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A B S T R A C T

Natriuretic peptides are endogenous antagonists of vasoconstrictor and salt- and water-
retaining systems in the body’s defence against blood pressure elevation and plasma
volume expansion, through direct vasodilator, diuretic and natriuretic properties. In addition,
natriuretic peptides may play a role in the modulation of the molecular mechanisms
involved in metabolic regulation and cardiovascular remodelling. The metabolic syndrome
is characterized by visceral obesity, hyperlipidaemia, vascular inflammation and hypertension,
which are linked by peripheral insulin resistance. Increased visceral adiposity may contribute
to the reduction in the circulating levels of natriuretic peptides. The dysregulation of
neurohormonal systems, including the renin–angiotensin and the natriuretic peptide systems,
may in turn contribute to the development of insulin resistance in dysmetabolic patients.
In obese subjects with the metabolic syndrome, reduced levels of natriuretic peptides
may be involved in the development of hypertension, vascular inflammation and cardio-
vascular remodelling, and this may predispose to the development of cardiovascular disease. The
present review summarizes the regulation and function of the natriuretic peptide system in obese
patients with the metabolic syndrome and the involvement of altered bioactive levels of natriuretic
peptides in the pathophysiology of cardiovascular disease in patients with metabolic abnormalities.

INTRODUCTION

The MS (metabolic syndrome) represents a constellation
of several established and emerging risk factors in which
insulin resistance may be recognized as a common
pathophysiological background [1]. A universal defini-
tion of the MS does not exist; however, the two most

adopted definitions of the MS are those proposed by
the WHO (World Health Organization) [2] and NCEP-
ATP III (National Cholesterol Education Program Adult
Treatment Panel III) [3]. The defining criteria are based
on levels of waist circumference, serum triacyglycerols
(triglycerides), blood HDL (high-density lipoprotein)-
cholesterol levels, BP (blood pressure) and serum glucose.
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It has been largely demonstrated that the MS has a
negative impact on cardiovascular prognosis, being asso-
ciated with the development of overt diabetes, established
hypertension, and cardiovascular and cerebrovascular
disease, including CAD (coronary artery disease), heart
failure and stroke [2,3]. The key components of the MS are
abdominal obesity, atherogenic dyslipidaemia, elevated
BP, glucose intolerance, and pro-inflammatory and
prothrombotic states [1,4]. Increased visceral adiposity is
becoming a major global health problem in industrialized
countries, as well as developing countries, and it is closely
associated with the MS, hypertension and increased cardi-
ovascular risk. Increased abdominal adiposity appears to
play a relevant role in metabolic (for example, the MS and
diabetes mellitus) and cardiovascular (for example, CAD
and stroke) complications, even in moderately over-
weight subjects [5,6]. It has been recognized that visceral
adipose tissue is not simply a fat depot, being a highly
metabolically active organ which may produce several
active cytokines (adipokines) that may induce metabolic
and pro-inflammatory actions, as well as predisposing to
the development of insulin resistance. Insulin resistance is
a major pathophysiological link between visceral adipos-
ity and metabolic and cardiovascular complications [1].

The dysregulation of neurohormonal systems, includ-
ing the RAAS (renin–angiotensin–aldosterone system)
and NP (natriuretic peptide) system, may increase
visceral fat mass, as well as contribute to the development
of insulin resistance in dysmetabolic patients. In normal
subjects, NPs may affect the homoeostasis of glucose
and lipid metabolism, partly through the reduction in
adipogenesis, as well as the increased release and more
efficient consumption of NEFAs (non-esterified fatty
acids) by peripheral tissues. Furthermore, evidence
from experimental and clinical studies have shown that
NP levels are not simply markers of cardiovascular
pathology; rather they are directly involved in the patho-
physiology of cardiovascular diseases, particularly in
dysmetabolic patients [7]. Indeed, NPs exert relevant
cardioprotective functions, being involved in cardio-
vascular homoeostasis through the regulation of body
fluid and BP by promoting natriuresis, as well as by
modulating vascular inflammation and cardiovascular
remodelling.

It has been shown that NPs are abnormally regulated
in obesity and the MS [8]. In particular, in obese subjects,
NP levels are reduced, and this may contribute to the
genesis of insulin resistance, and to the pathophysiology
of hypertension and its complications in subjects with
the MS [9,10]. Low levels of NPs may also predispose to
pro-inflammatory and profibrotic states in the heart and
vasculature, thus contributing to the pathophysiology
of cardiovascular remodelling and cardiac hypertrophy.
Those conditions frequently occur in patients with the
MS and correlate with increased cardiovascular risk. In
the present review, we summarize the mechanisms of

NP system dysfunction in patients with the MS, as well
as the possible involvement of the altered regulation of
NPs in the development of cardiovascular damage in
dysmetabolic subjects.

FUNCTION OF NPs AND METABOLIC
ALTERATIONS

The NP family consists of three peptides: ANP (atrial
NP), BNP (brain NP) and CNP (C-type NP), which have
structural and physiological similarities. Studies in anim-
als and humans have confirmed the importance of these
peptides as endogenous antagonists of vasoconstrictor
and salt- and water-retaining systems [such as the RAAS,
ETs (endothelins) and vasopressin], and in the body’s de-
fence against BP elevation and plasma volume expansion,
through direct vasodilator, diuretic and natriuretic prop-
erties. NPs may also modulate vascular inflammation,
cell growth and cardiovascular remodelling [11]. Fur-
thermore, NPs may participate in the modulation of the
molecular mechanisms involved in metabolic regulation.
In particular, NPs are involved in the homoeostasis of
plasma lipids and adipose tissue formation.

