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ABSTRACT 

 

In oil refining industries, debutanizer column is one of the important unit 

operations. Debutanizer column is the main column used to produce the main 

product in oil refinery process. The online composition prediction of top and bottom 

product of debutanizer column using neural network will be an aid to increase 

product quality monitoring in oil refining industry. In this work, a single dynamic 

neural network model is used in order to achieve the objective which is to generate 

composition prediction online of the top and bottom product of debutanizer column. 

Neural network is a computing system with several of simple and highly 

interconnected processing elements that will process information using their dynamic 

state response to external inputs. It is a software based sensor method or known as 

“soft sensor” which is a helpful technology that utilizes software techniques to infer 

the value of important but difficult-to-measure process variables from available 

process variables which are requisite from physical sensor observation or lab 

measurements. The neural network development and equation based model for i-

butane, i-pentane, n-butane, n-pentane and propane has been obtained. Then, these 

results will be compared with proportional integral derivatives (PID) controller 

design to show its supremacy over this method.  
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CHAPTER 1 

INTRODUCTION 

 

The industry of chemical process plant involves many type of operation unit. 

A number of equipments such as reactor and distillation column have been used in 

their chemical process to produce required product. In oil refinery process, the 

debutanizer column is the main column unit functioning to produce products such as 

petroleum product, liquefied petroleum gas, naphtha and low sulphur waxy residue. 

Debutanizer column is a type of fractional distillation column used to separate butane 

from natural gas. Distillation column is the most common unit in the chemical 

industry that has an integrated and complex system. Its integrated and complex 

system has made the operation and control of column become very difficult. In 

recent years, an interest in development of distillation column system to produce 

high quality of product has emerged. Hence it becomes important to design the 

debutanizer column system in oil refinery process to help improve product quality by 

predicting the top and bottom composition. In relation to this requirement, a robust 

and cheaper method such as online soft sensor has to be developed by using suitable 

approach. 

 

1.1 Problem Statement 

Debutanizer column used in petroleum refining industries is one of the 

distillation column that has the complex behaviour, high non-linearity and 

complexity in control loops. These unique behaviour or characteristics of distillation 

column becomes complicated and difficult to handle by chemical engineers. The 

most problem encounter by chemical industry is in controlling and monitoring the 

debutanizer column. Principally, there are five basic variables required to be control 

to achieve efficient operation which are liquid level of reflux drum, liquid level of
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bottom stream, composition of bottom stream, composition of distillate stream and 

column pressure (de Canete, Gonzalez-Perez, & del Saz-Orozco, 2008). These 

variables have to be controlled in order to achieve accurate operation and high 

quality of product. However, chemical engineers nowadays facing difficulty to 

control and monitoring these variables due to column non-linearity issues, 

multivariate issues, open loop instability issues, and the difficulty to measure a 

certain variable directly.  

Currently, the top and bottom composition of column are measured by 

normal laboratory sampling which is monotonous and time consuming. The time 

taken to measure the compositions by laboratory sampling normally takes one day 

(Mohamed Ramli, Hussain, Mohamed Jan, & Abdullah, 2014). In past decades, the 

distillation dynamics and control especially for composition control have been 

studied (Skogestad, 1997). One of the composition control used was the online 

measurement or online analyzer. In order to achieve the monitoring and controlling 

purpose in chemical process operation, an accurate online measurement of quality 

variables are required and many manipulated variables could be used, such as 

distillate flow, reflux flow, vapour flow, and bottom flow. From this, many control 

strategy with different combination of manipulated variables and configurations have 

to be developed (Skogestad, 2004). Unfortunately, the key obstacles in 

implementation online measurement are the large time delays of measurement and 

the expensive cost of its measurement devices (Fortuna, Graziani, & Xibilia, 2005). 

Since most of chemical industry processes are nonlinear in nature, a continuous 

robust method that can solve these problems is therefore needed to be developed. 

In recent times, the soft sensor method is widely used to develop model for 

non-linearity problem in chemical process industry. Principal component analysis 

(PCA) and partial least square (PLS) which are the multivariate statistical methods 

based on linear projection have been the efficient methods for the constructing 

empirical model (Park & Han, 2000a). In addition, there are also well-known 

nonlinear regression methods such as neural network or artificial neural network 

(ANN), projection pursuit regression (PPR), nonlinear PLS, and alternating 

conditional expectations (ACC) (Hussain, 1999). 
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1.2 Objectives 

In this day and age the purity of distillate, the quality of products and the time 

to estimate the distillate composition are the main objectives of chemical process 

industries. For debutanizer column used in petroleum refining industries, the design 

for composition prediction is important in order to improve the product quality.  

This paper is intended to generate the composition prediction online of the 

top and bottom product of debutanizer column using neural network method or also 

known as artificial neural network (ANN). Throughout this method, an equation 

based neural network models will be developed. Singh et al. (2006) have design 

ANN-based estimator for distillation process using Levenberg-Marquardt (LM) 

approach (Singh, Gupta, & Gupta, 2007). The column pressure, reboiler duty and 

reflux flow together with the temperature profile of the distillation column as the 

input were used to predict the composition of distillate for this approach. ANN 

equation shown that it is more efficient method than the partial least square (PLS) 

and regression analysis (RA) equation based methods (Mohamed Ramli et al., 2014). 

The soft sensor of equation based ANN also a fast and practical route for debutanizer 

column system. Therefore, the alternative online method which is neural network is 

used in this study to predict the composition of debutanizer column since it is 

expected to generate more precise and robust results within a faster period. The 

composition prediction using neural network will be compared with PID controller 

method. 

 

1.3 Scope of Study 

In achieving objective of the project, a comprehensive study has to be 

conducted and it covers the following scopes of study: 

i. Gathering information of chemical process plant, distillation column, soft 

sensor, and neural network by conducting literature survey; the background 

of crude oil processing plant, debutanizer column, soft sensor and neural 

network.  

ii. Observe the composition predicted of debutanizer column by single dynamic 

neural network approach or development. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The intensity and complexity of chemical process plant operations have been 

exponentially increasing as the demands for the production level as well as more 

stringent product quality specification are increasing. In order to achieve these 

requirements, chemical process plant industries mostly relying on the automatic 

control systems. In recent years, a vigorous in the development and application of 

nonlinear control methodologies has become known. The remarkable increase in the 

number of research papers published in this area recently made the nonlinear control 

now as an important position in the area of chemical engineering as well as process 

control engineering. However, most of nonlinear system it is very difficult and 

expensive to achieve an accurate model of the process that had made limited usage of 

nonlinear models. Indeed, the cost of model development and validation is one of the 

barriers to the more pervasive use of nonlinear models in advanced modelling and 

control techniques in the chemical or petroleum industry. Hence a number of cheaper 

and accurate methods such as neural network for identifying nonlinear processes 

have been introduced. This low cost and accurate alternative of soft sensor has 

attracted plant designers and engineers to use it in their process plant operations.  

The recent rise in research of neural networks has made it readily available as 

an attractive soft sensor method since it can learn by examples, offer a cost-effective 

method of developing useful process models (Hussain, 1999). Neural network is 

attractive because of its information processing characteristics such as high 

parallelism, nonlinearity, fault tolerance and capability to generalize and handle 

imprecise information (Basheer & Hajmeer, 2000). These characteristics have made 

neural network fit for solving a variety of problems. Neural network model also can 

learn the frequently complex dynamic behaviour of a physical system. A recent work 
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by Cybenko (Cybenko, 1989) Hornik et al. (Hornik, Stinchcombe, & White, 1989) 

proved that a feedforward neural network consists of two hidden layers and a fixed, 

continuous non-linearity can approximate any continuous functions to an arbitrary  

degree of exactness on a compact set. Pioneering works is a began application of 

neural network in chemical engineering (Hoskins & Himmelblau, 1988) and the 

number of research publications on neural network in chemical engineering was 

gradually increased  in the following years. The five major areas which are process 

control, dynamic modelling, forecasting, fault diagnosis and optimization are the 

most covered in these publications. Other soft sensor method such as fuzzy neural 

network (FNN), partial least square (PLS), support vector regression (SVR), least 

square support vector machines (LS-SVM) and etc. also used recently. 

A black-box modelling scheme to predict melt index (MI) in the industrial 

polymerization process has been proposed by Liu and Zhao (Liu & Zhao, 2012). 

Product specification can be determined by MI which is one of the most important 

quality variables and is influence by a large number of process variables. Since 

measurement of MI in laboratory is quite expensive and time consuming, they 

presented MI online prediction where it is much cheaper and faster statistical 

modelling method. The technologies involved including FNN, particle swarm 

optimization (PSO) algorithm and online correction strategy (OCS). Global PSO 

(GPSO) algorithm, best-neighbour PSO (BNPSO) and BNPSO with OCS have been 

applied in their study to optimize parameters of FNN. BNPSO algorithm that used 

square topological structure shows advantage of high convergence speed and 

optimization precision than GPSO algorithm that used global structure. Their study 

shows the reliability and efficiency of the BPNSO algorithm and proves the proposed 

FNN model can express the relationship between process variables measured at the 

beginning of the production cycle and the quality of the final product. An adaptive 

soft sensor using FNN for online monitoring MI in the industrial propylene 

polymerization process has been developed by Zhang and Liu (Zhang & Liu, 2013). 

An adaptive fuzzy neural network (A-FNN) is subsequently developed to help 

determine the number of fuzzy values since the structure of FNN is difficult to 

determine. SVR also introduced for a better generalization ability of soft sensor. 

