red Channel'); 
subplot(2,2,3), imshow(greenc), title ('(c) Green Channel'); 
subplot(2,2,4), imshow(bluec), title ('(d) Blue Channel'); 
 

Code (Creating Fundus Mask)  

In = imread('C:\Users\User\Documents\Degree\Final Final\FYP 1\Sample\VICAVR\images\original\Image1.jpg'); 
In = imresize(In,[500 700]); 

 

redc = In(:,:,1);                            % Storing Red Plane 
mask = im2bw(redc,graythresh(redc)); % Finding the threshold 
mask = bwareaopen(mask,100); % Binary morphological opening 
mask = imfill(mask,'holes'); 
figure, imshow(mask); 

 

%apply mask to eliminate background noise 
greenc(~mask) = 0;  
 

Code (Extracting vessel)  

clear all; 

close all; 

clc; 
In = imread('C:\Users\User\Documents\Degree\Final Final\FYP 1\Sample\VICAVR\images\original\Image1.jpg'); 

   

redc = In(:,:,1);                            % Extract Red Channel 
greenc = In(:,:,2);                          % Extract Green Channel 

bluec = In(:,:,3);                           % Extract Blue Channel 

 
subplot(2,2,1), imshow(In), title ('(a) Original Image'); 

subplot(2,2,2), imshow(redc), title ('(b) Red Channel'); 

subplot(2,2,3), imshow(greenc), title ('(c) Green Channel'); 
subplot(2,2,4), imshow(bluec), title ('(d) Blue Channel'); 

figure, imshow(In); 

  
subplot(2,2,3), imhist(redc), title ('(b) Red Channel'); 

subplot(2,2,[1,2]), imhist(greenc), title ('(c) Green Channel'); 

subplot(2,2,4), imhist(bluec), title ('(d) Blue Channel'); 
%lab = rgb2lab(I); 

% figure, imhist(redc); 

% figure, imhist(greenc); 
% h(1) = imshow(greenc); 

  

maxgc = max(max(greenc)) 
[row,column] = find(greenc >= maxgc*0.99) 

meangc = mean(greenc); 
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%z = zscore(greenc); 

  
% b = imregionalmax(greenc); 

% imshow (b); 

  
%  c = rgb2hsl(In); 

%  c = hsl(:,:,3); 

%  imshow (c); 
  

% a = 255*0.99; 

% idx = kmeans(,a); 
% imshow (idx); 

  

% Creating fundus mask 
mask = im2bw(redc,graythresh(redc)); 

mask = bwareaopen(mask,100); 

mask = imfill(mask,'holes'); 
figure, imshow(mask); 

  

%apply mask to eliminate background noise 
greenc(~mask) = 0; 

figure, imshow(greenc); 

[centers, radii] = imfindcircles(greenc, [245 255], 'Sensitivity', 0.99); 
viscircles(centers,radii); 

% set(h(1),'cdata',greenc); 

% vesselmask = edge(greenc,'canny',0.10,1); 
% vs = imgca; 

% figure, imshow(vesselmask); 

%  
% vesselmask(~imerode(mask,strel('disk',6)))=0; 

%  

% % dilation 
% vesselmask=imdilate(vesselmask,strel('disk',5)); 

% figure, imshow(vesselmask); 

% vesselmask = bwmorph(vesselmask,'dilate'); 
% vesselmask=bwmorph(vesselmask,'skel',Inf); 

% vesselmask = bwmorph(vesselmask,'bridge'); 

% vesselmask=bwmorph(vesselmask,'skel',Inf); 
% vesselmask=bwmorph(vesselmask,'spur',5); 

% %  

% vesselmask=bwmorph(vesselmask,'skel',Inf); 
% figure, imshow(vesselmask); 

% branchPoints=bwmorph(vesselmask,'branch',1); 

% branchPoints=imdilate(branchPoints,strel('disk',2)); 
% figure, imshow(branchPoints) 

% bp=imgca; 

% % %  
% vesselmask = bwmorph(vesselmask,'dilate'); 

% vesselmask=vesselmask & ~ branchPoints; 

