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ABSTRACT

In this work, a typical Mixed Refrigerant Cycle (MRC) for the production of liquefied
natural gas (LNG) has been selected for the analysis of potential power reduction
schemes. However, such analysis requires complete process data for the MRC
liquefaction process flowsheet. Unknown data were be subjected to rigorous simulation
and reconciliation. Data reconciliation approaches for the MRC flowsheet involved the
combination of structural decomposition of complex units and systematic estimations of
unknown variables. Simulations performed and the data obtained is validated against
published data. The errors in the data were reconciled by minimizing the sum of squared
error (SSE) between the simulated data and the published data. After five iterations, the
reconciliation trial with the smallest SSE of 0.002% was selected and considered as the
base case MRC process flowsheet. The base case flowsheet was then analyzed to
establish its thermodynamic performances using WORK software. The software also
optimized the mixed refrigerant compositions. Three power reductions schemes have
been proposed that include the process expander, the multistage compressions with
intercoolers, and the multistage compressions with intercoolers incorporating the process
expander. Each of the proposed schemes was compared, utilizing both the current and the
optimized mixed refrigerant compositions. As a result, six power reduction options were
generated. Each of the six options was then simulated on HYSYS. It was found that the
best option was the scheme running of an optimized mixed refrigerant composition and
incorporating both the multistage compression with intercoolers and the process
expander. This option resulted in a 31.93% reduction of power requirement as compared

to the base case.
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CHAPTER 1

INTRODUCTION

Natural gas has increasingly become an important fuel source throughout the world.
Efforts for its production have also grown in areas typically distant from market. Where
pipeline transportation is not viable, liquefaction of natural gas is currently practiced as a
cost effective option for transporting natural gas to worldwide markets (Fischer-
Calderon, 2003). The liquefied natural gas (LNG) is a methane-rich fuel that has higher

combustion energy and produces much less emission to the environment.

Fischer-Calderon (2003) classified natural gas as raw or treated natural gas. Raw natural
gas primarily comprises light hydrocarbons such as methane, ethane, propane, butane,
pentane, hexane, and impurities like benzene, but may also comprises small amounts of
non-hydrocarbon impurities, such as nitrogen, hydrogen sulfide, carbon dioxide, and
traces of helium, carbonyl sulfide, various mercaptans or water. Prior to liquefaction, the
raw natural gas must generally be treated to remove the components which can freeze and
plug equipment during the processing of LNG. As a result, the treated natural gas which
is then fed to a liquefaction plant comprises mainly methane and ethane, and a small
percentage of heavier hydrocarbons, such as propane, butane and pentane (Durr and
Petterson, 1994). Figure 1.1 illustrates the processes involve in typical LNG production

facilities.

Through liquefaction process, the volume of natural gas can be reduced by about 600-
fold. At this condition, LNG can be stored and transported in substantial quantity (Dubar,
1999). This is considered the most significant purpose of such liquefaction. Besides being
used as the fuel for power generating plants, for city gases and as feeds for chemical
plants, LNG 1is also a very promising fuel for ground vehicles, either as direct fuel for

engines or as fuel for fuel cells (Liu and You, 1999).
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Figure 1.1: Block Diagrams Representing LNG Production Facilities (From
Barclay, 2005)

1.1 Natural Gas Liquefaction Processes

Generally, the liquefaction of natural gas is accomplished in the range of temperature
between -116°C to -161°C at near atmospheric pressure (Fischer-Calderon, 2003).
Conventional liquefaction processes require substantial compression refrigeration and
expansion systems. The most common of these processes are cascade process, single
mixed refrigerant process, propane pre-cooled mixed refrigerant process, and expansion
process. While power consumption is the most considerable factor of each LNG plant
design, variations or combinations of these processes with more complex cycles and
power reduction schemes are installed to achieve power savings. Details of those

mentioned processes are explained in the following section.



1.1.1 Cascade Process

A cascade process produces LNG by employing several closed-loop cooling circuits,
each utilizing a single pure refrigerant and collectively -configured in order of
progressively lower temperatures. The first cooling circuit commonly utilizes propane or
propylene as refrigerant, the second circuit may utilize ethane or ethylene, while the third
circuit generally utilizes methane as the refrigerant (Fischer-Calderon, 2003). Figure 1.2

shows a simplified cascade process to produce LNG.
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Figure 1.2: Simplified Cascade Process in LNG Production (From CPI, 2006)

1.1.2 Single Mixed Refrigerant Process

In a single mixed refrigerant process, it produces LNG by employing a single closed-loop
cooling circuit utilizing a multi component refrigerant consisting of components such as
nitrogen, methane, ethane, propane, butane and pentane. The mixed refrigerant undergoes
the steps of condensation, expansion and recompression to reduce the temperature of

natural gas employing a unitary collection of heat exchangers known as a “cold box”



(Fischer-Calderon, 2003). Figure 1.3 below shows a simplified single mixed refrigerant
process to produce LNG.
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Figure 1.3: Simplified Single Mixed Refrigerant Process in LNG Production (From
Lee, 2000)

1.1.3 Propane Pre-cooled Mixed Refrigerant Process

A propane pre-cooled mixed refrigerant process produces LNG by employing an initial
series of propane-cooled heat exchangers in addition to a single closed-loop cooling
circuit, which utilizes a multi component refrigerant consisting of components such as
nitrogen, methane, ethane and propane. Natural gas initially passes through one or more
propane-cooled heat exchangers, proceeds to a main exchanger cooled by the multi-
component refrigerant, and thereafter expanded to produce LNG (Fischer-Calderon,

2003).

1.1.4 Expansion Process

An expansion process via expander cycle which it expands natural gas from a high

pressure to a low pressure with a corresponding reduction in temperature. It operates on



the principle that gas can be compressed to a selected pressure, cooled, then allowed to
expand in a near isentropic manner through an expansion device, thereby performing
work and reducing the temperature of the natural gas (Thomas et al., 2000). Figure 1.4

illustrates a simplified schematic diagram of expansion process in producing LNG.
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Figure 1.4: Simplified Expansion Process in LNG Production (From Barclay, 2005)

1.2 LNG Cryogenic Plants

Generally, there are two types of LNG cryogenic plants that have been commercially
successful in delivering their annual production capacity. These are the base load plant
and the peak shaving plant. The base load LNG plant is capable of producing from a
single product line or train a capacity of up to 3.4 million tones per annum (mtpa). In this
type of plant, often two to three trains are installed to provide the required economies of
scale. Meanwhile, the peak shaving LNG plant delivers smaller capacity of about 0.9
mtpa (Cao et al., 2005).



Large base load LNG liquefaction facilities take a natural gas feed, pre-treat and
refrigerate it until the gas becomes liquid for storage and shipping to trans-continental
markets. On the other hand, peak shaving facilities liquefy and store natural gas that is
produced during summer months for re-gasification and distribution during the period of
high demand, usually on cold and winter days. This type of plant provides secure and

reliable supplies of natural gas for use during periods of peak demand (Foss, 2003).

1.3 Fundamental of Refrigeration Systems

Basically, every gas liquefaction plant will employ substantial refrigeration systems. This
subsection therefore explains a wider view of refrigeration systems as a mean to ensure
that the production of LNG is possible. Such understanding is significant to relate this
work with that actually practiced in the industry.

There are many cryogenic or sub-ambient processes in the chemical process industry that
require the use of refrigeration systems. Refrigeration systems act as a heat pump that
provides cooling at temperatures below that which can normally be achieved using
cooling water or air cooling (Smith, 2005). Usually, refrigeration systems are much more
expensive than other normal utilities, due to high operating cost and capital-intensive
compression trains (Lee, 2000). The operating costs for refrigeration systems are often

dominated by the cost of power or mechanical work to drive the compressors.

According to Lee (2000), vapor compression refrigeration cycle is by far the most
common of industrial applications which several types of compressors, namely
centrifugal, reciprocating and screw compressors, may be employed. A basic vapor
compression cycle, as shown in Fig. 1.5, consists of four parts; a compressor, a

condenser, an evaporator, and an expansion valve.
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Figure 1.5: A Simple Vapor-Compression Cycle; a) Flow diagram, b) Pressure-

Enthalpy diagram

In Figure 1.5(a), the saturated refrigerant vapor at point d goes through the compressor
after absorbing heat in the evaporator, where the shaft work is consumed and the pressure
of the vapor is lifted. The outlet superheated vapor is at point a. The vapor 1s cooled
down in the condenser at constant pressure until it reaches the dew point temperature.
Then, the saturated vapor is further condensed at constant temperature and at point b, the
vapor is totally converted to saturated liquid. To reach its evaporating temperature at
point ¢, the saturated liquid goes through an expansion valve under an isenthalpic
process. From point ¢ to point d, the refrigerant absorbs heat and is evaporated. Note that
the vapor refrigerant formed in the expansion process does not provide any refrigeration
duty. Figure 1.5(b) shows the same cycle on a pressure-enthalpy diagram. The diagram
shows a two-phase envelope, inside of which the refrigerant is present as both vapor and
liquid. To the left of the two-phase envelope, the refrigerant is in liquid phase, and to the
right of the two-phase envelope, the refrigerant is in vapor phase.



The performance of refrigeration cycles is measured as a coefficient of performance
(COPrgr). The higher the coefficient of performance, the more efficient is the
refrigeration cycle (Smith, 2005). Simple vapor compression cycle can be used to provide
cooling to as low as typically -40°C. For lower temperature cooling duties like the
condensation and liquefaction of natural gas, more complex cycles are normally

employed.