SVR acts as the parameter tuning and the output function is converted into an SVR 

based optimization problem. The different of soft sensor such as SVR, FNN-SVR 
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and A-FNN-SVR models also compared in their study using real industrial PP plant 

in order to obtained a good performance in MI prediction. A-FNN-SVR models give 

the most accurate result and all the proposed soft sensor models supposed to have a 

promising potential for practical use. 

The prediction of MI is also important in quality control of propylene 

polymerization process. Shi and Liu using a LS-SVM soft sensor model of propylene 

polymerization process (Shi & Liu, 2006). LS-SVM is used to infer the MI of 

polypropylene from other process variables. In order to achieve a robust estimation 

of MI, the weighted LS-SVM (weighted LS-SVM) approach of propylene 

polymerization is further proposed in Shi and Liu work. A standard SVM model is 

used as a basis comparison of LS-SVM and weighted LS-SVM models. Another 

method proposed by Shi and co-workers to infer the MI of polypropylene from other 

process variables is a novel soft sensor architecture based on radial basis function 

networks (RBF). This RBF network combined with independent component analysis 

(ICA) and multi-scale analysis (MSA). The nonlinearity in every scale is 

characterized by RBF networks. ICA is introduced to select the most independent 

process features as well as to eliminate the correlations of the input variables while 

MSA is carried out to make the model more robust to mismatches and to acquire 

approximate scale information of the process. Furthermore, the LS-SVM with Ant 

Colony-Immune Clone Particle Swarm Optimization (AC-ICPSO-LSSVM) which is 

an optimal soft sensor is also studied by Jiang and co-workers (Jiang, Yan, & Liu, 

2013). The soft sensor used to estimate the top and bottom composition of column is 

PLS regression. The work done by Kano et al. is the inferential models for estimating 

product compositions which is PLS regression with the simulated time series data as 

basis (Kano, Miyazaki, Hasebe, & Hashimoto, 2000). They also investigated the 

influence of selection measurements and sampling intervals on the performance. The 

result of their study shows that cascade control system based on proposed PLS model 

is better than the usual control system and tray temperature. 

For low-density polyethylene (LDPE) and ethylene vinyl acetate (EVA) 

copolymers plant, the constant control and monitoring of reactors are required to 

minimize undesirable process excursions and meet severe product specifications. 

Both LDPE and EVA are produced in free radical polymerization using reactors at 

highly pressure. A work developed by Sharmin and co-workers is the application of 
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PLS as a soft sensor in order to predict melt flow index using data from an industrial 

autoclave reactor by introducing the data-based multivariable regression methods 

(Sharmin, Sundararaj, Shah, Vande Griend, & Sun, 2006). The product composition 

profiles for batch distillation column has been proposed by Zamprogna and co-

workers using PLS regression (Zamprogna, Barolo, & Seborg, 2004). In their study, 

the composition of the distillate stream and the bottom product of batch distillation 

process are estimated using PLS based soft sensor. Principal component analysis 

(PCA) also used to analyse the available process data. A design methodology to 

build a soft sensor for chemical processes that can handle the nonlinearities and the 

correlation among many process variables is proposed by Park and Han (Park & 

Han, 2000b). The method proposed is the locally weighted regression (LWR) to 

estimate a regression surface through multivariate smoothing and the result obtained 

is then compared with other methods. A soft sensor developed using LWR approach 

shows an excellent way for chemical plants with high nonlinearity and colinearity. 

However, this approach cannot assure the good performance than other online 

methods such as NN and PLS. An online soft sensor modelling using the three 

different just-in-time-learning (JITL) methods is performed by Ge and Song (Ge & 

Song, 2010). The different JITL methods are PLS, SVR and LSSVR. Besides, a real-

time performance improvement strategy also studied for modelling efficiency 

enhancement of JITL-based soft sensor. The real-time performance can be easily 

determined using JILT methods.  

The product quality control and monitoring is the focus of oil refinery process 

plants recently. The product of oil refinery with high quality will depends on the 

performance of column system. Zilouchian and Bawazeer propose the application of 

neural networks in oil refineries to improve product quality (Zilouchian & Bawazeer, 

2001). The information required for neural network models such as the input data, 

training data set, and selection of process variables etc. explained in their study. 

Various neural network architectures are proposed to predict product quality and the 

models show reliability to be implementing in oil refineries. A nonlinear system 

identification and model reduction technique using neural network has been 

developed by Prasad and Bequette (Prasad & Bequette, 2003). Plant input-output 

data is created using neural network and singular value decomposition (SVD) based 

technique to the weight matrices of neural network is applied to obtain model 
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reduction. A novel hybrid artificial neural network (HANN) based on BP-PLSR and 

its application in development of soft sensors is introduced in Xuefeng work 

(Xuefeng, 2010). The main flaws of neural network such as the difficulty to 

determine the optimal number of the hidden nodes and tendency of overfitting are 

overcome by applying HANN. The results of HANN model shown that it can solve 

overfitting problem and has the robust character. From the good results achieved by 

using neural network modelling, the neural network has been widely used in 

chemical process plant. The paper work presented by Hussain is on the application of 

neural networks in chemical process control in both simulation and online 

implementation (Hussain, 1999). The three major control schemes which are 

predictive control, adaptive control and inverse-model-based controls methods have 

been reviewed in his study. 

Prediction control method is the most commonly found control method that 

used neural network models. Neural network based predictive method is a control 

scheme where the controller determines a manipulated variable profile that optimized 

some open-loop performance objective on a time interval, from the current time up to 

a prediction horizon. The attraction of using neural network models instead of other 

forms of model to efficiently correspond to the complex nonlinear systems within the 

predictive methodology is the reason of increasing esteem of the neural network 

based predictive method (Morris, Montague, & Willis, 1994). To achieve the 

objective and the usual limitation required upon it, this predictive control algorithm 

basically involves minimizing future output deviations from the set point whilst 

taking proper account of the control sequence needed. Psichogios and Ungar 

(Psichogios & Ungar, 1991) operated a neural network model of a continuous stirred-

tank reactor (CSTR) to control the product composition in the conventional model 

predictive scheme. They found that steady state offsets were obtained during set 

point tracking. Hence, they made corrections to the output, accounting for 

unmeasured disturbances and modelling errors ingoing the process and they acquired 

offset-free tracking. The plant-model variance at each sampling instant estimated by 

Hunt and Sbarbaro (Hunt & Sbarbaro, 1991), Turner et al. (Turner, Montague, & 

Morris, 1995) and Willis et al. (Willis, Montague, Di Massimo, Tham, & Morris, 

1992), and used it to correct the predictions from the model in their predictive control 

schemes. Hunt and Sbarbaro applied the scheme for control of pH in a neutralizing 
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reactor; Turner applied it for the control of concentration in a distillation column 

while Willies applied it for the control of concentration in a CSTR. All the set point 

tracking results obtained in these cases are offset-free. A steady-state multilayered 

neural network model to substitute the tray-to-tray model used in predictive model 

based controller to control the product compositions in a propylene-propane splitter 

utilized by Gokhale et al. (Gokhale, Hurowitz, & Riggs, 1995). They found that the 

set point changes in the top and bottom compositions using neural network scheme 

with online filtering presented slightly better than nonlinear model-based controller.  

The recurrent networks also used in the model predictive method. The three 

different optimizing methods for design an external recurrent neural network 

predictive controller based on Smith-type prediction was compared by Tan and 

VanCauwenberghe (Tan & Van Cauwenberghe, 1996). This method used 

successfully by them to reimburse for large time delays in the control of anaerobic 

digester process under set point tracking. MacMurray and Himmelblau (MacMurray 

& Himmelblau, 1995) studied on the external recurrent neural network to predict and 

control the product compositions in a packed distillation column within the model 

predictive control technique. A result with les computation time compared to using 

first principle model is achieved in this study. The studies of using neural networks 

in the dynamic matrix control (DMC) algorithm have also been reported. The 

disturbance due to the presence of nonlinearities is estimated by implementing neural 

networks. This study is done by Hernandaz and Arkun (Hernandaz & Arkun, 1990) 

where it was then added to the linear model in the DMC formulation with online 

learning of the neural network models. The two cases applied this algorithm are the 

control of concentration in a CSTR system for set point tracking and disturbance-

rejection. A better results is obtained for both cased as compared with the 

conventional linear DMC method.  

