Development of LabVIEW FPGA program for Energy Management System
(EMS) Controller for Hybrid Electric Vehicle (HEV)

BY

ABDUL AZIZ BIN MUSTAFFA KAMAL BASHA

FINAL PROJECT REPORT

Dissertation submitted to the Department of Electrical & Electronic Engineering
in Partial Fulfilment of the Requirements
for the Degree
Bachelor of Engineering (Hons)
(Electrical & Electronic Engineering)

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh

Perak Darul Ridzuan

© Copyright 2016

by
Abdul Aziz, 2016

CERTIFICATION OF APPROVAL

Development of LabVIEW FPGA program for Energy Management System
(EMS) Controller for Hybrid Electric Vehicle (HEV)

By

Abdul Aziz Bin Mustaffa Kamal Basha

A project dissertation submitted to the
Department of Electrical & Electronic Engineering
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

Approved:

Mr. Saiful Azrin Bin Mohd Zulkifli
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

January 2016

CERTIFICATION OF ORIGINALITY

This is to certify that | am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Abdul Aziz Bin Mustaffa Kamal Basha

ABSTRACT

This dissertation explains the construction of LabVIEW Field Programmable
Gate Array (FPGA) for Energy Management System (EMS) Controller for Hybrid
Electric Vehicle (HEV). The HEV is engineered to reduce the world’s dependency on
fossil fuels. An HEV is designed to utilize two power sources which are from electric
motor and an internal combustion engine (ICE). These sources need to be carefully
controlled so that the energy of both sources can be synergized to achieve fuel and
power efficiency in the vehicle. The control algorithm is implemented by an EMS
Controller for which in this project, it will run on a National Instruments (NI)
CompactRIO, cRIO-9076. This EMS controller algorithm will be built and designed
in FPGA of NI LabVIEW to extract and control parameters from the electric motor
controller, which is the Motor Control Unit (MCU) and the engine controller, which
is the Engine Control Unit (ECU). The extracted and controlled parameters are engine
RPM, vehicle speed and vehicle fuel consumption. These data will be output using
the embedded server to the client, which is a windows-based tablet PC and the
embedded server is cRI0-9076. The communication between server and client will
be implemented using HTTP-based communication protocol making the data appear
in HyperText Mark-up Language (HTML) which will be rendered into the Graphical
User Interface (GUI) web page interface. This GUI will enable the driver to monitor
and control the MCU and ECU of the Hybrid Electric Vehicle.

ACKNOWLEDGEMENT

In completing my Final Year Project (FYP), | would like to express my deepest
gratitude towards my supervisor - Mr. Saiful Azrin Mohd Zulkifli for providing
continuous support and advice for this project, simulating suggestions, motivation and
encouragement. | am gratefully indebted to him for assistance which is really valuable
and indispensable in the course of finishing this research and writing dissertation.

I owe my wholehearted thanks and appreciation to technologists of the
electrical and electronic and mechanical engineering departments for providing
assistance and permission to use the required equipment that is vital to complete this
project. Not to forget, the FYP committee members for coordinating a well-organized
programme for the Final Year Project at UTP

Last but not least, |1 would like to show appreciation to my family and my
colleagues at UTP for their continuous support toward my FYP project. Furthermore,
I’d like to also thank all those who I have not mentioned and have directly or indirectly
contributed to the completion of this report. None of this would have been possible

without everyone’s help.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ..ottt 1
1.1 Background of Projectccccevvveveiieiieie e 2
1.2 Problem StatemeNnt.........cccovieieiiiiierisisee e 3
1.3 ODJECLIVES ..oveiiiciece sttt 4
1.4 SCOPE Of STUAY....ccveeiiiieiece e 4
1.5 Relevancy of ProjeCt ... 4
1.6 Feasibility Of Project ... 5
CHAPTER 2 LITERATURE REVIEWoooi e 6
2.1 Hybrid Electric Vehicle (HEV) architecturec.ccocoocvvvninnnn 6
2.2 Energy Management System (EMS) ..., 8
2.2.1 EMS Control Strategy.......cccccvevveieerieiie e 9
2.3 CompactRIO and LabVIEW.........ccccooveiiicceccceceee e 10
2.3.1 CRIO-9076...c.cciiiiieieieieese et 11
2.4 In-Wheel Motor (IWM) SYSTemcccovirieieieie e 16
2.5 Re-generative Braking System (RBS)cccccooviininininiinicenn, 16
CHAPTER 3 METHODOLOGYooiiiiie sttt 18
3.1 Research Methodologyccccooiiiiiiiiiiiei e 18
3.2 Implementation CONCEPL........cccveiviiiiiieieeicceee e 19
3.2.1 Pictorial SChematiCcccoovviriiiiieiee e 19
3.2.2 BIocK Diagramcccccveieiieiieie e 19
3.2.3 INput/ OULPUL LiSt.....ccivieieciiicieee e 20
3.3 Project ACHIVILIES......ccciveieiiesie e 20
3.3.1 Project background and literatures............ccccoeevvveriverrsinennnn 20
3.3.2 Learning CompactRIO & LabVIEW Real-time Scan Mode
[S1(0 0 k= 1 TR PR PRSPPI OTR PR 20
3.3.3 Verification of existing Real-time Scan Mode program....... 21
3.3.4 Learning LabVIEW FPGA program.........ccccoceevervnvnenreennnn, 21
3.3.5 Translation of existing Real-Time Scan mode program to
FPGA MOE.......ciiiieiiieie ettt nne e 22
3.3.6 THAl RUN ..o 22

3.4 PROJECT ACTIVITIES & KEY MILESTONEScooenee. 23

35 GANTT-CHART ..ottt 24
3.6 TOOLS ...ttt 26
3.6.1 SOTIWAIE ..o 26
3.6.2 HAIOWAIE......eoiieieciieieee e 26
CHAPTER 4 RESULT AND DISCUSSIONccoviiiiiiieieierienese e 27
4.1 Verification of existing Real-Time scan mode program 27
4.1.1 Instantaneous fuel consumption (ml/s) and total fuel

CONSUMPLION (M) .o.vveiiciecee e 27
4.1.2 Vehicle speed (km/h) and Engine RPM..........cccccoevvevvennenne. 29
4.1.3 Data ACQUISITIONc.eoivieiiciiecece e 31
4.1.4 Front Panel ... 32
4.1.5 Verification of datacccovverinieviieir e 33

4.2 Translation of existing Real-time Scan mode program to FPGA
100 USSR 35
4.2.1 Data acquisition and calculation in FPGA mode.................. 35
4.2.2 Data interfacing in Real-time programmingc.ccccceevenne. 41

4.3 FPGA program for CAN bus communication between the EMS
aANd MCU CONTOIIEN ...t 44
4.3.1 Kelly Controller SEtUPc.ccveveeiiiie e 44
4.3.2 Connection between Kelly Controller, EMS controller and PC
... 48
4.3.3 EMS control program for MCU............cccoceviiiieiieiicceee 51
4.4 Graphical Driver Interface (GDI) development...............c.ccuc....... 55
CHAPTER 5 CONCLUSION ...ttt 56
REFERENCES. ..ottt sttt st e e ee s 57
APPENDICES ...ttt st resre e nes 59
APPENDIX A LABVIEW FPGA BLOCK DIAGRAM.........ccccvevveneene. 59
APPENDIX B LABVIEW FPGA FRONT PANEL.......ccccccovvivnieienn 60
APPENDIX C LABVIEW REAL-TIME BLOCK DIAGRAM............. 61
APPENDIX D LABVIEW REAL-TIME FRONT PANEL 62

vii

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

LIST OF TABLES

INPUL/ OUEPUL TIST ... 20
FYP 1 activities and Key MileStonesccoovveeiieienienieie e 23
FYP2 activities and key mMileStone..........ccccvvevviieii e 23
FYP 1 Gantt-Chart..........coooiiiiiiiiiee e 24
FYP 2 GaNtt-Chart........ccvoiiiieeiie e 25
RPM VS FIeQUENCY [2] .. eeiveiiieieiieieie et 34
Vehicle Speed Vs FrequenCy [2] ...ccvovvevveiiiieieee e 35
RPM VS FIreQUENCY [2] ...veeveeiveeie ettt 40
Vehicle Speed VS FreqUENCY [2]covovereriiiiiiieieieie e 41

viii

file:///D:/Abdul%20Aziz%20FYP2%20Final%20Report%20-%20Revised%20Saiful%20Ver.%202%20-%20Revised%20Aziz.docx%23_Toc450943324
file:///D:/Abdul%20Aziz%20FYP2%20Final%20Report%20-%20Revised%20Saiful%20Ver.%202%20-%20Revised%20Aziz.docx%23_Toc450943325
file:///D:/Abdul%20Aziz%20FYP2%20Final%20Report%20-%20Revised%20Saiful%20Ver.%202%20-%20Revised%20Aziz.docx%23_Toc450943326
file:///D:/Abdul%20Aziz%20FYP2%20Final%20Report%20-%20Revised%20Saiful%20Ver.%202%20-%20Revised%20Aziz.docx%23_Toc450943327

LIST OF FIGURES

Figure 1: Split-parallel HEV architecture [5]......ccccoovviieiiiieiiece e 2
Figure 2: Parallel hybrid architecture [9]........ccooeiiiiiiiiiee e, 7
Figure 3: Series hybrid architeCture [9]cooveiiiiie e, 7
Figure 4: Power-split hybrid architecture [9].......ccccov e 8
Figure 5: Split-parallel hybrid architecture [9] ..o, 8
Figure 6: CompactRIO software architecture [13]........c.ccocvviriiiiieienireeeeeeee 10
Figure 7: NI CompactRIO, CRIO-9076[13]cceiiiiriiriiniiieeieiee s 11
Figure 8: Module N1 9401 and NT 9853coviieiiie e 12
Figure 9: FPGA clock SPeed [17]...cvciviiiiiieii e 13
Figure 10: FPGA teChnOlogy [17] ..vooeiiieiieieeiee e 13
Figure 11: How LabVIEW FPGA WOIKS [L7] ..cveiveiiiiiiiiiieieieee s 14
Figure 12: Embedded system serving content to client machine [6]c.cce...... 15
Figure 13: IWM (left) and motor controller (right) [4]......cceovvieiiiiiiieeeeceee, 16

Figure 14:

Brake pedal that will be integrated with re-gen breaking system [4]....... 17

Figure 15: Travel pattern of re-generative breaking [4]cccooeoeiiiiiiiniiiie 17
Figure 16: EMS layout and cOnNectivity [3]......ccoceriririninineee s 19
Figure 17: BIOCK DIagram.........cccociieiiiiieiieiie ettt 19
Figure 18: Scaled pulse for DFM 50C-K [2]cooveiiiiiiieiice e 27
Figure 19: Both DIOO is initialized to sense falling €dgescccccveviiiniiiniennenn 28
Figure 20: Setting the pulse reading time to be execute for every 500ms.................. 29
Figure 21: Fuel-flow measurement in real time scan mode............cccccccvevveeiecvineenne. 29
Figure 22: Both DIO1 and DIO2 is initialized to read time periodccccvvenen 30
Figure 23: Vehicle speed measurement in real time scan modeccocoovvvvvennne. 30
Figure 24: Engine RPM measurement in real time scan mode............cccccovevverennne, 31
Figure 25: Saving data in CompactRIO memory programccccceeeveevveeineesneenne 32
Figure 26: Tabulation of data programcccceceiiieiie e 32
Figure 27: : The user interface of related parameters measurement............c.ccccveeene. 33

