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ABSTRACT

Grid computing can be described as form of distributed computing that involves
collection of independent computers coordinating and sharing computing, application,
data storage or network resources using high speed networks across dynamic and
geographically distributed environment. Grid scheduling is an essential element of a
Computational Grid infrastructure. Typical scheduling challenges tend to be NP-
complete problems where there is no optimal solution. Research on Grid scheduling
focuses in solving three challenges: finding a good algorithm, automating the process,
and developing a scalable, robust and efficient scheduling mechanism. The

complexities involved in scheduling challenges increase with the size of the Grid.

In different environment, users’ priority is mainly focusing on job deadline. Even
though deadlines are very important, no work has been done on scheduling algorithms
combining real-time system and round robin fairness based on deadline, slack time to
create fairness between the tasks and processors. Therefore, there is still a chance of
improving it. This deadline and slack time can be derived from the operational
research (OR) concept into grid scheduling. Some researchers have considered slack
time using different techniques, but not yet considered operational research slack time

concept by combining real-time system and round robin fairness techniques.

The research reported here therefore is focused on the development of grid
scheduling algorithms based on deadline and slack time parameters, using the concept
of operational research (OR). This is because, users main concern is to finish the jobs

execution within the deadline upon his submission of jobs for execution.

The developed algorithms in this research were validated using real workload
traces as benchmark on real grid computational environment. The results were

compared with some baseline scheduling approaches in extant literature.
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Based on the general observations, the research results have shown that the
performances of grid scheduling algorithms developed and reported in this thesis give
good results and also support true scalability, when in the scenario of increasing

workload and number of processors on a real computational grid environment.
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ABSTRAK

Pengkomputeran grid boleh digambarkan sebagai bentuk pengkomputeran teragih
yang melibatkan koleksi komputer bebas menyelaras dan berkongsi sumber
pengkomputeran, aplikasi, penyimpanan data atau rangkaian yang menggunakan
rangkaian kelajuan tinggi di seluruh persekitaran yang dinamik dan geografi
diedarkan. Penjadualan grid adalah satu elemen penting dalam infrastruktur Grid
pengiraan. Cabaran penjadualan biasa cenderung untuk menjadi masalah NP-lengkap
di mana tiada penyelesaian optimum. Penyelidikan mengenai penjadualan Grid
memberi tumpuan dalam menyelesaikan tiga cabaran: mencari algoritma yang baik,
mengautomasikan proses, dan membangunkan penjadualan mekanisme berskala,
mantap dan cekap. Kerumitan yang terlibat dalam penjadualan cabaran meningkat

dengan saiz Grid.

Dalam persekitaran yang berbeza, keutamaan pengguna terutamanya memberi
tumpuan pada tarikh akhir kerja. Walaupun tarikh akhir adalah sangat penting, tiada
kerja telah dilakukan pada algoritma penjadualan menggabungkan masa sebenar
sistem dan bulat robin keadilan berdasarkan tarikh akhir, masa kendur untuk
mewujudkan keadilan antara tugas dan pemproses. Oleh itu, masih ada peluang
memperbaiki ia. Kali ini tarikh akhir dan kendur boleh diperolehi dari penyelidikan
operasi (OR) konsep ke penjadualan grid. Beberapa orang penyelidik telah dianggap
masa kendur menggunakan teknik yang berbeza, tetapi tidak lagi dianggap
penyelidikan kendur operasi konsep masa dengan menggabungkan masa sebenar

sistem dan teknik keadilan pusingan robin.

Oleh itu, penyelidikan yang dilaporkan di sini memberi tumpuan kepada
pembangunan algoritma penjadualan grid berdasarkan tarikh akhir dan parameter

masa kendur, menggunakan konsep penyelidikan operasi (OR). Ini adalah kerana,



kebimbangan pengguna utama adalah untuk menamatkan pelaksanaan pekerjaan

dalam tarikh akhir semasa penyerahan pekerjaan bagi pelaksanaan.

Algoritma yang dibangunkan dalam kajian ini telah disahkan menggunakan kesan
beban kerja sebenar sebagai penanda aras terhadap alam sekitar grid pengiraan
sebenar. Keputusan telah berbanding dengan beberapa pendekatan penjadualan asas

dalam kesusasteraan wujud.

Berdasarkan pemerhatian umum, hasil penyelidikan telah menunjukkan bahawa
prestasi algoritma penjadualan grid dibangunkan dan dilaporkan di dalam tesis ini
memberikan hasil yang baik dan juga menyokong berskala benar, apabila dalam
senario beban kerja yang semakin meningkat dan bilangan pemproses pada

persekitaran grid pengiraan sebenar .
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CHAPTER 1

INTRODUCTION

1.1 Chapter Overview

This chapter lays the foundation for the entire research. It begins by giving
background information to the problem in section 1.2, followed by grid computing in
section 1.3, grid scheduling in section 1.4, scheduling architecture in section 1.5, and
research motivation in section 1.6, problem statement in section 1.7, research
objectives in section 1.8, research contribution in section 1.9 and ends with outline of

thesis in section 1.10.

1.2 Background of the Study

In recent years, increasing demand for computing [1-5] has led to the development
of computational grid. A computing grid uses the idle time of thousands or millions
of computers throughout the world [6]. Precisely, a grid is a large-scale,
heterogeneous, dynamic collection of independent computers, geographically
distributed and interconnected with high speed networks. The resources making up a
grid need to be managed to provide a good quality service. Resource allocation is one
of the major problems in grid due to large-scale heterogeneity both in processing
speed and interconnection speed between different computers. In fact, resource
allocation is also an NP (non-deterministic polynomial-time) complete problem [7]
where there is no optimal solution. This new field has emerged, distinguished from
traditional distributed computing by its concentration on large-scale resource sharing.
Also it's been shown that resource heterogeneity affects the resource allocation in a

significant way, in terms of performance, reliability, robustness and scalability.



To facilitate job scheduling as well as resource management in grid, a resource scheduler or a
meta-scheduler has to be used. A scheduler is essential in any multi-user grid environment.
The task of the grid resource scheduler is to identify dynamically, characterize the accessible
resources and select the right resource for jobs submission. While much has been done on grid
scheduling, due to its NP-complete nature, grid scheduling problem continues to be analyzed

broadly in different areas.

1.3 Grid Computing

The word “Grid” a word borrowed, from the electric energy power grid, derives from
significantly pervasive, easily available resource that originates at distributed sites,
each with potentially different system and conditions. Grid computing originated in
the early 1990’s. lIan Promote[8] was promoting a program to elevate shared
computing to some global level. Just like the internet which is a tool for mass
communication, grids are the tools that make computer resources and space globally
available for storage. Grid computing is all about getting computer systems to operate
together. In fact according to Zhang et al., [9], grid assist to promote the web to some
true computing platform, mixing the characteristics and services information about
enterprise computing having the ability to share heterogeneous distributed assets-from
programs, data, storage and servers. Moreover, a definition given by the Globus
Alliance (an investigation and development initiative focused on enabling the
application of grid concepts to scientific and engineering computing) [10], is as

follows:

“The grid describes an infrastructure that enables the integrated, collaborative usage
of high-finish personal computers, systems, database, and scientific instruments

possessed and handled by multiple organizations.”

There are three major areas that have drawn much attention from grid researchers
and developers. Prime concern is resource sharing. Resource sharing may be the
prime cause of the grid philosophy [1]. Grid is all about putting systems in position to
ensure that everybody benefits from the efficiencies of sharing. Moreover, grid gives

use of extra computing power and may compute things that cannot be computed using



only one computer. The second large idea behind grid is safe access which can be a
direct result of the very first large idea. However, to ensure secure access, grid

developers and users have to manage the following three essential things[11]:
e Access policy
¢ Authentication

e Authorization

The third large idea behind grid is efficient utilization of resources, because it
includes a mechanism to allocate jobs effectively and instantly among many users,

and as a result may lessen waiting time.

1.4 Grid Scheduling

Grid scheduling is understood to be the entire process of making scheduling choices,
relevant resources over multiple administrative domain names. This method may
include searching multiple administrative domain names to utilize a single machine or
scheduling just one job to make use of multiple resources in a single site or multiple
sites. Scheduling is a process that maps and handles execution of interdependent tasks
on distributed resources. It introduces allocating appropriate assets to workflow tasks
to ensure that the execution could be implemented to satisfy objective functions per
customers. Scheduling has two important definitions. First of all, scheduling is a
decision making function; to determine a schedule. Secondly, scheduling is a body
associated with a theory; it is actually a collection of principles, models and methods.
Proper scheduling has a significant effect on the performance of the system.
Generally, the issue of mapping tasks on distributed resources goes to some class of
problems referred to as NP-complete problems [12]; for such problems, no known
algorithms can create the optimal solution within polynomial time. Scheduling
function can be the actual allocation of resources over time in order to perform a

collection of task raised in a variety of scenarios.

Casavant et al. [13], categorized task scheduling in distributed computing
software as ‘local’ task scheduling and ‘global’ task scheduling. Local scheduling

involves handling a job of tasks to time-slices of merely one resource whereas global

3



scheduling involves determining where to carry out a task. Based on this definition,
scheduling is a type of global task because it concentrates on mapping and controlling
the execution of interdependent tasks on shared resources that are not directly under
its control. However, the scheduler must coordinate with diverse local management
systems as grid resources are heterogeneous when it comes to local configuration and
guidelines. Users’ QoS (quality of service) constraints can also be essential in the

scheduling process in order to satisfy their needs.

1.5 Scheduling Architecture

The architecture of the scheduling infrastructure is essential for scalability, autonomy,
quality and performance from the system[14]. There are three major groups of
workflow scheduling architecture, which are shown in Figure 1. They are centralized,

hierarchical and decentralized scheduling schemes.

Scheduling Architecture

Centralized Hierarchical

AN L

Figure 1.1: Scheduling architecture.

In a centralized workflow enactment environment, one central workflow scheduler
makes scheduling choices for all tasks within the workflow. Moreover according to T.
A. A. Project[14], the scheduler has the data concerning the entire workflow and
collects information of available processing resources and produce -efficient
scheduling, since it has all necessary information. However, it is not scalable
regarding the amount of tasks, the classes and quantity of grid resources. It is thus
only appropriate for any small scale workflow or perhaps a massive workflow by
which every task has got the same objective (e.g. same class of resources). Unlike
centralized scheduling, both hierarchical and decentralized scheduling enables tasks to

become scheduled by multiple schedulers. Therefore, one scheduler only keeps the



data associated with a sub-workflow. Thus, in comparison to centralize scheduling,
they're more scalable given that they limit the amount of tasks handled by one
scheduler. However, the very best decision designed for an incomplete workflow can
lead to sub-optimal performance for that overall workflow execution. Furthermore,
conflict troubles are more serious [15]. An example of conflict is the fact that tasks
from different sub-workflows scheduled by different schedulers may compete for
similar resource. However, for hierarchical scheduling, there is a central manager and
multiple lower level sub-workflow schedulers. This central manager accounts for
manipulating the workflow execution and setting the sub-workflows from the low-
level schedulers. For instance, in Gridflow project [16], there is one workflow
manager and multiple lower level schedulers. The workflow manager plans sub-
workflows onto corresponding lower level schedulers. Each lower level scheduler
accounts for scheduling tasks inside a sub-workflow onto assets possessed by one
organization. The main benefit of using hierarchical architecture would be the
different scheduling guidelines which could be used within the central manager when
minimizing the level of schedulers [14]. The failure of the central manager can lead to

entire system failure.

1.6 Research Motivation

Grid scheduling is one of the major challenges of grid computing, where use of
scheduling techniques is frequently required. Grid scheduling challenge is generally
based on some resources (typically machines, storage, memory, network, etc.). The
number of submitted jobs in grid environment is typically large. These jobs are
ordered in a queue, and scheduling approaches are used to order the jobs as well as

delivering them to the right destination resources.
There are a couple of reasons why grid scheduling is such challenging.

¢ Firstly, increase in number of jobs increases the demands of the search space.
e Seccondly, the factors that determine optimal scheduling are dynamic in nature.
e Thirdly, domains and applications need solutions of different variations

associated with the scheduling problem.
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Moreover, no work has been done on scheduling algorithms combining real-time
system and round robin fairness based on deadline, slack time to create fairness
between the tasks and processors. Why fairness? Operating system and some
distributed system environment (BOINC) were integrated with round robin techniques

in order to create fairness between the tasks as well as processors to avoid idle state.

In other words, real-time systems, as well as their deadlines, are classified by the
consequence of missing a deadline. Firstly, a hard real-time system ensures that when
an event occurs, it should be executed within its deadline time at all times in a given
hard real-time system. Instead, in soft real-time systems the precedence and sequence
of task operations are defined, interrupt latencies as well as context switching
latencies are small, but there can be few deviations between expected latencies of the
tasks and observed time constraints. Nevertheless, few missed of deadline are

accepted.

Therefore, this research aimed at the development of soft real-time grid scheduling
algorithms based on deadline and slack time parameters inherited from operational

research (OR) on software project management concept in to grid scheduling.

1.7 Problem Statement

Grid scheduling is one of the major challenges of a grid environment, due to large
scale heterogeneity. In different environment, users’ priority is mainly on job
deadline. Deadline is very important. But not much has been done on scheduling
algorithms based on deadline and slack time, especially in distributed grid

environment.

Therefore, there is still a chance of improvement based on deadline and slack
time, using techniques and concepts of operational research (OR) in solving grid
scheduling problems. Some researchers [17, 18] have considered slack time using
different techniques, but not yet considered operational research slack time concept by

combining real-time system and round robin fairness techniques.



The research reported here therefore is focused on the development of grid
scheduling algorithms based on deadline and slack time parameters, using the concept
of operational research (OR) [19]. This is because, users main concern is to finish the

jobs execution within the deadline upon his submission of jobs for execution.

In addition, most of the existing scheduling algorithms available in literature were
not developed and benchmarked using real workload traces. This may impair their
efficiency and robustness during application in real computational grid environment

with respect to the following performance metrics:

e Average turnaround time
e Average waiting time

e Maximum tardiness

This forms the crux of the present research, which also calculated the standard

deviations of the above parameters.

1.8 Research Objectives

The objectives of this research are as follows:
e To integrate new robust hybrid methods based on baseline approaches.
e To implement, evaluate and test these developed algorithms with real

‘benchmark traces on real computational grid environment.

The outcome of the research work will lead to a significant improvement in the

efficiency and robustness in Grid scheduling.

1.9 Research Contribution

This research gives better insights and idea or solution for scheduling technique
through deadline versus time for multiple jobs on a limited resource. The main
contributions of this research are as follows:

¢ Integrated new robust hybrid methods based on baseline approaches.




Implemented, evaluated and tested these developed algorithms with real benchmark

traces on real computational grid environment.

1.10 Outline of Thesis

The outline for this thesis is as follows:

Chapter 2 presents a discussion on relevant literature on related research,
thereby putting Grid scheduling and the processes of scheduling in the right
perspective. This is followed by a brief explanation of scheduling techniques.
Chapter 3 discusses the methodology used in this project. It covers
experimental design as well as performance indices for evaluation.

Chapter 4 highlights the results of the experiments conducted. There is also a
discussion, which includes analysis and result comparison of the performance
evaluation done.

Chapter 5 is the conclusion and the future scope of this work.