Other than that, neural networks can also be adopted into the conventional 

adaptive control part in the control of nonlinear dynamic systems. There are two 

approaches normally categorized under these adaptive methods which are direct 

adaptive and indirect adaptive schemes. The controller parameters are directly 

adjusted on-line with no explicit attempt to find out the model of the system to obtain 

the necessary tracking and stability of the closed loop system for the direct adaptive 

control scheme. The controller in this scheme is the weights of the neural network 
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that are adjusted on-line to control the plant by reducing some cost function 

involving the desired response and plant output. Most of the applications of this 

method utilized the feedforward multilayered neural network. An adaptive control 

scheme where the controller models that updated on-line in the special inverse and 

error feedback learning method respectively is utilized by Watanabe (Watanabe, 

2014). These methods were implemented successfully in controlling the number of 

average molecular weight of the polymer product and the temperature in a multiple-

input multiple-output (MIMO) continuous polymerization reactor under set point 

tracking conditions. Neural network along with PID in a model reference adaptive 

strategy is use by Loh et al. (Loh, Looi, & Fong, 1995) to control a process pH where 

the network comprise of a cascade of two single hidden layer nets. The first net is a 

recurrent network to reveal the dynamic nature of the neutralizing reactor while the 

second net is a static one to reveal the static nature of filtration characteristics. Even 

under external load disturbances, their results showed good set point tracking 

performance. Lightbody and Irwin (Lightbody & Irwin, 1995) control the product 

composition of a CSTR system using neural network in parallel with a rigid gain 

linear controller in a direct model-reference adaptive control configuration. Under 

linear model reference output tracking, this method presented significantly improved 

performances over the conventional PI controller. Neural network in both direct 

adaptive and indirect adaptive control type methods for a CSTR with second order 

reactions take place between sodium thiosulphate and hydrogen peroxide studied by 

Ydstie (Ydstie, 1990). The objective of this study is to make the temperature follow a 

predetermined reference by controlling the reactant flow rate and it is successfully 

achieved. The neural network with linear bypass was used as the controller in the 

direct adaptive method while the numerical techniques at each step were used to 

solve the control action in the indirect adaptive method. 
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2.1 Overview of Crude Oil Processing Plant and Debutanizer Column 

 

 

FIGURE 1. Oil refinery industry block diagram (Mohamed Ramli et al., 2014) 

 

FIGURE 1 shows the crude oil refinery plant that consists of a refinery 

process, condensate fractionation and reforming aromatic section. The products of 

refinery process are petroleum product, liquefied petroleum gas (LPG), naphta and 

low sulphur waxy residue with the main feedstock of crude oil. Catalytic Reforming 

Unit (CRU) and Crude Distillation Unit (CDU) are the two units of the refinery as 

showed in the FIGURE 1. The feedstock of crude oil that provides by the Crude Oil 

Terminal undergoes preheated process before separated into heavy Straight Run 

Naphta as overhead vapour, untreated kerosene, straight run kerosene and straight 

run diesel. The reactions involved in the CDU are denitrification and 

desulphurization that will protect the reformer catalyst from poisoning.  

The main column producing LPG is the debutanizer column that located at 

CDU in FIGURE 1. The column specification of debutanizer showed in TABLE 1. 

Deethanizer bottom product is the feed to this debutanizer column. The overhead 

system is controlled by debutanizer overhead pressure control valve, which consist of 

two split range while the overhead vapour is condensed by debutanizer condenser. 
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The top of debutanizer is the reflux that consists of the collected condensed 

hydrocarbon and lighter hydrocarbon is stripped by reboiler section. 

TABLE 1. Debutanizer column specification (Mohamed Ramli et al., 2014) 

Number of tray of the column 35 

Feed tray – stage number 23 

Type of tray used Valve  

Column diameter 1.3 m 

Column height 23.95 m 

Condenser type Partial 

Feed mass flowrate 44106 kghr
-1 

Feed temperature 113 °C 

Feed pressure 823.8 kPa 

Overhead vapour mass flowrate 11286 kghr
-1

  

Overhead liquid mass flowrate 5040 kghr
-1

 

Condenser pressure 823.8 kPa 

Reboiler pressure 853.2 kPa 

 

The feed flow rate, reflux flow rate and reboiler flow rate are the main 

manipulated variables for debutanizer column. Debutanizer column is difficult to 

handle due to it deals with non-linearity, involves a great deal if interactions between 

the variables, is a highly multivariable process, and has lag in many of control 

system (Mohamed Ramli et al., 2014).   
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TABLE 2. Description of the variables for the column (Mohamed Ramli et al., 

2014) 

Tag Description Units 

Temp 1 Debutanizer top temperature °C 

Temp 2 Debutanizer bottom temperature °C 

Temp 3 Debutanizer receiver bottom temperature °C 

Temp 4 Light Naphta temperature after condenser E 1 °C 

Temp 5 Reboiler outlet temperature to column °C 

Temp 6 Debutanizer feed temperature °C 

Level 1 Debutanizer level % 

Level 2 Debutanizer condenser level % 

Level 3 Debutanizer level indicator % 

Level 4 Condenser level indicator % 

Flow 1 Light Naphta flow to storage m
3
/hr 

Flow 2 LPG flow to storage m
3
/hr 

Pressure 1 Debutanizer receiver overhead pressure kPa 

 

 

FIGURE 2. Debutanizer column configuration (Mohamed Ramli et al., 2014) 
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2.2 Overview of Neural Network 

Neural network or also referred as artificial neural network is a computing 

system with a various of simple and highly interconnected processing elements that 

will process information using their dynamic state response to external inputs (Beale, 

Hagan, & Demuth, 1992). The elements are inspired by biological nervous system. 

The structure of neural network consist of input layer that connected to one or more 

hidden layers and ending with an output layer where the actual processing is done via 

a system of weighted connections as shown in FIGURE 3. Neural network can be 

trained by adjusting the values of the connections or known as weights between 

elements to perform a particular function. It is adjusted or trained so that a particular 

input produce to a specific target output. The output and the target will be compared 

during the network is adjusted. They will be compared until the network output 

matches the target. Neural network has the ability as an arbitrary function 

approximation mechanism that acquire from observed data. In contrast, a very deep 

understanding of the neural network system and theory is required in order to 

develop an efficient and accurate neural network model as a soft sensor.    

There are two categories of neural network; static and dynamic networks 

(Beale et al., 1992). Static network has no feedback elements and contain no delays. 

Its output is calculated directly from the input through feedforward connections. For 

dynamic network, the output depends on the current input and also previous input, 

output or states of the network. In short, dynamic network has a memory and it 

consists of feedforward and feedback connections. For this paper, the dynamic 

network is used and there are four types of dynamic network defined by Beale et al.; 

focused time-delay neural network (FTDNN), distributed time-delay, nonlinear 

autoregressive network with exogenous inputs (NARX) and layer-recurrent network 

(LRN). Dynamic network of FTDNN (newfftd) type is utilized to generate the 

composition prediction of the top and bottom debutanizer column. FTDNN is a 

dynamic neural network where the dynamic appear only at the input layer of a static 

multilayer feedforward network. It is start with the most straightforward dynamic 

network that consists of a feedforward network with a tapped delay line at the input. 

FIGURE 5 illustrates a two-layer FTDNN.  
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FIGURE 3. General structure of neural network (Prasad & Bequette, 2003) 

 

 

FIGURE 4. Flow of neural network structure (Beale et al., 1992) 

 

 

FIGURE 5. Two layer FTDNN (Beale et al., 1992) 
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2.3 Overview of Feedforward Network 

 

 

FIGURE 6. A single-layer network 

 

FIGURE 6 is a single-layer network of S logsig neuron containing R inputs 

where on the left is the full detail and with a layer diagram on the right. Feedforward 

networks generally have one or more hidden layers of sigmoid neurons. The 

nonlinear and linear relationships between input and output vectors can be learn by 

network using nonlinear transfer functions with multiple layers of neuron. The 

network can produce values outside the range -1 to +1 by linear layer. 

In contrast, the output layer should us a sigmoid transfer function such as 

logsig if it is enviable to limit the outputs of a network (i.e between 0 and 1). For 

multiple-layer network, the number of layers is used to determine the superscript on 

the weight matrices. The suitable notation is used in two-layer tansig/purelin 

network as shown below.  
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FIGURE 7. Two-layer tansig/purelin network 

 

This network can be used as a common function approximator as it ca approximate 

any function with a finite number of discontinuities, arbitrary well, given sufficient 

neurons in the hidden layer.   
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CHAPTER 3 

METHODOLOGY 

 

3.1 Model Data Generation 

The online open loop response is mostly available from the plant surrounding 

the column. However, there are also some variables that are not available for open 

loop response surrounding this column. The variables that are not available are Temp 

5, Pressure 1 and both top and bottom composition of the column. For this paper, 

these unavailable variables will be acquired by synthesize the dynamic simulation of 

a debutanizer column using the plant process simulator HYSYS. The simulated close 

loop response of the composition of i-butane, i-pentane, n-butane, n-pentane and 

propane at the top and bottom of the column will be compared with the online close 

loop data. The simulated close loop response data will be determined prior to 

comparison with the online close loop data. For the simulation, the dynamic state 

will be developed by specifying additional engineering details such as equipment 

dimensions and pressure/flow relationships. For the selected unit operation in the 

simulation, the set of data including feed compositions, feed conditions, reflux ratio, 

reboiler pressure, and condenser pressure are needed. The manipulated variables for 

this simulation are reboiler and reflux flow rates. All variables surrounding the 

column were summarized in TABLE 2. 

 

3.2 Neural Network Data Sets 

Neural network is chosen for composition prediction of debutanizer due to it 

is expected to generate more robust, accurate and stable result than other online 

methods such as PLS and RA. The dynamic neural network architecture will be 

developed using open loop responses of the reboiler and reflux data sets. The outputs 
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of the neural network controller are the future predictions of i-butane, i-pentane, n-

butane, n-pentane and propane while the composition of these components as well as 

the time delayed will be the output variables. For the numbers of past values, 1 will 

be considered for every input variable. This was determined by trial and error 

method. 

In this work, Lavenberg-Marquard (LM) method is used for the training 

algorithm and the FTDNN is the type of dynamic network used. Furthermore, the 

mean square error criteria are the performance function that has been computed for 

this work. Other than that, the adaption learning function with momentum also will 

be performed. All the data is used for the training. The mean square performance 

with 100 number of epoch (training cycle) is used to obtain the network. The linear 

transfer function used for the whole layers with 10 number of inputs to the network 

(mv2, mv2_lag, mv3, mv3_lag, x, x1, x_top, x_top1, x_bot, x_bot1) and 2 outputs 

(x_top+1, x_bot_1) as shown in TABLE 3.  