% figure, imshow(vesselmask) 
  

ginv = imcomplement (greenc);               % Complement the Green Channel (Vessel are lighter than background) 
ginv = medfilt2(ginv); 

adahist = adapthisteq(ginv);                % Adaptive Histogram Equalization 

  

figure, subplot(1,2,1), imshow(ginv), title ('(a) Complementary Fundus Image'); 

subplot(1,2,2), imshow(adahist), title ('(b) CLAHE Transformation'); 

  
adahist = medfilt2(adahist); 

  

tophat = imtophat(adahist,strel('disk',8)); 
  

%tophat1=tophat; 

tophat(~mask)=0; 
bothat = imbothat(adahist, strel('disk',8)); 

figure, imshow(tophat); 

figure, imshow(bothat); 
a = imsubtract(tophat,bothat); 

figure, imshow(a), title('a'); 
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% % Detection of microaneurysms 

% adjustIm = imadjust(adahist,[],[],3); 

% comp = imcomplement(adjustIm); 
% J = imadjust(comp,[],[],4); 

% J = imcomplement(J); 

% J = imadjust(J,[],[],4); 
% K=fspecial('disk',5); 

% L=imfilter(J,K,'replicate'); 

% L = im2bw(L,0.4); 
% M =  bwmorph(L,'tophat'); 

% figure, imshow (M); 

% % M = im2bw(M); 
% wname = 'sym4'; 

% [CA,CH,CV,CD] = dwt2(M,wname,'mode','per'); 

% figure,imshow(CA); 
%  

% b = bwboundaries(CA); 

% %Im = imresize(In,[303 350]); 
% %figure, imshow(Im); 

% hold on 

% for area_bloodvessels = 1:numel(b) 
%     plot(b{area_bloodvessels}(:,2), b{area_bloodvessels}(:,1), 'b', 'Linewidth', 1) 

% end  

 
se = strel('ball',8,8);                     % Structuring Element 

gopen = imopen(a,se);                 % Morphological Open (thickening vessel) 

figure, imshow(gopen); 
godisk = a - gopen;                   % Remove bright lesions in Optic Disk  

figure, subplot(1,2,1), imshow(gopen), title ('(a)'); 

subplot(1,2,2), imshow(godisk), title ('(b)'); 
medfilt = medfilt2(godisk);                 %2D Median Filter 

background = imopen(medfilt,strel('disk',15));% imopen function 

I2 = medfilt - background;                  % Remove Background 
I3 = imadjust(I2);                          % Image Adjustment 

mean1 = mean(I3); 

figure, imshow(mean1); 
figure, subplot(2,2,1), imshow(medfilt), title ('(a)'); 

subplot(2,2,2), imshow(background), title ('(b)'); 

subplot(2,2,[3,4]), imshow(I3), title ('(c)'); 
figure,imshow(I3); 

  

%OD = detectSURFFeatures(I3); 
%figure,imshow(I3),title('I3'); hold on; 

%plot(OD.selectStrongest(10)); 

%h = imellipse 
% B1 = bitget(I3,7); figure, imshow(logical(B1)); 

% B2 = bitget(I3,8); figure, imshow(logical(B2)); 

% figure, imshow(logical(B1+B2)); 
level = graythresh(I3)                     % Gray Threshold 

bw = im2bw(I3,level);                       % Binarization 

bw = bwareaopen(bw, 30);                    % Morphological Open 
  

edtIM = bwdist(~bw); 
figure, imshow(edtIM,[]), title ('edt'); 

drawnow; 

skelIM = bwmorph(bw,'skel', inf); 

%diameterImage 

%save('segmented_vessel.mat', 'bw'); 

skelIM = bwmorph(skelIM,'spur',5); 
[labeledImage, numLines] = bwlabel(skelIM); 

figure, imshow(skelIM, []); 

branchpoints = bwmorph(skelIM,'branch',1); 
branchpoints = imdilate(branchpoints,strel('disk',2)); 

figure,imshow(bw); 

  
figure, imshow(skelIM); 

figure, imshow(branchpoints); 

% [r,c] = find(skelIM,409,337) 
meanRadius = mean(edtIM(skelIM)); 
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Overlaying of Classified Vessel 
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Code for Artery/Vein Classification 

clear all; 

close all; 
clc; 