CHAPTER 2
LITERATURE REVIEW

2.1 Chapter Overview

This chapter reviews the concepts of grid computing, scheduling, jobs distribution as
well as the previous approaches employed in handling grid scheduling problems. The
literature review provides much broad, but deep insight into extant approaches and
reasons informing the selection of the technique used in this research to proffer

robust, efficient, effective and accurate scheduling of grid problems.

2.2 Previous Research on Grid Resource Allocation

A brief overview of some previous researches based on different type of approaches

that have been and are still being used in grid resource allocation are as follows:

2.2.1 Static Based

A static based resource allocation constitutes a fixed data entry or fixed accounting
scheme such as a fixed access to a computer node. Tibor approach [20], main
objective is to assign an application process to compute servers that can present the
required Quality of Service as well as execute the processes in a cost-efficient
manner. In a related development by Somasundaram et a/ [21], incoming jobs from
different users are collected and stored in a job list and available resources are stored
in a resource list. Swift scheduler (SS) in GridSim [22] maps jobs from resource

queue as well as resources from job queue by the use of heuristic function. In Swift



Scheduler, job allocations as well as resource selection process are executed using a

Shortest Job First policy, which minimizes the average waiting time for jobs.

2.2.2 Dynamic Based

A dynamic based resource allocation is a process whereby dynamic mechanisms
adapt allocation according to the change of available resource quantities. The method
has combines best fit algorithm and process migration [23]. Using to this approach, a
resource reservation is decided by an administrator based on monitoring outcome
specified by the system at a given time. Moreover, a global grid network [4] is
presumed, where resources are distributed all over the globe. Users put forward
applications to their local area network scheduler. However, the scheduler select
resources related to the application requirements and allocate them to the requesting
application. In order to achieve the resource virtualization, adapter design pattern is

used [24].

2.2.3 Linear Programming

Linear programming is the process of taking various linear inequalities relating to
some situation and finding the “most effective” value obtained under those conditions.
Jun et al. [25], highlighted on the solution of resource allocation problems in a
‘gigantic wireless network by applying linear programming. Specifically, they look
into link scheduling problem assigning each link a collection of time slots in which it
‘will transmit. The schedule sought is the one that can guarantee all links in each slot
which it can transmit at the same time without triggering unexpected mutual

interference.

2.2.4 Game Theory

Game theory is concerned with decision making in situation whereby two or more

rational opponents are competition with conflicting interests in expectation of definite
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outcomes in a given period of time [26]. The idea of applying game theory and
economics to resource management has been covered in many work [27-32]. The
majority of them investigated the economy in general equilibrium. In a research work
by Weng et al. [32], game theory is utilized to optimize resource allocation. This
approach takes advantage of proportional resource sharing model to manage grid
resources. Based on this model, it is shown that the percentage of resource allocated
to the user application is proportional to the bid value in comparison to other users’

bids.

2.2.5 Fuzzy Clustering

Fuzzy clustering is a type of algorithm for cluster analysis whereby the allocation of
data being positioned to clusters is not "hard" all-or- nothing. The algorithm by
FuFang er al. [33], delicately assigns appropriate resource while reserving the
resources whose power greatly exceed the requirements of current tasks for future use
when complex large-scale tasks arrive to the very task that exactly suit its needs for
resource. According to the work of Ru-Huai [34], the fuzzy clustering result can be
obtained directly from fuzzy similarity matrix by using net-mask method. Through the
use of net-mask method, the efficiency of this algorithm has been largely enhanced.
Dawei et al. [35], proposed a novel heuristic grid resource allocation algorithm based

on cluster grid resources.

2.2.6 Market Based

Market based resource allocation comprises of auctioneer who acts as a mediator
between sellers and buyers' orders (requests). In this model, sell orders (offers) may
be submitted at any time during the trading period. Within this frame work, Ferguson
et al. [36], deal with utility functions, used for calculating the utility of resource
allocation through the use of the utility based optimization method which will
permit the integration of different optimization objectives into allocation process. Li
et al. [37] and R. Buyya et al. [38], proposed a distributed computational economy-

based framework, called as the Grid Architecture for Computational Economy
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(GRACE), for resource allocation that regulate supply and demand of the available

resources.

2.2.7 Reinforcement Learning

Reinforcement Learning is a type of Machine Learning and also a branch of Artificial
Intelligence which enables machines and software agents to automatically determine
the ideal behaviour within a specific context, in order to maximize its performance.
Based on this method, Adil ef al. [39], used the method of reinforcement learning by
allowing a system which consists of a large number of heterogeneous reinforcements
learning agents that share common resources for their computational needs. Mateescu
et al. [16], created a simplified multi agent model of resource allocation based on the

same concept.

2.3 Previous Research on Grid Scheduling

A brief overview of some previous researches based on different types of grid
scheduling approaches is given in this section. In recent years, many researchers have
offered different types of methods as well as different types of algorithms for dynamic

job scheduling in different notion.

2.3.1 Evolutionary Algorithms in Grid Scheduling

Cao et al. [40], used Fuzzy C-Mean and Genetic Algorithms for dynamic job
scheduling. This model introduces cluster analysis for classification of job
characteristics (or objects), according to similarities among them, and for organizing
objects into groups. Cluster is a group of objects that are more similar to each other
than to objects in other clusters. Similarity is often defined by means of distance
based upon the length from a data vector to some prototypical object of the cluster.
The data are typically observations of some phenomenon. Each object consists of

measured variables, grouped into a dimensional column vector as well as mapping the
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jobs to the appropriate resources primarily based on Genetic algorithm. Furthermore,
this approach separates workload data to three classifications based on jobs run-time
historical data. In related work by Siriluck er al. [41], a static job scheduling
algorithm through the use of the Fuzzy C-Mean along with Genetic algorithms
appears to have been applied. This approach presents the strategies (ways) of
allocating jobs to distinct nodes, which have been developed for predicting the
characteristics of jobs (using Genetic Algorithms (GA) techmiques) running in the
grid environment. The researchers (Siriluck et al. [42]), presented the results of the
simulation of the grid environment with regard to job allocations to distinct nodes.
However, fuzzy clustering methods allow for uncertainty in the cluster assignments.
Rather than partitioning the data into a collection of distinct sets (where each data
point is assigned to exactly one set), fuzzy clustering creates a fuzzy pseudo partition,
which consists of a collection of fuzzy sets. Fuzzy sets differ from traditional sets in
that membership in the set is allowed to be uncertain. The results prove the model by
using Fuzzy c-mean clustering approach for predicting the characterization of jobs as
well as optimization involving jobs scheduling in grid environment. This kind of
prediction and optimization engine provided jobs scheduling based upon historical

information.

In another study (Florin Pop er al. [43]), a fault-tolerant scheduling framework
through DIOGENES (”Distributed optimal genetic algorithm with respect to grid
application scheduling”), was presented. This framework maps the actual architecture
of MedioGRID, which is a real-time satellite image processing system operating
within a Grid environment. The proposed solution provides a fault tolerant
mechanism of mapping the image processing applications, on the available resources

in MedioGRID clusters and uniform access.

Kamalapurl et al. [44], presented an evaluation of recommended GA based
scheduling against existing traditional algorithms. Individual solutions are randomly
generated to form an initial population. Successive generations of reproduction and
crossover produce increasing numbers of individuals in solution regions. The
algorithm favors the fittest individuals. However, to achieve minimum waiting time

the fitness function defined here is based on Shortest Job First algorithm. Fitness
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function checks the jobs, which occurs after the crossover point. If the jobs present
after crossover point has minimum CPU burst then fitness function marks it as fit to
generate new generation. The process is repeated till a termination criterion is reached

and termination criterion is a minimum waiting time.

In the work of Bouyer et al. [45], a meta-heuristic algorithm based on genetic
algorithm to solve the workflow scheduling problem with the objective of minimizing
the time and cost of the execution was presented. The newly introduced method
consists of two phases: Phase 1: primary processing of information to make Decision
Tree and assigning each existing record to its related class (Decision Tree of course,
should be made and preserved only once). Phase 2: final processing and predicting the
situation of a record, by using neighbouring records. In the first phase, to identify the
main and efficient parameters in the existing database system and to clarify their
effect on the final result, a processing operation is performed on it. The second step
involves an attempt to classify the information into different classes (by using a
decision tree classifier). At second phase, the desired record is first inserted in its class
according to previously done classification in Decision Tree. Then considering the
number desired of neighbours, the existing records are selected, which are similar to |

the desired record, upon which the predicting operation is then perform.

In the work of Ivan et al. [46], new job scheduling policy was determined by
backfilling (JR-backfilling). The main goals of these policies were to decrease the
workload execution time frame, a job waiting time, job response time, and average

bounded slowdown and to successfully optimize the resource utilization.

Another method known as the particle swarm optimization (PSO) algorithm has
been studied by Bu Yan-Ping er al. [47]. It uses discrete coding rule for grid
scheduling with regard to the optimization of grid task scheduling problems and it
optimizes the grid resources allocation. In the grid environment, the scheduling
problem is to schedule a stream of tasks to a set of nodes. During the execution, there
are some communications between nodes. The function of DPSO is to find the best
tasks scheduling strategy and to obtain the optimal makespan. PSO is a population
based stochastic optimization technique. It is first initialized with a group of random

particles (solutions). In every iteration, each particle is updated by following two
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“best” values, i.e., the personal best (pbesti) and the global best (gbest). Pbesti is the
best solution (fitness) one particle has achieved so far. While gbest is the best value
obtained so far by any particle in the population. Similarly, Mathiyalagan ef al. [48],
implemented a new approach based on particle swarm optimization algorithm in order
to resolve task scheduling challenges in grid. The newly developed algorithm is
generating an optimal schedule to complete task process within a minimum time
frame as well as utilizing the resources in an efficient way. The performance of each
particle is measured using a fitness function that varies depending on the optimization
problem. Each particle in the swarm is represented by the following characteristics:
the current position of the particle and the current velocity of the particle. Moreover,
the particle swarm optimization which is one of the latest evolutionary optimization
techniques conducts searches using a population of particles. Each particle
corresponds to individual in evolutionary algorithms. Each particle has an updating
position vector and updating velocity vector by moving through the problem space. In
related work, Pooranian et al. [49], proposed a novel approach based on hybrid PSO
and GELS (GPSO) algorithm in order to resolve grid scheduling challenge in order to

attenuate makespan as well as missed task.

The approach introduced by Raksha Sharma et al. [50] reduces processing time
frame and utilizes grid resource adequately. The primary goal is to maximize the
resource utilization and reduce the processing time frame of jobs. However, the grid
resource selection approach is based on Max Heap Tree (MHT) which best suits many
large scale applications and the root node of MHT is selected for job submission.
Somasundaram et al. [21], developed incoming jobs from different users that are
collected and stored in the job list and available resources, which are stored in
resource list, using the method of swift scheduler. The swift scheduler allocates jobs,
and selects resource using a heuristic searching algorithm based on Shortest Job First
(SJF), which minimizes the average time jobs spend on queues. Therefore, in general

the turnaround time is minimized and resource utilization is optimized.

In the work of Asgarali et al. [51], a new approach on fault tolerance mechanisms
for the resource scheduling on the grid was proposed by applying a method called

Rough Set Analysis algorithm on grid nodes (provider nodes) and optimized case-
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based Reasoning (OCBR) algorithm on scheduler machine, for prediction, detection
and recovery of faults in grid. OCBR is one of the preferred problem-solving
strategies and machine learning techniques in complex and dynamically changing
situations. However, the proposed grid-scheduling approach can select the best fault
tolerance nodes and also detect a failed node and simply manage it by using one of the
provided strategies such as multi-versioning, reservation queue and replacement, and
transferring jobs to the nearest neighbour. OCBR-executer classifies the existing
Rules (received from all nodes) based on similarity to the new desired job. At first,
the information or primary system parameters are identified and integrated. Next, the
final result of the problem is obtained by performing the final processing among the

desired record and its neighbours (in the same class).

2.3.2 Previous Research on Deadline and Slack Time Based Scheduling

In the work of Miyagi et al. [52], a deadline aware scheduling scheme for the lambda
grid system was proposed to support a huge computer grid system based on an
advanced photonic network technology. In the lamda scheme, the assignment of
wavelengths to jobs in order to efficiently carry various services that is very critical in
grid networks. Such services have different requirements such as the job completion
deadlines, and wavelength assignment must consider the job deadlines. However, the
proposed scheme uses deadline first as priority and then assigns time slots to a call
over time according to its deadline, which allows it to increase the system

performance in handling short deadline calls.

In the work of Rajkumar Buyya et al. [53], deadline and budget constraiht (DBC)
which allows allocation of resources depending on the user’s QoS requirements, such
as the deadline, budget, and optimization strategy were proposed. The proposed
algorithm called cost time optimization was developed and evaluated using the
GridSim toolkit by comparing its performance and a lot of service delivery with the
cost optimization. When there are multiple resources with the same cost and
capability, the cost time optimization algorithm schedules jobs on them using the time

optimization strategy for the deadline period.
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Lui et al. [54], constructed a novel Generalized Distributéd Scheduler (GDS) for
tasks with different priorities and deadlines. They considered a non-pre-emptive
scheduling strategy applied over a bag of independent mixed tasks in computational
grids. Tasks are ranked based upon priority and deadline. Tasks are shuffled to earlier
points to pack the schedule and create fault tolerance. However, dispatching is based
upon task-resource matching and accounts for computation as well as communication

capacities.

The work of Eddy et al. [55], was an extension of the work in Takefusa et al. [56].
They considered both priority and deadline of the tasks to select a server. They
showed that a good number of tasks can meet their deadlines by the increase of 1)
using task priorities and 2) using a fallback mechanism to reschedule tasks that were

not able to meet their deadline on the selected servers.

Alexis et al. [57], presented a policy that they called Repeated Placing Policy. The
policy did not ignore jobs and considers a job's execution within a short period of time
before the global deadline. The drawback perceived in their work however, is that

considering the jobs too early may cause many jobs to fail.

In [58] a resource characteristic based optimization method (RCBO), was
combined with Earlier Gap, Earliest Deadline First (EG-EDF) policy to schedule jobs
in a dynamic environment based on [59]. In the application of RCBO, each time new
jobs arrival reaches a value of ten, RCBO is applied to change the positions of some
jobs that have already arrived and are waiting in the schedules of some machines.

RCBO may move the jobs to a better evaluated position.

Li-Ya et al. [60], studied and simulated Min-minII and Min-min heuristic as the
benchmark of the scheduling problems in a dynamic grid computing environment.
However, based on the study, the Min-minII dynamic scheduling heuristic was used
in order to utilize task deadline and task assignment time to testify that it can
outperform Min-min makespan. In contrast, Shupeng Wang et al. [61], have proposed
a Survivability-Based scheduling algorithm for bag-of-tasks applications with
Deadline Constraints (SBDC), that maximizes the survivability while meeting the

deadline for delivering results. An algorithm which integrates the ideas of a classical
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bin packing (Best Fit) and a mixed integer quadratic programming modelling
approach has been used by Cong Liu et al. [62]. This approach, which is known as
Residual Capacity Maximization Scheduling (RCMS), is highly scalable as it does not
need to know the global state of the grid. RCMS prioritizes tasks according to task
types as well as the deadline. Moreover, RCMS proposes a mixed integer quadratic
programming model that always maximizes the residual capacity of resources at each

step following a task-resource mapping.