NPs bind to high-affinity receptors (NPR-A, NPR-
B and NPR-C) on the surface of target cells [12]. NPR-A
and -B are structurally similar, are linked to the produc-
tion of cGMP, and mediate many of the cardiovascular
and renal effects of NPs. NPR-A binds both ANP and
BNP, with the highest affinity being for ANP. On
the other hand, CNP appears to be the natural ligand
for NPR-B. NPR-C has sequence homology with the
other two receptors, but lacks the intracellular catalytic
domains of guanylate cyclase. All three NPs bind to
this receptor with similar affinity. NPR-C is widely
expressed in a variety of tissues, including adipose tissue.
Although it has been reported that this receptor induces a
G-protein-linked cAMP activation [13] and, thus is in-
volved in the cellular mechanisms of the antigrowth prop-
erties of NPs, it is generally accepted that NPR-C plays
a major role in the local modulation of the physiological
effects of NPs, by modulating the final ANP and BNP
binding to NPR-A and by acting as the clearance receptor
of NPs [14]. Both ANP and BNP are rapidly removed
from the circulation by this receptor [15]. Lungs, liver
and kidney, as well as adipose tissue, are important sites
for the elimination of endogenous NPs. Circulating NPs
are also inactivated by cleavage through NEPs (neutral
endopeptidases) within renal tubular and vascular cells.

NPs, through the activation of the biologically active
membrane guanylate-cyclase-linked NPR-A, induce a
potent lipolytic effect in vitro and in vivo in human
adipocytes via a cGMP-dependent mechanism [16] and
the activation of hormone-sensitive lipase [17]. This
lipolytic effect is independent of the fat cell adrenergic and
insulin pathways [18], and is enhanced by hypocaloric
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diets and weight loss [19]. The NP lipolytic pathway is in-
volved in the lipid mobilization observed during physical
activity [20], which is recognized as one of the main non-
pharmacological approaches to improve insulin resistance
and prevent obesity, diabetes and cardiovascular disease.
During physiological increases in plasma ANP levels,
enhanced lipid mobilization is associated with an increase
in lipid utilization by peripheral tissues [17]. It is well
established that during exercise NEFA production and
consumption is enhanced in the heart and skeletal muscle.
During physical activity, the heart derives energy for
myocardial contraction mainly by the oxidation of fatty
acids in mitochondria [21], whose biogenesis requires
cGMP as a key mediator [22]. In this regard, NPs may
promote oxidative metabolism in the heart, as well as in
the skeletal muscle, by increasing NEFA release and pos-
sibly cGMP-dependent mitochondrial activation. Under
these conditions, increased NEFA consumption may
counterbalance the negative effects associated with the
high plasma NEFA levels that are associated with insulin
resistance, metabolic cardiovascular complications [1]
and mortality [23]. Conversely, decreased NP signalling
may promote lipid accumulation in adipose tissue and
skeletal muscle, and may reduce the peripheral NEFA
utilization. This may contribute to the development of
visceral adiposity, which is associated with dyslipidaemia
and insulin resistance [24] (Figure 1). Increased visceral
fat depots are associated with the release of pro-
inflammatory mediators [such as interleukins and TNF-α
(tumour necrosis factor-α)] and with reduced levels of the
anti-inflammatory cytokine adiponectin. This can con-
tribute to impaired hepatic lipoprotein metabolism [25],
and may lead to the production of the highly atherogenic
small-dense LDL (low-density lipoprotein) particles,
which are key features of visceral obesity and are closely
related with insulin resistance [25]. Moreover, obesity and
the MS are associated with decreased HDL levels and the
increased production of small-dense HDL particles,
which may act as pro-inflammatory and pro-athero-
genic agents [26], as well as enhancing cardiovascular risk.

NPs may also exert an inhibitory role on adipose
tissue formation by modulating adipogenesis. Indeed, it
has been reported that ANP inhibits the proliferation
and differentiation of human visceral pre-adipocytes in
adipocytes [27]. Hence NPs may act as protective factors
towards the development of obesity and its metabolic
complications.

On the other hand, obesity may decrease the bioactive
levels of NPs via the increased expression of the clearance
receptor NPR-C in adipose tissue. This may potentiate
adipogenesis and lipid accumulation in obese patients.
Animal and human adipose tissues express both NPR-A
and the clearance receptor NPR-C [28] (Figure 1). The
ratio between NPR-A and NPR-C expression, however,
is reduced in adipose tissue of obese hypertensive
patients [29], suggesting increased clearance of NPs in