Figure 28: DIOO is initialized to sense falling edges.......ccccevvveiiniinniiiecee, 36
Figure 29: The pulse reading time to be execute for every 500ms...........c.ccccvvvennne. 36
Figure 30: Fuel-flow measurement in FPGA MOUE.........ccccveveeieeieeiie e, 37
Figure 31: Both DIO1 and DIO2 is initialized to read time of falling edge 37
Figure 32: Vehicle speed measurement in FPGA MOdecccooeveieiiiininieieen 38
Figure 33: Engine RPM measurement in FPGA MOde.........cccceveiiieniiiniiieee 38
Figure 34: USB to RS-232 and RS-232 extension cablecccccccvevevvevecieieennnn, 44
Figure 35: Connection between Kelly controller and PCccccccoeviviiviiiic e, 45
Figure 36: Kelly Controller setting Step 1 [21]ccooiiiiiiiiieieee e 45
Figure 37: Kelly Controller setting Step 2 [21]ccooviiiiiiiieeiee e 46
Figure 38: Kelly Controller setting step 3 [21]cceevvveieiieiiceceese e 46
Figure 39: Kelly Controller setting step 4 [21] ...cccovveiieiieiieeceece e 47
Figure 40: Kelly Controller setting Step 5 [21]ccvooveiiiiiiiiieeee e 47
Figure 41: Kelly Controller setting Step 5 [21]covooviiiiiiiiiieceeceeeee s 48
Figure 42: CAN bus topology [19] ...ccveoveiieiiceceere e 49
Figure 43: RS-232 pins sSChematics [19]cccvoveiieiiie e 49
Figure 44: Kelly J2 pins schematics [20]........cccoviiiiiininiiieeee e 49
Figure 45: Example of 120 Ohm cable termination..............ccoceveneieninienicnieeeen 50
Figure 46: CAN DUS CADIE..........ociiiieee e 50
Figure 47: Overall hardware connection for CompactRIO, Kelly Controller and PC51
Figure 48: CAN data acquisition in FPGA programmingcccceeeeererenesenieennenns 52
Figure 49: Data interfacing in front panel in Real-time programmingcc....... 52
Figure 50: Front panel for eNd USEr..........cccvovuiiiiiieie e 53
Figure 51: NI 9853 data rate SEtting.........cccevveiiieiiieiicic e 54

CAN
ECU
EMS

FPGA :

GUI
HEV

HTML :

I/0
ICE
LAN
NI
PC

REEV :

SoC
USB

LIST OF ABBREVIATIONS

Controller Area Network
Engine Control Unit

Energy Management System
Field Programmable Gate Array
Graphical User Interface
Hybrid Electric Vehicle

Hyper Text Mark-up Language
Input/Output

Internal Combustion Engine
Local Area Network

National Instrument

Personal Computer

Range Extended Electric Vehicle
State of Charge

Universal Serial Bus

Xi

CHAPTER 1
INTRODUCTION

The automotive industry nowadays mainly depends on fossil fuel as energy for the
prime mover of the vehicle. This natural resource utilization has contributed to critical
environmental pollution in recent years. Hence, the world nowadays tries to shift their
reliance on fossil fuel to relatively cleaner energy. However, cleaner energy such as
solar, wind, biomass and etc. require high cost of implementation, which makes the
fossil fuel more suitable for use in vehicle.

Since the automotive industry is a sector that greatly depend on this fossil fuel,
revolutionizing the way this natural resource is utilized will effectively aid in reducing
the environmental pollution problem.

The automotive industry today tries to come up with the eco-friendly
automobile such as electric and hybrid electric vehicle. The electric vehicle is designed
to use an electric motor to propel the vehicle, but for hybrid vehicles, it utilizes two
engines propulsion sources, which is the internal combustion engine and the electric
motor. The electric vehicle is a zero pollution energy source, but with the downside of
long charging time since it utilizes battery to store the energy. Meanwhile, for hybrid
electric vehicles it still need to rely on fossil fuel as its energy source. Both these types
of eco-friendly vehicle are relatively expensive. Despite that, it is a great move by
automotive industry in helping to resolve environmental pollution issue.

Therefore, to support the awareness of reducing the reliance on fossil fuel, this
FYP project will support the new approach in building the hybrid vehicle by
converting a conventional vehicle into a hybrid electric vehicle. This conversion
involves conversion components retrofitted in to the internal combustion engine
(ICE)-based vehicle.

1.1 Background of project

The Hybrid Electric Vehicle (HEV) for split-parallel drivetrain enables propulsion
power to be provided to both the front and rear axles of a vehicle. As for normal
conventional vehicle, the propulsion power from Internal Combustion Engine (ICE) is
applied only on the front axle. This type of vehicle can be converted into HEV of split-
parallel configuration with minimal modification to its system. This will enable the
vehicle to reduce its fuel consumption. It can be done by replacing the rear wheels with
in-wheel motors (IWM). These IWM require a controller to control and monitor its
operation called Motor Drive/Controller Unit (MCU). The same situation goes to ICE
where its own controller is called Engine Control Unit (ECU). The power from both
MCU and ECU will be synergized, controlled and monitored by an Energy
Management System (EMS) Controller to achieve optimum efficiency in energy
utilization of HEV split-parallel axle architecture. [3, 4] The figure below shows the

configuration of this split-parallel architecture.

In-Wheel Motor ==

Motor feedback —*

EMS
—| ECU
Battery N
B Driver -
mcu aoy [— 5°° Gl Ics Trans =|:<)

Engine rpm,
velocity & speed

Dashhoard

| In-Wheel Motor l l =

Figure 1: Split-parallel HEV architecture [5]

The present EMS has been programmed in ‘Real-Time Scan Mode’ to
communicate between the EMS controller with ECU. However, this type of program

mode cannot be used in getting data from the MCU because the Control Area Network

2

(CAN) module of the EMS controller (NI 9853) can only function in FPGA mode
ONLY. or the EMS controller to communicate with MCU, the EMS controller needs
this specific module (N19853). Therefore, this can be solved by converting the existing
program in the EMS controller communicate with the MCU using FPGA program.
Thus, the existing EMS control program needs to be converted from the Real-Time
Scan Mode program to the FPGA program to enable communication between the EMS
and MCU controllers. This program conversion is the first aim of this project. Both
programming modes are based on the National Instruments LabVIEW software
LabVIEW., while the controller hardware is CompactRIO cRIO-9076.

For this split-parallel architecture, the other desired design is to enable the
vehicle driver to control and monitor the data attained from the EMS controller. EMS
controller basically will read the signal status of vehicle’s engine revolutions per
minute (rpm), velocity and speed (km/h) and also its fuel consumption [4]. These data
will be channelled to Graphical Driver Interface (GUI) in a tablet PC and connected to
the CompactRIO cRIO-9076 via a web service protocol. This tablet PC utilizes a
Windows operating system. For GUI interface, whenever web browser receive signal
content from EMS controller, the Hypertext mark-up language (HTML) will render
the content into the GUI web page interface [6] . This GUI development in windows

tablet PC is the second aim of this project.

1.2 Problem statement

The HEV motor controller offers many parameters that can be monitored through CAN
communication. Some parameters are also controllable in real time. However, CAN
bus communication is incompatible with the existing LabVIEW Real-Time Scan Mode
program of the EMS controller. This project implements LabVIEW FPGA
programming on the CompactRIO, to enable integration of the EMS controller with
the HEV motor controller.

1.3 Objectives

The objectives of this project are as follows:
1. To convert the existing LabVIEW program from Real-Time Scan Mode to FPGA
programming in the EMS controller.
2. To develop FPGA program for CAN bus communication between the EMS
controller and MCU for motor parameter reading and control.
3. To build a Graphical User/Driver Interface (GUI/GDI) on a Windows-based

tablet PC for in-car real-time monitoring, control & data acquisition.

1.4 Scope of study

1. To understand differences between LabVIEW Real-Time Scan Mode and
FPGA programming. mode LabVIEW

2. To perform program conversion in existing EMS controller (CompactRIO) to
enable CAN bus communication with HEV motor controller

3. To develop a Graphical Driver interface (GDI) for real-time monitoring,

control and data-logging of vehicle parameters

1.5 Relevancy of project

The outcomes of this project shall address the following;

1. Reducing fossil fuel dependency, pollution and green house impact: This split-
parallel hybrid vehicle has TWO sources to propel the vehicle, which is the
ICE and electric motor. Hence, dependency on ICE power utilizing fossil fuel
is reduced in comparison to conventional vehicle. This will also reduce carbon
monoxide emissions, which can lead to the greenhouse effect.

2. Economical option: User will have the option to have their conventional car
converted to a hybrid vehicle rather than buying a new hybrid car. [2]

3. Car resale value: As of current trend on car resale value, the hybrid vehicle
has higher resale value than conventional car. It is because of a hybrid car is
equipped with higher standard equipment and most of it has strong reliability

records.[7] Hence, a conventional car converted into a hybrid vehicle certainly
has impact on its resale value.

4. Infrastructure Availability: With hybrid EMS conversion kit retrofitted into a
conventional car, the benefits of flexible vehicle fuelling for the user is
realized. They can now charge their HEVs at home, workplace or public
charging stations. They can also continue to fill up their car with gasoline. [8]

This gives users the option on location that they can refuel their car.

1.6 Feasibility of project

The time frame to complete this project is within two semesters of Universiti
Teknologi PERTONAS (UTP) academic calendar. The first semester is planned to
understand LabVIEW software and program, get familiar with the all the tools and
hardware, connections between hardware and also finalizing overall project planning.
The first objective is expected to finish in the first semester. While in the second
semester, the second and third objectives are expected to be finished, aside from

prototype building and fine tuning.

CHAPTER 2
LITERATURE REVIEW

Common configurations of Hybrid Electric Vehicle (HEV) are of the series, parallel
or power-split HEV configurations [9]. These configurations have the ICE and EM
deliver propulsion power to the same drive axle — either the front or rear axle of the
car. These types of hybrid vehicle are expensive and are designed specifically for a
certain car (OEM vehicles). However, one hybrid vehicle architecture which enables
a conventional ICE vehicle to be converted into a hybrid automobile is called a split-
parallel hybrid where ICE will propel the front axle and EM will propel the rear axle.
This type of drivetrain is currently being developed in Universiti Teknologi
PETRONAS. This system requires an Energy Management System (EMS) to
synergize the TWO power sources, which are ICE and EM and also an on-board
battery pack [3, 4]. The present EMS controller is programmed in National
Instruments” embedded CompactRIO- modelcR10-9076, using LabVIEW software
[3]. The split-parallel drivetrain also utilizes re-generative breaking system of IWM

hardware to boost HEV power efficiency and energy savings [4].

The following are detailed explanation of the HEV architecture, EMS controller,
CompactRIO, LabVIEW, IWM System and re-generative breaking.

2.1 Hybrid Electric Vehicle (HEV) architecture

1) Parallel hybrid: In this configuration, both ICE and EM will work in tandem to
deliver the propulsion power to the front axle [10]. This single parallel hybrid
transmission system, rely on ICE as main prime mover with EM functions as an
additional power source. Hence it will perform very well during high speed than the
series hybrid system [11]. This EM also will work as a generator to recharge the
vehicle. Aside from that, parallel hybrid also normally utilize regenerative braking to
generate the energy and enhance its hybrid system efficiency [10].

- —
Battery [_JConverter

Reservoir

Figure 2: Parallel hybrid architecture [9]

2) Series hybrid: This system is also known as Extended-Range Electric Vehicles
(EREV)[12] or Range-Extended Electric Vehicles (REEV) [9]. For this architecture,
the EM will solely provide the propulsion power to the front axle while the ICE will
act as generator to charge the battery bank. Hence due to this configuration, the vehicle
will fully functional as an electric car on a short distance [11]. The ICE for series
hybrid also is smaller than then the parallel hybrid configuration one, but it requires
larger battery bank since this battery bank will be the one empowering the EM. This
large battery bank causes the series hybrid configuration vehicle becomes more

expensive than the parallel architecture one [10].