They are many design schemes for complex cycles can be employed to improve the
performance of a refrigeration system by reducing the overall power requirement such as
multistage compression and expansion, economizer, intercooler, presaturator,
desuperheater and etc. If a gas or vapor process stream is available at a high pressure and
downstream conditions do not require this pressure, it can be expanded across a process

expander to provide not only necessary cooling, but also generating useful power (Smith,
2005).

Figure 1.6 shows the scheme of multistage compression and expansion with an
economizer as well as its corresponding pressure-enthalpy diagram. The expansion is
carried out in two stages which an economizer separates vapor and liquid between the
two stages. Vapor from the economizer passes directly to the high-pressure compression
stage, while liquid passes to the second expansion stage. The introduction of an
economizer reduces the vapor flow in the low-pressure compression stage which then can
lead to the reduction of overall power requirement. Figure 1.6 also shows an intercooler
for the vapor between the low-pressure and the high-pressure compression stages. Similar
with the introduction of economizer, the intercooler can reduce the overall power
requirement by reducing further the compressor power in the high-pressure compression

stage.
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Figure 1.6: The Multistage Compression and Expansion with an Economizer

Figure 1.7 shows another design scheme to reduce the overall power requirement of a
refrigeration cycle by introducing multistage compression and expansion with a
presaturator. The expansion process is still carried out in two stages with a vapor-liquid
separator or called presaturator between the two. In the presaturator, the cooled liquid and
vapor from the first expansion stage is contacted directly with the compressed vapor from
the low-pressure compression stage. The vapor from the presaturator is in saturated
condition and being passed to the high-pressure compression stage. Meanwhile, the liquid
from the presaturator is being passed to the second expansion stagé. The overall reduction
of power requirement can be achieved because the presaturator reduces the vapor flow in

the low-pressure compression stage.
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Figure 1.7: The Multistage Compression and Expansion with a Presaturator

1.4  Refrigerant for Compression Refrigeration Cycle

Generally, refrigerant in refrigeration cycles can be grouped into pure refrigerant or
mixed refrigerant. A pure refrigerant provides cooling at constant temperature when
evaporating, while mixed refrigerants provide cooling at a changing temperature even

when evaporating at constant pressure (Wang, 2004).

Conventionally, chlorofluorocarbon (CFC) and hydro-chlorofluorocarbon (HCFC)
refrigerants are widely used in domestic refrigerators and automotive air conditioners.
However, those mentioned refrigerants with intermediate to cause high ozone depletion
potential (ODP), have now been totally banned under the Montreal Protocol (Lee, 2000).
Table 1.1 shows freezing and normal boiling points for some common refrigerants

(Smith, 2005).

10



Table 1.1: Freezing and Normal Boiling Points for Some Common Refrigerants

Refrigerant Freezing point at atmospheric | Boiling point at atmospheric
pressure (°C) pressure (°C)

Ammonia -78 -33
Chlorine -101 -34
n-butane -138 0
i-butane -160 -12
Ethylene -169 -104
Ethane -183 ' -89
Methane -182 -161
Propane -182 -42
Propylene -185 -48
Nitrogen -210 -196

Based on the suitability of liquefaction temperature, methane and nitrogen are the main

refrigerants that will be used in the production of LNG.

1.5 Data Reconciliation in Chemical Processing Plant

During normal operation of a chemical processing plant such as an LNG plant, it is
common practice to obtain data from the process such as flow rates, compositions,
pressures, and temperatures. However, these data are typically incomplete and do not
provide consistent information due to the existence of either random measurement errors
or gross biased errors. This means that the mass and energy conservation equations
chosen to represent unit operations at steady state are not satisfied exactly (Romagnoli
and Sanchez, 2000). Hence, it is becoming common practice in today’s chemical plants to

incorporate some kind of technique to rectify or reconcile the plant data.

The integrated approach for data treatment or reconciliation involves a set of

mathematical procedures applied on the process instrumentation and the measurement.

11



Romagnoli and Sanchez (2000) divided data reconciliation into three main steps. These
steps involve the classification of process variables and problem decomposition, the
identification and estimation of systematic or gross errors, and the measurement

adjustment and estimation of the unmeasured process variables.

For every data reconciliation problem whether it is steady-state or dynamic, and whether
it is linear or nonlinear, variable classification is important to differentiate between
measured and unmeasured one. According to Romagnoli and Sanchez (2000), a measured
process variable, is called redundant (over-determined) if it can also be computed from
the balance equations and the rest of the measured variables, while it is called non-
redundant (just-measured) if it cannot be computed from the balance equations and the
rest of the measured variables. On the other hand, an unmeasured variable is
determinable or estimable if it can be evaluated from the available measurements using
the balance equations, while it is called indeterminable or inestimable, if it cannot be
evaluated from the available measurements using the balance equations. Because of the
complexity of integrated processes and the large volume of available data in highly
automated plans, classification algorithms are increasingly used nowadays. They are
applied to the design of monitoring systems and to reduce the dimension of the data
reconciliation problem. The detailed information about variable classification methods

can be found in Romagnoli and Sanchez (2000).

With the classified variables in hand, the next treatments of the data usually involve
errors detection and variables decomposition. Usually, if the data reconciliation problem
exists in the presence of gross errors, the detection of those errors by serial elimination
strategy for identifying their sources will be applied. This can lead the way on how to
treat the errors in the later stage. Meanwhile, the variables decomposition is practiced in
the plant data treatment as to reduce the size of data reconciliation problem. By applying
this technique, the unmeasured variables which are considered insignificant in solving the
data reconciliation problem will be eliminated from the constraint equations. Several
procedures have been developed to decompose process variables such as matrix

projection approach and orthogonal factorizations (Romagnoli and Sanchez, 2000).

12



The final step in solving the data reconciliation problem is the measurement adjustment
and estimation of the unmeasured process variables. Generally, the development and
application of modern estimation theory are incorporating mathematical tools and
utilizing fundamental concepts (Romagnoli and Sanchez, 2000). The estimation problem
may be posed in terms of a single sensor making measurements on a single process or
more generally, in terms of multiple sensors and multiple processes. When relating the
observations to an estimator, several concerns will rise including the determination on
whether a measurement is redundant, the effect of measurement placement on the
estimator’s performance, and the action if there are measurements which are grossly
faulty. These concerns are of paramount importance in any general estimation problem,
and in selecting the measurements’ structure for monitoring or controlling a given

process (Romagnoli and Sanchez, 2000).

1.6  Problem Statements and Objectives

In each type of LNG plant regardless to its production train size, the selection of the
correct liquefaction technology and power system design can contribute significantly
towards operating cost reduction for the whole plant life cycle operation (Nogal, 2004).
In contrast to many other processes, LNG plants have relatively higher power demands.
The bulk of the power demands are the mechanical demands for compression trains.
Naturally, power consumption becomes the major contribution for the overall plant
operating cost. As a result, continuous process improvements and operating cost
reduction strategies are vital in order to keep LNG as a competitive choice in the fuel
market (Nogal, 2004). These however will involve economic considerations since a
trade-off occurs between the operating cost reduction strategies and the capital expenses

for equipment.
Typically, the design of power reduction schemes need detail analysis of the current plant

performance. In order to perform such analysis, which then can lead to propose

appropriate design options, the necessary mass and energy information of the process

13



flow need to be first established. In this work, a flowsheet of liquefaction process for
LNG production train has been selected as a base case study. However, the establishment
of mass and energy information is not possible because the availability of process data
are incomplete. Thus, before the design of power reduction schemes can be performed
appropriately, the selected LNG process flowsheet need to be simulated and the unknown
data need to be reconciled. Data reconciliation is necessary to ensure they reflect the true

state of the liquefaction process conditions.

In line with the statements of the problems, this work contains two main objectives. The
first objective is to demonstrate a new approach in reconciling the liquefaction flowsheet
for producing LNG due to incompleteness of process information. Having reconciled the
process flowsheet, the second objective of this work is to perform analysis and design the

power reduction schemes for further process improvements.

14



CHAPTER 2
LITERATURE REVIEW
Cao et al. (2005) have studied a natural gas liquefaction process based on the single

Mixed Refrigerant Cycle (MRC). The compositions for natural gas and refrigerants used
for MRC are shown in Table 2.1 below.

Table 2.1: The Composition of Natural Gas and the Mole Fraction of Refrigerants

Fluid N, CH, C:H; C;Hs iC4Hjo nC4Hjo
Natural 0.7 82.0 11.2 4.0 1.2 0.9
gas
Mixed- 1.0 40.0 40.0 19.0 - -
refrigerant

Based on the thermodynamic analysis, Cao et al. (2005) have simulated the MRC using
HYSYS. Peng-Robinson (PR) and Lee-Kesler-Plocker (LKP) are used as the equation of

states in the simulation. Details of their findings are shown in Table 2.2 below.

Table 2.2: Simulation Results for MRC Liquefaction Process

Parameter Value
Flow rate of natural gas ( k mol/h) 4.00
Flow rate of refrigerant (k mol/h) 60.25
Load of water-cooling (kW) 145.95
Power consumption of compressors (kW) - 129.23
Liquefaction rate 0.951
Power per unit LNG (kW/mol/s) 122.3

From the results, Cao et al. (2005) highlighted the lack of propane pre-cooling in the

MRC liquefaction process as the main cause for its high power per unit LNG ratio. This

15



ratio, also known as the specific power requirement, is one of the main criteria in

assessing an efficient LNG plant.