The data set for open loop responses of the reboiler flow rate and reflux flow 

rate are obtained from plant and simulation. The composition of the components is 

the simulated data while the actual plant data is for the rest of the variables. The 

important variables involved in the neural network shows in TABLE 2. The input, 

hidden and output are the 3 layers of architecture. The training of the neural network 

has to be performed first to achieve the weights (values of the connections between 

element) and biases (network parameter) value used in the neural network equation. 

For the hidden nodes the trial and error method is used with initial guess of the 

hidden nodes at 4 and then it is increased by a factor 2 until 80. This step is 

performed using MATLAB 2013 simulation. The final number of hidden nodes is 

then determined by monitoring the Root Mean Square Error (RMSE). The one with 

the lowest RMSE value is selected to be used as hidden nodes. Analysis of variance 

(ANOVA) is also will be performed by using the test statistic method in MATLAB. 

RMSE is given by; 

       
                       

 
 (1) 
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The general equation for the output from the neural network of 3 layer network given 

as 

                                        (2) 

 

Where,  

        = input weight at layer 1 (input layer) 

          = bias values at layer 1 

       = layer weight at layer 2 (hidden layer) 

         = bias values at layer 2 

      = layer weight at layer 3 (output layer) 

         = bias values at layer 3 

         = vector inputs to the neural network 

         = vector outputs from the neural network 

        = activation function at layer i 
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TABLE 3. Variables involved in the neural network (Mohamed Ramli et al., 

2014) 

mv2 (k) Manipulated reboiler flow rate 

mv2 (k-1) Lag mv2 

mv3 (k) Manipulated reflux flow rate 

mv3 (k-1) Lag mv3 

f (k) Debutanizer feed temperature 

f (k-1) Lag feed temperature 

p_top (k) Top composition n-butane 

p_top (k-1) Lag top composition 

p_bot (k) Bottom composition n-butane 

p_bot (k-1) Lag bottom composition 

p_top (k+1) Future predictions top composition n-butane 

p_bot (k+1) Future predictions bottom composition n-butane 
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3.3 Gantt Chart 

FYP 1 

          Week Number 

Activities 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Introductory lecture with coordinator               

Research titles submission by supervisors               

Title selection               

Research methodology lecture               

Laboratory briefing               

Preliminary research work and preparing proposal               

E-resource briefing               

Research work using Excel               

Endnote tutorial               

Research work using MATLAB               

Submission of Extended Proposal to supervisor               

Research proposal defence               

Project work continue               

Submission of Interim Draft Report to supervisors               

Submission of Final Interim Report               
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FYP 2 

          Week Number 

Activities 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 

Project work continues                 

Submission of Progress Report                 

Project work continues                 

Pre-SEDEX                 

Submission of Draft Final Report                 

Submission of Dissertation (soft bound)                 

Submission of Technical Paper                 

Oral Presentation                  

Submission of Project Dissertation (hard bound)                 
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3.4 Key Milestone 

FYP 1 

 

 

 

 

 

  

January 2015  

• Project title selection 

• Confirmation on project title and supervisor 

• Preparation of work prior to confirmation 

February 
2015 

• Research on project 

• Attending briefing/lecture (reearch methodology, laboratory, E-
resource) 

March 2015 

• Preliminary research work 

• Research/proect work 

• Preparing  extended proposal and proposal defence 

• submission of extended proposal and proposal defence 

April 2015  

• Continue on project work 

• Preparing Interim report 

• Submission of draft interim report 

• Submission of interim report 
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FYP 2 

 

 

May 2015  

• Continue on project work (Neural network development) 

• Updating report / progress report 

June 2015 

• Continue on project work (Neural network development) 

• Updating report / progress report 

July 2015 

 

• Finalized result for neural network development 

• Continue on project work (PID control development, comparison 
of neural network with PID control) 

• Preparing progress report 

• Submission of progress report (9th July 2015) 

• Pre-sedex (29th July 2015) 

August 
2015  

• Submission of draft report (3rd August 2015) 

• Submission of Dissertation - soft bound (10th August 2015) 

• Submission of technical paper (14th August 2015) 

• Oral Presentation (25th August 2015) 

September 
2015 

• Submission of project dissertation - hard bound (15th September 
2015) 
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CHAPTER 4 

RESULTS & DISCUSSION 

 

4.1 Top (Reflux) and Bottom (Reboiler) Composition of the Components 

 

 

FIGURE 8. Top composition of i-butane 
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FIGURE 9. Bottom composition of i-butane 

 

 

FIGURE 10. Top composition of i-pentane 
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FIGURE 11. Bottom composition of i-pentane 

 

 

FIGURE 12. Top composition of n-butane 
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FIGURE 13. Bottom composition of n-butane 

 

 

FIGURE 14. Top composition of n-pentane 

 

0.000 

0.010 

0.020 

0.030 

0.040 

0.050 

0.060 

0.070 

0.080 

0.090 

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 

C
o
m

p
o
si

ti
o
n

 (
m

o
le

 f
ra

ct
io

n
) 

Time (min) 

Reboiler Composition of n-butane 

0.099 

0.099 

0.100 

0.100 

0.101 

0.101 

0.102 

0.102 

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 

C
o
m

p
o
si

ti
o
n

 (
m

o
le

 f
ra

ct
io

n
) 

Time (min) 

Reflux Composition of n-pentane 



30 

 

 

FIGURE 15. Bottom composition of n-pentane 

 

 

FIGURE 16. Top composition of propane 
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FIGURE 17. Bottom composition of propane 

 

The reflux and reboiler composition of i-butane, i-pentane, n-butane, n-

pentane and propane are plotted by using Microsoft EXCEL as shown in FIGURE 8 

until FIGURE 17. The data of debutanizer column for these graphs can be obtained 

in the appendices where the step changes are applied to the inputs to get the 

corresponding output. The step test is needed in order to monitor the fluctuation and 

the effect of the process variables when making changes to the manipulated variable. 
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4.2 Neural Network Development 

4.2.1 Neural Network Forward Model 

 

 

FIGURE 18. Neural network forward model 

 

FIGURE 19 to FIGURE 38 shown below are the results obtained from the 

simulation of forward neural network control whereas FIGURE 40 to FIGURE 59 

are from the simulation of inverse neural network control using MATLAB 

Simulation 2013 for i-butane, i-pentane, n-butane, n-pentane and propane. The 

optimum number of neuron selected is based on the MSE value by using trial and 

error method. MSE is the average squared difference between outputs and targets. 

The number of neuron tested that shows MSE value approach the target of 0.01 is 

chosen as the optimum number of neuron which also indicates the optimum 

prediction of the output. Zero means no error whereas MSE value over 0.6667 means 

high error. 

i. i-Butane 

For i-butane, 20 is the number of neuron that gives the optimum predictions 

of the output. FIGURE 19 shows the performance curve for the 20 number of 

neuron with 0.062119 MSE. FIGURE 4.12 is the regression, R values where it 
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measures the correlation between outputs and targets. The output for i-butane 

seems to track the target reasonably well. FIGURE 21 and 22 represent the 

differences between actual and simulated of the top and bottom composition of i-

butane. From the both graphs it can be seen that there is a small deviation 

between the actual and simulation data.  

Optimum number of neuron 20 

Maximum number of epochs set 100 

MSE 0.062119 

R 0.80122 

 

 

FIGURE 19. MSE vs. Epoch for i-butane at number of neuron 20 
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FIGURE 20. Regression for i-butane at number of neuron 20 

 

 

FIGURE 21. Actual and simulated plot for top composition of i-butane  
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FIGURE 22. Actual and simulated plot for bottom composition of i-butane 

 

ii. i-Pentane 

For i-pentane, 56 is the number of neuron that gives the optimum predictions 

of the output. FIGURE 23 shows the performance curve for the 56 number of 

neuron with 0.042857 MSE. The regression value for i-pentane also seems to 

track the target reasonably and R-value is more than 0.9. FIGURE 25 and 26 

represent the differences between actual and simulated of the top and bottom 

composition of i-pentane. From the both graphs it can be seen that there is a 

small deviation between the actual and simulation data.  

Optimum number of neuron 56 

Maximum number of epochs set 100 

MSE 0.042857 

R 0.90164 
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FIGURE 23. MSE vs. Epoch for i-pentane at number of neuron 56 

 

 

FIGURE 24. Regression for i-pentane at number of neuron 56 
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FIGURE 25. Actual and simulated plot for top composition of i-pentane 

 

 

FIGURE 26. Actual and simulated plot for bottom composition of i-pentane 

 

iii. n-Butane 

For n-butane, 40 is the number of neuron that gives the optimum predictions 

of the output. FIGURE 27 shows the performance curve for the 40 number of 

neuron with 0.037897 MSE. For n-butane R-value, its approach 0.9 and also 

track the target practically well. FIGURE 29 and 30 represent the differences 

between actual and simulated of the top and bottom composition of the n-butane. 

