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ABSTRACT

Data reconciliation can be used for many applications namely as instrumentation

maintenance, plant optimisation, advanced process control and many more. Data

reconciliation is relatively new in Chemical Engineering field. Its applications

especially in oil refineries are limited. Using process models (material balance) as

constraints, data reconciliation enables us to obtain estimations of process variables

by adjusting the measurements. This technique enhances the accuracy of the process

variables as opposed to the measurements themselves.

This project focuses on refinery hydrogen networks. As the new environmental

regulations for low sulfur fuel and heavier crude oil supplies, the refiners have no

option but to really manage their hydrogen networks better. The hydrogen network

management is based on plant data. Unfortunately the inaccurate plant data and

unmeasured process streams cause difficulty in establishing of material balance of

overall systems.

The purpose of this project is to reconcile refinery hydrogen network data specifically

flowrates. A program was developed for linear steady state systems that comprise of

reconciliation of measured flowrates, estimation of unmeasured flowrates and

systematic error detection. The developed procedure is easily executable in Microsoft

Excel which was programmed with Visual Basic.

The output of the program is a reconciled flowrates of a hydrogen network combined

with estimation of unmeasured flowrates. It also gives an indication of the presence of

systematic error in the measurement via Global Testing systematic error detection

technique.



ABSTRAK

Penyelarasan data digunakan untuk pelbagai seperti penyelenggaraan instrumentasi,

mengoptimumkan loji, kawalan proses termaju dan pelbagai lagi. Secara relatifnya,

penyelarasan data adalah baru dalam bidang Kejuruteraan Kimia. Aplikasinya di loji

penapisan minyak juga terhad. Dengan menggunakan model proses (keseimbangan

jisim) sebagai kekangan, penyelarasan data membolehkan pembolehubah proses

dianggarkan dengan mengubah bacaan ukuran. Teknik ini menambah ketepatan

pembolehubah proses berbanding bacaan asal.

Projek ini difokuskan kepada rangkaian hidrogen di loji penapisan minyak.

Memandangkan terdapat peraturan baru yang lebih ketat terhadap kandungan sulfur di

dalam bahan api dan bekalan minyak mentah yang lebih 'berat', para penapis tidak

mempunyai banyak pilihan selain menguruskan rangkaian hidrogen mereka dengan

lebih baik. Pengurusan rangkaian hidrogen adalah bermula dengan data dari loji.

Malangnya,data yang tidak tepat dan tidak diukur menimbulkan masalah dalam

memberikan keseimbangan jisim untuk keseluruhan sistem.

Tujuan projek ini adalah untuk menyelaraskan data untuk rangkaian hidrogen di loji

penapisan terutamanya kadar aliran. Satu aturcara telah didirikan untuk sistem yang

linear dan pada keadaan mantap. Aturcara ini terdiri dari penyelarasan kadar aliran,

penganggaran kadar aliran yang tidak diukur dan pengesanan ralat sistematik.

Program tersebut telah didirikan di dalam Microsoft Excel menggunakan Visual Basic

Programming.

Keluaran dari program ini adalah kadar aliran yang telah diselaraskan dan juga

anggaran kepada kadar alir yang tidak diukur. la juga memberikan gambaran tentang

kewujudan ralat sistematik di dalam ukuran melalui teknik pengesanan ralat

sistematik iaitu ' Global Testing'.
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NOMENCLATURE

a is measurement adjustment

Ax corresponds to the measured variables with mxn dimensions

Au corresponds to the unmeasured variables with mxp dimensions

A ' is transpose of matrix A

D; is diagonal matrix

H is Householder transformation

Ho, null hypothesis, is that no systematic error is present, and

Hi, alternative hypothesis, is that one or more systematic errors are present in the

system.

m is number of unit operations involved

n is number of measured variables

p is number of unmeasured variables

Q is an orthogonal matrix,

Qi is {m x r) matrix subset of matrix Q

Q2 is [m x (m-r)] matrix subset of Q

r is the vector of balance residuals

R is an upper triangular matrix

R/i is (r x r) matrix subset of matrix R

R2 is (r x (« - r) matrix subset of matrix R

u is a nonzero vector of unmeasured variables

u is estimates of variable u

V is variance-covariance matrix when random error is normally distributed with

variance-covariance matrix £.

x is a true value of the measured variable

x refers to reconciled values

y is measured process variables

a is level of significance

X is variance-covariance matrix

e is measurement error

n is permutation matrix (adjusted identity matrix)

X2 is chi-squared distribution. It is used to prove the null hypothesis is true or not.



X2av is the critical value of chi-square distribution at the chosen a level of

significance and v degrees of freedom

y refers to Global Testing function



CHAPTER 1

INTRODUCTION

For a chemical plant, especially an oil refinery, it is essential to monitor and optimize

its performance as it will affect its profitability and flexibility. This very much relies

on the data obtained from the process system. Reliable process data are required for

process control, online optimisation and plant performance monitoring.

In an oil refinery, hydrogen is considered as an essential utility. Hydrogen is mainly

used in hydrotreaters to desulfurise fractions and hydrocrackers to upgrade heavier

fractions into lighter and valuable fractions. As the new environmental regulations for

low sulfur fuel and heavier crude oil supplies, the refiners have no option but to

manage their hydrogen networks better. The failure of managing the hydrogen

network may create bottleneck the refinery productions as a result of hydrogen

shortfall. It also involves capital investments if hydrogen production capacity needs to

be scaled up. On top of that, if more hydrogen needs to be purchased or produced, a

significant increase in operating cost will be introduced.

The above reasoning shows that hydrogen network management is an essential 'task'

in oil refineries.

Hydrogen Network Management is based on plant data. Unfortunately the inaccurate

plant data and unmeasured process streams cause difficulty in establishing of material

balance of overall systems.

It is known that process measurements are inherently contaminated by errors during

the measurement, processing and transmission of the measured signals. It should be

emphasised that errors in measured data often lead to considerable deterioration in

monitoring and measuring plant performance. Moreover, it is a normal practice that

not all streams are measured for either flow rates or compositions. This is due to the

high capital cost of installing instrumentation systems for relatively non-important

streams. However, this makes the balance validation process more difficult and

inaccurate.



The plant data are normally adjusted so that the known errors and measurement noise

can be minimised. Measurement error is the amount by which an observation differs

from its expected value. Errors can be classified as random errors and systematic or

gross errors. Random errors are errors that affect the precision of a set of

measurements. Random error scatters measurements above and below the mean, with

small random errors being more likely than large ones. On the other hand, systematic

errors or gross errors are the undetected mistakes that cause a measurement to be very

much farther from the mean measurement than other measurements. It is also a bias in

measurement which leads to measured values being systematically too high or too low.

All measurements are prone to systematic error. In short, a systematic error is any

biasing effect caused by either methods of observation or instruments used.

In the last 40 years, techniques which will reduce, if not eliminate, the random and

systematic errors have been developed. Data reconciliation is a technique that has

been developed to improve the accuracy of measurement. The main difference

between data reconciliation and other filtering techniques is that data reconciliation

uses process model constraints and obtains estimates of process variables by adjusting

the process measurements to satisfy the constraints. Typical constraints in chemical

plant include mass and energy conservations.

It is logical that the reconciled data are more accurate than the measurement values.

The reconciled data are also more consistent as they satisfy the process constraints.

However, in order for data reconciliation to be effective, there should be no

systematic error presence in the measurement. Therefore, gross error detection is used

concurrently with data reconciliation. It is developed to identify and eliminate

systematic errors and thus improve the accuracy of the measured variables. The

combination of data reconciliation and systematic error removal is referred as data

rectification.

In this project, both techniques will be applied in a case study of a hydrogen network

in an oil refinery.



1.1 Measurement Error

Measurement Error is the amount by which an observation differs from its expected

value. In many processes, errors, in process data can cause deterioration in plant

efficiency. Errors, e, can be defined as follows:

e = y-x (1.1)

where y is measured process variables and x is a true value of the measured variable.

Therefore, a true value of measured variable, x , can be expressed as

x =y + a (1.2)

where a is measurement adjustment. Measurement adjustments are the differences

between the measured and estimated variables. Measurement adjustments can be

determined by satisfying the process model constraints.

Data can lead to significant deterioration of plant performance. Small errors can cause

a significant decline in the control system performance, while the large errors can

nullify the achievable gains via optimisation. The biggest concern is the plant operator

might operate the plant in the unsafe operating regime as a result of measurement

error.

1.1.1 Systematic Error

By definition, systematic errors are the undetected mistakes that cause a measurement

to be very much farther from the mean measurement than other measurements. It is

also a bias in measurement which lead to measured values being systematically too

high or too low. Among the sources of systematic errors are fouling of the sensors,

wear and tear, solid deposition on the probe, corrosion on the sensors, miscalibration

and instrument malfunction. Systematic error occurs less frequent as opposed to

random error. However the magnitude is much larger.



Figure 1.1 below shows the type of systematic errors. Figure 1.1 (a) shows the profile

of bias. Bias is consistent or repeatable offset between the correct data and corrupted

data. The profile of complete failure of the instrumentation is shown in Figure 1.1 (b).