According to this work, the MRC liquefaction process flowsheet by Cao et al. (2005) has
been selected as a case study for the analysis of optimal power reduction schemes for an
LNG plant. However, the important process data in the flowsheet are incomplete in order
to make such analysis. Therefore, simulation and reconciliation of the flowsheet are

necessary to be first performed in the direction to validate the results as per Table 2.2.

2.1 Data Reconciliation for the MRC Process

There are many approaches in chemical engineering literature that have been proposed
for solving data reconciliation problem since it was first published by Kuehn and
Davidson for steady-state process in 1961 (Romagnoli and Sanchez, 2000). Since then,
literatures show that the approaches have been evolved to solve for the dynamic data

reconciliation problem and the detection of measurement errors.

In solving steady-state data reconciliation problem which is involving linear and
nonlinear conditions, the use of matrix projection approach has been proposed in 1983
and 1986 respectively. In this approach, variable classifications and decompositions that
lead to the reduction of data reconciliation problem can be accomplished (Romagnoli and

Sanchez, 2000).

Tjoa and Biegler (1991) have extended the previous studies and proposed simultaneous
strategies for data reconciliation and gross error detection of nonlinear systems. Since
process measurements are taken in chemical plants for the purpose of evaluating process
control and process performance, the existence of random and possibly gross errors will
make those measurements do not generally satisfy the process constraints. They have
shown that by using efficient nonlinear programming strategies along with a method

based on a contaminated Gaussian objective function, the reconciled values could replace

16



any gross error present in the measurements and iterative procedure was not required.
Liebman et al. (1992) have proposed a more robust method for nonlinear dynamic data

reconciliation using nonlinear programming.

Another method in solving steady-state data reconciliation problem has been proposed by
Sanchez and Romagnoli (1996). The authors have introduced an equivalent process
decompositions and data reconciliation using the Q-R orthogonal transformation. They
have proven that this method was more efficient in solving both for linear and bilinear
data reconciliation problem because it provides additional insights in identifying
structural singularities in the system topology. This then allows the problem to

decompose into lower dimension of sub-problems.

Schraa and Crowe (1996) have introduced an approach in solving steady-state data
reconciliation problems with bilinear constraints, which previously the same problems
can be solved by using the matrix projection approach. In their work, the objective
function and its constraints are put into unconstrained form using Lagrange multipliers.
Unconstrained optimization methods based on analytical derivatives are then used to
solve the unconstrained formulation. They have compared the performance of their new

method in terms of robustness and efficiency with the other two previous methods.

Mingfang et al. (2000) have developed an integral approach in dealing with the dynamic
data reconciliation problem. The authors found that there are several problems in the
present dynamics data reconciliation methods such as low calculation efficiency and
difficulty of treatment for the reconciliation of input variables. Based on the analysis of
the dynamic data reconciliation characteristic, they presented an integral approach which
integrates finite element collocation method, filtering technique and robust method. The
finite element collocation method can decrease the problem complexity without any loss
of measurement information. The filtering technique meanwhile can effectively eliminate

random errors in input variables with no lag or signal distortion being introduced.
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Ozyurt and Pike (2003) have established the importance and effectiveness of
simultaneous procedures for data reconciliation and gross error detection. The methods
that they have proposed can provide the promising results for data reconciliation and
gross error detection with less computation. Zhou et al. (2006) have proposed the use of
robust estimators in solving the data reconciliation problem of nonlinear process. Effects

of gross error and biased measurement then could be reduced.

However, the combination of demonstrating the structural decomposition approach with
the data reconciliation technique for flowsheet reconciliation and data validation of a
LNG plant has not been studied so far. In the area of data reconciliation and gross error
detection, previous study by Bourouis et al. (1998) have only focused on the simulation
and data validation for multistage flash desalination plants. In this work, the structural
decomposition and systematic estimation approaches will be established for the MRC

process flowsheet (Cao et al., 2005).

2.2  Design of Power Reduction Schemes for the MRC Process

Validation of the simulation results through reconciliation and estimation techniques will
bring the senses of reliability and confidence for every data from the reconciled MRC
process flowsheet. This step is critically important before any proposal for further process
improvements are being made. The MRC process is the application of compression
refrigeration where the operating cost will be dominated by the cost of power to run the
compressors. Hence, the design of power reduction schemes is the main concern of this

work.

Liu and You (1999) have studied the characteristics and applications of the cold exergy
of LNG for power generation. They have shown that the total cold exergy of LNG can be
decomposed into low temperature exergy and the pressure exergy. The authors also found
the mechanism of using these two different exergies for power generation is different.

The application of the low temperature exergy usually involves a Rankine power cycle
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using a low boiling temperature working substance. In such cycles, sea water or other
industry waste heat is used in the evaporation process, LNG is used as the cold reservoir
in the condensation process, and the output work is done through an expanding process
during which the pressure vapor expands through the steam turbine. Meanwhile, the
application of pressure exergy involves natural gas direct expansion schemes. Thus, the
overall power requirement can be reduced by using the attainable power from the cold

heat LNG exergy.

Lee (2000) has done a meaningful work in reducing power requirement for the
refrigeration system which employs mixed refrigerant cycle. In his work, simple mixed
refrigerant cycle known as PRICO process, and the complex mixed refrigerant cycle have
been studied. He showed that with the optimized composition, flowrate and pressure level
of mixed refrigerant, overall power requirement could be reduced. For example, a 13%
savings of power requirement was possible as compared to the commercial PRICO
process. He also stated three objective functions in searching for the optimum
composition of the mixed refrigerant, which were the crossover minimization, the sum of
crossover minimization and the shaftwork requirement minimization. Therefore, the
reduction of power requirement is possible to be performed, provided there has no

temperature crossover occurs in the LNG heat exchanger.

Deng et al. (2003) have proposed a new cogeneration power system with LNG cryogenic
exergy utilization. They claimed that neither closed-loop Rankine cycle nor natural gas
direct expansion gives relatively high efficiency in producing useful power. There are
other strategies to improve the efficiency by utilizing LNG such as in pre-cooling the
intake air of gas turbine compressor, a gas-steam combined cycle using a high vacuum
condenser, and the external-fired closed loop recuperative gas cycle with LNG
evaporation process. Based on their design, they could save fuel chemical energy and

LNG cryogenic energy as well as reducing carbon dioxide emission.

Remeljej and Hoadley (2004) have evaluated in terms of total shaftwork requirements for

four small-scale LNG processes based on exergy analysis. This analysis showed areas for
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efficiency improvement. The four processes are a single-stage mixed refrigerant (SMR),
a two-stage expander nitrogen refrigerant and two open-loop expander processes. The
previous single general analysis could not provide a direct comparison because of three
differences between the processes, which are the type of refrigerant used, whether the
scheme is open-loop or close-loop, and the placement of the expanders. From their work,
they have shown that SMR process has the lowest total shaftwork or power requirement
compared to the other three processes. With the methods of providing two-stages
compression with inter-cooling, the SMR process could reduce the power by 11%. Three
equal compression stages then could save 16% of power requirement. They claimed that
splitting the compression system into multiple stages with inter-cooling did not affect the

characteristics of the refrigerant, nor the LNG heat exchanger.

Cao et al. (2005) have incorporated process expander in the N»-CH4 cycle to produce
useful power and to provide necessary cooling duty in the production of LNG. As a
result, the N,-CHj4 cycle has a lower power requirement as compared to the single MRC.
The authors have also adopted compression with intercooling schemes for the both
liquefaction cycles since the power consumption of compressors is typically influential to

power consumption per unit LNG.
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CHAPTER 3

METHODOLOGY

As was generally highlighted in the previous chapters, this work embarks with the
analysis of the MRC liquefaction process flowsheet (Cao et al., 2005). However, the
major concern for this present work is that, the important process data from the MRC
process flowsheet were not fully described. None of the operating conditions far all units
in the flowsheet have been stated and not all of the process streams conditions were fully
informed. Consequently, mass and energy balances of the process are not possible to be
established in spite of their critical requirement to enable further analysis of the LNG

process.

Due to the incompleteness of those process data, the flowsheet need to be simulated and
reconciled. In this work, simulation and reconciliation of the flowsheet involve two steps.
These are the application of structural decomposition and the systematic estimations of
unknown process data or variables. The reconciled flowsheet then will enhance the
reliability for every process data and information gained. Finally, these reliable
information will then lead for further process analysis and modification in terms of power

reduction design.

3.1 Flowsheet Analysis of the MRC Process

The MRC liquefaction process in Cao et al. (2005) uses a combination of refrigerants in a
single refrigeration cycle, which makes it possible to supply refrigeration at continuously
changing temperature. The flowsheet of such liquefaction process is shown in Figure 3.1.
The cold mixed refrigerant circuit condenses and liquefies the hot natural gas circuit by

counter-currently exchanging the heat in two LNG exchangers.
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According to Shukri (2004), the basic principles for any cooling and liquefying the gas
using refrigerants involve matching as closely as possible the cooling/heating curves of
the process and the refrigerant. The benefit of using mixed refrigerant instead of pure
refrigerant is that it will theoretically give better matching between hot and cold
composite curves (Lee, 2000). Such perfect matching leads to a thermodynamically

higher efficiency process.

In addition, the main energy loss of a natural gas liquefaction process typically exists in
compressors, heat exchangers, and in throttle during expansion process. In their work,
Cao et al. (2005) have used two compression stages with inter-cooling in order to
decrease the irreversibility degree and to reduce the power consumption of compression
process. Furthermore, since two stages of refrigeration duty are employed in their design
(Exchanger 1 and Exchanger 2), the use of separator between the two exchangers can
reduce the duty in downstream exchanger, which is the Exchanger 2. The vapor from the
separator passes to the Exchanger 2 and the liquid from the separator passes directly to

the mixer after being expanded through Throttle 1.