From the both graphs it can be seen that there is a small deviation between the 

actual and simulation data.   
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Optimum number of neuron 40 

Maximum number of epochs set 100 

MSE 0.037897 

R 0.85134 

 

 

FIGURE 27. MSE vs. Epoch for n-butane at number of neuron 40 

 

 

FIGURE 28. Regression for n-butane at number of neuron 40 
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FIGURE 29. Actual and simulated plot for top composition of n-butane 

 

 

FIGURE 30. Actual and simulated plot for bottom composition of n-butane 

 

iv. n-Pentane 

For n-pentane, 36 is the number of neuron that gives the optimum predictions 

of the output. FIGURE 31 shows the performance curve for the 36 number of 

neuron with 0.041974 MSE. FIGURE 31 is the R-value for n-pentane with more 

than 0.9 and it can be concluded that its output track the target reasonably well. 

FIGURE 33 and 34 represent the differences between actual and simulated of the 

top and bottom composition of the n-pentane. From the both graphs it can be seen 

that there is a small deviation between the actual and simulation data.   
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Optimum number of neuron 36 

Maximum number of epochs set 100 

MSE 0.041974 

R 0.91188 

 

 

FIGURE 31. MSE vs. Epoch for n-pentane at number of neuron 36 

 

 

FIGURE 32. Regression for n-pentane at number of neuron 36  

 



41 

 

 

FIGURE 33. Actual and simulated plot for top composition of n-pentane 

 

 

FIGURE 34. Actual and simulated plot for bottom composition of n-pentane 

 

v. Propane 

For propane, 48 is the number of neuron that gives the optimum predictions 

of the output. FIGURE 35 shows the performance curve for the 48 number of 

neuron with 0.043903 MSE. For R-value of pentane, its approach 0.9 and also 

track the target well. FIGURE 37 and 38 represent the differences between actual 

and simulated of the top and bottom composition of the propane. From the both 

graphs it can be seen that there is a small deviation between the actual and 

simulation data.   
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Optimum number of neuron 48 

Maximum number of epochs set 100 

MSE 0.043903 

R 0.86647 

 

 

FIGURE 35. MSE vs. Epoch for propane at number of neuron 48 

 

 

FIGURE 36. Regression for propane at number of neuron 48 
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FIGURE 37. Actual and simulated plot for top composition of propane 

 

 

FIGURE 38. Actual and simulated plot for bottom composition of propane 

 

All the results for neural network development are obtained by using trial and 

error method. The number of hidden layer is manipulated from 4 to 80 (Appendix 4) 

to determine the optimum number of hidden layer for neural network architecture. 

The RMSE value and regression (R) are observed in order to analyse the 

performance of the network. Based on the results, the deviation between the actual 

and simulated of the top and bottom composition of all five components (i-butane, i-

pentane, n-butane, n-pentane and propane) is small. Besides, the feed forward neural 

network also capable of producing a very low RMSE with optimum number of 

hidden layer. For regression, the slope for i-butane, i-pentane, n-butane, n-pentane 

and propane are approaching 1. An R-value of 1 means a close relationship while 0 

represents random relationship. From these results, it can be indicated that the 
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network is efficient to predict the top and bottom composition of debutanizer 

column.  

 

4.2.2 Neural Network Inverse Model 

For inverse model, it is developed by inverse the inputs variable and outputs. 

The reboiler flowrate (mv2) and reflux flowrate (mv3) are the two outputs and the 

future composition of the top and bottom are the inputs variable.  

 

FIGURE 39. Neural network inverse model 

 

i. i-Butane 

Optimum number of neuron 4 

Maximum number of epochs set 100 

MSE 0.039633 

R 0.97366 
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FIGURE 40. MSE vs. Epoch for i-butane at number of neuron 4 

 

 

FIGURE 41. Regression for i-butane at number of neuron 4 

 

 

FIGURE 42. Actual and simulated plot for top flowrate of i-butane 
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FIGURE 43. Actual and simulated plot for bottom flowrate of i-butane 

 

ii. i-Pentane 

Optimum number of neuron 48 

Maximum number of epochs set 100 

MSE 0.014842 

R 0.99031 

 

 

FIGURE 44. MSE vs. Epoch for i-pentane at number of neuron 48 
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FIGURE 45. Regression for i-pentane at number of neuron 48 

 

 

FIGURE 46. Actual and simulated plot for top flowrate of i-pentane 
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FIGURE 47. Actual and simulated plot for bottom flowrate of i-butane 

 

iii. n-Butane 

Optimum number of neuron 28 

Maximum number of epochs set 100 

MSE 0.014824 

R 0.99029 

 

 

FIGURE 48. MSE vs. Epoch for n-butane at number of neuron 28 
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FIGURE 49. Regression for n-butane at number of neuron 28 

 

 

FIGURE 50. Actual and simulated plot for top flowrate of n-butane 
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FIGURE 51. Actual and simulated plot for bottom flowrate of n-butane 

 

iv. n-Pentane 

Optimum number of neuron 64 

Maximum number of epochs set 100 

MSE 0.0099543 

R 0.99353 

 

 

FIGURE 52. MSE vs. Epoch for n-pentane at number of neuron 64 



51 

 

 

FIGURE 53. Regression for n-pentane at number of neuron 64 

 

 

FIGURE 54. Actual and simulated plot for top flowrate of n-pentane 
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FIGURE 55. Actual and simulated plot for bottom flowrate of n-pentane 

 

v. Propane 

Optimum number of neuron 20 

Maximum number of epochs set 100 

MSE 0.012947 

R 0.99152 

 

 

FIGURE 56. MSE vs. Epoch for propane at number of neuron 20 
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 FIGURE 57.     Regression for propane at number of neuron 20  

 

 

FIGURE 58. Actual and simulated plot for top flowrate of propane 
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FIGURE 59. Actual and simulated plot for bottom flowrate of propane 

 

4.3 Transfer Function Equation Development 

1. i-Butane 

a) Top 

Best poles for model function: All real, 2, Zero, Integrator 

   
                        

                
 

(3) 

 

b) Bottom 

Best poles for model function: Underdamped, 2, Zero  

   
                  

              
     

(4) 

 

2. i-Pentane 

a) Top 

Best poles for model function: Underdamped, 3, Delay 

             
        

                      
        

(5) 

 

b) Bottom 
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Best poles for model function: Underdamped, 3, Zero 

   
                   

                        
        

(6) 

 

3. n-Butane 

a) Top 

Best poles for model function: All real, 3, Delay, Integrator 

           
         

                                
         

(7) 

 

b) Bottom 

Best poles for model function: Underdamped, 2, Zero 

   
                  

                
     

(8) 

 

4. n-Pentane 

a) Top 

Best poles for model function: Underdamped, 2, Zero 

   
               

                
 

(9) 

 

b) Bottom 

Best poles for model function: All real, 2, Zero, Integrator 

   
                     

                        
       

(10) 

 

5. Propane 

a) Top 

Best poles for model function: All real, 2, Zero, Integrator 
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(11) 

 

b) Bottom 

Best poles for model function: All real, 2, Zero, Integrator  

   
                    

               
 

(12) 

 

The transfer function equation development for all the components are 

selected based on the best fit of model output where the percentage of the best fit 

approaching 100%. These equations will be used to develop the control loop of 

forward and inverse neural network controller.  
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

In conclusion, the feed forward neural network control system has the ability 

to predict the top and bottom composition of debutanizer column online as well as to 

improve the quality monitoring of product. It can be justified or proved based on the 

results obtained for neural network development where most of the MSE value and 

regression for all five components is approaching the target. The results for equation 

based neural network also seem well.  

As a recommendation, the R-values can be improved to approach 1 by 

increase the number of hidden neurons and/or increase the number of input values, if 

more relevant information is available. 
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APPENDICES 

 

Appendix 1: Top and Bottom Output Plot 

Forward Model Neural Network 

i. i-butane 
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ii. i-pentane 
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iii. n-butane 
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iv. n-pentane 
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v. Propane 
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Inverse Model Neural Network 

i. i-butane 
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ii. i-pentane 
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iii. n-butane 
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iv. n-pentane 
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v. Propane 
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Appendix 2: Training State 

Forward Model Neural Network 

i. i-butane 

 

ii. i-pentane 

 

iii. n-butane 
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iv. n-pentane 

 

v. Propane 

 

Inverse Model Neural Network 

i. i-butane 
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ii. i-pentane 

 

iii. n-butane 

 

iv. n-pentane 
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v. Propane 
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Appendix 3: Trial and Error Hidden Nodes 

i-Butane 

 

i-Pentane 

 

  

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

 rmse_top_mol_fraction_training 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

 rmse_bottom_mol_fraction_training 0.0086 0.0086 0.0090 0.0089 0.0086 0.0087 0.0086 0.0088 0.0086 0.0090 0.0086 0.0088 0.0087 0.0091 0.0086 0.0087 0.0086 0.0089 0.0087 0.0087

CDC_top_mol_fraction_training 45.0000 46.6667 48.0000 46.0000 45.0000 44.6667 47.0000 45.0000 45.6667 45.0000 45.3333 45.0000 46.3333 43.3333 46.3333 45.6667 45.0000 46.6667 46.0000 46.3333

CDC_bottom_mol_fraction_training 56.0000 56.0000 53.6667 57.0000 56.0000 55.6667 56.3333 55.3333 55.3333 56.6667 56.3333 53.3333 56.6667 54.6667 57.0000 54.3333 56.0000 54.0000 55.3333 55.3333

 R_top_mol_fraction_training 0.5057 0.4956 0.5002 0.5165 0.5159 0.5149 0.5116 0.5028 0.5107 0.4858 0.4881 0.5136 0.5020 0.4895 0.5132 0.5109 0.5120 0.4944 0.5129 0.4948