Reservoir Battery [

] Electric
menemor Charger onverterF mokor
Flywheel jul
or [

Capacitor

Figure 3: Series hybrid architecture [9]

3) Power-split hybrid: The other name of this configuration is series-parallel hybrid
system. The propulsion energy that drives the front axle can be either from mechanical
or electrical wise [9]. The EM will be the vehicle prime mover during the low speed
(as in series configuration) and ICE for the high speed one (as in the parallel hybrid
system). The reasons are that the series hybrid work efficiently during low speed and
parallel hybrid work efficiently during high speed [10]. This power-split hybrid
configuration requires larger ICE and but smaller and highly efficient EM [9]. It also
requires large battery pack to store the power. This types of architecture certainty has

better performance and fuel saving than parallel or series hybrid configuration [10].

Reservoir Converter

Figure 4: Power-split hybrid architecture [9]

4) Split-parallel hybrid: In this configuration, ICE and two EM will provide
propulsion power to different vehicle axel. ICE will provide propulsion power to the
front axle. While, the two EM will propel the rear axle which is a non-driven wheels.
Therefore, this EM is called ‘hub motor’ or ‘In Wheel Motor (IWM)’. Other than that,
battery bank will also be connected to this real axel. Since, there is no hard connection
between both front and rear axle, battery bank cannot directly be charged by ICE.
Battery will be charged by IWM when vehicle is moving only. This means that the
power is deliver from ICE to battery through the load which are vehicle’s framework,
wheels and road coupling rather than mechanical device. Hence, due to this design, the
car is called split-parallel Through-The-Road (TTR) configuration. This TTR design
actually allow the normal conventional vehicle to be converted into HEV with some
modification. Therefore, after this conversion is done the configuration is now can be
called as TTR-IWM hybrid architecture. [4, 5]

Electric
motor

E

Figure 5: Split-parallel hybrid architecture [9]

Electric
motor

2.2 Energy Management System (EMS)

The general purpose of EMS controller is to reduce vehicle fuel intake aside from self-
sustaining battery. Specifically for the split-parallel hybrid architecture, the EMS is
8

connected to ECU and MCU which enable it to read the input of throttle and vehicle
speed, engine rpm and also the battery SOC [4]. Then based on these inputs, the EMS
controller will plan the power management strategy to dictate the best operation of this
TTR-IWM drivetrain [5]. All the inputs from ECU and MCU later, will be controlled
and monitored by EMS controller and will synchronized this input data to the
Graphical User Interface (GUI) in Windows-based tablet PC. This GUI will be
developed using National Instruments’ software LabVIEW. The GUI implementation
will allow the vehicle driver to monitor and control the specific car parameters
according to their desire [6]. For this project, all the algorithm development of EMS
controller program will be done using Field Programmable Gate Array (FPGA) where
it will run in National Instrument CompactRIO, cRIO-9076. For GUI development,

the web service protocol will be use in the development.

2.2.1 EMS Control Strategy

There are three controls strategy for HEV which are normally use in HEV [21]:

1. Parallel Electric Assist; ICE acts as key propulsion power and electric motor
acts as secondary source. Based on certain control strategy the Battery State of
Charge (SoC) will be conserved at certain level.

2. Fuzzy Logic; It utilize “load levelling” idea. The electric motor use as a backup
power to ICE. Meanwhile, the ICE is run at full efficiency. This system
determines the vehicle power requirement and compute circulation among ICE
and electric motor.

3. Adaptive Control; A complex control approach that monitors the systems in
real time. It takes into account both fuel consumption and emission level which
resulted in better EMS strategy control decision.

Therefore, in this project it is more suitable to implement the parallel electric assist

control strategy due to its simpler and flexible nature. Since the electric motor require

seamless integration with ICE, it need to work in certain routine;
e Motor controller will only operate when driving torque lower than certain
minimum speed

e To charge battery during regenerative braking

e Electric motor will act as the key propulsion for vehicle. This is when engine
ICE is very low. In this situation the ICE will be turn off

e During low battery State of Charge (SOC) — Motor will be charged by excess
torque from ICE

2.3 CompactRIO and LabVIEW

CompactRIO (Fig 6) is a programmable hardware which rely on LabVIEW software to
create its program. It usually builds in Real-time Scan Mode or FPGA program. For,
Human Machine Interface (HMI) coding, it will enable the program information to be
display in GUI. This hardware will lessen the system development time and
complexity of a project. It offers the capability to monitor and control of various
applications. This CompactRIO also has communication and logging function for
maximum flexibility and performance of the system [13, 14]. CompactRIO need to be
configure as the following figure in order to execute real-time control and monitoring.
[13]

Host PC CompactRI0 Application
I 'ﬁx.L%; 1 P e I
| f % . Network ég h ' Nnrmf‘: :riority 1
| B . | e p o |
W < & acearupe. B 4,»’ Daalogging) . |
. ;‘f‘:“y Modbus/TCP) b %5 ns{:;:-
l e e Inter-thread :
’ communication
: E o N |
User |] g} i % Time Critical |
| Interface It |
' (Ul | d. Sl AU
["~ Input h
' Rereess :

Figure 6: CompactRI10O software architecture [13]

10

2.3.1 cRIO-9076

The cR10-9076 is a hardware that will be use to execute for EMS control program for
this project. This hardware contains 400 Mhz real-time processor, 4 slot chassis with
and embedded and configurable LX45 FPGA chip. The other hardware features are as
of figure below:

10/100BASE-TX Reconfigurable chassis
Ethernet ports f

RS232 serial port

Power Supply
9-30 VDC

USB Port

Figure 7: NI CompactRI0, cR10-9076[13]

23.11 MODULE

In this project, there are only TWO modules that will be used which are NI 9401 and
NI 9853.

23111 NI 9401

This module is a bidirectional input and output module with 8 channel where each of
it compatible with 5V/TTL. This hardware can response to digital signal in about
100ns. It usually being utilized in program that require input or output of high speed
counter or timers, digital communication protocols, pulse generation and a lot more.

[15] This module can run on both Real-time Scan Mode or in FPGA program.

11

23.1.1.2 NI 9853

This module is a high-speed Control Area Network (CAN) module which has one port
for internally powered and other port for externally powered. This module has ability
to transfer or transmit signal at 100% bus load up to 1 Mbit/s. This module capable to
synchronize with any NI CompactRIO input and output module at 25ns resolution.
[16] This module can only run in FPGA program ONLY.

Figure 8: Module NI 9401 and NI 9853

23.1.2 Field Programmable Gate Arrays (FPGA)

FPGA are made of silicon chip with unconnected logic gates. This gates can be wired
together using software where it can be compiled into bit stream configuration file.
The FPGA will takes different “personality” once it reconfigures its gates. It is useful
in an application where time and cost of developing and fabricating application-
specific integrated circuit (ASIC) is prohibitive. This ASIC is different from FPGA
since its functionality is fixed according to the design. While for FPGA, it is design
and execute in hardware without operating system. This FPGA offers; [17]

1) Flexibility — FPGA can be configured according to current needs and
reconfigure according to future demand. There is no need to go through the
long fabrication process as ASIC. Hence, it will save time to build the desired
program.

2) Performance — FPGA is control by programmable interconnects of gates, hence
it can implement parallel task to run the program simultaneously and

12

independence of each other. The LabVIEW FPGA run on up to 120 Mhz
clocks. Hence, it can run and accomplish more executions per clocks. With
default clock rate for about 40 Mhz, it can response to digital signal for about
25ns.

3) Reliability - FPGA utilized deterministic hardware which is dedicated to every
task and its parallelism ability reduce the reliability concern.

4) Offload Processing — FPGA can free up the CPU on host computer by get rid
the exhaustive processing.

5) Cost — FPGA is programmable silicon which neglected the fabrication cost of

component circuitry assembly in contrast of ASIC.

Traditional System Crash Possible
" : 1
[&
~25 us 5
Response £
=
3
Outputs
a p

Figure 9: FPGA clock speed [17]

Programmable

Interconnect

1/0 Block

[]

[
:D:DB

M

Configurable Logic Block (CLB)

Figure 10: FPGA technology [17]
13

23.1.21 The operation of LabVIEW FPGA

When LabVIEW IV is compiled into FPGA hardware by LabVIEW FPGA module, the
LabVIEW IV itself is converted into test-based VHDL code. Based on this code, then
the Xilinx ISE Compiler create the hardware circuit realization of the related LabVIEW
design in term of bit file. This bit file then is loaded to FPGA chip and reconfigure the
gate array logic (Refer figure 10 Below).

Xilinx ISE
Compiler

LabVIEW VI

LabVIEW
FPGA

LabVIEW
FPGA

[] User Generated
Auto Generated

Figure 11: How LabVIEW FPGA works [17]

2.3.1.3 Web service

As of the third objective of this project, is to build the GUI in windows-based tablet
PC to implement the in-car real time monitoring, control and data acquisition form the
EMS controller. In this case, the EMS controller program is built in CompactRIO,
cRI0O-9076. This communication pattern between CompactRIO and windows-based
tablet PC will be done in ‘client-server model’. The CompactRIO act as an embedded
server and windows-based tablet PC act as the client or human-machine interface
(HMI) (Refer figure 11 below). [6]

14

REQUEST

A 4

RESPONSE

A

Windows-based Tablet PC [1] CompactRIO
(Client/HMI) (Embedded Server)

Figure 12: Embedded system serving content to client machine [6]

If the embedded server comprehends the client request, then it will reply with a
response. If not then, it will reply with an error. Both of these hardware must speak the
same language called Hypertext Transfer Protocol (HTTP) to mutually understand
each other request and response. The program in the embedded server that is able to
communicate over HTTP is termed as ‘web service’. It basically handles the client
request and reply with a response according to the developer program. Meanwhile, the
program in the client computer is called ‘client application’. ts task is basically
interpreting the response of web service according to developer programme. [6]

This data of request and response is called content. The examples of content
are image, sounds, text and a lot more. Each of this content have their own standard.
When the web service gives a response to web server, this web server will interpret
this content into web page. This process is called rendering. [6]

The content itself can be categorized by static and dynamic content. For ‘static
content ‘it is a not-executed and just transmitted content such as of plain text, image
and XML file. While the ‘dynamic content’ is generated by executing programming
code. Hence for this project the FPGA programming data execution is categorized as
the ‘dynamic content’. [6]

Before the full usage of internet, the communication between HMI and
embedded server is done using TCP/IP which is a custom protocol or Modbus which
is an industrial standard. This custom protocol has higher cost of maintenance and low
interoperability while industrial standard is lack or security or scalability. [6] Hence,
because of that the web service technology is being created and has more merit than
custom protocol and industrial standard. The following is the advantage of web service

technology.

15

1) Cross Platform — The embedded target that utilize web service can support
most HMIs.

2) Connection management — The HTTP language enables persistence connection
and termination to the point.

3) Multi-client — It can operate multi HTTP at the same time.

4) Security — This web service can encrypt the transmitted content and also have
ability to verify the party operate the server throughout authentication process

which require user name and password.

2.4 In-Wheel Motor (IWM) System

To enhance the efficiency of power distribution and energy saving for hybrid vehicle,
the re-generative braking system sourced from Kelly Motor Controls is applied in this
split-parallel hybrid design. This system is a combination of mechanical braking and
electrical re-generative braking. It will enable the kinetic energy loss during braking
to be captured and converted into electrical energy. This captured electrical energy
will be stored in the battery bank. [4]

Figure 13: IWM (left) and motor controller (right) [4]

2.5 Re-generative Braking System (RBS)

This system occurs at the braking pedal of the car. When the pedal is pressed for the
first 30% of initial pedal position, the electrical energy is harvested from IWM. This
harvested energy will still be depended on battery SOC. The re-gen breaking will be
little when the battery is nearly full. This will affect the effectiveness of RBS.