Figure 1.1 (c) shows the profile of drifting. Drifting normally occurs when instrument

or test-system performance changing after a calibration has been done. Figure 1.1 (d)

shows a profile of precision degradation. It is mostly caused by uncertainty in the

determination of mechanical parameters

Correct Data

(a) Bias

l
•

*

4

♦

•

h.
♦

:'. X
' (c) Drifting

Corrupted Data

. J\

(b) Complete Failure

/»•'....♦'

! (d) Precision Degradation

(Source: Narasimhan and Jordache, 2000)

Figure 1.1: Type of Systematic Errors

1.1.2 Random Error

Random errors are errors that affect the precision of a set of measurements. Random

error scatters measurements above and below the mean. Small random errors are

being more likely than the larger ones. Random errors normally occur during

networks transmission, power supply fluctuation, signal conversion noise, filtering

and changes in the ambient condition. It is difficult for us to predict the sign and the

magnitude of the error. Therefore, we have to use the probability distribution to

characterise random errors.



1.2 Data Rectification

Data rectification is the task of removing errors from measured data. It is an important

task since most process operation tasks rely on the rectified data. It involves

estimation of the underlying noise free variables from noisy measurements.

Unmeasured variables and model parameters may also need to be estimated along

with rectification. It may be posed as the following optimisation problem.

Filters, both analog and digital are used to attenuate the high frequency noise. Large

systematic errors are detected using data validation check. The check is done based on

the measured data and rate of changing as per predefined limits.

A smart sensor is used to perform diagnostic check. The main functions of the smart

sensor are to check the hardware problem and to check whether the data are

acceptable or not. Normally the outliers' detection is performed by using the SQC

(Statistical Quality Control) test.

All these activities are part of data rectification process. In general data rectification is

applied to each measured variable separately in contrast with data rectification which

is done with respect to inter-relationship with other process variables. Therefore the

consistency of the data is only assured via data reconciliation. However, data

rectification must be used as the first step to reduce random errors.

1.3 Data Reconciliation

In short, data reconciliation can be defined as an adjusting process of data to satisfy

process model constraints such as material and energy balances. The element of

constraints is what differentiates data reconciliation from data rectification. It enables

the estimation of process variables by adjusting the measurements. This technique

improves the accuracy of the process variables as opposed to the measurements

themselves. Good data reconciliation is when there is no systematic error in the

measurements and uses the process models as the constraints. Therefore, there is

always a need to have a systematic detection procedure in data reconciliation.



In an industrial process, data reconciliation is performedjust before the application of

parameter estimation, simulation, optimisation, advanced process control, accounting

and instrumentation maintenance. Figure 1.2 shows various operations and the

position occupied by data reconciliation in data conditioning for online industrial

applications.

In order to reduce the gross and random errors, several methods have been developed.

These include the analog and digital filters which can be used to ease the affects of

high frequency noise. On top of that, with the availability of smart sensors, it is now

possible to determine whether the measured data is acceptable and whether there is

any hardware problem. A more recent technique such as Statistical Quality Control

(SQC) test is able to detect significant errors. SQC is used to detect significant errors

or outliers in process data (Narasimhan and Jordache, 2000). These three methods are

usually applied to each variable individually. Hence, they do not ensure consistency

of the data with respect to the interrelationships between different process variables.

Process data in industrial process can be used in several purposes especially for

continuous process improvement. Therefore, data acquisition and historian software is

required to gather and archive the plant data. Next in data collection and system is

data retrieval process. It is a technique and process of searching, recovering, and

interpreting information from large amounts of stored data. Data validation and

reconstruction is a process of checking the data for correctness, or the determination

of compliance with applicable standards, rules, and conventions. It involves data

restoration by analyzing the original data. Next in online data collection and

conditioning system is data filtering. It selects data that are matched to the pre-set

conditions. Others are either deleted or neglected from the users. Prior to the

applications of data reconciliation is data reconciliation. A great detail discussion of

data reconciliation will be given in later sections.



Industrial Process

i
Process Data

V

Data Acquisition/Historian

<'

Data Retrieval

i
Data Validation & Reconstruction

I
Data Filtering

1
Data Reconciliation

i
Applications

Parameter Simulation Optimisation Advanced Accounting Instrument Problem
Estimation Control Maintenance Identification

Figure 1.2: Online Data Collection and Conditioning System

(Reference: http://.che.iitm.ac.in/~naras/ch544/introDRGED.pdf

(Date last visited: 16th February 2007))

1.4 Problem Classifications

If a single variable is considered, the problem is a linear problem. For instance, we

only consider flowrate as the only variable for the system.

On the other hand, function of two variables is bilinear if it is linear with respect to

each of its variables. For example, flowrates and compositions or enthalpies are

considered as variables, the problem now becomes a bilinear problem. In practice,

data reconciliation considers component balance and energy balance other than mass

balance alone. These additional constraints transform a linear problem to bilinear if



two variables are involved. It can also transform a linear problem to a non-linear

problem if more than two variables are involved.

On top of that, if more than two variables are taken into account, then the problem is

termed as a non-linear problem. For example, if we consider equilibrium relationship,

physical properties and other correlations, the problem now has more than just two

variables. Therefore, it is classified as a non-linear problem.

1.5 Refinery Hydrogen Networks

Refinery Hydrogen Network is the distribution path of the supply and demand of

hydrogen in a refinery. The major hydrogen supply in a refinery is typically from a

steam reforming process and/or a catalytic reforming process. This processes produce

hydrogen as by-product. The hydrogen demands come from various processes in the

refinery such as hydrocracking and hydrotreating. However, external supply of

hydrogen could be considered to refineries if the supply from the steam reformer and

the catalytic reformer is not enough to meet the demand. This supply-demand

relationship of hydrogen in refineries creates the refinery hydrogen networks.

Figure 1.3 shows an oil refinery hydrogen network that consists of a single producer

and a single consumer. The system shown is the hydrogen line at both producer and

consumer. The producer in Figure 1.3 is denoted as unit 400, namely as naphtha

catalytic reformer. The hydrogen produced in unit 400 is sent to the hydrogen header

before distributed to its consumers. The only consumer shown in the figure is diesel

desulphurisation unit and it is denoted as unit 300.
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1.6 Problem Statement

Due to strict environmental regulations and heavier crude oil supply, hydrogen

becomes a crucial utility in refineries. Therefore, hydrogen demand has increased

significantly and need to be managed wisely. The introduction of Hydrogen Network

Management helps the refiners to identify the best route to an optimised hydrogen

network. However, the constraints are not all process data are reliable. On top of that,

some streams are not even measured. This caused difficulties to the refiners to

implement Hydrogen Network Management. In order to overcome this issue, data

reconciliation is suggested. It helps the refiners to execute hydrogen network

effectively.

In this work, a linear data reconciliation program has been developed. An existing oil

refinery hydrogen network is selected as a case study. Plant data collected are used as

a base case. The program will give the refiners the linearly reconciled flowrates of

refinery hydrogen network. Therefore, the true state of the network can be pictured

using the program.

1.7 Objectives of the Study

The main objective of this project is to study data reconciliation and systematic error

techniques for linear systems. A systematic approach of data reconciliation is then

developed. The developed technique is later applied to a case study of a refinery

hydrogen networks.

1.8 Scope of the Study

This project is bounded to the following boundaries:

- This work only considers reconciliation of data for steady state process.

- Only one variable is taken into account ie. flowrate and this resulting in a linear

system.

- Only the material balance is considered as the main constraint.
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1.9 Structure of Dissertation

This dissertation consists of five chapters. A brief overview of each chapter is as

follows.

Chapter 1

An overview of data analysis technique and definitions is presented. A brief

discussion of the topics and definitions are given in this chapter. In order to give

better and comprehensive understanding, terminologies and jargons that will be used

in the thesis will be provided. As the case study of this project is a hydrogen network

of a refinery, a brief overview of the system is given in this chapter along with the

objectives and scope of this research.

Chapter 2

Current and future trends in the data reconciliation directions are discussed in Chapter

2. In the early part of this chapter, the focus is on the least squares and linear data

reconciliation concepts and the histories behind them. This is to acknowledge the

contributions made by some prominent researchers as their findings and works are the

basis of this study. In the later section, the systematic error detection and elimination

methods are reviewed. This is part of data rectification but apart from the data

reconciliation. In this chapter, the attempt of applying data reconciliation in the

refinery hydrogen networks will also be presented.

Chapter 3

In Chapter 3, the methodology, procedure, underlying assumptions and application of

the linear data reconciliation technique is discussed. In this chapter, specific focus is

given on the steady state data reconciliation for linear systems. On top of that, the

procedure of detecting systematic error will be discussed briefly.

Chapter 4

A case study of a refinery hydrogen networks is used for the method developed. The

method was applied to a real refinery hydrogen networks. At first, the linear data

reconciliation is considered. Then the systematic error detection technique is applied.
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Chapter 5

Chapter 5 presents the conclusions from the work done in this dissertation. Some

suggestions are also made for the future work.
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CHAPTER 2

LITERATURE REVIEW

In order to achieve an excellent process control, online optimization and plant

performance monitoring, reliable information and data supplied by line instruments

and sensors must be ensured. As availability of reliable and low cost sensors is very

low, the combined sensors with digital data acquisition are more preferable nowadays.

Therefore, the method of data monitoring and reconciliation has gained importance in

ensuring reliable data.

Data reconciliation is a procedure of adjusting measured data so that they obey the

constraint of the conservation laws ie. mass and energy balances (Ragot et al., 1990).

The general assumption of data reconciliation is measurement errors. These errors

must be eliminated before being fed to controllers and optimizers.

Inconsistent and inaccurate data cause a misleading and confusing picture of the

actual situation of the plant condition. On top of the difficulty to eliminate the errors,

some of the variables are not measured due to feasibility issues and cost

considerations (Kim et al., 1996).