R_bottom_mol_fraction_training 0.9182 0.9184 0.9109 0.9129 0.9186 0.9162 0.9189 0.9155 0.9183 0.9106 0.9185 0.9161 0.9179 0.9079 0.9192 0.9179 0.9182 0.9142 0.9175 0.9170

 AIC_top_mol_fraction_training -4494.5000 -4499.2000 -4415.7000 -4483.0000 -4484.6000 -4495.8000 -4437.0000 -4481.1000 -4482.1000 -4357.0000 -4487.3000 -4499.9000 -4518.6000 -4341.7000 -4443.4000 -4513.0000 -4510.7000 -4463.6000 -4501.3000 -4485.7000

 AIC_bottom_mol_fraction_training -1771.4000 -1776.2000 -1827.4000 -1754.3000 -1768.0000 -1752.2000 -1762.4000 -1745.8000 -1782.3000 -1715.8000 -1761.7000 -1795.0000 -1751.5000 -1773.8000 -1772.9000 -1789.9000 -1765.9000 -1769.8000 -1739.5000 -1786.9000

 BIC_top_mol_fraction_training -4479.6000 -4484.3000 -4400.8000 -4468.2000 -4469.7000 -4481.0000 -4422.1000 -4466.2000 -4467.3000 -4342.2000 -4472.5000 -4485.0000 -4503.7000 -4326.9000 -4428.5000 -4498.1000 -4495.8000 -4448.8000 -4486.5000 -4470.9000

BIC_bottom_mol_fraction_training -1756.6000 -1761.4000 -1812.6000 -1739.4000 -1753.2000 -1737.4000 -1747.5000 -1730.9000 -1767.4000 -1700.9000 -1746.9000 -1780.2000 -1736.7000 -1759.0000 -1758.1000 -1775.0000 -1751.0000 -1755.0000 -1724.7000 -1772.1000

MAPE_top_mol_fraction_training 0.0002 -0.0001 -0.0003 0.0001 -0.0001 0.0000 0.0003 0.0009 -0.0006 0.0014 -0.0004 0.0002 0.0000 -0.0001 0.0005 0.0000 -0.0014 0.0000 0.0000 -0.0001

MAPE_bottom_mol_fraction_training 2.5147 3.3606 2.1410 2.3336 2.8359 3.0170 2.7145 2.2769 2.5854 2.1471 2.4259 2.5861 2.7433 2.5490 2.9009 2.7315 2.7049 1.9034 2.7466 2.6522

 Cp_top_mol_fraction_training 0.5057 0.4956 0.5002 0.5165 0.5159 0.5149 0.5116 0.5028 0.5107 0.4858 0.4881 0.5136 0.5020 0.4895 0.5132 0.5109 0.5120 0.4944 0.5129 0.4948

Cp_bottom_mol_fraction_training 0.9182 0.9184 0.9109 0.9129 0.9186 0.9162 0.9189 0.9155 0.9183 0.9106 0.9185 0.9161 0.9179 0.9097 0.9192 0.9179 0.9182 0.9142 0.9175 0.9170

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

 rmse_top_mol_fraction_training 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

 rmse_bottom_mol_fraction_training 0.0037 0.0033 0.0034 0.0033 0.0035 0.0032 0.0032 0.0031 0.0031 0.0032 0.0031 0.0031 0.0031 0.0031 0.0033 0.0031 0.0031 0.0035 0.0032 0.0030

CDC_top_mol_fraction_training 55.3333 54.3333 62.6667 62.0000 61.3333 60.0000 58.3333 62.6667 58.3333 62.0000 60.3333 64.3333 63.0000 60.3333 61.0000 60.0000 59.6667 60.6667 58.0000 60.0000

CDC_bottom_mol_fraction_training 53.6667 57.6667 57.3333 58.0000 60.0000 57.6667 59.6667 58.0000 57.0000 58.0000 55.6667 54.0000 56.6667 58.0000 56.6667 60.6667 56.6667 56.6667 60.0000 59.0000

 R_top_mol_fraction_training 0.5915 0.6239 0.6808 0.6731 0.6937 0.6946 0.6893 0.7121 0.7059 0.6933 0.7321 0.6935 0.7017 0.7324 0.6524 0.7327 0.6844 0.6647 0.6982 0.7029

R_bottom_mol_fraction_training 0.8649 0.8947 0.8882 0.8943 0.8832 0.9025 0.9059 0.9062 0.9096 0.8998 0.9062 0.9067 0.9121 0.9077 0.8939 0.9070 0.9120 0.8859 0.9002 0.9171

 AIC_top_mol_fraction_training -4586.1000 -4558.3000 -4480.8000 -4571.7000 -4475.4000 -4486.9000 -4470.8000 -4492.3000 -4458.0000 -4472.3000 -4473.9000 -4434.7000 -4487.1000 -4451.8000 -4487.6000 -4496.9000 -4486.0000 -4539.3000 -4458.3000 -4466.3000

 AIC_bottom_mol_fraction_training -2705.6000 -2604.8000 -2565.9000 -2478.4000 -2594.7000 -2504.8000 -2549.3000 -2560.8000 -2584.4000 -2521.1000 -2558.9000 -2532.9000 -2546.5000 -2517.2000 -2535.7000 -2538.6000 -2582.6000 -2605.5000 -2634.9000 -2558.4000

 BIC_top_mol_fraction_training -4571.3000 -4543.4000 -4465.9000 -4556.9000 -4460.5000 -4472.1000 -4456.0000 -4477.5000 -4443.2000 -4457.5000 -4459.1000 -4419.9000 -4472.3000 -4437.0000 -4472.7000 -4482.1000 -4471.2000 -4524.5000 -4443.4000 -4451.5000

BIC_bottom_mol_fraction_training -2690.8000 -2590.0000 -2551.1000 -2463.5000 -2579.9000 -2490.0000 -2534.4000 -2546.0000 -2569.6000 -2506.3000 -2544.0000 -2518.1000 -2531.7000 -2502.4000 -2520.8000 -2523.7000 -2567.8000 -2590.7000 -2620.1000 -2543.5000

MAPE_top_mol_fraction_training -0.0046 0.0005 -0.0104 -0.0005 -0.0031 -0.0027 -0.0020 0.0020 -0.0043 -0.0025 -0.0023 -0.0023 -0.0041 -0.0006 0.0025 -0.0063 -0.0078 -0.0020 0.0025 -0.0040

MAPE_bottom_mol_fraction_training 0.1774 0.0393 -0.0487 -0.0906 0.0476 -0.0782 -0.1651 -0.0342 -0.0225 -0.1113 -0.0344 -0.0997 -0.0281 -0.0977 -0.0411 -0.0328 0.0137 0.0420 -0.0906 0.1192

 Cp_top_mol_fraction_training 0.5915 0.6293 0.6808 0.6731 0.6937 0.6946 0.6893 0.7121 0.7059 0.6933 0.7321 0.6935 0.7017 0.7324 0.6542 0.7327 0.6844 0.6647 0.6982 0.7029

Cp_bottom_mol_fraction_training 0.8649 0.8947 0.8882 8943.0000 0.8832 0.9025 0.9059 0.9062 0.9096 0.8998 0.9062 0.9067 0.9121 0.9077 0.8939 0.9070 0.9120 0.8859 0.9002 0.9171



76 

 

n-Butane 

 

n-Pentane 

 

  

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

 rmse_top_mol_fraction_training 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

 rmse_bottom_mol_fraction_training 0.0064 0.0061 0.0058 0.0059 0.0056 0.0056 0.0055 0.0056 0.0540 0.0055 0.0069 0.0054 0.0054 0.0057 0.0086 0.0054 0.0065 0.0185 0.0055 0.0113

CDC_top_mol_fraction_training 53.6667 54.3333 59.6667 52.6667 61.0000 62.0000 57.0000 59.6667 60.0000 62.0000 58.0000 59.3333 61.6667 59.0000 58.3333 63.0000 56.6667 53.3333 59.0000 56.3333

CDC_bottom_mol_fraction_training 55.0000 54.3333 58.0000 54.3333 56.3333 56.6667 57.3333 54.0000 56.6667 55.0000 57.0000 55.3333 60.0000 59.6667 52.3333 61.0000 54.6667 54.6667 61.0000 55.6667

 R_top_mol_fraction_training 0.6147 0.6574 0.6794 0.6615 0.7116 0.7186 0.6889 0.7324 0.7147 0.7546 0.7051 0.7291 0.7277 0.7015 0.6380 0.7265 0.6929 0.1568 0.7058 0.7204

R_bottom_mol_fraction_training 0.8864 0.8979 0.9085 0.9057 0.9138 0.9131 0.9165 0.9135 0.9193 0.9163 0.8951 0.9202 0.9198 0.9120 0.8104 0.9205 0.8815 0.7086 0.9160 0.7579

 AIC_top_mol_fraction_training -5461.7000 -5474.1000 -5401.6000 -5409.9000 -5345.0000 -5295.3000 -5345.8000 -5293.1000 -5327.4000 -5319.1000 -5375.7000 -5307.3000 -5325.9000 -5340.1000 -5309.7000 -5315.3000 -5341.6000 -4946.8000 -5349.2000 -5356.6000

 AIC_bottom_mol_fraction_training -2099.6000 -2075.6000 -2094.4000 -2087.0000 -2087.2000 -2144.0000 -2103.8000 -2076.5000 -2062.3000 -2111.0000 -2121.7000 -2041.4000 -2105.5000 -2120.2000 -1932.6000 -2073.1000 -2159.8000 -1979.0000 -2101.7000 -1856.6000