Meanwhile, for the remaining 70% of the pedal travel zone, the mechanical breaking

16

is used. This mechanical braking will utilize OEM braking mechanism for safety

purpose and maximum breaking performance. [4]

Figure 15: Travel pattern of re-generative breaking [4]

17

CHAPTER 3
METHODOLOGY

3.1 Research Methodology

Project topic selection

Initial research work & literature review

Learning of LabVIEW software programming

Conversion of EMS control program from
Real-time scan mode to FPGA programming

CAN Bus communication between EMS and
MCU

GUI algorithm development in Windows
based-tablet PC

Overall system integration

Trial Run

Data gathering and analysis

Final report

18

FYP 1

FYP 2

3.2 Implementation Concept

3.2.1 Pictorial Schematic

i

HV DC Power Cable — Signal Cable
CAT-5 Ethemet Cable

.............. Mechanical Link

EM S Controlier Graphical Driver @ .
Motor Drive II
M Compact RICY Interfoce or

@ Engine Control Unit @ Brake Pedal @ Battery Pack

Internal Combustion
Engine @ Accelerator Pedal @ In-Wheel Motors

® Fuel Fowmeter @ Motor Drive |
Figure 16: EMS layout and connectivity [3]

3.2.2 Block Diagram

Motor speed,
phase current,
voltage, motor
Brushless : temp, regen
In-Wheel Motor Control Unit CAN Signal mode. etc.

Motor (MCu)
{IWM) (Kelly Controller)

Vehicle Speed

(Digital Pulse) Vehicle Speed
Speedometer GUI
Engine RPM Engine RPM

National Instruments Windows-

LI L) (Digital Pulse)
Combustion Engine Control Unit [P, Signal CompactRIO based tablet
Engine (ECU) PC
(ICE)

Fuel Meter (Digital Pulse)
(FUEL-VIEW

Fuel Consumption

DFM-50C-K)

Figure 17: Block Diagram

19

3.2.3 Input/ Output List

Subsystem 1/0 Type Description
1. | Fuel flow Digital pulse Tapped from Fuel Meter,
5 ml/pulse
2. | Vehicle speed Digital pulse Tapped from speedometer
3. | Engine speed Digital pulse Tapped from speedometer
4. | Motor speed, phase current, CAN signal Tapped from Kelly
voltage, motor temp, regen Controller
mode. etc.

Table 1: Input/ Output list

3.3 Project Activities

3.3.1 Project background and literatures

The project starts by investigating the background of the project such which are the
crucial topics that are related for this project. Then, the research on the literature of
each topic are made for better understanding of the overall project content itself. The
crucial topics are HEV architecture, EMS, CompactRI1O and the modules used in this
project, FPGA, web service, IWM and RBS. Then, the step-by-step procedure is

planned to achieve the objectives of this project.

3.3.2 Learning CompactRIO & LabVIEW Real-time Scan Mode program

The overall learning process is a self-learning process with supervision from FYP
supervisor. It starts with the installation of LabVIEW software in the PC and in the
CompactRIO, the connection between hardware and the software configuration to
prepare the CompactRIO and PC so that everything is working fine during the next
process later on. For the Real-time Scan mode program, the learning is assisted by the
example from the National Instrument web site itself, and the LabVIEW training

20

module. Most of the time the learning process is done throughout the internet and

National Instrument forum.

3.3.3 Verification of existing Real-time Scan Mode program

The verification of existing program is done to test the understanding toward existing
Real-time (RT) Scan mode algorithm. It is basically the remake of this program. This
step also is crucial for the author to get familiar with the LabVIEW type of

programming.

3.3.4 Learning LabVIEW FPGA program

The learning process of FPGA program also is a self-learning process with supervision
from FYP supervisor. As of Real-time (RT) Scan mode program, the learning is
assisted by the example from the National Instrument web site itself, and the LabVIEW
training module and most of the time the learning process is done throughout the
reading from internet, the National Instrument forum and trial and error. There are
some difficulties in constructing the FPGA that is noticeable than the construction of
program in Real-time Scan mode.
i. The pallet in FPGA program is more lesser than in RT scan mode. Some
important pallet that is found in RT mode cannot be found in FPGA panel.
ii. The compilation time of FPGA program is roughly more than 9 min and
has the tendency to fail rather than success. This failure is mainly due to
the very long unfinished and unusual compilation time where the
compilation is mainly got stuck during the translation process.
iii. The input taken from the module need to be program not as RT mode
where, it has special digital configuration depending on the type of module.
For example, in RT mode, the input can be configured to be a counter,
counter driven output, PWM or quadrature. Meanwhile, for FPGA mode
the user need to program himself to get the certain configuration.
The FPGA program required the deep understanding toward the type of usage of each
pallet itself before it can be easily use. Luckily, the National Instrument training

21

module and internet provided the example need to understand the application of the

related pallet.

3.3.5 Translation of existing Real-Time Scan mode program to FPGA mode

The translation process of the existing program to FPGA mode still uses the same
formula and method as of in Real-time Scan mode program. The translation of the
program involving TWO process. First is the data acquisition and processing in FPGA
programming. Second is data interfaced for end-user front panel in real-time
programming.

All the data is obtained and calculated in FPGA mode. This is because this

FPGA mode clock is faster the real-time mode clock. Therefore, all the data can be
obtained and calculated faster. These processed data are then transferred to real-time
programming throughout FIFO function for end-user data display interface. This
transfer is done due several reasons as below;

e In FPGA mode, for everything that are modified even for as small
modification in the block diagram arrangement or wire, it require the whole
program to be compile back and this takes a lot of time which is normally
for about 15 minutes. This is really troublesome because trial and error
require a lot of modification to be done.

e In real-time programming the program can be compiled faster than in the
FPGA mode for about half a second. Hence, all the trial and error process

regarding the program algorithm is done in real-time mode.

3.3.6 Trial Run

The trial runs are performed for verification of existing program to ensure the
understanding towards current algorithm is perfect and also for every objective
completed. As of the first objective, the result from FPGA algorithm is being compared
to Real-time Scan mode program to ensure the result is comparable. It is not done to

increase accuracy of the reading.

22

3.4 PROJECT ACTIVITIES & KEY MILESTONES

FYP1

No. Activities Start Date | End Date
1. Project topic selection 21/9/15 4/10/15
2. Initial research work & literature review 28/9/15 1/11/15
3. Submission of extended proposal 30/10/15 30/10/15
4, Learning of LabVIEW software programming 26/10/15 27/12/15
5. Proposal defence 18/11/15 18/11/15
6 Conversion of EMS control program from 23/11/15 2 7/12/15

Real-time Scan mode to FPGA programming
7. Writing of interim report 10/12/15 17/12/15
8. Submission of draft interim report 17/12/15 17/12/15
9. Submission of interim report 24/12/15 24/12/15

Table 2: FYP 1 activities and key milestones

FYP 2

No. Activities Start Date | End Date

Conversion of EMS control program from
1.)) 18/1/16 20/3/16
Real-time Scan mode to FPGA programming.

CAN Bus communication between EMS and
2. MCU 14/3/16 17/4/16

3. Submission of progress report 9/3/16

GUI algorithm development in windows
4. 28/5/16 17/4/16
based-tablet PC

5. Overall system integration 4/4/16 17/4/16
6. Trial run 4/4/16 17/4/16
7. Data gathering and analysis 11/4/16 17/4/16
8. Writing of final report 11/4/16 17/4/16
9. Submission of final report 18/4/16

Table 3: FYP2 activities and key milestone

23

3.5 GANTT-CHART

FYP1

Week
No. Project Activities / Milestones
1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14
1. Project topic selection
2 Initial research work & literature review
3. Submission of extended proposal ’
Learning of LabVIEW software
4. programming
5. Proposal defence ‘

Conversion of EMS control program from
Real-time Scan mode to FPGA

6. programming

7 Writing of interim report

8. Submission of draft interim report ‘

0. Submission of interim report

Table 4: FYP 1 Gantt-chart

24

FYP 2

Week
No. Project Activities / Milestones
1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14

. Conversion of EMS control program from
' real-time scan mode to FPGA programming

) CAN Bus communication between EMS
" | andMCU

3. Submission of progress report ‘

A GUI algorithm development in windows
" | based-tablet PC

5. Overall system integration

6. Trial run

7. Data gathering and analysis

8. Writing of final report

9. Submission of final report ’

Table 5: FYP 2 Gantt-chart

25

3.6 TOOLS

3.6.1 Software

o B~ W D

3.6.2

O N o 0o B~ W D

LabVIEW 2013

LabVIEW run-time engine 2013
LabVIEW FPGA module 2013
LabVIEW Real-time module 2013
Microsoft Office

Hardware

National Instrument CompactRIO (Crio-9076)
National Instrument NI 9401 (8 Channel digital 1/0O)
National Instrument NI 9853 (High speed CAN)
FUEL-VIEW DFM-50C-K

12 VDC Power supply

24V Battery

Digital multimeter

Ethernet cable

26

CHAPTER 4
RESULT AND DISCUSSION

4.1 Verification of existing Real-Time scan mode program

The verification of existing program only involves FOUR parameters which are
instantaneous fuel consumption (ml/s), total fuel consumption, vehicle speed (km/h)
and Engine RPM. All these parameters formula made by following the existing

program data as reference.

4.1.1 Instantaneous fuel consumption (ml/s) and total fuel consumption (ml)

The input of for both of these parameters comes from fuel meter called ‘FUEL_VIEW
DFM 50C-K’ which give the normally high output voltage which is 12V. Whenever
the fuel is consumes by car, this output voltage will be lower down to 0.7V for amount
of 80ms.

Timp.

Unigh = 12V
tiow Uow =07V
tow =80ms

Uhigh

Ulow

Figure 18: Scaled pulse for DFM 50C-K [2]

This means for every fuel consumption pulse is generated throughout falling edge.
One falling edge is considered as one pulse. In CompactRIO, this pulse will be read by
digital input module which is 9401. Both instantaneous and total fuel consumption will
use the same digital input/output pins of this module. The pin for instantaneous and

total fuel consumption is set to be DIOO and is initialized as below.

27

Initialization 1/O pin

This DIOO is set to count the falling edge of fuel meter output pulse as
below. Note that, the CTRO = DIOO.

3 Module Properties X
: Module Configuration Specialty Mode
- Counter =
Input Filter
256 us [
s Easurement Mode
& Count Edges ™
Counter Event
CTR2 e
cTR3 Falling Edge 2
CTR4 Counter source
CTRS This Channel ™~
CTR6 Count Direction
CTR7 Count Up e
Terminal Count
4294967296
Terminal Count Output Mode
Toggle, Reset Off -2
Gate Mode
h Always Enabled 2

Cancel Help

Figure 19: Both DIOOQO is initialized to sense falling edges

The input filter is set to be 256us due to the analyzation of fuel meter
to output where one pule is equivalent to 5ml of which in produce in
the range of second minimum. The variation outside of this time frame
will be ignored. Hence, the input filter must me much faster than the

pulse production. This change is considered as noise.[2]

Data processing
The reading of the pulse is design to be taken for every 500ms. This

pulse is counted by calculating the difference of previous and current

counter. This pulse count now is considered as pulse per 500ms.

28

b} Configure Timed Loop X

Loop Timing Source Loop Timing Attributes
Select an Internal 11ming Source Period Priority
Source T - =
ype 500 =l ms 100 -
1 MHz Clock -

Advanced Timing

1 kHz <absolute time>

1 MHz <absolute time> E)fad"ne‘ T[ImeoutA(ms)

Synchronize to Scan Engine | & >

1 kHz <reset at structure start> v Offset / Phase Structure Name
n =l - 1 2RA0RT

Figure 20: Setting the pulse reading time to be execute for every
500ms
Since, one pulse is equivalent to 5ml and which has the minimum
consume time of a second, therefore the current pulse need to be
multiply with 5 to make the pulse in millilitre reading and multiply
again by 2 to make it into millilitre per second (ml/s). This ml/s is the
instantaneous fuel consumption.

Meanwhile, for total fuel consumption is a measurement of
accumulation of fuel consumption. This accumulation can be made by
calculating the addition of current millilitre litre reading to previous
millilitre reading. The total fuel consumption is calculated in ml. The
program for both instantaneous and total fuel consumption parameters

are as below.