2.1 Least Squares

The method of least squares has the rule that the sum of the squares of the errors

should be made a minimum to obtain the adjusted values of observed quantities.

Andrien-Marie Lagendre published this method in 1805 in Paris titled "New Methods

for the Determination of Comet Orbits" (Merriman, 1877).

In 1809, Carl Friedrich Gauss, however, claimed his method of least squares was

accomplished earlier in 1795 in estimating the Ceres asteroid trajectory (Merriman,

1877).
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2.2 Data Reconciliation

Data reconciliation has received a great attention in the chemical engineering

literature. It started by Kuehn and Davidson in 1961 where the use of Lagrange

multipliers for the case where all component flow rates were measured. These authors

were working in IBM Corporation. They formulated the problem of adjusting flow

and temperature measurements on a crude oil distillation tower to satisfy steady-state

material and energy balances. Their main idea of the publication was to correct the

measurements in order to make them consistent with a good model, commonly the

conservation law (Tariq, 2006).

The statistical tests have been constructed for detection of systematic errors. The

global and collective tests by Reilly and Carpani in 1963 and later by Ripps in 1965

are based on the fact that the objective function of the data reconciliation problem, at

the minimum is distributed as a variable if the measurements are normally distributed

about their true values. The magnitude of the data reconciliation objective function is

then compared to the tabulated value for a chosen confidence level and for degrees of

freedom equal to the number of remaining balances. Reilly and Carpani 1963

formulated the collective test of all the data and the univariate test for constraints,

based on normal distribution. They also showed that the individual imbalance errors

could be tested against the univariate normal distribution. Ripps then defined test

statistics which would directly reveal systematic errors in both imbalances and in

adjustments and would avoid trial and error deletion in turn of suspect measurements

(Crowe, 1996).

Mah et al. (1976) mentioned that systematic errors in raw process data that errors

have already been eliminated from the raw process data by a prior treatment and that

the pretreated data are now subject to a reconciliation procedure to yield consistent

estimates.
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Kretsovalis and Mah (1987) focused on the accuracy of the estimates obtained by data

reconciliation. They also used a combinatorial search based on the effect of the

variance of measurements on the precision of key variables.

Romagnoli and Stephanopoulos (1980) proposed a systematic strategy for recursively

performing data reconciliation by sequentially adding measurements into the

calculation. The proposed strategy reduces the size of the data reconciliation problem

significantly, even for large-scale chemical processes, is computationally simple and

it conforms to the general process of variable monitoring in a chemical plant.

In the presence of unmeasured variables several methods exist to obtain a matrix of

only redundant measurement. Crowe et al. (1983) presented a method of directly

eliminating the unmeasured quantities in linear constraints, called 'matrix projection',

prior to reconciling the measurements. The method was later extended to a bilinear

case where some concentrations are measured in streams where the total flow is

unmeasured (Crowe, 1986). No nonnegative constraints were imposed on the flow

rates and concentrations, nor were upper bounds imposed. When a negative value

arose, this was taken as non-statistical evidence that the data contained systematic

errors.

Pai and Fisher (1988) proposed a replacement of old derivatives by Crowe so that the

rate of convergence can be improved without repeatedly evaluating the derivatives.

This method introduced Broyden-type update.

Kalitventzeff and Joris (1987) proposed a procedure for classifying variables and

measurements. This is done by permuting rows and columns of the projected matrix

corresponding to the Jacobian matrix of the model equations. The mathematical

drawback of this procedure is that the Jacobian matrix of a sparse matrix tends to be

singular and thus fails to determine the indeterminable variables.

Swartz (1989) used the QR decomposition in the matrix projection. He used the

orthogonal factorization in context with successive linearization techniques to

eliminate the unmeasured variables.
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Madron (1992) proposed classifying measured and unmeasured variables of linear

systems according to pre-established criteria of "required" and "non-required."

Unmeasured variables were later ordered from "hardly measured" to "easily

measured". Unoptimal structures are found by means of matrix decomposition and an

elaborate column permutation procedure.

Sanchez and Romagnoli (1996) utilised the QR factorization to decompose and solve

linear and bilinear data reconciliation problems. The decomposition provides

additional insight in identifying structural singularities in the system topology,

allowing the problem to decompose into lower dimension sub problems.

Kelly (1998) used different matrix projection techniques and highlighted two

relatively simple approaches to determine the matrix projection first introduced by

Crowe et al. (1983) to solve data reconciliation problems when unmeasured variables

exist. He compared the method of RMIP (Recursive Matrix Inversion by Partition)

and MCF (Modified Cholesky Factorization). He then concluded that QR

decomposition method was the most efficient of all approaches even if the matrices

were sparse.

Romagnoli and Sanchez (2000) introduce the first unified approach of data

reconciliation. They bridge the theory and practical aspect through numerous case

studies. An introduction to the modern data reconciliation was presented together with

in-depth coverage of the relevant theory of data reconciliation.

2.3 Systematic Error Detection

There is always a possibility for measurements to contain systematic error due to

miscalibration, instrument malfunction and sensor corrosion. Therefore, it is a normal

practice in industry to perform systematic error detection prior to data reconciliation

process.

The Global detection test was first proposed by Reilly and Carpani in 1963. They

formulated the collective test of all the data and the univariate test for constraints,
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based on normal distribution. These data are compared to the optimal value of the

objective function in the mathematical model of data reconciliation to an appropriate

tabulated chi-square value. They also proposed the univariate constraint test, which

examines each residual of the process constraints (Narasimhan and Jordache, 2000).

Ripps in 1965 proposed a method which eliminates the measurement that renders the

largest reduction in a test statistics until no test fails. This situation is for the case of

multiple systematic errors with serial elimination. In this method, the test function and

variance of the resulting system have to be recomputed after deleting a new

measurement (Crowe, 1996).

Romagnoli and Stephanopolous (1981) developed a systematic strategy to locate the

source of systematic error. The method also rectifies the systematic and biased

measurement errors in a chemical process. The proposed strategy reduces the size of

the data reconciliation problem significantly, computationally simple and conforms to

general process of variable monitoring in a chemical plant.

Global test and measurement test were presented by Almasy and Sztano (1975). They

proposed a measurement test that possesses maximum power test when there is only

one systematic error in the measurements, and is called the MPT. The MP constraint

tests were also proposed by Crowe (1989, 1992).

The Constraint and Nodal Test was presented by Mah et al. (1976). This method

requires linear constraints and measured variables. The unmeasured variables must be

removed from the constraints. The test is based on the constraint residual values

divided by standard deviation of the residuals.

The univariate measurement test, which examines each measurement adjustment, was

proposed by Mah and Tamhane (1982). The statistical test based on the adjustment

distribution by which first process data are reconciled. The reconciled data are used to

examine if a measurement contains systematic error. They named the statistical test as

Measurement Test (MT). The MT looks at the adjustment of each measurement to

identify and rank the measurement that may be faulty. This method is based on the

measurement adjustment divided by its standard deviation.
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Narasimhan and Mah (1987) proposed a test for Systematic Error Detection named

Generalised Likelihood Ratios. GLR is equivalent to Measurement Test (MT). This is

because, GLR is the square of MT. it has the capability to identify the location of the

error and differentiate the types of the error such as instrument related error or process

model related error.

Rollins and Davis (1992) introduced the Unbiased Estimation Technique. This

technique is limited to normally distributed errors, steady state and linear constraints.

As a start, global test is conducted and only then the Unbiased Estimation Technique

is performed. It is used to detect the number and locations of errors. The approach has

also been applied to bilinear system.

Principal Component Analysis (PCA) was introduced by Tong and Crowe (1996). In

this technique, a set of correlated variables is transform into a new set of uncorrelated

variables. PCA is a very effective method for multivariate data analysis.

In summary, the methods mentioned earlier are applied to linear system. In order to

solve the non-linear problem, a linearization technique is required. However, this will

introduce new errors to the system.

Mei et al. (2005) developed an NT-MT combined method based on nodal test (NT)

and measurement test (MT) for gross error detection and data reconciliation. The NT-

MT combined method makes use of both NT and MT tests and this combination helps

to overcome the defects in the respective methods. It also avoids any artificial

manipulation and eliminates the huge combinatorial problem that is created in the

combined method based on the nodal test in the case of more than one gross error for

a large process system.

2.4 Estimation of Variances

Most techniques for process data reconciliation and rectification start with the

assumptions that the measurement errors are random variables obeying a known
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statistical distribution. Direct method of estimation of variance covariance matrix is

applied for a truly steady state problem. For a non-steady state process and for any

processes that cannot be assumed as steady state, an indirect method of estimating

variance covariance matrix is performed.

Almasy and Mah (1984) derived a method of estimating variance which makes use of

the constraint residuals computed from available process data. They introduced a

method that is suitable for non-linear problem. They overcome this issue by

incorporating additional information of the process namely as linear balance equation.

A computation procedure and necessary conditions for the existence of a solution are

given. The procedure has been implemented on a computer and several simulation

experiments were reported in their paper. However, for application of this method is

sufficient spatial redundancy in the measurements.

Five years later, Darouach et al. (1988), proposed a method for estimating a diagonal

covariance matrix based on the maximum likelihood estimator, material balance

constraints and the statistical properties of their residuals. Keller et al. (1992) applied

Darouach et al.'s method to non-diagonal covariance matrix. They presented an

analytical algorithm based on the deduced from statistical properties of material

balance constraints in order to estimate the covariance matrix of the measurement

errors.