In = imread('C:\Users\User\Documents\Degree\Final Final\FYP 1\Sample\VICAVR\images\original\Image36.jpg'); 

yo = imread('C:\Users\User\Documents\Degree\Final Final\FYP 1\Sample\VICAVR\images\expert1\Image36.jpeg'); 
  

redc = In(:,:,1);                            % Extract Red Channel 

greenc = In(:,:,2);                          % Extract Green Channel 
bluec = In(:,:,3);                           % Extract Blue Channel 

%greenc = imopen(greenc,(strel('disk',1))); 

subplot(2,2,1), imshow(In), title ('(a) Original Image'); 
subplot(2,2,2), imshow(redc), title ('(b) Red Channel'); 

subplot(2,2,3), imshow(greenc), title ('(c) Green Channel'); 

subplot(2,2,4), imshow(bluec), title ('(d) Blue Channel'); 
figure, imshow(In); 

  

%subplot(2,2,1), imhist(In), title ('(a) Original Image'); 
subplot(2,2,3), imhist(redc), title ('(b) Red Channel'); 

subplot(2,2,[1,2]), imhist(greenc), title ('(c) Green Channel'); 

subplot(2,2,4), imhist(bluec), title ('(d) Blue Channel'); 
 

maxgc = max(max(greenc)) 

[row,column] = find(greenc >= maxgc*0.99) 
meangc = mean(greenc); 

 

% Creating fundus mask 
mask = im2bw(redc,graythresh(redc)); 

mask = bwareaopen(mask,100); 

mask = imfill(mask,'holes'); 
figure, imshow(mask); 

  

%apply mask to eliminate background noise 
greenc(~mask) = 0; 

ginv = imcomplement (greenc);               % Complement the Green Channel (Vessel are lighter than background) 

ginv = medfilt2(ginv); 

adahist = adapthisteq(ginv);                % Adaptive Histogram Equalization 

  
adahist = medfilt2(adahist); 

  

tophat = imtophat(adahist,strel('disk',8)); 
tophat(~mask)=0; 

bothat = imbothat(adahist, strel('disk',8)); 

a = imsubtract(tophat,bothat); 
test= a-greenc; 

test = imcomplement(test); 

 
% 

se = strel('ball',8,8);                     % Structuring Element 

gopen = imopen(a,se);                 % Morphological Open (thickening vessel) 
figure, imshow(gopen); 

godisk = a - gopen;                   % Remove bright lesions in Optic Disk  

medfilt = medfilt2(godisk);                 %2D Median Filter 
background = imopen(medfilt,strel('disk',15));% imopen function 

I2 = medfilt - background;                  % Remove Background 

I3 = imadjust(I2);                          % Image Adjustment 
mean1 = mean(I3); 

level = graythresh(I3)                     % Gray Threshold 

bw = im2bw(I3,level);                       % Binarization 
bw = bwareaopen(bw, 30);                    % Morphological Open 

 

edtIM = bwdist(~bw); 
figure, imshow(edtIM,[]), title ('edt'); 

drawnow; 

skelIM = bwmorph(bw,'skel', inf); 
skelIM = bwmorph(skelIM,'spur',5); 

[labeledImage, numLines] = bwlabel(skelIM); 

figure, imshow(skelIM, []); 
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branchpoints = bwmorph(skelIM,'branch',1); 

branchpoints = imdilate(branchpoints,strel('disk',2)); 

figure,imshow(bw), title('bw'); 
  

sample=edtIM(skelIM); 

%% 
bv = im2uint8(bw)./255; 

skelIm = im2uint8(skelIM)./255; 

greenc=medfilt2(greenc); 
redc=medfilt2(redc); 

bluec=medfilt2(bluec); 

vgreenint=greenc.*bv; 
vredint=redc.*bv; 

vblueint=bluec.*bv; 

maxr=max(max(vredint)); 
maxg=max(max(vgreenint)); 

maxb=max(max(vblueint)); 

minr=min(min(vredint(vredint>0))); 
ming=min(min(vgreenint(vgreenint>0))); 

minb=min(min(vblueint(vblueint>0))); 

numr=0; 
numg=0; 

numb=0; 

numh=0; 
nums=0; 

numv=0; 

greenint=greenc.*skelIm; 
redint=redc.*skelIm; 

blueint=bluec.*skelIm; 