In the research of Spooner et al. [63], the problem of grid workload management
has been resolved through the development of a multi-tiered scheduling architecture
(TITAN) that employs a performance prediction system (PACE) and task distribution
brokers to meet user-defined deadlines and improve resource usage efficiency. PACE
is used to obtain parallel application performance data prior to run-time allowing

resource requirements to be expected and deadlines considered.

In the work of Fang Dong et al. [64], a Grid tasks scheduling strategy based on
QoS priority grouping is proposed. In this algorithm, the deadline property of task,
acceptation rate of tasks and makespan of systems is comprehensively considered.

Moreover, scheduling is based on task priority grouping and deadline.

Hiroyuki et al. [65], proposed a deadline-scheduling scheme for wavelength
assignment in grid networks that can meet QoS (Quality of Service). Moreover,
Hiroyuki et al. [65] came up with a combination of two ideas: Deadline-first
reservation and Greedy tentative reservation; in order to improve the utilization of
current time slots at longer wavelengths after successfully reserving the slots. The
proposed approach assigns time slots to a call over an extended period according to its
deadline. This makes more time slots available for short deadline calls. If no short

deadline calls are received, the time-slots reserved for them are wasted.

The work of Vasumathi et al. [66], shows that combining redundant scheduling
with deadline-based scheduling could lead to a fundamental tradeoff between
throughput and fairness. Vasumathi er al. [66] came up with a new scheduling

algorithm called Limited Resource Earliest Deadline (LRED) that couples redundant
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scheduling with deadline driven scheduling in a flexible way by using a simple

tunable parameter to exploit this tradeoff.

In another related work Saurabh ef al. [67], presented MaxCTT and MinCTT.
They also presented a cost metric to manage the trade-off between the execution cost
and time. In their work, various user requirements were considered during scheduling
simultaneously in terms of cost and execution time. Since concurrent users may
generate conflicting schedules to access the same resources which are cheaper and

faster.

Dalibor et al. [68], applied a technique known as Earliest Gap- Earliest Deadline
First (EG-EDF). This technique fills earlier existing gaps in the schedule with newly
arriving jobs. If no gap for a coming job is available EG-EDF rule uses Earliest
Deadline First (EDF) strategy for including new job into the existing schedule.
Scheduling éhoices are taken to meet the Quality of Service (QoS) requested by the

submitted jobs, and to optimize the usage of hardware resources.

Kamalam et al. [69] applied a Divisible Load Theory (DLT) and Least Cost
Method (LCM) to model the grid scheduling problem involving multiple worker
nodes in each cluster. They came up with a hybrid job scheduling algorithm that
minimizes the overall processing cost of the job and divisible job scheduling
algorithm that minimizes the overall processing time of the job in a grid system that

may consist of heterogeneous hosts.

Hongwei ef al. [70], proposed a algorithm that uses a DAG (Directed Acyclic
Graph) to locate the critical path, acquire the deadline of each task to compute their
PRI (priority). The algorithm takes the below problems into consideration: the request
of the user, the type of resources and re-scheduling of failed tasks. To meet users’

requirements, Hongwei ef al. [70] introduced the notion of users’ urgent degree.

Ba Wei ef al. [17], used the linguistic fuzzy sets to describe the period and the
slack time of tasks that have uncertain characters. The threshold coefficient gotten by
fuzzy rules assigns the threshold of the running task dynamically. Tasks are ordered

by their slack time as in Least Slack First (LSF), however, some differences are made
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that the threshold of the running task is got and it is considered as its slack time until
the task is released or finished. Therefore, two characters are considered to judge the

priority of a task, by its slack time and its threshold.

Bo Liet al. [71], presents a mechanism that can comply with the requirements of
current advance reservation (AR) job, but at the cost of inflexibility of accepting and
scheduling of other AR and non-AR jobs. In order to reduce the impact of a current
reservation on other jobs, current AR job can start within a time span, ranging from its
required start time with an additional slack time, instead of the rigid start time. The
difference between its ready time with its latest start time can be defined as the job's

slack time to begin to run.

In the work of Hwang et a/ [18], maximum occupation time (MOT) was defined
and it limits the maximum time that one job (or a task) can have occupying one for
processor. The MOT is determined by the timing constraints of a given task set. The
aim of Least Slack Time Rate first (LSTR) is to ensure that no idle state is allowed in
any processor. All tasks have the deadline and execution time as a timing constraint.
The scheduler determines the task at the scheduled time to be executed on a
processor. Tasks are executed on the processor(s) and then both the remaining

execution time and the remaining deadline of these tasks decrease.

The work of Behera er al. [72], presented an improved Least-Laxity-First
Algorithm (ILLF). Using a LLF scheduling algorithm, if two or more tasks have same
laxities, laxity-tie occurs. Once laxity-tie occurs, context switches takes place at every
scheduling point until the tie breaks. The laxity-tie in the LLF scheduling algorithm
results in poorer system performance due to the frequent context switches. The
improved Least Laxity First Scheduling Algorithm with intelligence time slice finds
the time quantum by taking the greatest common divisor (GCD) of all the execution
time of the processes. After every unit of time slice the laxity of each remaining
process (present in the ready queue) is calculated. The loop continues until all the

processes are being executed by the CPU.

In Golnar et al. [73], a distributed scheduler of workflows with deadlines in a P2P

computing platform has been presented. It is a completely decentralized model, which
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has been a validated using simulation that has shown good response times and low
overhead in a system with one million nodes. Big workflows with highly concurrent

tasks can be easily scheduled with low overhead and a good speedup.

Javier et al. [74], presented a distributed algorithm referred to as Resource-Aware
Dynamic Incremental Scheduling (RADIS) strategy. The strategies were purposely
designed to handle large volumes of computationally intensive arbitrarily divisible
loads submitted for processing at cluster or grid systems involving multiple sources
and sinks (processing nodes). In the same vein, Sivakumar ef al. [75], considered a
real-life scenario, wherein the buffer space (memory) available at the sinks (required
for holding and processing the loads) varies over time, and the loads have deadlines
and propose efficient “pull-based” scheduling strategies with an admission control
policy that ensures that the admitted loads are processed, satisfying their deadline

requirements.

Nikolaos et al. [76], proposed a new algorithm for fair scheduling. This algorithm
uses a Max-Min fair sharing approach for providing fair access to users. When there
is no shortage of resources, it assigns to each task enough computational power for it
to finish within its deadline. When there is congestion, the main idea is to fairly
reduce the CPU rates assigned to the tasks so that the share of resources that each user
gets is proportional to the user’s weight. The weight of a user may be defined as the
user’s contribution to the infrastructure or the price he is willing to pay for services or

any other socioeconomic consideration.

In the work of Jia Yu et al. [77], a cost-based workflow scheduling algorithm was
presented in order to minimize the cost of execution while reaching the deadline. A
Markov Decision Process approach was utilized in order to schedule in a stepwise
manner workflow task execution, such that it could possibly find the optimal path
among services to execute tasks as well as transfer input or output data. However, to
be more efficient, some additional priorities need to be considered, like maximum
turnaround time and time delayed when it comes to the rescheduling of unexecuted

job.
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Sulistio et al. [78] built a resource set of jobs which minimize cost or time,
depending upon the user's preferences as well as deadline and budget constraints. The
algorithm minimizes either the overall cost or the time of execution depending on the
user’s preference, subject to two user deadline constraints: the deadline by which the
processing must be completed and the overall budget for performing the computation.
In doing so, it is guided by factors such as cost and speed of accessing, transferring
and processing data. Each job requires one or more datasets as input. Each dataset is
available through one or more data hosts. Moreover, the scheduler gathers
information about the available compute resources and about the datasets and data
hosts. It then makes a decision on where to submit the job. The job is dispatched to
the selected remote computer resource where it requests for the datasets from the
replica locations selected by the scheduler. After the job has finished processing, the

results are sent back to the scheduler host or other storage resource.

The work done by Daphne ef al. [79] aimed at dealing with the fairness problem
by dropping the service time frame error. Their technique assigns to each task
sufficient computational power to complete it within its deadline. The resources that
cach user gets are proportional to the user’s weight or perhaps a shared. Here,
scheduling of tasks is based on an error, called the service time error, that promotes
fairness among users. However, it will be more optimized if priority is given based on

the minimum time of execution of job, not on individual demand.

2.4 Summary

This chapter presented the literature review based on previous works relating to
scheduling in grid environment. The importance of the review is underscored by its
provision of overall points of interest and detailed explanation on particular topics
relating to the planned research. It pinpoints the issues pivotal to grid scheduling that
must be integrated within the applicable models. Though the review has shown that
lots of research on grid scheduling has been reported, it is clear that much of these

reported algorithms were developed with a motivation different from that in this
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thesis. This motivation therefore formed the basis of the research reported in this

thesis.
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CHAPTER 3
METHODOLOGY

3.1 Chapter Overview

This chapter discusses the methodology employed to conduct the research. It vividly
describes and explains how the developed algorithms work. The Chapter begins with
the phases involved in the research, followed by grid scheduling modeling in section

3.2 and ends with simulated algorithms in section 3.3.

3.2 Research overview and Process Flow

Figure 3.1 gives the phases involved in the research.

State-of-the-art review

1dentifying key features of the problems

2 2

Grid scheduling modeling

O

Designing and development of scheduling algorithms

A 2

Simulation testing of developed algorithms

2 2

Conclusion

Figure 3.1: Research overview and process flow.

The process flows for the execution of the research are described below.
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A. State-of-the-Art Review: Several factors are considered related to scheduling. For
example, scheduling policies, job workflow, job priority, job queue management
policies, time and space constraints and deadlines. Therefore, as a first step in
achieving our research objectives, we carried out the literature review and we
highlighted the current mechanisms and practices for grid scheduling and
resource allocation.

B. Identification of Key Features of the Problem: First, the key characteristics of
grid scheduling and deadlines were identified. This was followed by
identification of pilot scenarios to assess the impact of jobs deadline on the
performance of different grid scheduling strategies.

C. Grid Scheduling Modeling: The grid system was thercafter modelled as a
network of geographically distributed computing sites, where each site itself
consists of a number of jobs. In focus were on the dynamics of the model that are
relevant to scheduling and robustness. The research assumed that a large number
of users are participating in the grid environment and each one is associated with
a particular site. We supposed that each user submits a job and that each job
would be executed by different nodes.

D. Designing and Development of Scheduling Algorithms: next was the
development and design of some grid scheduling algorithms by using intelligent
optimization techniques including constraint programming.

E. Simulation Testing of Developed Algorithms: The proposed solution was
integrated in an experimental grid. The performance of the grid scheduling
algorithms on the basis of defined objectives was evaluated.

F. Conclusion: Here, conclusion of research findings with some future

recommendations was drawn in agreement with the objectives of the research.

3.3 Grid Scheduling Modeling

A suitable scheduling model comprises features shown in Figure 3.2.
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Figure 3.2: Scheduling modeling

3.3.1 Benchmark Traces files

The traces files used were downloaded from grid workloads archive which offer

(anonymized) workload traces from grid infrastructure to scientists and also to

professionals alike [80]. This analysis was carried out using all trace files provided by

grid workload archive which are as follows:

1.

11

11l

v.

Vi,

DAS-2 traces: was provided by the advanced school for computing and
imaging, the owner of the DAS-2 system [81].

Grid'5000 traces: was provided by the Grid'5000 team (Dr. Franck
Cappello and Dr. Olivier Richard), the owners of the Grid'5000 system,
and by the OAR team [82].

NorduGrid traces: was provided by the nordugrid team (Dr. Balasz
Konya), the owners of the Nordugrid system [83].

AuverGrid traces: was provided by the auvergrid team (Dr. Emmanuel
Medernach), the owners of the Auvergrid system [84].

SHARCNET traces: was provided by John Morton and Clayton Chrusch,
who also helped with background information and interpretation in high
performance computing [85].

LCG traces: was provided by the e-Science group of HEP, at Imperial
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College London, and made publicly available by Hui Li through the

parallel workloads archive [86].

Moreover, the entire trace file contains only two parameters- arrival time and burst
time. As for deadline parameter, we had to pre-process all traces files and generate
deadline parameter using Monte Carlo distribution methods [87]. Monte Carlo
methods are a set of computational algorithms that rely on repeated random sampling
to compute results. Usually, these methods are mostly used for calculation by a
computer and tend to be used when it is infeasible to compute an exact result with a

deterministic algorithm.

3.3.2 Resource Allocation

The master-slave architecture was used for testing the developed scheduling
algorithms, as shown in Figure 3.3. This involves the use of an actual cluster. The
master takes processes as input and distributes the processes on the cluster processors
using a simple allocation strategy for parallel computation. In this case, all workload
traces are used as input. The total number of jobs is divided by the number of
processors, and those numbers of jobs are distributed to each slave where the

scheduling algorithms are executed for computation.
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Figure 3.3: Master/Slave Architecture

Each slave receives job, described by its process ID, arrival time, burst time and

deadline.
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3.3.3 Scheduling Algorithms

This is defining the way in which tasks are assigned to resources. The primary

requirement associated with the scheduling policy could possibly be the practical

applicability.

In this research, fourteen (74) different versions of scheduling algorithms were

simulated in a real computational grid environment. These include:

Earliest Deadline First Based Round Robin (EDFRR)

Earliest Deadline First Based Round Robin using greatest common divisor of

overall burst time rate as time quantum (EDFRRGCD)

Earliest Deadline First Based Round Robin using lowest common multiple of

overall burst time rate as time quantum (EDFRRLCM)
Least Slack Time Based Round Robin (LSTRR)

Least Slack Time Based Round Robin using greatest common divisor of

overall burst time rate as time quantum (LSTRRGCD)

Least Slack Time Based Round Robin using lowest common multiple of

overall burst time as time quantum (LSTRRLCM)
Least Slack Time Rate First Based Round Robin (LSTRFRR)

Least Slack Time Rate First Based Round Robin using greatest common

divisor of overall burst time rate as time quantum (LSTRFRRGCD)

Least Slack Time Rate First Based Round Robin using lowest common

multiple of overall burst time as time quantum (STRFRRLCM)

First Come First Serve (FCFS), Earliest Deadline First (EDF), Least Slack
Time Rate First (LSTRF), Least Slack Time (LST) and Round Robin (RR)
scheduling algorithms were used as baseline approaches (including the hybrids

of these aforementioned scheduling algorithms).
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3.3.4 Performance Metrics

For the purpose of measuring the performances of the scheduling algorithms the
following metrics were used:

i.  Average turnaround time: Referred to the average time taken between
the submission of job for execution and the return of the completed
result.

ii.  Average waiting time: Referred to the average waiting time of job
before its final execution.

iii.  Maximum tardiness: Referred to the maximum time delay between

turnaround time and deadline time.

3.3.5 Algorithm to Compute Find Parameters

A simple algorithm was used to compute communication cost between master and
slave, and to compute the standard deviation of the computed aforementioned

parameters.

3.4 Scheduling Algorithms

The description of the proposed scheduling algorithms used in the research (FCFS,
RR, EDF, EDFRR, EDFRRGCD, EDFRRLCM, LST, LSTRR, LSTRRGCD,
LSTRRLCM, LSTRF, LSTRFRR, LSTRFRRGCD and LSTRFRRLCM) is presented.