Some methods were known to be very sensitive to the outliers in the measurements

resulting in error during matrix covariance estimations. Chen et al. (1997) came out

with a robust method of estimating covariance matrices. His method was based on M-

Estimator method introduced by Huber in 1964. In this method, each vector of the

measured variables is given a weight from zero to one which reflects its distance to

the median. As a result of that, the effect of the outliers is minimized.

Morad and Svrcek (1999) proposed a new method to measure errors in covariance

calculation. The RDCE, Robust Direct Method for Covariance Estimation, which is

an extension to Chen et al. (1997) uses M-Estimator to reject the outliers and tune the

measured values for deviations from steady state.



20

Darouach et al (2002) addressed the problem of minimum variance estimation for

discrete-time time-varying stochastic systems with unknown inputs. The objective is

to construct an optimal filter in the general case where the unknown inputs affect both

the stochastic model and the outputs.

2.5 Dynamic Data Reconciliation

Although reconciliation of steady-state process data is routinely applied in industrial

practice, the theoretical understanding of the problem and its adequate formulation in

a dynamic setting is still not mature.

Data reconciliation for linear dynamic systems was treated by Gertler and Almasy

(1973). They showed that the dynamic material balance model can be represented by

continuous-state space equations or after discretisation by a sampled input-output

representation.

Karjala and Himmelblau (1992, 1994, and 1996) proposed a procedure to overcome

auto correlated measurement error and bias in process measurement problem in data

rectification. They proposed the use of RNN (Recurrent Neural Network) and EKF

(Extended Kalman Filter) in 1992. The recurrent neural-network approaches to

nonlinear, dynamic data rectification presented in this and previous work provide an

attractive alternative to more traditional approaches.

2.6 Data Reconciliation and Refinery Hydrogen Network

Data reconciliation has been applied to many areas such as petroleum refining, gas

processing, pulp and paper industries and pyrolysis reactors in the manufacturing

ethylene and propylene (Weiss, 1995).

For refinery hydrogen networks, Bussani et al. (1995) developed Online

Reconciliation and Optimisation (ORO) package. The package managed to recover

the main errors in plant measurements and obtain true picture of hydrogen plant
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performance. The approach used in this technique is Sequential Modular (to solve

simulation problem) and Black Box method (to obtain the optimality of the condition).

Suarez-Chavez (2005) had done steady state data reconciliation of a refinery. He did

linear data reconciliation of the refinery hydrogen network.

Tariq (2006) developed techniques for linear and bilinear data reconciliation. The

method developed uses QR Decomposition for linear problem and unconstrained

optimization method for bilinear problem. He used an existing refinery hydrogen

networks that had inconsistent data.

2.7 Summary

Data reconciliation has been applied in the industries as a mean of obtaining accurate

and consistent data. In the last four decades, it has been developed progressively in

chemical engineering field. DATACON (SimSci-Esscor, 2007), SIGMAFINE

(OSIsoft Inc, 2007) and VALI (Belsim S.A, 2007) are the examples of data

reconciliation commercial software available as a result of this development.

Latest technique of data reconciliation is "bilinear data reconciliation using

unconstrained optimisation technique". Q-R decomposition is applied as the mode of

calculations. Among the researchers who first applied this method are Swartz (1989),

Sanchez and Romagnoli (1996) and Kelly (1998). Later Suarez-Chavez (2005) and

Tariq (2006) applied the same method for different applications.
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CHAPTER 3

METHODOLOGY

Data reconciliation is a technique that has been developed to improve the accuracy of

measurements by reducing the effect of random errors in the data. Data reconciliation

explicitly makes use of process model constraints and obtains estimates of process

variables by adjusting process measurements so that the estimates satisfy the

constraints.

3.1 General Data Reconciliation Methodologies

The reconciled estimates are expected to be more accurate than the measurements.

They are also consistent with the known relationships between process variables as

defined by the constraints. Data reconciliation will be effective if there are no

systematic errors either in the measurements or in the process model constraints.

Systematic error detection is incorporated with data reconciliation that has been

developed to identify and eliminate systematic errors. Thus data reconciliation and

systematic error detection are applied together to improve accuracy of measured data.

Generally, in data reconciliation, the first activity involved is defining the scope or the

boundary of the system of interest. The input-output of the system, including the

streams and unit operations are identified. Then, the variables of the system such as

flowrates and composition are classified into two categories, namely measured and

unmeasured variables.

The next step is systematic error detection of the measurements, reconciliation of free

measured variables producing bias-free variables and elimination of unmeasured

variables are carried out. This exercise requires a process model, for example material

balance, to be fed.
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Figure 3.1 below shows the general data reconciliation activities. Identification and

definition of the problem are the first activity in the process. Next, available plant data

are gathered and analysed. This is followed by classification of the variables. The

main activity of is to perform linear data reconciliation. In order to do that, QR

decomposition need to be done. The next activity is, estimation of unmeasured

variables or in this case flowrates. Process models (material balance) are used as

commonly used as constraints. The presence of systematic error can be detected at the

last stage of the process.

Identify and Define
the Problem

T

Analyse the Available Plant Data

T

Classify Available Variables

T
Perform

QR Decomposition &
Linear Reconciliation

T

Estimate the Unmeasured

Flowrates

I

Carry Out Systematic Error Detection

y^

Process Models

as Constraints

Figure 3.1: General Data Reconciliation

Data reconciliation can be categorised as either linear or non linear data reconciliation

as well as steady state or dynamic data reconciliation. For this project, steady state

linear data reconciliation is developed. Figure 3.2 shows graphically the categories of

data reconciliation.
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Figure 3.2: Classes of Data Reconciliation

Variables are further classified as redundant or non redundant measured variables and

either observable or unobservable unmeasured variables. Figure 3.3 shows the classes

of variables. Redundant variable is a measured process variable that is over-

determined if it can also be computed from the balance equations and the rest of the

measured variables. On the other hand, non-redundant variable is a measured variable

that cannot be computed from the balance equations and the rest of the measured

variables.

On top of that, the unmeasured variables can be grouped as observable or non-

observable variables. Observable variable is unmeasured variable that is determinable

if it can be evaluated from the available measurements using the balance equations.

This is in contrast with unobservable variable that is indeterminable if it cannot be

evaluated from the available measurements using the balance equations (Romagnoli

and Sanchez, 2000).
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Figure 3.3: Variable Classifications

Unmeasured variables can be eliminated from the reconciliation model by matrix

projection. A reduced model is obtained which can be used to reconcile the measured

variables.

3.2 Linear Data Reconciliation

Linear data reconciliation is the simplest data reconciliation which involves a linear

model. Vector notation is normally used because it provides a compact representation

and allows powerful concepts from linear algebra and matrix theory to be exploited.

3.2.1 Linear System with Measured and Unmeasured Variables

A system, which consists of measured and unmeasured variables are usually solved in

two sub-problems. The first will be the reconciliation of the measured variables and

the second is the determination of the unmeasured variables.

The variables are classified into two sets. They are the vector x of measured variables

and the vector u of unmeasured variables. The measurement model is still given by

y =x + e (3.1)
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where y is a vector of n measurements, x is the corresponding vector of true values of

the measured variables and s is the vector of unknown random errors. While the

objective function is given by

Minx(y-x)TZ'(y-x) (3.2)

where J^is variance-covariance matrix. It contains information about the accuracy of

the measurements and the correlations between them. Equation 3.2 is equivalent to

normal least square problem used in regression.

Min I (y-x)2 (3.3)

In reality, some measurements are more accurate than the others. In order to consider

the accuracies, weighted least square objective as a more general criterion given by

Mini, W-, (y-x)2 (3.4)

Equation 3.3 can also be written in the form of

Min x (y-x)TW(y-x) (3.5)

By replacing the W(weightage) term with Z' in equation 3.5, the objective function

of linear system with measured and unmeasured variables can be formed. In a nutshell,

the objective function given in equation 3.2 has a similar meaning with normal least

square problem but it is written in different form to accommodate the variance-

covariance matrix, Z (information about the accuracy of the measurements).

The estimates are also required to satisfy the constraints (3.1). However, the

constraints have to be recast in terms of both the measured (x) and unmeasured («)

variables. The constraints can be represented in general by

Axx + Auu = 0 (3.6)
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where Ax corresponds to the measured variables with m x n dimensions, Au

corresponds to the unmeasured variables with mx p dimensions, m is number of unit

operations involved, n is number of measured variables and p is number of

unmeasured variables.

Each row corresponds to a constraint. It can be easily verified that for a flow

reconciliation problem, the elements of each row of matrix A are either +1, -1 or 0,

depending on whether the corresponding stream flow is respectively an input, output

or not associated with the process unit for which the flow balance is written.

The unmeasured variables, u, has to be eliminated from equation (3.6) using suitable

linear combinations of the constraints. This is equivalent to pre-multiplying the

constraints by a matrix P, also known as a projection matrix. The matrix P should

satisfy the property

PAu=0 (3.7)

Pre-multiplying equation (3.7) by matrix P, we get the reduced set of constraints

involving only measured variables as

PAjc=0 (3.8)

The number of columns of P should clearly be equal to the number of constraints, m.

As many independent rows as possible are constructed for P which satisfy the

property shown in equation (3.8).

3.2.2 QR Decomposition

In linear algebra, the QR decomposition is a decomposition of a matrix into an

orthogonal and a triangular matrix. The QR decomposition is often used to solve the

linear least squares problem. Least Square method is a mathematical optimisation

technique that when given a series of measured data, attempts to find a function which

closely approximates the data. This process is also known as best fitting. It attempts to
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minimize the sum of the squares of the ordinate differences or residuals between

points generated by the function and corresponding points in the data.