 BIC_top_mol_fraction_training -5446.8000 -5459.3000 -5386.8000 -5395.1000 -5330.2000 -5280.5000 -5330.9000 -5278.3000 -5312.5000 -5304.3000 -5360.8000 -5292.5000 -5311.1000 -5325.3000 -5294.9000 -5300.5000 -5326.8000 -4932.0000 -5334.4000 -5341.8000

BIC_bottom_mol_fraction_training -2084.8000 -2060.8000 -2079.6000 -2072.2000 -2072.4000 -2129.1000 -2089.0000 -2061.7000 -2047.4000 -2096.2000 -2106.9000 -2026.5000 -2090.7000 -2105.4000 -1917.8000 -2058.2000 -2145.0000 -1964.2000 -2086.9000 -1841.8000

MAPE_top_mol_fraction_training -0.0005 0.0003 0.0000 0.0004 -0.0004 -0.0002 -0.0002 -0.0006 -0.0005 -0.0002 -0.0004 -0.0001 -0.0004 0.0000 0.0008 -0.0003 0.0000 0.0415 -0.0001 0.0003

MAPE_bottom_mol_fraction_training 0.4413 0.8918 1.1036 -0.0084 0.6105 0.0808 -0.2099 0.7266 0.9688 0.6719 -68.6627 0.5758 0.6159 1.3435 2.1339 -0.1374 -1.0922 16.9797 1.0360 6.0904

 Cp_top_mol_fraction_training 0.6147 0.6574 0.6794 0.6615 0.7116 0.7186 0.6889 0.7324 0.7147 0.7546 0.7051 0.7291 0.7277 0.7015 0.6380 0.7265 0.6929 0.1568 0.7058 0.7204

Cp_bottom_mol_fraction_training 0.8864 0.8979 0.9085 0.9057 0.9138 0.9131 0.9165 0.9135 0.9193 0.9163 0.8951 0.9202 0.9198 0.9120 0.8104 0.9205 0.8815 0.7086 0.9160 0.7579

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

 rmse_top_mol_fraction_training 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004

 rmse_bottom_mol_fraction_training 0.0033 0.0032 0.0032 0.0031 0.0030 0.0030 0.0030 0.0031 0.0029 0.0030 0.0029 0.0030 0.0028 0.0028 0.0030 0.0029 0.0031 0.0030 0.0035 0.0034

CDC_top_mol_fraction_training 52.6667 52.3333 60.6667 54.0000 52.6667 58.6667 62.6667 57.6667 56.0000 53.3333 59.0000 58.3333 52.3333 57.3333 49.6667 53.6667 60.0000 58.6667 53.3333 54.0000

CDC_bottom_mol_fraction_training 50.6667 62.3333 55.0000 57.3333 59.6667 61.0000 59.0000 55.3333 59.3333 59.6667 57.3333 57.0000 61.3333 61.0000 59.6667 60.0000 59.3333 54.6667 58.6667 56.6667

 R_top_mol_fraction_training 0.6007 0.5945 0.6976 0.6579 0.6683 0.6750 0.7034 0.6946 0.7213 0.6528 0.7123 0.6870 0.6544 0.6891 0.5408 0.7027 0.6805 0.6669 0.4536 0.4224

R_bottom_mol_fraction_training 0.9069 0.9111 0.9089 0.9175 0.9202 0.9242 0.9226 0.9143 0.9251 0.9238 0.9289 0.9223 0.9348 0.9324 0.9230 0.9294 0.9143 0.9214 0.8947 0.9016

 AIC_top_mol_fraction_training -4359.9000 -4389.4000 -4257.3000 -4360.9000 -4300.8000 -4305.6000 -4301.4000 -4350.4000 -4297.0000 -4335.5000 -4282.3000 -4391.8000 -4370.2000 -4317.7000 -4391.9000 -4323.7000 -4289.2000 -4276.0000 -4192.9000 -4232.6000

 AIC_bottom_mol_fraction_training -2872.1000 -2740.3000 -2750.5000 -2675.9000 -2623.9000 -2561.9000 -2588.5000 -2594.3000 -2551.3000 -2602.1000 -2562.0000 -2602.3000 -2614.9000 -2598.3000 -2630.9000 -2578.3000 -2609.0000 -2651.3000 -2651.6000 -2521.1000

 BIC_top_mol_fraction_training -4345.1000 -4374.6000 -4242.4000 -4346.1000 -4285.9000 -4290.8000 -4286.5000 -4335.5000 -4282.1000 -4320.7000 -4267.5000 -4377.0000 -4355.3000 -4302.9000 -4377.1000 -4308.8000 -4274.4000 -4261.1000 -4178.1000 -4217.7000

BIC_bottom_mol_fraction_training -2857.3000 -2725.5000 -2735.6000 -2661.1000 -2609.1000 -2547.0000 -2573.7000 -2579.5000 -2536.5000 -2587.3000 -2547.1000 -2587.5000 -2600.0000 -2583.5000 -2616.1000 -2563.4000 -2594.2000 -2636.5000 -2636.8000 -2506.3000

MAPE_top_mol_fraction_training 0.0017 -0.0029 0.0075 -0.0028 0.0008 -0.0019 0.0007 -0.0040 -0.0037 -0.0032 -0.0044 -0.0031 -0.0016 -0.0016 0.0055 -0.0018 -0.0031 0.0015 0.0014 0.0244

MAPE_bottom_mol_fraction_training 0.0211 -0.0060 -0.0204 -0.0245 -0.0382 -0.0797 -0.0384 -0.0339 -0.0763 -0.0115 0.0101 -0.0256 -0.0300 0.0526 0.0455 -0.0928 -0.1297 0.0016 -0.1126 -0.2080

 Cp_top_mol_fraction_training 0.6007 0.5945 0.6976 0.6579 0.6683 0.6750 0.7034 0.6946 0.7213 0.6528 0.7123 0.6870 0.6544 0.6891 0.5408 0.7027 0.6805 0.6669 0.4536 0.4224

Cp_bottom_mol_fraction_training 0.9069 0.9111 0.9089 0.9175 0.9202 0.9242 0.9226 0.9143 0.9251 0.9238 0.9289 0.9223 0.9348 0.9324 0.9230 0.9294 0.9143 0.9214 0.8947 0.9016
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Propane 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

 rmse_top_mol_fraction_training 0.0011 0.0011 0.0011 0.0010 0.0011 0.0010 0.0011 0.0010 0.0010 0.0010 0.0011 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

 rmse_bottom_mol_fraction_training 0.0017 0.0016 0.0014 0.0014 0.0014 0.0014 0.0013 0.0013 0.0013 0.0013 0.0013 0.0012 0.0013 0.0033 0.0014 0.0014 0.0013 0.0013 0.0013

CDC_top_mol_fraction_training 51.6667 54.6667 54.6667 56.0000 59.0000 59.6667 57.0000 55.3333 60.0000 60.0000 58.3333 62.6667 61.6667 58.0000 56.6667 55.0000 59.3333 53.0000 55.3333

CDC_bottom_mol_fraction_training 54.0000 54.6667 53.0000 53.6667 53.0000 53.3333 51.3333 56.3333 49.3333 55.0000 51.3333 57.3333 52.0000 47.6667 52.6667 54.3333 58.3333 51.3333 53.6667

 R_top_mol_fraction_training 0.5111 0.5536 0.5893 0.6256 0.6058 0.6427 0.5833 0.6472 0.6387 0.6649 0.6124 0.6657 0.6266 0.6516 0.6231 0.6425 0.6653 0.6504 0.6294

R_bottom_mol_fraction_training 0.9410 0.9478 0.9617 0.9613 0.9604 0.9614 0.9661 0.9641 0.9630 0.9674 0.9639 0.9692 0.9650 0.8412 0.9563 0.9614 0.9665 0.9636 0.9632

 AIC_top_mol_fraction_training -3727.2000 -3613.5000 -3593.2000 -3612.0000 -3581.0000 -3595.6000 -3607.0000 -3555.8000 -3588.0000 -3567.8000 -3625.5000 -3544.1000 -3658.4000 -3597.2000 -3613.8000 -3573.2000 -3581.7000 -3612.5000 -3615.9000

 AIC_bottom_mol_fraction_training -2872.0000 -2784.1000 -2787.9000 -2782.4000 -2841.1000 -2749.1000 -2787.3000 -2797.1000 -2764.7000 -2826.4000 -2790.7000 -2788.8000 -2802.6000 -3044.3000 -2830.8000 -2789.4000 -2781.1000 -2820.5000 -2743.4000

 BIC_top_mol_fraction_training -3712.3000 -3598.7000 -3578.4000 -3597.2000 -3566.2000 -3580.8000 -3592.2000 -3540.9000 -3573.1000 -3553.0000 -3610.7000 -3529.3000 -3643.6000 -3582.3000 -3599.0000 -3558.4000 -3566.8000 -3597.7000 -3601.1000

BIC_bottom_mol_fraction_training -2857.2000 -2769.3000 -2773.0000 -2767.6000 -2826.3000 -2734.3000 -2772.4000 -2782.2000 -2749.9000 -2811.5000 -2775.9000 -2774.0000 -2787.7000 -3029.5000 -2816.0000 -2774.6000 -2766.3000 -2805.7000 -2728.6000