Summary of the results and process data by Cao et al. (2005) are tabulated in Table 3.1
through Table 3.3. Table 3.1 summarizes the simulation results including the power
consumption of compressors, load of water cooling, liquefaction rate and power per unit
LNG produced. All of these values are useful for results validation as well as errors
detection. Since the liquefaction process operates in a steady-state mode, the flowrate of
the natural gas and the mixed refrigerant are fixed to be at 4.00 kg mol/h and 60.25 kg

mol/h respectively.

Table 3.1: Summary of Simulation Results for Figure 3.1

Parameter Value
Power consumption of compressors (kW) 145.95
Load of water-cooling (kW) 129.23
Liquefaction rate 0.951
Power per unit LNG (kW/mol/s) 122.3
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Moreover, the streams conditions that have been extracted from the MRC process

flowsheet are tabulated in Table 3.2. For the types of fluid, MR means mixed refrigerant,

NG means natural gas, BOG means boiled-off gas and LNG means liquefied natural gas.

Table 3.2: Summary of Streams Conditions for Figure 3.1

Stream Fluid Temperature, T Pressure, P Flowrate, F
No. O (MPa) (kgmol/h)

S1 MR unknown unknown 60.25
S2 MR unknown unknown 60.25
S3 MR unknown unknown 60.25
S4 MR 32.0 2.60 60.25
SS MR -35.0 unknown 60.25
S6 MR -35.0 unknown unknown
S7 MR -148.0 unknown unknown
S8 MR -149.0 unknown unknown
S9 MR -38.0 unknown unknown
S10 MR unknown unknown unknown
Sil MR unknown unknown unknown
S12 MR -76.0 unknown 60.25
S13 MR 29.0 0.29 60.25
S14 NG 32.0 5.00 4.00
S15 NG -70.0 unknown 4.00
S16 NG -147.0 unknown 4.00
S17 NG unknown unknown 4.00
S18 BOG unknown unknown unknown
S19 LNG -151.3 0.20 unknown

Table 3.3 lists all the units with their required operating conditions exist in the MRC

flowsheet. Basically, if all of the unknown conditions in Table 3.2 can be determined,

operating conditions for all units can be known directly.

Table 3.3: List of All Units and Summary for Required Operating Conditions in

Figure 3.1
Unit Required operating conditions
Low-pressure Duty (calculated from S13 and S1)
COMPpIessor
High-pressure Duty (calculated from S2 and S3)
compressor
Water cooler 1 Delta P, delta T, and duty (calculated from S1 and S2)
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Unit Required operating conditions

Water cooler 2 Delta P, delta T, and duty (calculated from S3 and S4)

Exchanger 1 Duty, UA, and LMTD (calculated from S14-S15 pass,
S12-S13 pass, and S4-S5 pass)

Exchanger 2 Duty, UA, and LMTD ( calculated from S15-S16 pass, S8-
S9 pass, and S6-S7 pass)

Separator 1 Delta P from inlet pressure ( S5)

Separator 2 Delta P from inlet pressure (S17)

Throttle 1 Delta P (calculated from S10 and S11)

Throttle 2 Delta P (calculated from S7 and S8)

Throttle 3 Delta P (calculated from S16 and S17)

Mixer Product’s pressure and temperature for S12 (determined by
S9 and S11)

In addition, the chemical composition of natural gas and mole fraction of mixed

refrigerant used in the MRC process were shown in Table 2.1 of the previous chapter.

3.2 Application of Structural Decomposition Approach

Basically, the MRC process flowsheet as shown in Figure 3.1 not only gives incomplete
process information, but also comprises two complex LNG heat exchangers. In fact,
simulating the flowsheet with those heat exchangers increases the convergence difficulty
especially when the necessary process conditions of the related streams are incomplete.
Consequently, the flowsheet reconciliation in this present work seems to be impossible if

it is just relies to the previous MRC flowsheet.

Therefore, a different approach needs to be demonstrated in order to simulate the MRC
process which later can promises the accomplishment of flowsheet reconciliation. In this
work, structural decomposition approach is applied for the two complex LNG heat
exchanger units. By doing this, the exchangers are decomposed to the series of coolers
and heaters which are of thermodynamic equivalence to the actual system. Figure 3.2

illustrates the MRC process flowsheet after structural decomposition.
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In Figure 3.2, the MRC process flowsheet now contains four coolers and two heaters.
Cooler 1, Cooler 3 and Heater 1 are thermodynamically equivalent to LNG heat
exchanger 1 in Figure 3.1. In addition, Cooler 2, Cooler 4 and Heater 2 are equivalent to
LNG heat exchanger 2. In other words, the streams which pass heater 1 (S12 to S13) are
to be heated up by cooling down the streams which pass cooler 1 (S14 to S15) and the
streams which pass cooler 3 (S§4 to S5). Similarly, the streams which pass heater 2 (S8 to
S9) are to be heated up by cooling down the streams which pass cooler 2 (S15 to S16)
and the streams which pass cooler 4 (S6 to S7).

Simulation with the systematic estimations of unknown process data can then be applied
to the modified MRC process flowsheet in Figure 3.2. However, the limitation to this
approach is that the energy should be balanced in the decomposed coolers and heaters.

The energy balance equations of those coolers and heaters in Figure 3.2 are stated below:

Q1+Q3=0Q4 (Eq. 3.1)

Q2+Q5=Q6 (Eq. 3.2)

33 Systematic Estimations of Unknown Process Data

After the complex LNG heat exchangers have been decomposed to the series of coolers
and heaters, systematic estimations of unknown process data or so-called variables for all
streams and units in Figure 3.2 are then performed via simulation. Therefore, another
simulation using HYSYS is carried out to demonstrate the estimating process for the
flowsheet reconciliation of Figure 3.2. In this simulation, the equation of states for natural
gas and mixed refrigerant are Peng-Robinson (PR) and Lee-Kesler-Plocker (LKP),
respectively (Cao et al., 2005). Before an estimation of unknown variables are made, the
known conditions such as temperature (T), pressure (P) and flowrate (F) for all process
streams as per Table 3.2 are inserted into the current simulation. These known conditions

should be fixed so that the simulation will closely represent the actual flowsheet.
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The process of systematic estimations that yield the estimated variables should be made
in the direction to validate the simulation results by Cao et al. (2005) as shown in Table
3.1. Moreover, the process should also meet the practical constraints such as pressure
drop allowance in the heat exchangers. After considering energy balance limitations in
Eq. 3.1 and Eq. 3.2, each of the converged simulation is considered as a trial for the MRC
process flowsheet reconciliation. In addition for the reconciliation works, there are four
degrees of freedom (DOFs) that have been identified from the flowsheet. These are the
value of pressure drops across Throttle 1, the heat exchangers and the separators, and the
values of adiabatic efficiency for the compressors. All of these degrees of freedom can be

manipulated in order to produce the best reconciled flowsheet.

Basically, the estimation approach via simulation is likely to cause errors. These errors
make the results between the current simulation and the previous work by Cao et al.
(2005) deviate. Therefore, in order to realize the tolerance of errors between the two

simulations results, sum of squared error (SSE) is then calculated. SSE is written as:
SSE = Y (error for each of parameters in Table 3.1)2 (Eq. 3.3)

In this case, SSE is critical tool to entirely check on how close the values of each
reconciliation trial as compared to the values as per Table 3.1. The closest results of
simulation between the current and the previous will bring the smallest value of SSE, and

finally will produce the best reconciled flowsheet.

All of the steps involve in simulating and reconciling the MRC process flowsheet are
shown in Figure 3.3. Once the best reconciled flowsheet is obtained, it is now possible to
determine for all of the unknown steams conditions and the units operating conditions in
Cao et al. (2005). Thereafter, mass and energy balances for the MRC process are possible
to be established. With such establishments, further process analysis and the design of

power reduction schemes are ready to be made.
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Attain the previous MRC flowsheet (Figure 3.1)

v

Apply structural decomposition
approach

v

Obtain modified MRC flowsheet (Figure 3.2)

v

List all the simulation results (considered as
parameters) in Table 3.1 and realize the limitations of
Eqg. 3.1 and Eq. 3.2

y

Start new simulation by inserting known
conditions

Y

Estimate the unknown variables in the direction to simulate and validate
the parameters in Table 3.1 and fulfill both Eq. 3.1 and Eq. 3.2. Beware
also about practical constraints when inserting the unknown variables
and manipulate the stated DOFs.
(flowsheet reconciliation trial)

Check if the simulation
converge?

No

ISSE| < tolerance (€) ?

No

Accept the reconciliation trial

v

Among the accepted reconciliation trials,
select the trial with the lowest SSE

Y

Obtain the best reconciled flowsheet which is highly
possible to represent the actual flowsheet (Cao et el.,
2005)

Figure 3.3: The Steps Involved in Flowsheet Reconciliation Using Structural

Decomposition and Systematic Estimations Approaches
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3.4  Analysis of the MRC Process Using WORK Software

WORK is the software package developed by University of Manchester. It is used for
analysis and design of low temperature processes such as an LNG system. As was
mentioned earlier, the operating costs of such processes are typically dominated by the
cost of power to run the refrigeration system. By using this software, pinch analysis and
exergy analysis can be presented, at which these two analyses are important for the
shaftwork targeting of the refrigeration system. Besides, the selection of refrigeration

driver such as steam turbine, gas turbine and electric motors also can be performed.