The QR decomposition of a matrix is a decomposition of general rectangular matrix A,

defined as:

AP = QR (3.9)

where Q is an orthogonal matrix, R is an upper-triangular, and P is a permutation

matrix. Permutation matrix is a matrix that has exactly one entry 1 in each row and

each column and O's elsewhere.

A QR decomposition object is constructed from a general rectangular matrix. Once an

object exists, there are a variety of member functions that can be used to extract its

components and to use the object for various operations.

The QR decomposition of a matrix is a decomposition of the matrix into an

orthogonal and a triangular matrix. The QR decomposition is often used to solve the

linear least squares problem. The QR decomposition is also the basis for a particular

eigenvalue algorithm, the QR algorithm.

There are three methods for QR decomposition namely as Givens transformations,

which is based on plane rotations, Gram-Schmidt orthogonalisation and Householder

transformations (Olver, 2006).

The following are the brief discussions on Givens transformation and Gram-Schmidt

orthogonalisation. As this project uses Householder transformations, a detail

discussion on this method is given in the next section.

Givens transformations technique computes QR decompositions using a series of

Givens rotations. Each rotation zeros an element in the subdiagonal of the matrix,

forming the R matrix. The concatenation of all the Givens rotations forms the

orthogonal Q matrix. In practice, Givens rotations are not actually performed by

building a whole matrix and doing a matrix multiplication. A Givens rotation
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procedure is used instead which does the equivalent of the sparse Givens matrix

multiplication, without the extra work of handling the sparse elements. The Givens

rotation procedure is useful in situations where only a relatively few off diagonal

elements need to be zeroed, and is more easily parallelized than Householder

transformations.

On the other hand, Gram-Schmidt orthogonalisation method uses the concept of

Gram-Schmidt process. The Gram-Schmidt process is one of the premier algorithms

of applied and computational linear algebra. Gram-Schmidt process is a method for

orthogonalising a set of vectors in an inner product space, most commonly the

Euclidean space.

The Householder transformation has been selected for the Linear Data Reconciliation

Program developed in this work. It is chosen because it is stable and easy to code in

Visual Basic Programming (Gunter and Van De Geijn, 2001).

3.2.2.1 Householder Transformation

Alston Scott Householder introduced the Householder transformation in 1958. It can

be used to solve QR decomposition as described in the QR algorithm of a matrix,

bringing the matrix A to upper Heisenberg matrix form with a finite sequence of

orthogonal similarity transforms. Over general inner product spaces, this is known as

the Householder operator.

In mathematics, a Householder transformation in 3-dimensional space is the reflection

of a vector in a plane. In general Euclidean space it is a linear transformation that

describes a reflection in a hyper-plane (containing the origin).

By Householder transform we mean a transformation matrix that has the form of

H=I-2^r- (3.10)
u u
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where u is a nonzero vector. Transformation changes an arbitrary vector v into a

multiple of a unit vector.

^

Hv = = aei (3.11)

vOy

We get the transformation vector u from the formula

u=v- aet, a =±v | (3.12)

There is no need to save the whole matrix H- vector u and constant ot define the

transformation. The Householder is used in QR Decomposition by transforming

repetitively each column of A to get upper triangular matrix

R = HnHn_r..H]A (3.13)

Matrix HI is the transformation matrix of the first column of A, matrix H2 the

transformation matrix for the last n-1 elements of the second column and so on. The

product of HI, H2...Hn forms the orthogonal matrix Q.

Q = HlH2...Hn (3.14)

3.2.2.1.1 Example of Calculations Using Householder Transformation

The following is the solved example of a matrix, A, using Householder transformation

of QR decomposition.

Assuming matrix A is given as the following.



'12 -51 4 "\

6 167 -68

-4 24 -41

First, a reflection that transforms the first column of matrix A need to be found.

a,=(l2,6,-l)r toflaje, =(l4,0,0)r

Now, u - x - ae]

And v =

Here, a = 14 and x =a, = (l 2,6,-4)

Therefore,

u=(-2,6,-4)r and v=j={-U,2)r,

and then

'-0

3

V2y

H,=I-
14Vl4

(-1 3 -2)

M -3 2 >

-3 9 -6

2 -6 4 y

' 6/ 3/ -2/^
/7 /7 /7
3/ - 2/ 6/
/7 /7 /7
- 2/ 6/ 3/

v '1 /I j
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Now:

H,A =

'14 21 -14^

0 -49 -14

0 168 -77
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At this point, a triangular matrix is almost found. Only (3, 2) entry need to be zeroed.

Take the (1, 1) minor, and then apply the process again to

^-49 -14^

168 -77
A'=MU =

By the same method as above, the matrix of the Householder transformation is

obtained after performing a direct sum with 1 to make sure the next step in the process

works properly.

//,

1 0

o -I

0 24Av

Now,

Q = H,H2 =

0

24/
25 725

V
25 725

f 6/ -69/ 58/ A
7l /175 7175
3/ 158/ -6/
77 7X75 7175
-2/ 6/ 33/

V /7 735 735 j

'14 21 -14^

0 175 -70R= H2HXA = QTA

V
0 0 -35

The matrix Q is orthogonal and R is upper triangular, so A = QR is the required QR-

decomposition.
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3.2.3 Construction of Projection Matrix

There are several different matrix methods for the construction of the projection

matrix. However, probably the most efficient method is to use the QR factorisation of

the matrix Au. Such a method was first applied to data reconciliation solving by Stoks

et al. (1994) and recently utilised by Sanchez and Romagnoli (1996) to decompose

and solve linear and bilinear data reconciliation problems.

A QR decomposition of a real square matrix A is a decomposition ofA as

A=QR (3.15)

where Q is an orthogonal matrix. An orthogonal matrix Q is such that it obeys

QTQ=Di (3.16)

where D, is diagonal matrix and R is an upper triangular matrix

More generally, we can factor a complex m x« matrix (with m > n) as the product of

an m xn unitary matrix and an n x« upper triangular matrix, where m is the number of

row of matrix A and n is the number of column of matrix A.

If rank of matrix Al, r is lesser that the number of column, n, (r < n), the QR

decomposition approaching a failure. This shows that at least one entry in R is zero

and QR decomposition does not produce orthonormal basis for R. An orthonormal set

must be linearly independent, and so it is a vector space basis for the space it spans.

Such a basis is called an orthonormal basis (Rowland, 2000).

In the case when number of independent column Au is less that the number of

columns, QR decomposition must be modified by multiplying matrix Al with

permutation matrix, P which is basically an identity matrix (contains only 0 and 1

elements only) that permutes the row in order to avoid zeros in the diagonal.
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(3.17)

Where Qi is (m x r) matrix subset of matrix Q, Q2 is [m x (m-r)] matrix subset of Q,

Rn is (r x r) matrix subset of matrix R, Ruis (rx(n- r) matrix subset of matrix R and

P is permutation matrix (adjusted identity matrix).

The graphical explanation of the above statements is given in Figure 3.4 below.

Figure 3.4: Subsets of Q and R, Qi, Q2, Ri and R2

3.2.4 Reconciliation of Measured Variables

The reduced data reconciliation problem is to minimise (3.2) and subject to constraint

(3.17). The reconciled measured variables are calculated by

x ^y-ZfPAj'ffPAj'ZfPAj'j-'fPAJy (3.18)

Using equation (3.8), we can now substitute for x in equation (3.18) and obtain the

estimation for the variable, x (Narasimhan and Jordache, 2000).
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3.2.5 Determination of Unmeasured Variables

In order to estimate the unmeasured variables, the values of a: in equation (3.8) are to

be substituted to equation (3.19) below.

u =-AuTAu(Axx) (3.19)

However, to solve the unmeasured variables for non-linearly independent Au, the

equation (3.19) is modified to equation (3.20) below.

m= -Rf'(Q,TAxx + R2unr) (3.20)

where Ri, R2 and Qi as per defined in Figure 3.4, and unr is an arbitrary set of

assigned values (Narasimhan and Jordache, 2000).

3.3 Systematic Error Detection

As mentioned in Chapter 1, there are two main categories of errors in measurements.

The first is random error and the other is systematic error. In the previous section, the

random enors are removed from the measurement readings. In this section, we will

discuss the methodology of identifying and removing the systematic errors.

There are two major types of systematic errors. One is related to the instrument

performance and includes measurement bias, drifting, miscalibration and total

instrument failure. Any comprehensive systematic error detection strategy should

possess the following capabilities (Narasimhan and Jordache, 2000).

The first criterion is the ability to detect the presence of one or more systematic errors

in the data (the detection problem). Next is the ability to identify the type and location

of the systematic enor (the identification problem). On top of that, good systematic

enor detection must have the capability to locate and identify multiple systematic

enors which may be present simultaneously in the data (the multiple systematic enor
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identification problems). Lastly, it must capable to estimate the magnitude of the

systematic enors (the estimation problem).

However, the program developed in this project is capable of fulfilling the first

requirement only that is detecting the presence of systematic enors only. This

component of a systematic enor detection strategy simply attempts to answer the

question of whether systematic enors are present in the data or not. It does not

provide any information on the number of systematic errors, their types or locations.

This is a purely deterministic method.

3.3.1 Global Test for Systematic Error Detection

The basic principle in systematic enor detection is derived from the detection of

outliers in statistical applications. The random enor inherently present in any

measurement is assumed to follow a normal distribution with zero mean and known

variance. The normalized enor, which is the difference between the measured value

and the expected mean value divided by its standard deviation, follows a standard

normal distribution. Most normalized enors fall inside a (1-a) confidence interval at a

chosen level of significance a. Any value of normalized enor which falls outside that

confidence region is declared an outlier or a systematic enor.

