
STATUS OF THESIS

Title of thesis

COMPARATIVE PERFORMANCE OF SOME HYBRID
HEURISTICS SCHEDULING ALGORITHMS BASED ON SLTR
AND DEADLINE FOR COMPUTATIONAL GRID

HARUNA AHMED ABBA

hereby allow my thesis to be placed at the Information Resource Center (IRC) of
UmversitiTeknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

Confidential

V Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for years.

Remarks on disclosure:

Signature of Author

Permanent address: No,5, Phase 3,

Kundila Zaria Road, Kano State,

Nigeria

Date : *l lllfilJ-

«lt#*^
^"^.^0^

SJJSSa-eSSS
Endorsed*

Signatujis^PSupervisor

Name of Supervisor

Dr. Mohamed Nordin Zakaria

Date: M I / 7M%

UNIVERSITI TEKNOLOGI PETRONAS

COMPARATIVE PERFORMANCE OF SOME HYBRID HEURISTICS

SCHEDULING ALGORITHMS BASED ON SLTR AND DEADLINE FOR

COMPUTATIONAL GRID

BY

HARUNA AHMED ABBA

The undersigned certify that they have read, andrecommend to the Postgraduate

Studies Programme for acceptance this thesis for the fulfillment of the requirements

for the degree stated.

Signature:

Main Supervisor:

Signature:

Co-Supervisor:

Signature:

Head of Department:

Date:

ComW*?

Dr. Mohamed Nordin Zakaria

Dr. Anindya Jyoti Pal

Dr. Jafi

Dr. Jafreezal Bin Jaafar
Head
DeiJ?rtm?rit of CottDuter & Information Sciences
'• -^ - -"O-AS

!1TM ^

COMPARATIVE PERFORMANCE OF SOME HYBRID HEURISTICS

SCHEDULING ALGORITHMS BASED ON SLTR AND DEADLINE FOR

COMPUTATIONAL GRID

BY

HARUNA AHMED ABBA

A Thesis

Submittedto the Postgraduate Studies Programme

as a Requirement for the Degree of

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERIISKANDAR,

*• ' PERAK

JANUARY 2012

DECLARATION OF THESIS

Title of thesis

COMPARATIVE PERFORMANCE OF SOME HYBRID

HEURISTICS SCHEDULING ALGORITHMS BASED ON SLTR

AND DEADLINE FOR COMPUTATIONAL GRID

HARUNA AHMED ABBA

hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UTP or other institutions.

Signature ofAuthor

Permanent address: No.5, Phase 3,

Kundila Zaria Road, Kano State,

Nigeria

Date: 3//f 1^3

Witnessed by ya^

Signature of Supervisor

Name of Supervisor

Dr. Mohamed Nordin Zakaria

Date 2.// 1m.'3

DEDICATION

To my belovedFather, Haruna Usman (May Allah reward you abundantly)

My beloved mother, my brothers and my sisters

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, all

praises to Allah for the strengthand His blessing in completing this thesis.

First of all, I would like to express my deepest sense of gratitude to my esteemed

supervisor Dr. Mohamed Nordin Bin Zakaria and myco-supervisor Dr. Anindya Jyoti

Pal, for their continuous support, patience, motivation, enthusiasm, and immense

knowledge. I rode on the shoulders of their guidance in the course of the research and

writing of this thesis. I do not think I could have better advisors and mentors for my

Msc study.

My sincere thanks also goes to Dr. Syed Nasir Mehmood Shah for enlightening

me the first glance of this research area.

I am grateful to the entire staff and faculty members of CIS department as well as

my fellow research colleagues especially HPC research group members, for their

support and love throughout my study. In particular, I would want to specially thank

my colleagues Thayalan Sandran"Kya bate hai ji" and Djamalladine Mahamat Pierre

for the stimulating discussions, support, motivation and for all the fun we had. Such

shared moments helped to remove drudgery from my studies. I express my profound

gratitude to Ugheoke Benjaminfor his efforts in proofreadingthis thesis draft.

Finally, I seize this opportunity to express profound gratitude from the deepest

parts of my heart to my beloved parents, grandparents, and my siblings for their love

and continuous support both spiritually and materially, throughout mystudy period.

VI

ABSTRACT

Grid computing can be described as form of distributed computing that involves

collection of independent computers coordinating and sharing computing, application,

data storage or network resources using high speed networks across dynamic and

geographically distributed environment. Grid scheduling is an essential element of a

Computational Grid infrastructure. Typical scheduling challenges tend to be NP-

complete problems where there is no optimal solution. Research on Grid scheduling

focuses in solving three challenges: finding a good algorithm, automating the process,

and developing a scalable, robust and efficient scheduling mechanism. The

complexities involvedin scheduling challenges increase with the size of the Grid.

In different environment, users' priority is mainly focusing on job deadline. Even

though deadlines are very important, no work has beendone on scheduling algorithms

combining real-time system andround robin fairness based on deadline, slack time to

create fairness between the tasks and processors. Therefore, there is still a chance of

improving it. This deadline and slack time can be derived from the operational

research (OR) concept into grid scheduling. Some researchers have considered slack

time using different techniques, but not yet consideredoperational research slack time

concept by combining real-time system and roundrobin fairness techniques.

The research reported here therefore is focused on the development of grid

scheduling algorithms based ondeadline and slack time parameters, using the concept

of operational research (OR). This is because, users main concern is to finish the jobs

execution within the deadline upon his submission ofjobs for execution.

The developed algorithms in this research were validated using real workload

traces as benchmark on real grid computational environment. The results were

compared with some baseline scheduling approaches in extant literature.

vu

Based on the general observations, the research results have shown that the

performances of grid scheduling algorithms developed andreported in this thesis give

good results and also support true scalability, when in the scenario of increasing

workload and numberofprocessors on a real computational gridenvironment.

Vlll

ABSTRAK

Pengkomputeran grid boleh digambarkan sebagai bentuk pengkomputeran teragih

yang melibatkan koleksi komputer bebas menyelaras dan berkongsi sumber

pengkomputeran, aplikasi, penyimpanan data atau rangkaian yang menggunakan

rangkaian kelajuan tinggi di seluruh persekitaran yang dinamik dan geografi

diedarkan. Penjadualan grid adalah satu elemen penting dalam infrastruktur Grid

pengiraan. Cabaran penjadualan biasa cenderung untuk menjadi masalah NP-lengkap

di mana tiada penyelesaian optimum. Penyelidikan mengenai penjadualan Grid

memberi tumpuan dalam menyelesaikan tiga cabaran: mencari algoritma yang baik,

mengautomasikan proses, dan membangunkan penjadualan mekanisme berskala,

mantap dan cekap. Kerumitan yang terlibat dalam penjadualan cabaran meningkat

dengan saiz Grid.

Dalam persekitaran yang berbeza, keutamaan pengguna terutamanya memberi

tumpuan pada tarikh akhir kerja.Walaupun tarikh akhir adalah sangat penting, tiada

kerja telah dilakukan pada algoritma penjadualan menggabungkan masa sebenar

sistem dan bulat robin keadilan berdasarkan tarikh akhir, masa kendur untuk

mewujudkan keadilan antara tugas dan pemproses. Oleh itu, masih ada peluang

memperbaiki ia. Kali ini tarikh akhir dan kendur boleh diperolehi dari penyelidikan

operasi (OR) konsep ke penjadualan grid. Beberapa orang penyelidik telah dianggap

masa kendur menggunakan teknik yang berbeza, tetapi tidak lagi dianggap

penyelidikan kendur operasi konsep masa dengan menggabungkan masa sebenar

sistem dan teknik keadilan pusingan robin.

Oleh itu, penyelidikan yang dilaporkan di sini memberi tumpuan kepada

pembangunan algoritma penjadualan grid berdasarkan tarikh akhir dan parameter

masa kendur, menggunakan konsep penyelidikan operasi (OR). Ini adalah kerana,

IX

kebimbangan pengguna utama adalah untuk menamatkan pelaksanaan pekerjaan

dalam tarikh akhir semasa penyerahan pekerjaanbagi pelaksanaan.

Algoritma yang dibangunkan dalam kajian ini telah disahkan menggunakan kesan

beban kerja sebenar sebagai penanda aras terhadap alam sekitar grid pengiraan

sebenar. Keputusan telah berbanding dengan beberapa pendekatan penjadualan asas

dalam kesusasteraan wujud.

Berdasarkan pemerhatian umum, hasil penyelidikan telah menunjukkan bahawa

prestasi algoritma penjadualan grid dibangunkan dan dilaporkan di dalam tesis ini

memberikan hasil yang baik dan juga menyokong berskala benar, apabila dalam

senario beban kerja yang semakin meningkat dan bilangan pemproses pada

persekitaran grid pengiraan sebenar .

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the

university, the copyright of this thesis has been reassigned by the author to the legal

entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained

in, or derived from, this thesis.

© Haruna Ahmed Abba, 2012

Institute of Technology PETRONAS Sdn Bhd

All rights reserved.

XI

TABLE OF CONTENT

CHAPTER 1 INTRODUCTION 1

1.1 Chapter Overview 1

1.2 Background of the Study 1

1.3 Grid Computing 2

1.4 Grid Scheduling 3

1.5 Scheduling Architecture 4

1.6 Research Motivation 5

1.7 Problem Statement 6

1.8 Research Objectives 7

1.9 Research Contribution 7

1.10 Outline of Thesis 8

CHAPTER 2 LITERATURE REVIEW 9

2.1 Chapter Overview 9

2.2 Previous Research on Grid Resource Allocation 9

2.2.1 Static Based 9

2.2.2 Dynamic Based 10

2.2.3 Linear Programming 10

2.2.4 Game Theory 10

2.2.5 Fuzzy Clustering 11

2.2.6 Market Based 11

2.2.7 Reinforcement Learning 12

2.3 Previous Research on Grid Scheduling 12

2.3.1 Evolutionary Algorithms in Grid Scheduling 12

2.3.2 Previous Research on Deadline and Slack Time Based Scheduling... 16

2.4 Summary 22

CHAPTER 3 METHODOLOGY 24

3.1 Chapter Overview 24

3.2 Research overview and Process Flow 24

3.3 Grid Scheduling Modeling 25

xu

3.3.1 Benchmark Traces files 26

3.3.2 Resource Allocation 27

3.3.3 Scheduling Algorithms 28

3.3.4 Performance Metrics 29

3.3.5 Algorithm to Compute Find Parameters 29

3.4 Scheduling Algorithms 29

3.5 Experimental Procedures 53

3.5.1 Experimental Setup 53

3.5.2 Parameter Settings 53

3.5.3 BenchmarkDescription 54

3.6 Summary 56

CHAPTER 4 RESULT AND DISCUSSION 57

4.1 Chapter Overview 57

4.2 Comparative Performance Analysis of Scheduling Algorithms 57

4.2.1 Das-2 Traces 58

4.2.2 AuverGrid Traces 61

4.2.3 Grid5000 Traces 65

4.2.4 LCG Traces 69

4.2.5 NorduGrid Traces 73

4.2.6 Sharcnet Traces 77

4.2.7 Job Variations of Das-2 Traces 81

4.2.8 Job Variations Sharcnet Traces 91

CHAPTER 5 CONCLUSION AND FUTURE RESEARCH 104

5.1 Chapter Overview 104

5.2 Conclusion 104

5.2.1 Outcome of the Literature Review 104

5.2.2 Outcome ofAlgorithm Development 105

5.3 Research Limitation 106

5.4 Recommendations and Future Works 106

REFERENCES 118

APPENDIX A PUBLICATIONS 118

Xlll

LIST OF FIGURES

Figure 1.1: Scheduling architecture 4

Figure 3.1: Research overview and process flow 24

Figure 3.2: Scheduling modeling 26

Figure 3.3: Master/Slave Architecture 27

Figure 4.1: Average Turnaround Time 58

Figure 4.2: Average Waiting Time 59

Figure 4.3: Maximum Tardiness 60

Figure 4.4: Average Turnaround Time 62

Figure 4.5: Average Waiting Time 63

Figure 4.6: Maximum Tardiness 64

Figure 4.7: Average Turnaround Time 66

Figure 4.8: Average Waiting Time 67

Figure 4.9: Maximum Tardiness 68

Figure 4.10: Average Turnaround Time 69

Figure 4.11: Average Waiting Time 71

Figure 4.12: Maximum Tardiness 72

Figure 4.13: Average Turnaround Time 73

Figure 4.14: Average Waiting Time 75

Figure 4.15: Maximum Tardiness 76

Figure 4.16: Average Turnaround Time 77

Figure 4.17: Average Waiting Time 79

Figure 4.18: Maximum Tardiness 80

Figure 4.19: Average Turnaround Time 81

Figure 4.20: Average Waiting Time 83

Figure 4.21: Maximum Tardiness 85

Figure 4.22: Average Turnaround Time 86

Figure 4.23: Average Waiting Time 88

Figure 4.24: Maximum Tardiness 90

Figure 4.25: Average Turnaround Time 92

XIV

Figure 4.26: Average Waiting Time 94

Figure 4.27: Maximum Tardiness 96

Figure 4.28: Average Turnaround Time 98

Figure 4.29: Average Waiting Time 100

Figure 4.30: Maximum Tardiness 102

xv

LIST OF TABLES

Table 4.1: Standard Deviation 59

Table 4.2: Standard Deviation 60

Table 4.3: Standard Deviation 61

Table 4.4: Standard Deviation 63

Table 4.5: Standard Deviation 64

Table 4.6: Standard Deviation 65

Table 4.7: Standard Deviation 66

Table 4.8: Standard Deviation 67

Table 4.9: Standard Deviation 69

Table 4.10: Standard Deviation 70

Table 4.11: Standard Deviation 71

Table 4.12: Standard Deviation 73

Table 4.13: Standard Deviation 74

Table 4.14: Standard Deviation 75

Table 4.15: Standard Deviation 77

Table 4.16: Standard Deviation 78

Table 4.17: Standard Deviation 80

Table 4.18: Standard Deviation 81

Table 4.19: Standard Deviation 82

Table 4.20: Standard Deviation 84

Table 4.21: Standard Deviation 86

Table 4.22: Standard Deviation 88

Table 4.23: Standard Deviation 90

Table 4.24: Standard Deviation 91

Table 4.25: Standard Deviation 93

Table 4.26: Standard Deviation 95

Table 4.27: Standard Deviation 97

Table 4.28: Standard Deviation 100

Table 4.29: Standard Deviation 102

xvi

Table 4.30: Standard Deviation 103

xvn

CHAPTER 1

INTRODUCTION

1.1 Chapter Overview

This chapter lays the foundation for the entire research. It begins by giving

background information to the problem in section 1.2, followed by grid computing in

section 1.3, grid scheduling in section 1.4, scheduling architecture in section 1.5, and

research motivation in section 1.6, problem statement in section 1.7, research

objectives in section 1.8, research contribution in section 1.9 and ends with outline of

thesis in section 1.10.

1.2 Background of the Study

In recent years, increasing demand for computing [1-5] has led to the development

of computational grid. A computing grid uses the idle time of thousands or millions

of computers throughout the world [6]. Precisely, a grid is a large-scale,

heterogeneous, dynamic collection of independent computers, geographically

distributed and interconnected with high speed networks. The resources making up a

grid need to be managed to provide a good quality service. Resource allocation is one

of the major problems in grid due to large-scale heterogeneity both in processing

speed and interconnection speed between different computers. In fact, resource

allocation is also an NP (non-deterministic polynomial-time) complete problem [7]

where there is no optimal solution. This new field has emerged, distinguished from

traditional distributed computing by its concentration on large-scale resource sharing.

Also it's been shown that resource heterogeneity affects the resource allocation in a

significant way, in terms of performance, reliability, robustness and scalability.

To facilitate job scheduling as well as resource management in grid, a resource scheduleror a

meta-scheduler has to be used. A scheduler is essential in any multi-user grid environment.

The task of the grid resource scheduler is to identify dynamically, characterize the accessible

resources and selectthe right resource forjobs submission. While much has beendoneon grid

scheduling, due to its NP-complete nature, grid scheduling problem continues to be analyzed

broadly in different areas.

1.3 Grid Computing

The word "Grid" a word borrowed, from the electric energy power grid, derives from

significantly pervasive, easily available resource that originates at distributed sites,

each with potentially different system and conditions. Grid computing originated in

the early 1990's. Ian Promote[8] was promoting a program to elevate shared

computing to some global level. Just like the internet which is a tool for mass

communication, grids are the tools that make computer resources and space globally

available for storage. Grid computing is all about getting computer systems to operate

together. In fact according to Zhang et ah, [9], grid assist to promote the web to some

true computing platform, mixing the characteristics and services information about

enterprise computing having the ability to share heterogeneous distributed assets-from

programs, data, storage and servers. Moreover, a definition given by the Globus

Alliance (an investigation and development initiative focused on enabling the

application of grid concepts to scientific and engineering computing) [10], is as

follows:

"The grid describes an infrastructure that enables the integrated, collaborative usage

of high-finish personal computers, systems, database, and scientific instruments

possessed and handled by multiple organizations."

There are three major areas that have drawn much attention from grid researchers

and developers. Prime concern is resource sharing. Resource sharing may be the

prime cause of the grid philosophy [1]. Grid is all about putting systems in position to

ensure that everybody benefits from the efficiencies of sharing. Moreover, grid gives

use of extra computingpower and may compute things that cannot be computedusing

only one computer. The second large idea behind grid is safe access which can be a

direct result of the very first large idea. However, to ensure secure access, grid

developers and users have to manage the following three essential things[11]:

• Access policy

• Authentication

• Authorization

The third large idea behind grid is efficient utilization of resources, because it

includes a mechanism to allocate jobs effectively and instantly among many users,

and as a result may lessen waiting time.

1.4 Grid Scheduling

Grid scheduling is understood to be the entire process of making scheduling choices,

relevant resources over multiple administrative domain names. This method may

include searching multiple administrative domain names to utilize a single machine or

scheduling just one job to make use of multiple resources in a single site or multiple

sites. Scheduling is a process that maps and handles execution of interdependent tasks

on distributed resources. It introduces allocating appropriate assets to workflow tasks

to ensure that the execution could be implemented to satisfy objective functions per

customers. Scheduling has two important definitions. First of all, scheduling is a

decision making function; to determine a schedule. Secondly, scheduling is a body

associated with a theory; it is actually a collection of principles, models and methods.

Proper scheduling has a significant effect on the performance of the system.

Generally, the issue of mapping tasks on distributed resources goes to some class of

problems referred to as NP-complete problems [12]; for such problems, no known

algorithms can create the optimal solution within polynomial time. Scheduling

function can be the actual allocation of resources over time in order to perform a

collection of task raised in a variety of scenarios.

Casavant et al. [13], categorized task scheduling in distributed computing

software as 'local' task scheduling and 'global' task scheduling. Local scheduling

involves handling a job of tasks to time-slices of merely one resource whereas global

scheduling involves determining where to carry out a task. Based on this definition,

scheduling is a type of global task because it concentrates on mapping and controlling

the execution of interdependent tasks on shared resources that are not directly under

its control. However, the scheduler must coordinate with diverse local management

systems as grid resources are heterogeneous when it comes to local configuration and

guidelines. Users' QoS (quality of service) constraints can also be essential in the

scheduling process in order to satisfy their needs.

1.5 Scheduling Architecture

The architecture of the scheduling infrastructure is essential for scalability, autonomy,

quality and performance from the system[14]. There are three major groups of

workflow scheduling architecture, which are shown in Figure 1. They are centralized,

hierarchical and decentralized scheduling schemes.

Scheduling Architecture

^
v

Centralized Hierarchical Decentralized

Figure 1.1: Scheduling architecture.

In a centralized workflow enactment environment, one central workflow scheduler

makes scheduling choices for all tasks within the workflow. Moreover according to T.

A. A. Project[14], the scheduler has the data concerning the entire workflow and

collects information of available processing resources and produce efficient

scheduling, since it has all necessary information. However, it is not scalable

regarding the amount of tasks, the classes and quantity of grid resources. It is thus

only appropriate for any small scale workflow or perhaps a massive workflow by

which every task has got the same objective (e.g. same class of resources). Unlike

centralized scheduling, both hierarchical and decentralized scheduling enables tasks to

become scheduled by multiple schedulers. Therefore, one scheduler only keeps the

data associated with a sub-workflow. Thus, in comparison to centralize scheduling,

they're more scalable given that they limit the amount of tasks handled by one

scheduler. However, the very best decision designed for an incomplete workflow can

lead to sub-optimal performance for that overall workflow execution. Furthermore,

conflict troubles are more serious [15]. An example of conflict is the fact that tasks

from different sub-workflows scheduled by different schedulers may compete for

similar resource. However, for hierarchical scheduling, there is a central manager and

multiple lower level sub-workflow schedulers. This central manager accounts for

manipulating the workflow execution and setting the sub-workflows from the low-

level schedulers. For instance, in Gridflow project [16], there is one workflow

manager and multiple lower level schedulers. The workflow manager plans sub-

workflows onto corresponding lower level schedulers. Each lower level scheduler

accounts for scheduling tasks inside a sub-workflow onto assets possessed by one

organization. The main benefit of using hierarchical architecture would be the

different scheduling guidelines which could be used within the central manager when

minimizing the level of schedulers [14]. The failure of the central manager can lead to

entire system failure.

1.6 Research Motivation

Grid scheduling is one of the major challenges of grid computing, where use of

scheduling techniques is frequently required. Grid scheduling challenge is generally

based on some resources (typically machines, storage, memory, network, etc.). The

number of submitted jobs in grid environment is typically large. These jobs are

ordered in a queue, and scheduling approaches are used to order the jobs as well as

delivering them to the right destination resources.

There are a couple of reasons why grid scheduling is such challenging.

• Firstly, increase in number ofjobs increases the demands of the search space.

• Secondly, the factors that determine optimal scheduling are dynamic in nature.

• Thirdly, domains and applications need solutions of different variations

associated with the scheduling problem.

Moreover, no work has been done on scheduling algorithms combining real-time

system and round robin fairness based on deadline, slack time to create fairness

between the tasks and processors. Why fairness? Operating system and some

distributed system environment (BOINC) were integrated with round robin techniques

in order to create fairness between the tasks as well as processors to avoid idle state.

In other words, real-time systems, as well as their deadlines, are classified by the

consequence of missing a deadline. Firstly, a hard real-time system ensures that when

an event occurs, it should be executed within its deadline time at all times in a given

hard real-time system. Instead, in soft real-time systems the precedence and sequence

of task operations are defined, interrupt latencies as well as context switching

latencies are small, but there can be few deviations between expected latencies of the

tasks and observed time constraints. Nevertheless, few missed of deadline are

accepted.

Therefore, this research aimed at the development of soft real-time grid scheduling

algorithms based on deadline and slack time parameters inherited from operational

research (OR) on software project management concept in to grid scheduling.

1.7 Problem Statement

Grid scheduling is one of the major challenges of a grid environment, due to large

scale heterogeneity. In different environment, users' priority is mainly on job

deadline. Deadline is very important. But not much has been done on scheduling

algorithms based on deadline and slack time, especially in distributed grid

environment.

Therefore, there is still a chance of improvement based on deadline and slack

time, using techniques and concepts of operational research (OR) in solving grid

scheduling problems. Some researchers [17, 18] have considered slack time using

different techniques, but not yet considered operational research slack time concept by

combining real-time system and round robin fairness techniques.

The research reported here therefore is focused on the development of grid

scheduling algorithms based on deadline and slack time parameters, using the concept

of operational research (OR) [19]. This is because, users main concern is to finish the

jobs execution within the deadline upon his submission ofjobs for execution.

In addition, most of the existing scheduling algorithms available in literature were

not developed and benchmarked using real workload traces. This may impair their

efficiency and robustness during application in real computational grid environment

with respect to the following performance metrics:

• Average turnaround time

• Average waiting time

• Maximum tardiness

This forms the crux of the present research, which also calculated the standard

deviations of the above parameters.

1.8 Research Objectives

The objectives of this research are as follows:

• To integratenew robust hybrid methods based on baseline approaches.

• To implement, evaluate and test these developed algorithms with real

benchmark traces on real computational grid environment.

The outcome of the research work will lead to a significant improvement in the

efficiency and robustness in Grid scheduling.

1.9 Research Contribution

This research gives better insights and idea or solution for scheduling technique

through deadline versus time for multiple jobs on a limited resource. The main

contributions of this research are as follows:

• Integrated new robust hybrid methods based on baseline approaches.

Implemented, evaluated and tested these developed algorithms with real benchmark

traces on real computational grid environment.

1.10 Outline of Thesis

The outline for this thesis is as follows:

• Chapter 2 presents a discussion on relevant literature on related research,

thereby putting Grid scheduling and the processes of scheduling in the right

perspective. This is followed by a briefexplanation of scheduling techniques.