MAPE_top_mol_fraction_training 0.0025 -0.0024 0.0073 0.0043 0.0004 0.0019 0.0107 0.0122 -0.0043 0.0055 -0.0006 -0.0001 -0.0010 -0.0001 0.0133 0.0075 0.0105 0.0093 0.0007

MAPE_bottom_mol_fraction_training -0.7292 2.5060 0.8798 3.4848 7.6994 -57.0482 1.6140 5.5691 -3.2852 -0.8478 -0.3281 0.7860 0.6067 -4611.1000 -3.0917 3.0636 1.5997 7.1872 0.4371

 Cp_top_mol_fraction_training 0.5111 0.5536 0.5893 0.6256 0.6058 0.6427 0.5833 0.6472 0.6387 0.6649 0.6124 0.6657 0.6266 0.6516 0.6231 0.6425 0.6653 0.6504 0.6294

Cp_bottom_mol_fraction_training 0.9410 0.9478 0.9617 0.9613 0.9604 0.9614 0.9661 0.9641 0.9630 0.9674 0.9639 0.9692 0.9650 0.8412 0.9563 0.9614 0.9665 0.9636 0.9632
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Appendix 4: Overall Algorithm/Coding for neural network 

n-Butane 

 

clc; 

clear all; 

close all; 
  

%Load Data 

A=xlsread('n-butane all'); 
P_tr=A(:,1:10)'; 

T_tr=A(:,11:12)'; 

  
nntwarn off; 

  

% Training set 
[Pn_tr, Pmin_tr, Pmax_tr] = premnmx(P_tr); 

[Tn_tr, Tmin_tr, Tmax_tr] = premnmx(T_tr); 

  
%Setup network 

net=newff(minmax(Pn_tr), [10 40 2],{'tansig','tansig','tansig'},'trainrp','learngdm','mse'); 

net.trainParam.show=10; 
net.trainParam.epochs=100; 

net.trainparam.goal=1e-2; 

  
%Train network with early stopping 

rand('seed',419877); 

net = init(net); 
[net, tr] = train(net,Pn_tr,Tn_tr); 

  

%Simulate network 
an2=sim(net,Pn_tr); %Training 

at2  = postmnmx(an2, Tmin_tr, Tmax_tr); 

  

%------------------graphs---------------------------- 

  

figure(1) 
[slope5,intercept5,R5] = postreg(at2(1,:),T_tr(1,:)); %Top Mol Fraction 

ylabel('Simulated n-Butane at Top'),xlabel('Actual n-Butane at Top'),... 

title([ ' Simulated vs. Actual, R(slope)=', num2str(R5),'and intercept=',num2str(intercept5)]);  
  

figure(2) 

[slope6,intercept6,R6] = postreg(at2(2,:),T_tr(2,:));%Bottom Mol Fraction 
ylabel('Simulated n-Butane at Bottom'), xlabel('Actual n-Butane at Bottom'),... 

title(['Simulated vs. Actual, R(slope)=', num2str(R6),'and intercept=',num2str(intercept6)]);  

       
figure(3) %Training 

time = 1:length(T_tr(1,:)); 

        plot(time,T_tr(1,:),'kd-', time,at2(1,:),'r-','LineWidth',0.5,... 
                       'MarkerEdgeColor','k',... 

                       'MarkerFaceColor','g',... 
                       'MarkerSize',4); 

        xlabel('Time'), ylabel('Top Mol Fraction:Training'),... 

        legend('Actual','Simulated') 
        title(['Actual and Simulated plot for Top Mol Fraction :Training']), 

  

figure(4) %Training 
time = 1:length(T_tr(2,:)); 

       plot(time,T_tr(2,:),'kd-', time,at2(2,:),'r-','LineWidth',0.5,... 

                       'MarkerEdgeColor','k',... 
                       'MarkerFaceColor','g',... 

                       'MarkerSize',4); 

       xlabel('Time'), ylabel('Bottom Mol Fraction:Training'),... 
       legend('Actual','Simulated') 

       title(['Actual and Simulated plot for Bottom Mol Fraction:Training']), 

        
%------------------Training set performance measurement---------------------------- 

  

% rmse calculation Training 
[row1,col1] = size(T_tr); 

error_col = zeros(row1,col1); 
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for i = 1:1:row1, 

for j = 1:1:col1, 

    error_col(i,j) = (at2(i,j) - T_tr(i,j))^2; 

     
end 

end 

sum_error = sum(error_col(1,:)); 
rmse_top_mol_fraction_training = sqrt(sum_error/col1); 

sum_error = sum(error_col(2,:)); 

rmse_bottom_mol_fraction_training = sqrt(sum_error/col1); 
  

% CDC calculation for training 

d1=zeros(1,col1-1); 
w1=zeros(1,col1-1); 

i=2; 

for n=1:1:col1-1 
    a=T_tr(1,i) - T_tr(1,i-1); 

    b=at2(1,i) - at2(1,i-1); 

    c=a*b; 
    d1(:,i-1)=c; 

    g=T_tr(2,i) - T_tr(2,i-1); 

    h=at2(2,i) - at2(2,i-1); 
    x=g*h; 

    w1(:,i-1)=x; 

    i=i+1; 
   

end 

  
D_top=zeros(1,col1-1); 

D_botm=zeros(1,col1-1); 

m=1; 
for q=1:1:col1-1 

    if d1(:,m)>0 

         D_top(:,m)=1; 
    else 

        D_top(:,m)=0; 

    end 
     

     if w1(:,m)>0 

         D_botm(:,m)=1; 
    else 

        D_botm(:,m)=0; 

    end 
    m=m+1; 

end 

  
[row2,col2] = size(D_top); 

[row3,col3] = size(D_botm); 

CDC_top_mol_fraction_training = (sum(D_top))*(100/(col2)); 
CDC_bottom_mol_fraction_training = (sum(D_botm))*(100/(col3)); 

  

  
%AIC and BIC calculation for training 

[Coeff_top_mol_fraction,Errors_top_mol_fraction,LLF_top_mol_fraction,Innovations_top_mol_fraction,Sigmas_top_mol_frac
tion,Summary_top_mol_fraction]=garchfit(at2(1,:)); 

[Coeff_bottom_mol_fraction,Errors_bottom_mol_fraction,LLF_bottom_mol_fraction,Innovations_bottom_mol_fraction,Sigma

s_bottom_mol_fraction,Summary_bottom_mol_fraction]=garchfit(at2(2,:)); 
[AICt_trainng BICt_trainng]=aicbic(LLF_top_mol_fraction,4,col1); 

[AICT_trainng BICT_trainng]=aicbic(LLF_bottom_mol_fraction,4,col1); 

  
% MAPE calculation Training 

[row1,col1] = size(T_tr); 

Percentage_error = zeros(row1,col1); 
for i = 1:1:row1, 

    for j = 1:1:col1, 

        Percentage_error(i,j) = ((at2(i,j) - T_tr(i,j))/at2(i,j))*100; 
    end    

end 

sum_Percentage_error = sum(Percentage_error(1,:)); 
MAPE_top_mol_fraction_training = (sum_Percentage_error/col1); 

sum_Percentage_error = sum(Percentage_error(2,:)); 

MAPE_bottom_mole_fraction_training = (sum_Percentage_error/col1); 
  

%pearson correlation coeff  calculation Training 

[row1,col1] = size(T_tr); 

Predicted = zeros(row1,col1); 
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Actual = zeros(row1,col1); 

val1 = zeros(row1,col1); 

val2 = zeros(row1,col1); 

val3 = zeros(row1,col1); 
for i = 1:1:row1, 

    Ep=mean(at2(i,:)); 

Ea=mean(T_tr(i,:)); 
    for j = 1:1:col1, 

   Predicted(i,j) = at2(i,j); 

   Actual(i,j)=T_tr(i,j); 
   val1(i,j)=(Predicted(i,j)-Ep)*(Actual(i,j)-Ea); 

   val2(i,j)=(Predicted(i,j)-Ep)^2; 

   val3(i,j)=(Actual(i,j)-Ea)^2; 
    end     

end 

  
Cp_top_mol_fraction_training=(sum(val1(1,:)))/(sqrt(sum(val2(1,:))*sum(val3(1,:)))); 

Cp_bottom_mol_fraction_training=(sum(val1(2,:)))/(sqrt(sum(val2(2,:))*sum(val3(2,:)))); 

  
%------------------display output---------------------------- 

clc; 

output.rmse_top_mol_fraction_training=rmse_top_mol_fraction_training; 
output.rmse_bottom_mol_fraction_training=rmse_bottom_mol_fraction_training; 

output.CDC_top_mol_fraction_training=CDC_top_mol_fraction_training; 

output.CDC_bottom_mol_fraction_training=CDC_bottom_mol_fraction_training; 
output.R_top_mol_fraction_training=R5; 

output.R_bottom_mol_fraction_training=R6; 

output.AIC_top_mol_fraction_training=AICt_trainng; 
output.AIC_bottom_mol_fraction_training=AICT_trainng; 

output.BIC_top_mol_fraction_training=BICt_trainng; 

output.BIC_bottom_mol_fraction_training=BICT_trainng; 
output.MAPE_top_mol_fraction_training=MAPE_top_mol_fraction_training; 

output.MAPE_bottom_mol_fraction_training=MAPE_bottom_mole_fraction_training; 

output.Cp_top_mol_fraction_training=Cp_top_mol_fraction_training; 
output.Cp_bottom_mol_fraction_training=Cp_bottom_mol_fraction_training; 

  

disp(output), 
  

gensim(net); 

 