Current Pulse
™ " 2 Inst. Consumption (ml/sec)

D 5 b I> 1 »35t] Flow Rate Chart
2

. .\'m

D Total Consumption {ml}
»

Figure 21: Fuel-flow measurement in real time scan mode

4.1.2 Vehicle speed (km/h) and Engine RPM

Initialization of 1/0O pin

The input of the vehicle speed and engine RPM is read by tapping the
wire from the dashboard of car itself to read the frequency of both
parameters. This frequency still will be read by NI 9401 module. Due

to limitation of NI 9401 where it can only read the frequency above

29

500Hz, so there is possibility that the frequency will be infinite. This
problem happens because the frequency measurement depended on the
pre-set sampling time of the module but not the period measurement
configuration. Hence, the pin DIO1 and DIO2 is set to read the period
from both vehicle speed and engine RPM. Therefore, both of this pins
need to set to period measurement configuration. Note that
DIO1=CTR1 and DIO2=CTR2.

= e T —

)

o Canaed Hew [Caseel

Figure 22: Both DIO1 and DIO2 is initialized to read time period

Data processing

The time period for each of the vehicle speed and engine RPM later is
convert into frequency by the formula of frequency = 1 / Period.
Since, the pin is set to read period from both vehicle speed and
engine RPM, there is a possibility that the period value to be zero which
will cause the frequency to be infinite. Hence, the value 839000 is
chosen to give negligibe vehicle speed value if the program detect the
zero period value. (((1/839000)x1000000)x1.487)-1.7628 = 0.0095
km/h [2]. The other calculation is just follow the linear regression
formula that is made based on signal conditioning linear regression

equation for vehicle speed below made by Kurniawan, Y. (2013).

Vehicle speed in kmv'h = 1.487 (frequency from vehicle speed sensor) + 1.768

False = kmvh

Period 1 ﬁ_ 1 [. Frequency 1 B kmy/h
. 839000 [e
: B> A 1000000 e 1 C BElkm/h Chart

0 1487
1.7628

W

Figure 23: Vehicle speed measurement in real time scan mode

30

For, engine RPM the program is perform in similar manner and
Is made by following the linear regression equation for engine RPM

below.

RPM = 30.078 (frequency from rpm sensor) + 160.02

. F y2
Period 2 |1 l‘:' I}__}fE:ZIUE‘IC,. » RPsA
. : [= C WAL RPM Chart 2

1000000 30078
16002 et

P

Figure 24: Engine RPM measurement in real time scan mode

4.1.3 Data Acquisition

The data from FOUR parameters of instantaneous fuel consumption (ml/s), total fuel
consumption (ml), vehicle speed (km/h) and engine RPM need to be recorded for
further analysis. There are TWO type of data acquisition implemented in this program.
First, is saving the data in CompactRIO drive and second is data tabulation in front

panel purpose.

l. Saving data in CompactRIO memory

Each of the FOUR parameters is shared throughout the network-
published shared variable called RT FIFO. This RT FIFO enable to
create communication loop by transferring the data from deterministic
loop to the host over the network. These shared variables than are used
to save the four parameters data into the CompactRIO drive with the
tdms format. The name of the folder to save this file need to be initialize
of which in this case is RT-RVF (green colour) and the name of the
tdms file is RT-RVF (Pink colour). The program to save the parameters
data into CompactRIO memory is as below.

31

RT-RVF|
[+ reate o replace

Lo

Figure 25: Saving data in CompactRIO memory program

Il. Data tabulation in front panel

The program to tabulate all the related parameters in front panel is as

followed:;

Data acquisition
]

[2#Dat
3 "
GEM5%1u %p
|

3) [

Figure 26: Tabulation of data program

4.1.4 Front Panel

This front panel enables all the related parameters data to be monitor. The data check
column in yellow box is for monitoring the overall parameters data. The gauge in green
box will display the vehicle speed and engine ROM data in real time. The table in red
box will tabulate the engine RPM, vehicle Speed, instantaneous and total fuel

consumption data. While, the charts in blue box are used to tabulate the related data.

32

DATA CHECK DATA ACCUISITION CHART
Acc. Flow Chart
Elow| = 2 '
Pevious Pulse lEf 90 110 * v 2500 z
80 . 2000 3000 5
49408 ‘ 130 { z =3
60 1500 3500 E
Current Pulse - 50 150-1 | g
49664 L azu/ 1};1 =1 || 000 A000 %
E im0 RPM 4500 &
Inst. Consumption (ml/sec) < 10 y iy s - 4
e 0 200 . /! (1] !
0 " 1 : o
Testal Consurmption (mi) = e Time (s)
247040
DATA LOG | sTOR
Vehicle Speed (Km/h| Data acquisition
Period 1 - -
Tirme Engine Speed Inst. Flow | Acc. Flow ,AI
wni RPEM (lomyh) (mi,s) ()
neq"'_"q' 0B3IESLEAM | 880 50 5120 144640
21353 0636521 AM | 449 1) 204800 |247040
] 0EIESZEAM | 446 8 2560 248320
1784 0836531 AM | 593 5 97280 100680
0EIESI6AM (1239 &7 -184320 107520 ! Time -
0836541 AM | 1472 i 30720 92160 RPM Chart :
0836546 AM | 1705 %0 -23040 80640
Engine RPM 1676 89 2560 81520
1346 7] 35840 99840 o
ozl 56.1AM | 787 as 117760 158720 X 3
g 0B36S66AM | 452 1] 174080 [245780 B,
Frequency 2 0&:36:57.1 AM | 1345 7 291840 99840 <
202396 2190 14 T1680 64000 1
e 2706 140 23040 2480
448,748 831 g 1600 5520
e n YT T X
-

Figure 27: : The user interface of related parameters measurement

4.1.5 Verification of data

The data obtain need to be verify to ensure the reliability of existing program before
translating the existing program to FPGA mode. The verification is done by comparing
the testing results with the data obtained by Kurniawan, Y. (2013) which is only
limited to vehicle speed and engine RPM. The verification between both data is
compared throughout the error measurement formula where, [Error %= ((Original
Value — Measured Value)/Original Value) x 100]. The data is considered valid as long
as long as the error percentage is less than 20%. Note that, the all the value calculated

and displayed is converted into TWO decimal place.
I Engine RPM vs frequency
For the below error calculations, the original value is the engine RPM

value obtained by Kurniawan, Y. (2013) and the measured value is the

testing result value.

33

Error=4.82%

Error = 3.08%

f (Hz) RPM Engine RPM Engine RPM|
25 500 Period 2 Period 2
40 1000 es 2576
52 1500 Frequency 2 Frequency 2
70 2000 25.0401 40,6901
X 2500 R:;;ws R:oh;‘asa
100 3000 : :
124 3500
140 4000 Freq.=25.04 Freq.=40.69
RPM = 593.14 RPM = 1063.86
Table 6: RPM vs Error = 18.63% Error = 6.39%
Frequency [2]
Engine RPM Engine RPM Engine RPM
Period 2 Period 2 Period 2
18044 14336 11008
Frequency 2 Frequency 2 Frequency 2
52.7872 69,7545 90.843
REM RPM RPM
1427.71 193805 257236
Freqg. =52 Freq. =69.75 Freg. =90.84
RPM =1427.71 RPM = 1938.50 RPM =2572.36

Error =2.89%

Engine RPM Engine RPM Engine RPM
Period 2 Period 2 Period 2
9728 8122 |7168
Frequency 2 Frequency 2 Frequency 2
102.796 12207 135.509
RPM RPM REM
2931.88 351161 403613
Freq.=102.80 Freq.=122.07 Freq.=139.51
RPM = 2931.88 RPM =3511.61 RPM = 4036.13

Error=2.27%

Error=0.33%

Error = 0.90%

As of above results, all the percentage of errors for all the engines’ RPM
values are less than 20%. Therefore, the testing result value are

accepted.
Vehicle speed vs frequency
For the below error calculations, the original value is the vehicle speed

(km/h) value obtained by Kurniawan, Y. (2013) and the measured value

is the tested result value.

34

f (Hz) Speed Vehicle Speed (Km/h) Vehicle Speed (Km/h)|
8.3 10 Period 1 Period 1
120832 65792
15 20 Frequency 1 Frequency 1
20 30 827595 15.1994
km/h km/h
28.5 40 105435 20,8387
I 35 50
. — Freq.=15.20
Table 7: Vehicle Freq. =8.28 ¢ qh 5084
Km/h = 10.54 m/h = 20.
Speed vs Error = 4.2%
Error = 5.4% .
Frequency [2]
Vehicle Speed (Km/h) Vehicle Speed {Klm'h)l Vehicle Speed (Km/h)|
Period 1 Period 1 Perind 1
49920 35328 2B6T2
Freguency 1 Frequency 1 Frequency 1
20,0321 283062 348772
km/h km/h km/h
28.0249 403285 50,0996
Freq.=20.03 Freq. = 28.31 Freq. = 34.88
Km/h =28.03 Km/h =40.33 Km/h =50.10
Error=6.57% Error = 0.83% Error = 0.20%

As of above results, all the percentage of errors for all the vehicle speed
(km/h) values are less than 20%. Therefore, the testing result values are
accepted.

4.2 Translation of existing Real-time Scan mode program to FPGA mode

The translation process of the existing program to FPGA mode still uses the same
formula and method as of in Real-time Scan mode program. Therefore, the result of
this translation is comparable to the existing program. For this conversion step, the

data will be obtained and calculated in FPGA mode. Then these data will be transferred

to Real-Time program for end user interface.

4.2.1 Data acquisition and calculation in FPGA mode

4.2.1.1 Instantaneous fuel consumption (ml/s) and total fuel consumption (ml)

Since the input of the Instantaneous fuel consumption (ml/s) and total fuel
consumption (ml) sill comes from ‘FUEL_VIEW DFM 50C-K’. It means that the fuel

35

consumption pulse is generated throughout falling edge. Therefore, the input
initialization for this parameters need to be the falling edge counter.

l. Initialization 1/0 pin

This DIOO output is tested to be a Boolean output where it will give
either 1 or 0. One is 12v, and zero is 0.7V. By utilizing the shift register
concept, the current pulse is compared with previous pulse. If the value
is being found that much bigger than the previous one (1>0), the
comparator will output the value 1. This means that it initiate that
whenever the DIO output value change from 1 to zero, this indicate the

falling edge.

............................ . [Cr Mod2/DIOD'

Figure 28: DIOO is initialized to sense falling edges

Il. Data processing

The reading of the pulse is design to be taken for every 500ms

throughout the while loop timer.

ZHz=500ms

Figure 29: The pulse reading time to be execute for every 500ms

Since, one pulse is equivalent to 5ml and which has the minimum
consume time of a second, therefore the current pulse need to be

multiply with 5 to make the pulse in millilitre reading and multiply

36

again by 2 to make it into millilitre per second (ml/s). This ml/s is the
instantaneous fuel consumption.

Meanwhile, for total fuel consumption is a measurement of
accumulation of fuel consumption. This accumulation can be made by
calculating the addition of current millilitre litre reading to previous
millilitre reading. The total fuel consumption is calculated in ml. The

program for both instantaneous and total fuel consumption parameters

500 \
= . B
S +IF - FIFO "
B> me—EE B B Inst Consumption (milsec) Write
B
2 Timeout
0y Timed Out?
S F-FiFO #°
B Acc. Flow (ml) Acc. Flow Chart rite
. Timeout
Timed Out
m &

Figure 30: Fuel-flow measurement in FPGA mode

4.2.1.2 Vehicle Speed (km/h) and Engine RPM

Initialization of 1/0O pin

The same with the real-time scan mode program the DIO1 and DIO2
need to be configured for the period counting. Bu utilizing the frame
sequence pallet, the timer will count the falling edge time and by using
the shift register the current timer value will be compared the previous

one to find the actual time of period.

oooooogC

F= ModZ2/DIO1 nu® F-+ Mod2/DI02 "
Wait On Falling Edge = | Wait On Falling Edge o |
' Timeout @_ " b Timeout |@
Timed Cut H Timed Out Y

o L

Figure 31: Both DIO1 and DIO2 is initialized to read time of
falling edge

37

Data processing

The time period for each of the vehicle speed and engine RPM later is
convert into frequency by the formula of frequency = 1 / Period. Then,
all the formula is exactly follow the real-time scan mode program

formula.