The best reconciled MRC process flowsheet obtained is highly possible in representing
the original flowsheet (Cao et al., 2005). The reconciled flowsheet is considered as a base
case for the analysis and design of power reduction schemes. Before moving to the
design stage, it is first necessary to analyze the current MRC process condition and
performance. The importance for such analysis is that it can give useful guidelines for
designing the power reduction schemes at the later stage. According to this work,
analysis for the MRC process is carried out using the WORK software. Furthermore, in
this work, the software also has the capability to optimize the composition of the mixed

refrigerant that can potentially reduce the current power requirement.

As shown in Figure 3.1 earlier, the process stream which is referred to the natural gas
stream, need to be cooled down below its boiling temperature in order to produce LNG.
The refrigeration system, which comprises the compressed mixed refrigerént, is
responsible to provide and distribute the cooling duty in such a way that it can absorb the

heat from the process stream sufficiently.

In the WORK software, the current conditions of the process stream, for instance the
supply and target temperatures are inserted to the Stream Data Editor, as shown in Figure
3.4. Meanwhile, the current conditions of mixed refrigerant are inserted to the Mixed
Refrigerant Composition Options, as shown in Figure 3.5. The software then can

analyzes graphically several useful information including the stage of refrigeration
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temperatures, the cooling duty requirement and the composite curves for both process
and refrigerant streams. In order to find the optimized composition of mixed refrigerant,

the software can simply suggest the composition values based on the current conditions.
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Figure 3.4: The Current Process Stream Conditions in WORK Software
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Figure 3.5: The Current Mixed Refrigerant Stream Conditions in WORK Software
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3.5  Power Reduction Schemes Design Using HYSYS Software

HYSYS 1s the process simulation software designed to serve for many chemical
processing industries including the natural gas processing and liquefaction. With this
software, rigorous steady state and dynamic models for plant design, performance
monitoring, troubleshooting, operational improvement, business planning and asset
management can be performed. In HYSYS, many equations of states are applicable such
as Peng-Robinson (PR), Peng-Robinson Stryjek-Vera (PRSV), Lee-Kesler-Plocker
(LKP), Soave-Redlich-Kwong (SRK) and etc. The accuracy for each equation of states

however is subjected to the thermodynamic behaviors of the system.

Modifications in terms of power reduction schemes design are applied to the base case of
MRC liquefaction process flowsheet. The main objective of such modifications is intently
to reduce the current power consumptions for running the compression systems.
Therefore, several schemes can be incorporated to the base case MRC flowsheet provided
that the amount of cooling duty needed by the process stream is still remained. In this
work, the power reduction schemes such as incorporating process expander, multistage
compression systems with intercoolers, and combination of schemes are being applied
using the HYSYS software. Each of these schemes when it is simulated successfully in
the HYSYS is considered as an option. Then, the obtained power reduction value of each
option is compared to the current power requirement at which the percentages of saving

can be calculated.

Furthermore, in order to ensure that the designs of power reduction schemes are
performed systematically, each of the option will use the composition of mixed
refrigerant as presented by Cao et al. (2005) in Table 2.1. After that, the next set of
options will use the optimized mixed refrigerant composition as suggested by WORK
software. Finally, the option which offers the biggest percentage of saving will be

selected as the best power reduction scheme of the MRC process.
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Figure 3.6 below summarizes all the procedures for the analysis and design of power

reduction schemes.

Start

Consider the best reconciled MRC process flowsheet as a
base case for power reduction schemes design

Y

Analyze the current MRC process conditions and
performance by using WORK

Y

Identify relevant schemes for power reduction design

Y

Optimize the mixed refrigerant composition using
WORK

\ J

Design the power reduction schemes by using current and optimized compositions of mixed
refrigerantin HYSYS

4

Compare the power reduction value of each scheme and select the best scheme
with the lowest power requirement

Finish

Figure 3.6: Procedures for Analysis and Design of Power Reduction Schemes for
MRC Process
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3.6 Summary of Methodology

In summary, methodology for analysis of optimal power reduction schemes for an LNG

plant is depicted in Figure 3.7.

Existing MRC process flowsheet

v

Tabulate data from the process flowsheet
I

v v

List all the known and unknown List all the known and unknown
properties (T, P and F) for all operating conditions for all
streams units

heck if the M&E balances in the
flowsheet are complete? Yes

No

Simulate and reconcile the MRC process flowsheet
(see figure 3.3)

|

Perform analysis and design of power reduction
schemes for MRC process
(see Figure 3.6)

Improved MRC process flowsheet

Figure 3.7: The Methodology for Analysis of Optimal Power Reduction Schemes for
an LNG Plant
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CHAPTER 4

RESULTS AND DISCUSSIONS

The previous chapters have highlighted the two main objectives and the methodology to
achieve them systematically. Achieving the first objective is critical as it forms the basis
to accomplish the second objective, which is the main concern of this work. In other
words, if the flowsheet reconciliation is failed, then analysis and design of power

reduction schemes are impossible to be accomplished.

In this chapter, the obtained results are discussed consecutively in achieving the desired

objectives.

4.1 Simulation Results for MRC Process Flowsheet Reconciliation

~In chapter 3, it was mentioned that four degrees of freedom (DOFs) have been identified

in validating Cao et al. (2005), which is simultaneously reconciling the MRC flowsheet.

From Figure 3.2, the degrees of freedom are the value of pressure drop across Throttle 1,
the values of pressure drop in heat exchangers, the values of pressure drop in separators
and the values of adiabatic efficiency for the compressors. Here, the heat exchangers are
referred to Water Cooler 1, Water Cooler 2, Cooler 1, Cooler 2, Cooler 3, Cooler 4,
Heater 1 and Heater 2. The separators include Separator 1 and Separator 2, and the

compressors are for both Low Pressure Compressor and High Pressure Compressor.

In the simulation, the value of pressure drop across Throttle 1 is being set so that the
pressure of S11, with the combination of the pressure for S9, will give the sufficient
amount of pressure for S12. This action is necessary to ensure that the downstream
pressure of S12 which is the S13’s pressure is identical to the value given by Cao et al.

(2005) after passing Heater 1.
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Table 4.1 shows five reconciliation trials with simulation approach for the stated DOFs.

The value of pressure drops in heat exchangers is typically occurring between 20 to 25

kPa, and hence they are applied in the simulations. For the separators, pressure drops

between 0 kPa and 50 kPa have been chosen to ensure all of the known conditions for

streams as given by Cao et al. (2005) being met satisfactorily. In addition, up to Tral 4,

each of the trials uses the defaulted value for compressors adiabatic efficiency. While in

Trial 5, the efficiency is set to be 76% as it will bring the closest value for power

consumption of compressors compared to Cao et al. (2005).

Table 4.1: Simulation Approach for the Degrees of Freedom in Reconciling the

MRC Process Flowsheet

set to be at 25 kPa, and for separators at 0 kPa.

Trial | Simulation approach for degree of freedoms Value for pressure
drop across Throttle 1
1 The values of pressure drops in heat exchangers are | 459.4 kPa

The values of pressure drops in heat exchangers are
still remained at 25 kPa, while for separators now to

be at 50 kPa.

405.6 kPa

The values of pressure drops in heat exchangers are
now changed to be at 20 kPa, and for separators at
0 kPa.

459.9 kPa

The values of pressure drops in heat exchangers are
still remained at 20 kPa, while for separators now to

be at 50 kPa.

406.2 kPa

After getting the best reconciled flowsheet from the
first four trials (from Trial 1 to Trial 4), the value of
adiabatic efficiency for compressors are set to be at

76%.

406.2 kPa

Generally, in each of the above reconciliation trials, errors are produced and they have

been calculated accordingly. These errors show the extent of deviation between the
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Table 4.3: Simulation Results of MRC Flowsheet Reconciliation for Trial 2

Parameter Previous Current simulation Error
simulation (%)
by Cao et
al. (2005)

Power consumption 129.23 131.69 1.90
of compressor (kW)
Load of water 145.95 148.64 1.84
cooling (kW)
Liquefaction rate 0.951 0.953 0.21
Power per unit LNG 122.30 124.40 1.72
(kW/mol/s)
Equation 3.1: - Q1 + Q3 =3.924 x10" + 6.248 x10° 0.11
Q1+Q3 = Q4 = 6.640 x10°
(kJ/h)

Q4 = 6.647 x10°

Difference =700
Equation 3.2: - Q2 +Q5=2.096 x10% + 3.015 x10° 0.12
Q2+Q5 = Q6 =3.225 x10°
(kI/h)

Q6 =3.229 x10°

Difference = 400
Sum of square error
(SSE) = Y. [(error in - - 0.099

each parameter)’]
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Table 4.4: Simulation Results of MRC Flowsheet Reconciliation for Trial 3

Parameter Previous Current simulation Error
simulation (%)
by Cao et
al. (2005)

Power consumption 129.23 131.23 1.55
of compressor (kW)
Load of water 145.95 148.19 1.53
cooling (kW)
Liquefaction rate 0.951 0.952 0.11
Power per unit LNG 122.30 124.09 1.46
(kW/moV/s)
Equation 3.1: - Q1 + Q3 =3.924 x10" + 6.252 x10° 0.15
Ql+Q3 = Q4 =6.644x10°
(kJ/h)

Q4 =6.654 x10°

Difference = 1000
Equation 3.2: - Q2 + Q5 =2.096 x10* + 2.973 x10° 0.03
Q2+Q5 = Q6 =3.183 x10°
(kJ/h)

Q6 =3.184 x10°

Difference =100
Sum of square error
(SSE) = ¥ [(error in - - 0.069

each parameter)’)
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Table 4.5: Simulation Results of MRC Flowsheet Reconciliation for Trial 4