% figure, imhist(redint,1000000); 
% figure, imhist(greenint,1000000); 

% figure, imhist(blueint,1000000); 

% figure, imtool(redint), title('redint'); 
% figure, imtool(blueint), title('blueint'); 

% figure, imshow(greenint), title('greenint'); 

%overlay=imoverlay(In, skelIm) 
bv2 = im2double(bw) 

skelIm2 = im2double(skelIM) 

hsv_value = rgb2hsv(In); 
figure, imshow(hsv_value), title('hsv'); 

h = hsv_value(:,:,1); 

s = hsv_value(:,:,2); 
v = hsv_value(:,:,3); 

i = sum((double(In)/255),3)./3; 

h_intv=h.*bv2; 
s_intv=s.*bv2; 

v_intv=v.*bv2; 

i_intv=i.*bv2; 
h_int=h.*skelIm2; 

s_int=s.*skelIm2; 

v_int=v.*skelIm2; 
i_int=i.*skelIm2; 

maxh=max(max(h_intv)); 
maxs=max(max(s_intv)); 

maxi=max(max(i_intv)); 

minh=min(min(h_intv(h_intv>0))); 

mins=min(min(s_intv(s_intv>0))); 

mini=min(min(i_intv(i_intv>0))); 

numg1=0; 
% figure, imshow(skelIm2), title('h_int'); 

  

% vmeang=sum(sum(vgreenint))/numg  %mean of green channel 
% vmeanr=sum(sum(vredint))/numr  %mean of red channel 

% vmeanb=sum(sum(vblueint))/numb  %mean of blue channel 

% vmeanh=sum(sum(h_intv))/numh  %mean of hue channel 
% vmeans=sum(sum(s_intv))/nums  %mean of saturation channel 

% vmeanv=sum(sum(v_intv))/numv  %mean of value channel 

vmeang=mean2(vgreenint(vgreenint>0)) 
vmeanr=mean2(vredint(vredint>0)) 

vmeanb=mean2(vblueint(vblueint>0)) 
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vmeanh=mean2(h_intv(h_intv>0)) 

vmeans=mean2(s_intv(s_intv>0)) 

vmeani=mean2(i_intv(i_intv>0)) 
stdg = im2double(vgreenint); 

stdr = im2double(vredint); 

stdb = im2double(vblueint); 
stdh = im2double(h_intv); 

stds = im2double(s_intv); 

stdi = im2double(i_intv); 
vstdg = std2(stdg(stdg>0))  

vstdr = std2(stdr(stdr>0))  

vstdb = std2(stdb(stdb>0))  
vstdh = std2(stdh(stdh>0))  

vstds = std2(stds(stds>0))  

vstdi = std2(stdi(stdi>0))  
figure, imshow (vredint), title('redint'); 

mean_g = mean(greenint); 

mean_r = mean(redint); 
mean_b = mean(blueint); 

for a=1:768 

    for b=1:576 
        if(greenint(b,a)>vmeang) 

            red(b,a) = greenint(b,a); 

        else 
            blue(b,a) = greenint(b,a); 

        end 

        if(vgreenint(b,a)>0) 
            numg=numg+1; 

        end 

        if(vredint(b,a)>181) 
            numg1=numg1+1; 

        end 

        if(vredint(b,a)>0) 
            numr=numr+1; 

        end 

        if(vblueint(b,a)>0) 
            numb=numb+1; 

        end 

        if(h_intv(b,a)>0) 
            numh=numh+1; 

        end 

        if(s_intv(b,a)>0) 
            nums=nums+1; 

        end 

        if(v_intv(b,a)>0) 
            numv=numv+1; 

        end 

    end 
end 

wname = 'sym4'; 