those patients. Interestingly, after the kidney, which is
the principal clearance organ for NPs, adipose tissue
has the greatest expression of NPR-C [28]. Fasting down-
regulates NPR-C expression in adipose tissue [30].
Moreover, in obese hypertensive patients exposed to
a hypocaloric diet, ANP infusion induced natriuresis
and a decrease in BP, as well as a significant increase
in cGMP [31]. These findings support the hypothesis
that the reduced NP levels observed in obese subjects
and in patients with the MS are, in part, explained by
the increased clearance of NPs in adipose tissue. In this
regard, an inverse association between plasma NP levels
and obesity has been described in the Framingham Heart
Study [9] and other cohorts [32,33]. Previous reports have
confirmed and extended this finding showing that low
NP levels are associated with the MS and its individual
components (waist circumference, fasting glucose,
HDL-cholesterol and triacylglycerols), as well as with
insulin resistance, even after adjustment for BMI (body
mass index) [34]. In particular, it has been reported that
an inverse association between NT-proBNP (N-terminal
pro-BNP) levels and the MS is attributable to an inverse
relationship between NT-proBNP and plasma lipids,
serum insulin and BMI, independently of age and gender
[35]. The reason underlying the reduction in NP levels in
obesity and the MS has been attributed, at least in part,
to increased clearance in adipose tissue, as mentioned
above, although the importance of the NPR-C for
clearance of NT-proBNP remains undefined [36].

It is not established whether low NP levels precede
or follow the development of metabolic abnormalities.
Nevertheless, several studies suggest that low NP levels
could predispose to insulin resistance. This may occur
mainly through activation of the RAAS [37], which
promotes insulin resistance via multiple mechanisms
in large part related to AT1 [AngII (angiotensin
II) type 1] receptor stimulation. These mechanisms
include inhibition of intracellular insulin signalling
[38], enhanced oxidative stress [39], inflammation [40],
reduced adipocyte differentiation [41], and decreased
perfusion to the skeletal muscle and pancreas [42,43].
Furthermore, a direct influence of NPs on glucose
metabolism has been reported [44,45]. Indeed, ANP
infusion elevates plasma insulin levels [44] and inhibits
glucagon secretion through a direct effect on pancreatic
islets [45]. A direct anti-inflammatory effect of NPs has
also been described [46–48]. This occurs through the
reduction in inflammatory mediators such as TNF-α [46],
COX-2 (cyclo-oxygenase-2) [47] and MCP-1 (monocyte
chemoattractant protein-1) [48] (Figure 1). Moreover
ANP directly stimulates the secretion of adiponectin
[49], an adipocyte-specific anti-inflammatory hormone
with insulin-sensitizing properties, and low levels of
BNP are associated with low levels of adiponectin [50].
Finally, cGMP, the second messenger for NPs, plays a
role in insulin-stimulated glucose transport [51].
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Figure 1 Low levels of NPs are involved in the pathophysiology of metabolic and cardiovascular complications
GC, guanylate cyclase; HSL, hormone-sensitive lipase. Broken line, reduced effect.

Hence, under normal conditions, NPs may regulate
adipose tissue formation and lipid utilization. On the
other hand, in obese subjects, a dysregulation of the NP
system has been described. Increased visceral adipose
mass may reduce NP bioactive levels. This, in turn, may
contribute to the maintenance of obesity and the develop-
ment of insulin resistance, which are associated with
a higher susceptibility of developing cardiovascular
damage in patients with metabolic alterations.

CARDIOVASCULAR DAMAGE IN
DYSMETABOLIC PATIENTS: POSSIBLE
INVOLVEMENT OF NPs

The MS is associated with a global pro-inflammatory state
in the cardiovascular system, as well as with impaired
renal function and microalbuminuria, which can predi-
spose to the development of cardiovascular and cerebro-
vascular disease, as well as to increased cardiovascular
mortality.

Obesity and the MS are characterized by low circul-
ating levels of NPs, as discussed above. Lower bioactive
NP levels may contribute to the susceptibility of

individuals with obesity and the MS in developing
hypertension, vascular remodelling and inflammation,
LVH [LV (left ventricular) hypertrophy] and dys-
function, as well as cardiovascular events. Indeed, NPs,
within physiological levels, may play an important role in
the counter-regulatory response to volume and pressure
overload [52], as well as in preserving endothelial
function and reducing inflammation and fibrosis in the
cardiovascular system.

As elevation of BP is a key feature of cardiovascular
damage in dysmetabolic conditions, such as obesity and
the MS or diabetes, relationships between NPs and BP
regulation require some discussion.

The well-known actions of ANP on salt and water
balance and on BP homoeostasis have stimulated a
large number of studies regarding its pathophysiological
involvement in hypertension. Administration of ANP
decreases BP levels in animal models and humans.
Molecular genetic studies in animal models suggest a
contribution of NPs to the development of hypertension,
with the overexpression of ANP and BNP in transgenic
mice reducing BP [53,54]. Inactivation of the ANP gene
in mice is associated with the development of salt-sensit-
ive hypertension and significant cardiac enlargement [55],
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and knockout of the NPR-A gene causes hypertension,
although not a salt-sensitive type [56].

In fact, the ANP gene may act as a direct regulator of
BP or as a contributory factor in certain forms of hyper-
tension either by a deficiency in the peptide or by
impaired biological function, which is dependent upon
structural alterations of the gene. The increased frequency
of hypertension in carriers of molecular variants of the
ANP gene [57] supports the concept of a critical bio-
logical function of ANP in BP regulation. In particular,
a contribution of an ANP gene variant to an increased
predisposition to the early development of hypertension
and its complications has been reported in a cohort of
Caucasian subjects followed-up for 28 years [57].