Vehicle speed in km/h = 1.487 (frequency from vehicle speed sensor) + 1.768

Freguency 1

Figure 32: Vehicle speed measurement in FPGA mode

For, engine RPM the program is perform in similar manner and
is made by following the linear regression equation for engine RPM

below.

RPM = 30.078 (frequency from rpm sensor) + 160.02

o [A e
Wait On Faling idge |

(B) . Fo R 0 =
Frecuancy 2 .

Figure 33: Engine RPM measurement in FPGA mode

4.2.1.3 Front Panel for programmer

This front panel can only be seen by the author. This front panel will only be use to
check and verify the data with existing program. These data later will be transfer and
display in end user’s front panel using Real-time program. For the following front
panel, the data check column in yellow box is for monitoring the overall parameters
data. The gauge in green box will display the vehicle speed and engine ROM data in

38

real time. While the chart in blue box represent the accumulate fuel consumption (ml),

vehicle speed (km/h) and engine RPM.

DATA MONITORING CHART
Acc. Flow Chart pioto 4 |
n:n ’ 4 ! ’ 100+
120 2000 i 3000
140 128676 1500 3500 g
4 160 1000 3
! -
| Km/m 180 500 RPM X E
| 200 24784 0 S00(
= S 135
Time
DATA CHECK
Flow
Inst. Consumption (mi/sec) Acc. Flow (mi)
0 70
Vehicle Speed (Km/h) Engine RPM _‘ d
Period Period 2] l | (1 {
11400 11400 : ‘! 1 ’ || VI M ‘ H
frequency Ry2 ‘ | | “ H
87.7193 87.7193 3 | | | I ’
Km/h RPM I ' | “ ' |
128,676 24784

Figure 31: The FPGA interface of related parameters measurement

4.2.1.4 Verification of data

The data obtained need to be verified with the data obtained by Kurniawan, Y. (2013)
of which is only limited to vehicle speed and engine RPM. The verification between
both data is compared throughout the error measurement formula where, [Error %=
((Original Value — Measured Value)/Original Value) x 100]. The data is considered
valid as long as long as the error percentage is less than 20%. Note that, the all the

value calculated and displayed is converted into TWO decimal place.

l. Engine RPM vs frequency

39

For the below error calculations, the original value is the engine RPM
value obtained by Kurniawan, Y. (2013) and the measured value is the

testing result value.

Enaine FPM |

Period 2
| 24768
Frequency 2
|40.3747
RPR

| 1054.37

Freg. =40.27
RPM = 1054.37
Error = 5.44%

Engine RPM |
Period 2
11024
Frequency 2
907112
RPM
| 2568.39

Freq. =90.71
RPM = 2568.39
Error = 2.74%

'IHE} RPM Engine RPM
25 500
Periad 2
40 1000 0128
52 1500 Frequency 2
70 2000 T
a0 2500 | 589531
100 3000
124 3500
140 4000 Fre‘q. = 25.32
Table 8: RPM vs RPM = 589.53
Error=17.91%
Frequency [2]
Enaine RPM| Enaine RPM
Pefiod 2 Period 2
19152 14160
Frequency 2 [Frequency 2
52.2139 T0.6215
RFM RPRA
141047 1964.13
Freg.=52.21 Freq.=70.62
RPM =1410.47 RPM =1964.13
Error=5.97% Error =1.79%
Engine RPM Enging RPM
Period 2 [Period 2
952 B48
Frequency Frequency 2
100.482 124.254
RPM RPM
286220 3I577.31
Freq.=100.49 Freq.=124.25
RPM = 2862.29 RPM =3577.31
Error = 4.59% Error=2.21%

Enaine RPM |

Period 2
7136
Freguency 2
| 140,135
RPM

| 4054.95

Freq. = 140.135
RPM = 4054.95
Error=1.37%

As of above results, all the percentage of errors for all the engines’
RPM values are less than 20%. Therefore, the testing results values are

accepted.

Vehicle speed vs frequency

For the below error calculations, the original value is the vehicle speed

(km/h) value obtained by Kurniawan, Y. (2013) and the measured value

is the testing result value.

40

Wehiche Spead (Kmh)

Period
119584

Frequency 1
B36232

Kmyih
10,672

Freq.=8.36
Km/h =10.67
Error=6.7%

Vehicle Speed (Km,/h)|

f (Hz) Speed
8.3 10
15 20
20 30

28.5 40
35 50

Table 9: Vehicle
Speed vs
Frequency [2]
Vehicle Speed (Km/h) |

Period
49472

Frequency 1

202135

Kmyh

2B.2946
Freq. = 20.21

Km/h=28.29
Error=5.7%

Vehicle Speed (Kmy/h) |

Period
35072
Frequency 1
28.5128
Km/h
40.6357

Freq.=28.51
Km/h = 40.64
Error=1.6%

Periad

GED1E

Frequency 1

15.1478

Emy/h

|20762
Freq.=15.15
Km/h =20.76
Error=3.8%
Vehicle Speed (Km/h)|

Period

28416

Frequency 1

351914

K

S0.5669
Freq.=35.19

Km/h =50.56

Error=1.12%

As of above results, all the percentage of errors for all the vehicle speed

(km/h) values are less than 20%. Therefore, the testing result values are

accepted.

4.2.2 Data interfacing in Real-time programming

4.2.2.1 FIFO Data transfer

The data transfer from FPGA to real time program utilized the FIFO read function.

Then, these data are displayed in front panel in with charts. Only vehicle speed and

engine RPM utilized an additional gauge dial function display. The algorithm of this

data transfer is as follow;

41

Millisecond Loop Timer
[rio/169.25462215/RI00] [200] E! | RPM error
Uil
@ [—— 3 E— = @
L e R - FIFO.Configure R - FIFO.Read R - FIFO.Read
cRIO-9076] 1 Requested Depth [0} Number of Elements b Number of Elements
Actual Depth [0+ Timeout (ms) [oH—_Timeout (ms) g oM RPM Gauge RPM Chart
" et 0 | (= b
2000000] Elements Remaining Elements Remaining Km/h error
L — - i
V- FIFO.Configure V- FIFORead V- FIFORead
Requested Depth Number of Elements » Number of Elements
Actual Depth__J o} Timeout (ms) [0}__Timeout (ms) N Km/h Km/h Gauge Km/h Chart
2000000 Elements Remaining 1 Flements Remaining : Inst. Flow error
=
I . =
LF - FIFO Configure IF - FIFORead IF - FIFORead
I Requested Depth [0} Number of Elements Number of Elements
Actual Depth__ [CH— Timeout (ms) [oH—_Timeout (ms)] Snst. Flow (mifs:
. o
2000000 Elements Remaining ¥ Elements Remainin icc. Flow error
[5H]
el = H o EE B
F - FIFO.Configure F - FIFORead F - FIFORead
» Requested Depth Number of Elements FNumber of Elements
Actual Depth [0} Timeout (ms) [oH__Timeout (ms) H Acc. Flow (mi) Acc. Flow Chart
g . s
2000000 Elements Remaining Elements Remaining 1

Figure 34: Saving data in CompactRIO drive program

4.2.2.2 Data acquisition

As of existing program the FOUR parameters of instantaneous fuel consumption

(ml/s), total fuel consumption (ml), vehicle speed (km/h) and engine RPM will be

saved in the CompactRIO drive and these data will be tabulated in front panel.

l. Saving data in CompactRIO memory

The algorithm to save the FOUR parameters in CompactRIO memory

is as below.

%l:%M:%S%1u %p

[True H

EU_[Time

IRT' RVF

Engine RPM

ToHs
[» create or replace ~|

Speed (Km/h)

mpg!

Inst. Flow (ml/s)

,

Figure 35: Saving data in CompactRIO drive program

Il. Data tabulation in front panel

The program to tabulate all the related parameters in front panel is as

followed:;

42

D LI
o] ,
FO _JlbedData Acquisition

=t b Data Acquisition

Figure 36: Tabulation of data program

4.2.2.2.1 Front panel for end-user

This front panel enables all the related parameters data to be monitor. The data check

column in yellow box is for monitoring the overall parameters data. The gauge in green

box will display the vehicle speed and engine RPM data in real time. The table in red

box will tabulate the engine RPM, vehicle Speed, instantaneous and total fuel

consumption data. While, the charts in blue box are used to tabulate the related data.

CURRENT VALUES

DATA ACQUISITION |

_—

DATALODG ‘ sTOR
Data
Time Engine RPM | Viehicke Speed | inst. Flow Acc. Flow ﬂ
(KM i) mil)
| 0801029 AM| 0 D fo
0801032 AM| 0 0 0
0801023 AM| -52 4 0
DBAT035 AM| 1623 8 0
| 0001037 4| 1682) 0
DBT-05.5 AM| 1666) [0
0BTD41 AM| 1735 5 10 5
0801043 AM | 2344 122 0)
0B01-045 AM| 2258 123 5
| 0a01047 AM| 2371 122 0
0801040 AM| 2593 134 0
DB1:05.1 AM| 2842 147 5
0801053 AM | 3328 m 0
0B01-055 AM| 2896 159 5
| 0a01:05.7 AM | 4361 22 0

[

0
"l||-'l1 15, 0 ARA | ARNS 345 n ' i
-/ I S

CHARTS

Time:

pioto R

piot EEE |

¥
pioto R

000706

=

00:06:00

J L

Figure 31: The real-time mode interface of related parameters measurement

All the data is displayed, according to original data. Hence, the program conversion is

a Success.

43

4.3 FPGA program for CAN bus communication between the EMS and MCU

controller

To establish connection between Energy Management System (EMS) and Motor
Controller Unit (MCU) controller, it requires the MCU to be setup first. The MCU
utilized in this project is Kelly Controller and the EMS controller in this project is
CompactRIO cRIO-9076. After that, the controller need to

4.3.1 Kelly Controller setup

4.3.1.1 Connection between Kelly Controller and windows PC

To setup the controller, the MCU need to be connected to windows PC using USB to
RS232 cable. In this case the extension cable will be connected to this USB to RS-232
cable to increase the cable length. The Kelly Motor need to be stop first before this
connection is made because it will cause the cable to getting hot. The connection of

this hardware are as follow.