• Chapter 3 discusses the methodology used in this project. It covers

experimental design as well as performance indices for evaluation.

• Chapter 4 highlights the results of the experiments conducted. There is also a

discussion, which includes analysis and result comparison of the performance

evaluation done.

• Chapter 5 is the conclusion and the future scope of this work.

CHAPTER 2

LITERATURE REVIEW

2.1 Chapter Overview

This chapter reviews the concepts of grid computing, scheduling, jobs distribution as

well as the previous approaches employed in handling grid scheduling problems. The

literature review provides much broad, but deep insight into extant approaches and

reasons informing the selection of the technique used in this research to proffer

robust, efficient, effective and accurate scheduling of grid problems.

2.2 Previous Research on Grid Resource Allocation

A brief overview of some previous researches based on different type of approaches

that have been and are still being used in grid resource allocation are as follows:

2.2.1 Static Based

A static based resource allocation constitutes a fixed data entry or fixed accounting

scheme such as a fixed access to a computer node. Tibor approach [20], main

objective is to assign an application process to compute servers that can present the

required Quality of Service as well as execute the processes in a cost-efficient

manner. In a related development by Somasundaram et al [21], incoming jobs from

different users are collected and stored in a job list and available resources are stored

in a resource list. Swift scheduler (SS) in GridSim [22] maps jobs from resource

queue as well as resources from job queue by the use of heuristic function. In Swift

Scheduler, job allocations as well as resource selection process are executed using a

Shortest Job First policy, which minimizes the average waiting time for jobs.

2.2.2 Dynamic Based

A dynamic based resource allocation is a process whereby dynamic mechanisms

adapt allocation according to the change of available resource quantities. The method

has combines best fit algorithm and process migration [23]. Using to this approach, a

resource reservation is decided by an administrator based on monitoring outcome

specified by the system at a given time. Moreover, a global grid network [4] is

presumed, where resources are distributed all over the globe. Users put forward

applications to their local area network scheduler. However, the scheduler select

resources related to the application requirements and allocate them to the requesting

application. In order to achieve the resource virtualization, adapter design pattern is

used [24].

2.2.3 Linear Programming

Linear programming is the process of taking various linear inequalities relating to

some situation and finding the "most effective" value obtained under those conditions.

Jun et al. [25], highlighted on the solution of resource allocation problems in a

gigantic wireless network by applying linear programming. Specifically, they look

into link scheduling problem assigning each link a collection of time slots in which it

will transmit. The schedule sought is the one that can guarantee all links in each slot

which it can transmit at the same time without triggering unexpected mutual

interference.

2.2.4 Game Theory

Game theory is concerned with decision making in situation whereby two or more

rational opponents are competition with conflicting interests in expectation of definite

10

outcomes in a given period of time [26]. The idea of applying game theory and

economics to resource management has been covered in many work [27-32]. The

majority of them investigated the economy in general equilibrium. In a research work

by Weng et al. [32], game theory is utilized to optimize resource allocation. This

approach takes advantage of proportional resource sharing model to manage grid

resources. Based on this model, it is shown that the percentage of resource allocated

to the user application is proportional to the bid value in comparison to other users'

bids.

2.2.5 Fuzzy Clustering

Fuzzy clustering is a type of algorithm for cluster analysis whereby the allocation of

data being positioned to clusters is not "hard" all-or- nothing. The algorithm by

FuFang et al. [33], delicately assigns appropriate resource while reserving the

resources whose power greatly exceed the requirements of current tasks for future use

when complex large-scale tasks arrive to the very task that exactly suit its needs for

resource. According to the work of Ru-Huai [34], the fuzzy clustering result can be

obtained directly from fuzzy similarity matrix by using net-mask method. Through the

use of net-mask method, the efficiency of this algorithm has been largely enhanced.

Dawei et al. [35], proposed a novel heuristic grid resource allocation algorithm based

on cluster grid resources.

2.2.6 Market Based

Market based resource allocation comprises of auctioneer who acts as a mediator

between sellers and buyers' orders (requests). In this model, sell orders (offers) may

be submitted at any time duringthe trading period. Within this frame work, Ferguson

et al. [36], deal with utility functions, used for calculating the utility of resource

allocation through the use of the utility based optimization method which will

permit the integration of different optimization objectives into allocation process. Li

et al. [37] and R. Buyya et al. [38], proposed a distributed computational economy-

based framework, called as the Grid Architecture for Computational Economy

11

(GRACE), for resource allocation that regulate supply and demand of the available

resources.

2.2.7 Reinforcement Learning

Reinforcement Learning is a type of Machine Learning and also a branch of Artificial

Intelligence which enables machines and software agents to automatically determine

the ideal behaviour within a specific context, in order to maximize its performance.

Based on this method, Adil et al. [39], used the method of reinforcement learning by

allowing a system which consists of a large number of heterogeneous reinforcements

learning agents that share common resources for their computational needs. Mateescu

et al. [16], created a simplified multi agent model of resource allocation based on the

same concept.

2.3 Previous Research on Grid Scheduling

A brief overview of some previous researches based on different types of grid

scheduling approaches is given in this section. In recent years, many researchers have

offered different types of methods as well as different types of algorithms for dynamic

job scheduling in different notion.

2.3.1 Evolutionary Algorithms in Grid Scheduling

Cao et al. [40], used Fuzzy C-Mean and Genetic Algorithms for dynamic job

scheduling. This model introduces cluster analysis for classification of job

characteristics (or objects), according to similarities among them, and for organizing

objects into groups. Cluster is a group of objects that are more similar to each other

than to objects in other clusters. Similarity is often defined by means of distance

based upon the length from a data vector to some prototypical object of the cluster.

The data are typically observations of some phenomenon. Each object consists of

measured variables, grouped into a dimensional column vector as well as mapping the

12

jobs to the appropriate resources primarily based on Genetic algorithm. Furthermore,

this approach separates workload data to three classifications based on jobs run-time

historical data. In related work by Siriluck et al. [41], a static job scheduling

algorithm through the use of the Fuzzy C-Mean along with Genetic algorithms

appears to have been applied. This approach presents the strategies (ways) of

allocating jobs to distinct nodes, which have been developed for predicting the

characteristics of jobs (using Genetic Algorithms (GA) techmiques) running in the

grid environment. The researchers (Siriluck et al. [42]), presented the results of the

simulation of the grid environment with regard to job allocations to distinct nodes.

However, fuzzy clustering methods allow for uncertainty in the cluster assignments.

Rather than partitioning the data into a collection of distinct sets (where each data

point is assigned to exactly one set), fuzzy clustering creates a fuzzy pseudo partition,

which consists of a collection of fuzzy sets. Fuzzy sets differ from traditional sets in

that membership in the set is allowed to be uncertain. The results prove the model by

using Fuzzy c-mean clustering approach for predicting the characterization of jobs as

well as optimization involving jobs scheduling in grid environment. This kind of

prediction and optimization engine provided jobs scheduling based upon historical

information.

In another study (Florin Pop et al. [43]), a fault-tolerant scheduling framework

through DIOGENES ("Distributed optimal genetic algorithm with respect to grid

application scheduling"), was presented. This framework maps the actual architecture

of MedioGRID, which is a real-time satellite image processing system operating

within a Grid environment. The proposed solution provides a fault tolerant

mechanism of mapping the image processing applications, on the available resources

in MedioGRID clusters and uniform access.

Kamalapurl et al. [44], presented an evaluation of recommended GA based

scheduling against existing traditional algorithms. Individual solutions are randomly

generated to form an initial population. Successive generations of reproduction and

crossover produce increasing numbers of individuals in solution regions. The

algorithm favors the fittest individuals. However, to achieve minimum waiting time

the fitness function defined here is based on Shortest Job First algorithm. Fitness

13

function checks the jobs, which occurs after the crossover point. If the jobs present

after crossover point has minimum CPU burst then fitness function marks it as fit to

generate new generation. The process is repeated till a termination criterion is reached

and termination criterion is a minimum waiting time.

In the work of Bouyer et al. [45], a meta-heuristic algorithm based on genetic

algorithm to solve the workflow schedulingproblem with the objective of minimizing

the time and cost of the execution was presented. The newly introduced method

consists of two phases: Phase 1: primary processing of information to make Decision

Tree and assigning each existing record to its related class (Decision Tree of course,

should be made and preserved only once). Phase 2: final processing and predictingthe

situation of a record, by using neighbouring records. In the first phase, to identify the

main and efficient parameters in the existing database system and to clarify their

effect on the final result, a processing operation is performed on it. The second step

involves an attempt to classify the information into different classes (by using a

decision tree classifier). At second phase, the desired record is first inserted in its class

according to previously done classification in Decision Tree. Then considering the

number desired of neighbours, the existing records are selected, which are similar to

the desired record, upon which the predicting operation is then perform.

In the work of Ivan et al. [46], new job scheduling policy was determined by

backfilling (JR-backfilling). The main goals of these policies were to decrease the

workload execution time frame, a job waiting time, job response time, and average

bounded slowdown and to successfully optimize the resource utilization.

Another method known as the particle swarm optimization (PSO) algorithm has

been studied by Bu Yan-Ping et al. [47]. It uses discrete coding rule for grid

scheduling with regard to the optimization of grid task scheduling problems and it

optimizes the grid resources allocation. In the grid environment, the scheduling

problem is to schedule a stream of tasks to a set of nodes. During the execution, there

are some communications between nodes. The function of DPSO is to find the best

tasks scheduling strategy and to obtain the optimal makespan. PSO is a population

based stochastic optimization technique. It is first initialized with a group of random

particles (solutions). In every iteration, each particle is updated by following two

14

"best" values, i.e., the personalbest (pbesti) and the global best (gbest). Pbesti is the

best solution (fitness) one particle has achieved so far. While gbest is the best value

obtained so far by any particle in the population. Similarly, Mathiyalagan et al. [48],

implemented a new approach based on particle swarm optimization algorithm in order

to resolve task scheduling challenges in grid. The newly developed algorithm is

generating an optimal schedule to complete task process within a minimum time

frame as well as utilizing the resources in an efficient way. The performance of each

particle is measured using a fitness function that varies depending on the optimization

problem. Each particle in the swarm is represented by the following characteristics:

the current position of the particle and the current velocity of the particle. Moreover,

the particle swarm optimization which is one of the latest evolutionary optimization

techniques conducts searches using a population of particles. Each particle

corresponds to individual in evolutionary algorithms. Each particle has an updating

position vector and updating velocity vector by moving through the problem space. In

related work, Pooranian et al. [49], proposed a novel approach based on hybrid PSO

and GELS (GPSO) algorithm in order to resolve grid scheduling challenge in order to

attenuate makespan as well as missed task.

The approach introduced by Raksha Sharma et al. [50] reduces processing time

frame and utilizes grid resource adequately. The primary goal is to maximize the

resource utilization and reduce the processing time frame of jobs. However, the grid

resource selection approach is based on Max Heap Tree (MHT) which best suits many

large scale applications and the root node of MHT is selected for job submission.

Somasundaram et al. [21], developed incoming jobs from different users that are

collected and stored in the job list and available resources, which are stored in

resource list, using the method of swift scheduler. The swift scheduler allocates jobs,

and selects resource using a heuristic searching algorithm based on Shortest Job First

(SJF), which minimizes the average time jobs spend on queues. Therefore, in general

the turnaround time is minimized and resource utilization is optimized.

In the work of Asgarali et al. [51], a new approach on fault tolerance mechanisms

for the resource scheduling on the grid was proposed by applying a method called

Rough Set Analysis algorithm on grid nodes (provider nodes) and optimized case-

15

based Reasoning (OCBR) algorithm on scheduler machine, for prediction, detection

and recovery of faults in grid. OCBR is one of the preferred problem-solving

strategies and machine learning techniques in complex and dynamically changing

situations. However, the proposed grid-scheduling approach can select the best fault

tolerance nodes andalso detect a failed node and simply manage it by using oneof the

provided strategies such as multi-versioning, reservation queue and replacement, and

transferring jobs to the nearest neighbour. OCBR-executer classifies the existing

Rules (received from all nodes) based on similarity to the new desired job. At first,

the information or primary system parameters are identified and integrated. Next, the

final result of the problem is obtained by performing the final processing among the

desired record and its neighbours (in the same class).

2.3.2 Previous Research on Deadline and Slack Time Based Scheduling

In the work of Miyagi et al. [52], a deadlineaware scheduling scheme for the lambda

grid system was proposed to support a huge computer grid system based on an

advanced photonic network technology. In the lamda scheme, the assignment of

wavelengths to jobs in order to efficiently carry various services that is very critical in

grid networks. Such services have different requirements such as the job completion

deadlines, and wavelength assignment must consider the job deadlines. However, the

proposed scheme uses deadline first as priority and then assigns time slots to a call

over time according to its deadline, which allows it to increase the system

performance in handling short deadline calls.

In the work of RajkumarBuyyaet al. [53], deadline and budget constraint (DBC)

which allows allocation of resources depending on the user's QoS requirements, such

as the deadline, budget, and optimization strategy were proposed. The proposed

algorithm called cost time optimization was developed and evaluated using the

GridSim toolkit by comparing its performance and a lot of service delivery with the

cost optimization. When there are multiple resources with the same cost and

capability, the cost time optimization algorithm schedules jobs on them using the time

optimization strategy for the deadline period.

16

Lui et al. [54], constructed a novel Generalized Distributed Scheduler (GDS) for

tasks with different priorities and deadlines. They considered a non-pre-emptive

scheduling strategy applied over a bag of independent mixed tasks in computational

grids. Tasks are ranked basedupon priority and deadline. Tasks are shuffled to earlier

points to pack the schedule and create fault tolerance. However, dispatching is based

upon task-resource matching and accounts for computation as well as communication

capacities.

The work ofEddy et al. [55], was anextension of the work inTakefusa etal. [56].

They considered both priority and deadline of the tasks to select a server. They

showed that a good number of tasks can meet their deadlines by the increase of 1)

using task priorities and 2) using a fallback mechanism to reschedule tasks that were

not able to meet their deadline on the selected servers.

Alexis etal. [57], presented a policy that they called Repeated Placing Policy. The

policy did not ignore jobs and considers ajob'sexecution within a short period of time

before the global deadline. The drawback perceived in their work however, is that

considering the jobs too early maycause manyjobs to fail.

In [58] a resource characteristic based optimization method (RCBO), was

combined with Earlier Gap, Earliest Deadline First (EG-EDF) policy to schedule jobs

in a dynamic environment based on [59]. In the application of RCBO, each time new

jobs arrival reaches a value often, RCBO is applied to change the positions of some

jobs that have already arrived and are waiting in the schedules of some machines.

RCBO may move the jobs to a betterevaluated position.

Li-Ya et al. [60], studied and simulated Min-minll and Min-min heuristic as the

benchmark of the scheduling problems in a dynamic grid computing environment.

However, based on the study, the Min-minll dynamic scheduling heuristic was used

in order to utilize task deadline and task assignment time to testify that it can

outperform Min-min makespan. In contrast, Shupeng Wang etal. [61], have proposed

a Survivability-Based scheduling algorithm for bag-of-tasks applications with

Deadline Constraints (SBDC), that maximizes the survivability while meeting the

deadline for delivering results. An algorithm which integrates the ideas of a classical

17

bin packing (Best Fit) and a mixed integer quadratic programming modelling

approach has been used by Cong Liu et al. [62]. This approach, which is known as

Residual Capacity Maximization Scheduling (RCMS), is highly scalable as it does not

need to know the global state of the grid. RCMS prioritizes tasks according to task

types as well as the deadline. Moreover, RCMS proposes a mixed integer quadratic

programming model that always maximizes the residual capacity of resources at each

step following a task-resource mapping.

In the research of Spooner et al. [63], the problem of grid workload management

has been resolved through the development of a multi-tiered scheduling architecture

(TITAN) that employs a performance prediction system (PACE) and task distribution

brokers to meet user-defined deadlines and improve resource usage efficiency. PACE

is used to obtain parallel application performance data prior to run-time allowing

resource requirements to be expected and deadlines considered.

In the work of Fang Dong et al. [64], a Grid tasks scheduling strategy based on

QoS priority grouping is proposed. In this algorithm, the deadline property of task,

acceptation rate of tasks and makespan of systems is comprehensively considered.

Moreover, scheduling is based on task priority grouping and deadline.

Hiroyuki et al. [65], proposed a deadline-scheduling scheme for wavelength

assignment in grid networks that can meet QoS (Quality of Service). Moreover,

Hiroyuki et al. [65] came up with a combination of two ideas: Deadline-first

reservation and Greedy tentative reservation; in order to improve the utilization of

current time slots at longer wavelengths after successfully reserving the slots. The

proposed approach assigns time slots to a call over an extended period according to its

deadline. This makes more time slots available for short deadline calls. If no short

deadline calls are received, the time-slots reserved for them are wasted.

The work of Vasumathi et al. [66], shows that combining redundant scheduling

with deadline-based scheduling could lead to a fundamental tradeoff between

throughput and fairness. Vasumathi et al. [66] came up with a new scheduling

algorithm called Limited Resource Earliest Deadline (LRED) that couples redundant

scheduling with deadline driven scheduling in a flexible way by using a simple

tunable parameter to exploit this tradeoff.

In another related work Saurabh et al. [67], presented MaxCTT and MinCTT.

They also presented a cost metric to manage the trade-off between the execution cost

and time. In their work, various user requirements were considered during scheduling

simultaneously in terms of cost and execution time. Since concurrent users may

generate conflicting schedules to access the same resources which are cheaper and
faster.

Dalibor et al. [68], applied a technique known as Earliest Gap- Earliest Deadline

First (EG-EDF). This technique fills earlier existing gaps in the schedule with newly

arriving jobs. If no gap for a coming job is available EG-EDF rule uses Earliest

Deadline First (EDF) strategy for including new job into the existing schedule.

Scheduling choices are taken to meet the Quality of Service (QoS) requested by the

submitted jobs, and to optimize the usage of hardware resources.

Kamalam et al. [69] applied a Divisible Load Theory (DLT) and Least Cost

Method (LCM) to model the grid scheduling problem involving multiple worker

nodes in each cluster. They came up with a hybrid job scheduling algorithm that

minimizes the overall processing cost of the job and divisible job scheduling

algorithm that minimizes the overall processing time of the job in a grid system that

may consist of heterogeneous hosts.

Hongwei et al. [70], proposed a algorithm that uses a DAG (Directed Acyclic

Graph) to locate the critical path, acquire the deadline of each task to compute their

PRI (priority). The algorithm takes the below problems into consideration: the request

of the user, the type of resources and re-scheduling of failed tasks. To meet users'

requirements, Hongwei etal. [70] introduced thenotion of users' urgent degree.

Ba Wei et al. [17], used the linguistic fuzzy sets to describe the period and the

slack time of tasks that have uncertain characters. The threshold coefficient gotten by

fuzzy rules assigns the threshold of the running task dynamically. Tasks are ordered

by their slack time as in Least Slack First (LSF), however, some differences are made

19

that the threshold of the running task is got and it is considered as its slack time until

the task is released or finished. Therefore, two characters are considered to judge the

priority of a task, by its slack time and its threshold.

Bo Li et al. [71], presents a mechanism that can comply with the requirements of

current advance reservation (AR) job, but at the cost of inflexibility of accepting and

scheduling of other AR and non-AR jobs. In order to reduce the impact of a current

reservation on otherjobs, current ARjob canstart within a time span, ranging from its

required start time with an additional slack time, instead of the rigid start time. The

difference between its ready time with its latest start time can be defined as the job's

slack time to begin to run.

In the work of Hwang et al [18], maximum occupation time (MOT) was defined

and it limits the maximum time that one job (or a task) can have occupying one for

processor. The MOT is determined by the timing constraints of a given task set. The

aim of Least Slack Time Rate first (LSTR) is to ensure that no idle state is allowed in

any processor. All tasks have the deadline and execution time as a timing constraint.

The scheduler determines the task at the scheduled time to be executed on a

processor. Tasks are executed on the processor(s) and then both the remaining

execution time and the remaining deadline of these tasks decrease.

The work of Behera et al. [72], presented an improved Least-Laxity-First

Algorithm (ILLF). Using a LLF scheduling algorithm, if two or more tasks have same

laxities, laxity-tie occurs. Once laxity-tie occurs, context switches takes place at every

scheduling point until the tie breaks. The laxity-tie in the LLF scheduling algorithm

results in poorer system performance due to the frequent context switches. The

improved Least Laxity First Scheduling Algorithm with intelligence time slice finds

the time quantum by taking the greatest common divisor (GCD) of all the execution

time of the processes. After every unit of time slice the laxity of each remaining

process (present in the ready queue) is calculated. The loop continues until all the

processes are being executed by the CPU.

In Golnar et al. [73], a distributed scheduler of workflows with deadlines in a P2P

computing platform has been presented. It is a completelydecentralizedmodel, which

20

has been a validated using simulation that has shown good response times and low

overhead in a system with one million nodes. Big workflows with highly concurrent

tasks can be easily scheduled with low overhead and a good speedup.

Javier et al. [74], presented a distributed algorithm referred to as Resource-Aware

Dynamic Incremental Scheduling (RADIS) strategy. The strategies were purposely

designed to handle large volumes of computationally intensive arbitrarily divisible

loads submitted for processing at cluster or grid systems involving multiple sources

and sinks (processing nodes). In the same vein, Sivakumar et al. [75], considered a

real-life scenario, wherein the buffer space (memory) available at the sinks (required

for holding and processing the loads) varies over time, and the loads have deadlines

and propose efficient "pull-based" scheduling strategies with an admission control

policy that ensures that the admitted loads are processed, satisfying their deadline

requirements.

Nikolaos et al. [76], proposed a new algorithm for fair scheduling. This algorithm

uses a Max-Min fair sharing approach for providing fair access to users. When there

is no shortage of resources, it assigns to each task enough computational power for it

to finish within its deadline. When there is congestion, the main idea is to fairly

reduce the CPU rates assigned to the tasks so that the share of resources that each user

gets is proportional to the user's weight. The weight of a user may be defined as the

user's contribution to the infrastructure or the price he is willing to pay for services or

any other socioeconomic consideration.

In the work of Jia Yu et al. [77], a cost-based workflow scheduling algorithm was

presented in order to minimize the cost of execution while reaching the deadline. A

Markov Decision Process approach was utilized in order to schedule in a stepwise

manner workflow task execution, such that it could possibly find the optimal path

among services to execute tasks as well as transfer input or output data. However, to

be more efficient, some additional priorities need to be considered, like maximum

turnaround time and time delayed when it comes to the rescheduling of unexecuted

job.

21

Sulistio et al. [78] built a resource set of jobs which minimize cost or time,

depending upon the user's preferencesas well as deadline and budget constraints. The

algorithm minimizes either the overall cost or the time of execution depending on the

user's preference, subject to two user deadline constraints: the deadline by which the

processing must be completed and the overall budget for performing the computation.

In doing so, it is guided by factors such as cost and speed of accessing, transferring

and processing data. Each job requires one or more datasets as input. Each dataset is

available through one or more data hosts. Moreover, the scheduler gathers

information about the available compute resources and about the datasets and data

hosts. It then makes a decision on where to submit the job. The job is dispatched to

the selected remote computer resource where it requests for the datasets from the

replica locations selected by the scheduler. After the job has finished processing, the

results are sent back to the scheduler host or other storage resource.

The work done by Daphne et al. [79] aimed at dealing with the fairness problem

by dropping the service time frame error. Their technique assigns to each task

sufficient computational power to complete it within its deadline. The resources that

each user gets are proportional to the user's weight or perhaps a shared. Here,

scheduling of tasks is based on an error, called the service time error, that promotes

fairness among users. However, it will be more optimized if priority is given based on

the minimum time of execution ofjob, not on individual demand.

2.4 Summary

This chapter presented the literature review based on previous works relating to

scheduling in grid environment. The importance of the review is underscored by its

provision of overall points of interest and detailed explanation on particular topics

relating to the planned research. It pinpoints the issues pivotal to grid scheduling that

must be integrated within the applicable models. Though the review has shown that

lots of research on grid scheduling has been reported, it is clear that much of these

reported algorithms were developed with a motivation different from that in this

22

thesis. This motivation therefore formed the basis of the research reported in this

thesis.

23

CHAPTER 3

METHODOLOGY

3.1 Chapter Overview

This chapter discusses the methodology employed to conduct the research. It vividly

describes and explains how the developed algorithms work. The Chapter begins with

the phases involved in the research, followed by grid scheduling modeling in section

3.2 and ends with simulated algorithms in section 3.3.

3.2 Research overview and Process Flow

Figure 3.1 gives the phases involved in the research.