Further evidence links NPs to BP control. For instance,
NPs induce direct vasorelaxant actions through the activ-
ation of PKG (protein kinase G)-mediated ion channels
in vascular smooth muscle cells, which induces mem-
brane hyperpolarization [58]. In addition, the cGMP-
dependent activation of PKG decreases cytosolic free
Ca2+ concentrations [59] by reducing Ca2+ release from
intracellular stores, Ca2+ entry into the cell and increasing
Ca2+ removal from the cytosol [60]. Furthermore, NPs
might induce vasorelaxation through the activation of
cGMP-regulated phosphodiesterases [61]. In particular,
the activation of phosphodiesterase II results in the
decrease in intracellular cAMP concentrations and an
impairment of cAMP-mediated responses [62].

In addition, CNP may regulate BP by inducing a
potent endothelium-independent vasodilatory effect on
small resistance arteries via the activation of NPR-C and
the opening of a G-protein-gated inwardly rectifying K+

channels [63].
Finally, NPs inhibit renin, vasopressin and aldosterone

release, and, in humans, high plasma ANP levels decrease
heart rate, central venous pressure and stroke volume [64].
This is also related to interactions between ANP and the
baroreflex control of the circulation by modulating arter-
ial and cardiopulmonary baroreceptor-mediated vascular
responses [65,66]. ANP reduces sympathetic tone in the
peripheral vasculature, probably by dampening baro-
receptors, suppressing of the release of catecholamines
from autonomic nerve endings and suppressing
sympathetic outflow from the central nervous system
[67–69].

In obese subjects with the MS, the levels of NPs are
inappropriately low [9], and their release in response to
volume loading is impaired [10]. Therefore obese subjects
with the MS have a dysfunction in the NPs system and,
thus, they may lack the protective effects of NPs on vessel
structure and function, salt and water homoeostasis,
and BP control. This may contribute to haemodynamic
alterations and the development of hypertension in
subjects with the MS or obesity who have increased
plasma and stroke volumes, as well as increased cardiac
output with inappropriately normal or slightly elevated

vascular peripheral resistance. The reduced levels of NPs
in subjects with the MS may also unmask the increased
sympathetic nervous system activity present in obese
patients with the MS [70,71]. Previous studies have shown
the existence of a complex interplay among visceral adipo-
cytes, the sympathetic nervous system and the RAAS.
The increase in sympathetic nervous system activity in
patients with the MS and/or obesity may participate in the
dysregulation of the RAAS by enhancing the secretion of
renin from the kidney and stimulating angiotensinogen
expression in human adipocytes via cAMP-dependent
mechanisms [72]. This, in turn, can contribute to the
development and maintenance of hypertension in obese
dysmetabolic patients.

Visceral adiposity and NPs are inversely related and
may participate in the development of vascular inflam-
mation. NPs may modulate cell growth and inflammation
within the heart and the vascular wall in disorders such
as atherosclerosis, hypertension and post-angioplasty
restenosis, thus contributing to the modulation of
cardiovascular remodelling [73]. NPs exert antimitogenic
activity on both the cardiovascular and other organ sys-
tems, and exert antiproliferative effects on vascular cells
[74–76], mainly through a cGMP-dependent mechanism.
NPs also exert several anti-inflammatory and antifibrotic
effects. ANP directly inhibits the actions of COX-2
[47] and iNOS (inducible NO synthase) [77], reduces
the production of macrophage-derived TNF-α [46] and
interferes with the TNF-α-induced activation of the
pro-inflammatory nuclear factor NF-κB (nuclear factor
κB) [78]. ANP blocks TGF-β (transforming growth
factor-β)-induced fibroblast differentiation, proliferation
and collagen synthesis in murine hearts [79]. Moreover,
BNP inhibits the profibrotic actions of TGF-β, and
CNP reduces the proliferation of cardiac fibroblasts
and decreases the collagen deposition in the heart [80].

Visceral adipose tissue produces large amounts of
ROS (reactive oxygen species) and pro-inflammatory
cytokines [81] [for example, IL-6 (interleukin-6), which
induces CRP (C-reactive protein) secretion] [25]. Visceral
adipose tissue is infiltrated by macrophages, which are
also stimulated to produce inflammatory mediators such
as TNF-α. Moreover, circulating adiponectin levels are
decreased in obese subjects. This has been associated
with the progression of atherosclerotic lesions [82] in
dysmetabolic subjects.

Therefore, in metabolic patients, increased visceral
adipose tissue, along with the reduced levels of NPs, may
contribute to the development of a peripheral pro-inflam-
matory state, which may play an important role in the
development of atherosclerosis in patients with the MS.

Endothelial dysfunction is present in patients with
the MS and is a predictor of cardiovascular morbidity
and mortality [1,2]. Low levels of NPs in dysmetabolic
patients may contribute to the development of endothel-
ial dysfunction. Indeed, ANP contributes to endothelial
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function in the general population, as it correlates
with brachial artery endothelial function [83]. At low
concentrations, ANP increased human endothelial cell
number and migration [84]. This effect is mediated by
cGMP-dependent MAPK (mitogen-activated protein
kinase) activation and appears particularly effective in the
regeneration of endothelial cells after injury in athero-
sclerosis [84]. In addition, BNP-mediated vasorelax-
ation is endothelium-independent and may be impaired
in experimental atherosclerosis [76]. In the rabbit, long-
term oral inhibition of NEP preserves relaxation to BNP
in atherosclerosis, while attenuating atheroma formation
and maintaining endothelial function, independent of
decreases in serum cholesterol.