Figure 34: USB to RS-232 and RS-232 extension cable

44

Kelly Motor with fan

S e RS-232 Extension cable
v S
USB to RS-232 cable
et = —

Figure 35: Connection between Kelly controller and PC

The setting of the Kelly Controller is as in the following figure from step 1 until step

6. This step is a standard given by manufacturer of Kelly Controller.

Step 1 — Kelly EBL-I/EHB/HP/HPN Series Controllers Configuration Program ¥3.3 @
/A\
—

Kelly Controllers

http:/www.KellyController.com

Controller Information

Model: HP12101 Serial Number: 09310023 SoftWare Version: 0402
hen:;avlu\?:rtélg?um [1] (OEnable (¥ Disable
o Foot Switch [2] (OEnable (3 Disable
Throttle Sensor Type [3] | 3-wire Pot v
Throttle effective starting position 10% _]
Throttle effective ending position 0% j

Max Motor Current [4] 100% 7

Max Battery Current[S] 100% J

Description
1.1 eaamed, Throttle Switch will be considered as Forward Switch, The motor will be run CW if turn on
Throttle Switch and turn off Reversing Switch; Conversely, it will run CCW; If both switches are on or
‘ 3 2 off, it will be in neutral and Throttle Safety Switch invalid.
Configuration #izard 2.0nly if Forward Switch is off, Foot Switch can be used, If enabled, please turn on foot switch to
activate throttle.
3.Usually valid signal range is about 1¥-4¥. The controller will report fault for <0.5Y or >4.5Y signal.
4. The max output current as percentage of controller current rating. i.e. A 400A rated controller will
limit the max output to 2004 if you choose 50% here,
S.Controller will cut back motor current at high speed, to limit battery current. Controller can output Max
Motor Current at low speed. Note motor current can be much higher than battery current at low speed,

[mext | [Einish |

Figure 36: Kelly Controller setting step 1 [21]

45

Step 2 — Kelly EBL-I/KHB/HP/HPN Series Controllers Configuration Program V3.3 @

/A\ Kelly Controll
elly controliers
— http:// www.KellyController.com

General Setting

Start-up Delay [1] M—V

Hall Sensor Type [2] (120 degree v

Control Mode FI’orque v/

Under Voltage [3] 18V J

Over Voltage [4] 180y 77J

Throttle Up/Down Rate 3 Fast J Slow

High Pedal Disable [S] (®Enatle O Disable

Releasing Brake High Pedal Disable [6] (3Enable O Disable
Description

1, set delay time to wait for stabilization of B+, mostly for main contactor debouncing.
2. Select 60 degree or 120 degree according to your motor hall sensor type.
1 3.Controller will cut back current at battery voltage lower than 1.1x the value, cut out at the value,
Configuration Hizard and resume operation at 1.05x the value.
4, Controller will cut back regen current at 0.95x the value, cut out regen if voltage reached the
setting, and resume regen at 0.95x the value.
5, If enabled, the controller will report Faulk and not operate if throttle got effective output at power
up.
6. If enabled, the controller will report Fault and not operate if throttle got effective output when
releasing the brake,

[Cancel] [Erevious] H Next]|| [Finish]

Figure 37: Kelly Controller setting step 2 [21]

Step 3 — Eelly EBL-I/KHB/HP/HPN Series Controllers Configuration Program ¥3.3 @
/A\
—_ Kelly Controllers

http:/www.KellyController.com

General Setting

Motor Top Speed [1] 100% —_}

Motor Poles [2]

Half Speed In Reverse[3] () Enable (%) Disable

Boost Function[4] () Enable () Disable

Economy Function[S] () Enable (® Disable

Half Current in Reverse[6] (O Enable (%) Disable
Description

1. Slide the silder to change allowed top speed of your motor. Actually it's done by limiting motor
voltage to the percentage of battery voltage.
2. Motor poles configuration. YWhen using CAN to get controller's parameter, please configure this

parameter accurately,
3. If enabled, the max reverse speed will be limited to half of the max forward speed if reverse switch
Configuration ¥izard closed.
4. If enabled, the controller will output max power right after Brake signal > 4.2V, Or say you
< can wire a boost switch between Brake Input and SY to activate it,

S.1f enabled, the max output current will be limited to half of normal condition if Brake signal >
4.2V, Or sav vou mav wire a boost switch between Brake Inout and SY to activate it.

6. If enabled, the max output current will be limited to half at reversing, Activated by reverse switch.

[Cancel] Iigreviousi I Mext] [Finish

Figure 38: Kelly Controller setting step 3 [21]

46

Step 4 — Kelly EBL-I/KHB/HP/HPN Series Controllers Configuration Program ¥3.3 @

/ \\

Kelly Controllers

4 http://www.KellyController.com
Regeneration Setting
Regeneration [1] (&) Enable () bisable
Brake Switch [2] (¥)Enable () Disable
Releasing Throttle Starts Regen [3] Disable J
Regen Current by Brake Switch On 20% J
Max Regen Current [4] 100% J
Brake Sensor Type [5] No Used v ‘
Brake Sensor Starting Point 20% 7];
Brake Sensor Ending Point 80% ——]7
Description

1. Regen is to recover mechanical energy, and charge back to battery. It has braking effect, Battery
and secure current path are required during regen. Braker/Contactor on battery line has to be closed.
£ 2. If enable, turn off throttle and turn on brake switch will start regen.
/ Configuration ¥izard 3. If enable, regen starts just after throttle released. You may disable it by dragging the slider to the
leftmost position. Brake switch or brake sensor isn't required for the mode. The mode is only available
for firmware version 0209 or later.

4. Max reqen current with max sianal from brake sensor,
5. It's to vary regen on time. Please choose "Not Used" if analog brake sensor isn't used. You have

to turn on brake switch to start the regen, then vary the regen with the signal,
Usually valid signal range is about 1V-4¥, The controller will report Fault for <0.5Y or 4.5V signal

[Cancel] [Erevious] ﬁ Next H [Finish

Figure 39: Kelly Controller setting step 4 [21]

Step 5 — Kelly EBL-I/EKHB/HP/HPN Series Controllers Configuration Program V3.3 E]

/A\
Kelly Controllers

A4
http://www.KellyController.com

Sensor Setting

Motor Temperature Sensor [1] (%) Enable (O Disable

Controller Stop Output Temperature 125C = _}

Controller Resume Output Temperature 110C j
CAN Setting
Description

1, Thermistor is optional, Default to KTY83-122.

(.)) ! Alternative to a thermistor, voltage signal 4.5¥ to 30V on the motor temperature input pin (32 Pin 4)
Conﬁ guration Wizard © wil disable the controller.

caculating the max regen current in each mode:

\ actual regen current=max driving current*0.5*max allowed regen current of
self-regen mode*tps mode and max allowed regen current or max allowed regen
current of braking switch mode

[cancel | [previous | [Tnext | [Enish |

Figure 40: Kelly Controller setting step 5 [21]

47

Step 6 — Kelly EBL-I/KHB/HP/HPN Series Controllers Configuration Program V3.3 @

/A\
- Kelly Controllers
http://www.KellyController.com
Finish Setting
Please click finish button to write configuration into the controller.
Configuration W
(o) (oowon] —

Figure 41: Kelly Controller setting step 5 [21]

After all these steps already been follow, the Kelly Controller setting is complete. Now
the USB to RS-232 cane can be disconnected from PC and Kelly controller. The Kelly
Controller now is ready to be connected with CompactRIO. The steps to connect the

controllers will be discussed in the following chapter.

4.3.2 Connection between Kelly Controller, EMS controller and PC

To connect Kelly Controller to CompactRIO, it requires wire that has end to end of
RS-232 socket with Kelly J2 Cable. Since this cable is not usual in market, the cable

itself need to be build. The building process will be explain as followed.

4.3.2.1 Kelly Motor CAN bus cable building

This CAN bus cable is built based on the CAN bus topology below. The CAN Nodes
at both side left and right of this cable in this case are RS-232 socket and Kelly J2
socket.

48

.g——— Bus Cable Length ———p»

CAN_H . CAN_H
CAN CAN
Node %Rt %HT Node
CAN_L ? CAN_L
Stub
2| & 2| &| Length
zl 2| =| z
= 2| =
o| o]l | o ¢

Node Node

Figure 42: CAN bus topology [19]

The CAN_H (Pin 10) of Kelly J2 need to be soldier so that it is connected to CAN_H
(Pin7) of RS-232 socket. Meanwhile, The CAN_L (Pin 11) of Kelly J2 n need to be
soldier so that it is connected to CAN_L (Pin2) of RS-232 socket. Kindly refer to the

following figures for schematics both sockets’ pins.

Connector Pin Signal
1 No Connection (NC)
2 CAN L
3 COM
4 NC
5 SHLD
6 COM
7 CAN_H
8 NC
9 Vsup

Figure 43: RS-232 pins schematics [19]

T
- — -

S0 T

/ R -\
!_f-“';"'q(.} L Oy
[)
| g T Y
L '\\ C . o 4 ,a"l ;,-
WS S
\\ \\\ 7 . . — 5 A ,_,'
e

— L

Figure 44: Kelly J2 pins schematics [20]

After all the cable at both nodes is already been solider, this cable requires termination

resistor of 120 Ohm to prevent communication error, since CAN bus is bidirectional.

49

This termination resistor need to be placed at the end of CAN_H connection to CAN_L
connection at both of the cable. The cable build as of in the following figure.

Kelly J2 socket

Figure 46: CAN bus cable

The CAN bus cable is tested with connectivity function of multimeter and is found
that all the connections are corrected. Now, the CompactRIO is ready to be connected
to Kelly controller and PC.

50

4.3.2.2 Overall hardware connections

The Kelly Controller, CompactRIO and PC are connected as if the following figure.

CompactRIO

CAN bus cable
~ =

Figure 47: Overall hardware connection for CompactRIO, Kelly Controller and
PC

As of above figure, the CompactRIO is connected to Kelly Controller using the CAN
bus cable meanwhile, the LAN cable is use to connect the CompactRIO and PC. Now,
the EMS control program for MCU controller can be executed.

4.3.3 EMS control program for MCU

Same as the translation of existing program to FPGA mode, the FPGA programming
will only be use to acquire the data from the controller. These acquired data later will
be transferred into Real-time program.

4.3.3.1 Data Acquisition in FPGA mode

The input pin of CANO of NI 9853 will be use CAN data acquisition for MCU
controller. The following FPGA program will be use to acquire data from Kelly

Controller.

51

E Mo Error 't

"2 Mod1/CAND'|

These data will be read in Real-time programming algorithm.

U321In2

bz

[&}-|»#Ready

32 In 3

132 In 4

J321n 5

U321In6

Figure 48: CAN data acquisition in FPGA programming

4.3.3.2 Data interfacing in Real-time programming

The data in FPGA is read by using the FPGA open pallet (Red box). This function will enable

the data in FPGA programming to be read in Real-time programming. These data will be read

the Read/write control pallet and output it to front panel (Purple Box). The ID in yellow box,

here will enable the user to key in the ID of the CAN bus data in front panel.

% RIOO |~

R |

&od o

error out

Con)

cRIO-9076

U32 In

U32in2y

B

T
o

U32in3

-
s

U32indy

U32 In 5 ¥

1

U321In6y

[] Fod L.
r Ready

HEEFEEEERT T

Eun]

Figure 49: Data interfacing in front panel in Real-time programming

52

The ID of this CAN bus data is given by manufacturer, in the Kelly Motor Controller User’s
Manual. This ID is in hexadecimal. For this project there are only several parameters will be

read by the EMS controller. These parameters are summarized as follow;

Bil. ‘ Parameters ID ‘
1. Kelly Motor Phase Current 26
2 Controller temperature 51
3 Kelly Motor Speed RPM 55
4, Current throttle switch status 66
5 Re-generative Braking status 67

4.3.3.3 Front panel for end user

The following front panel is the example of whet user will see. Since the program is still in
the testing process, the ID in the red box is not being fix yet. Once, the every this is completed
the ID will be fix and the data for the related parameters will be display. Meanwhile, the

green box will show the error occur if any in the data reading process.

A Data Timestamp
A 0 error out
1D status code

0 EJ 26 ﬂ H[}—
; source :
: | v
0
0
0

Figure 50: Front panel for end user

53

4.3.3.4 Result

The current program is still being tested. The data of the related ID is still failed to be

display. There are several reasons on why, this data is failed to be display.
1. Due to the clock speed setting of Kelly motor controller

The Kelly controller has CAN data rated of about 1Mbit/s. Therefore, the
CompactRIO reading clock must be set faster than the Kelly Controller clock.
For this program, the CAN module NI 9853 is set to run at 1kb/s. Therefore,
since the reading clock is faster than the Kelly Controller out data, the data

should be display.