In this project, the statistical technique is used for detecting systematic enors. It is

based on hypothesis testing. In systematic enor detection case, Ho, null hypothesis, is

that no systematic enor is present, and Hi, alternative hypothesis, is that one or more

systematic enors are present in the system.

Global testing uses the test statistic proposed by Ripps in 1965 (Narasimhan and

Jordache, 2000). It is given by

r = rTV'[r (3.21)

where r is the vector of balance residuals, which is given by
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r = Ay - c (3.22)

Furthermore, in equation (3.17), A is the linear constraint matrix, in this case, Matrix

Al and c contains known coefficients and for linear flow processes, c = 0

V is variance-covariance matrix when random enor is normally distributed with

variance-covariance matrix X- Vis given as

V=cov(r) =AEAT (3.23)

The value of y can be verified to be equal to the sum square of the differences

between the reconciled and measured values. (Narasimhan and Jordache, 2000).

Therefore, in this dissertation, the value of y is calculated by the sum square of the

differences between reconciled and measured values.

Under Ho, the above statistic follows a x2 distribution with v degrees of freedom,

where v is the rank of matrix A. If the test criterion chosen is x2<*v (where it is the

critical value of chi-square distribution at the chosen a level of significance) then Ho

is rejected and a systematic enor is detected if y > x'av. x~"

critical value of global testing, yc.

2 -2 also be written as

Systematic Error Detection

Yes if..

y > y 2

No if...

* x2
av

r

Figure 3.5: Systematic Enor Detection Technique Using Global Test
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3.4 Algorithms and Flowcharts of Linear Data Reconciliation Program

A sequence of instructions is called an algorithm. Algorithms are a fundamental part

of computing. In this project, two programs have been written. The first program is

"QR Solver", which is used to solve QR Decomposition of matrices. The other

program is "Linear Data Reconciliation" Program, which is the main objective of this

project. Both programs are developed in Visual Basic environment in Microsoft Excel.

Figure 3.6 below is the flowchart of "QR Solver". It is a simplified flowchart as the

process or the mathematical part of the program is similar to the methodologies

described in section 3.2.2.

C Start J

Input is
unmeasured flow

matrix, Au

Solve QR decomposition of
unmeasured matrix, Au,

using equations (3.11)
through (3.14)

Output.are Q and
R matrices of

decomposed Au

( Stop )

Figure 3.6: Flowchart of "QR Solver"

Figure 3.7 below shows the flowchart of "Linear Data Reconciliation" program. The

process part of the flowchart is similar to the methodologies discussed in previous
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sections. However, the flowchart below enables the user to understand the algorithm

easier.

C Start J

Input are:
measured flowrates matrix, Ax

unmeasured flowrates matrix, Au

Q and R matrices
values of measurements, Y

variance of measurements, var

assigned values, unr

Reconcile the flowrates using the equations
(3.18) to (3.23)

Output are:
Reconciled flowrates, x

Estimation of unmeasured flowrates, u

Global test parameter, y

Systematic enor
is detected

No systematic
error is detected

( Stop )

Figure 3.7: Flowchart of "Linear Data Reconciliation" Program
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3.5 Summary of Methodology

In the previous sections, a systematic methodology is developed for linear data

reconciliation and systematic enor detection. The method is programmed in a Visual

Basic Programming in Microsoft Excel application.

The program uses all the mentioned methodologies and can be applied to any linear

reconciliation problem. It started with reconciliation of measurements and then

completed with systematic enor detection. The results obtained from the program are

the reconciled values of measured variables and the estimation of unmeasured

variables.

All the mathematical equations are incorporated in the program and verified or cross

checked with MATLAB® (MathWorks, 2007).
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CHAPTER 4

CASE STUDY

Data reconciliation and systematic enor detection program developed earlier was

applied to a refinery hydrogen network. Nevertheless, the program is capable for any

linear system. The only requirement is the material balance of the system for each unit

of interest. The following sections describe the case study and the discussion on the

results obtained.

4.1 Description of the Refinery Hydrogen Network

This existing refinery hydrogen network encountered a problem of imbalance or

inconsistent material balance. The study was initiated in 2004 and data reconciliation

was proposed (Tariq, 2006). This problem caused difficulties for future projects such

as future plant debottlenecking, hydrogen recovery and optimisation in its

consumption and production. The enor-free flows are desired to give true picture of

the network.

This particular hydrogen network is just like any other modern refineries' hydrogen

networks. It has two hydrogen production units and seven units that consume

hydrogen. The two production units are an independent hydrogen producer and a

naphtha catalytic reformer unit. Catalytic reformer produces high purity hydrogen as

by-product along with light gases and liquefied petroleum gas (LPG).

For a better study of the whole system, the network is divided into small sections.

Therefore, in this study, the data reconciliation is applied on only one producer and

one consumer. The producer chosen for this exercise is naphtha catalytic reformer

denoted as Unit 400. The hydrogen produced from this unit has the purity of 85 to 88

mole%. This gas goes to the hydrogen header and then distributed to its consumers.

Also entering the header is the hydrogen from the second catalytic reformer of the

system, Unit 1400 with the hydrogen purity of 85 to 88 mole% too.
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In this case study, the consumer selected is a diesel desulphurisation unit, which is

labeled as Unit 300. This diesel desulphurisation unit consumes hydrogen to remove

the sulphur compound impurities. Its hydrogen input is from the hydrogen header

mentioned earlier.

The exercise involves line tracing of the PFD to collect relevant streams of the

network, generation of mass balance equations around the units and application of

linear data reconciliation method.

Figure 4.1 shows the P&ID Hydrogen network used in this case study. The simplified

PFD for the analysis and simplified PFD for data reconciliation are further shown in

Figure 4.2 and Figure 4.3 respectively. Table 4.1 below tabulates the details of the

equipment involved in the case study:

Table 4.1: Unit Description of Refinery Hydrogen Network

Unit Description

C-301 Hydrogen booster compressor

C-401 Compressor

C-402 Hydrogen storage Compressor

D-302 Reactor product separator

D-304 Booster compressor knock-out drum

D-305 Preflash drum

D-404 Reactor product separator

D-407 Hydrogen storage

D-408 After cooler knock-out drum

D-409 Storage compressor knock-out drum

D-410 MP flash drum

D-418 Chloride absorber

F-304 Vane filter

M Mixers

S Splitters

P Pumps/Compressors
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4.2 Data Gathering

Flow rates data was obtained in February 2004 (Suarez-Chavez, 2005). Initially, the

measurement data available was only from nine streams. The measured streams are

indicated with 'FTs' or flow transmitters in Figure 4.1 through Figure 4.3. In order to

obtain additional information and make the system determinable, process simulator

HYSYS® v 3.2 (Suarez-Chavez, 2005) was used. The simulation results in the following

data which produces 27 measured variables instead of nine plant data. The total number

of streams in this work is 39. There are 27 measured streams and 12 unmeasured streams.

Four streams are specified as zero flow rates, which includes the vent of compressor C-

301, liquid stream from filter F-304, chloride absorbed from D-418 and recycle stream

after D-404.

Table 4.2 and Table 4.3 show the lists of stream for both measured and unmeasured

flowrates respectively of the oil refinery hydrogen network system.

Table 4.2: Lists of Measured Streams

No. Measured Streams

1 S01

2 S02

3 S04

4 S05

5 S07

6 S08

7 S09

8 S10

9 Sll

10 S12

11 S13

12 S15

13 S16

14 S17

15 S18

16 S19

17 S20

18 S21

19 S22



20 S23

21 S26

22 S42

23 S48

24 S49

25 S50

26 S52

27 S53

Table 4.3: Lists of Unmeasured Streams

No. Unmeasured Streams

1 S24

2 S25

3 S27

4 S28

5 S39

6 S41

7 S43

8 S44

9 S45

10 S46

11 S37

12 S51
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4.2.1 Material Balance of Measured Variables Ax and Unmeasured Variables Au

Ax is a matrix of dimension mxn and each row of Ax corresponds to a constraint. It can

be easily verified that for a flow reconciliation problem, the elements of each row of

matrix A are either +1, -1 or 0, depending on whether the corresponding stream flow is

input, output or, respectively, not associated with the process unit for which the flow

balance is written. Each row represents each unit of the system. In this case study the Ax

has the dimension of 23 x 27 (23 units and 27 measured streams).

For example, for the first unit C301A, Hydrogen booster compressor, the element of

matrix Ax can be written in the first row as the following:
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Ax (Matrix lxn) = [-10100000000000000000000000 0]

It shows that stream S04 is the input flow to Hydrogen booster compressor and stream

S01 is the output flow of it. The other 25 streams are not associated to P02.

The same procedure will be done to the unmeasured variables. The only difference is the

number of streams is 12 for the unmeasured streams. Au has the dimension of 23 x 12

comprising 23 units and 12 unmeasured streams.

The Ax and Au matrix for this case study are shown in Figure 4.4 and 4.5 respectively.
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4.3 Linear Data Reconciliation for Measured Variables

The simulation data was fed to the linear data reconciliation program developed using

VBA Excel. The program produces the following linearly reconciled flow rates. Figure

4.6 shows the graphical user interface (GUI) developed for Linear Data Reconciliation

Solver. The end users are required to fill some data before the program solve linear data

reconciliation. Prior to execution of this program, all data must be made available in

Microsoft Excel Spreadsheet.