NPs induce vasorelaxant effects in the coronary
circulation [85]. In particular, experimental studies have
shown that the vasodilator actions of ANP are especially
relevant in epicardial coronary arteries [86]. Similar
effects have been reported for BNP in humans [87],
and for CNP in porcine and human coronary arteries
[88,89]. Moreover, ANP and BNP increase rapidly after
myocardial infarction [90], and the rapid release of NPs
following infarction has been suggested to provide a
protective action on the ischaemic myocardium [61].
BNP significantly reduces infarct size in a concentration-
dependent manner, possibly through the activation of
NO-dependent soluble guanylate cyclase. [91]. More-
over, ANP infusion immediately after coronary angio-
plasty in patients with acute myocardial infarction has
been able to prevent LV dilation and remodelling more
efficiently than isosorbide dinitrate [86]. On the other
hand, in patients with CAD, low levels of NT-proBNP
are inversely correlated with BMI, with the NT-
proBNP levels not elevated in patients with CAD and
high BMI [92]. Thus low NP levels may contribute to the
pro-inflammatory state, as well as to the endothelial dys-
function and reduced coronary reserve in obese patients
with the MS. This may predispose to the development of
atherosclerosis and CAD in dysmetabolic patients.

BNP has been investigated extensively as a marker
of LV dysfunction and as a prognostic factor in patients
affected by congestive heart failure [93]. Increased ANP
plasma levels have been proposed as a marker of LVH
[94]; however, further studies have shown that ANP may
directly modulate cardiac mass by inhibiting a variety
of hypertrophic cellular signalling pathways through
NPR-A stimulation. In vitro, ANP induced MAPKP-1
(MAPK phosphatase-1) [95], a dual serine/threonine and
tyrosine phosphatase that selectively inactivates MAPK
family members, which are involved in hypertrophy
and cell proliferation. ANP inhibits the noradrenaline
(norepinephrine)-induced growth of cardiomyocytes
through a cGMP-mediated inhibition of Ca2+ influx
[96], and inhibits the production of NADPH-oxidase-
mediated ROS, which are the key mediators of cell
growth and inflammation in cardiovascular remodelling

[97]. Furthermore, a ANP gene promoter variant, which
was associated with reduced circulating NT-proANP
(N-terminal proANP) levels, correlated with increased
cardiac mass, independently of all anthropometric and
clinical parameters, and pharmacological treatments [98].

We have reported previously that low circulating
ANP levels were significantly inversely related to cardiac
mass in hypertensive patients with the MS [99]. Thus the
ANP/NPR-A system may offer a novel countervailing
mechanism towards the hypertrophic growth response
in the heart [100]. Nonetheless, low ANP levels may
predispose, at least in part, to the development of fibrosis
and cardiovascular remodelling.

The development of LVH, which is an independent
predictor of adverse cardiovascular events, is enhanced in
hypertensive patients with the MS, being related to both
high BP and central obesity [101–103]. Several metabolic
and hormonal factors (including dyslipidaemia, insulin
resistance, AngII and leptin) may contribute to the
structural and functional alterations of the LV wall in
hypertensive patients with the MS [104]. Experimental
and clinical studies have described a direct contributory
effect of ANP to cardiac remodelling particularly in
hypertensive subjects with MS, being LVH favoured by
low levels of this antihypertrophic hormone [98,105]. In
patients with the MS, it has been reported that low ANP
levels are inversely related to LV mass independently by
all of the known components of the MS [99]. This sup-
ports the hypothesis that dysregulation of NPs is involved
in the pathogenesis of LVH in patients with the MS,
underlying the protective role of NPs in cardiovascular
remodelling and possibly in the prevention of myocardial
dysfunction in metabolic subjects.

CONCLUSIONS

Several lines of evidence have shown that NPs may posit-
ively modulate lipid metabolism and insulin sensitivity, in
part by preventing lipid accumulation in adipose tissue.
Moreover, NPs have emerged as critical factors for the
regulation of cardiovascular function through diuretic,
natriuretic and vasorelaxant effects, as well as antiprolifer-
ative and anti-inflammatory actions. Plasma levels of NPs
are inversely related to the increase in visceral adipose
mass which is one of the key features of the MS. A defect-
ive NP system (mainly due to the reduced plasma levels of
bioactive NPs in metabolic patients) may in turn contrib-
ute to increased visceral fat accumulation. Furthermore,
an altered regulation of the production, clearance and
function of NPs may possibly contribute to the develop-
ment of hypertension, cardiovascular remodelling, ather-
osclerosis and CAD in patients with obesity and the MS.