State-of-the-art review

3£
Identifying key features of the problems

Grid scheduling modeling

I
Designing and development of scheduling algorithms

Simulation testing of developed algorithms

Conclusion

Figure 3.1: Research overview and process flow.

The process flows for the execution of the research are described below.

24

A. State-of-the-Art Review: Several factors are considered related to scheduling. For

example, scheduling policies, job workflow, job priority, job queue management

policies, time and space constraints and deadlines. Therefore, as a first step in

achieving our research objectives, we carried out the literature review and we

highlighted the current mechanisms and practices for grid scheduling and

resource allocation.

B. Identification of Key Features of the Problem: First, the key characteristics of

grid scheduling and deadlines were identified. This was followed by

identification of pilot scenarios to assess the impact of jobs deadline on the

performance of different grid scheduling strategies.

C. Grid Scheduling Modeling: The grid system was thereafter modelled as a

network of geographically distributed computing sites, where each site itself

consists of a number ofjobs. In focus were on the dynamics of the model that are

relevant to scheduling and robustness. The research assumed that a large number

of users are participating in the grid environment and each one is associated with

a particular site. We supposed that each user submits a job and that each job

would be executed by different nodes.

D. Designing and Development of Scheduling Algorithms: next was the

development and design of some grid scheduling algorithms by using intelligent

optimization techniques including constraint programming.

E. Simulation Testing of Developed Algorithms: The proposed solution was

integrated in an experimental grid. The performance of the grid scheduling

algorithms on the basis of defined objectives was evaluated.

F. Conclusion: Here, conclusion of research findings with some future

recommendations was drawn in agreement with the objectives of the research.

3.3 Grid Scheduling Modeling

A suitable scheduling model comprises features shown in Figure 3.2.

25

-L=ii;t=it:u" ^*i:cni=nc*: .v ruse

//
^

^ A

"^
^;-

ec=ff eiff=;:c ec=ffl; • I" _S"F

lS"f;:c ls-f=l.-' '-:"c= _5"-fff
-.~FFc::cc-;L:-ci:;r__t

Figure 3.2: Scheduling modeling

U f C 11^ _t_L3 t3

3.3.1 Benchmark Traces files

The traces files used were downloaded from grid workloads archive which offer

(anonymized) workload traces from grid infrastructure to scientists and also to

professionals alike [80]. This analysis was carried out using all trace files provided by

grid workload archive which are as follows:

i. DAS-2 traces: was provided by the advanced school for computing and

imaging, the owner of the DAS-2 system [81].

ii. Grid'5000 traces: was provided by the Grid'5000 team (Dr. Franck

Cappello and Dr. Olivier Richard), the owners of the Grid'5000 system,

and by the OAR team [82].

NorduGrid traces: was provided by the nordugrid team (Dr. Balasz

Konya), the owners of the Nordugrid system [83].

AuverGrid traces: was provided by the auvergrid team (Dr. Emmanuel

Medernach), the owners of the Auvergrid system [84].

SHARCNET traces: was provided by John Morton and Clayton Chrusch,

who also helped with background information and interpretation in high

performance computing [85].

vi. LCG traces: was provided by the e-Science group of HEP, at Imperial

26

m.

IV.

V.

College London, and made publicly available by Hui Li through the

parallel workloads archive [86].

Moreover, the entire trace file contains only two parameters- arrival time and burst

time. As for deadline parameter, we had to pre-process all traces files and generate

deadline parameter using Monte Carlo distribution methods [87]. Monte Carlo

methods are a set ofcomputational algorithms that rely on repeated random sampling

to compute results. Usually, these methods are mostly used for calculation by a

computer and tend to be used when it is infeasible to compute an exact result with a

deterministic algorithm.

3.3.2 Resource Allocation

The master-slave architecture was used for testing the developed scheduling

algorithms, as shown in Figure 3.3. This involves the use of an actual cluster. The

master takes processes as input and distributes the processes on the cluster processors

using a simple allocation strategy for parallel computation. In this case, all workload

traces are used as input. The total number of jobs is divided by the number of

processors, and those numbers of jobs are distributed to each slave where the

scheduling algorithms are executed for computation.

1 Master s
J m

. „t
?%

Slaves \ I Slaves «* J Slaves
i

i

Figure 3.3: Master/Slave Architecture

Each slave receives job, described by its process ID, arrival time, burst time and

deadline.

27

3.3.3 Scheduling Algorithms

This is defining the way in which tasks are assigned to resources. The primary

requirement associated with the scheduling policy could possibly be the practical

applicability.

In this research, fourteen (14) different versions of scheduling algorithms were

simulated in a real computational grid environment. These include:

• Earliest Deadline First Based Round Robin(EDFRR)

• Earliest Deadline First Based Round Robin using greatest common divisor of

overall burst time rate as time quantum (EDFRRGCD)

• Earliest Deadline First Based Round Robin using lowest common multiple of

overall burst time rate as time quantum (EDFRRLCM)

• Least Slack Time Based Round Robin (LSTRR)

• Least Slack Time Based Round Robin using greatest common divisor of

overall burst time rate as time quantum (LSTRRGCD)

• Least Slack Time Based Round Robin using lowest common multiple of

overall burst time as time quantum (LSTRRLCM)

• Least Slack Time Rate First Based Round Robin (LSTRFRR)

Least Slack Time Rate First Based Round Robin using greatest common

divisor of overall burst time rate as time quantum(LSTRFRRGCD)

• Least Slack Time Rate First Based Round Robin using lowest common

multiple of overall burst time as time quantum(STRFRRLCM)

• First Come First Serve (FCFS), Earliest Deadline First (EDF), Least Slack

Time Rate First (LSTRF), Least Slack Time (LST) and Round Robin (RR)

schedulingalgorithms were used as baseline approaches (including the hybrids

of these aforementioned scheduling algorithms).

28

3.3.4 Performance Metrics

For the purpose of measuring the performances of the scheduling algorithms the

following metrics were used:

i. Average turnaround time: Referred to the average time taken between

the submission of job for execution and the return of the completed

result,

ii. Average waiting time: Referred to the average waiting time of job

before its final execution,

iii. Maximum tardiness: Referred to the maximum time delay between

turnaround time and deadline time.

3.3.5 Algorithm to Compute Find Parameters

A simple algorithm was used to compute communication cost between master and

slave, and to compute the standard deviation of the computed aforementioned

parameters.

3.4 Scheduling Algorithms

The description of the proposed scheduling algorithms used in the research (FCFS,

RR, EDF, EDFRR, EDFRRGCD, EDFRRLCM, LST, LSTRR, LSTRRGCD,

LSTRRLCM, LSTRF, LSTRFRR, LSTRFRRGCD and LSTRFRRLCM) is presented.

Before describing the actual algorithms few terminologies used in the algorithms

which require some explanations are:

Assume J,: ith Job;

n: number ofjobs;

nsi: number of slaves ofjob i;

x;: number ofjobs per slave ofjob i;

TQj: time quantum ofjob i;

29

Tj: arrival time ofjob i;

dt: deadline ofjob i;

Ed{. minimum deadline ofjob i;

a{. burst time ofjob i;

Eat: minimum burst time ofjob i;

Cj\ Job completion time ofjob i;

Dt: absolute deadline time ofjob i;

Tre{. remaining execution time ofjob i;

TrdC. remaining absolute deadline time ofjob i;

Prf. priority rate ofjob i;

LCM(ai toO-r): lowest common multiple of overall burst time ofjob i;

GCD(ai toO-n)'- greatest common divisor of overall burst time ofjob i;

Ttrmi- mater turnaround time ofjob i;

Ttrsj- slave turnaround time ofjob i;

TwTMt' master waiting time ofjob i;

Twrsi- slave waiting time ofjob i;

RgTi- starting execution time ofjob i;

Sets'- ending execution time ofjob i;

Stei' slave total execution time ofjob i;

Mtei- master total execution time ofjob i;

Ten'- total communication time ofjob i;

Ttdj- time delay ofjob i;

TtrdC- tardiness ofjob i;

Tmox_trd'- maximum tardiness;

Std_Jrri- standard deviation turnaround time ofjob i;

30

Std_TWTi: standard deviation waiting time of job i;

Std_TTRDh standard deviation tardiness timeof job i;

S-list: Sorted list;

I. Number of jobs per slave x;: refers to the number of jobs per each slave for

execution.

Xi =n/nsi (j)

II. Time delay TTDi: Referred to the time difference between burst time and

deadline time.

Time delay, Ttdi.- dt- at (2)

III. Minimum deadline time Edr. sortingjobs based on minimum deadline first.

Edi- (3)

IV. Minimum burst time Ea{. sorting jobs based on minimum burst time first.

Eat (4)

V. Time quantum TQt: referred to a fixed time for each job to be executed in

cyclic manner meaning when a process has completed its task, i.e., before the

expiry of the time quantum, it terminates and is deleted from the system. The

nextprocess is thendispatched from the head of the ready queue.

TQ, (5)

However, taking time quantum as least common multiple (LCM) is by

computing the overall burst time rate of jobs, i.e., by grouping the burst time

into some priority rate.

Time quantum, take TQ,> =LCM (ai t0 an) (6)

Also, taking time quantum as greatest common divisor (GCD) is bycomputing

the overall burst time rate of jobs, i.e., by grouping the burst time into some

priority rate.

Time quantum, take TQt = GCD (a; too.„) (7)

VI. Absolute deadline: referred to the time within which the execution of a task

should be completed.

Absolute deadline Dt= (dt+ rt) (8)

31

VII. Remaining execution time: referred to the time remain of a job in the process

of execution.

Remaining execution time Trei= (ct-i-r) (9)

VIII. Remaining absolute deadlinereferred to the remaining deadline time of job in

the process of execution.

Remaining absolute deadline Trdj= (dt + r) - rt (10)

IX. Priority rate: it determines the priority of which job to be executed first in d

ready queue.

T
Priorityrate Prt= —^— (11)

TRD,-r,

X. Total communication time Ten- refers to total execution time taken for each

master or slaves to finish its execution process:

Master: MTEi = RETi-SEn (12)

Slave: Sm = RETi-SETi (13)

Therefore:. Ten = Mtej-Ste, (14)

XL Turnaround time: Referred to the total time taken between the submission of

job for execution and the return of the completed result.

Slave turnaround time Ttrsi = Q- Tj (15)

Master turnaround time TTrmi = Ttrsj+ Ten (16)

Average turnaround time,

n

TAvgm=M dV
n

Standard deviation,

\2C,J T £ <Xl -Avg-TTlsf
sld~Ti—m— a8>

XII. Waiting time: Referred to the total waiting time of job before its final

execution.

Slave waiting time TWtsi = Ttrsi - «/ (19)

32

Master waiting time TWtm\ = TWTSi+TcTi (20)

Average waiting time,

Ir,WMi

*Avg WT ~ (J
n

Standard deviation,

S«_T„p*-A'*-r™)' (22)
XIII. Maximum tardiness: Referred to the maximum time delay between turnaround

time and deadline time.

Slave tardiness, Ttrdsi = d, - Trust (23)

Master tardiness TTRDMi = TTRDMi+ TCtmi (24)

Maximum Tardiness TMox_trd = Max (TTRDM1, TTrdm2, Ttrdmh) (25)

Standard deviation,

Std-TTRDy\ —" (26)

The master-slave architecture was used in this research for testing the developed

scheduling algorithms, as shown in Fig. 1. This involves the use of an actual cluster.

The master takes processes as the input and distributes the processes on the cluster

processors using a simple allocation strategy for parallel computation. Real workload

traces, which comprise DAS-2 [81], Grid5000 [82], NorduGrid [83], AuverGrid [84],

SHARCNET [85] and LCG [86], are used as input. The total number of jobs is

divided by the number of processors, and those numbers of jobs are distributed to

each slave, where the scheduling algorithms are executed for computation.

General framework of all the algorithms is as follows:

Begin

Master:

Begin master

33

Input: pool ofjobs with processID, arrival time, burst time and deadline

Compute number ofjobs per processors (1)

Distribute numberof jobs to slaves for execution of algorithms (1)

Execute scheduling algorithms on slaves (A/B/C/D/E/F/G/H/I/J/K/L/M/N)

Master:

Receive the value of Turnaround Time, value of Waiting Time, value

of Tardiness and value of Slave Total Execution Time from each of the

slaves

Compute execution time (12)

Using (8) Compute total communication time between master and

slaves

Compute the value of Turnaround Time using (16)

Compute the value of Waiting Time using (20)

Compute the value of Tardiness using (24)

Compute the value of Average Turnaround Time using (17)

Compute the value of Average Waiting Time using (21)

Compute the value of Average Tardiness using (25)

Compute the value of Standard Deviation of Turnaround Time using

(18)

Compute the value of Standard Deviation of Waiting Time using (22)

Compute the value of Standard Deviation of Tardiness using (26)

End master

End

However, for each and every algorithm execution master computes total

turnaround time, total waiting time and total tardiness and then finally the average

turnaround time, average waiting time and maximum tardiness value, to identify the

maximum time delay ofjobs execution.

A. First-Come-First-Served Scheduling Algorithm (FCFS): In this procedure, each

34

slave will receive job, described by its process ID, arrival time, burst time and

deadline. Dispatching processes are based on their arrival time on the ready

queue. Once a process has a processor, it will keep running until it finished

executing. Once executed, it will be terminated and then the next process will

be dispatched from the ready queue. This process will continue until the pool

is empty. The value of turnaround time, waiting time and tardiness for each

job are computed and returned to master.

The compact algorithm is presented below:

Algorithm FCFS:

Begin

Slave:

Begin slave

For all jobs in the pool

Arrange the job list in ascending order based on FCFS (S-list)

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value ofTardiness and value of Slave Total Execution Time

to master

Endwhile

End slave

B. Round Robin (RR) Scheduling Algorithm: Each slave will receive job,

described by its process ID, arrival time, burst time and deadline. The ready

queue is preserved as a first come first served (FCFS) queue. Dispatching

processes is from the head of the ready queue for execution by the processor.

The pre-emption of a process for execution is based on system defined

variable, named as time quantum. However, as soon as a process execution is

35

completed, before its time quantum expired, it will be terminated as well as

deleted from the system. Therefore, next process will be dispatched from the

ready queue. This process will continue until the pool is empty. The value of

turnaround time, waiting time and tardiness for each job are computed and

return to master.

The compact algorithm is presented below:

Algorithm RR:

Begin

Slave:

Begin slave

For all jobs in the pool

Time quantum TQ (5)

Arrange the job list in ascending order based on FCFS (S-list)

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

if(a,->0)

Begin

«/ -TQ

Endif

Endwhile

End slave

C. Earliest Deadline First Scheduling Algorithm (EDF): Here, each slave will

receive job, described by its process ID, arrival time, burst time and deadline.

Processes are dispatched based on minimum deadline on the ready queue.

36

When a process has been completed, its task it will be terminated and then the

next job with a minimum deadline will be dispatched from the ready queue in a

non pre-emptive way. If two tasks have the same absolute deadlines, EDF

chooses based on FCFS in order to break the tie. When a process has

completed its task, it terminates and is deleted from the system. The next

process is then dispatched from the head of the ready queue. This process will

continue until the pool is empty. The value of turnaround time, waiting time

and tardiness for each job are computed and return to master.

The compact algorithm is presented below:

Algorithm EDF:

Begin

Slave:

Begin slave

For all jobs in the pool

Arrange the job list in ascending order based on the minimum deadline

time as mentioned in criteria III (S-list)

if (Edi = Edj)

Arrange Jh Jjbased on FCFS

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

Endwhile

End slave

D. Earliest Deadline First based Round Robin Scheduling Algorithm (EDFRR): In

this procedure, each slave will receive job, described by its process ID, arrival

37

time, burst time and deadline. Processes are dispatched based on minimum

deadline on the ready queue. The pre-emption of a process for execution is

based on system defined variable, named as time quantum. However, as soon

as a process execution is completed, before its time quantum expired, it will

be terminated as well as deleted from the system and then the next job with a

minimum deadline will be dispatched from the ready queue. However, if two

tasks have the same absolute deadlines, EDF chooses based on FCFS in order

to break the tie. This process will continue until the pool is empty. The value

of turnaround time, waiting time and tardiness for each job are computed and

return to master.

The compact algorithm is presented below:

Algorithm EDFRR:

Begin

Slave:

Begin slave

Time quantum TQ (5)

For all jobs in the pool

Arrange the job list in ascending order based on the minimum deadline

time as mentioned in criteria III (S-list)

if (Edj = EdJ)

Arrange J,, Jj based on FCFS

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

if(ai>0)

38

Begin

a,-TQ

Endif

Endwhile

End slave

Earliest Deadline First based Round Robin Scheduling Algorithm

(EDFRRGCD): Each slave will receive job, described by its process ID, arrival

time, burst time and deadline. However, it assigns time quantum, by computing

the GCD of all bust time rate, then sorting job based on minimum deadline on

the ready queue. Processes are dispatched based on minimum deadline on the

ready queue. The pre-emption of a process for execution is based on system

defined variable, named as time quantum. However, as soon as a process

execution is completed, before its time quantum expired, it will be terminated

as well as deleted from the system and then the next job with a minimum

deadline will be dispatched from the ready queue. However, if two tasks have

the same absolute deadlines, EDF chooses based on FCFS in order to break the

tie. This process will continue until the pool is empty. The value of turnaround

time, waiting time and tardiness for each job are computed and return to

master.

The compact algorithm is presented below:

Algorithm EDFRRGCD:

Begin

Slave:

Begin slave

Compute Time quantum TQ (7)

For all jobs in the pool

Arrange the job list in ascending order based on the minimum deadline

time as mentioned in criteria III (S-list)

if (Edj = EdJ)

Arrange Jh Jj based on FCFS

while (S-list is not empty)

Begin

39

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

if(ai>0)

Begin

at-TQ

Compute Time quantum TQ (7)

Endif

Endwhile

End slave

F. Earliest Deadline First based Round Robin Scheduling Algorithm

(EDFRRLCM): Here, each slave will receive job, described by its process ID,

arrival time, burst time and deadline. However, it assigns time quantum, by

computing the LCM of all bust time rate, then sorting job based on minimum

deadline on the ready queue. Processes are dispatched based on minimum

deadline on the ready queue. The pre-emption of a process for execution is

based on system defined variable, named as time quantum. However, as soon

as a process execution is completed, before its time quantum expired, it will be

terminated as well as deleted from the system and then the next job with a

minimum deadline will be dispatched from the ready queue. However, if two

tasks have the same absolute deadlines, EDF chooses based on FCFS in order

to break the tie. This process will continue until the pool is empty. The value

of turnaround time, waiting time and tardiness for each job are computed and

return to master.

The compact algorithm is presented below:

Algorithm PDSA:

Begin

40

Slave:

Begin slave

Compute Time quantum TQ (6)

For all jobs in the pool

Arrange the job list in ascending order based on the minimum deadline

timeas mentioned in criteriaIII (S-list)

if (Ed, = Edj)

Arrange Jh Jjbased on FCFS

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of WaitingTime,

value ofTardiness and value of Slave Total Execution Time

to master

if((Xj>0)

Begin

a-i-TQ

Compute Time quantum TQ (6)

Endif

Endwhile

End slave

G. Least Slack Time Scheduling Algorithm (LST): Here, each slave will receive

job, described by its process ID, arrival time, burst time and deadline, then

compute the value of time delay for each job by sorting out the jobs on the basis

of minimum time delay in ascending order. Moreover, the algorithm selects the

jobs with minimum time delay for execution. If multiple jobs have same time

delay value then, it will break the tie by selecting a job from job set on the

basis of FCFS and then execute the job at CPU level for its given burst time (i.e.

41

Demand) in a non pre-emptive way. This process will continue until the pool is

empty. The value of turnaround time, waiting time and tardiness for each job

are computed and return to master.

The compact algorithm is presented below:

Algorithm LST:

Begin

Slave:

Begin slave

For all jobs in the pool

Compute the time delay of all processes using (2)

Arrange the job list in ascending order based on the minimum time delay

as mentioned in criteria II (S-list)

if (Trot = TTdj)

Arrange Jit Jj based on FCFS

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

Endwhile

End slave

H. Least Slack Time based Round Robin Scheduling Algorithm (LSTRR):

processes are executed in this algorithm with the closest deadline time delay in

the cyclic manner using a dynamic time quantum. The slaves take the input

from master, whereas each job is described by its process ID, arrival time, burst

time and deadline. In executing the algorithm, time quantum is given as a fixed

value, and then it computes the value of time delay for each job by sorting out

42

the jobs on the basis of minimum time delay in ascending order, then selecting

the jobs with minimum time delay in execution. If multiple jobs have same

time delay value then, it will break the tie by selecting a job from job set on the

basis of FCFS. Processes are dispatched based on minimum time delay on the

ready queue. The pre-emption of a process for execution is based on system

defined variable, named as time quantum. However, as soon as a process

execution is completed, before its time quantum expired, it will be terminated

as well as deleted from the system and then the next process is then dispatched

from the head of the ready queue. This process will continue until the pool is

empty. The value of turnaround time, waiting time and tardiness for each job

are computed and return to master.

The compact algorithm is presented below:

Algorithm LSTRR:

Begin

Slave:

Begin slave

Time quantum TQ (2)

For all jobs in the pool

Compute the time delay of all processes using (2)

Arrange the job list in ascending order based on the minimum time delay

as mentioned in criteria II (S-list)

if (Ttdi = Ttdj)

Arrange Jt, Jjbased on FCFS

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

43

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

if(cii>0)

Begin

at-TQ

Endif

Endwhile

End slave

I. Least Slack Time based Round Robin Scheduling Algorithm (LSTRRGCD):

This algorithm executes the process with the closest deadline time delay in the

cyclic manner using a dynamic time quantum. During execution, the slaves

take the input from master, whereas each job is described by its process ID,

arrival time, burst time and deadline. It assigns time quantum, by computing

the GCD of all bust time rate, and then compute the value of time delay for

each job by sorting out the jobs on the basis of time delay in ascending order,

then selecting the jobs with minimum time delay in execution. If multiple jobs

have same time delay value then, it will break the tie by selecting a job from

job set on the basis of FCFS. Processes are dispatched based on minimum time

delay on the ready queue. The pre-emption of a process for execution is based

on system defined variable, named as time quantum. However, as soon as a

process execution is completed, before its time quantum expired, it will be

terminated as well as deleted from the system and then the next process is then

dispatched from the head of the ready queue. This process will continue until

the pool is empty. The value of turnaround time, waiting time and tardiness

for each job are computed and return to master.

The compact algorithm is presented below:

Algorithm LSTRRGCD:

Begin

Slave:

Begin slave

Compute time quantum TQ (7)

44

For all jobs in the pool

Compute the time delay of all processes using (2)

Arrange the job list in ascending order based on the minimum time delay

as mentioned in criteria II (S-list)

if (Ttdi = Ttdj)

Arrange Jit Jjbased on FCFS

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value ofTardiness and value of Slave Total Execution Time

to master

if(a;>0)

Begin

a,-TQ

Compute time quantum TQ (7)

Endif

Endwhile

End slave

J. Least Slack Time based Round Robin Scheduling Algorithm (LSTRRLCM): In

this process, the slaves take the input from master, where as each job is

described by its process ID, arrival time, burst time and deadline. It assigns

time quantum, by computing LCM of all bust rate time, and then compute the

value of time delay for each job by sorting out the jobs on the basis of time

delay in ascending order, then selecting the jobs with minimum time delay in

execution. If multiple jobs have same time delay value then, it will break the

tie by selecting a job from job set on the basis of FCFS. Processes are

dispatched based on minimum time delay on the ready queue. The pre-emption

45

of a process for execution is based on system defined variable, named as time

quantum. However, as soon as a process execution is completed, before its

time quantum expired, it will be terminated as well as deleted from the system

and then the next process is then dispatched from the head of the ready queue.

The value of turnaround time, waiting time and tardiness for each job are

computed and return to master.

The compact algorithm is presented below:

Algorithm LSTRRLCM:

Begin

Slave:

Begin slave

Compute time quantum TQ (6)

For all jobs in the pool

Compute the time delay of all processes using (2)

Arrange the job list in ascending order based on criteria II (S-list)

if (Ttdj = Tjdj)

Arrange Jt, J, based on FCFS

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value ofTardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

if(<Xi>0)

Begin

ai-TQ

Compute time quantum TQ (6)

Endif

46

Endwhile

End slave

K. Least Slack Time Rate First Scheduling Algorithm (LSTRF): This algorithm

determines the priority rate of job execution by computing the value of the slack

time priority rate value of which job to be executed first in the ready queue.