Before describing the actual algorithms few terminologies used in the algorithms

which require some explanations are:
Assume J; : ith Job;
n: number of jobs;
ng: number of slaves of job i;
x;: number of jobs per slave of job i;

TQ; : time quantum of job i;
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7;: arrival time of job i;

d;: deadline of job i,

Ed;: minimum deadline of job i;

o;: burst time of job i;

FEa;: minimum burst time of job i;

C;: Job completion time of job i;

D;: absolute deadline time of job i;

Trei: remaining execution time of job i;

Trpi: remaining absolute deadline time of job i;
Pr;: priority rate of job i;

LCM(a; 1, 0): lowest common multiple of overall burst time of job i;
GCD(a; 1, ay): greatest common divisor of overall burst time of job i;
T'rra: mater turnaround time of job i;

T'rrsi: slave turnaround time of job i;

T'wryi: master waiting time of job i;

Twrsi: slave waiting time of job i;

Reri starting execution time of job i;

Seri ending execution time of job i;

Stei: slave total execution time of job i;

Mrg;: master total execution time of job i;

Tcri: total communication time of job i;

T'rp;: time delay of job i;

T'rrpy: tardiness of job i;

T'Max TRD: maximum tardiness;

Std T, standard deviation turnaround time of job i;
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Std_Tyr;: standard deviation waiting time of job i;

Std Trrp;: standard deviation tardiness time of jobi;

S-list: Sorted list;

L.

II.

I11.

Iv.

VL

Number of jobs per slave x;: refers to the number of jobs per each slave for

execution.

Time delay 7T7p;: Referred to the time difference between burst time and

deadline time.
Time delay, T7pi: di= Gieeveiociieeeoeeeeeeeeeeeeeeeeeeeeeeeeee) (2)

Minimum deadline time Ed;: sorting jobs based on minimum deadline first.

Time quantum 7Q;: referred to a fixed time for each job to be executed in
cyclic manner meaning when a process has completed its task, i.e., before the
expiry of the time quantum, it terminates and is deleted from the system. The
next process is then dispatched from the head of the ready queue.

T e (5)
However, taking time quantum as least common multiple (LCM) is by
computing the overall burst time rate of jobs, i.e., by grouping the burst time
into some priority rate.

Time quantum, take 70; = LCM (0] 10 0 eeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeerein, (6)
Also, taking time quantum as greatest common divisor (GCD) is by computing
the overall burst time rate of jobs, i.c., by grouping the burst time into some
priority rate.

Time quantum, take 70; = GCD (@] 10 0)eeeveeeeeeereeeeeeeeeeeseeeeeeeers, (7)
Absolute deadline: referred to the time within which the execution of a task
should be completed.

Absolute deadline D;= (di+ F)uuiveviiniiiii e (8)



VIL

VIIL

IX.

XI.

XII.

Remaining execution time: referred to the time remain of a job in the process
of execution.

Remaining execution time TRe;= ((i-Fi)eouenee e aeeeenn, (9)
Remaining absolute deadline:referred to the remaining deadline time of job in
the process of execution.

Remaining absolute deadline Tgp; = (d; + 1) =~ Fi vooonvieieieieieaiai. (10)
Priority rate: it determines the priority of which job to be executed first in d

ready queue.

Priority rate Pr;= e (11)
T, 7,

rDi ~ i
Total communication time 77y refers to total execution time taken for each

master or slaves to finish its execution process:

MaSter: MrEi = RETi= S ETi oot (12)
Slave: STEi = RETi - SETi ............................................................................ (]3)
Therefore:. TCTi = MTEi 'STEi ................................................................. (14)

Turnaround time: Referred to the total time taken between the submission of

job for execution and the return of the completed result.
Slave turnaround time 775 = Ci = Tieeeeeeeeeeeeeeeeeeeeeeee e, (15)
Master turnaround time T7rus = T7RSi + T CTieeeeeeeeeeeeeeeeeeeeeeeeeeeeeann, (16)

Average turnaround time,

Standard deviation,

—Avg T...Y
Std T, \/ 2@ (n_vlé)’— i (18)

Waiting time: Referred to the total waiting time of job before its final

execution.

Slave waiting time Tiy7s; = TTRSi = (i veveeereereereeerereereseeeesreeseesseesseeeesenesseaens (19)
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XL

Master waiting time  Tiwrasi = Twrsi + LTt e oo (20)
Average waiting time,

n
2 Toma
— =1

T 7 = o 1)

Standard deviation,

Sid T, Y A M) (22)
(n-1)

Maximum tardiness: Referred to the maximum time delay between turnaround

time and deadline time.

Slave tardiness, T7rpsi = di = TTRSi «oovneeeeeee e (23)
Master tardiness T7rpasi = TTRDMi T TOTMiweeveeeaeeeeeeee e, (24)
Maximum Tardiness TMax_TRD = Max (TTRDMI, TTR_DMQ} ...... TTRDA/[n) ............. (25)

Standard deviation,

Std_TTRD\/ 2 & _(iv_gﬁ o) 26)

The master-slave architecture was used in this research for testing the developed

scheduling algorithms, as shown in Fig.1. This involves the use of an actual cluster.

The master takes processes as the input and distributes the processes on the cluster

processors using a simple allocation strategy for parallel computation. Real workload
traces, which comprise DAS-2 [81], Grid5000 [82], NorduGrid [83], AuverGrid [84],
SHARCNET [85] and LCG [86], are used as input. The total number of jobs is

divided by the number of processors, and those numbers of jobs are distributed to

each slave, where the scheduling algorithms are executed for computation.

General framework of all the algorithms is as follows:

Begin

Master:

Begin master
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Input: pool of jobs with processID, arrival time, burst time and deadline
Compute number of jobs per processors (1)

Distribute number of jobs to slaves for execution of algorithms (7)

Receive the value of Turnaround Time, value of Waiting Time, value

of Tardiness and value of Slave Total Execution Time from each of the

slaves

Compute execution time (12)

Using (8) Compute total communication time between master and

slaves

Compute the value of Turnaround Time using (16)

Compute the value of Waiting Time using (20)

Compute the value of Tardiness using (24)

Compute the value of Average Turnaround Time using (17)

Compute the value of Average Waiting Time using (21)

Compute the value of Average Tardiness using (25)

Compute the value of Standard Deviation of Turnaround Time using
(18) |

Compute the value of Standard Deviation of Waiting Time using (22)

Compute the value of Standard Deviation of Tardiness using (26)
End master

End

However, for each and every algorithm execution master computes total
turnaround time, total waiting time and total tardiness and then finally the average
turnaround time, average waiting time and maximum tardiness value, to identify the

maximum time delay of jobs execution.

A. First-Come-First-Served Scheduling Algorithm (FCFS): In this procedure, each
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slave will receive job, described by its process ID, arrival time, burst time and
deadline. Dispatching processes are based on their arrival time on the ready
queue. Once a process has a processor, it will keep running until it finished
executing. Once executed, it will be terminated and then the next process will
be dispatched from the ready queue. This process will continue until the pool
is empty. The value of turnaround time, waiting time and tardiness for each
job are computed and returned to master.
The compact algorithm is presented below:
Algorithm FCFS:
Begin
Slave:
Begin slave
For all jobs in the pool
Arrange the job list in ascending order based on FCFS (S-list)
while (S-/ist is not empty)
Begin

Execute the job at CPU level based on demand

Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (79)

Compute the value of Tardiness using (23)

Compute execution time (13)

Return value of Turnaround Time, value of Waiting Time,

value of Tardiness and value of Slave Total Execution Time

to master

Endwhile

End slave

B. Round Robin (RR) Scheduling Algorithm: Each slave will receive job,
described by its process ID, arrival time, burst time and deadline. The ready
queue is preserved as a first come first served (FCFS) queue. Dispatching
processes is from the head of the ready queue for execution by the processor.
The pre-emption of a process for execution is based on system defined

variable, named as time quantum. However, as soon as a process execution is
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completed, before its time quantum expired, it will be terminated as well as
deleted from the system. Therefore, next process will be dispatched from the
ready queue. This process will continue until the pool is empty. The value of
turnaround time, waiting time and tardiness for each job are computed and
return to master.
The compact algorithm is presented below:
Algorithm RR:
Begin
Slave:
Begin slave
For all jobs in the pool
Time quantum 7Q (3)
Arrange the job list in ascending order based on FCFS (S-list)
while (S-/ist is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (15)
Compute the value of Waiting Time using (79)
Compute the value of Tardiness using (23)
Compute execution time (13)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master
if (@;> 0)
Begin
0;—TQ
Endif
Endwhile

End slave

Earliest Deadline First Scheduling Algorithm (EDF): Here, each slave will
receive job, described by its process ID, arrival time, burst time and deadline.

Processes are dispatched based on minimum deadline on the ready queue.
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When a process has been completed, its task it will be terminated and then the
next job with a minimum deadline will be dispatched from the ready queue in a
non pre-emptive way. If two tasks have the same absolute deadlines, EDF
chooses based on FCFS in order to break the tie. When a process has
completed its task, it terminates and is deleted from the system. The next
process is then dispatched from the head of the ready queue. This process will
continue until the pool is empty. The value of turnaround time, waiting time
and tardiness for each job are computed and return to master.
The compact algorithm is presented below:
Algorithm EDF:
Begin
Slave:
Begin slave
For all jobs in the pool
Arrange the job list in ascending order based on the minimum deadline
time as mentioned in criteria IIT (S-/isf)
if (Ed; = Ed))
Arrange J;, J; based on FCFS
while (S-/ist is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (15)
Compute the value of Waiting Time using (79)
Compute the value of Tardiness using (23)
Compute execution time (73)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master
Endwhile

End slave

D. Earliest Deadline First based Round Robin Scheduling Algorithm (EDFRR): In

this procedure, each slave will receive job, described by its process ID, arrival
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time, burst time and deadline. Processes are dispatched based on minimum
deadline on the ready queue. The pre-emption of a process for execution is
based on system defined variable, named as time quantum. However, as soon
as a process execution is completed, before its time quantum expired, it will
be terminated as well as deleted from the system and then the next job with a
minimum deadline will be dispatched from the ready queue. However, if two
tasks have the same absolute deadlines, EDF chooses based on FCFS in order
to break the tie. This process Will continue until the pool is empty. The value
of turnaround time, waiting time and tardiness for each job are computed and
return to master.
The compact algorithm is presented below:
Algorithm EDFRR:
Begin
Slave:
Begin slave
Time quantum 7Q (5)
For all jobs in the pool
Arrange the job list in ascending order based on the minimum deadline
time as mentioned in criteria III (S-/is¢)
if (Ed; = Ed))
Arrange J;, J; based on FCFS
while (S-/ist is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (15)
Compute the value of Waiting Time using (719)
Compute the value of Tardiness using (23)
Compute execution time (13)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master

if (0> 0)
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Begin
a;—1Q
Endif
Endwhile

End slave

E. Earliest Deadline First based Round Robin Scheduling Algorithm

(EDFRRGCD): Each slave will receive job, described by its process 1D, arrival
time, burst time and deadline. However, it assigns time quantum, by computing
the GCD of all bust time rate, then sorting job based on minimum deadline on
the ready queue. Processes are dispatched based on minimum deadline on the
ready queue. The pre-emption of a process for execution is based on system
defined variable, named as time quantum. However, as soon as a process
execution is completed, before its time quantum expired, it will be terminated
as well as deleted from the system and then the next job with a minimum
deadline will be dispatched from the ready queue. However, if two tasks have
the same absolute deadlines, EDF chooses based on FCES in order to break the
tie. This process will continue until the pool is empty. The value of turnaround
time, waiting time and tardiness for each job are computed and return to
master.
The compact algorithm is presented below:
Algorithm EDFRRGCD:
Begin
Slave:
Begin slave
Compute Time quantum 70 (7)

For all jobs in the pool

Arrange the job list in ascending order based on the minimum deadline

time as mentioned in criteria I1I (S-/is?)

if (Ed; = Ed))

Arrange J;, J; based on FCFS

while (S-/ist is not empty)
Begin
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Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (15)
Compute the value of Waiting Time using (719)
Compute the value of Tardiness using (23)
Compute execution time (13)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master
if (a; > 0)
Begin
a;—TQ
Compute Time quantum 70 (7)
Endif
Endwhile

End slave

F. Earliest Deadline First based Round Robin Scheduling Algorithm

(EDFRRLCM): Here, each slave will receive job, described by its process ID,
arrival time, burst time and deadline. However, it assigns time quantum, by
computing the LCM of all bust time rate, then sorting job based on minimum
deadline on the ready queue. Processes are dispatched based on minimum
deadline on the ready queue. The pre-emption of a process for execution is
based on system defined variable, named as time quantum. However, as soon
as a process execution is completed, before its time quantum expired, it will be
terminated as well as deleted from the system and then the next job with a
minimum deadline will be dispatched from the ready queue. However, if two
tasks have the same absolute deadlines, EDF chooses based on FCFS in order
to break the tie. This process will continue until the pool is empty. The value
of turnaround time, waiting time and tardiness for each job are computed and
return to master.

The compact algorithm is presented below:

Algorithm PDSA:

Begin
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Slave:
Begin slave
Compute Time quantum 7Q (6)

For all jobs in the pool

Arrange the job list in ascending order based on the minimum deadline

time as mentioned in criteria 111 (S-/isf)

if (Ed; = Ed))

Arrange J;, J; based on FCFS

while (S-/ist is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (75)
Compute the value of Waiting Time using (79)
Compute the value of Tardiness using (23)
Compute execution time (73)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master
if (a;> 0)
Begin
a;—10
Compute Time quantum 7Q (6)
Endif
Endwhile

End slave

G. Least Slack Time Scheduling Algorithm (LST): Here, each slave will receive
Jjob, described by its process ID, arrival time, burst time and deadline, then
compute the value of time delay for each job by sorting out the jobs on the basis
of minimum time delay in ascending order. Moreover, the algorithm selects the
jobs with minimum time delay for execution. If multiple jobs have same time
delay value then, it will break the tie by selecting a job from job set on the

basis of FCFS and then execute the job at CPU level for its given burst time (i.e.
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Demand) in a non pre-emptive way. This process will continue until the pool is
empty. The value of turnaround time, waiting time and tardiness for each job
are computed and return to master.
The compact algorithm is presented below:
Algorithm LST:
Begin
Slave:
Begin slave
For all jobs in the pool
Compute the time delay of all processes using (2)
Arrange the job list in ascending order based on the minimum time delay
as mentioned in criteria II (S-/is?)
i (Trpi = Troy)
Arrange J;, J; based on FCFS
while (S-/ist is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (15)
Compute the value of Waiting Time using (79)
Compute the value of Tardiness using (23)
Compute execution time (13)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master
Endwhile

End slave

H. Least Slack Time based Round Robin Scheduling Algorithm (LSTRR):
processes are executed in this algorithm with the closest deadline time delay in
the cyclic manner using a dynamic time quantum. The slaves take the input
from master, whereas each job is described by its process ID, arrival time, burst
time and deadline. In executing the algorithm, time quantum is given as a fixed

value, and then it computes the value of time delay for each job by sorting out
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the jobs on the basis of minimum time delay in ascending order, then selecting
the jobs with minimum time delay in execution. If multiple jobs have same
time delay value then, it will break the tie by selecting a job from job set on the
basis of FCFS. Processes are dispatched based on minimum time delay on the
ready queue. The pre-emption of a process for execution is based on system
defined variable, named as time quantum. However, as soon as a process
execution is completed, before its time quantum expired, it will be terminated
as well as deleted from the system and then the next process is then dispatched
from the head of the ready queue. This process will continue until the pool is
empty. The value of turnaround time, waiting time and tardiness for each job
are computed and return to master.
The compact algorithm is presented below:
Algorithm LSTRR:
Begin
Slave:
Begin slave
Time quantum 7Q (2)
For all jobs in the pool
Compute the time delay of all processes using (2)
Arrange the job list in ascending order based on the minimum time delay
as mentioned in criteria 11 (S-/ist)
if (Trpi = Ty )
Arrange J;, J; based on FCFS
while (S-/ist is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (15)
Compute the value of Waiting Time using (79)
Compute the value of Tardiness using (23)