In this regard, the availability of drugs that promote
the actions of NPs, such as the orally active antagonists
of NP breakdown by NEP, may theoretically represent
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an attractive therapeutic option for patients with the
MS and cardiovascular disease. Research in this field has
led to the development of dual inhibitors of NEP and
ACE (angiotensin-converting enzyme) (the vasopep-
tidase inhibitors) [106]. By simultaneously inhibiting
the RAAS and potentiating the action of NPs and the
kinin system, vasopeptidase inhibitors reduce vasocon-
striction, enhance vasodilation and improve local blood
flow. Within the blood vessel wall, this leads to a
reduction in vasoconstrictor and proliferative mediators,
such as AngII, and increased local levels of bradykinin
and, in turn, NO and NPs. Vasopeptidase inhibitors
have provided encouraging results on BP control and in
reducing pulse pressure and aortic stiffness in different
subsets of hypertensive patients [107], and in improved
cardiac function and lower mortality/morbidity and
prevalence of renal dysfunction compared with patients
treated with an ACEI (ACE inhibitor) [108]. However,
the introduction of vasopeptidase inhibitors in clinical
practice is still limited due to the greater rates of
angioedema, particularly in black subjects, which may
be related to higher levels of bradykinin and a higher
risk in susceptible individuals. Furthermore, addition of
NEP inhibition to ACE inhibition reduces Ang-(1–7)
(angiotensin 1–7) levels and may increase ET levels, which
may counteract the benefits of ACE inhibition [109].

In addition, human recombinant NPs have been tested
with evidence of favourable effects on the modulation
of fluid and electrolyte balance, vascular smooth muscle
tone, and the regulation of coronary blood flow, myo-
cardial perfusion and proliferative responses during
myocardial and vascular remodelling [110]. Further
clinical studies are necessary to evaluate risks and bene-
fits of the clinical use of these novel pharmaceutical
agents for the prevention and treatment of cardiovascular
disease, particularly in dysmetabolic patients.

REFERENCES

1 Dandona, P., Ajada, A., Chaudhuri, A., Mohanty, P. and
Garg, R. (2005) Metabolic syndrome: a comprehensive
perspective based on interactions between obesity,
diabetes and inflammation. Circulation 111,
1448–1454

2 Alberti, K. G. and Zimmet, P. Z. (1998) Definition,
diagnosis and classification of diabetes mellitus and its
complications. Part 1: diagnosis and classifications of
diabetes mellitus provisional report of a WHO
consultation. Diabetic Med. 15, 539–553

3 Grundy, S. M., Brewer, Jr, H. B., Cleeman, J. L., Smith, Jr,
S. C. and Lenfant, C. (2004) Definition of metabolic
syndrome: report of the National Heart, Lung and Blood
Institute/American heart association conference on
scientific issues related to definition. Circulation 109,
433–438

4 Einhorn, D., Reaven, G. M., Cobin, R. H., Ford, E.,
Ganda, O. P., Handelsman, Y., Hellman, R., Jellinger,
P. S., Kendall, D., Krauss, R. M., Neufeld, N. D. et al.
(2003) American College of Endocrinology position
statement on the insulin resistance syndrome. Endocr.
Pract. 9, 237–252

5 Alberti, K. G., Zimmet, P. and Shaw, J. (2005) IDF
epidemiology task force consensus group. The metabolic
syndrome-a new worldwide definition. Lancet 266,
1059–1062

6 Carr, D. B., Utzschneider, K. M., Hull, R. L., Kodama,
K., Retzlaff, B. M., Brunzell, J. D., Shofer, J. B., Fish, B.
E., Knopp, R. H. and Kahn, S. E. (2004) Intra-abdominal
fat is a major determinant of the National Cholesterol
Educational Program Adult Panel III criteria for the
metabolic syndrome. Diabetes 53, 2087–2094

7 Rubattu, S., Sciarretta, S., Valenti, V., Stanzione, R. and
Volpe, M. (2008) Natriuretic peptides: an update on
bioactivity, potential therapeutic use and implication in
cardiovascular diseases. Am. J. Hypertens. 21, 733–741

8 Licata, G., Volpe, M., Scaglione, R. and Rubattu, S. (1994)
Salt-regulating hormones in young normotensive obese
subjects. Effects of saline load. Hypertension 23, I20–I24

9 Wang, T. J., Larson, M. G., Levy, D., Benjamin, E. J.,
Leip, E. P., Wilson, P. W. and Wasan, R. S. (2004) The
impact of obesity on plasma natriuretic peptide levels: the
Framinghan Heart Study. Circulation 109, 594–600

10 Goodfriend, T. L., Kelley, D. E., Goodpaster, B. H. and
Winters, S. J. (1999) Visceral obesity and insulin resistance
are associated with plasma aldosterone levels in women.
Obes. Res. 7, 355–362

11 Savoia, C. and Schiffrin, E. L. (2004) Significance of
recently identified peptides in hypertension: endothelin,
natriuretic peptides, adrenomedullin, leptin. Med. Clin.
North Am. 88, 39–62

12 Koller, K. J. and Goeddel, D. V. (1992) Molecular biology
of the natriuretic peptides and their receptors. Circulation
86, 1081–1088

13 Anand-Srivastava, M. B., Sairam, M. R. and Cantin, M.
(1990) Ring-deleted analogs of atrial natriuretic factor
inhibit adenylate cyclase/cAMP system. Possible
coupling of clearance atrial natriuretic factor receptors to
adenylate cyclase/cAMP signal transduction system.
J. Biol. Chem. 265, 8566–8572

14 Maack, T., Tikonova, L. N., Friedman, O. and Cohen, D.
(1996) Functional properties and dynamics of natriuretic
peptide receptors. Proc. Soc. Exp. Biol. Med. 213, 109–116