However, the slaves take the input from master, whereas each job is described

by its process ID, arrival time, burst time and deadline, then compute the value

absolute deadline, then the value of remaining execution time, the value

remaining absolute deadline and then compute the value of the priority rate for

each job by sorting out the jobs on the basis of priority rate in ascending order,

then selectingthe jobs with the minimum priority rate for execution. If multiple

jobs have same priority rate value then, it will break the tie by selecting a job

from job set on the basis of FCFS. It then executes thejob at CPU level for its

given burst time (i.e., Demand) in a non pre-emptive way. This process will

continue until the pool is empty. The value of turnaround time, waiting time

and tardiness for each job are computed and return to master.

The compact algorithm is presented below:

Algorithm LSTRF:

Begin

Slave:

Begin slave

For all jobs in the pool

Compute the value absolute deadline (8)

Computethe value of remaining execution time (9)

Computethe value remaining absolute deadline (10)

Compute the value of the priority rate (11)

Arrange the job list in ascending order based on minimum

priorityrate as mentioned in criteria IX (S-list)

if (Pn = Prj)

ArrangeJt, Jjbasedon FCFS

while (S-list is not empty)

Begin

47

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

Endwhile

End slave

L. Least Slack Time Rate First with Round Robin Scheduling Algorithm

(LSTRRR): The slaves take the input from master, whereas each job is

described by its process ID, arrival time, burst time and deadline. However, time

quantum is given as a fixed value, and then computes the value absolute

deadline, then the value of remaining execution time, the value remaining

absolute deadline and then compute the value of the priority rate for each job by

sorting out the jobs on the basis of priority rate in ascending order, then

selecting the jobs with the minimum priority rate for execution. If multiple jobs

have same priority rate value then, it will break the tie by selecting a job from

job set on the basis of FCFS. Processes are dispatched based on minimum

priority rate on the ready queue. The pre-emption of a process for execution is

based on system defined variable, named as time quantum. However, as soon

as a process execution is completed, before its time quantum expired, it will be

terminated as well as deleted from the system and then the next process is then

dispatched from the head of the ready queue. This process will continue until

the pool is empty. The value of turnaround time, waiting time and tardiness

for each job are computed and return to master.

The compact algorithm is presented below:

Algorithm LSTRFRR:

Begin

Slave:

Begin slave

48

Time quantum TQ (2)

For all jobs in the pool

Compute the value absolute deadline (8)

Computethe value of remaining execution time (9)

Computethe value remaining absolute deadline (10)

Compute the value of the priority rate (11)

Arrange the job list in ascending order based on minimum

priority rate as mentioned in criteria IX (S-list)

if (Pn = prj)

Arrange Jh Jj based on FCFS

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value ofTardiness and value of Slave Total Execution Time

to master

if(Oi>0)

Begin

at-TQ

Endif

Endwhile

End slave

M. Least Slack Time Rate First based Round Robin Scheduling Algorithm

(LSTRFRRGCD): This is similar to the previous algorithm; the slaves take the

input from master, where as each job is described by its process ID, arrival time,

burst time and deadline. It assigns time quantum, by computing the GCD of all

bust time, then computethe value absolute deadline, then the value of remaining

execution time, the value remaining absolute deadline and then compute the

49

value of the priority rate for each job by sorting out the jobs on the basis of

priority rate in ascending order, then selecting the jobs with the minimum

priority rate for execution. If multiple jobs have same priority rate value then,

it will break the tie by selecting a job from job set on the basis of FCFS.

Processes are dispatched based on minimum priority rate on the ready queue.

The pre-emption of a process for execution is based on system defined

variable, named as time quantum. However, as soon as a process execution is

completed, before its time quantum expired, it will be terminated as well as

deleted from the system and then the next process is then dispatched from the

head of the ready queue. This process will continue until the pool is empty.

The value of turnaround time, waiting time and tardiness for each job are

computed and return to master.

The compact algorithm is presented below:

Algorithm LSTRFRRGCD:

Begin

Slave:

Begin slave

Compute time quantum TQ (7)

For all jobs in the pool

Compute the value absolute deadline (8)

Compute the value of remaining execution time (9)

Compute the value remaining absolute deadline (10)

Compute the value of the priority rate (11)

Arrange the job list in ascending order based on minimum

priority rate as mentioned in criteria IX (S-list)

if (Pr, = Prj)

Arrange Jit Jjbased on FCFS

while (S-list is not empty)

Begin

Execute the job at CPU levelbased on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Timeusing (19)

50

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

if(<Xi>0)

Begin

at-TQ

Compute time quantum TQ (7)

Endif

Endwhile

End slave

N. Least Slack Time Rate First with Round Robin Scheduling Algorithm

(LSTRFRRLCM): Similarly, the slaves take the input from master, where as

each job is described by its processID, arrival time, burst time and deadline. It

assigns time quantum, by computing the LCM of all bust time, then compute

the value absolute deadline, then the value of remaining execution time, the

value remaining absolute deadline and then compute the value of the priority

rate for each job by sorting out the jobs on the basis of priority rate in ascending

order, then selecting the jobs with the minimum priority rate for execution. If

multiple jobs have same priority rate value then, it will break the tie by

selecting a job from job set on the basis of FCFS. Processes are dispatched

based on minimum priority rate on the ready queue. The preemption of a

process for execution is based on system defined variable, named as time

quantum. However, as soon as a process execution is completed, before its

time quantum expired, it will be terminated as well as deleted from the system

and then the next process is then dispatched from the head of the ready queue.

This process will continue until the pool is empty. The value of turnaround

time, waiting time and tardiness for each job are computed and return to

master.

The compact algorithm is presented below:

Algorithm LSTRFRRLCM:

51

Begin

Slave:

Begin slave

Compute time quantum TQ (6)

For all jobs in the pool

Compute the value absolute deadline (8)

Compute the value of remaining execution time (9)

Compute the value remaining absolute deadline (10)

Compute the value of the priority rate (11)

Arrange the job list in ascending order based on minimum

priority rate as mentioned in criteria IX (S-list)

if (i>r,-= />/>•)

Arrange Jt, Jj based on FCFS

while (S-list is not empty)

Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

if(ai>0)

Begin

a,-TQ

Compute time quantum TQ (6)

Endif

Endwhile

End slave

52

3.5 Experimental Procedures

The procedures adopted in evaluating the algorithms (including their hybrids) which

were used in this research are presented as follows:

3.5.1 Experimental Setup

Proper resources have been selected in the first step and experiments were carried out

using the facilities of high performance computing centre (HPCC) at Universiti

Teknologi PETRONAS. This involves the use of an actual cluster; the master takes

process as the input and distributes the processes on the cluster processors using a

simple allocation strategy for parallel computation. We incorporated scalability test

of scheduling algorithms under an increasing real workload. All experiments were

performed by varying the number of processors from 32, 64 and 128, showing the

demands of the user's jobs, each with different characteristics.

All algorithms were developed using Java programming language and MPJ,

which is a free Java message passing library that enables application designers to

create and execute parallel programs for multi-core processors.

3.5.2 Parameter Settings

Prior to the primary experimentation to determine the performance of the scheduling

algorithms with respect to benchmarks, preliminary experiments were conducted to

traces files, in order to setup the values of deadline parameters. These were initially

lacking in the entire traces files. All traces files were and generated deadline

parameter pre-processed using Monte Carlo distribution methods [87]. Monte Carlo

methods are a set of computational algorithms that rely on repeated random sampling

to compute results. These methods are mostly used for calculations by a computer

and tend to be used when it is infeasible to compute an exact result with a

deterministic algorithm. Also the jobs with negative burst time are excluded from the

trace files.

53

3.5.3 Benchmark Description

A total of six (6) benchmarks traces files were used in subsequent section to perform

comparative analysis of the algorithms. These traces file were obtained from grid

workloads archive which provided anonymized workload traces from grid

environments to researchers and to practitioners alike [80]. However, we carried out

our analysis by using all traces files provided by grid workload archive which are as

follows:

i. DAS-2 traces: a wide-area distributed system consisting of 400 CPUs located

at five Dutch Universities. DAS-2 is a research test bed, with the workload

composed of a large variety of applications. DAS-2 was provided by the

advanced school for computing and imaging, the owner of the DAS-2 system

[81].

ii. Grid'5000 traces: Grid'5000 is an experimental grid platform composed of 9

sites geographically distributed in France. Each site comprises one or more

groupings, inside Grid'5000. It was made available from the Grid'5000 team

(Dr. Franck Cappello and Dr. Olivier Richard), the proprietors from the

Grid'5000 system, by the OAR team. The traces collected from GridSOOO

include programs in the regions of physics, biomed, math, chemistry, climate,

astronomy, language, existence, finance, etc. Additionally, the Grid5000 traces

include experimental programs for parallel and distributed systems research

[82].

iii. NorduGrid traces: NorduGrid is really a production grid for academic

scientists in Denmark, Estonia, Finland, Norway, Sweden, etc. Since 2002,

NorduGrid has been around continuous operation and development, and also,

since 2003 industrial, scientific or private organizations with curiosity about

grid computing happen to be asked to lead their compute energy towards the

NorduGrid as collaborators. It was made available by the NorduGrid team

(Dr. Balasz konya), the owners of the NorduGrid system. The traces collected

from NorduGrid include programs in the regions of CAS, chemistry,

graphics, biomed, and HEP [83].

iv. AuverGrid traces: AuverGrid is a production grid platform composed of 5

54

groupings situated geographically within the Auvergne region, France.

Groupings are comprised of dual 3GHz Pentium-IV Xeons nodes running

Scientific Linux, LPC means "Laboratoire p Physique Corpusculaire"

(Laboratory of Corpuscular Physics) of Universite Blaise-Pascal, Clermont-

Ferrand, France. The Auvergrid project is really a regional grid area of the

EGEE project (Enabling Grids for E-science in Europe). It's used mostly for

biomedical and-energy physics research. Auvergrid was provided by the

Auvergrid team (Dr. Emmanuel Medernach), the owners of the Auvergrid

system [84].

v. SHARCNET traces: SHARCNET is structured like a "cluster of clusters"

across south western, central and northern Ontario, made to satisfy the

computational needs of scientists inside a diverse quantity of research areas

and also to facilitate the introduction of leading-edge tools for top

performance computing. This trace consists of up to and including year's

price of accounting records in the SHARCNET groupings installed at a

number of schools in Ontario, Canada. SHARCNET was provided by John

Morton and Clayton Chrusch, who also helped with background information

and interpretation in high performance computing [85].

vi. LCG traces: This log consists of 11 times of activity from multiple nodes that

comprise the LCG (Large Hadron Collider Computing Grid). Customers

submit serial or parallel jobs to resource brokers. The resource brokers find

appropriate assets for undertaking the computation, and send systems for

execution around the different systems. LCG was provided by the e-Science

group of HEP, at Imperial College London, and made publicly available by

hui li through the parallel workloads archive [86].

All algorithms were developed using Java programming language and MPJ, which is

a free Java message passing library that enables application designers to create and

execute parallel programs for multi-core processors.

55

3.6 Summary

This chapter described the overall framework of the research methodology used. It

incorporated the actual plans which were adopted in order to satisfy the proposed

research objectives. In addition, this chapter served as the guidance towards the

comparison of various scheduling algorithms. The research comparison analyzes the

aforementioned simulated algorithms, the findings of which would be discussed in

greater the next chapter.

56

CHAPTER 4

RESULT AND DISCUSSION

4.1 Chapter Overview

This chapter discusses the results which were obtained from the experimentation

in a real computational grid environment. The results analysis was based on the

following performance metrics:

This chapter discusses the results which were obtained from the

experimentation in a real computational grid environment. The results analysis was

based on the following performance metrics:

• Average Turnaround Time

• Average Waiting Time

• Maximum Tardiness

Also the standard deviations of the above performance metrics are calculated.

4.2 Comparative Performance Analysis of Scheduling Algorithms

With parameter settings of benchmark traces files determined, the next phase

involved testing the algorithms on benchmark traces files. A total of six (6) traces

files with almost different processing demands (two (2) of the traces files are

comparatively heavier than the rest four (4)) were used to observe the performance of

the developed scheduling algorithms by varying the number of jobs and processors.

Therefore, there was need to incorporate scalability test of scheduling algorithms

under an increasing real workload, which led to the creation of ten (10) data sets

57

formed by using 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 98% of the traces

files workload, 100000, 200000, 300000, 400000, 500000, 600000, 700000, 800000,

900000 and 1000000 processes, respectively. Also, the number of processors were

varied by increasing it with 100%, respectively i.e., from 32 to 64 and 128

processors.

4.2.1 Das-2 Traces

The experiment was carried out using the entire workload of the traces file.

AvgTurnaroundTime
l.OOE+08

l.OOE-r-07

1.00E-F05 -

32 64

Nambsr of processors

- SB.

-EDF

-EDFRR

• EDFRRGCD

•EDFRStOJ

- LST

- LSTRS

-LSTRRGCD

- LSTRRLCM

- LSTRF

• LSTRFRR

• LSTRFRRGCD

• LSTRFRRLCM

Figure 4.1: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64

and 128 numbers of processors. Based on the observation of Figure 4.1, it is clear

that LSTRF, LST, RR, LSTRR, LSTRRGCD, LSTRRLCM, EDFRR, EDFRRGCD,

EDFRRLCM, LSTRFRR, LSTRFRRGCD, LSTRFRRLCM and FCFS are smooth

and steady from 32 to 64 and 128 processors. EDF showed a sharp fall when number

58

of processors varied from 32 to 64 and 128 processors. Results showed that LSTRF

and LST have the best performance while EDFRRLCM and FCFS showed the worst

performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithm's turnaround time for each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.1 showed the standard deviation of the

experiments whose results are depicted in Figure 4.1.

Table 4.1: Standard Deviation

Standard Dwation

FCFS P E[F EFR M2Z E=PJ J L5P L5"RR3CC URL*',' SK Liiiffl .iFFRT. H:KF.J

:; 3K ^ ki-u "if -ve-3 je-: :w »&f "M ^ :i-n.£-u i:E-r ^e-i7

(i rw n-»7 mm j.ie*' -«-i 'i-; zWjE-ii7 ;rE-n7 :E-: n-r7*7 itw cji-i7

a 11-ii iK H:M' rjlE-1 5f-; '!-„ 1:€-o7 s ,E-f TE-f 4ifE-.' 1SE-f ^E-l7 i E-U7 JEE-T

1.00EtOS

1.00E+07

l.OOE+05

1.00E405

Avg Waiting Time

•»>*..
1***>**,.

••*».

64 12S

Kttmber of processors

Figure 4.2: Average Waiting Time

-FCFS

-RR

-EDFRR

• EDFRRGCD

EDFRRLCM

-LST

-LSTRR

"LSTRRGCD

-LSTRRLCM

-LSTRF

•LSTRFRR

-LSTRFRRGCD

LSTRFRRLCM

It can be observed from Figure 4.2 that LSTRF, LST, RR, LSTRR, LSTRRGCD,

59

LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD,

LSTRFRRLCM and FCFS are smooth and steady from 32 to 64 and 128 processors.

EDF showed a sharp fall when number of processors varied from 32 to 64 and 128

processors. Results showed that LSTRF and LST have the best EDFRRLCM and

FCFS showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithm and turnaround time of each set of experiments were computed based on

32, 64 and 128 processors. Table 4.2, showed the standard deviation of Figure 4.2

results.

Table 4.2: Standard Deviation

SiantWOwatf

f::; E: iTJ ElFfKI EC'BR/H LST j-fl [si3CD mii; ,;RF OT |sne=RRGCD lsifrrlci;

32 2CE-3 tE-'f •$£<: 1FE-G "aBl 2SE-: 2HEv jSE-

si he-;] :iE-f mm «'E-r 'E-n ije-: 2i£E-r ?<e-

125 IE-J YM m-V 5SiE-C; SJOE-f 124E-CB]&-?:&•

i7 :7:E-P 772E-P 2?i-r *J2E-$ '3E-C7 72«7

dFEtj*7 It7:-]' I77:-)7 7iH7 536E-C7 E29E-0?

IIIEv 2E-'i i?:-f :$f ISEv ^E-§7

IVlax Tardiness

FCFS

__RR

EDF

— —EDFRR

S

J 1.15E+09
' 1

'»Ysv« -EDFRRLCM

- - -LST

LSTRR

- - -LSTRRGCD

'LSTRRLCM

,...,„., LSTRFRR

—~—LSTRFRSSCD

1.10E+O9 '
LSTRFRRLCM

32 64 128

ffembef of processors

Figure 4.3: Maximum Tardiness

60

Figure 4.3 show that maximum tardiness is not fixed; rather, it varies with the

workload. However, it can be observed that LSTRF, LST, RR, LSTRR,

LSTRRGCD, LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR,

LSTRFRRGCD, LSTRFRRLCM and FCFS are smooth and steady as well as overlap

one another from 32 to 64 and 128 processors. However, there is a slight difference

between the algorithms. EDF showed a slight fall from 32 to 64 processors and from

64 to 128 processors. Results showed that LSTRF and LST have the best

EDFRRLCM and EDF showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithm and turnaround time of each set of experiments were computed based on

32, 64 and 128 processors.Table 4.3, shows the standard deviation of the results

graphed in Figure 4.3.

Table 4.3: Standard Deviation

i'.nxCrsir

FCFS Z EOF EDFRR EDFIXC E^ICH L" LS¥ \^£ .SJMi P: IfFRF LjWREDIM^;
32 £C4E-10 5J4E-1C ilf-1 iE-1 JE-1i iE-li iff-'1) iE-l ;E;1(iEi1i iUE-1 iil-IJ iE-i
SI 72f-1) :i-1§ -2E-'S ?2E-1 722E-1C 722E-1C :21E-1 '2E-'i '22Mt '22E-1C '21-1 722E-1i 722E-1
12 IGE-f 'E-11 niE-ll 'iFi 'E-11 'E-11 H3E-1 IE-1 \B"\ \B'\ 11E-11 \iM IE-1

4.2.2 AuverGrid Traces

The experiment was carried out using the whole traces file workload.

61

:E-1)

§11-13

iGE-r

Avg Turnaround Time
1.00E+OS

S 1.0CE+Q7

l.€OE4-€5

64

Number of processors

128

•FCFS

•RR

-EDF

-EDFRR

-EDFRRGCD

EZ^RRLCM

•LSTRR

•LSTRRGCD

-LSTRRLCM

-LSTRF

•LSTRFRR

-LSTRFRRGCD

LSTRFRRLCM

Figure 4.4: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64

and 128 numbers of processors. Based on the observation of Figure 4.4, it is clear

that LSTRF, LST, RR, LSTRR, LSTRRGCD, LSTRRLCM, EDF, EDFRR,

EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD, LSTRFRRLCM and

FCFS are smooth and steady from 32 to 64 and 128 processors. Results showed

that LSTRFRRLCM and LSTRF have the best performance, while FCFS and

EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithm and turnaround time of each set of experiments were computed based on

32, 64 and 128 processors. Table 4.4 shows the standard deviation of Figure 4.4

results.

62

Table 4.4: Standard Deviation

FK IP V EW EOT EHA SI M LSRR3C iMI iff .IFI i~F£0 LT^MI

12 fOE-Je IM 23E-3 Jltd !<:-! iOE-Q 1i'E-l 21H2 27SE-j£ 'm 156E-C3 3'H3 2E-I '32E-JC
ft :{H 2IE-1 <:« 21E-G !5H 31-0 UJE-ti 245E-C3 213E-IE 'l£i1 123M 2«-Q 2'JE-I '27E-I
'1 2PE-I 1S-1 IE-is 2E-B 2E-I 225E-C3 \M 2C3E-CS I53E-5 1FE-B 1J3E-0 2E-G ':H ''Bit

imim

| 1.00E+07
1

l.OQE-MK

32

Avg Waiting Time

64

Numberof processors

128

•FC'S

PR

EDF

ED-?3

EDFRRSCD

EDFRRLCM

LS"

.S^P

-S'RRGCD

-LST.CM

-lS'PF

• .ST^PSCD

Figure 4.5: Average Waiting Time

It can be observed from Figure 4.5 that LSTRF, LST, RR, LSTRR, LSTRRGCD,

LSTRRLCM, EDF, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR,

LSTRFRRGCD, LSTRFRRLCM and FCFS are smooth and steady from 32 to 64

and 128 processors. Results showed that LSTRFRRLCM and LSTRF have the

best FCFS and EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

63

algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.5, showed the standard deviation of Figure 4.5

results.

Table 4.5: Standard Deviation

Standard Efeviation

SI2EtM

iSEtl

Iffi^S IE-2-i 13'EhS 2C2E-IB 202E-06 221E-0B 11£-I2»'E-I U'EHK llc-3 1C1E-I8 202E-JS 172E-K 131E-I8

1.17E+:

1.17E+09

i 1.16E+09

1.15E409

1.15E+03

1.14E+09

RR

3E\«

EOF EDFRR EDFFR3CD E3FRR1CM iT L5TRR .STRR3CD iRNH LST _S7RFRR MRRGCC L3TB5RRLCU

23£fl 313E-C8 54SE-08 E02E-03 180E-OS 312E-03 2^E-08 1E-I3 1E5E-18 313E-03 2«4c 151E-C8

17« 1&-2 2E-« 33SE-05 139E-08 24iE-08 2rE-08 1&-2 12ZE-C8 24EE-3B 212E-08 '2J-:8

IVlax Tardiness

64

Number of processors

12S

-H.I-S

•RR

-EDFRR

• EDFRRGCD

EDFRRLCM

- LET

- LSTRR

• LSTRRGCD

-LSTRRLCM

-LSTRF

•LSTRFRR

- LSTRFRRGCD

LSTRFRRLCM

Figure 4.6: Maximum Tardiness

Figure 4.6 shows that maximum tardiness is not fixed it vary on the workload.

However, it can be observed from that LSTRF, LST, RR, LSTRR, LSTRRGCD,

LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD,

LSTRFRRLCM and FCFS are smooth and steady as well as overlap one another from

64

32 to 64 and 128 processors. However, there is a slight difference between the

algorithms from. Results showed that LSTRF and LSTRFRRLCM have the best

performance, while EDFRRLCM and FCFS showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithm and turnaround time of each set of experiments were computed based on

32, 64 and 128 processors. Table 4.6, showed the standard deviation of Figure 4.6

results.

Table 4.6: Standard Deviation

FCFS
-i

^ 3F EDFRR EDTCi: EMU S\ ira L3W.3CC rav LSTRF JFFR L5TRRSCD m$X\

:!£-!] :12E-1 :F5 512E-1I ilE-l: 512E-1 •12E-15 :"II-I". •'!-'<) 612E-1-1 iiFi £12E-1C i12E-1

TE-fJ 7r"-'f "F« •2F) 72:e-i: 72f: yrE-'i m-\: 'ze-i; •Tb'l 72:e-i: TE-1C -27E-1C :2FS

lOE-f 1E-'1 IF,' H3E-" IGE-f IC3E-11 1E-1 i:«-r, 1i:E-f •il-"- i«E-r 13F1 'E-l !d-i'

4.2.3 Grid5000 Traces

The experiment was carried out using the whole traces file workload.

Avg Turnaround Time
l.OOE+07

£ 1.O0E4-O6
I

1.00E405

64 128

Ntfmber of processors

65

•—FCFS

—m

EDF

- e::"r

EOF'SlCvI

-LST

— LSTRR

—-LSTRRGCD

— LSTRRLCM

15TRF

••••LSTRFRR

LSTRFRRGCD

• LSTRFRRLCM

Figure 4.7: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64

and 128 numbers of processors. Based on the observations shown Figure 4.7, it's

clear that LSTRF, LST, LSTRRGCD, LSTRRLCM, EDFRRGCD, EDFRRLCM,

LSTRFRRGCD, and LSTRFRRLCM are smooth and steady fall from 32 to 64 and

128 processors. Meanwhile, LSTRR, EDFRR, LSTRFRR, EDF, RR and FCFS have

sharp fall from 32 to 64 processors and a sharp rise from 64 to 128 processors,

possible reason may be heavy workload and increase in number of processors.

LSTRR, EDFRR, LSTRFRR are overlapping one another. But there is a slight

difference between the algorithms. Results showed that LSTRF and LSTRFRRLCM

have the best performance, while FCFS, showedthe worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.7, showed the standard deviation of Figure 4.7

results.

Table 4.7: Standard Deviation

SMlte

E4

123

FCFE IS ECF EDHM ECFFRE-CC EDWJ CT LSTR iW LsPRXU L-TRF LOT LSPFF60 iT-O
Ift-'j 7E-:7 493E-C7 9«E-r]:V 'Tz-Z IM C:W W fK~ i'F7 3E3E-." 56EHP ETF7

3JF27 SHE-'7

IV&Z 'E-23

31E-C7

1J3E-C3

32Fi7 ;SE-f :22E-if J2:E-." 3. Eh7 'oKt =HE-o"FF 3'F.