Compute execution time (13)
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Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master

if (a;> 0)
Begin

a;-TQ
Endif
Endwhile

End slave

Least Slack Time based Round Robin Scheduling Algorithm (LSTRRGCD):
This algorithm executes the process with the closest deadline time delay in the
cyclic manner using a dynamic time quantum. During execution, the slaves
take the input from master, whereas each job is described by its process ID,
arrival time, burst time and deadline. It assigns time quantum, by computing
the GCD of all bust time rate, and then compute the value of time delay for
each job by sorting out the jobs on the basis of time delay in ascending order,
then selecting the jobs with minimum time delay in execution. If multiple jobs
have same time delay value then, it will break the tie by selecting a job from
job set on the basis of FCFS. Processes are dispatched based on minimum time
delay on the ready queue. The pre-emption of a process for execution is based
on system defined variable, named as time quantum. However, as soon as a
process execution is completed, before its time quantum expired, it will be
terminated as well as deleted from the system and then the next process is then
dispatched from the head of the ready queue. This process will continue until
the pool is empty. The value of turnaround time, waiting time and tardiness
for each job are computed and return to master.
The compact algorithm is presented below:
Algorithm LSTRRGCD:
Begin
Slave:

Begin slave

Compute time quantum 70 (7)
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For all jobs in the pool
Compute the time delay of all processes using (2)
Arrange the job list in ascending order based on the minimum time delay
as mentioned in criteria II (S-lisr)
if (Trpi = Troy )
Arrange J;, J; based on FCFS
while (S-/ist is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (15)
Compute the value of Waiting Time using (19)
Compute the value of Tardiness using (23)
Compute execution time (13)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master
if (0;> 0)
Begin
o;,—T10
Compute time quantum 7Q (7)
Endif
Endwhile

End slave

Least Slack Time based Round Robin Scheduling Algorithm (LSTRRLCM): In
this process, the slaves take the input from master, where as each job is
described by its process ID, arrival time, burst time and deadline. It assigns
time quantum, by computing LCM of all bust rate time, and then compute the
value of time delay for each job by sorting out the jobs on the basis of time
delay in ascending order, then selecting the jobs with minimum time delay in
execution. If multiple jobs have same time delay value then, it will break the
tie by selecting a job from job set on the basis of FCFS. Processes are

dispatched based on minimum time delay on the ready queue. The pre-emption
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of a process for execution is based on system defined variable, named as time
quantum. However, as soon as a process execution is completed, before its
time quantum expired, it will be terminated as well as deleted from the system
and then the next process is then dispatched from the head of the ready queue.
The value of turnaround time, waiting time and tardiness for each job are
computed and return to master.
The compact algorithm is presented below:
Algorithm LSTRRLCM:
Begin
Slave:
Begin slave
Compute time quantum 70 (6)
For all jobs in the pool
Compute the time delay of all processes using (2)
Arrange the job list in ascending order based on criteria II (S-/isf)
if (Trpi = Ty )
Arrange J;, J; based on FCFS
while (S-/ist is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (75)
Compute the value of Waiting Time using (19)
Compute the value of Tardiness using (23)
Compute execution time (13)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master
if (0> 0)
Begin
o;—TQ
Compute time quantum 7Q (6)
Endif
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Endwhile

End slave

K. Least Slack Time Rate First Scheduling Algorithm (LSTRF): This algorithm
determines the priority rate of job execution by computing the value of the slack
time priority rate value of which job to be executed first in the ready queue.
However, the slaves take the input from master, whereas each job is described
by its process ID, arrival time, burst time and deadline, then compute the value
absolute deadline, then the value of remaining execution time, the value
remaining absolute deadline and then compute the value of the priority rate for
each job by sorting out the jobs on the basis of priority rate in ascending order,
then selecting the jobs with the minimum priority rate for execution. If multiple
jobs have same priority rate value then, it will break the tie by selecting a job
from job set on the basis of FCFS. It then executes the job at CPU level for its
given burst time (i.e., Demand) in a non prefemptive way. This process will
continue until the pool is empty. The value of turnaround time, waiting time
and tardiness for each job are computed and return to master.

The compact algorithm is presented below:

Algorithm LSTREF:

Begin

Slave:

Begin slave
For all jobs in the pool
Compute the value absolute deadline (8)
Compute the value of remaining execution time (9)
Compute the value remaining absolute deadline (70)
Compute the value of the priority rate (1)
Arrange the job list in ascending order based on minimum
priority rate as mentioned in criteria IX (S-list)
if (Pr;= Pry)
Arrange J;, J; based on FCFS
while (S-Iist is not empty)
Begin
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Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (/5)
Compute the value of Waiting Time using (79)
Compute the value of Tardiness using (23)
Compute execution time (73)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master

Endwhile

End slave

L. Least Slack Time Rate First with Round Robin Scheduling Algorithm
(LSTRRR): The slaves take the input from master, whereas each job is
described by its process ID, arrival time, burst time and deadline. However, time
quantum is given as a fixed value, and then computes the value absolute
deadline, then the value of remaining execution time, the value remaining
absolute deadline and then compute the value of the priority rate for each job by
sorting out the jobs on the basis of priority rate in ascending order, then
selecting the jobs with the minimum priority rate for execution. If multiple jobs
have same priority rate value then, it will break the tie by selecting a job from
job set on the basis of FCFS. Processes are dispatched based on minimum
priority rate on the ready queue. The pre-emption of a process for execution is
based on system defined variable, named as time quantum. However, as soon
as a process execution is completed, before its time quantum expired, it will be
terminated as well as deleted from the system and then the next process is then
dispatched from the head of the ready queue. This process will continue until
the pool is empty. The value of turnaround time, waiting time and tardiness
for each job are computed and return to master.

The compact algorithm is presented below:
Algorithm LSTRFRR:

Begin

Slave:

Begin slave
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Time quantum 7Q (2)

For all jobs in the pool

Compute the value absolute deadline (8)

Compute the value of remaining execution time (9)

Compute the value remaining absolute deadline (10)

Compute the value of the priority rate (11)

Arrange the job list in ascending order based on minimum

priority rate as mentioned in criteria IX (S-list)

if (Pr; = Pr;)

Arrange J;, J; based on FCFS
while (S-list is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (15)
Compute the value of Waiting Time using (19)
Compute the value of Tardiness using (23)
Compute execution time (13)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master
if (0¢;> 0)
Begin
;10
Endif
Endwhile

End slave

M. Least Slack Time Rate First based Round Robin Scheduling Algorithm
(LSTRFRRGCD): This is similar to the previous algorithm; the slaves take the
input from master, where as each job is described by its process ID, arrival time,
burst time and deadline. It assigns time quantum, by computing the GCD of all
bust time, then compute the value absolute deadline, then the value of remaining

execution time, the value remaining absolute deadline and then compute the
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value of the priority rate for each job by sorting out the jobs on the basis of
priority rate in ascending order, then selecting the jobs with the minimum
priority rate for execution. If multiple jobs have same priority rate value then,
it will break the tie by selecting a job from job set on the basis of FCFS.
Processes are dispatched based on minimum priority rate on the ready queue.
The pre-emption of a process for execution is based on system defined
variable, named as time quantum. However, as soon as a process execution is
completed, before its time quantum expired, it will be terminated as well as
deleted from the system and then the next process is then dispatched from the
head of the ready queue. This process will continue until the pool is empty.
The value of turnaround time, waiting time and tardiness for each job are
computed and return to master.
The compact algorithm is presented below:
Algorithm LSTRFRRGCD:
Begin
Slave:
Begin slave
Compute time quantum 70 (7)
For all jobs in the pool

Compute the value absolute deadline (8)

Compute the value of remaining execution time (9)

Compute the value remaining absolute deadline (10)

Compute the value of the priority rate (1)

Arrange the job list in ascending order based on minimum

priority rate as mentioned in criteria IX (S-list)

if (Pr;= Pr))

Arrange J;, J; based on FCTS

while (S-Zist is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (15)

Compute the value of Waiting Time using (19)
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Compute the value of Tardiness using (23)
Compute execution time (13)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master
if (0;> 0)
Begin
0,10
Compute time quantum 7Q (7)
Endif
Endwhile

End slave

N. Least Slack Time Rate First with Round Robin Scheduling Algorithm
(LSTRFRRLCM): Similarly, the slaves take the input from master, where as
each job is described by its processID, arrival time, burst time and deadline. It
assigns time quantum, by computing the LCM of all bust time, then compute
the value absolute deadline, then the value of remaining execution time, the
value remaining absolute deadline and then compute the value of the priority
rate for each job by sorting out the jobs on the basis of priority rate in ascending
order, then selecting the jobs with the minimum priority rate for execution. If
multiple jobs have same priority rate value then, it will break the tie by
selecting a job from job set on the basis of FCFS. Processes are dispatched
based on minimum priority rate on the ready queue. The preemption of a
process for execution is based on system defined variable, named as time
quantum. However, as soon as a process execution is completed, before its
time quantum expired, it will be terminated as well as deleted from the system
and then the next process is then dispatched from the head of the ready queue.
This process will continue until the pool is empty. The value of turnaround
time, waiting time and tardiness for each job are computed and return to
master.

The compact algorithm is presented below:

Algorithm LSTRFRRLCM:
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Begin
Slave:
Begin slave
Compute time quantum 70 (6)
For all jobs in the pool

Compute the value absolute deadline (8)

Compute the value of remaining execution time (9)

Compute the value remaining absolute deadline (70)

Compute the value of the priority rate (17)

Arrange the job list in ascending order based on minimum

priority rate as mentioned in criteria IX (S-list)

if (Pr; = Pr))

Arrange J;, J; based on FCFS

while (S-list is not empty)
Begin
Execute the job at CPU level based on demand
Compute the value of Turnaround Time using (735)
Compute the value of Waiting Time using (79)
Compute the value éf Tardiness using (23)
Compute execution time (73)
Return value of Turnaround Time, value of Waiting Time,
value of Tardiness and value of Slave Total Execution Time
to master | —
if (a;> 0)
Begin
0;—TQ
Compute time quantum 7Q (6)
Endif
Endwhile

End slave
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3.5 Experimental Procedures

The procedures adopted in evaluating the algorithms (including their hybrids) which

were used in this research are presented as follows:

3.5.1 Experimental Setup

Proper resources have been selected in the first step and experiments were carried out
using the facilities of high performance computing centre (HPCC) at Universiti
Teknologi PETRONAS. This involves the use of an actual cluster; the master takes
process as the input and distributes the processes on the cluster processors using a
simple allocation strategy for parallel computation. We incorporated scalability test
of scheduling algorithms under an increasing real workload. All experiments were
performed by varying the number of processors from 32, 64 and 128, showing the

demands of the user’s jobs, each with different characteristics.

All algorithms were developed using Java programming language and MPJ,
which is a free Java message passing library that enables application designers to

create and execute parallel programs for multi-core processors.

3.5.2 Parameter Settings

Prior to the primary experimentation to determine the performance of the scheduling
algorithms with respect to benchmarks, preliminary experiments were conducted to
traces files, in order to setup the values of deadline parameters. These were initially
lacking in the entire traces files. All traces files were and generated deadline
parameter pre-processed using Monte Carlo distribution methods [87]. Monte Carlo
methods are a set of computational algorithms that rely on repeated random sampling
to compute results. These methods are mostly used for calculations by a computer
and tend to be used when it is infeasible to compute an exact result with a
deterministic algorithm. Also the jobs with negative burst time are excluded from the

trace files.
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3.5.3 Benchmark Description

A total of six (6) benchmarks traces files were used in subsequent section to perform

comparative analysis of the algorithms. These traces file were obtained from grid

workloads archive which provided anonymized workload traces from grid

environments to researchers and to practitioners alike [80]. However, we carried out

our analysis by using all traces files provided by grid workload archive which are as

follows:

it

1il.

iv.

DAS-2 traces: a wide-area distributed system consisting of 400 CPUs located
at five Dutch Universities. DAS-2 is a research test bed, with the workload
composed of a large variety of applications. DAS-2 was provided by the
advanced school for computing and imaging, the owner of the DAS-2 system
[81].

Grid'5000 traces: Grid'5000 is an experimental grid platform composed of 9
sites geographically distributed in France. Each site comprises one or more
groupings, inside Grid'5000. It was made available from the Grid'5000 team
(Dr. Franck Cappello and Dr. Olivier Richard), the proprietors from the
Grid'5000 system, by the OAR team. The traces collected from Grid5000
include programs in the regions of physics, biomed, math, chemistry, climate,
astronomy, language, existence, finance, etc. Additionally, the Grid5000 traces
include experimental programs for parallel and distributed systems research
[82].

NorduGrid traces: NorduGrid is really a production grid for academic
scientists in Denmark, Estonia, Finland, Norway, Sweden, etc. Since 2002,
NorduGrid has been around continuous operation and development, and also,
since 2003 industrial, scientific or private organizations with curiosity about
grid computing happen to be asked to lead their compute energy towards the
NorduGrid as collaborators. It was made available by the NorduGrid team
(Dr. Balasz konya), the owners of the NorduGrid system. The traces collected
from NorduGrid include programs in the regions of CAS, chemistry,
graphics, biomed, and HEP [83].

AuverGrid traces: AuverGrid is a production grid platform composed of 5

54



groupings situated geographically within the Auvergne region, France.
Groupings are comprised of dual 3GHz Pentium-IV Xeons nodes running
Scientific Linux, LPC means "Laboratoire p Physique Corpusculaire”
(Laboratory of Corpuscular Physics) of Université Blaise-Pascal, Clermont-
Ferrand, France. The Auvergrid project is really a regional grid area of the
EGEE project (Enabling Grids for E-science in Europe). It's used mostly for
biomedical and-energy physics research. Auvergrid was provided by the
Auvergrid team (Dr. Emmanuel Medernach), the owners of the Auvergrid
system [84].

v. SHARCNET traces: SHARCNET is structured like a "cluster of clusters"
across south western, central and northern Ontario, made to satisfy the
computational needs of scientists inside a diverse quantity of research areas
and also to facilitate the introduction of leading-edge tools for top
performance computing. This trace consists of up to and including year's
price of accounting records in the SHARCNET groupings installed at a
number of schools in Ontario, Canada. SHARCNET was provided by John
Morton and Clayton Chrusch, who also helped with background information
and interpretation in high performance computing [85].

vi.  LCG traces: This log consists of 11 times of activity from multiple nodes that
comprise the LCG (Large Hadron Collider Computing Grid). Customers
submit serial or parallel jobs to resource brokers. The resource brokers find
appropriate assets for undertaking the computation, and send systems for
execution around the different systems. LCG was provided by the e-Science
group of HEP, at Imperial College London, and made publicly available by
hui 1i through the parallel workloads archive [86].