[CA,CH,CV,CD] = dwt2(red,wname,'mode','per'); 
figure,imshow(CA),title('Approximate'); 

b = bwboundaries(red); 
 

figure,imshow(yo) 

hold on 

for k = 1:numel(b) 

    plot(b{k}(:,2), b{k}(:,1), 'r', 'Linewidth', 1) 

end 
c = bwboundaries(blue); 

for k = 1:numel(c) 

    plot(c{k}(:,2), c{k}(:,1), 'b', 'Linewidth', 1) 
end 

figure, imshow(red), title('red'); 

meanRadius = mean(edtIM(skelIM)); 
 

%RGB vein 36 

veing(1)=sum(impixel(greenc,330,209))/3; 
veinr(1)=sum(impixel(redc,330,209))/3; 

veinb(1)=sum(impixel(bluec,330,209))/3; 
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veing(2)=sum(impixel(greenc,395,210))/3; 

veinr(2)=sum(impixel(redc,395,210))/3; 

veinb(2)=sum(impixel(bluec,395,210))/3; 
veing(3)=sum(impixel(greenc,468,281))/3; 

veinr(3)=sum(impixel(redc,468,281))/3; 

veinb(3)=sum(impixel(bluec,468,281))/3; 
vein_green = veing 

vein_red = veinr 

vein_blue = veinb 
mean_veinr=mean(veinr) 

mean_veing=mean(veing) 

mean_veinb=mean(veinb) 
std_veinb=std(veinb) 

std_veinr=std(veinr) 

std_veing=std(veing) 
std_veinb=std(veinb) 

% %37 

% veing(1)=sum(impixel(greenc,397,410))/3; 
% veinr(1)=sum(impixel(redc,397,410))/3; 

% veinb(1)=sum(impixel(bluec,397,410))/3; 

% veing(2)=sum(impixel(greenc,485,288))/3; 
% veinr(2)=sum(impixel(redc,485,288))/3; 

% veinb(2)=sum(impixel(bluec,485,288))/3; 

% veing(3)=sum(impixel(greenc,357,217))/3; 
% veinr(3)=sum(impixel(redc,357,217))/3; 

% veinb(3)=sum(impixel(bluec,357,217))/3; 

% vein_green = veing 
% vein_red = veinr 

% vein_blue = veinb 

% mean_veinr=mean(veinr) 
% mean_veing=mean(veing) 

% mean_veinb=mean(veinb) 

% std_veinb=std(veinb) 
% std_veinr=std(veinr) 

% std_veing=std(veing) 

% std_veinb=std(veinb) 
  

%RGB artery 36 

arteryg(1)=sum(impixel(greenc,424,255))/3; 
arteryr(1)=sum(impixel(redc,424,255))/3; 

arteryb(1)=sum(impixel(bluec,424,255))/3; 

arteryg(2)=sum(impixel(greenc,314,229))/3; 
arteryr(2)=sum(impixel(redc,314,229))/3; 

arteryb(2)=sum(impixel(bluec,314,229))/3; 

arteryg(3)=sum(impixel(greenc,334,432))/3; 
arteryr(3)=sum(impixel(redc,334,432))/3; 

arteryb(3)=sum(impixel(bluec,334,432))/3; 

artery_green = arteryg 
artery_red = arteryr 

artery_blue = arteryb 

mean_arteryr=mean(arteryr) 
mean_arteryg=mean(arteryg) 

mean_arteryb=mean(arteryb) 
%37 

% arteryg(1)=sum(impixel(greenc,381,214))/3; 

% arteryr(1)=sum(impixel(redc,381,214))/3; 

% arteryb(1)=sum(impixel(bluec,381,214))/3; 

% arteryg(2)=sum(impixel(greenc,455,321))/3; 

% arteryr(2)=sum(impixel(redc,455,321))/3; 
% arteryb(2)=sum(impixel(bluec,455,321))/3; 

% arteryg(3)=sum(impixel(greenc,361,408))/3; 

% arteryr(3)=sum(impixel(redc,361,408))/3; 
% arteryb(3)=sum(impixel(bluec,361,408))/3; 

% artery_green = arteryg 

% artery_red = arteryr 
% artery_blue = arteryb 

% mean_arteryr=mean(arteryr) 