3E-J3 :32E-;7 E52E-27 115E-0S 2C3E-08 373E-07 2IEC 2"E-C7 2IHE-2 354E-07 2IF

66

Avg Waiting Time
1.00E4Q7

— RR

^****^*-^ J^^' ••" — —EDFRR

...."'"--C; ^^">••""'*" - -EDFRRGCD

S

| li)0E+06
i

- - EDFRRLCM

... ,,, „„LST

— LSTRR

- ™ -LSTRRGCD

^--- "**. •••--....

^•^^ *-*,

^^"""•"•--^ — —LSTRRLCM

LSTRF

•--" LSTRFRR

l.OOE+05
••—••• LSTRFRRGCD

32 64 128 LSTRFRRLCM

Mamber of jobs

Figure 4.8: Average Waiting Time

It can be observed from Figure 4.8 that that LSTRF, LST, LSTRRGCD,

LSTRRLCM, EDFRRGCD, EDFRRLCM, LSTRFRRGCD, and LSTRFRRLCM are

smooth and steady from 32 to 64 and 128 processors. Meanwhile, LSTRR, EDFRR,

LSTRFRR, EDF, RR and FCFS have sharp fall from 32 to 64 processors and a sharp

rise from 64 to 128 processors. LSTRR, EDFRR, LSTRFRR are overlapping one

another. But there is a slight difference between the algorithms from. Results showed

that LSTRF and LSTRFRRLCM have the best performance, while FCFS, showed the

worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithm and turnaround time of each set of experiments were computed based on

32, 64 and 128 processors. Table 4.8, showed the standard deviation of Figure 4.8

results.

Table 4.8: Standard Deviation

67

Standard DeviMb

\is

FCFS

utehbT

101"ifl?

7K-i

EE-i

3? EDFRR EDfFRGCC ECFSjCV .'.T _5"RF LcTK;;3 .ETRR1V iR= PER iTFRD-ID LEFRdJ

IS-:7 9E3E-J7 339E-C7 12-r*0b 431E-"7^^-'7 ;«3E-h7 :rE-if jfaE-HEHT 55F7 :2F7

3E-:7 t:ee-7 El-:7 -II- Jz'E-f \lH 2t5E-rE£-u7 :)E-7 HF.7

1v;E-1 22K :2t:7 » 11«2<F; Ti-ti 2^ 2ME-i72i2E^ 2:2E-7 i'B"

1.16E4-09

Max Tardiness

1.15E+09

/
— RR

——EDF

1.14E+09
.

™«™* a*™: i^[>pHK

m 1.13E+09
s

J

1.12E-39

/
EDFRRLCM

»- -1ST

-#'

/

1.11E+09
/

- - - LSTRRGCD
-

/ LSTRRLCM

l.lOt+OS ^1M*^MiJ-*u*^*jv&&tem>#^mut l-""J

1.09E-F09

-•'•••- LSTRFRR

.,.,...., LSTRFRRGCD

32 54 12S
LSTRFRRLCM

fember of processors

Figure 4.9: Maximum Tardiness

Figure 4.9 shows that maximum tardiness is not fixed; it varies with the workload.

However, it can be observed that LSTRF, LST, RR, LSTRR, LSTRRGCD,

LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD,

LSTRFRRLCM and FCFS are smooth and steady as well as overlap one another from

32 to 64 and 128 processors. Nevertheless, there is a slight difference between the

algorithms. Meanwhile, LSTRR, EDFRR, LSTRFRR, EDF, RR and FCFS have sharp

fall from 32 to 64 processors and a sharp rise from 64 to 128 processors. Results

showed that LSTRF and LSTRFRRLCM have the best performance, while EDFRR

and EDF showed the worst performance.

68

To ensure that the value obtained is consistent, standard deviation of each

algorithm and turnaround time of each set of experiments were computed based on

32, 64 and 128 processors. Table 4.9, showed the standard deviation of Figure 4.9

results.

Table 4.9: Standard Deviation

2 lE-'i -8E-1: IE-'')

£ tEJ) '3H SE-1

8 lE-r 163E-11 lE-'i

4.2.4 LCG Traces

IE
fRC.

E^l ""Rffi

liE-'(5E-'5

c'lr-'f '£-••}

L5I

'IK

LiR LlfE] LS'RR.u

:3E-1: JfFi :sFi

:JI-t! ifM «S-'i

JC3E-r <cH -ffi-'C

IS3E-1: \M \M 433E-1

•!H ESE-'f -S53E-1J 5BE-1

iffi-li 1C3E-11 53E-11 935E-1

Theexperiment was carried outusing the whole traces file workload.

LOOEtOS

I 1.00E+07
1

EtOb

32

Avg TurnaroundTime

64

Numberof processors

128

•FCFS

—— EDF

- -EDFRR

EDFRRGCD'

EDFRRLCM

— LSTRR.

'•• •- - LSTRRGCD

'LSTRRLCM

LSTRF

........ LSTRFRR

........ LSTRFRRGCD

'LSTRFRRLCM

Figure 4.10: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64

and 128 numbers of processors. Based on the observation of Figure 4.4, it's clear

69

that LSTRF, LST, RR, LSTRR, LSTRRGCD, LSTRRLCM, EDF, EDFRR,

EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD, LSTRFRRLCM and

FCFS are smooth and steady from 32 to 64 and 128 processors. LSTRR, EDFRR,

LSTRFRR, LST, LSTRRLCM, LSTRF and LSTRFRRLCM are overlapping one

another. But there is a slightdifference between the algorithms. But EDFRR showed a

slight fall from 32 to 64 processors and a slight rise from 64 to 128 processors.

Results showed that LSTRFRRLCM and LSTRF have the best performance,

while FCFS and EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithm and turnaround time of each set of experiments were computed based on

32, 64 and 128 processors. Table 4.10, showed the standard deviation of Figure 4.10

results.

Table 4.10: Standard Deviation

S:rH(IOs,ii:?

"CFS R 5E: EFfl 3H3C3EMI' I? LSTRR LSRF3C3 LST&CV LiF L5TRFFR LMCC i~M
32 \\M 3E-1 r:E-l 3E5E-03 52SE-2 H7E-K222EH83c3E-C3 2s"K 222E-08 U'E-ls 3E-I 254E-0S I'M

« sl-1 2E-1 222E-08 I'M 368E-3 tHHS'E-CMKEic 2'3B 1;;E-08135E-;S262E-03 1ESE-3S 'E4
\l§ itlHS 2E-0S 1"1E-08 I'M HE-]* 4PE-0S '27E-(82C5E-^S 'Bl-'.l 125E-0810TE-ZS2C£E-08 1M 'E-l

70

LOOEfOS

1.0OE+07

l.OOEfOS

32

Avg Waiting Time

'"''*«,

64

Numberof processors

128

-FCFS

R?

EDFR?

E7JSRGO

EDFW.G,?

L5~RR

.STR3GCD

-LS'RRLCM

-LS~R:

LSTRFRR

ls~r=rr:-cd

_S~R:RR-CV1

Figure 4.11: Average Waiting Time

It can be observed from Figure 4.11 that LSTRF, LST, RR, LSTRR, LSTRRGCD,

LSTRRLCM, EDF, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR,

LSTRFRRGCD, LSTRFRRLCM and FCFS are smooth and steady from 32 to 64 and

128 processors. LSTRR, EDFRR, LSTRFRR, LST, LSTRRLCM, LSTRF and

LSTRFRRLCM are overlapping one another. But there is a slight difference between

the algorithms. ButEDFRR showed a slight fall from 32 to 64 processors anda slight

rise from 64 to 128 processors. Results showed that LSTRFRRLCM and LSTRF

have the best performance, while FCFS and EDFRRLCM showed the worst

performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.11, showed the standard deviation of Figure

4.11results.

Table 4.11: Standard Deviation

71

Standard Mr

KB PR E3:

32 i;« 38K 27£-

M]H 2S2E-" j 221E-

128 31l-il 2"-E-1 5 HE-

EDFFR EDFFR3CC BJFFRjCV .5! L"R .'IRRI-TB LSTRRLCM L5"RF L5TFFR:TBGI LTRRl

Jc4E-8 :tll< HCE* i£-OE-ii3 2£-»: 22K 'IblhBl 2€-C 13E-

^H ^E< "^H'HM^E-ir 1E-'3 4l-S2E-i3 1y8E-'C 11-

lli-l 27B: iSM UK2«1E-ii: kE-C \i-12^2 IsIM ME-

1.19!

119?

1.181

1.18!

1.17F

| 1.17s
I

1.16e

1.16!

1.15s

1.15s

1.14!

H-Q9

:+09

=409

=.+09

:+09

=+09

;+09

:+09

=+os

!i-09

Max Tardiness

\
___FCFS

— RR

— — EDF

•-- -

— — EDFRR

EDFR3GCD

E^ORLCM

LST

^C~3D

L£~==5CD

—• —^L5;_35?L("',1

LST^FR^

32 64

Nursiberof processors

12S
_r'"R'3C0

LS'-^R^C/I

Figure 4.12: Maximum Tardiness

Figure 4.12 show's that maximum tardiness is not fixed it varies on the workload.

However, it can be observed that LSTRF, LST, RR, LSTRR, LSTRRGCD,

LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD,

LSTRFRRLCM and FCFS showed a sharp fall from 32 to 64 processors and from 64

to 128 processors as well as overlap one another. Results showed that LSTRF and

LSTRFRRLCM have the best performance. While EDF and FCFS showed the worst

performance.

To ensure that the value obtained is consistent, standard deviation of each

72

algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.12, showed the standard deviation of Figure 4.12

results.

Table 4.12: Standard Deviation

RE % EC:

:M £21E-1C :F£

"1-1; ^R I1E-1

1/o 11-1! VM IK-'I

E5K EDFRRG:D EFRCH la" ^ ilHB J-XH LIF iHH \m^l TyRd'

:Bi 520E-10 oI:-1 52CE-*0 :lt-'i £23E-W E2QE-1I :2H :2-'i ?IM !2M

'JM :S1M'J IE-'} 1E-1 7J'E-1 7Hi 731E-i: T5M Wt T31E*1 ??E-ti

1GE-.1 JK ''S-1i 11F1 W\ 'QE-r 1H 10E-1 1«F1 1E-1 K£-'\

4.2.5 NorduGrid Traces

The experiment was carriedoutusing the whole traces file workload.

l.OGE+09

l.QOE+08

l.OGE+07

AygTurnaroynd Time

64 12

Number of processors

•FCFS

-RR

•EDF

-EDFRR

-EDFRRGCD

•EDFRRLCM

-LST

-tSTRR

-LSTRRGCD

-LSTRRLCM

-LSTRF

• LSTRFRR

-LSTRFRRGCD

LSTRFRRLCM

Figure 4.13: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64

and 128 numbers of processors. Based on the observation of Figure 4.13, it's

73

clear that LSTRF, LST, LSTRRGCD, LSTRRLCM, EDFRRGCD, EDFRRLCM,

LSTRFRRGCD, and LSTRFRRLCM are smooth and steady from 32 to 64 and

128 processors. Meanwhile, LSTRR, EDFRR, LSTRFRR, EDF, RR and FCFS

have a sharp rise from 32 to 64 processors and a sharp fall from 64 to 128

processors. LSTRR, EDFRR, LSTRFRR are overlapping one another. But there is

a slight difference between the algorithms. Results showed that LSTRF and LST

have the best performance, while FCFS, showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.13, showed the standard deviation of Figure 4.13

results.

128

Table 4.13: Standard Deviation

ECFRR EERGCCELMI 1ST LSTRS LSTRRGCD LSTFRLCy LSTRF ISKFRR LSTRFRRGCD Lo^FRRLCM

8 iiWK 3J1E-:- IM 4BE-C9 342E-03 33H U3E-];

S \IW 830E-I? 11-ir 511E-J5 II-iHE-i 3136*5 :iM

fi 33KHIiE-;E blE--* E13E-K 325E-C5 641E-09 S3IE-:? JsK:

FCFS RR EOF ECFRR EMiCCELM

S61E-J 3f-iE 633E-09 3-2E-09 31K E:;E

?f-.r 82?E-J9 :?EHfi M J2E-5 2«E

537E-1? 639E-;9 3;3E-tS 5-1E-05 =51-5; EHE

74

1.00E+09

1.00E+OS

liMlE+07

Avg Waiting Time

64

Numberof processors

128

™_FCFS

— RR

- —EDFRR

-•• EDFRRGCD

ED:RR.C\1

j-

>5~RR

_S_RP.C-C"J

'-S-RR-Cvl

,STRF

•••--LSTRFRR

-—LSTRFRRGCD

LSTRFRRLCM

Figure 4.14: Average Waiting Time

It can be observed from Figure 4.14 that LSTRF, LST, LSTRRGCD, LSTRRLCM,

EDFRRGCD, EDFRRLCM, LSTRFRRGCD, and LSTRFRRLCM are smooth and

steady from 32 to 64 and 128 processors. Meanwhile, LSTRR, EDFRR,

LSTRFRR, EDF, RR and FCFS have a sharp rise from 32 to 64 processors and a

sharp fall from 64 to 128 processors. LSTRR, EDFRR, LSTRFRR are

overlapping one another. But there is a slight difference between the algorithms.

Results showed that LSTRF and LST have the best performance, while FCFS,

showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.14, showed the standard deviation of Figure 4.14

results.

Table 4.14: Standard Deviation

75

Standard De.iat gfi

FK Rl

T ?K 331-:? I<H 341E-0s 34EE-I5 r:9E-09 EE6E-09341E-09 333E-09 25CE-C5 if2E-E93-1E-
EE'RR BHvGC3 ECFRRLCy 1ST iTRR .STRRGCD L5TRRLCL1 if LSTRFRR LST.FRRGCO L3~:FFRXV

2E-1? Iffi-fls

IE-:: :r^5

S IM 1E-I

>:iE-7 :ff-IJ SrE-3 I'M \MlMi 12'E-i

JSE-;* 539E-05 i?E-:S :M ::E-15:1-1 53SIh JtE-i? 323E-IS63EE-

riE-;:

Max Tardiness

64

Mumberof processors

128

•FCFS

3R

ED-3RLCM

_C~33

w;-33^C3

--S_R=LC\1

-L5~D-

..S^-SR

-.s_3-?p<;c:

_s~r-br.l;»

Figure 4.15: Maximum Tardiness

Figure 4.15 shows that maximum tardiness is not fixed it vary on the workload.

However, it can be observed from the graph point of view that that LSTRF, LST,

RR, LSTRR, LSTRRGCD, LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM,

LSTRFRR, LSTRFRRLCM and FCFS are sharp fall as well as overlap one another

from 32 to 64 processors and from 64 to 128 processors. But there is a slight

difference between the algorithms. Meanwhile, LSTRFRRGCD showed a slight sharp

fall from 32 to 64 processors and from 64 to 128 processors. Results showed that

LSTRFRRGCD and LSTRF have the best performance, while EDFRRLCM and LST

showed the worst performance.

76

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.15, showed the standard deviation of Figure 4.15

results.

Table 4.15: Standard Deviation

FCFS 1 EDF EDFRR EDFRR3CD ECFRRlC^ lS' LSI" L3TRR3CC LSTRRLCM .3TRF ivRR ISTRRR1 lSIRRLI

li °JM DE-li r7E-1i FIE-!: VVi 5TE-1) PE-11 ??1E-1 S'H il-'l 67TE-1: TIE-i; £71E-13 wE-1
S 3:H 3SE-IE IM \M Wi cIE-13 i31E-1] i2-'(3IE-E SIE-'I 834E-13 c3E-1: 7i-13 iBE-1

IK 13E-1 'OE-11 11-1 tfcE-11 11-1 1SE-1' 11E-1' 1F1 1f-1' 11E-1 llcE-f IJE-f I'K 11-1

4.2.6 Sharcnet Traces

The experiment was carried out using the whole traces file workload.

Avg Turnaround Time
4.33E-3S

3.53E-DS

3.03E-3S

2.50E»3S

£ 2.00E+OS

1.50E+GS

1.0GE+0B

5.00E+37

l.OQE+00

64 12S

Number of processors

Figure 4.16: Average Turnaround Time

—-FCFS

——EDF

- —EDFRR

-•EDFRRGCD

-EDFRRLCM

- LST

— LSTRR

- -LSTRRGCD

LSTRRLCM

LSTRF

....... LSTRFRR

——LSTRFRRGCD

LSTRFRRLCM

This experiment was carried out by varying the number of processors from 32, 64

77

and 128 numbers of processors. Based on the observation of Figure 4.15, it is

clear that LSTRF, LST, RR, LSTRR, LSTRRLCM, EDFRR, EDFRRGCD,

LSTRFRR and LSTRFRRLCM are smooth and steady from 32 to 64 and 128

processors. LSTRFRRGCD and LSTRRGCD showed a sharp and steady fall

from 32 to 64 and 128 processors. EDF showed a sharp fall from 32 to 64

processors and a sharp fall from 64 to 128 processors. Meanwhile, FCFS and

EDFRRLCM showed a sharp fall from 32 to 64 processors and 64 to 128

processors. LSTRR, EDFRR, LSTRFRR, LST, LSTRRLCM, LSTRF and

LSTRFRRLCM are overlapping one another. But there is a slight difference

between the algorithms. Results showed that LSTRFRRLCM and LSTRF have

the best performance, while FCFS and EDFRRLCM showed the worst

performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.16, showed the standard deviation of Figure 4.16

results.

Table 4.16: Standard Deviation

SmBm1

fcfs RR edf m mm

!2 1E4E-ly ifE-:f Wi EC0E-C9 i7:E-3

tfH Lr .31LSTRRGGLSILll LSf LSTRFRR LSTRFRRGCD LSTRFRRLCM

14 :M^M -2E-;« "El "SE-tHS-lS JIM 3.1Ei

it 13P8 iff-;; IM IM m-t 'MIMiM'.M nM)M:M \M)M
128 IIEE-i ill* tM IM 5S3E-3S -5M-MM iJK- 3£*M 32-CS.-1-M iM «E«

78

4.00E+0

3.50E+OS

3JME+S8

1.5OE+0S

s2 2.O0Er08

150E-3S

l.OQE-35

5.00E-37

ODOE-tOO

Avg Waiting Time

64

Ntrniberof processors

128

-E3=RR

E3=RR_CM

--'
-po

_S""P'GCD

- — .S'SP.CM

_S"-=F

^5"'PF33

— -.1 -P=P^GCD

c -p^RRLCM

Figure 4.17: Average Waiting Time

It can be observed from Figure 4.17 that LSTRF, LST, RR, LSTRR, LSTRRLCM,

EDFRR, EDFRRGCD, LSTRFRR and LSTRFRRLCM are smooth and steady

from 32 to 64 and 128 processors. LSTRFRRGCD and LSTRRGCD showed a

sharp and steady fall from 32 to 64 and 128 processors. EDF showed a sharp fall

from 32 to 64 processors and a sharp fall from 64 to 128 processors. Meanwhile,

FCFS and EDFRRLCM showed a sharp fall from 32 to 64 processors and 64 to

128 processors. LSTRR, EDFRR, LSTRFRR, LST, LSTRRLCM, LSTRF and

LSTRFRRLCM are overlapping one another. But there is a slight difference

between the algorithms. Results showed that LSTRFRRLCM and LSTRF have

the best performance, while FCFS and EDFRRLCM showed the worst

performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.17, showed the standard deviation of Figure 4.17

results.

79

SiiiarfOtiiaf:'1

::.FS RR

"i" \M -57E-i
M 13Pi EE-i

i itH ;:ei

L0OE+Q3

1.90E+O9

1.40E+09

Table 4.17: Standard Deviation

BF EC-RR ECFRR3Cr EDFRR.CW LST LSTRR JIRSiC JTRRJ LSTRF LSTRFRR iTRFRRGO LSTRFRRLf

9E-C9 SEIE n-

-E-ES i-l'l WI-.

579E-I9 592E-o3E-i

[j::e-iss:e-::im:h3 i;se-:hi-ke-i

E ':E1H-;:il-M:H« M 3K :£h

^E-S53i-}:1-1 E3IE-i§ 31E1E 311: E;E'

Max Tardiness

Kamberof processors

I i:iE-M 3S'E-iE

I 151E-55 358E-L9

I :M 295E-C9

Figure 4.18: Maximum Tardiness

Figure 4.17 show's that maximum tardiness is not fixed it varies on the workload.

However, it can be observed that LSTRF, LST, RR, LSTRR, LSTRRGCD,

LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD,

LSTRFRRLCM and FCFS showed a sharp fall from 32 to 64 and 128 processors as

well as overlap one another. However, there is a slight difference between the

algorithms. Results showed that LSTRFRRLCM and LSTRF have the best

performance, while EDF and EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 32, 64 and 128

80

processors were computed. Table 4.18, showed the standard deviation of Figure 4.18

results.

Table 4.18: Standard Deviation

StlUi.'H

FES RR EDF

2 3IE-1 iJM m

fc IE-" 13E-1 11-f

' S3 IF' '1-1 IF

S> EffRRC ELM J LSI

]«-i: 3:B m 333E-1] 3*1

'M 13E-f 13E-1 IF II-

'a-r 'a-r <fi if' 11-

LSTRR6X L5TRRLCL1 LSI LSFR iKCi^C.'

3:1-1; 3IE-1L m JFi il-t !Fi

'I-r 13E-11 13E-f HE" 13E-1 13E-11

'Ft ;e-ii 'Ft if' 11-1 'Fii

4.2.7 Job Variations of Das-2 Traces

As explained in the methodology, scalability test of scheduling algorithms under an

increasing real workload were incorporated and as previously explained, ten (10) data

sets were formed by using 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 98% of the

traces files workload, 100000, 200000, 300000, 400000, 500000, 600000, 700000,

800000, 900000 and 1000000 processes, respectively.

1.O0E+07

1.0OE+O6

£

1

1 3DE-35

1.O0E+04

AvgTurnaround Time

100000 200000 300000 400000 500000 600000 700000 800000 900000 10OOQOO

Ntmiberrfjobs

Figure 4.19: Average Turnaround Time

-:c:s

ed^.:;*!

» -LSTRRGCD

LSTRF

--••-LSTRFRR

——LSTRFRRGCD

-• LSTRFRRLCM

This experiment was carried out using 64 numbers of processors. However, as the

number of jobs is increasing, average turnaround time increased. Based on the

observation of Figure 4.19, it is clear that LSTRR, LSTRRGCD, LSTRRLCM,

EDFRR, EDFRRGCD, LSTRFRR, LSTRFRRGCD, and LSTRFRRLCM showed a

smooth and steady rise from 100000 to 10000000 number of jobs as well as overlap

one another. However, there is a slight difference between the algorithms. LSTRF,

LST, RR, results showed a sharp rise from 100000 to 200000 number of jobs, from

200000 to 300000 number of jobs, and a sharp fall from 300000 to 400000 number of

jobs, then sharp fall from 400000 to 600000 number of jobs, then a sharp rise from

600000 to 700000 number of jobs and a sharp rise from 700000 to 1000000 number

of jobs. The possible explanation that could be adduced for this observed trend may

be due the varying number of jobs. EDF has shown a sharp rise from 100000 to

200000 number of jobs, and a slight fall from 200000 to 300000 number of jobs, and

a sharp rise from 300000 to 400000 number of jobs, then sharp fall from 400000 to

600000 number of jobs, then a sharp rise from 600000 to 700000 number ofjobs and

a sharp rise from 700000 to 800000 numberof jobs, then a sharp rise from 800000 to

900000 number of jobs, and finally a sharp fall from 900000 to 1000000 number of

jobs, possible reason may be due the varying number of jobs. Meanwhile, FCFS and

EDFRRLCM showed a sharp rise from 100000 to 200000 number of jobs, from

200000 to 300000 number ofjobs, and a sharp fall from 300000 to 400000 number of

jobs, then sharp rise from 400000 to 500000 number of jobs, then a sharp rise from

500000 to 900000 number of jobs and a slight fall from 900000 to 1000000 number

of jobs. Results showed that LSTRF and LST have the best performance, while

EDFRRLCM and FCFS showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 64 procesors

executing 100000 to 1000000 variations of jobs were computed. Table 4.19, showed

the standard deviation of Figure 4.19 results.

Table 4.19: Standard Deviation

82

SMidOsiiP

1l'

h.

<!'
.J

?\
ft t

Oj

1*:

.•.I

U

F£:S

SE-.3
1•""'-.'?