All algorithms were developed using Java programming language and MPJ, which is
a free Java message passing library that enables application designers to create and

execute parallel programs for multi-core processors.
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3.6 Summary

This chapter described the overall framework of the research methodology used. It
incorporated the actual plans which were adopted in order to satisfy the proposed
research objectives. In addition, this chapter served as the guidance towards the
comparison of various scheduling algorithms. The research comparison analyzes the
aforementioned simulated algorithms, the findings of which would be discussed in

greater the next chapter.



CHAPTER 4

RESULT AND DISCUSSION

4.1 Chapter Overview

This chapter discusses the results which were obtained from the experimentation
in a real computational grid environment. The results analysis was based on the

following performance metrics:

This chapter discusses the results which were obtained from the
experimentation in a real computational grid environment. The results analysis was

based on the following performance metrics:

e Average Turnaround Time
e Average Waiting Time

e Maximum Tardiness

Also the standard deviations of the above performance metrics are calculated.

4.2 Comparative Performance Analysis of Scheduling Algorithms

With parameter settings of benchmark traces files determined, the next phase
involved testing the algorithms on benchmark traces files. A total of six (6) traces
files with almost different processing demands (two (2) of the traces files are
comparatively heavier than the rest four (4)) were used to observe the performance of
the developed scheduling algorithms by varying the number of jobs and processors.
Therefore, there was need to incorporate scalability test of scheduling algorithms

under an increasing real workload, which led to the creation of ten (/0) data sets
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formed by using 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 98% of the traces
files workload, 100000, 200000, 300000, 400000, 500000, 600000, 700000, 800000,
900000 and 1000000 processes, respectively. Also, the number of processors were

varied by increasing it with 100%, respectively ie., from 32 to 64 and 128

ProcCessors.

4.2.1 Das-2 Traces

The experiment was carried out using the entire workload of the traces file.
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Figure 4.1: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64
and 128 numbers of processors. Based on the observation of Figure 4.1, it is clear
that LSTRF, LST, RR, LSTRR, LSTRRGCD, LSTRRLCM, EDFRR, EDFRRGCD,
EDFRRLCM, LSTRFRR, LSTRFRRGCD, LSTRFRRLCM and FCFS are smooth
and steady from 32 to 64 and 128 processors. EDF showed a sharp fall when number
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of processors varied from 32 to 64 and 128 processors. Results showed that LSTRF

and LST have the best performance while EDFRRLCM and FCFS showed the worst

performance.

To ensure that the value obtained is consistent,

standard deviation of each

algorithm’s turnaround time for each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.1 showed the standard deviation of the

experiments whose results are depicted in Figure 4.1.

Table 4.1: Standard Deviation
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Figure 4.2: Average Waiting Time
It can be observed from Figure 4.2 that LSTRF, LST, RR, LSTRR, LSTRRGCD,
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LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD,
LSTRFRRLCM and FCFS are smooth and steady from 32 to 64 and 128 processors.
EDF showed a sharp fall when number of processors varied from 32 to 64 and 128
processors. Results showed that LSTRF and LST have the best EDFRRLCM and

FCFS showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithm and turnaround time of each set of experiments were computed based on
32, 64 and 128 processors. Table 4.2, showed the standard deviation of Figure 4.2

results.

Table 4.2: Standard Deviation
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Figure 4.3: Maximum Tardiness
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Figure 4.3 show that maximum tardiness is not fixed; rather, it varies with the
workload. However, it can be observed that LSTRF, LST, RR, LSTRR,
LSTRRGCD, LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR,
LSTRFRRGCD, LSTRFRRLCM and FCFS are smooth and steady as well as overlap
one another from 32 to 64 and 128 processors. However, there is a slight difference
between the algorithms. EDF showed a slight fall from 32 to 64 processors and from
64 to 128 processors. Results showed that LSTRF and LST have the best
EDFRRLCM and EDF showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithm and turnaround time of each set of experiments were computed based on
32, 64 and 128 processors.Table 4.3, shows the standard deviation of the results
graphed in Figure 4.3.

Table 4.3: Standard Deviation
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4.2.2 AuverGrid Traces

The experiment was carried out using the whole traces file workload.
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Figure 4.4: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64
and 128 numbers of processors. Based on the observation of Figure 4.4, it is clear
that LSTRF, LST, RR, LSTRR, LSTRRGCD, LSTRRLCM, EDF, EDFRR,
EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD, LSTRFRRLCM and
FCFS are smooth and steady from 32 to 64 and 128 processors. Results showed
that LSTRFRRLCM and LSTRF have the best performance, while FCFS and
EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithm and turnaround time of each set of experiments were computed based on

32, 64 and 128 processors. Table 4.4 shows the standard deviation of Figure 4.4

results.
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Table 4.4: Standard Deviation
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Figure 4.5: Average Waiting Time

It can be observed from Figure 4.5 that LSTRF, LST, RR, LSTRR, LSTRRGCD,
LSTRRIL.CM, EDF, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR,

LSTRFRRGCD, LSTRFRRLCM and FCFS are smooth and steady from 32 to 64
and 128 processors. Results showed that LSTRFRRLCM and LSTRF have the

best FCFS and EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
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algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.5, showed the standard deviation of Figure 4.5

results.

Table 4.5: Standard Deviation
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Figure 4.6: Maximum Tardiness

Figure 4.6 shows that maximum tardiness is not fixed it vary on the workload.
However, it can be observed from that LSTRF, LST, RR, LSTRR, LSTRRGCD,
LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD,
LSTRFRRLCM and FCFS are smooth and steady as well as overlap one another from
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32 to 64 and 128 processors. However, there is a slight difference between the
algorithms from. Results showed that LSTRF and LSTRFRRLCM have the best
performance, while EDFRRLCM and FCFS showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithm and turnaround time of each set of experiments were computed based on

32, 64 and 128 processors. Table 4.6, showed the standard deviation of Figure 4.6

results.
Table 4.6: Standard Deviation
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4.2.3 Grid5000 Traces

The experiment was carried out using the whole traces file workload.
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Figure 4.7: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64
and 128 numbers of processors. Based on the observations shown Figure 4.7, it’s
clear that LSTRF, LST, LSTRRGCD, LSTRRLCM, EDFRRGCD, EDFRRLCM,
LSTRFRRGCD, and LSTRFRRLCM are smooth ana steady fall from 32 to 64 and
128 processors. Meanwhile, LSTRR, EDFRR, LSTRFRR, EDF, RR and FCFS have
sharp fall from 32 to 64 processors and a sharp rise from 64 to 128 processors,
possible reason may be heavy workload and increase in number of processors.
LSTRR, EDFRR, LSTRFRR are overlapping one another. But there is a slight
difference between the algorithms. Results showed that LSTRF and LSTRFRRLCM

have the best performance, while FCFS, showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 32, 64 and 128
processors were computed. Table 4.7, showed the standard deviation of Figure 4.7

results.

Table 4.7: Standard Deviation
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Avg Waiting Time
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Figure 4.8: Average Waiting Time

It can be observed from Figure 4.8 that that LSTRF, LST, LSTRRGCD,
LSTRRLCM, EDFRRGCD, EDFRRLCM, LSTRFRRGCD, and LSTRFRRLCM are
smooth and steady from 32 to 64 and 128 processors. Meanwhile, LSTRR, EDFRR,
LSTRFRR, EDF, RR and FCFS have sharp fall from 32 to 64 processors and a sharp
rise from 64 to 128 processors. LSTRR, EDFRR, LSTRFRR are overlapping one
another. But there is a slight difference between the algorithms from. Results showed
that LSTRF and LSTRFRRLCM have the best performance, while FCFS, showed the

worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithm and turnaround time of cach set of experiments were computed based on
32, 64 and 128 processors. Table 4.8, showed the standard deviation of Figure 4.8

results.

Table 4.8; Standard Deviation

67



Standerd Deaefion

FFS
¥ UER
S

0 1%

Max Tardiness
1 165509
e EES
158+0%
-}“ 15- ‘ 6-‘ . FT——— _'{g
Jf £DF
1.145502 /
/ R t=1
#
éﬁ‘
&
1.135+0% r
§ *f
2 L1m0e ; f‘j
fgﬁ
HeE § e STRRGCD
y
/ e STRRLCH
1.105+08 :
e s LSTRFRRGCD
N i 1 LSTRFRRLCM
Mumber of processors

Figure 4.9: Maximum Tardiness

Figure 4.9 shows that maximum tardiness is not fixed; it varies with the workload.
However, it can be observed that LSTRF, LST, RR, LSTRR, LSTRRGCD,
LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD,
LSTRFRRLCM and FCFS are smooth and steady as well as overlap one another from
32 to 64 and 128 processors. Nevertheless, there is a slight difference between the
algorithms. Meanwhile, LSTRR, EDFRR, LSTRFRR, EDF, RR and FCFS have sharp
fall from 32 to 64 processors and a sharp rise from 64 to 128 processors. Results
showed that LSTRF and LSTRFRRLCM have the best performance, while EDFRR

and EDF showed the worst performance.
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To ensure that the value obtained is consistent, standard deviation of each
algorithm and turnaround time of each set of experiments were computed based on
32, 64 and 128 processors. Table 4.9, showed the standard deviation of Figure 4.9
results.

Table 4.9: Standard Deviation
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4.2.4 LCG Traces

The experiment was carried out using the whole traces file workload.
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Figure 4.10: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64

and 128 numbers of processors. Based on the observation of Figure 4.4, it’s clear
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that LSTRF, LST, RR, LSTRR, LSTRRGCD, LSTRRLCM, EDF, EDFRR,
EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD, LSTRFRRLCM and
FCFS are smooth and steady from 32 to 64 and 128 processors. LSTRR, EDFRR,
LSTRFRR, LST, LSTRRLCM, LSTRF and LSTRFRRLCM are overlapping one
another. But there is a slight difference between the algorithms. But EDFRR showed a
slight fall from 32 to 64 processors and a slight rise from 64 to 128 processors.
Results showed that LSTRFRRLCM and LSTRF have the best performance,
while FCFS and EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithm and turnaround time of each set of experiments were computed based on

32, 64 and 128 processors. Table 4.10, showed the standard deviation of Figure 4.10

results.
Table 4.10; Standard Deviation
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Figure 4.11: Average Waiting Time

It can be observed from Figure 4.11 that LSTRF, LST, RR, LSTRR, LSTRRGCD,
LSTRRLCM, EDF, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR,
LSTRFRRGCD, LSTRFRRLCM and FCFS are smooth and steady from 32 to 64 and
128 processors. LSTRR, EDFRR, LSTRFRR, LST, LSTRRLCM, LSTRF and
LSTRFRRLCM are overlapping one another. But there is a slight difference between
the algorithms. But EDFRR showed a slight fall from 32 to 64 processors and a slight
rise from 64 to 128 processors. Results showed that LSTRFRRLCM and LSTRF
have the best performance, while FCFS and EDFRRLCM showed the worst

performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 32, 64 and 128
processors were computed. Table 4.11, showed the standard deviation of Figure
4.11results.

Table 4.11: Standard Deviation
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Figure 4.12 show’s that maximum tardiness is not fixed it varies on the workload.
However, it can be observed that LSTRF, LST, RR, LSTRR, LSTRRGCD,
LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD,
LSTRFRRLCM and FCFS showed a sharp fall from 32 to 64 processors and from 64
to 128 processors as well as overlap one another. Results showed that LSTRF and
LSTRFRRLCM have the best performance. While EDF and FCFS showed the worst

performance.

To ensure that the value obtained is consistent,

Figure 4.12: Maximum Tardiness
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algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.12, showed the standard deviation of Figure 4.12

results.
Table 4.12: Standard Deviation
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4.2.5 NorduGrid Traces

The experiment was carried out using the whole traces file workload.
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Figure 4.13: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64

and 128 numbers of processors. Based on the observation of Figure 4.13, it’s
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clear that LSTRF, LST, LSTRRGCD, LSTRRLCM, EDFRRGCD, EDFRRLCM,
LSTRFRRGCD, and LSTRFRRLCM are smooth and steady from 32 to 64 and
128 processors. Meanwhile, LSTRR, EDFRR, LSTRFRR, EDF, RR and FCFS
have a sharp rise from 32 to 64 processors and a sharp fall from 64 to 128
processors. LSTRR, EDFRR, LSTRFRR are overlapping one another. But there is
a slight difference between the algorithms. Results showed that LSTRF and LST

have the best performance, while FCFS, showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.13, showed the standard deviation of Figure 4.13

results.

Table 4.13: Standard Deviation
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Figure 4.14: Average Waiting Time

It can be observed from Figure 4.14 that LSTRF, LST, LSTRRGCD, LSTRRLCM,
EDFRRGCD, EDFRRLCM, LSTRFRRGCD, and LSTRFRRLCM are smooth and
steady from 32 to 64 and 128 processors. Meanwhile, LSTRR, EDFRR,
LSTRFRR, EDF, RR and FCFS have a sharp rise from 32 to 64 processors and a
sharp fall from 64 to 128 processors. LSTRR, EDFRR, LSTRFRR are
overlapping one another. But there is a slight difference between the algorithms.
Results showed that LSTRF and LST have the best performance, while FCFS,

showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 32, 64 and 128

processors were computed. Table 4.14, showed the standard deviation of Figure 4.14

results.
Table 4.14: Standard Deviation
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Figure 4.15: Maximum Tardiness

Figure 4.15 shows that maximum tardiness is not fixed it vary on the workload.
However, it can be observed from the graph point of view that that LSTRF, LST,
RR, LSTRR, LSTRRGCD, LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM,
LSTRFRR, LSTRFRRLCM and FCFS are sharp fall as well as overlap one another
from 32 to 64 processors and from 64 to 128 processors. But there is a slight
difference between the algorithms. Meanwhile, LSTRFRRGCD showed a slight sharp
fall from 32 to 64 processors and from 64 to 128 processors. Results showed that
LSTRFRRGCD and LSTRF have the best performance, while EDFRRLCM and LST

showed the worst performance.
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To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 32, 64 and 128
processors were computed. Table 4.15, showed the standard deviation of Figure 4.15

results.

Table 4.15: Standard Deviation
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4.2.6 Sharcnet Traces

The experiment was carried out using the whole traces file workload.
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Figure 4.16: Average Turnaround Time

This experiment was carried out by varying the number of processors from 32, 64
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and 128 numbers of processors. Based on the observation of Figure 4.15, it is
clear that LSTRF, LST, RR, LSTRR, LSTRRLCM, EDFRR, EDFRRGCD,
LSTRFRR and LSTRFRRLCM are smooth and steady from 32 to 64 and 128
processors. LSTRFRRGCD and LSTRRGCD showed a sharp and steady fall
from 32 to 64 and 128 processors. EDF showed a sharp fall from 32 to 64
processors and a sharp fall from 64 to 128 processors. Meanwhile, FCFS and
EDFRRLCM showed a sharp fall from 32 to 64 processors and 64 to 128
processors. LSTRR, EDFRR, LSTRFRR, LST, LSTRRLCM, LSTRF and
LSTRFRRLCM are overlapping one another. But there is a slight difference
between the algorithms. Results showed that LSTRFRRLCM and LSTRF have
the best performance, while FCFS and EDFRRLCM showed the worst

performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 32, 64 and 128
processors were computed. Table 4.16, showed the standard deviation of Figure 4.16

results.