Parameter Previous Current simulation Error
simulation (%)
by Cao et
al. (2005)

Power consumption 129.23 131.23 1.55
of compressor (kW)
Load of water 145.95 148.19 1.53
cooling (kW)
Liquefaction rate 0.951 0.952 0.11
Power per unit LNG 122.30 124.09 1.46
(kW/mol/s)
Equation 3.1: - Q1 +Q3 =3.924 x10* + 6.252 x10° 0.12
Ql+Q3 = Q4 = 6.644 x10°
(kJ/h) _

Q4 =6.652 x10°

Difference = 800
Equation 3.2: - Q2 + Q5 =2.092 x10% + 3.006 x10° 0.16
Q2+Q5 = Q6 =3.215x10°
(kJ/h)

Q6 =3.220x10°

Difference = 500
Sum of square error
(SSE) = ¥ (error in - - 0.068

each parameter)®
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Table 4.6: Simulation Results of MRC Flowsheet Reconciliation for Trial 5§

Parameter Previous Current simulation Error
simulation (%)
by Cao et
al. (2005)

Power consumption 129.23 129.51 0.22
of compressor (kW)
Load of water 145.95 146.50 0.34
cooling (kW)
Liquefaction rate 0.951 0.952 0.11
Power per unit LNG 122.30 122.47 0.14
(kW/mol/s)
Equation 3.1: - Ql + Q3 =3.924 x10" + 6.252 x10° 0.12
Q1+Q3 = Q4 =6.644 x10°
(kJ/h)

Q4 =6.652 x10°

Difference = 800
Equation 3.2: - Q2 + Q5 =2.092 x10" + 3.006 x10° 0.16
Q2+Q5 = Q6 =3.215x10°
(kJ/h)

Q6 =3.220x10°

Difference = 500
Sum of square error
(SSE) = Y, (error in - - 0.002

each parameter)’
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According to the Table 4.2 through Table 4.6, starting from trial 1 to trial 5, the values of
SSE are decreasing with the number of trials. These results show that the accuracies of
flowsheet reconciliations are improving. Table 4.7 below shows summary for SSE values

of the five reconciliation trials.

Table 4.7: Summary for SSE Values of the Best Five Reconciliation Trials

Flowsheet reconciliation trial | Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

SSE Value (%) 0.100 0.099 0.069 0.068 0.002

Among the first four trials that use the defaulted value of compressors adiabatic
efficiency, Trial 4 relatively produces the lowest value of SSE. Then, based on the
simulation approach for DOFs in Trial 4 as per Table 4.1, and the additional setting of
76% compressors adiabatic efficiency, Trial 5 gives the smallest value of SSE in overall.
Considering the SSE’s value of 0.002% is insignificant in this work, Trial 5 is being
selected as the best reconciled MRC process flowsheet. In other words, after five
iterations for flowsheet reconciliation, Trial 5 gives the highest possibility to represent
Cao et al. (2005). Furthermore, the conditions in Trial 5 will be considered as a base case

for further MRC process analysis and design of power reduction schemes

It is found that the MRC process flowsheet simulation and reconciliation have
successfully determined all of the unknown conditions for streams and units.
Consequently, the establishment of mass and energy balances for the MRC process is
possible to be made. Further analysis of the process which gives useful guidelines in

designing the power reduction schemes can then be done appropriately.

In order to depict the outcomes from the MRC flowsheet simulation and reconciliation
works, Figure 4.1 shows the incomplete flowsheet before it is being reconciled as
presented by Cao et al. (2005), while Figure 4.2 shows the complete flowsheet after it is
being reconciled in Trial 5. In the following section, further MRC process analysis and

design of power reduction schemes are based on the flowsheet shown in Figure 4.2.
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4.2 MRC Process Analysis and MR Compositions Optimization

As was highlighted earlier, the MRC process flowsheet shown in Figure 4.2 is considered
as a base case for the analysis and designs of power reduction schemes. In order to ensure
the designs of power reduction schemes are being performed appropriately, some useful
analyses to the base case or is referred as the current MRC process conditions and
performances, are required. Therefore, using the WORK software, graphical process

analyses such as the stage of cooling temperatures, the cooling duty requirement and the

_ composite curves for both process and refrigerant streams have been carried out. These

analyses are based on the typical assumption of 5°C for the minimum temperature
difference, ATnin. Furthermore, the software also has suggested the optimized
compositions of the mixed refrigerant that could potentially reduce the current power

requirements.

Figure 4.3 below shows the Grand Composite Curve (GCC) for the process stream 1i.e.
the natural gas stream that need to be cooled and liquefied in the current MRC process.
Basically, the GCC is an appropriate tool for understanding the interface between the
process and the utility system. Here, the flowrate of the natural gas and the mixed

refrigerant are to be at 4.00 kg mol/h and 60.25 kg mol/h respectively.

}g;d;ééééauhww..uwnnA,.M.u“

| 3, - zcint. O ATh i § occate =3 g 1] ity -

Filenaome : MRC (bose case).swk (M)
DTmin = 5.00 [C]
Grand Composite Curve
3c.o
23.0 F .
\'\\
0.0 | el -
— T~
= -25 0O | \ §
,‘,‘: -50 O |- \\\\ ]
2 -75.0F - - - ]
- First stage cooling \‘\
S -1406.0 [ e s
g \
-125.0 | .
= 12 -
-15C.0 |- B
Second stage cooling
-175.0
-2Q0.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.Q0 18.0 2Cc.0
Enthalpy [kw)]

Figure 4.3: GCC for the Current Process Stream (Natural Gas Stream)
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Figure 4.3 showed two stages of cooling temperatures in the current MRC liquefaction
process. The first stage cooling occurs in the Exchanger 1 and requires 10.9 kW of
cooling duty. It will cool down the temperature of natural gas from 32°C (S14) to -70°C
(S15). Meanwhile, the second stage cooling occurs in the Exchanger 2 and requires 5.81
kW of cooling duty. It will further cool the temperature of natural gas from -70°C (S15)
to -147°C (S16), in order to produce LNG. Therefore, the total amount of cooling duty
requirements for the production of LNG is 16.71 kW. In designing the power reduction
schemes, this total amount of cooling duty must be distributed in mandatory by the
compressors. In other words, the possible reduction for power consumption of the
compressors can be performed, while at the same time, it must be sufficient to supply the

total amount of cooling duty.

In addition, Figure 4.3 also shows that the cooling requirements cannot be achieved by
using normal cooling utilities such as cooling water or air cooling. This is because the
liquefaction process involves sub-ambient temperatures. Thus, the sub-ambient utility
involving the refrigeration system is employed. For this work, the MRC system is

utilized.

Meanwhile, Figure 4.4 shows the composite profiles for the process stream and
refrigerant streams. Graphical presentation of such composite profiles is based on the
current MRC process performances and conditions. It means that the profiles are plotted
according to the conditions from Figure 4.2 and the composition of mixed refrigerant in
Cao et al. (2005). Figure 4.4 also shows that no temperature crossover occurs between
the profiles. This means there is no violation for the minimum temperature difference,
ATmin. However, the current performance and conditions of the MRC process can be
improved further in terms of thermodynamic efficiency by reducing the area between the
ideal refrigerant and the actual refrigerant profiles. In this work, there is an initiative to
produce a better thermodynamic efficiency of the current MRC process by optimizing the
mixed refrigerant compositions. Table 4.8 shows the optimized compositions of the
mixed refrigerant as suggested by WORK. The determining parameter in optimizing the

compositions is the flowrate of the mixed refrigerant.
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Figure 4.4: Composite Profiles for the Current MRC Process

Table 4.8: The Optimized Mixed Refrigerant Compositions Suggested by WORK

Component Composition (weight %)
CH4 -
C,Hs 53
CsHs 79.8
N, 14.9

In comparison to the mixed refrigerant compositions in Cao et al. (2005) as per Table 2.1,
Table 4.8 shows that there is no more methane (CH,) involves and the compositions of

propane (C3;Hg) and nitrogen (N;) have increased significantly.

After the compositions of the mixed refrigerant have been optimized, Figure 4.5 shows
the new composite profiles for the process stream and refrigerant streams. The flowrate
of mixed refrigerant is then can be reduced to 45.25 kgmol/h. Thermodynamically, this
lower flowrate of mixed refrigerant is still capable of meeting the heat transfer

requirement of the MRC liquefaction process.
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Figure 4.5: Composite Profiles for the MRC Process with the Optimized Mixed

Refrigerant Compositions

There are still two stages of natural gas cooling involved after the compositions mixed
refrigerant being optimized. The first stage cooling would cool down the temperature of
natural gas from 32°C (S14) to -85°C (S15), while the second stage cooling would further
cool the natural gas from -85°C to -147°C (S16). The total duties of cooling remain to be
16.71 kW as before. The reduction of mixed refrigerant flowrate and the changes in the
cooling stages temperatures were achieved without any temperature crossover between
the profiles as shown in Figure 4.5. Basically, the optimization of mixed refrigerant
composition has not only given the better matching between the profile of actual
refrigerant and the profile of ideal refrigerant which then leads for the better
thermodynamic efficiency, but more importantly, it also has reduced the power

requirements to run the compressors, as would be proven in the following section.
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4.3 Design of Power Reduction Schemes

The graphical analyses of the MRC process as were performed by WORK provided
useful guidelines for the design of power reduction schemes. The Grand Composite
Curve (GCC) has depicted the total amount of cooling duty requirement that must be
distributed adequately by the compressors, and the composite profiles of streams have
shown the scope for process improvements. Furthermore, the software also has suggested
the optimized compositions of mixed refrigerant which have improved to the current

MRC process performances.