3E-7

oE-7

92JE-7

' E-Dc

3,:-.s

'6IE\;

1.00E407

1.00E+Q6

1

1.00E40S

LOOE-HM

73tE-33

1M

11EF

11-7

2SEE-J-

•M

31-7

E3F

363E-C5

if:e

OE-iS

131-7

1E-7

11-7

311-7

i3'E-7

1ff-3

!tt-7

EDFRR

1E-7

11-7

ili-7

331-7

3E-7

E11E-7

31E-7

7IK

7F7

BFRR3CC

1>E-7

282E-:7

12E-7

SF7

12E-7

ECFRFLCM

î2E-07

33K

LST LSTRR ilR^LSTRRJ LSTR" LSTR'RR L&TR-RRGCC

mWJElz 1M ^ilE-Cb 22EH6HUE-:? 711c

::E-CBHE-C? 1F7 'Fi7 3Ftt1ME-7 1F7

SFifeII-7 151-7 <l-7 3E-i^E-7 11-7

3F5:iFi5H3E-7i7E-f

73H StfHi 2SSE-17 Z43E-3'

34E-7 V&iiY&Q 251H

I3E-7 \m ^-711-7 37E-J

USE-"; 1H 'EH7'l-7 11iE-3

Fi '7E-I 'EfStfl'EFJ'

2F7M2E-7 ME-7

ii[>-iM55E-il313E-7 238E-]7

23Ei7::JE1S3E-7 PEI7

3E-(7H3E-i7S31E-7 3I1E-:7

OEt7 13:E-i7S13E-7 31E-7

3IE-i71E-i7WE-7 11-7

lSTRFRRlCM

???[-§

IFu7

VM

135E-C? 'l-irE-i751-7 'F7 3Fi7 111771-7 51SE-7

IFy

511E-0

Avg Waiting Time

-FCFS

RR

_ EoF

— EDFRR

EDFRRGCD

EDFRRLCM

- -LST

— LSTRR

- -LSTRRGCD

— LSTRRLCM

LSTRF

-•-•LSTRFRR

— LSTRFRRGCD

LSTRFRRLCM

100000 200000 300000 400000 500000 600000 730000 SOOOOO 900000 1000000

Kumberofjobs

Figure 4.20: Average Waiting Time

It can be observed from Figure 4.20 that LSTRR, LSTRRGCD, LSTRRLCM,

EDFRR, EDFRRGCD, LSTRFRR, LSTRFRRGCD and LSTRFRRLCM showed a

smooth and steady rise from 100000 to 10000000 number of jobs as well as overlap

one another. However, there is a slight difference between the algorithms. LSTRF,

83

LST, RR, results showed a sharp rise from 100000 to 200000 number of jobs, from

200000 to 300000 number ofjobs, and a sharp fall from 300000 to 400000 number of

jobs, then sharp fall from 400000 to 600000 number of jobs, then a sharp rise from

600000 to 700000 number of jobs and a sharp rise from 700000 to 1000000 number

of jobs, possible reason may be due to the varying number of jobs. EDF has shown a

sharp rise from 100000 to 200000 number of jobs, and a slight fall from 200000 to

300000 number of jobs, and a sharp rise from 300000to 400000 number of jobs, then

sharp fall from 400000 to 600000 number of jobs, then a sharp rise from 600000 to

700000 number of jobs and a sharp rise from 700000 to 800000 number of jobs, then

a sharp rise from 800000 to 900000 number of jobs, and finally a sharp fall from

900000 to 1000000 number of jobs. Meanwhile, FCFS and EDFRRLCM showed a

sharp rise from 100000 to 200000 number ofjobs, from 200000 to 300000 number of

jobs, and a sharp fall from 300000 to 400000 number of jobs, then sharp rise from

400000 to 500000 number of jobs, then a sharp rise from 500000 to 900000 number

of jobs and a slight fall from 900000 to 1000000 number of jobs. Results showed that

LSTRF and LST have the best performance, while EDFRRLCM and FCFS showed

the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 64 procesors

executing 100000 to 1000000 variations of jobs were computed. Table 4.20, showed

the standard deviation of Figure 4.20 results.

Table 4.20: Standard Deviation

StsoteDeiia'jj

m RR E3F EDFRR EC:RRE ERRLCV LST LSTRR LSTRR3CD LSTRRLCM LSTRF J1RR LSTR-RRIS L1FRRLC;'

HI: 3J1E-L? J2H 3GIE-CS 11-7 'M '£-7 2E2E-:?S-23E-C6 7&B TiH IE-BUM Tl-IS 7l-i3
217 11-7 783E-06 IWE-ii '1-7 2E4; 353E-7 1«-.S1iE-7 127E-i7 '23E-7 33K1E-P

3K 712E-7 '.M I1-C5 2E-7 iiB7 31-751-35 22IE-7 112E€ '1-7 3E-K23a
1C 31-7 'M 13T>i7 2E-7 SE-7 534E-7 3I3B2E-7 2E-7 21-7 3f-l2Ei

IE 31-7 1I3E-I; 1E-7 333E-7 iM ;37E-7 7PE-3299E-G7 21-7 2E-7 IE-I31H
IE 31-7 YH 11-7 3E-7 ;Ef 34E-7 3:K3d2E-7 23a7 :3I-7:i3E-l3E-ff

W 1C5E-C5 im 3J1E-7 513E-7 31-7 "M 11-7I3SE-7 37E-7 355E-7 lf-711-f
IE 131-iS 233E-07 480E-C7 51-7 102E-03 '3.E-33 1I-752E-7 il-7 :7E-C7 '3:E-S:3E-7 3E-7 3E-7
§E 17E-L3 IM 108E-C8 714E-J7 123E-S3 'E-3S 17E-75JIE-7 5E-S7 57E-7 'JMfiH H-f, ^1-7
1131 154E-J5 33H IWE-7 7l-7 135EJ <7E-33 212E-75SSE-7 54EE-0• 312E-7 '1-7 3Ef 313M; 311E-7

Wr A7

'22E-7

'1-7, '1-7

2ii:E-y7 '1-7

/j£-!!. £:4t-i'

21-7, 21-7

3E-7 333E-7

1.15E-H39

LlSEtOS

1.14E+09

1.14E+09

S 1.13E+09

l.UErOS

1.12E+09

1.12E+09

1.I1E+09

Max Tardiness

LOOSOO 103030 J 33030 433:30 530333 603333 T33033 5-33333 530033 1000000

Number of jobs

FCFS

-EDFRR

• EDFRRGCD

-EDFRRLCM

-LST

•LSTRR

-LSTRRGCD

-LSTRRLCM

-LSTRF

- LSTRFRR

-LSTRFRRGCD

LSTRFRRLCM

Figure 4.21: Maximum Tardiness

Figure 4.21 show's that maximum tardiness is not fixed it varies on the workload.

However, it can be observed from the graph point of view that LSTRF, LST, RR,

LSTRR, LSTRRGCD, LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM,

LSTRFRR, LSTRFRRGCD, LSTRFRRLCM and FCFS showed sharp rise from

100000 to 1000000 number of jobs as well as overlap one another. However, there is

a slight difference betweenthe algorithms. Results showed that LSTRF and LST have

the best performance, while FCFS and EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 64 procesors

executing 100000 to 1000000 variations of jobs were computed. Table 4.22, showed

the standard deviation of Figure 4.21 results.

85

S'f'fc.'ati

33(E l:-i!

113 7'IE-!i

7IE IE-'1
!«Tn t<-; ',

syr "F4

72i;

7i-i:

71-1:

7'H

7i-i:

7ie-i:

7i-t:

7ie-i:

B? ECi

17S-

711E-

' \W

7l£

7E
t<t;

<"l 7)-T-1i|
J ' •'•'- •

<l i vizA
,. >_ .

13 31-13

;] T1E-1

•",) "Tjfi
1 v- *

7i-:3
7<£jjj
1 ljw *

t";.'ii
•- *

. ft.'.- 'J

•') !21E-^

Table 4.21: Standard Deviation

£ L517 ; er:

'i 7E-1 '&-!•:

'[TE-i 'i-i:

'i 7i:e-i :i-ii

t 711E-i :ie-i:

\ 7t!E-1 '•H

'(7t:E-1 "H

1 715E-1 :1-13

'i TA 'i-i:

'(7E-1 'IE-Li
*i 1VZ i "ie-i:

Sj-«^D iFnAll'l LST LSI LSI3

7H-'i 7E-1 1-13 i;e-i: 'E-

77E-'i< 77E-'i 7E-13 7rE-i: 77E-

7f-'(71B3 1-13 7ie-i; 13E-

71'Et'('HE-'] "E-13 :i-i; TE-

713E-'i 713E-'3 1-13 71-13 1E-

71H 711E-'5 1-13 >'H 'UE-

715E-'i 71E-'3 1-13 :'H 713E-

71FC T3-1) '1-1: "H 71;E-

723E-'i 72iE-'J 1-13 71-13 T2jE-

72'E-'i 721S-'i 1-13 •m 7S-

lSF'RR .3":^1LSTRFRR.C1

1E-13

:::e-i)

7«-1!

'1E-13

71-13

"E-13

"iE-13

M:-il

713E-1i

MH 31E-13

1VZ,<!
AHJ

•1E-13

71-13

,,7E-1!

'1-13

1E-13

In contrast to Figure 4.21, experiment was carried out by varying the number from 64

processors to 128 numbers of processors.

l.OOE+07

1.O0E+05

1

1.00E+OS

1.00E+04

Avg Turnaround Time

10OO0O 200000 300000 400000 500000 600330 700000 SQQOOQ 900000 1000000

Mumberofjobs

Figure 4.22: AverageTurnaround Time

86

FCFS

— RR

EDF

— —EDFRR

EC^RRGCD

ED=RP-C'Vl

_$-

— LSTRR

— - -LSTRRGCD

— —LSTRRLCM

LSTRF

LSTRFRR

LSTRFRRGCD

LSTRFRRLCM

However, it can be observed that Figure 4.22 showed that LSTRR, LSTRRLCM,

EDFRR, EDFRRGCD, LSTRFRR, and LSTRFRRLCM are smooth and steady rise

from 100000 to 10000000 number of jobs as well as overlap one another. However,

there is a slight difference between the algorithms. LSTRF, LST, RR, results, showed

a sharp rise from 100000 to 200000 number of jobs, and a sharp fall from 200000 to

400000 number ofjobs, and a sharp rise from 400000 to 600000 number ofjobs, then

sharp rise from 400000 to 600000 number of jobs, from 600000 to 700000 number of

jobs, then from 700000 to 900000 number of jobs, then from 900000 to 1000000

number of jobs. EDF has shown a sharp rise from 100000 to 200000 number of jobs,

and a slight rise from 200000 to 400000 number ofjobs, and a slight fall from 400000

to 600000 number of jobs, then sharp rise from 600000 to 700000 number of jobs,

then sharp fall from 700000 to 800000 number ofjobs, then a slight rise from 800000

to 900000 number ofjobs and finally a slight fall from 900000 to 1000000 number of

jobs, possible reason may be due the varying number of jobs. LSTRFRRGCD and

LSTRRGCD showed a smooth and steady rise from 100000 to 800000 number of

jobs, then a sharp rise from 800000 to 900000 number of jobs, probable reason may

be due to heavy workload, then a sharp fall from 900000 to 1000000 number of jobs.

EDFRRGCD showed a smooth and steady rise from 100000 to 400000 number of

jobs, then a sharp fall from 400000 to 500000 number of jobs, then a sharp rise from

500000 to 600000 number of jobs, then smooth and steady from 600000 to 800000

number of jobs, then a sharp fall from 800000 to 900000 number of jobs, then finally

a sharp rise from 900000 to 1000000 number of jobs. Meanwhile, FCFS and

EDFRRLCM showed a sharp rise from 100000 to 200000 number of jobs, from

200000 to 300000 number ofjobs, and a sharp fall from 300000 to 400000 number of

jobs, then sharp rise from 400000 to 500000 number of jobs, then a sharp rise from

500000 to 900000 number of jobs and a slight fall from 900000 to 1000000 number

of jobs. Results showed that LSTRF and LST have the best performance, while FCFS

and EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 128 procesors

executing 100000 to 1000000 variations of jobs were computed. Table 4.22, showed

the standard deviation of Figure 4.22 results.

87

Syadfeiar

FCFS

IB 612E-

2(11 2[IE-.

Sill Ji

ll E14E-!

51ID 51IE-

311 537E-

71! ~C9E

EC0000 S25E

rCOOOO 111'

1H3: ii'

1.0OE407

l.OOE-06

i
1

l.QOE»04

Table 4.22: Standard Deviation

r e:fr

223E-3S

YrA

EuFRR

21T>$

11-7

11-7

215E-7

21-f

21-7

21-I7

11-7

52E-7

51-tf

EM

51-

IE-'

2E-"

331E-"

111-*"
inr -

4not-,

3mf-

sf-7

P7E-"

"hLuii lST
•* it-

5E-:

5C-:

5HE-,

ilE-

1E-

LSTRR

:Ml-7

M5E-3"

A1 l-'T

L3E-3'

'73«-T

13E-ii

T2E->i

.3rR.CC

31-113

11-7

17E-7

21E-7

252E-7

21-7

51-ii7

LsFFJ

3E-1

hB

'32M

'3-E-1

I LSPr

TE-1

43it"

15'jE-

45C-

j3JE-.

625E-

°32E*.

1€-

iPFff LoTRFFK LL^R:RRJ1

11— [•,•'
L !2'»

LlJL'1:

EfE->3

112E-"

111-r

13K

::i}E-r

:i-7

21-7

YIY

"HI

U2'

"•A

Avg Waiting Time

2&6-I'

3E-i

3If-1'

s2

,3 >.

10000-0 200000 SOOOOO 400000 500000 600000 700000 SOOOOO 900000 1000000

Number of jobs

33IK

1H7

11-7

11-r

21-7

:i-r

21-17

::1E-r

:i-f

/ H!

21-iT

1 P*I 1

•FCFS

-RR

-EDF

-EDFRR

EDFRRGCD

ETJ^PlCM

-LSTRRGCD

-LSTRRLCM

-LSTRF

•LSTRFRR

-LSTRFRRGCD

•LSTRFRRLCM

Figure 4.23: Average WaitingTime

It can be observed from Figure 4.23, that LSTRR, LSTRRLCM, EDFRR,

88

EDFRRGCD, LSTRFRR, and LSTRFRRLCM are smooth and steady rise from

100000 to 10000000 number ofjobs as well as overlap one another. However, there is

a slightdifference between the algorithms. LSTRF, LST, RR, results, showed a sharp

rise from 100000 to 200000 number of jobs, and a sharp fall from 200000 to 400000

number of jobs, and a sharp rise from 400000 to 600000 number of jobs, then sharp

rise from 400000 to 600000 number of jobs, from 600000 to 700000 number of jobs,

then from 700000 to 900000 number ofjobs, then from 900000 to 1000000 number of

jobs, possible reason may be due the varying number of jobs. EDF has shown a sharp

rise from 100000 to 200000 number of jobs, and a slight rise from 200000 to 400000

number of jobs, and a slight fall from 400000 to 600000 number of jobs, then sharp

rise from 600000 to 700000 number of jobs, then sharp fall from 700000 to 800000

number of jobs, then a slight rise from 800000 to 900000 numberof jobs and finally a

slight fall from 900000 to 1000000 number of jobs. LSTRFRRGCD and LSTRRGCD

showed a smooth and steady rise from 100000 to 800000 number ofjobs, then a sharp

rise from 800000 to 900000 number of jobs, probable reason may be due to heavy

workload, then a sharp fall from 900000 to 1000000 number of jobs. EDFRRGCD

showed a smooth and steady rise from 100000 to 400000 number ofjobs, then a sharp

fall from 400000 to 500000 number of jobs, then a sharp rise from 500000 to 600000

number of jobs, then smooth and steady from 600000 to 800000 number of jobs, then

a sharp fall from 800000 to 900000 number of jobs, then finally a sharp rise from

900000 to 1000000 number of jobs. Meanwhile, FCFS and EDFRRLCM showed a

sharp rise from 100000 to 200000 number of jobs, from 200000 to 300000 number of

jobs, and a sharp fall from 300000 to 400000 number of jobs, then sharp rise from

400000 to 500000 number of jobs, then a sharp rise from 500000 to 900000 number

of jobs and a slight fall from 900000 to 1000000 number of jobs. Results showed that

LSTRF and LST have the best performance, while FCFS and EDFRRLCM showed

the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 128 procesors

executing 100000 to 1000000 variations of jobs were computed. Table 4.23, showed

the standard deviation of Figure 4.23 results.

89

mmMt

'CFS

137 Ef-iS

21-37

il-37

211-7

313E-7

31-37
Tar n

1333 225E-7

S3 111E-33

13333 11-iS

l.L

1333

S3

II

333333

117

1.15E4-09

RR

323E-S3

S13E-83

85'E-OS

115E-I;

133E-7

199E-07

223E-7

21f

2SZE-0;

1J4Et09

1.14E+09

1.I3E+03

.a

1.13E+09

..12E-i-09

1.12E-09

l.IIE*39

EJF

21-35

7§3M3

943EH6

112EH7

111-7

13H7

22E-7

223E-7

28IJEH?

21-7

Table 4.23: Standard Deviation

EDFRR EC:RR3C

133E-37

11-7

2E-7

232E-7

21-7

21-7

323E-7

J':-H;

•ci,'

V P
I"-3)

3E-7
• in" .',7

3-sc-fj;

' 32E-37

323E-7

LL%~

221-

E73E-

SEE-;

732E-,

113E-:

13IE-;

132E-!

LSTRR LS1R3QLSTRICIJ LSTRF .31RRLS1FRR3CJ

: 721E-3§

:1l-37

lff-37

r: E-13 31-35 'E

31-33 33IE-33 il-l

I33E-7 11-7 iS'M

•lffi-7

22SE-7

2E-7

22SE-7

37E-37

11-7 '1-C

21-7 2IK

2E-7 2E-?

333E-7 233E-7

E-5

S7E-7 i'E-33 131E-731E-7IE-7 33EE-2

-E-l

322E-

321E-!

13E-I

'21-1

l,35E-S3 6 5t-Ub

I512EE-7 31-1
7 ' «Z_P

6 2«t-i

623EE-

521-

6333E-!

3'?

C 2E-!

»tl-

33l:-lJ,

3E-I

'mm

31-33

'1-7

'1-37

' 1-i7

21-i7

21-7

21-i7

21-i7

31-i7

Max Tardiness

-FCFS

-RR

- EDF

-EOFRR

EDFRRGCD

EDFRRLCM

-ST

— LSTRR

LSTRRGCD

~ —LSTRRLCM

—— LSTRF

•—— LSTRFRR

-—-LSTRFRRGCD

LSTRFRRLCM

lOOOOO 200000 300000 40000-0 SOOOOO 600000 700000 SOOOOO 900000 1000000

Number of jobs

Figure 4.24: Maximum Tardiness

Figure 4.24 shows that maximum tardiness is not fixed it vary on the workload.

However, it can be observed from the graph point of view that LSTRF, LST, RR,

LSTRR, LSTRRGCD, LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM,

90

LSTRFRR, LSTRFRRGCD, LSTRFRRLCM and FCFS showed a sharp rise from

100000 to 1000000 number of jobs as well as overlap one another. However, there is

a slight difference between the algorithms. Results showed that LSTRF and LST have

the best performance, while LSTRFLCM and EDFRRLCM showed the worst

performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 128 procesors

executing 100000 to 1000000 variations of jobs were computed. Table 4.24, showed

the standard deviation of Figure 4.24 results.

Table 4.24: Standard Deviation

SlafdD?,^

FC'S
IT

E3F E01 EC'R^GCO E3RFKj; lst iTRR

1133 ICF1 12-E-11 1l'E-11 ioiE-r 131E-11 ICE-4 ' lilE- 1 11-1

23133 lilE-'l 13'E-ij 11-11 'iJIE-11 1.1-11 til:-' ' U1E- i 11E-1

31.. lilE-'l 13'E-H 11-11 'oiE-r 13!E-11 UF' 11- 1 11E-1

ill... HIE-'* 13'E-il 11-11 11E-1' 11-11 131E-' ' 'tlE- 1 11E-1

«u 1HE-11 i:ie-ii 11-11 joiE-r 11-11 mi-' - :C1E- 1 11E-1

:!i 1E-1 132E-11 11-11 ii-t 11-11 11-'' 11- 1 102E-1

70S" 12-1 12-11 12-11 'iji-r 11-11 IE-' ' 12- 1 '01-1

3133 IE- 12-11 11-11 ih 11-11 IE-'' H2E- 1 12E-1

JUL 11-11 132E-11 12E-11 1H 11-11 1C2E--' U2E- 1 1E-1

'iff3 12-11 132E-11 12-11 'OH 133E-11 IE-'' 12- i 11-1

LSTRRGGI

11-

1C1E-

11-
<

IE-
A-

£'

'il'

CELSIRLC LSTR- .

'1 11E-'1 131E-11 '

:i 11E-'i 1irE-11 '

1 11E-" 11-11 '

1 'il:-" 11-11 '

1 U1E-" 11-11 '

1 'E-" 132E-11 '

1 •*£•"• 132E-11 '

"• 'E-'l lffi-11 '

•\ 12E-'' 132E-11

1 12E-" 11-11

iTvUJ! ISlFUCWSlFRRLi

l£-il

E-11

TQ1E3+11

Mi'
1J1E-11

101E+11

101E+11

1.01EH1

1JB11

1.IB11 1.01E+11

lltll 11M1
IJEE+11 \M
1E-11 1.1*11

1E-11 'm

ijbii""• 'W\

4.2.8 Job Variations Sharcnet Traces

We incorporate scalability test of scheduling algorithms under an increasing real

workload. Meanwhile, we formed ten (10) data sets by using 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, 98% of the traces files workload, 100000, 200000, 300000,

400000, 500000, 600000, 700000, 800000, 900000 and 1000000 processes,

respectively.

91

Avg Turnaround Time

l.OOE+09 t

10DE-3S

I.OOEh-07

l.OOEfOS

l.OOEtOS

1.00Et34

J-

100000 200000 300000 400000 500000 600000 700000 sooooo 9000001000000

Numberof fobs

•FCFS

•RR

• EDF

e?«3;c:

e:z"l:w

lST

-LSTRR

- LSTRRGCD

- LSTRRLCM

-LSTRF

•LSTRFRR

•LSTRFRRGCD

-LSTRFRRLCM

Figure 4.25: Average Turnaround Time

This experiment was carried out using 64 numbers of processors. However, as the

number of jobs increased, average turnaround time increased as well. Based on the

general observation of Figure 4.25, LSTRRGCD, EDFRRGCD, and LSTRFRRGCD

showed a sharp rise from 100000 to 2000000 number of jobs, then from 200000 to

300000, then a smooth from 300000 to 1000000 as well as overlap one another.

However, there is a slight difference between the algorithms. LSTRFRRLCM and

LSTRRLCM showed a sharp rise from 100000 to 2000000 jobs, then from 200000 to

300000, then a smooth from 300000 to 900000 number ofjobs, then a sharp rise from

900000 to 1000000 number ofjobs. LSTRR, EDFRR, and LSTRFRR are smooth and

steady from 100000 to 7000000 number of jobs, then a sharp rise from 700000 to

800000 number of jobs, then a slight fall from 800000 to 900000 number ofjobs, the

finally a sharp rise from 900000 to 1000000 number of jobs. LSTRF, LST, RR,

results, showed a sharp rise from 100000 to 200000 number of jobs, from 200000 to

300000 number of jobs, and a sharp fall from 300000 to 400000 number ofjobs, then

sharp fall from 400000 to 600000 number of jobs, then a sharp rise from 600000 to

92

700000 number of jobs and a sharp rise from 700000 to 800000 number of jobs, then

a slight fall from 800000 to 900000 number of jobs, then finally a sharp rise from

900000 to 1000000 number of jobs. EDF has shown a sharp rise from 100000 to

200000 number of jobs, anda slight fall from 200000 to 300000 number of jobs, and

a sharp rise from 300000 to 400000 number of jobs, then sharp fall from 400000 to

600000 number of jobs, then a sharp rise from 600000 to 700000 number of jobs and

a sharp rise from 700000 to 800000 number of jobs, then a slight fall from 800000 to

900000 number of jobs, and finally a sharp rise from 900000 to 1000000 number of

jobs. Meanwhile, FCFS a sharp rise from 100000 to 2000000 number of jobs, then

from 200000to 300000, then a smooth from 300000 to 700000 number of jobs, then a

sharp rise from 700000 to 800000 number of jobs, then a slight fall from 800000 to

900000 number ofjobs, and finally a slight rise from 900000 to 1000000 number of

jobs. Results showed that LSTRF and LST have the best performance. While

LSTRFRRGCD then EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 64 procesors

executing 100000 to 1000000 variations ofjobs were computed. Table 4.25, showed

the standard deviation of Figure 4.25 results.