15 Nakao, K., Sugawara, A., Morii, N., Sakamoto, M.,
Yamada, T., Itoh, H., Shiono, S., Saito, Y., Nishimura, K.
and Ban, T. (1986) The pharmacokinetics of α-human
atrial natriuretic polypeptide in healthy subjects. Eur. J.
Clin. Pharmacol. 31, 101–103

16 Sengenes, C., Bouloumie, A., Hauner, H., Berlan, M.,
Busse, R., Lofantan, M. and Galitzky, J. (2003)
Involvement of a cGMP-dependent pathway in a
natriuretic peptide-mediated hormone sensitive lipase
phosphorylation in human adipocytes. J. Biol. Chem. 278,
48617–48626

17 Birkenfeld, A. L., Boschmann, M., Moro, C., Adams, F.,
Heusser, K., Franke, G., Berlan, M., Luft, F. C., Lafontan,
M. and Jordan, J. (2005) Lipid mobilization with
physiological atrial natriuretic peptide concentrations in
human. J. Clin. Endocrinol. Metab. 90, 3622–3628

18 Moro, C., Galintzky, J., Sengenes, C., Crampes, F.,
Lafontan, M. and Berlan, M. (2004) Functional and
pharmacological characterization of the natriuretic
peptide-dependent lipolytic pathway in human fat cells.
J. Pharmacol. Exp. Ther. 308, 984–992

19 Sengenes, C., Stich, V., Berlan, M., Hejnova, J., Lafontan,
M., Pariskova, Z. and Galitzky, J. (2002) Increased
lipolysis in adipose tissue and lipid mobilization to
natriuretic peptides during low-calorie diet in obese
women. Int. J. Obes. Relat. Metab. Disord. 26, 24–32

20 Moro, C., Crampes, F., Sengenes, C., De Glisezinski, I.,
Galitzky, J., Thalamas, C., Lafontan, M. and Berlan, M.
(2004) Atrial natriuretic peptide contributes to
physiological control of lipid mobilization in humans.
FASEB J. 18, 908–910

21 Huss, J. M. and Kelly, D. P. (2004) Nuclear receptor
signalling and cardiac energetics. Circ. Res. 95, 568–578

22 Nisoli, E., Clementi, E., Paolucci, C., Cozzi, V., Tonello,
C., Sciorati, C., Bracale, R., Valerio, A., Francolini, M.,
Moncada, S. and Carruba, M. O. (2003) Mitochondrial
biogenesis in mammals: the role of endogenous nitric
oxide. Science 299, 896–899

C© The Authors Journal compilation C© 2010 Biochemical Society



238 C. Savoia and others

23 Pilz, S., Scharnagi, H., Tiran, B., Seelhorst, U., Wellnitz,
B., Bohem, B. O., Schaefer, J. R. and März, W. (2006)
Free fatty acids are independently associated with
all-cause and cardiovascular mortality in subjects with
coronary artery disease. J. Clin. Endocrinol. Metab. 91,
2542–2547

24 Bergman, R. N., Kim, S. P., Hsu, I. R., Catalano, K. J.,
Chiu, J. D., Kabir, M., Richey, J. M. and Ader, M. (2007)
Abdominal obesity: role in the pathophysiology of
metabolic disease and cardiovascular risk. Am. J. Med.
120, S3–S8

25 Despres, J. P. and Lemieux, I. (2006) Abdominal obesity
and metabolic syndrome. Nature 444, 881–887

26 Navab, M., Anantharamaiah, G. M. and Fogelman,
A. M. (2005) The role of high density lipoprotein in
inflammation. Trends Cardiovasc. Med. 15,
158–161

27 Sarzani, R., Marcucci, P., Salvi, F., Bordicchia, M.,
Espinosa, E., Mucci, L., Lorenzetti, B., Minardi, D.,
Muzzonigro, G., Dessı̀-Fulgheri, P. and Rappelli, A.
(2008) Angiotensin II stimulates and atrial natriuretic
peptide inhibits human visceral adipocyte growth. Int. J.
Obes. 32, 259–267

28 Sarzani, R., Dessi-Fulgheri, P., Paci, M. V., Espinosa, E.
and Rappelli, A. (1996) Expression of natriuretic peptides
receptors in human adipose tissues. J. Endocrinol. Invest.
19, 581–585

29 Dessi-Fulgheri, P., Sarzani, R., Tamburrini, P., Moraca, A.,
Espinosa, E., Cola, G., Giantomassi, L. and Rappelli, A.
(1997) Plasma atrial natriuretic peptide and natriuretic
peptide receptor gene expression in adipose tissue of
normotensive and hypertensive obese patients.
J. Hypertens. 15, 1696–1699

30 Sarzani, R., Paci, M. V., Zingareti, C. M., Pierleoni, C.,
Cinti, S., Cola, G., Rappelli, A. and Dessı̀-Fulgheri, P.
(1995) Fasting inhibits natriuretic peptides clearance
receptor expression in rat adipose tissue. J. Hypertens. 13,
1241–1246

31 Dessı̀-Fulgheri, P., Sarzani, R., Serenelli, M., Tamburrini,
P., Spagnolo, D., Giantomassi, L., Espinosa, E. and
Rappelli, A. (1999) Low calorie diet enhances renal,
hemodynamic and humoral effects of exogenous atrial
natriuretic peptide in obese hypertensives. Hypertension
33, 658–662