Table 4.16: Standard Deviation
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Figure 4.17: Average Waiting Time

It can be observed from Figure 4.17 that LSTRF, LST, RR, LSTRR, LSTRRLCM,
EDFRR, EDFRRGCD, LSTRFRR and LSTRFRRLCM are smooth and steady
from 32 to 64 and 128 processors. LSTRFRRGCD and LSTRRGCD showed a
“sharp and steady fall from 32 to 64 and 128 processors. EDF showed a sharp fall
from 32 to 64 processors and a sharp fall from 64 to 128 processors. Meanwhile,
FCFS and EDFRRLCM showed a sharp fall from 32 to 64 processors and 64 to
128 processors. LSTRR, EDFRR, LSTRFRR, LST, LSTRRLCM, LSTRF and
LSTRFRRLCM are overlapping one another. But there is a slight difference
between the algorithms. Results showed that LSTRFRRLCM and LSTRF have
the best performance, while FCFS and EDFRRLCM showed the worst

performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 32, 64 and 128
processors were computed. Table 4.17, showed the standard deviation of Figure 4.17

results.
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Figure 4.18: Maximum Tardiness

Figure 4.17 show’s that maximum tardiness is not fixed it varies on the workload.
However, it can be observed that LSTRF, LST, RR, LSTRR, LSTRRGCD,
LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM, LSTRFRR, LSTRFRRGCD,
LSTRFRRLCM and FCFS showed a sharp fall from 32 to 64 and 128 processors as

well as overlap one another. However, there is a slight difference between the
algorithms. Results showed that LSTRFRRLCM and LSTRF have the best
performance, while EDF and EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent,

standard deviation of each

algorithms turnaround time of each set of experiments, based on 32, 64 and 128
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processors were computed. Table 4.18, showed the standard deviation of Figure 4.18

results.

Table 4.18; Standard Deviation
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4.2.7 Job Variations of Das-2 Traces

As explained in the methodology, scalability test of scheduling algorithms under an
increasing real workload were incorporated and as previously explained, ten (70) data
sets were formed by using 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 98% of the
traces files workload, 100000, 200000, 300000, 400000, 500000, 600000, 700000,
800000, 900000 and 1000000 processes, respectively.
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Figure 4.19: Average Turnaround Time
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This experiment was carried out using 64 numbers of processors. However, as the
number of jobs is increasing, average turnaround time increased. Based on the
observation of Figure 4.19, it is clear that LSTRR, LSTRRGCD, LSTRRLCM,
EDFRR, EDFRRGCD, LSTRFRR, LSTRFRRGCD, and LSTRFRRLCM showed a
smooth and steady rise from 100000 to 10000000 number of jobs as well as overlap
one another. However, there is a slight difference between the algorithms. LSTREF,
LST, RR, results showed a sharp rise from 100000 to 200000 number of jobs, from
200000 to 300000 number of jobs, and a sharp fall from 300000 to 400000 number of
jobs, then sharp fall from 400000 to 600000 number of jobs, then a sharp rise from
600000 to 700000 number of jobs and a sharp rise from 700000 to 1000000 number
of jobs. The possible explanation that could be adduced for this observed trend may
be due the varying number of jobs. EDF has shown a sharp rise from 100000 to
200000 number of jobs, and a slight fall from 200000 to 300000 number of jobs, and
a sharp rise from 300000 to 400000 number of jobs, then sharp fall from 400000 to
600000 number of jobs, then a sharp rise from 600000 to 700000 number of jobs and
a sharp rise from 700000 to 800000 number of jobs, then a sharp rise from 800000 to
900000 number of jobs, and finally a sharp fall from 900000 to 1000000 number of
jobs, possible reason may be due the varying number of jobs. Meanwhile, FCFS and
EDFRRLCM showed a sharp rise from 100000 to 200000 number of jobs, from
200000 to 300000 number of jobs, and a sharp fall from 300000 to 400000 number of
jobs, then sharp rise from 400000 to 500000 number of jobs, then a sharp rise from
500000 to 900000 number of jobs and a slight fall from 900000 to 1000000 number
of jobs. Results showed that LSTRF and LST have the best performance, while
EDFRRLCM and FCFS showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 64 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.19, showed
the standard deviation of Figure 4.19 results.

Table 4.19: Standard Deviation
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Figure 4.20: Average Waiting Time

It can be observed from Figure 4.20 that LSTRR, LSTRRGCD, LSTRRLCM,
EDFRR, EDFRRGCD, LSTRFRR, LSTRFRRGCD and LSTRFRRLCM showed a
smooth and steady rise from 100000 to 10000000 number of jobs as well as overlap
one another. However, there is a slight difference between the algorithms. LSTRF,
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LST, RR, results showed a sharp rise from 100000 to 200000 number of jobs, from
200000 to 300000 number of jobs, and a sharp fall from 300000 to 400000 number of
jobs, then sharp fall from 400000 to 600000 number of jobs, then a sharp rise from
600000 to 700000 number of jobs and a sharp rise from 700000 to 1000000 number
of jobs, possible reason may be due to the varying number of jobs. EDF has shown a
sharp rise from 100000 to 200000 number of jobs, and a slight fall from 200000 to
300000 number of jobs, and a sharp rise from 300000 to 400000 number of jobs, then
sharp fall from 400000 to 600000 number of jobs, then a sharp rise from 600000 to
700000 number of jobs and a sharp rise from 700000 to 800000 number of jobs, then
a sharp rise from 800000 to 900000 number of jobs, and finally a sharp fall from
900000 to 1000000 number of jobs. Meanwhile, FCFS and EDFRRLCM showed a
sharp rise from 100000 to 200000 number of jobs, from 200000 to 300000 number of
jobs, and a sharp fall from 300000 to 400000 number of jobs, then sharp rise from
400000 to 500000 number of jobs, then a sharp rise from 500000 to 900000 number
of jobs and a slight fall from 900000 to 1000000 number of jobs. Results showed that
LSTRF and LST have the best performance, while EDFRRLCM and FCFS showed

the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 64 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.20, showed
the standard deviation of Figure 4.20 results.

Table 4.20: Standard Deviation

R TR STRRGCD LSRR
s
TS

T

T

1E

2

IR

WET AN

WEDER TUED

WED MR TN R



Max Tardiness
115608
1158408
ELFS
1.14E+0% - )
E0F
1.148+09 e oo ENERR
- EDFRAGCD
g 1.138+08 -~ EDFRALCM
z 8T
) LS_/TQR
1.13E+08
w w E5TRRGCD
o o STRRE O
112E:0%
—L5TRE
corseson {STRERR
1.136+08
o { STRERRGCD
LSTRFRRLCM
1118508
100500 2300000 300000 400000 500002 600000 700000 SO000Q 900002 1000000
Number of jobs

Figure 4.21: Maximum Tardiness

Figure 4.21 show’s that maximum tardiness is not fixed it varies on the workload.
However, it can be observed from the graph point of view that LSTRF, LST, RR,
LSTRR, LSTRRGCD, LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM,
LSTRFRR, LSTRFRRGCD, LSTRFRRLCM and FCFS showed sharp rise from
100000 to 1000000 number of jobs as well as overlap one another. However, there is
a slight difference between the algorithms. Results showed that LSTRF and LST have
the best performance, while FCFS and EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 64 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.22, showed

the standard deviation of Figure 4.21 results.
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Table 4.21: Standard Deviation

In contrast to Figure 4.21, experiment was carried out by varying the number from 64

processors to 128 numbers of processors.
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However, it can be observed that Figure 4.22 showed that LSTRR, LSTRRLCM,
EDFRR, EDFRRGCD, LSTRFRR, and LSTRFRRLCM are smooth and steady rise
from 100000 to 10000000 number of jobs as well as overlap one another. However,
there is a slight difference between the algorithms. LSTRF, LST, RR, results, showed
a sharp rise from 100000 to 200000 number of jobs, and a sharp fall from 200000 to
400000 number of jobs, and a sharp rise from 400000 to 600000 number of jobs, then
sharp rise from 400000 to 600000 number of jobs, from 600000 to 700000 number of
jobs, then from 700000 to 900000 number of jobs, then from 900000 to 1000000
number of jobs. EDF has shown a sharp rise from 100000 to 200000 number of jobs,
and a slight rise from 200000 to 400000 number of jobs, and a slight fall from 400000
to 600000 number of jobs, then sharp rise from 600000 to 700000 number of jobs,
then sharp fall from 700000 to 800000 number of jobs, then a slight rise from 800000
to 900000 number of jobs and finally a slight fall from 900000 to 1000000 number of
jobs, possible reason may be due the varying number of jobs. LSTRFRRGCD and
LSTRRGCD showed a smooth and steady rise from 100000 to 800000 number of
jobs, then a sharp rise from 800000 to 900000 number of jobs, probable reason may
be due to heavy workload, then a sharp fall from 900000 to 1000000 number of jobs.
EDFRRGCD showed a smooth and steady rise from 100000 to 400000 number of
jobs, then a sharp fall from 400000 to 500000 number of jobs, then a sharp rise from
500000 to 600000 number of jobs, then smooth and steady from 600000 to 800000
number of jobs, then a sharp fall from 800000 to 900000 number of jobs, then finally
a sharp rise from 900000 to 1000000 number of jobs. Meanwhile, FCFS and
EDFRRLCM showed a sharp rise from 100000 to 200000 number of jobs, from
200000 to 300000 number of jobs, and a sharp fall from 300000 to 400000 number of
jobs, then sharp rise from 400000 to 500000 number of jobs, then a sharp rise from
500000 to 900000 number of jobs and a slight fall from 900000 to 1000000 number
of jobs. Results showed that LSTRF and LST have the best performance, while FCFS
and EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 128 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.22, showed

the standard deviation of Figure 4.22 results.
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Table 4.22: Standard Deviation
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Figure 4.23: Average Waiting Time

It can be observed from Figure 4.23, that LSTRR, LSTRRLCM, EDFRR,
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EDFRRGCD, LSTRFRR, and LSTRFRRLCM are smooth and steady rise from
100000 to 10000000 number of jobs as well as overlap one another. However, there is
a slight difference between the algorithms. LSTRF, LST, RR, results, showed a sharp
rise from 100000 to 200000 number of jobs, and a sharp fall from 200000 to 400000
number of jobs, and a sharp rise from 400000 to 600000 number of jobs, then sharp
rise from 400000 to 600000 number of jobs, from 600000 to 700000 number of jobs,
then from 700000 to 900000 number of jobs, then from 900000 to 1000000 number of
jobs, possible reason may be due the varying number of jobs. EDF has shown a sharp
rise from 100000 to 200000 number of jobs, and a slight rise from 200000 to 400000
number of jobs, and a slight fall from 400000 to 600000 number of jobs, then sharp
rise from 600000 to 700000 number of jobs, then sharp fall from 700000 to 800000
number of jobs, then a slight rise from 800000 to 900000 number of jobs and finally a
slight fall from 900000 to 1000000 number of jobs. LSTRFRRGCD and LSTRRGCD
showed a smooth and steady rise from 100000 to 800000 number of jobs, then a sharp
rise from 800000 to 900000 number of jobs, probable reason may be due to heavy
workload, then a sharp fall from 900000 to 1000000 number of jobs. EDFRRGCD
showed a smooth and steady rise from 100000 to 400000 number of jobs, then a sharp
fall from 400000 to 500000 number of jobs, then a sharp rise from 500000 to 600000
number of jobs, then smooth and steady from 600000 to 800000 number of jobs, then
a sharp fall from 800000 to 900000 number of jobs, then finally a sharp rise from
900000 to 1000000 number of jobs. Meanwhile, FCFS and EDFRRLCM showed a
sharp rise from 100000 to 200000 number of jobs, from 200000 to 300000 number of
jobs, and a sharp fall from 300000 to 400000 number of jobs, then sharp rise from
400000 to 500000 number of jobs, then a sharp rise from 500000 to 900000 number
of jobs and a slight fall from 900000 to 1000000 number of jobs. Results showed that
LSTRF and LST have the best performance, while FCFS and EDFRRLCM showed

the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 128 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.23, showed

the standard deviation of Figure 4.23 results.
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Table 4.23: Standard Deviation
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Figure 4.24: Maximum Tardiness

Figure 4.24 shows that maximum tardiness is not fixed it vary on the workload.
However, it can be observed from the graph point of view that LSTRF, LST, RR,
LSTRR, LSTRRGCD, LSTRRLCM, EDFRR, EDFRRGCD, EDFRRLCM,
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LSTRFRR, LSTRFRRGCD, LSTRFRRLCM and FCFS showed a sharp rise from
100000 to 1000000 number of jobs as well as overlap one another. However, there is
a slight difference between the algorithms. Results showed that LSTRF and LST have
the best performance, while LSTRFLCM and EDFRRLCM showed the worst

performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 128 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.24, showed

the standard deviation of Figure 4.24 results.

Table 4.24: Standard Deviation
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4.2.8 Job Variations Sharcnet Traces

We incorporate scalability test of scheduling algorithms under an increasing real
workload. Meanwhile, we formed ten (/0) data sets by using 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 98% of the traces files workload, 100000, 200000, 300000,
400000, 500000, 600000, 700000, 800000, 900000 and 1000000 processes,

respectively.
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Figure 4.25: Average Turnaround Time

This experiment was carried out using 64 numbers of processors. However, as the
number of jobs increased, average turnaround time increased as well. Based on the
general observation of Figure 4.25, LSTRRGCD, EDFRRGCD, and LSTRFRRGCD
showed a sharp rise from 100000 to 2000000 number of jobs, then from 200000 to
300000, then a smooth from 300000 to 1000000 as well as overlap one another.
However, there is a slight difference between the algorithms. LSTRFRRLCM and
LSTRRLCM showed a sharp rise from 100000 to 2000000 jobs, then from 200000 to
300000, then a smooth from 300000 to 900000 number of jobs, then a sharp rise from
900000 to 1000000 number of jobs. LSTRR, EDFRR, and LSTRFRR are smooth and
steady from 100000 to 7000000 number of jobs, then a sharp rise from 700000 to
800000 number of jobs, then a slight fall from 800000 to 900000 number of jobs, the
finally a sharp rise from 900000 to 1000000 number of jobs. LSTRF, LST, RR,
results, showed a sharp rise from 100000 to 200000 number of jobs, from 200000 to
300000 number of jobs, and a sharp fall from 300000 to 400000 number of jobs, then
sharp fall from 400000 to 600000 number of jobs, then a sharp rise from 600000 to
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700000 number of jobs and a sharp rise from 700000 to 800000 number of jobs, then
a slight fall from 800000 to 900000 number of jobs, then finally a sharp rise from
900000 to 1000000 number of jobs. EDF has shown a sharp rise from 100000 to
200000 number of jobs, and a slight fall from 200000 to 300000 number of jobs, and
a sharp rise from 300000 to 400000 number of jobs, then sharp fall from 400000 to
600000 number of jobs, then a sharp rise from 600000 to 700000 number of jobs and
a sharp rise from 700000 to 800000 number of jobs, then a slight fall from 800000 to
900000 number of jobs, and finally a sharp rise from 900000 to 1000000 number of
jobs. Meanwhile, FCFS a sharp rise from 100000 to 2000000 number of jobs, then
from 200000 to 300000, then a smooth from 300000 to 700000 number of jobs, then a
sharp rise from 700000 to 800000 number of jobs, then a slight fall from 800000 to
900000 number of jobs, and finally a slight rise from 900000 to 1000000 number of
jobs. Results showed that LSTRF and LST have the best performance. While
LSTRFRRGCD then EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 64 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.25, showed

the standard deviation of Figure 4.25 results.