13 Module Properties 80.00 kbps X
83.33 kbps
Category B 1000 kps
125.0 kbps
160.0 kbps
200.0 kbps
250.0 kbps
400.0 kbps
500.0 kbps
800.0 kbps ple

v 1000 kbps] B
uto Start Listen Only

1000 O

g
=
1]
0
g
3
=
2
[=]
=]
-

rt High-Speed CAN

o

Cancel Help

Figure 51: NI 9853 data rate setting

However, there are possibilities that the reading data is set too fast that make
the data unable to be display. This possibility takes time to be tested because,
since the data acquisition is done in FPGA mode, any changes will result the
whole program need to be compile again. This compile time normally will take
a long time, for about 15-30 minutes and sometimes the compilation got stuck

due to unknown issue. Hence, this possibility remains unsolved.

54

2. Due to the faulty of CAN bus cable

The CAN bus cable is a self-made cable based on the internet, this cable is only
being tested with multimeter connectivity function to see whether the CAN_H
or CAN_L between CAN Nodes are connected or not. If it is connected, the
multimeter will be beeping. This cable is never being tested to transfer the CAN

data. Therefore, this be the one that contributed to this issue.

3. Due to the wrong data acquisition algorithm implementation

The program is made based on the understanding on the certain graphical pallet
function, however throughout experience using this software, some of the
pallet can only be use for certain hardware only. For example, DAQmX type of
program, is made for simple data acquisition which can only be use for certain
controllers. National instruments had produced a lot of controllers, such as
sbRIO, CompactRIO, PCle, PXle, Ni Elvis Il and etc. All these controllers can
use both Real-time Scan Mode program and FPGA program. However, there
are certain function that in both of this program that can only be use for specific
controller. For this DAQmx case, sbR1O and CompactRIO are not supported
to use this function, but is fully supported for PCle and PXle and NI Elvis Il
controller. Since the author did not receive any training to use this software,
there are possibility that this issue comes from this cause.

4.4 Graphical Driver Interface (GDI) development

Since, there is some faulty issue in CAN bus data display and also time constraint, this

GDI development is unable to be done.

55

CHAPTER 5
CONCLUSION

All data obtained in ems control program in FPGA mode is compared and verified
with existing results of real-time scan mode program. The implementation of program
conversion has been successful. The completion of ems control program will enable
the HEV to achieve certain control strategy for efficient energy distribution and energy
storage through re-generative braking, in order to reduce fuel consumption while
maintaining acceleration and other performance requirements. This control strategy is
a project which is currently ongoing in University of Technology PETRONAS (UTP)
entitled “Design and Development of Split-parallel Through-the-road Retrofit Hybrid
Electric Vehicle with In-wheel Motors”. This FYP project will partially complete this

UTP research project.

56

© ©

10.

11.

12.

13.

14.

15.
16.

17.
18.
19.

REFERENCES

Nelson, R. Keep Tabs on Your Data. 2013 Available from:
http://www4.evaluationengineering.com/articles/201306/keep-tabs-on-your-
data.php.

Kurniawan, Y., Development of Energy Management System (EMS) with
Driver Interface for Retrofit-Conversion Hybrid Electric Vehicle. 2013.
Zulkifli, S.A., et al. Implementation of energy management system for a split-
parallel hybrid electric vehicle with in-wheel motors. in Control Conference
(ASCC), 2015 10th Asian. 2015.

Zulkifli, S.A., et al. Development of a retrofit split-axle parallel hybrid
electric vehicle with in-wheel motors. in Intelligent and Advanced Systems
(ICIAS), 2012 4th International Conference on. 2012.

Zulkifli, S.A., et al. Operation, power flow, system architecture and control
challenges of split-parallel through-the-road hybrid electric vehicle. in
Control Conference (ASCC), 2015 10th Asian. 2015.

Web Technology in Embedded Systems. 2013; Available from:
http://www.ni.com/white-paper/14992/en/.

9 Benefits Of Hybrid Cars - 09 - High Resale Value. Available from:
http://www.autobytel.com/hybrid-cars/car-buying-guides/9-benefits-of-
hybrid-cars-120071/.

Benefits and Considerations of Electricity as a Vehicle Fuel. 2015.

Hybrid vehicle drivetrain. Available from:
https://en.wikipedia.org/wiki/Hybrid_vehicle_drivetrain.

Taylor, D. Series vs Parallel vs Series/Parallel Drivetrains. Available from:
http://www.ucsusa.org/clean-vehicles/electric-vehicles/series-vs-parallel-
drivetrains#.VjG8-JD6xaR.

Hartman, D. Series Vs. Parallel Hybrid. Available from:
http://www.ehow.com/about 6130613 series-vs_-parallel-hybrid.html.
Eberle, U., The Voltec System: Energy Storage and Electric Propulsion.
2014.

cR10-9076. 2014; Available from:
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209758.

How to reduce the time required for programming a PAC. 2008; Available
from: http://machinebuilding.net/ta/t0130.htm.

NI 9401. 2014; Available from: http://www.ni.com/datasheet/pdf/en/ds-86.
NI 9853. Available from: http://www.sal.wisc.edu/PFIS/docs/rss-
nir/archive/public/Product%20Manuals/ni/ni-9853-datasheet.pdf.

LabVIEW FPGA Course Manual. 2012.

How to Connet Kelly Controller to a Computer. n.d.

Operating Instruction NI 9853 (n.d.). Retrieved from
http://www.ni.com/pdf/manuals/371453e.pdf

57

http://www4.evaluationengineering.com/articles/201306/keep-tabs-on-your-data.php
http://www4.evaluationengineering.com/articles/201306/keep-tabs-on-your-data.php
http://www.ni.com/white-paper/14992/en/
http://www.autobytel.com/hybrid-cars/car-buying-guides/9-benefits-of-hybrid-cars-120071/
http://www.autobytel.com/hybrid-cars/car-buying-guides/9-benefits-of-hybrid-cars-120071/
https://en.wikipedia.org/wiki/Hybrid_vehicle_drivetrain
http://www.ucsusa.org/clean-vehicles/electric-vehicles/series-vs-parallel-drivetrains#.VjG8-JD6xaR
http://www.ucsusa.org/clean-vehicles/electric-vehicles/series-vs-parallel-drivetrains#.VjG8-JD6xaR
http://www.ehow.com/about_6130613_series-vs_-parallel-hybrid.html
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209758
http://machinebuilding.net/ta/t0130.htm
http://www.ni.com/datasheet/pdf/en/ds-86
http://www.sal.wisc.edu/PFIS/docs/rss-nir/archive/public/Product%20Manuals/ni/ni-9853-datasheet.pdf
http://www.sal.wisc.edu/PFIS/docs/rss-nir/archive/public/Product%20Manuals/ni/ni-9853-datasheet.pdf

20.
21.
22.

Kelly KBL Brushless Motor Controller User’s Manual. n.d.
Kelly KBLI/KHB/HP Controllers Configuration Program . n.d.

A. Bedir, "Design of a Stand-Alone Control Strategy For Retrofit Hybrid
Electric Vehicles," Tennessee Technological University, 2010.

58

APPENDICES

APPENDIX A

LABVIEW FPGA BLOCK DIAGRAM

1] 2Hz=500ms;
,
| [F =+ LF - FIFQ # |
P Inst. Consumption (mi/sec) Write
b I [? T b Gral Element
B - @- Timeout
Timed Out?
[F-FIFO ®"
Ace. Flow (mi) Acc. Flow Chart Write
5o [e e Elemen A
Timeout
Timed Out?
@ ® |,
NN BN B eReBN-HeR-NeNeHoH-H- RN HeFeR NN
F-+ ModZ/DIOT ™
Wait On Falling Edge
9 Timeout @_ B
Timed Out ¥
IO oo IO 00000 0ono nooooon
B =
|> Period
G| False ~
[Frequency 1 Fos V- FIFO 7
=[5> [839000} § &= Km/h Kmyjh Gauge Km/hChart Write
I D B B e Flement
@— Timeout
-1.4-3? L LS
- ‘ Timed Qut?
—
NN Mo eH-NeB NN R-N-R=ReN-HeR-NeR-HeN-H-Ro R
F- Mod2/0I02 ™
Wait On Falling Edge
r Timeout : =m0
Timed Out
el Wl RNl NH e Nl NN Nl Mol N NN N T -
B |
Period 2
.) EaR-Fro Y
o Frequency 2 |-+ R- FIFQ 4|
— il RPM RPMGauge RPM Chart
. - [y .y [g
30078 Timeout
160,02 Timed Qut?

59

APPENDIX B

LABVIEW FPGA FRONT PANEL

FPGA

DATA MONITORING

CHART

\
160w | .‘

|I |I ./. \‘. l|
L -0 \ ~ /" |
AN wh e) .
L W, A]
A\ f 200 / o
N \
M ‘___/

|
| =1000

3\
\
\

N

500
r

3500

4000w |

/ \"|)
@ -
/ M 400) ’fa"
s000 y
' /
S

DATA CHECK

Flow

Inst. Consumptien {ml/sec)
o

Vehicle Speed (Km/h)

Period
a

Frequency
o

Km/h
a

Acc. Flow {ml}
o

Engine RFM
Period 2
o
Frequency 2
o
RPM
o

60

Acc. Flow Chart.

100-|

80

60~

Ace, Flow (ml)

]

Km/h Chart

RPM Chart
5000:

Plutﬂml

Time

T

Plot 0

Time

plot0 WG

Time

APPENDIX C
LABVIEW REAL-TIME BLOCK DIAGRAM

zecand Loop Timer
RFM emrar

kIS

W FIFO Cor E| 5 FiFOFzan B - FIFD Roac
b Bequested Dectn Wourmoer of £ emaris b Flumbar of Ements
C| EFM Gauge M Chart

Actual Depth Timeout (ms)
. (] e
L &= e

v 16825452 21500 []

l_‘

-+ iF] == e] + o
¥ - FIFO.Configure V - FFO Read V- AFD Read
(—F_Eoguested Depth I[P ember of Eements b Fumier of Elements
Acual Depth M t a Timeout [ms) Timeout (ms)
° ata C H L] Km/h Gauge Km/h Chart
Elsmants Remaining B Eloments Ramaining ’E—E—ﬁ

2000000 frst. Flow emor

Ho] + + =+
LF - FIFC Canfigurs R TF - Firohoa
¥_Eecuosted Deoth Humber of Elamants Mourmser of Eemarss
Actual Depth H E_ Timeaut (ms} Timecut {ms)
= L D L Inst Flaw (mis)
Elements Remaining B Elements Remaining v_ﬁ!

I ey e Flow eror

: H E] -+ +
F - FIFD Configure - FIFC.Asad F - FFD.Read
P_kequested Depth Humber of Elements [F Mumber of Elements
Achus Death] Timeout (ms) Timeout (ms)
aty L [eH ata lc: Flow [ml) Ace. Hlow Charg
W !
Elements Remaining H Elements Remaining HoiL] [
a Acquisition
JTT—

Engine RPN

Speed (Kmsh)

iz Flow (mis) status

Acc. flow (ml)

61

APPENDIX D

LABVIEW REAL-TIME FRONT PANEL

CURRENT VALUES

DATA ACQUISITION

RPM

Km/h

Inst. Flow (ml/s)

«._ Millisecond Loop Timer

‘

|0
Acc. Flow (ml)
jo
ERRORS
RPM error Km/h errar

status code

status code

ril

source

4 F

source

Inst. Flow error

status code

Acc. Flow error

status code

|

source

gl o

source

|0
. 1000
130
140" as00”
1507
160- 4000-
70
180, 500 4500
- \- RPM “
1%0
N 5000
DATA LOG sTOP
Data Acquisition
Time Engine RPM Vehicle Speed Inst. Flow Acc. Flow
(Km/h) (ml/s) (ml)

RPM Chart
5000

4000

3000

2000

Amplitude

1008

LRSS

Km/h Chart
60-1

3
i

Ampiitude

0
20-]

a
i

'§5

-

wioto 0G| I

Time

oo [ANG

Time

62

Acc. Flow Chart
200~

i
i

Ampiitude
2

Time