32 Das, S. R., Drazner, M. H., Dries, D. L., Vega, G. L.,
Stanek, H. G., Abdullah, S. M., Canham, R. M.,
Chung, A. K., Leonard, D., Wians, Jr, F. H. and De
Lemos, J. A. (2005) Impact of body mass and body
composition on circulating levels of natriuretic peptides:
results from the Dallas Heart Study. Circulation 112,
2163–2068

33 Mehra, M. R., Uber, P. A., Park, M. H., Scott, R. L.,
Ventura, H. O., Harris, B. C. and Fronlich, E. D. (2004)
Obesity and suppressed B-type natriuretic peptide levels
in heart failure. J. Am. Coll. Cardiol. 43, 1590–1595

34 Wang, T. J., Larson, M. G., Keyes, M. J., Levy, D.,
Benjamin, E. L. and Vasan, R. S. (2007) Association of
plasma natriuretic peptide levels with metabolic risk
factors in ambulatory individuals. Circulation 115,
1345–1353

35 Olsen, M. H., Hansen, T. W., Christensen, M. K.,
Gustafsson, F., Rasmussen, S., Watchell, K.,
Borch-Johnsen, K., Ibsen, H., Jorgensen, T. and
Hildebrandt, P. (2005) N-terminal pro brain natriuretic
peptide is inversely related to metabolic cardiovascular
risk factors and the metabolic syndrome. Hypertension
46, 660–666

36 Hall, C. (2004) Essential biochemistry and physiology of
(NT-pro)BNP. (2004) Eur. J. Heart Failure 6, 257–260

37 Johnston, C. I., Hodsman, P. G., Kohzuki, M., Casley,
D. J., Fabris, B. and Phillips, P. A. (1989) Interaction
between atrial natriuretic peptide and the renin
angiotensin aldosterone system: endogenous antagonists.
Am. J. Med. 87, 24S–28S

38 Velloso, L. A., Folli, F., Sun, X. J., White, M. F., Saad,
M. J. and Kahn, C. R. (1996) Cross-talk between the
insulin and angiotensin signaling systems. Proc. Natl.
Acad. Sci. U.S.A. 93, 12490–12495

39 Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M.,
Freeman, B. A., Griendling, K. K. and Harrison, D. G.
(1996) Angiotensin II-mediated hypertension in the rat
increases vascular superoxide production via membrane
NADH/NADPH oxidase activation: contribution to
alterations of vasomotor tone. J. Clin. Invest. 97,
1916–1923

40 Fliser, D., Buchholz, K. and Haller, H. (2004)
Antiinflammatory effects of angiotensin II subtype 1
receptor blockade in hypertensive patients with
microinflammation. Circulation 110, 1103–1107

41 Janke, J., Engeli, S., Gorzelniak, K., Luft, F. C. and
Sharma, A. M. (2002) Mature adipocytes inhibit in vitro
differentiation of human preadipocytes via angiotensin
type 1 receptors. Diabetes 51, 1699–1707

42 Henriksen, E. J. and Jacob, S. (2003) Angiotensin
converting enzyme inhibitors and modulation of skeletal
muscle insulin resistance. Diabetes Obes. Metab. 5,
214–222

43 Carlsson, P. O., Berne, C. and Jansson, L. (1998)
Angiotensin II and the endocrine pancreas: effects on islet
blood flow and insulin secretion in rats. Diabetologia 41,
127–133

44 Uehlinger, D. E., Weidmann, P., Gnadinger, M. P., Hasler,
L., Bachmann, C., Shaw, S., Hellmuller, B. and Lang, R. E.
(1986) Increase in circulating insulin induced by atrial
natriuretic peptide in normal humans. J. Cardiovasc.
Pharmacol. 8, 1122–1129

45 Verspohl, E. J. and Bernemann, I. K. (1996) Atrial
natriuretic peptide (ANP)-induced inhibition of glucagon
secretion: mechanism of action in isolated rat pancreatic
islets. Peptides 17, 1023–1029

46 Tsukagoshi, H., Shimizu, Y., Kawata, T., Hisada, T.,
Shimitzu, Y., Iwamae, S., Ishizuka, T., Izuka, K., Dobashi,
K. and Mori, M. (2001) Atrial natriuretic peptide inhibits
tumor necrosis factor-α production by
interferon-γ -activated macrophages via suppression of
p38 mitogen-activated protein kinase and nuclear
factor-κB activation. Regul. Pept. 99, 21–29

47 Kiemer, A. K., Lehner, M. D., Hartung, T. and Vollmar,
A. M. (2002) Inhibition of cyclooxygenase-2 by
natriuretic peptides. Endocrinology 143, 846–852

48 Weber, N. C., Blumenthal, S. B., Hartung, T., Vollmar,
A. M. and Kiemer, A. K. (2003) ANP inhibits
TNF-α-induced endothelial MCP-1 expression:
involvement of p38 MAPK and MKP-1. J. Leukocyte
Biol. 74, 932–941

49 Moro, C., Klimcakova, E., Lolmede, K., Berlan, M.,
Lafontan, M., Stich, V., Bouloumié, A., Galitzky, J.,
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