Table 4.25: Standard Deviation

Safari I'f.s::''

FCFS

'::•::: i«-k

;::3ii am

e: 7i3E-r

:::•::: ie-j;

HZ 3ME-7

?:z §1-7

'3 'KE-08

r:z MiE-i

y.:i ' 19E-10

IIClCCO 'DE-11!

424E-06

'HE-OB

IK

IfE-O7

IK

11-I7

2eiE-o:

542E-09

11-05

81-03

edf e:frr

/c::-i'

* j .-*(

lif-7

'.if-'*

EDFRRGCD

-13E-03

634E-08

238EO)

324E-09

391E-B

-151E-39

542E-M

575E-09

663E-09

§73E-'B

EDFKLC1

44EE-08

ItE-il

m*

33EE-09

4EE-I3S

57iE-l

721E-M

814E-0S

9E-0S

3£3E-'i]

233E-!

«-l

630E-I

646E-I

8COE^i

m-\

144E-

373E-

m

IE

-i

93

LSTRR LilKSt: LSRRLCfv' 33W L5WR1

§2« 333E-C5 23IE-33 lft#Y.5i.

1SEHT 553E-:3 3E-33 33'E-Ct 164E-S

22IE-F 223E-3; '33E-33 E38E-(6 22-1E-

253E-07 333E-33 IK 322E-i?2E-i

299E-07 350E-CS 2IK ?E-ii;^

352E-07 iJE-33 232E-33 7E-ii3E^

4SB: 437E-]? 304E-C? "3E471E-!

siE-l Y!H* 3£-33 3'?E-C5 E4EE-?

I21E-W 57E-3 IOE-j 3:3E-K:23E-I

6"2E-09 3'3E-3« 2E-1J 3S-tH*£

RLSTOlJ L5TRFRPLC

7 37;E-33 2E43

1 5KE-0S 344E-03

7 222E-B 12E-33

7 298E-JS 1S2E-35

7 333E-53 188E-03

7 31E-33 21«i

7 :;:E-M 258E-09

f: HE-33 2ME-33

!; 562E-39 348E-09

I 5;7E-3: 2E-13

Avg Waiting Time

1.00E+09

l.OOE+OS t—

1..00E407

j

1
imms 4—•

IJOOE+QS

l.QOE+04

100000 20Q000 SOOOOO 40OOOO 500000 630D00 700000 800000 900000 1000000

MumberofJobs

•RR

'EOF

-EDFRR

•EDFRRGCD

-EDFRRLCM

'1ST

-LSTRR

-LSTRRGCD

-LSTRRLCM

-ISTRF

•LSTRFRR

-LSTRFRRGCD

LSTRFRRLCM

Figure 4.26: Average Waiting Time

It can be observed from Figure 4.26 that LSTRRGCD, EDFRRGCD, and

LSTRFRRGCD showed a sharp rise from 100000 to 2000000 number of jobs, then

from 200000 to 300000, then a smooth from 300000 to 1000000 as well as overlap

one another. However, there is a slight difference between the algorithms.

LSTRFRRLCM and LSTRRLCM showed a sharp rise from 100000 to 2000000

number of jobs, then from 200000 to 300000, then a smooth from 300000 to 900000

number of jobs, then a sharp rise from 900000 to 1000000 number of jobs, probable

reason may be due to heavy workload. LSTRR, EDFRR, and LSTRFRR are smooth

and steady from 100000 to 7000000 number of jobs, then a sharp rise from 700000 to

800000 number of jobs, then a slight fall from 800000 to 900000 number of jobs, the

finally a sharp rise from 900000 to 1000000 number of jobs, possible reason may be

due to heavy workload. LSTRF, LST, RR, results, showed a sharp rise from 100000

to 200000 number of jobs, from 200000 to 300000 number of jobs, and a sharp fall

from 300000 to 400000 number of jobs, then sharp fall from 400000 to 600000

number of jobs, then a sharp rise from 600000 to 700000 number of jobs and a sharp

rise from 700000 to 800000 number ofjobs, then a slight fall from 800000 to 900000

94

number of jobs, then finally a sharp rise from 900000 to 1000000 number of jobs,

possible reason may be due the varying number of jobs and increase in heavy

workload. EDF has shown a sharp rise from 100000 to 200000 number of jobs, and a

slight fall from 200000 to 300000 number of jobs, and a sharp rise from 300000 to

400000 number ofjobs, then sharp fall from 400000 to 600000 number ofjobs, thena

sharp rise from 600000 to 700000 number of jobs and a sharp rise from 700000 to

800000 number ofjobs, then a slight fall from 800000 to 900000 number ofjobs, and

finally a sharp rise from 900000 to 1000000 number of jobs. Meanwhile, FCFS a

sharp rise from 100000 to 2000000 number ofjobs, then from 200000 to 300000, then

a smooth from 300000 to 700000 number of jobs, then a sharp rise from 700000 to

800000 number ofjobs, then a slight fall from 800000 to 900000 number ofjobs, and

finally a slight rise from 900000 to 1000000 number of jobs. Results showed that

LSTRF and LST have the best performance, while LSTRFRRGCD thenEDFRRLCM

showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 64 procesors

executing 100000 to 1000000 variations ofjobs were computed. Table 4.26, showed

the standard deviation of Figure 4.26 results.

Standard De -attc

COO

20I

00

401

HI

M5I

11

IOJ

11

153313

-CFS

334E-33

418E-57

?is-;7

HiE-i7

524E-P

lE-il

117E-1S

11SE-10

RR

4E-3:

783E43

117E-0-

14E-H7

1E-S;

261EH

542E-

EDF

331E-33

s"4E-C6

'E-37

17SE-i7

3J1E-:7

434E-I9

:M

554E-:9

Table 4.26: Standard Deviation

DTtt

1E-57

171EHF

2E47

2KE-07

S38E-47

ED-RRGCC ED=RFLCW IF LSTF.R L5TRS3CD LSTRRLCM LST.F
4'2E-:S i-E-Cc 2E-33 523E-K 3E-35 233E-K 22EE-E6
S33E-3S oE-3: 44.:E-:5156E-07 3E-35 3E-K 3E-33
2E-R 22M S23E-33 22« 223E-3: 133E-K 5C-E-I5

LSTKFRI

IE

151-0'

2E-IJ

2PE-ff

312E-I

3E-!

433E-I

54JE-01

S23E-!

67JEH

544E-03

E21E-03

173E-03

324E-2E* 3S-33 643E-K 253E-0; 3E-> 1E-K 3IK
391E-': -6EE-CS ;E-3wtti: 3E-35 2E-B 6E3E-C&
451E-CE* rZ-ii 95lE-0^ 352E-07 IKE-* 25'E-O'r 13E-35
3i2E-S 723?E-C& US-JMSB' 4E-33 30-E-tt 113E-J7
5E-3: ITiE-i: 3;2E-JH4iE-(J: 544E-35 345E-M 3E-K

663E-C9 §E-K 433E-23 f21E-E 573E-S 4E€ 3E-3:
5E-33 3E-'3 IsTE-JjP'E-O: SE-5 2E-'i 3E-K

95

L37RFRR3C:

376Et(38

343E-M

221E€

258E-09

333E-W

3«

47?E?M

4E-M

:E-M

:7,E€

L3TRFFRLCW

2E-83

3-UE-03

123E-I3

1E-K

1E-33

214E-W

3-L8E-03

1.93E-39

1.S3E-39

1.70E+09

1.S0E4O9

| l.SOEr{39
i

1.40E4-O9

1.3OE+09

113E-39

1 i3E-39

Max Tardiness

__RR

E-t^j: vi

Li_3FP?

-L5_?F-PGC?

••-• LSTRFRRLCM

*

*

*

*

^ /
j**** !

' ~ ' sr /

^ 1

.«* 7

130333 233333 !33333 433333 533330 60000Q 700000 800000 900000 1000€00:

Numberof jobs

Figure 4.27: Maximum Tardiness

Figure 4.27 shows that maximum tardiness is not fixed it vary on the workload.

However, it can be observed that LSTRF, LST, RR, LSTRR, EDFRR, LSTRFRR,

FCFS and EDF are overlap one another, showing a sharp and steady rise from 100000

to 700000 numbers of jobs and a high rise from 700000 to 800000 then a high rise

from 800000 to 1000000 numbers ofjobs. Meanwhile, LSTRRGCD, LSTRFRRGCD,

showed sharp rise from 100000 to 200000 number of jobs, from 200000 to 300000

number of jobs, from 300000 to 400000 number of jobs, from 400000 to 500000

number of jobs, then a sharp rise from 500000 to 1000000 number of jobs, possible

reason may be due to heavy workload. EDFRRGCD showed sharp fall from 100000

to 200000 number of jobs, possible reason may be due less workload, then a sharp

rise from 200000 to 300000 number of jobs, from 300000 to 400000 number of jobs,

from 400000 to 500000 number of jobs, then a sharp rise from 500000 to 1000000

number ofjobs. LSTRFRRLCM, LSTRRLCM showed sharp rise 100000 to 200000

number of jobs, from 200000 to 300000 number of jobs, from 300000 to 400000

number of jobs, from 400000 to 500000 number of jobs, from 500000 to 1000000

number of jobs, then finally a sharp rise from 900000 to 1000000 number of jobs.

96

EDFRRLCM showed sharp rise 100000 to 200000 number of jobs, from 200000 to

300000 number of jobs, from 300000 to 400000 number of jobs, from 400000 to

500000 number of jobs, then a sharp rise from 500000 to 600000 number of jobs, a

sharp fall from 600000 to 700000 number of jobs, then smooth and steady from

700000 to 1000000 number of jobs. All algorithms seem to be overlapping one

another. However, there is a slight difference between the algorithms. Results showed

that LSTRF and LST have the best performance, while LSTRFRRGCD and

EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 64 procesors

executing 100000 to 1000000 variations ofjobs were computed. Table 4.27, showed

the standard deviation of Figure 4.27 results.

5if3rJ3;,iat5r

IOC

M

FC=S RR

7E-'3 7E-13

7E-'J •H-\]

7E-') 7e-i;

711E-3 7".E-i;

7B'l •E-13

714:-) 7E-13

71£-'j ?e-i;

:HE-1

'HE-'

ME'

?E-'3

71E-'J

'it;.','

!•£-'

Table 4.27: Standard Deviation

EPSI EDFRttl LiT L5TRR LiTRRGw L;"ffiE .5"F ilRFS
7E-1 EE-i: 7E-1: "!-'(EEE "1-13 EE-'i
7E-« -;K -C7E-1L 7J3E-1l 7E-'l '3M IFi
7E-'3 7I-i: 7E-13 7BE-1i 'ffi-'l ''3E-1. EH
F2&E-10 7E-13 711E-1: ITH :E-'i ""E-11 71'E-'i
fE-'S 7'2E-i; 7E-13 M-li :E-'i EE-1) 7EE

SE-'D :'4E-i: 7JiE-!H H3E-'(3EE "4E-13 7E-'i
KE-1 713E-i: :E-1) 341-13 342E-'(IE-i: 7E-<t
!:¥A EE-li iE-13 iE-13 iE-"t 3E-1i :E-'i
1E-1 '1-1' 'E-f 10E-11 'E-'l ''M 1E-11
1E-H '32E-1' 'OE-1' 'iJE-'l 'E-1 '1-1' 1E-1

EDFRR.

!E-1

:E-iy

7ii"-'ii

:14E-'3

3E-1

96SE-*0

U'Z-

SE-

5E-

1E-

97

ET^"~3CD ISFiE'J

EE-1) "5E-13

EE-U EE-U

'E-13 EE-ti

025*1) 323E-13

331E-11

j:je-u

3S-13

M-1)

ifc-U

OE-13

WE-U

?xE-U

EH

In contrast to Figure 4.25, experiment was carried out by varying the number from 64

processors to 128 numbers of processors.

Avg Turnaround Time

1.00E409 -r

l.OOEtOS

.2

I

i.OOE^-07

1.0QE-HJ6

100000 200000 300000 400000 500000 600000 700000 SOOOOO 9000001000000

Numberof jobs

-FCFS

— RR

—EOF

— EDFRR

- •EDFRRGCD

- EDFRRLCM

... ._ LST

_» LSTRR

- -LSTRRGCD

• —LSTRRLCM

—LSTRF

—•LSTRFRR

— LSTRFRRGCD

LSTRFRRLCM

Figure 4.28: Average Turnaround Time

However, it can also be observed that from the graph, as the number of jobs is

increasing, average turnaround time is increasing. Basedon the generalobservation

of Figure 4.28, LST, RR, LSTRR, LSTRRGCD, EDFRRGCD, LSTRFRR,

LSTRFRRGCD, LSTRFRRLCM, and LSTRRLCM showed sharp rise from 100000

to 2000000 number ofjobs, from 200000 to 300000, then a slight rise from 300000 to

500000 number ofjobs, then a slight fall from 500000 to 600000 number ofjobs, then

a slight rise from 600000 to 700000 number of jobs, finally smooth and steady from

700000 to 1000000 number of jobs. LSTRF showed sharp rise from 100000 to

98

2000000 number of jobs, from 200000 to 300000, then a slight rise from 300000 to

500000 number of jobs, then finally smooth and steady from 500000 to 1000000

number of jobs. EDFRR showed sharp rise from 100000 to 2000000 number of jobs,

from 200000 to 300000, then a slight fall from 300000 to 400000 number of jobs,

then a slight rise from 400000 to 500000 number of jobs, then a slight fall from

500000 to 600000 number of jobs, then a slight rise from 600000 to 700000 number

of jobs, finally smooth and steady from 700000 to 1000000 number of jobs.

EDFRRLCM showed sharp rise from 100000 to 2000000 number of jobs, from

200000 to 300000, then a slight rise from 300000 to 500000 number of jobs, then a

slight fall from 500000 to 600000 number of jobs, then a slight rise from 600000 to

700000 number of jobs, then smooth and steady from 700000 to 900000 number of

jobs, then finally a sharp rise from 700000 to 1000000 number of jobs, possible

reason may be due to heavy workload. Meanwhile, FCFS showed sharp rise from

100000 to 2000000 number of jobs, from 200000 to 300000, then a slight rise from

300000 to 500000 number of jobs, then a slight rise from 500000 to 700000 number

of jobs, then a slight fall from 700000 to 800000 number of jobs, then a slight fall

from 800000 to 900000 number of jobs, then finally slight rise from 900000 to

1000000 number ofjobs.

Moreover, RR, LSTRR, LSTRRGCD, EDFRR, EDFRRGCD, LSTRFRR,

LSTRFRRGCD, LSTRFRRLCM and LSTRRLCM are overlapping one another. But

there is a slight difference between the algorithms. Results showed that

LSTRFRRLCM and LSTRRLCM have the best performance, while FCFS and

EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 128 procesors

executing 100000 to 1000000 variations of jobs were computed. Table 4.28, showed

the standard deviation of Figure 4.28 results.

99

=CFS

EE-33liffli

2111

3COO0O

4C0OO0

jfiiri

3EEE

2E-B

3EE

SEE

SEE

lE-'i

112EE

l.OQE-i-09

1.00£+08

1.00E+07

1.00E+06

Table 4.28: Standard Deviation

EDFRRLCM

3EE

564E-36

1MEE

233EE

343EE

3EE

491E-:£

3E-3:

685E-:£

RR EOF ED::* ECFRR3C3

I 2J4E-33 3EE

I 31t0! 4EHi :fi:-i

« IE-IB 1E-ES 2E^

E-08 !E« 2EE 2E-i

323E-09 2.4E-I3 327E-C9 325E—'

iS MM 352E-C8 IEM

B I11E409 442E-C9 -E-

§ 3E€ 4EE i&

§ 414W 55EEE9 :E-i

8 4.2ffi-fr09 597EH9

8 i

L£T

237E-

•22E-

i-:e-

223E-

2E-

233E-

21EE-

:E-

I3 3EE

ee-:e

rEE

'3 2EE

3EE i

13)EE

15 "1EE

48E-::-

d3;:-.5

LSTHLCV

21E-33

3E-I

LSTRR3CD

3EE

432EE

1EE

24'EE

3EE

32IEE

4UE-3r

4EE

JEE

3EE

' E-l

2EE

323E-I3

Avg WaitingTime

L5TR5

235E-08

'Tl-ll

'53E-09

222E-M

223E-09

2E-08

313EEi@

323E-09

LSTRFRR

3EE

3E-33

1WEE

231EE

327E-i?

352E-C9

441EE

484E-CJ

3E-t?

3EE

100000 200000 300000 400000 500000 500000 70000a SOOOOO 900000 100000O

Numberofjobs

ETBfRRGCI

3E-33

4E-33

2E-33

323EE

4EE

IE-33

31IEE

SEE

LSTRFRRLCM

1.E41

im

ISIEiOl

1.3M

1E€

1E€

2E-M

2JE?I

2JM

3ErM

Figure 4.29: Average Waiting Time

It can be observed from Figure 4.29 that LST, RR, LSTRR, LSTRRGCD,

EDFRRGCD, LSTRFRR, LSTRFRRGCD, LSTRFRRLCM, and LSTRRLCM

showed sharp rise from 100000 to 2000000 number of jobs, from 200000 to 300000,

then a slight rise from 300000 to 500000 number of jobs, then a slight fall from

500000 to 600000 number of jobs, then a slight rise from 600000 to 700000 number

100

ofjobs, finally smooth and steady from 700000 to 1000000 number ofjobs. LSTRF

showed sharp rise from 100000 to 2000000 number of jobs, from 200000 to 300000,

then a slight rise from 300000 to 500000 number of jobs, then finally smooth and

steady from 500000 to 1000000 number of jobs. EDFRR showed sharp rise from

100000 to 2000000 number ofjobs, from 200000 to 300000, a slight fall from 300000

to 400000 number of jobs, a slight rise from 400000 to 500000 number of jobs, a

slight fall from 500000 to 600000 number of jobs, then a slight rise from 600000 to

700000 number of jobs, finally smooth and steady from 700000 to 1000000 number

of jobs. EDFRRLCM showed sharp rise from 100000 to 2000000 number of jobs,
from 200000 to 300000, then a slight rise from 300000 to 500000 number of jobs,

then a slight fall from 500000 to 600000 number of jobs, then a slight rise from

600000 to 700000 number of jobs, then smooth and steady from 700000 to 900000

number of jobs, then finally a sharp rise from 700000 to 1000000 number of jobs.

Meanwhile, FCFS showed sharp rise from 100000 to 2000000 number ofjobs, from

200000 to 300000, then a slight rise from 300000 to 500000 number of jobs, then a

slight rise from 500000 to 700000 number of jobs, then a slight fall from 700000 to

800000 number ofjobs, then a slight fall from 800000 to 900000 number ofjobs, then

finally slight rise from 900000 to 1000000 number of jobs.

Moreover, RR, LSTRR, LSTRRGCD, EDFRR, EDFRRGCD, LSTRFRR,

LSTRFRRGCD, LSTRFRRLCM and LSTRRLCM are overlapping one another. But

there is a slight difference between the algorithms. Results showed that

LSTRFRRLCM and LSTRRLCM have the best performance, while FCFS and

EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each

algorithms turnaround time of each set of experiments, based on 128 procesors

executing 100000 to 1000000 variations ofjobs were computed. Table 4.29, showed

the standard deviation of Figure 4.29 results.

101

mm:-

313338

433331

333333

333333

ini. ii

wo

FCF5

572E—OS

SsiEHIc

23433-33

33333-33 2I3E-83

323E-83

33c-33

443E-83
i GILT li".

33^33-83

59cE-09

13233-33

8BE-*

13333-18
j.r

liL-

1.70E-HJ9

1.60E+09

1.50E+09

I 1.40B09
1

l.ME+09

1.20E+09

26CE-0333

EC"

233E-33

333E-33

133E-33

132E-33

247E-33

233E-33

31E-83

337E-35

4'3E-33

42-83

Table 4.29: Standard Deviation

EDFRR

373E-33

:E-33

'34E-33

231E-83

3PEE

332E-33

441EE

434E-33

333E-33

337E-33

edfrrgcd edcrrj

377e-:

321E-

231E-

233E-

327E-

•1

334E-

-45E

E3E'

337E':E

:7e-:!

333E-

s33E'

13433

257E-

3435

33333

43333-83

313E-I

if

2I8E-83
3!8E-ff

.57RR LSTRRGCD .5"RR_CM iR: LSTRR

373:-33 333E-83 283E-88 189E-C8 373E-03

1268E-C3 57CE-0S

21E-33'34E-83

i3 133E-i§23'E-93

JEFF

333E-

:72E-

'33E-

231E-

m-.

323E-

437Ei

441-

333E-

3E-

S3 3. 4l3E-So 32333-

1E-33 H3E-33 IflicH

23'E-33 24'E-83 138E-!

130E-O9

153E-83

22JE-09

lilE-DS

} "C "f E-09 2C2E-CS 327E-Cj33?

2I3E-83

-33 3E-38 313E43

332E-83

3I-83333E-33 3E-83 333E

332E-33 32333-83 192E-«

4E-33 41433-13 U&

43433-33 433E-88 272E-i

hEE 313E-P3 32ot

8 223E-33 33233-83

I 235E-8344'E4

3 2I-[S4]4E-§5

93 313E-3I333E-83

326E-C9 53S6E-09

Max Tardiness

.jf*'T

v> 1.3IR1CU

'32E-33

233E-35

333E-33

'33E-33

'33E-33

3314E-33

233E-33

273E-33

333E-33

100000 200000 SOOOOO 400000 500000 600000 700000 SOOOOO 900000 10O0OOO

Numberof jobs

— FCFS

-~E0:53

EOFS'GIO

E3-HXU\

—LSTRR

« ~LSTP,gGCD

—LSTRRLCM

—LSTRF

•-ISTRFR8

—LSTRFRRGCD

••• LSTRFRRLCM

Figure 4.30: Maximum Tardiness

Figure 4.30 show's that maximum tardiness is not fixed it varies on the workload.

However, it can be observed that LSTRF, LST, RR, LSTRR, LSTRRGCD,

102

EDFRRGCD, LSTRFRR, LSTRFRRGCD, FCFS EDF, LSTRFRRLCM,

LSTRRLCM and EDFRRLCM, showed sharp rise from 100000 to 200000 numbers

of jobs, from 200000 to 400000 numbers of jobs, from 400000 to 500000 numbers of

jobs, then a slight fall from 500000 to 600000 numbers ofjobs, then a slight rise from

600000 to 800000 numbers of jobs, then finally smooth from 800000 to 1000000

numbers ofjobs. EDFRR showed sharp rise from 100000 to 200000 numbers of jobs,

then a sharp rise from 200000 to 300000 numbers of jobs, then a slight fall from

300000 to 400000 numbers of jobs, a slight rise from 400000 to 500000 numbers of

jobs, then a slight fall from 500000 to 600000 numbers of jobs, then a slight rise from

600000 to 800000 numbers of jobs, then finally smooth from 800000 to 1000000

numbers of jobs. Meanwhile, EDFRRLCM showed sharp rise from 100000 to

200000 numbers of jobs, from 200000 to 400000 numbers of jobs, from 400000 to

500000 numbers of jobs, then a slight fall from 500000 to 600000 numbers of jobs,

then a slight rise from 600000 to 800000 numbers of jobs, then a slight rise from

800000 to 900000 numbers of jobs, then a sharp rise from 900000 to 1000000

numbers of jobs. Results showed that LSTRFLCM and LSTRF have the best

performance, while LSTRFRRGCD and EDFRRLCM showed the worst

performance. To ensure that the value obtained is consistent, standard deviation of

each algorithms turnaround time of each set of experiments, based on 128 procesors

executing 100000 to 1000000 variations of jobs were computed. Table 4.30, showed

the standard deviation of Figure 4.30 results.

Table 4.30: Standard Deviation

iK Ml

z'JUl.

Hi

Ml"

n;

DC

ai;

i4E-r

pp.

-is.-

'fJE-

"I-

"£•

"aE-

"5E-

'1E-

7E-

121E-

"&-

EC: ELfflR E::"GCD 5fm

1' IHE-" Iffi-" IKE-"

r 1'ME-i; lie-'! ie--

!' IE-" lit-'1 1SE-'

f 111E-1 IKE-". 11F

r r-v' ie-" he-'

r re-i ite-i ife--

r isi iie-h iif

1' 12IE-" 121E-" 12'E-'

1' 12C-H 124E-K 12S-'

f 12E5»'i 123E-" IE-'

lE-'l

1SE-1

11E-1

IT:-''

1°=-"

lE-'l

I2IE-M

124E-H

LST

':€-!'