% mean_arteryg=mean(arteryg) 
% mean_arteryb=mean(arteryb) 
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%HSV vein 36 

veinh(1)=sum(impixel(h,330,209))/3; 

veins(1)=sum(impixel(s,330,209))/3; 
veini(1)=sum(impixel(i,330,209))/3; 

veinh(2)=sum(impixel(h,395,210))/3; 

veins(2)=sum(impixel(s,395,210))/3; 
veini(2)=sum(impixel(i,395,210))/3; 

veinh(3)=sum(impixel(h,468,281))/3; 

veins(3)=sum(impixel(s,468,281))/3; 
veini(3)=sum(impixel(i,468,281))/3; 

vein_hue = veinh 

vein_sat = veins 
vein_int = veini 

mean_veinh=mean(veinh) 

mean_veins=mean(veins) 
mean_veini=mean(veini) 

  

%HSV artery 36 
arteryh(1)=sum(impixel(h,424,255))/3; 

arterys(1)=sum(impixel(s,424,255))/3; 

arteryi(1)=sum(impixel(i,424,255))/3; 
arteryh(2)=sum(impixel(h,314,229))/3; 

arterys(2)=sum(impixel(s,314,229))/3; 

arteryi(2)=sum(impixel(i,314,229))/3; 
arteryh(3)=sum(impixel(h,334,432))/3; 

arterys(3)=sum(impixel(s,334,432))/3; 

arteryi(3)=sum(impixel(i,334,432))/3; 
artery_hue = arteryh 

artery_sat = arterys 

artery_int = arteryi 
mean_arteryh=mean(arteryh) 

mean_arterys=mean(arterys) 

mean_arteryi=mean(arteryi) 
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Extracted Vessel from DRIVE  
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Code (Performance Analysis)  

clear all; 
close all; 

clc; 

In = imread('C:\Users\User\Documents\Degree\Final Final\FYP 1\Sample\DRIVE\test\images\20_test.tif'); 
Gold_std = imread('C:\Users\User\Documents\Degree\Final Final\FYP 1\Sample\DRIVE\test\1st_manual\20_manual1.gif'); 

fov = imread('C:\Users\User\Documents\Degree\Final Final\FYP 1\Sample\DRIVE\test\mask\20_test_mask.gif'); 

%In = imresize(In,[500 700]); 
  

redc = In(:,:,1);                            % Extract Red Channel 

greenc = In(:,:,2);                          % Extract Green Channel 
bluec = In(:,:,3);                           % Extract Blue Channel 

 

subplot(2,2,1), imshow(In), title ('(a) Original Image'); 
subplot(2,2,2), imshow(redc), title ('(b) Red Channel'); 

subplot(2,2,3), imshow(greenc), title ('(c) Green Channel'); 

subplot(2,2,4), imshow(bluec), title ('(d) Blue Channel'); 

figure, imshow(In); 

  

%subplot(2,2,1), imhist(In), title ('(a) Original Image'); 
subplot(2,2,3), imhist(redc), title ('(b) Red Channel'); 

subplot(2,2,[1,2]), imhist(greenc), title ('(c) Green Channel'); 

subplot(2,2,4), imhist(bluec), title ('(d) Blue Channel'); 
%lab = rgb2lab(I); 

% figure, imhist(redc); 

% figure, imhist(greenc); 
% h(1) = imshow(greenc); 

  

maxgc = max(max(greenc)) 
[row,column] = find(greenc >= maxgc*0.99) 

meangc = mean(greenc); 

  
% Creating fundus mask 

mask = im2bw(redc,graythresh(redc)); 

mask = bwareaopen(mask,100); 

mask = imfill(mask,'holes'); 

figure, imshow(mask); 
  

%apply mask to eliminate background noise 

greenc(~mask) = 0; 
figure, imshow(greenc); 

ginv = imcomplement (greenc);               % Complement the Green Channel (Vessel are lighter than background) 

ginv = medfilt2(ginv); 
adahist = adapthisteq(ginv);                % Adaptive Histogram Equalization 

  

figure, subplot(1,2,1), imshow(ginv), title ('(a) Complementary Fundus Image'); 
subplot(1,2,2), imshow(adahist), title ('(b) CLAHE Transformation'); 