The first step of using this program is; the users must give input cell of the unmeasured

variables matrix, Au. The solver will give the Q and R matrices of the unmeasured

matrix in the Microsoft Excel® spreadsheet at the user-specified cell at the output box.

QR Decomposition Solver - 22j

KM *_• A I 1 1 A
• matrix f\2. - Unmeasured

:\ j::;:::

. .Starting j j . ..
• from cell: * -=U .

:::::::::: .n j :::::::::: :c&Run [
::::::::: t:::::::::'

Figure 4.5: QR Decomposition Solver Interface

Figure 4.7 shows the interface of the Linear Data Reconciliation Solver. Similar to the

QR Decomposition Solver form, the end users are required to fill in the boxes of required

the required data. There are seven input boxes to be filled by end users in this form. By

clicking the RUN button, the linearly reconciled data can be obtained. Table 4.4 below

shows the comparisons from this Linear Data Reconciliation Solver and the simulation

results.



Linear Data Reconciliation Solver

-• Input •~^-

•Matrix Al

~2

— Input

•Permuted A2 Matrix

~3

• Input • -Input

• Matrix y • Matrix K

: i ::::: : 1 I:::: :
! -' 1 -1

• Input • -Input
V i. 1 ... r K. ,,

: :i : : : : : :: :::::1 tJ 1 -J

• -Input p Output 1
A JlJl• unr - Assignee] values

:: ::::: . .1 |
I -l -1

E>Run [

Figure 4.7: Linear Data Reconciliation Solver Interface

Table 4.4: Linearly Reconciled Flowrates

Stream

No.

Stream

Name

Measured Flow

Rates (ton/hr)
Reconciled Flow

Rates (ton/hr)
Variance

(ton/hr)
1 SOI 1.2190 1.2190 0.0000

2 S02 27.6300 27.6300 0.0000

3 S04 1.2190 1.2206 -0.0016

4 S05 1.2190 1.2021 0.0169

5 S07 0.0100 0.03324 -0.0232

6 S08 1.2109 1.5314 -0.3205

7 S09 26.4120 26.4120 0.0000

8 S10 26.4120 26.4120 0.0000

9 Sll 2.4760 2.7048 -0.2288

10 S12 2.2280 2.4570 -0.2290

11 S13 2.2280 1.9992 0.2288

12 S15 0.2476 0.2478 -0.0002

13 S16 3.9760 3.0867 0.8893

14 S17 3.9330 4.4408 -0.5078

15 S18 0.0437 0.0945 -0.0508

16 S19 2.7240 2.7240 0.0000

17 S20 28.5500 26.9830 1.5670
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18 S21 25.4160 26.9830 -1.5670

19 S22 1.7280 1.7280 0.0000

20 S23 0.0700 0.0700 0.0000

21 S26 1.6580 1.6580 0.0000

22 S42 15.3320 15.3320 0.0000

23 S48 0.3170 0.3170 0.0000

24 S49 16.9100 2.1060 14.804

25 S50 1.8950 1.8950 0.0000

26 S52 2.4760 2.2470 0.2290

27 S53 1.4570 1.4570 0.0000
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As shown in Table 4.5, stream S49 or stream number 24 has a big variance. There is

possibility that it is due to the nature of the stream which is a venting line. The purging

activity is only done intermittently. The assigned values given by the plant personnel are

valid when the purging is done. Due to the scope of this work, the program is only

capable of detecting the presence of systematic error of the system but unable to identify

the location of the stream.

4.4 Determination of Unmeasured Variables

From the results obtained, the 12 unmeasured flowrates can be obtained by assigning

values to four key streams, S39 = S44 = S51 = 0, and S24 = 0.0701. Table 4.5 below

shows the calculated values of the unmeasured flowrates. The calculations are done by

the developed program with the input of the four key streams.

Table 4.5: Calculated Unmeasured Flowrates

Stream Determined Unmeasured

Flowrates (ton/hr)
S25 0.0000

S27 15.3320

S28 0.0000

S41 2.7048

S43 0.0000

S45 0.0000

S46 15.3320

S47 0.0000
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4.5 Systematic Error Detection

After all the streams are determined, the next activity in the exercise is systematic error

detection. In detecting the presence of systematic error in the measurements, the global

test is applied.

The global test uses the method of chi-square test. It is a special case of the gamma

distribution. The parameters of this statistical tool are degrees of freedom and probability

level. This is done in order to check if the null hypothesis is valid or not, by looking at

the critical chi-square value from the table that corresponds to the calculated v. If the

calculated Chi-square is greater than the value in the table, then the null hypothesis is

rejected and it is concluded that the predictions made were incorrect

In this case, the chi-square test with 23 degrees of freedom and probability level of 10%

is done. The result of the critical value of yc is 32.01. Using equation 3-11, the global test

statistic is computed to be y = 225.54. Since y > yc, thus the global test rejects the null

hypothesis and a systematic error is detected.

Figure 4.8 is the graphical chi-square distribution for this case. This calculator was

developed by West (2006) from the Department of Statistics, University of South

Carolina, USA in 2006.



20 30
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degrees of freedom = j23

Area right of 32.01 0.1 Compute! j

Figure 4.8: Chi-Square Calculator
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Figure 4.9 shows the differences between the VBA Excel program developed in this work

and the previous work by Tariq (2006). The average differences is 0.9%. This shows the

VBA Excel program developed is acceptable and resulting very small differences only.

The reason of the difference is that Tariq (2006) used Full QR Decomposition and the

program developed here uses Economy-Size QR Decomposition. Full QR

Decomposition produces an upper triangular matrix R of the same dimension as A, and a

unitary matrix Q so that A = Q*R. On the other hand, "Economy-Size" QR

Decomposition only computes the first n columns of Q and R is n-by-n for m x n matrix

A.
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Comparison of Linear Data Reconciliation Results

-♦—VBAExcel

- -a- -MATLAB

Figure 4.9: Comparisons of Linear Data Reconciliation between VB Programming and

MATLAB®

4.6 Summary

In Chapter 3, the development of the program was shown. This program was used in the

application of a refinery hydrogen network which has a problem with inconsistencies in

material balance.

Linear data reconciliation using QR Decomposition was successfully conducted.

HYSYS® process simulator was used to generate sufficient data. The system was then

determinable and enabled unmeasured streams to be determined.

The program detected the presence of systematic error, which requires other techniques,

beyond the scope of this project, to improve the data.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

As per objective of this study, a systematic approach of data reconciliation is

developed. The developed program is for linear data reconciliation. The program is

applied to a case study of a refinery hydrogen network.

Linear data reconciliation was done in the VBA Excel program using QR

decomposition method. QR decomposition is used to solve data reconciliation

problem when unmeasured variables exist. In solving matrix projection technique, QR

decomposition is among the options. QR decomposition was noted as the most

computationally efficient (Kelly, 1999). The program is able to reconcile measured

variables, estimate unmeasured variables and detect the presence of gross error.

The results of the program were compared with MATLAB®. This is essential to

ensure the mathematics is correct through out the work.

5.2 Future Work

There is a lot of missing elements that can be further added to the program in the

future. This program has its limitations. It is limited to linear, steady state system and

it reconciles flowrates only. On top of that, it simply uses material balance as

constraints and no energy balance is considered. The other drawback of this program

is, it only detects the presence of gross error without identifying the location of the

error.

Therefore, it is suggested in the future, this work to be extended by developing data

reconciliation for bilinear and nonlinear systems. Nonlinear system involves more

than one variable, for instance, combinations of two or more variables ie flowrate,
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composition and temperature. Energy and component balance can be considered for

non-linear system as constraints as addition to material balance.

On top of that, the establishment of a program to identify the location of gross error is

also essential. The information can be used by engineers for scheduling

instrumentation calibration and/or maintenance.

Current trend of data reconciliation also focuses on dynamic reconciliation. This can

be considered for future work.
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APPENDICES

Appendix Al

Visual Basic Code for QR Decomposition Solver

Q.R Decomposition Solver ._^[
• ' ' * • J

_

,, , . .. M •

• matrix A^ - unmeasured

:i ^1::::::

• .Starting .1 1
• from cell: 4 -=J . . .

f

$ Run r
j

Private Sub CommandButton_exit_Click()
Unload Me

End Sub

Private Sub CommandButton_OK_Click()

IfMe.RefEdit4 = ""Then

MsgBox "Error: missing matrix Al", vbExclamation, "Matrix Operations"
Me.RefEditASetFocus

Exit Sub

End If

If Me.RefEdit3 = "" Then

MsgBox "Error: missing output cell", vbExclamation, "Matrix Operations"
Me.RefEdit3.SefFocus

Exit Sub

End If

Call ElaborationStarter

'stop the time counter
Time_Stop = Timer
Time_Elaps = Time_Stop - Time_Start

'reset the status message
Application.StatusBar = False
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'check error

IfErrMsgo"" Then
'show a warning or an error message

If Left(ErrMsg, 3) - "Err" Then MsgBox ErrMsg, vbCritical

End If

Unload UserForm2

UserForml.Show

End Sub

Private Sub CommandButtonl_Click()
Dim Ref As String, ref_new As String
If Me.RefEdit4 o "" Then

Ref=Me.RefEdit4

With Range(Ref)
If .Cells.Count = 1 Then

ref_new = .CurrentRegion.Address
RefEdit4.Value = ref_new

End If

End With

n = Range(Me.RefEdit4).Rows.Count
m = Range(Me.RefEdit4).Columns.Count
Me.Label_diml = DimArrayFormat(n, m)