Table 4.25: Standard Deviation
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Figure 4.26: Average Waiting Time

It can be observed from Figure 4.26 that LSTRRGCD, EDFRRGCD, and
LSTRFRRGCD showed a sharp rise from 100000 to 2000000 number of jobs, then
from 200000 to 300000, then a smooth from 300000 to 1000000 as well as overlap
one another. However, there is a slight difference between the algorithms.
LSTRFRRLCM and LSTRRI.CM showed a sharp rise from 100000 to 2000000
number of jobs, then from 200000 to 300000, then a smooth from 300000 to 900000
number of jobs, then a sharp rise from 900000 to 1000000 number of jobs, probable
reason may be due to heavy workload. LSTRR, EDFRR, and LSTRFRR are smooth
and steady from 100000 to 7000000 number of jobs, then a sharp rise from 700000 to
800000 number of jobs, then a slight fall from 800000 to 900000 number of jobs, the
finally a sharp rise from 900000 to 1000000 number of jobs, possible reason may be
due to heavy workload. LSTRF, LST, RR, results, showed a sharp rise from 100000
to 200000 number of jobs, from 200000 to 300000 number of jobs, and a sharp fall
from 300000 to 400000 number of jobs, then sharp fall from 400000 to 600000
number of jobs, then a sharp rise from 600000 to 700000 number of jobs and a sharp
rise from 700000 to 800000 number of jobs, then a slight fall from 800000 to 900000
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number of jobs, then finally a sharp rise from 900000 to 1000000 number of jobs,
possible reason may be due the varying number of jobs and increase in heavy
workload. EDF has shown a sharp rise from 100000 to 200000 number of jobs, and a
slight fall from 200000 to 300000 number of jobs, and a sharp rise from 300000 to
400000 number of jobs, then sharp fall from 400000 to 600000 number of jobs, then a
sharp rise from 600000 to 700000 number of jobs and a sharp rise from 700000 to
800000 number of jobs, then a slight fall from 800000 to 900000 number of jobs, and
finally a sharp rise from 900000 to 1000000 number of jobs. Meanwhile, FCFS a
sharp rise from 100000 to 2000000 number of jobs, then from 200000 to 300000, then
a smooth from 300000 to 700000 number of jobs, then a sharp rise from 700000 to
800000 number of jobs, then a slight fall from 800000 to 900000 number of jobs, and
finally a slight rise from 900000 to 1000000 number of jobs. Results showed that
LSTRF and LST have the best performance, while LSTRFRRGCD then EDFRRLCM

showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 64 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.26, showed

the standard deviation of Figure 4.26 results.

Table 4.26: Standard Deviation
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Figure 4.27: Maximum Tardiness

Figure 4.27 shows that maximum tardiness is not fixed it vary on the workload.
However, it can be observed that LSTRF, LST, RR, LSTRR, EDFRR, LSTRFRR,
FCFS and EDF are overlap one another, showing a sharp and steady rise from 100000
to 700000 numbers of jobs and a high rise from 700000 to 800000 then a high rise
from 800000 to 1000000 numbers of jobs. Meanwhile, LSTRRGCD, LSTRFRRGCD,
showed sharp rise from 100000 to 200000 number of jobs, from 200000 to 300000
number of jobs, from 300000 to 400000 number of jobs, from 400000 to 500000
number of jobs, then a sharp rise from 500000 to 1000000 number of jobs, possible
reason may be due to heavy workload. EDFRRGCD showed sharp fall from 100000
to 200000 number of jobs, possible reason may be due less workload, then a sharp
rise from 200000 to 300000 number of jobs, from 300000 to 400000 number of jobs,
from 400000 to 500000 number of jobs, then a sharp rise from 500000 to 1000000
number of jobs. LSTRFRRLCM, LSTRRLCM showed sharp rise 100000 to 200000
number of jobs, from 200000 to 300000 number of jobs, from 300000 to 400000
number of jobs, from 400000 to 500000 number of jobs, from 500000 to 1000000
number of jobs, then finally a sharp rise from 900000 to 1000000 number of jobs.
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EDFRRLCM showed sharp rise 100000 to 200000 number of jobs, from 200000 to
300000 number of jobs, from 300000 to 400000 number of jobs, from 400000 to
500000 number of jobs, then a sharp rise from 500000 to 600000 number of jobs, a
sharp fall from 600000 to 700000 number of jobs, then smooth and steady from
700000 to 1000000 number of jobs. All algorithms seem to be overlapping one
another. However, there is a slight difference between the algorithms. Results showed
that LSTRF and LST have the best performance, while LSTRFRRGCD and
EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 64 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.27, showed

the standard deviation of Figure 4.27 results.

Table 4.27: Standard Deviation
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In contrast to Figure 4.25, experiment was carried out by varying the number from 64

processors to 128 numbers of processors.
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Figure 4.28: Average Turnaround Time

However, it can also be observed that from the graph, as the number of jobs is
increasing, average turnaround time is increasing. Based on the general observation
of Figure 4.28, LST, RR, LSTRR, LSTRRGCD, EDFRRGCD, LSTRFRR,
LSTRFRRGCD, LSTRFRRLCM, and LSTRRLCM showed sharp rise from 100000
to 2000000 number of jobs, from 200000 to 300000, then a slight rise from 300000 to
500000 number of jobs, then a slight fall from 500000 to 600000 number of jobs, then
a slight rise from 600000 to 700000 number of jobs, finally smooth and steady from
700000 to 1000000 number of jobs. LSTRF showed sharp rise from 100000 to
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2000000 number of jobs, from 200000 to 300000, then a slight rise from 300000 to
500000 number of jobs, then finally smooth and steady from 500000 to 1000000
number of jobs. EDFRR showed sharp rise from 100000 to 2000000 number of jobs,
from 200000 to 300000, then a slight fall from 300000 to 400000 number of jobs,
then a slight rise from 400000 to 500000 number of jobs, then a slight fall from
500000 to 600000 number of jobs, then a slight rise from 600000 to 700000 number
of jobs, finally smooth and steady from 700000 to 1000000 number of jobs.
EDFRRLCM showed sharp rise from 100000 to 2000000 number of jobs, from
200000 to 300000, then a slight rise from 300000 to 500000 number of jobs, then a
slight fall from 500000 to 600000 number of jobs, then a slight rise from 600000 to
700000 number of jobs, then smooth and steady from 700000 to 900000 number of
jobs, then finally a sharp rise from 700000 to 1000000 number of jobs, possible
reason may be due to heavy workload. Meanwhile, FCFS showed sharp rise from
100000 to 2000000 number of jobs, from 200000 to 300000, then a slight rise from
300000 to 500000 number of jobs, then a slight rise from 500000 to 700000 number
of jobs, then a slight fall from 700000 to 800000 number of jobs, then a slight fall
from 800000 to 900000 number of jobs, then finally slight rise from 900000 to
1000000 number of jobs.

Moreover, RR, LSTRR, LSTRRGCD, EDFRR, EDFRRGCD, LSTRFRR,
LSTRFRRGCD, LSTRFRRLCM and LSTRRLCM are overlapping one another. But
there is a slight difference between the algorithms. Results showed that
LSTRFRRLCM and LSTRRLCM have the best performance, while FCFS and
EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 128 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.28, showed

the standard deviation of Figure 4.28 results.
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Table 4.28: Standard Deviation
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Figure 4.29: Average Waiting Time

It can be observed from Figure 4.29 that LST, RR, LSTRR, LSTRRGCD,
EDFRRGCD, LSTRFRR, LSTRFRRGCD, LSTRFRRLCM, and LSTRRLCM
showed sharp rise from 100000 to 2000000 number of jobs, from 200000 to 300000,
then a slight rise from 300000 to 500000 number of jobs, then a slight fall from
500000 to 600000 number of jobs, then a slight rise from 600000 to 700000 number
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of jobs, finally smooth and steady from 700000 to 1000000 number of jobs. LSTRF
showed sharp rise from 100000 to 2000000 number of jobs, from 200000 to 300000,
then a slight rise from 300000 to 500000 number of jobs, then finally smooth and
steady from 500000 to 1000000 number of jobs. EDFRR showed sharp rise from
100000 to 2000000 number of jobs, from 200000 to 300000, a slight fall from 300000
to 400000 number of jobs, a slight rise from 400000 to 500000 number of jobs, a
slight fall from 500000 to 600000 number of jobs, then a slight rise from 600000 to
700000 number of jobs, finally smooth and steady from 700000 to 1000000 number
of jobs. EDFRRLCM showed sharp rise from 100000 to 2000000 number of jobs,
from 200000 to 300000, then a slight rise from 300000 to 500000 number of jobs,
then a slight fall from 500000 to 600000 number of jobs, then a slight rise from
600000 to 700000 number of jobs, then smooth and steady from 700000 to 900000
number of jobs, then finally a sharp rise from 700000 to 1000000 number of jobs.
Meanwhile, FCFS showed sharp rise from 100000 to 2000000 number of jobs, from
200000 to 300000, then a slight rise from 300000 to 500000 number of jobs, then a
slight rise from 500000 to 700000 number of jobs, then a slight fall from 700000 to
800000 number of jobs, then a slight fall from 800000 to 900000 number of jobs, then
finally slight rise from 900000 to 1000000 number of jobs.

Moreover, RR, LSTRR, LSTRRGCD, EDFRR, EDFRRGCD, LSTRFRR,
LSTRFRRGCD, LSTRFRRLCM and LSTRRLCM are overlapping one another. But
there is a slight difference between the algorithms. Results showed that
LSTRERRLCM and LSTRRLCM have the best performance, while FCFS and
EDFRRLCM showed the worst performance.

To ensure that the value obtained is consistent, standard deviation of each
algorithms turnaround time of each set of experiments, based on 128 procesors
executing 100000 to 1000000 variations of jobs were computed. Table 4.29, showed

the standard deviation of Figure 4.29 results.
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Table 4.29: Standard Deviation
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Figure 4.30: Maximum Tardiness

Figure 4.30 show’s that maximum tardiness is not fixed it varies on the workload.

However, it can be observed that LSTRF, LST, RR, LSTRR, LSTRRGCD,
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EDFRRGCD, LSTRFRR, LSTRFRRGCD, FCFS EDF, LSTRFRRLCM,
LSTRRLCM and EDFRRLCM, showed sharp rise from 100000 to 200000 numbers
of jobs, from 200000 to 400000 numbers of jobs, from 400000 to 500000 numbers of
jobs, then a slight fall from 500000 to 600000 numbers of jobs, then a slight rise from
600000 to 800000 numbers of jobs, then finally smooth from 800000 to 1000000
numbers of jobs. EDFRR showed sharp rise from 100000 to 200000 numbers of jobs,
then a sharp rise from 200000 to 300000 numbers of jobs, then a slight fall from
300000 to 400000 numbers of jobs, a slight rise from 400000 to 500000 numbers of
jobs, then a slight fall from 500000 to 600000 numbers of jobs, then a slight rise from
600000 to 800000 numbers of jobs, then finally smooth from 800000 to 1000000
numbers of jobs. Meanwhile, EDFRRLCM showed sharp rise from 100000 to
200000 numbers of jobs, from 200000 to 400000 numbers of jobs, from 400000 to
500000 numbers of jobs, then a slight fall from 500000 to 600000 numbers of jobs,
then a slight rise from 600000 to 800000 numbers of jobs, then a slight rise from
800000 to 900000 numbers of jobs, then a sharp rise from 900000 to 1000000
numbers of jobs. Results showed that LSTRFLCM and LSTRF have the best
performance, while LSTRFRRGCD and EDFRRLCM showed the worst
performance. To ensure that the value obtained is consistent, standard deviation of
each algorithms turnaround time of each set of experiments, based on 128 procesors

executing 100000 to 1000000 variations of jobs were computed. Table 4.30, showed

the standard deviation of Figure 4.30 results.

Table 4.30: Standard Deviation
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CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

5.1 Chapter Overview

The chapter summarizes the major findings of this research, beginning from literature

review, algorithms development and benchmarking.

5.2 Conclusion

This research had dual goals: to integrate new robust hybrid methods based on
baseline approaches and to implement, evaluate and test these developed algorithms
with real benchmark traces on real computational grid environment. These two

objectives have been realized.

5.2.1 Outcome of the Literature Review

The literature review showed that though much work has been done on grid
scheduling, not much report is found dealing with scheduling algorithms that
combined deadline and slack time in their development. In the same vein, the
presented algorithms were not implemented using hard- and soft- real-time system

approach.
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5.2.2 Outcome of Algorithm Development

Fourteen (14) algorithms were developed. Of the fourteen, five (5) are baseline
approaches, while the rest are hybrids based on real-time system and round robin

fairness, using operational research (OR) concepts.

Extensive performance analyses were carried out using real workload traces in
real computational grid environment to evaluate the efficiency and robustness of the
developed grid scheduling algorithms with respect to the following performance

metrics: average turnaround time average waiting time and maximum tardiness.

As expected, the time required to perform scheduling in the dynamic situation
becomes stable when varying the number of jobs and processors under an increasing
real workload. However, it is clear that the performance metrics (average turnaround
time, average waiting time and maximum tardiness) strongly dependent on the
number of available processors. Their performance becomes higher when the numbers

of processors are increased.

Based on the comparative performance analysis between the developed
scheduling algorithms and the baseline approaches (the chosen benchmarks), results
have shown that LSTRF, LSTRFRRLCM and LST scheduling algorithms have the
best performance among all the compared scheduling algorithms (FCFS, RR, EDF,
LSTRR, LSTRFRR, LSTRRGCD, LSTRFRRGCD, EDFRRGCD, LSTRRLCM, and
EDFRRLCM), while EDFRRLCM and FCFS showed the worst performance.
Therefore, we conclude that LSTRF, LSTRFRRLCM and LST scheduling
approaches, which could be used in solving real grid computational challenges and
could be made as part of the general grid scheduling solution policy. This conclusion
stems from the fact that the real grid infrastructure requirements (Short Turnaround
Time, Short Average Waiting Time and Short Tardiness Time) as well as the
maintenance of scalability under heavy workload and varying number of processors in
a real computational grid environment are adequately met by these developed

algorithms.
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Thus, combining real-time system and round robin fairness (soft real-time system)
techniques has maximized the number of priority tasks in meeting their deadlines in

addition to creating fairness between the tasks and processors.

5.3 Research Limitation

Based on our research we cannot draw any conclusion of the best algorithms on the
real distributed environment. What will be the best performing algorithms with

respect to green parameters are yet to be considered.

5.4 Recommendations and Future Works

Further exploration of the proposed scheduling techniques should be done in future.

Future work includes the following:
« Refinement of the existing algorithms.

+ Developing some new algorithms may be based on some evolutionary

approaches like Genetic Algorithm, Simulated Annealing or Ant Optimization.

»  We will highlight incorporation of the green parameters with the existing

algorithms.

» Testing the proposed schéduling model in true heterogeneous distributed
environment can also be done in order to evaluate its performance in true grid

environment.
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