According to this work, three power reduction schemes have been identified and
incorporated in order to reduce the current MRC process power requirements. The new
MRC process schemes have also been simulated on HYSYS. The schemes have included
the process expander, the multistage compressions with intercoolers and the combination
of multistage compressions with intercoolers and the process expander, as shown in cloud

by Figure 4.6, Figure 4.7 and Figure 4.8 respectively.

Firstly, Figure 4.6 shows the scheme involved a replacement of the Throttle 3 with the
Expander. The high pressure gas from S16 has been let down to the low pressure of S17
through an expander. This expansion process corresponds to a decrement in temperature
and the generation of useful power. Secondly, Figure 4.7 shows the scheme involved the
incorporation of multistage compressions with intercoolers. Consequently, this scheme
has added an additional compressor and a water cooler to reduce the current power
requirements. Finally, Figure 4.8 features the combination of multistage compressions

with intercoolers, and the process expander for greater power reductions.
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As was highlighted earlier, the possible reductions of power requirements for running the
two compressors could be designed in such a way at the same time, the power is
sufficient enough for distributing the total amount of cooling duty needed to cool and to
liquefy the natural gas stream. Therefore, all of the abovementioned power reduction
schemes have been selected and designed with the emphasis that each of them could
supply the required cooling duty sufficiently. Furthermore, in an intention to design the
three power reductions schemes more systematically, each of the three proposed schemes
has utilized both of the mixed refrigerant compositions as given by Cao et al. (2005) and
the optimized compositions as suggested by WORK as per Table 2.1 and Table 4.8,

respectively.
4.3.1 The Pressure-Enthalpy (P-H) Diagrams

Before presenting the outcomes of the power reduction schemes, it is necessary to
understand the P-H diagram of the processes involved in the base case as well as in the
proposed schemes. Such explanations could provide insights when designing those power

reduction schemes.

First, consider the base case of MRC process flowsheet as was shown in Figure 4.2
without emphasizing the stated streams conditions. The corresponding P-H diagram for
the base case is illustrated in Figure 4.9. The diagram shows a two-phase envelope, inside
of which the mixed refrigerant is present as both vapor and liquid. To the left of two-
phase envelope, the mixed refrigerant is liquid, and to the right of the two-phase

envelope, the refrigerant is vapor.
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Figure 4.9: P-H Diagram for the Base Case of MRC Process Flowsheet

In order to deliver the required cooling and liquefaction duties for the MRC process, the
mixed refrigerant has undergone several processes such as evaporation, compression,
condensation and expansion. For the base case, the mixed refrigerant is being evaporated
from S12 to S13 which results an increment for the enthalpy. This evaporation process
occurs in Exchanger 1 where phase change happens to cause the mixed refrigerant to
become vapor at S13. During the phase change, the mixed refrigerant will simultaneously
produce sub-ambient cooling by absorbing heat from the natural gas stream and the hot
mixed refrigerant stream. Then, from S13 to S1, the pressure of the mixed refrigerant is
increased in the Low-pressure compressor with a corresponding increase in the enthalpy.
From S1 to S2, there is no change in pressure but a decrease in the enthalpy as the result
of cooling by Water cooler 1. The pressure of mixed refrigerant then is once again being
increased from S2 to S3. This second compression stage happens in the High-pressure

compressor which corresponding an increase to the enthalpy.

Along the path from S3 to S12, at first, the mixed refrigerant is de-superheated by Water

cooler 2 which is represented by S3 to S4 pass. Then, condensation of the mixed
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refrigerant happens where the hot mixed refrigerant in S4 is condensed in Exchanger 1 to
exit as S5. Both of the de-superheating and condensation processes respectively from S3
to S4 and from S4 to S5 make the enthalpy decreases. At S5, the mixed refrigerant now is
inside the two-phase envelope which means that it exists as both vapor and liquid. The
Separator 1 then splits the vapor and liquid of mixed refrigerant from S5 to exit as vapor
in S6 and as liquid in S10. The vapor from Separator 1 undergoes a further condensation
in Exchanger 2, being expanded in Throttle 2, and is heated back in Exchanger 2, finally
to exit as S9. These series of processes are placed to ensure the further rejection of heat
from the natural gas stream is adequate in producing LNG. While the liquid from
Separator 1 is expanded in Throttle 1 and exits as S11. Both S9 and S11 are then being
mixed in the Mixer to produce S12. As conclusion, from Separator 1, both of the vapor
and liquid of the mixed refrigerant are experiencing reductions of pressure and enthalpy
for reaching S12, as shown by the downward arrow of Figure 4.9. Then, the cycle is

being repeated accordingly.

The proposed power reduction scheme in Figure 4.6 involved an expander which has
been incorporated to generate power while performing the expansion process. There is no
structural modification has been made to the cycle of mixed refrigerant. Therefore,

explanations on the P-H diagram for the base case are applicable to Figure 4.6.

However, in Figure 4.7 and Figure 4.8, the proposed power reduction schemes have
incorporated multistage compressions with intercoolers, where the cycle of mixed
refrigerant has been modified. Thus, explanations must be based on different P-H
diagram as shown in Figure 4.10. Again, the diagram shows a two-phase envelope, inside
of which the mixed refrigerant is present as both vapor and liquid. The mixed refrigerant
is liquid at the left side of the two-phase envelope, and the mixed refrigerant is vapor at

the right side of the two-phase envelope.
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Figure 4.10: P-H Diagram for the MRC Process Flowsheet after Incorporating

Multistage Compressions with Intercoolers

The mixed refrigerant is being evaporated from S12 to S13 which makes the enthalpy
increases. The evaporation process which occurs in Exchanger 1 changes the phase of the
mixed refrigerant from liquid at S12 to vapor at S13. During the phase change, the mixed
refrigerant will simultaneously produce sub-ambient cooling by absorbing heat from the
natural gas stream and the hot mixed refrigerant stream. From S13 to S1, the pressure of
the mixed refrigerant is increased in the Low-pressure compressor with a corresponding
increase in the enthalpy. From S1 to S2, the pressure is constant but the enthalpy
decreases as a result of cooling by Water cooler 1. The pressure of mixed refrigerant then
is being increased from S2 to S2a for a second time in the additional compressor which
corresponds to increment of enthalpy. From S2a to S2b, the enthalpy decreases because
of the cooling provided by the additional water cooler, while the pressure remains
constant. Then, the pressure of the mixed refrigerant is once again increased from S2b to
S3. This third compression stage happens in the High-pressure compressor where it also

shows an increment of the enthalpy.
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Here, the lowest and the highest pressure levels of the P-H diagram in Figure 4.10 are
similar to the pressure levels of the P-H diagram in Figure 4.9, but the intermediate
pressure levels between the two figures are different. In Figure 4.9, it shows only one
intermediate pressure level while in Figure 4.10, it shows two intermediate pressure
levels. Theoretically, the more intermediate pressure levels involve, the more reduction of
power can be gained. For the explanations about the processing steps along the path from

S3 to S12, they are exactly the same with the explanations for Figure 4.9 above.

4.3.2 Comparison of Results for Power Reduction Schemes

After understanding the insights of the MRC liquefaction process in terms of the
pressure-enthalpy relationships for the base case as well as the incorporated power
reduction schemes, the obtained power reduction values have been tabulated
systematically. Table 4.9 shows the results for the power reduction schemes which have
utilized the mixed refrigerant compositions as given by Cao et al. (2005). Meanwhile,
Table 4.10 shows the results for the power reduction schemes which have utilized the
optimized mixed refrigerant compositions as suggested by WORK. Since all of the
schemes in Table 4.10 have utilized the optimized compositions, each of them would use
the reduced flowrate for mixed refrigerant and the adjusted temperature cooling stages for
natural gas in order to avoid temperature crossover. The total power requirements for the
base case are referred in determining the percentage of power savings from such
incorporated schemes. In addition, as was mentioned earlier, the two compressors in the
base case operate at 76% adiabatic efficiency. Therefore, similar efficiency has been used

for all of the compressors and expanders in the proposed power reduction schemes.
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Table 4.9: The Power Reduction Schemes of MRC Process without Optimizing the

Mixed Refrigerant Compositions

Trial Power MR composition Power Power savings
reduction (From Cao et al., 2005) | requirement (%)
scheme (kW)
Base - C1:40.0 129.51 -
Case C2:40.0
C3:19.0
N2: 1.0
Option 1 | Incorporate an | C1: 40.0 129.36 0.12
expander C2:40.0

(Generating C3:19.0
0.15 kW of N2: 1.0

power)
Option 2 | Incorporate Cl1:40.0 127.32 1.69
multistage C2:40.0
compressions | C3:19.0
with N2:1.0
intercoolers
Option 3 | Incorporate C1:40.0 127.17 1.81
multistage C2:40.0
compressions | C3:19.0
with N2:1.0
intercoolers,
and an
expander
(Generating
0.15 kW of
power)
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Table 4.10: The Power Reduction Schemes of MRC Process with the Optimized

Mixed Refrigerant Compositions

Trial Power Optimized MR Power Power savings
reduction composition by using | requirement (%)
scheme WORK (kW)

Option 4 | Incorporate an | C1: 0.0 89.50 30.89
expander C2:53
(Generating C3:79.8 N
0.15 kW of N2:14.9
power)

Option 5 | Incorporate C1: 0.0 88.31 31.81
multistage C2:53
compressions | C3:79.8
with N2: 14.9
intercoolers

Option 6 | Incorporate C1: 0.0 88.16 31.93
multistage C2:53
compressions | C3:79.8
with N2:14.9
ntercoolers,
and an
expander
(Generating
0.15 kW of
power)

In comparison to Table 4.9, the significant power reduction values as shown in Table
4.10 are being influenced by the mixed refrigerant compositions which have been
optimized through the WORK software. From the six options of the proposed power
reduction schemes, Option 6 has provided the lowest power requirements. In other words,

Option 6 has produced the largest power savings of 31.93% in respect to the power
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requirements in the base case. The major reductions in power requirements in this option
were not only because of the incorporation of multistage compressions with intercoolers
and expander, but also due to the reduction of mixed refrigerant flowrate resulting from
the optimized compositions. Therefore, Option 6 is being selected as the best power

reduction scheme for the MRC liquefaction process.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This work has achieved two main objectives in the analysis of optimal power reduction
schemes for an LNG plant. The first objective was to simulate and reconcile an
incomplete MRC liquefaction process flowsheet for the production of LNG. The second
objective was to analyze and design the power reduction schemes. The first objective was
very critical because it provided complete establishments of mass and energy balances of
the liquefaction process. Having established the mass and energy balances, the second

objective then was possible to be achieved.