  

adahist = medfilt2(adahist); 
  

tophat = imtophat(adahist,strel('disk',8)); 

  
%tophat1=tophat; 

tophat(~mask)=0; 

bothat = imbothat(adahist, strel('disk',8)); 
figure, imshow(tophat); 

figure, imshow(bothat); 

a = imsubtract(tophat,bothat); 
figure, imshow(a), title('a'); 

test= a-greenc; 

test = imcomplement(test); 
figure, imshow(test), title('test'); 

% 

se = strel('ball',8,8);                     % Structuring Element 
gopen = imopen(a,se);                 % Morphological Open (thickening vessel) 

figure, imshow(gopen); 

godisk = a - gopen;                   % Remove bright lesions in Optic Disk  
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figure, subplot(1,2,1), imshow(gopen), title ('(a)'); 

subplot(1,2,2), imshow(godisk), title ('(b)'); 

%figure, imshow(gopen), title('gopen'); 
%figure, imshow(godisk), title('godisk'); 

%vesselMask(~imerode(greenc,strel('disk',6))); 

%figure, imshow(vesselMask); 
medfilt = medfilt2(godisk);                 %2D Median Filter 

background = imopen(medfilt,strel('disk',15));% imopen function 

I2 = medfilt - background;                  % Remove Background 
I3 = imadjust(I2);                          % Image Adjustment 

mean1 = mean(I3); 

figure, imshow(mean1); 
figure, subplot(2,2,1), imshow(medfilt), title ('(a)'); 

subplot(2,2,2), imshow(background), title ('(b)'); 

subplot(2,2,[3,4]), imshow(I3), title ('(c)'); 
figure,imshow(I3); 

  

level = graythresh(I3)                     % Gray Threshold 
bw = im2bw(I3,level);                       % Binarization 

bw = bwareaopen(bw, 30);                    % Morphological Open 

  
edtIM = bwdist(~bw); 

figure, imshow(edtIM,[]), title ('edt'); 

drawnow; 
skelIM = bwmorph(bw,'skel', inf); 

skelIM = bwmorph(skelIM,'spur',5); 

[labeledImage, numLines] = bwlabel(skelIM); 
figure, imshow(skelIM, []); 

branchpoints = bwmorph(skelIM,'branch',1); 

branchpoints = imdilate(branchpoints,strel('disk',2)); 
figure,imshow(bw); 

  

figure, imshow(skelIM); 
figure, imshow(branchpoints); 

meanRadius = mean(edtIM(skelIM)); 

%  
Gold_std = logical(Gold_std); 

figure, imshow(Gold_std), title('Gold Standard'); 

fov = logical(fov); 
result = Gold_std & bw; 

gold_zero=0; 

gold_one=0; 
bw_one=0; 

bw_zero=0; 

fn=0; 
tn=0; 

count=0; 

fov_count=0; 
fp=0; 

zero=bw|Gold_std; 

difff= bw - Gold_std; 
tp = sum(sum(result)); 

for a=1:565 
    for b=1:584 

        if (difff(b,a)==1) 

            fp=fp+1; 

        end 

        if (difff(b,a)==-1) 

             fn=fn+1; 
        end 

        if (Gold_std(b,a)==0) 

            gold_zero=gold_zero+1; 
        end 

        if (Gold_std(b,a)==1) 

            gold_one=gold_one+1; 
        end 

        if (bw(b,a)==0) 

            bw_zero=bw_zero+1; 
        end 

        if (bw(b,a)==1) 
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            bw_one=bw_one+1; 

        end 

        if (fov(b,a)==0) 
            count=count+1; 

        end 

        if (fov(b,a)==1) 
            fov_count=fov_count+1; 

        end 

        if (zero(b,a)==0) 
            tn=tn+1; 

        end 

    end 
end 

total = bw_one+bw_zero-count 

tn = tn-count;  
tpf = tp/bw_one 

fpf = fp/bw_one 

tnf = tn/(bw_zero-count)  
fnf = fn/(bw_zero-count) 

sensitivity = tp/(tp+fn) 

specificity = tn/(tn+fp) 
accuracy = (tp+tn)/229052 