- jiE-r

'1-1'

"1E-1'

'E-f

"tE-r

'21E-1'

'24E-1'

'K-r

LEPR

'&E-1*

1E-I'

'OE-r

^E-»

•BE-r

'2'E-r

124E-1'

7:E-f

103

L1RK3

'[€-11

1C5E-11

'HE-M

'1JE-11

MiE-'l

TE-<1

'liE-11

'21E-1

'24E-11

'2E-1

L5"RFLC"

'tt-'l

'EJ1

'iE-il

'11E-1

'E-1

' £Z~ i

L7F

'•::E-1'

'34E-1'

"JE-1-

'IIE-f

115E-11

"1-11

MSE-11

7E-1'

'25E-1'

LJIHhK s^m mmm

ICE-

IKE-

1 U4E- ' "M

11 :e- - 'i-r

1 <I- ' -:i-i'

'1 1'lE-' "H

1 "t"E- ' 'E-1'

1 !"E- ' '-'i-Y

'1 I'iE- • HE-r

1 <21E- ' '21E-V

1 '24E- ' '24E-1'

11 12E- ' 7f-f

CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

5.1 Chapter Overview

The chapter summarizes the major findings of this research, beginning from literature

review, algorithms development and benchmarking.

5.2 Conclusion

This research had dual goals: to integrate new robust hybrid methods based on

baseline approaches and to implement, evaluate and test these developed algorithms

with real benchmark traces on real computational grid environment. These two

objectives have been realized.

5.2.1 Outcome of the Literature Review

The literature review showed that though much work has been done on grid

scheduling, not much report is found dealing with scheduling algorithms that

combined deadline and slack time in their development. In the same vein, the

presented algorithms were not implemented using hard- and soft- real-time system

approach.

104

5.2.2 Outcome of Algorithm Development

Fourteen (14) algorithms were developed. Of the fourteen, five (5) are baseline

approaches, while the rest are hybrids based on real-time system and round robin

fairness, using operational research (OR) concepts.

Extensive performance analyses were carried out using real workload traces in

real computational grid environment to evaluate the efficiency and robustness of the

developed grid scheduling algorithms with respect to the following performance

metrics: average turnaround time average waiting time and maximum tardiness.

As expected, the time required to perform scheduling in the dynamic situation

becomes stable when varying the number of jobs and processors under an increasing

real workload. However, it is clear that the performance metrics (average turnaround

time, average waiting time and maximum tardiness) strongly dependent on the

number of available processors. Their performance becomes higher when the numbers

of processors are increased.

Based on the comparative performance analysis between the developed

scheduling algorithms and the baseline approaches (the chosen benchmarks), results

have shown that LSTRF, LSTRFRRLCM and LST scheduling algorithms have the

best performance among all the compared scheduling algorithms (FCFS, RR, EDF,

LSTRR, LSTRFRR, LSTRRGCD, LSTRFRRGCD, EDFRRGCD, LSTRRLCM, and

EDFRRLCM), while EDFRRLCM and FCFS showed the worst performance.

Therefore, we conclude that LSTRF, LSTRFRRLCM and LST scheduling

approaches, which could be used in solving real grid computational challenges and

could be made as part of the general grid scheduling solution policy. This conclusion

stems from the fact that the real grid infrastructure requirements (Short Turnaround

Time, Short Average Waiting Time and Short Tardiness Time) as well as the

maintenance of scalability under heavy workload and varying number of processors in

a real computational grid environment are adequately met by these developed

algorithms.

105

Thus, combining real-time system and round robin fairness (soft real-time system)

techniques has maximized the number of priority tasks in meeting their deadlines in

addition to creating fairness between the tasks and processors.

5.3 Research Limitation

Based on our research we cannot draw any conclusion of the best algorithms on the

real distributed environment. What will be the best performing algorithms with

respect to green parameters are yet to be considered.

5.4 Recommendations and Future Works

Further exploration of the proposed scheduling techniques should be done in future.

Future work includes the following:*&•

• Refinement of the existing algorithms.

• Developing some new algorithms may be based on some evolutionary

approaches like Genetic Algorithm, Simulated Annealing or Ant Optimization.

• We will highlight incorporation of the green parameters with the existing

algorithms.

• Testing the proposed scheduling model in true heterogeneous distributed

environment can also be done in order to evaluate its performance in true grid

environment.

106

REFERENCES

[1] I. Foster, "What is the Grid? A Three Point Checklist," Argonne National
Laboratory and University ofChicago, 2002.

[2] I. Foster and C. Kesselman, "The Grid: Blueprint for a Future Computing
Infrastructure," Morgan Kaufmann, 1998.

[3] A. Abbas, "Grid Computing: A Practical Guide to Technology and
Applications," Charles River Media, 2004.

[4] F. Berman, F. Geoffrey, and J. G. Anthony, "Grid Computing: Making The
Global Infrastructure a Reality," Wiley Series in Communications, Networking

and DistributedSystem, 2003.

[5] M. Baker, R. Buyya, and D. Laforenza, "Grids and grid technologies for wide-
area distributed computing," International Journal ofSoftware: Practice and

Experience (SPE), December 2002

[6] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling
Scalable Virtual Organizations.," International Journal of Supercomputing

Applications,, vol. 15 (3). 2001..

[7] A. Bar-Noy, M. Halldorsson, H. Shachnai, and T. Tamir, "On chromatic sums
and distributed resource allocation," Information and Computation, vol. 140,

pp. 183-202, 1998.

[8] I. Foster and C. Kesselman, "Grid: Blueprint for a New Computing
Infrastructure," Morgan Kaufmann, 1999.

[9] L. Zhang, J. Chung, and Q. Zhou, "Developing Grid computing
applications," Discover Grid computing, developerWorks Journal, vol. 14-19,

February 2003.

107

[10] G. Alliance, "USC/Information Sciences Institute 4676 Admiralty Way, Suite

1001," Press Releases, c/o Carl Kesselman.

[11] A. L. Pereira, V. Muppavarapu, and S. M. Chung, "Role-Based Access

Control for Grid Database Services Using the Community Authorization

Service," IEEE Trans, on Dependable andSecure Computing, vol. 3, pp. 156-

166, 2006.

[12] G. Aram, K. Czajkowski, and K. Lerman, "Resource allocation in the grid

with learning agents," J. GridComput., vol. 3, pp. 91-100, 2005.

[13] R. Buyya, D. Abramson, and J. Giddy, "A Case for Economy Grid

Architecture for Service-Oriented Grid Computing," Proceedings of the

International Parallel and DistributedProcessing Symposium: 10th IEEE

International Heterogeneous Computing Workshop (HCW 2001), April 23,

2001, San Francisco, California, USA, IEEE CSPress, USA,, 2001.

[14] T. A. A. Project., December 2004.

[15] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, "Evaluation of

Job-Scheduling Strategies for Grid Computing. ," In 1st IEEE/ACM

International Workshop on Grid Computing (Grid 2000), Berlin, Lecture

Notes in Computer Science (LNCS), Springer-Verlag, Heidelberg, Germany, ,

pp. 191-202. ,2000.

[16] G. Mateescu, "Quality of Service on the Grid via Metascheduling with

Resource Co-scheduling and Co-reservation. ," International Journal ofHigh

Performance Computing Applications, SAGE Publications Inc, London, UK. ,

vol. 17, pp. 209-218, 2003.

[17] B. Wei and D. Zhang, "A Novel Least Slack First Scheduling algorithm

Optimized by Threshold," Control Conference, CCC, Chinese, pp. 264 - 268

2007.

108

[18] H. Myunggwon, C. Dongjin, and K. PanKoo, "Least Slack Time Rate first:

New Scheduling Algorithm for Multi Processor Environment," International

Conference on Complex, Intelligent and Software Intensive Systems., 2010

[19] E. M. Goldratt "Theory of Constraints," Great Barrington, MA : North River

Press operations research bottleneck and non-bottleneck work centers., 1999.

[20] G. Tibor, "A Resource Allocation Protocol for Providing Quality of Service in

Grid Computing, using a Policy-Based Approach," AICT-ICIW '06

Proceedings of the Advanced Int'l Conference on Telecommunications and

Int'l Conference on Internet and Web Applications and Services, IEEE

Computer Society Washington, DC, USA, 2006.

[21] K. Somasundaram and S. Radhakrishnan, ""Task Resource Allocation in Grid

using Swift Scheduler"," vol. IV, No. 2„ pp. 158-166., 2009.

[22] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, "A Toolkit for

Modelling and Simulating Data Grids: An Extension to GridSim. Concurrency

and Computation," Practice and Experience (CCPE), Wiley Press, New York,

USA, 2008.

[23] I. Leila, "Dynamic Resource Allocation Mechanisms for Grid Computing,"

IEEE International Conference on Testbeds and Research Infrastructures for

the DevelopmentofNetworks and Communities 2007.

[24] R. H. Gamma-Erich, J. Ralph, and V. John, "Design Patterns," Addison-

Wesley Professional, PtsEdn, 1995.

[25] L. Jun, G. Andre, and R. Catherine, "Efficient Algorithms to Solve a Class of

Resource Allocation Problems in Large Wireless Networks. ," WiOPT'09

Proceedings of the 7th International Conference on Modeling and

Optimization in Mobile, Ad Hoc and Wireless Networks IEEE Press

Piscataway, NJ USA, 2009.

[26] X. L. Du, C. J. Jiang, G. R. Xu, and Z. J. Ding, "A Grid DAG scheduling

algorithm based on fuzzy clustering.," J. Software, vol. 17, 2006.

109

[27] M. Dorigo and C. Blum, "Ant Colony Optimization Theory: A Survey,"

Theor. Comput. Set,, vol. 344: 243- 278, 2005.

[28] R. Buyya and M. Murshed, "GridSim: A toolkit for the modeling and

simulation of distributed resource management and scheduling for grid

computing.," Concurr. Comput. Pratice Exper. (CCPE), , vol. 14, p. 1175,

2002.

[29] C. Chun-Tian and L. Zhi-Jie, "Parallel algorithm for grid resource allocation

based on nash equilibrium.," Computat.,, vol. 1, pp. 53-66, 2006.

[30] R. Buyya, "Economic-based distributed resource management and scheduling

for grid computing, (Ph.D. dissertation), ," Melbourne, Australia: Monash

University, 2002.

[31] Subramoniam.K., M. Maheswaran, and M. Toulouse, "Towards a micro

economic model for resource allocation in grid computing systems.,"

Proceedings of the 2002 IEEE Canadian Conf on Electrical and Computer

Engineering, Manitoba, Canada., 2002.

[32] M. L. Weng, L. X. Chuliang, and Q. .D, "An Economic-based Resource

Management Framework in the Grid context.," Proceedings of the 5th IEEE

International Symposium on Cluster Computing and the Grid (CCG), Cardiff,

Wales, UK, 2005.

[33] L. FuFang and Q. DeYu, "Research on Grid Resource Allocation Algorithm

Based on Fuzzy Clustering. Future Generation Communication and

Networking, 2008," FGCN '08. 2nd International Conference, pp. 162-166.,

2008.

[34] Z. Ru-Huai, "The Net-Masking for the Fuzzy Clustering.," J. Xi'An

JiaoTong University,, vol. 14, pp. 29-36, 1980.

[35] S. Dawei, C. Guiran, J. Lizhong, and W. Xingwei, "Optimizing Grid Resource

Allocation by Combining Fuzzy Clustering with Application Preference" "

Control (ICACC), 2010 2nd International Conference, pp. 22-27., 2010.

110

[36] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini, "Economic Models
for Allocating Resources in Computer Systems. Resource Allocation, ," In

Scott Clearwater, editor, Market-Based Control: A Paradigm for Distributed

Resource Allocation, World Scientific, Hong Kong, 1996.

[37] C. Li and L. Li, "A Utility-based Two Level Market Solution For Optimal
Resource Allocation In Computational Grid.," Parallel Processing, 2005.

ICPP 2005. International Conference on, , pp. 23-30., 2005.

[38] R. Buyya, J. Giddy, and D. Abramson, "A Case for Economy Grid
Architecture for Service-Oriented Grid Computing " 10th IEEE International

Heterogeneous Computing Workshop (HCW 2001), In conjunction with

IPDPS2001, SanFrancisco, California, USA, April., 2001.

[39] Y. Adil, A. Abdul-Hanan, and A. A. Aboamama, "A bidding-based grid
resource selection algorithm using single reservation mechanism.," Int. J.

Comp. Appl,, vol. 16, 2011..

[40] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, "GridFlow:Workflow
Management for Grid Computing.," In 3rd International Symposium on

Cluster Computing and the Grid (CCGrid), Tokyo, Japan, IEEE Computer

Society Press, LosAlamitos., 2003.

[41] S. Lorpunmanee, M. N. M. Sap, and A. Abdul-Hanan, " fuzzy c-mean and
genetic algorithms based scheduling for Independent jobs in computational

grid," Jurnal Teknologi Maklumat, vol. 18, 2006.

[42] S. Lorpunmanee, M. N. M. Sap, and A. Abdul-Hanan, "Optimalisation ofa
Job Scheduler in the Grid Environment by Using Fuzzy C-Mean" " J. J. Appl.

Scl, , vol. 9, 2007.

[43] P. Florin, T. Dacian, C. Valentin, and C. Vladimir, "Fault-Tolerant
Scheduling Framework for MedioGRID System," EUROCON 2007 The

International Conference on "Computer as a Tool" IEEE , Warsaw,

September 9-12, vol. 1-4244-0813 2007.

Ill

[44] K. Snehal and D. Neeta, "Efficient CPU Scheduling: A Genetic Algorithm

based Approach," Ad Hoc and Ubiquitous Computing, 2006. ISAUHC '06.

International Symposium On -1/06/O2006IEEE., vol. 1-4244-0731, pp. 206 -

207, 2006.

[45] A. Bouyer, B. Arasteh, and A. Movaghar, "A new Hybrid Model using Case-

Based Reasoning and Decision Tree Methods for improving Speedup and

Accuracy," Iadis International Conference Applied Computing 2007, .

[46] R. Ivan, G. Francesc, and C. Julita, "Evaluation of Coordinated Grid

Scheduling Strategies," High Performance Computing and Communications,

HPCC '09. 11th IEEE International Conference pp. 1-10, 2009.

[47] Y.-P. Bu, W. Zhou, and J.-S. Yu, "An Improved PSO Algorithm and Its

Application to Grid Scheduling Problem," International Symposium on

Computer Science andComputational Technology, -5/08 © 2008IEEE, 2008

[48] P. Mathiyalagan, U. R. Dhepthie, and S. N. Sivanandam, "Grid scheduling

using Enhanced PSO algorithm," P.Mathiyalagan et al. / (IJCSE)

International Journal on Computer Science and Engineering „ vol. 02, pp.

140-145,2010,.

[49] Z. Pooranian, A. Harounabadi, M. Shojafar, and J. Mirabedini, "Hybrid PSO

for Independent Task scheduling in Grid Computing to Decrease Makespan,"

International Conference on Future Information Technology IPCSTT,, vol. 13

2011.

[50] V. S. SharmaKant, M. K. Mishra, P. P. Bhuyan, and U. C. Dey, "An Agent

Based Dynamic Resource Scheduling Model with FCFS-Job Grouping

Strategy in Grid Computing," World Academy of Science, Engineering and

Tech, 2010.

[51] B. Asgarali and M. N. SAP, "A Prediction-based Fault Tolerance on Grid

Resources scheduling by using Optimized Case-based Reasoning,"

112

Proceedings, Faculty ofcomputer science and information systems University

technology ofMalaysia., 2009.

[52] M. Hiroyuki, H. Masahiro, I. Daisuke, A. Yutaka, and Y. Naoaki, "Advanced

Wavelength Reservation Method Based on Deadline-Aware Scheduling for

Lambda Grid Networks," Journal of lightwave technology., vol. 25, October

2007.

[53] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal, "Schedul i n g

parameter sweep applications on global Grids: a deadline and budget

constrained cost-time optimi ation algorithm," software practice and

experience vol. 35, pp. 491-512, 2005.

[54] S. B. Liu and L. Shuang, "A General Distributed Scalable Peer to Peer

Scheduler for Mixed Tasks in Grids," Springer-Verlag Berlin Heidelberg pp.

pp. 320-330, 2007.

[55] C. Eddy, K. C. Pushpinder, and D. Frederic, "Deadline Scheduling with

Priority for Client-Server Systems on the Grid," Proceedings of the Fifth

IEEE/ACMInternational Workshop on Grid Computing (GRID'04) 2004.

[56] A. Takefusa, H. Casanova, S. Matsuoka, and F. Berman, "A study of deadline

scheduling for client-server systems on the computational grid.," In the 10th

IEEE Symposium on High Performance and Distributed Computing

(HPDC'01), San Francisco, California.,, 2001.

[57] A. Ballier and C. Eddy, "Simulating Grid Schedulers with Deadlines and Co-

Allocation," FP6 Network of Excellence CoreGRIDfunded by the European

Commission (Contract 1ST-2002 004265). Project no. FP6-004265., 2002.

[58] D. Klusacek and H. Rudova, "Improving QoS in computational Grids through

schedule-based approach. In Scheduling and Planning Applications Workshop

" Eighteenth International Conference onAutomated Planning andScheduling

(ICAPS'08), Sydney, Australia., 2008.

113

[59] A. Aggarwal, P. Du, and R. D. Kent, "Grid Scheduling Optimization Based on

Resource Characteristics," Journal of Computational Information Systems,

vol. 6, pp. 4609-4616, December, 2010.

[60] L.-Y. Tseng, C. Yeh-Hao, and W. Shu-Ching, "A Deadline-Based Task

Scheduling With Minimized Makespan," International Journal of Innovative

Computing, Information and Control vol. 5, pp. 1665-1679, June 2009

[61] S. Wang, X. Yun, and X. Yu, "Survivability-based Scheduling Algorithm for

Bag-of-Tasks Applications with Deadline Constraints on Grids," International

Journal ofComputer Science andNetwork Security., vol. 6, April 2006.

[62] L. Cong and S. Baskiyar, "Scheduling Mixed Tasks with Deadlines in Grids

Using Bin Packing," Parallel and Distributed Systems. ICPADS '08. 14th

IEEE International Conference p. 229, 2008.

[63] D. P. Spooner, S. A. Jarvis, J. Caoy, S. Saini, and G. R. Nudd, "Local Grid

Scheduling Techniques using Performance Prediction," Computers and

Digital Techniques, IEE Proceedings vol. 150 pp. 87 - 96, Mar 2003.

[64] D. Fang, L. Junzhou, G. Lisha, and G. Liang, "A Grid Task Scheduling

Algorithm Based on QoS Priority Grouping," Proceedings of the Fifth

International Conference on Grid and Cooperative Computing (GCC'06)

IEEE, 2006.

[65] M. Hiroyuki, H. Masahiro, I. Daisuke, A. Yutaka, and Y. Naoaki, "A

Deadline-Aware Wavelength Scheduling scheme for WDM-based.Grid

Networks," IEEEInternational Conference ICC '07, p. 2383, June 2007..

[66] V. Sundaram, A. Chandra, and J. Weissman, "Exploring the Throughput-

Fairness Tradeoff of Deadline Scheduling in Heterogeneous Computing

Environments," Proceeding SIGMETRICS '08 Proceedings of the ACM

SIGMETRICS international conference on Measurement and modeling of

computer systems, pp. 463-464 2008.

114

[67] S. K. Garg, R. Buyya, and C. J. Siegel, "Scheduling Parallel Applications on

Utility Grids: Time and Cost Trade-Off Management," Thirty-Second

Australasian Computer Science Conference, Conferences in Research and

Practice in Information Technology (CRPIT), vol. 91, 2009.

[68] K. Dalibor and R. Hana, "Comparison Of Multi-Criteria Scheduling

Techniques," In CoreGRID Integration Workshop. Integrated Research in

Grid Computing. Heraklion-Crete, 2008.

[69] G. K. Kamalam and B. V. Murali, "An Efficient Hybrid Job Scheduling

Algorithm for Computational Grids," International Conference on Web

Services Computing (ICWSC) Proceedings published by International

Journal ofComputerApplications®(IJCA). 2011.

[70] J. Y. Hongwei Liu, Guozhong Tian, and Hongcui Gong, "The Priority Tasks

Scheduling Algorithm Based on Grid Resource Prediction," Fourth ChinaGrid

Annual Conference pp. 84 -87, 2009.

[71] B. Li and B. Shen, "Slack-based Advance Reservation for Grid Jobs,"

Advanced Computer Theory and Engineering (ICACTE), 3rd International

Conference, vol. V3-418 - V3-421, 2010.

[72] S. Behera, "An improved least-laxity-first Scheduling algorithm for Real-time

tasks," International Journal ofEngineering Science and Technology (IJEST),

vol. 4, April 2012.

[73] G.-F. Golnar, M.-d. Fahime, D. Hossein, and M. Anahita, "Scheduling of

scientific workflows using a chaos-genetic algorithm," International

Conference on Computational Science, ICCS., 2010.

[74] C. Javier and A. Unai, "Distributed Scheduler of Workflows with Deadlines in

a P2P Desktop Grid," Parallel, Distributed and Network-Based Processing

(PDP), 18thEuromicro International Conference, pp. 69 - 73, 2010

[75] S. Viswanathan, B. Veeravalli, and T. G. Robertazzi, "Resource-Aware

Distributed Scheduling Strategies for Large-Scale Computational Cluster/Grid

115

Systems," IEEE Transactions On Parallel And Distributed Systems,

OCTOBER., vol. 18,2007.

[76] D. D. Nikolaos, D. D. Anastasios, A. V. Emmanouel, and A. V. Theodora,

"Fair Scheduling Algorithms in Grids," IEEE Transactions On Parallel And

Distributed Systems, NOVEMBER., vol. 18,2007.

[77] Y. Jia, B. Rajkumar, and K. T. Chen, "Cost-based Scheduling of Scientific

Workflow Applications on Utility Grids," Proceedings of the First

International Conferen ce on e-Science and Grid Computing vol. 0-7695-

2448, 2005.

[78] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, "A Toolkitfor

Modelling and Simulating Data Grids: An Extension to GridSim,"

Concurrency and Computation: Practice and Experience (CCPE), Online

ISSN: 1532-0634, Printed ISSN: 1532-0626,20(13): 1591-1609, Wiley Press,

New York, USA, Sep., 2008.

[79] L. Daphne and R. S. V. Kasmir, "A Dynamic Error Based Fair Scheduling

Algorithm For A Computational Grid," Journal of Theoretical and Applied

Information Technology, 2005 -2009.

[80] "Grid Workloads Archive (http://gwa.ewi.tudelft.nl/pmwiki/)."

[81] B. D. Henri, "DAS-2 team (http://gwa.ewi.tudelft.nl/pmwiki/reports/gwa-t-

1/traceanalysis report.html)."

[82] C. Franck, "Grid'5000 team (http://www.grid5000.org/)."

[83] K. Balasz, "The NorduGrid team fhttp://www.nordugrid.org/)."

[84] M. Emmanuel, "The AuverGrid team (http://www.auvergrid.fr/)."

[85] M. John, "SHARCNET, <john _x_ sharcnet.ca>

(https ://www. sharcnet.ca/my/front/)."

[86] I. C. London, "HEP e-Science group (http://lcg.web.cern.ch/LCG/)."

116

[87] H. L. Anderson, "Metropolis, Monte Carlo and the MANIAC," Los Alamos

Science vol. 14: 96-108., 1986.

117

APPENDIX A

PUBLICATIONS

118

PUBLICATIONS

H. A. Abba, N. Zakaria, A.J. Pal, and Ken Naono, Performance Comparison of Some

Hybrid Deadline Based Scheduling Algorithms for Computational Grid, Advances in

Information Technology, 5th International Conference, IAIT 2012, Bangkok,

Thailand, December 6-7, 2012. Springer book chapter

H. A. Abba, N. Zakaria, S. N. M. Shah and A.J. Pal, Design, Development And

Performance Analysis Of Deadline Based Priority Heuristic For Job Scheduling On A

Grid, Elsevier Journal of Procedia Engineering, to be presented in International

Conference on Advances Science and Contemporary Engineering 2012, 24-25 Oct

2012.

H. A. Abba, N. Zakaria and S. N. M. Shah, Deadline Based Performance Evaluation

of Job Scheduling Algorithms, IEEE International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery (CyberC 2012), to appear, Sanya,

Hainan, China, Oct. 10-12, 2012

H. A. Abba, N. Zakaria, and and Nazleeni Haron, Grid Resource Allocation: A

Review, Research Journal ofInformation Technology, 4(2): 38-55. June 30, 2012.

WORKSHOP

Desktop Grid Computing and Applications ICCIS 2012 Workshop June 2012

119