The incomplete process data of MRC process flowsheet has been simulated and
reconciled successfully. A method using the combination of the structural decomposition
for complex units and the systematic estimations for unknown process data were
employed. The simulation works were done via HYSYS and the results were validated
against the data published in literature (Cao et al., 2005). After five iterations, the trial
with the smallest value of Sum of Square Error (SSE) of 0.002% was selected as the best
reconciled flowsheet. Consequently, the reconciled flowsheet has the highest possibility
to represent the MRC process flowsheet done by Cao et al. (2005). Furthermore, almost
all of the process data gained from the best reconciled flowsheet were identical to Cao et
al. (2005). |

With the complete process data obtained through simulation and reconciliation, the
analysis and design of the power reduction schemes of the MRC liquefaction process
then could be performed. By using WORK, the current MRC process conditions and
performances have been analyzed graphically and the mixed refrigerant compositions
have been optimized. Moreover, in designing the power reduction schemes by using
HYSYS, the outputs from the graphical presentations about the current MRC process

conditions and performances have been considered, and the optimized mixed refrigerant
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compositions have been utilized. In this work, three power reduction schemes have been
incorporated which include the process expander, the multistage compressions with
intercoolers and the combination of multistage compressions with intercoolers plus the
process expander. Furthermore, designing the proposed power reduction schemes
systematically, each of the schemes, considered as an option, would utilize the mixed
refrigerant compositions in Cao et al. (2005) and the optimized mixed refrigerant
compositions as suggested by WORK. Eventually, six options have been found to
successfully reduce the current power requirements of the MRC liquefaction process for
producing LNG. Since all of the six options will involve investments, each of them
typically needs further economic considerations such as the rate of return (ROR) upon
accepted for industrial application. However in this work, Option 6 has been selected as
the best power reduction scheme since it has contributed the largest reduction of power

requirement of 31.93% as compared to the original MRC scheme.

In summary, it has been realized that the approaches developed in this work can be
applied to the other gas liquefaction process flowsheet. For future work, it is a strong
intention to apply the similar approaches for the flowsheets of natural gas liquids (NGLs)
and the ethylene plants.

63



REFERENCES

Barclay, M. (2005), Natural Gas Liquefaction Process Selection for Emerging Markets,
5" Doha Conference on Natural Gas in March 2™ 2005.

Bourouis, M., Pibouleau, L., Floquet, P., Domenech, S., and Al-Gobaisi, D.M.K. (1998),
Simulation and Data Validation in Multistage Flash Desalination Plants, Desalination 115
(), 1-14.

Cao, W.S,, Lu, X.S,, Lin, W.S., and Gu, A.Z. (2005), Parameter Comparison of Two
Small-Scale Natural Gas Liquefaction Processes in Skid-Mounted Packages, Applied

Thermal Engineering.

CPI (2006), Workshop Module: Low Temperature Processes, Centre for Process
Integration, University of Manchester, UK.

Deng, S., Jin, H., Cai, R., and Lin, R. (2003), Novel Cogeneration Power System with
LNG Cryogenic Exergy Utilization, Energy (29), 497-512.

Dubar, C.A.T. (1999), Liquefaction Process, United States Patents (US 5,916,260),
Assigned to BHP Petroleum Pty Ltd.

Durr, C.A., and Petterson, W.C. (1994), Natural Gas Liquefaction Pretreatment Process,
United States Patent (US 5,325,673), Assigned to M.W. Kellogg Company.

Fischer-Calderon, E. (2003), Self-Refrigerated LNG Process, United States Patent (US
6,564,578), Assigned to BP Corporation North America Inc.

Foss, M.M. (2003), LNG Safety and Security, Center for Energy Economics, Texas.

64



HYSYS Software, Version 3.2 (2003), Aspen Technology Inc.

Lee, G.C. (2000), Optimal Synthesis of Refrigeration Systems, Department of Process
Integration, UMIST, UK.

Leibman, M.J., Edgar, T.F., and Lasdon, L.S. (1992), Efficient Data Reconciliation and
Estimation for Dynamic Processes Using Nonlinear Programming Techniques,
Computers and Chemical Engineering 16 (10-11), 963-986.

Liu, H., and You, L. (1999), Characteristics and Applications of the Cold Heat Exergy of
Liquefied Natural Gas, Energy Conversion & Management (40), 1515-1525.

Mingfang, K., Bingzhen, C., and Bo, L. (2000), An Integral Approach to Dynamic Data
Rectification, Computers and Chemical Engineering 24 (2000), 749-753.

Nogal F.D. (2004), Synthesis of Low Temperature Processes, Centre for Process
Integration, University of Manchester, UK.

Ozyurt, D.B., and Pike, R.W. (2003), Theory and Practice of Simultaneous Data
Reconciliation and Gross Error Detection for Chemical Processes, Computers &

Chemical Engineering 28 (2004), 381- 402.

Remeljej, C.W., and Hoadley, A.F.A. (2004), An Exergy Analysis of Small-Scale LNG
liquefaction Processes, Energy (31), 2005-2019.

Romagnoli, J.A., and Séanchez, M.C. (2000), Data Processing and Reconciliation for

Chemical Process Operations, Academic Press, California.

Sénchez, M.C, and Romagnoli, J.A. (1996), Use of Orthogonal Transformation in Data

Classification-Reconciliation, Computer Chemical Engineering (20), 483-493.

65



Schraa O.J., and Crowe, C.M. (1996), The Numerical Solution of Bilinear Data
Reconciliation Problems Using Unconstrained Optimization Methods, Computers and

Chemical Engineering 20 (1), 727-732.

Shukri, T. (2004), LNG Technology Selection, Foster Wheeler, UK.

Smith R. (2005), Chemical Process Design and Integration, John Wiley & Sons Ltd, UK.
Thomas, E.R., Bowen, R.R., Cole, E.T., and Kimble, E.L. (2000), Process For
Liquefaction of Natural Gas, United States Patent (US 6,023,942), Assigned to Exxon
Production Research.

Tjoa, I.B., and Biegler, L.T. (1991), Simultaneous Strategies for Data Reconciliation and
Gross Error Detection of Nonlinear System, Computers and Chemical Engineering 15

(10), 679-690.

Wang, J. (2004), Synthesis and Optimization of Low Temperature Gas Separation
Processes, Department of Process Integration, UMIST, UK.

WORK Software, Version 2.1, 2006, Centre for Process Integration, University of
Manchester, UK.

Zhou, L., Su, H., and Chu, J. (2006), A New Method to Solve Robust Data Reconciliation
in Nonlinear Process, Chinese Journal of Chemical Engineering 14 (3), 357-363.

66



APPENDIX B

MRC PROCESS FLOWSHEET RECONCILIATION TRIALS

This appendix gives the HYSYS simulation reports for the five MRC flowsheet
reconciliation trials. Equivalent coolers and heaters are representing both of the

Exchanger 1 and Exchanger 2 in the flowsheet.

B.1  MRC Flowsheet Reconciliation (Trial 1)
B.2  MRC Flowsheet Reconciliation (Trial 2)
B.3  MRC Flowsheet Reconciliation (Trial 3)
B.4  MRC Flowsheet Reconciliation (Trial 4)
B.5 MRC Flowsheet Reconciliation (Trial 5)
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APPENDIX C

OPTIMIZATION OF MIXED REFRIGERANT COMPOSITIONS

This appendix gives the WORK simulation report for the optimized mixed refrigerant

compositions.

Refrigerant Composition

Name Mole fraction
1 [Nitrogen ] 6.148936
2 [propane ] 9.797967
3 [Methane ] 0.161750E-13
4 [Ethane ] 8.531569E-61
5 [n-butane ] 0.313883E-13
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APPENDIX D

DESIGN OF POWER REDUCTION SCHEMES

This appendix gives the HYSYS simulation reports for the design of power reduction
schemes of the MRC liquefaction process in producing LNG. Equivalent coolers and

heaters are representing both of the Exchanger 1 and Exchanger 2 in the flowsheet.

D.1  Design of Power Reduction Scheme (Option 1)
D.2  Design of Power Reduction Scheme (Option 2)
D.3  Design of Power Reduction Scheme (Option 3)
D.4  Design of Power Reduction Scheme (Option 4)
D.5  Design of Power Reduction Scheme (Option 5)
D.6  Design of Power Reduction Scheme (Option 6)
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