End If

RefEdit4.SetFocus

End Sub

Private Sub CommandButton2_Click()
Dim Ref As String, ref_new As String
If Me.RefEdit2 o "" Then

Ref=Me.RefEdit2

With Range(Ref)
If .Cells.Count =1 Then

ref_new = .CurrentRegion.Address
RefEdit2. Value = ref_new

End If

End With

n = Range(Me.RefEdit2).Rows.Count
m = Range(Me.RefEdit2).Columns.Count
Me.Label_dim2 = DimArrayFormat(n, m)

End If

RefEdit2.SetFocus

End Sub
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Private Sub UserForm_Activate()

If Me.RefEdit4 o "" Then

n = Range(Me.RefEdit4).Rows.Count
m = Range(Me.RefEdit4).Columns.Count

'set the default output cell
getDimRange Me.RefEdit4, n, m
rO = Range(Me.RefEdit4).row
cO = Range(Me.RefEdit4).Column
If IsEmpty(Cells(rO + n + 1, cO)) Then

Me.RefEdit3 = Cells(rO + n + 1, cO).Address
Elself IsEmpty(Cells(rO, cO + m + 1)) And cO + m + 1 Then

Me.RefEdit3 = Cells(rO, cO + m + l).Address
End If

End If

Me.RefEdit4.SetFocus

End Sub

Private Sub UserForm_Initialize()
FirstAxraylnit Ref
IfRefo""Then

Me.RefEdit4 = Ref

End If

End Sub

Sub getDimRange(Ref, n, m)
n = Range(Ref).Rows.Count
m = Range(Ref).Columns.Count

End Sub

Sub FirstArraylnit(Ref)
Ref=""

If Selection.Cells.Count > 1 Then

Ref = Selection.Address

Else

If Not IsEmpty(ActiveCell) Then
Ref = ActiveCell.CurrentRegion.Address

End If

End If

End Sub
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Private Function DimArrayFormat(n, m)
DimArrayFormat = "(" + CStr(n) + " x " + CStr(m) + ")"

End Function

Private Function IsRef(Ref) As Boolean
On Error Resume Next

x = Range(Ref).Value
IsRef = (Err.Number = 0)

End Function

Private Sub ElaborationStarter()
'QR decomposition

Mat_QR_Decomp Me.RefEdit4, Me.RefEdit3
End Sub

Private Sub Elaboration_Initialize()
'performs all actions for true starting elaboration

ErrMsg = "" 'reset error message area
Time_Start = Timer 'reset time counter
DoEvents

End Sub

Private Sub OutputMatrix(Mat, Ref, Optional sel As Boolean)
If IsMissing(sel) Then sel = False
n = UBound(Mat, 1)
If getArrayDim(Mat) = 2 Then m = UBound(Mat, 2) Else m = 1

r2 = Range(Ref).row
c2 = Range(Ref).Column
With Range(Ref).Worksheet. Activate

.Range(.Cells(r2, c2), .Cells(r2 + n - 1, c2 + m - 1)) = Mat
If sel Then

.Range(.Cells(r2, c2), .Cells(r2 + n - 1, c2 + m - l)).Select
End If

End With

End Sub

Private Sub InputMatrixl(Mat, Ref, Optional n, Optional m)
rl = Range(Ref).row
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cl = Range(Ref). Column
n = Range(Ref).Rows.Count
m = Range(Ref). Columns.Count
With Range(Ref).Worksheet

Mat = .Range(.Cells(rl, cl), .Cells(rl + n - 1, cl + m - 1))
End With

End Sub

'/////////////////// matrix qr decomposition operation routine /////////////////////////////////

Private Sub Mat_QR_Decomp(ref_inpl, ref_out)

Dim A, b, c(), n&, m&, Fmp
InputMatrixl A, refjnpl, n, m
'dimension check

If n < m Then

EnMsg = "Error: rows < columns": Exit Sub
End If

Elaboration_Initialize

'QR Decomposition...
b = Mat_QR(A)
rl = Range(ref_out).row
cl = Range(ref_out).Column
'write matrices Q R
Cells(rl,cl) = "matrix Q"
r = rl + 1

ReDim c(l To n, 1 To m)
For i = 1 To n

For j = 1 To m
c(i,j) = -b(i,j) 'matrix Q

Next j, i
Range(Cells(r, cl), Cells(r + n-l,cl+m-l)) = c

r = r + n + 2

Cells(r- 1, cl) = "matrix R"
ReDim c(l To m, 1 To m)
For i = 1 To m

For j = 1 To m
c(i, j) = -b(i, m + j) 'matrix R

Next j, i
Range(Cells(r, cl), Cells(r + m-l,cl+m-l)) = c

End Sub
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APPENDICES

Appendix Al

Visual Basic Code for QR Decomposition Solver

QR Decomposition Solver ^f
\

. _ . j

• Matrix A^ - unmeasured

\ J::::::

. .Starting j |
• from cell: l -=J . ..

j.n i ::::::::::d> Run [
::::::::::,_ ,,,,, J ::::::::...

Private Sub CommandButton_exit_C
Unload Me

End Sub

lickfj

Private Sub CommandButton_OK_Click()

IfMe.RefEdit4 = ""Then

MsgBox "Enor: missing matrix Al", vbExclamation, "Matrix Operations"
Me.RefEditASetFocus

Exit Sub

End If

IfMe.RefEdit3 = ""Then

MsgBox "Enor: missing output cell", vbExclamation, "Matrix Operations"
Me.RefEdit3.SetFocus

Exit Sub

End If

Call ElaborationStarter

'stop the time counter
Time_Stop = Timer
Time_Elaps = Time_Stop - Time_Start

'reset the status message
Application.StatusBar = False
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'check error

IfEnMsgo""Then
'show a warning or an error message

If Left(ErrMsg, 3) = "En" Then MsgBox EnMsg, vbCritical

End If

Unload UserForm2

UserForml.Show

End Sub

Private Sub CommandButtonl_Click()
Dim Ref As String, ref_new As String
If Me.RefEdit4 o "" Then

Ref=Me.RefEdit4

With Range(Ref)
If.Cells.Count=l Then

ref_new = .CunentRegion.Address
RefEdit4. Value = ref_new

End If

End With

n = Range(Me.RefEdit4).Rows.Count
m = Range(Me.RefEdit4).Columns.Count
Me.Label_diml = DimArrayFormat(n, m)

End If

RefEdit4.SetFocus

End Sub

Private Sub CommandButton2_Click()
Dim Ref As String, ref_new As String
If Me.RefEdit2 <> "" Then

Ref=Me.RefEdit2

With Range(Ref)
If.Cells.Count=l Then

refjiew = .CunentRegion.Address
RefEdit2.Value = ref_new

End If

End With

n = Range(Me.RefEdit2).Rows.Count
m = Range(Me.RefEdit2).Columns.Count
Me.Label_dim2 = DimArrayFormat(n, m)

End If

RefEdit2.SetFocus

End Sub
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Private Sub UserForm_Activate()

IfMe.RefEdit4o""Then

n = Range(Me.RefEdit4).Rows.Count
m = Range(Me.RefEdit4).Columns.Count

'set the default output cell
gefDimRange Me.RefEdit4, n, m
rO = Range(Me.RefEdit4).row
cO = Range(Me.RefEdit4).Column
If IsEmpty(Cells(rO + n + 1, cO)) Then

Me.RefEdit3 = Cells(rO + n + 1, cO).Address
Elself IsEmpty(Cells(rO, cO + m + 1)) And cO + m + 1 Then

Me.RefEdit3 = Cells(rO, cO + m + l).Address
End If

End If

Me.RefEdit4.SetFocus

End Sub

Private Sub UserForm_Initialize()
FirstArraylnit Ref
IfRef<>""Then

Me.RefEdit4 = Ref

End If

End Sub

Sub getDimRange(Ref, n, m)
n = Range(Ref).Rows.Count
m = Range(Ref).Columns.Count

End Sub

Sub FirstAnaylnit(Ref)
Ref = ""

If Selection.Cells.Count > 1 Then

Ref = Selection.Address

Else

If Not IsEmpty(ActiveCell) Then
Ref = ActiveCell.CurrentRegion.Address

End If

End If

End Sub
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Private Function DimArrayFormat(n, m)
DimArrayFormat = "(" + CStr(n) + " x " + CStr(m) + ")"

End Function

Private Function IsRef(Ref) As Boolean
On Enor Resume Next

x = Range(Ref).Value
IsRef = (En.Number = 0)

End Function

Private Sub ElaborationStarter()
'QR decomposition

Mat_QR_Decomp Me.RefEdit4, Me.RefEdit3
End Sub

Private Sub Elaboration_Initialize()
'performs all actions for true starting elaboration

EnMsg = "" 'reset enor message area
Time_Start = Timer 'reset time counter
DoEvents

End Sub

Private Sub OutputMatrix(Mat, Ref, Optional sel As Boolean)
If IsMissing(sel) Then sel = False
n = UBound(Mat, 1)
If getArrayDim(Mat) = 2 Then m = UBound(Mat, 2) Else m = 1

r2 = Range(Ref).row
c2 = Range(Ref).Column
With Range(Ref).Worksheet. Activate

.Range(.Cells(r2, c2), .Cells(r2 + n - 1, c2 + m - 1)) = Mat
If sel Then

.Range(.Cells(r2, c2), .Cells(r2 + n - 1, c2 + m - l)).Select
End If

End With

End Sub

Private Sub InputMatrixl(Mat, Ref, Optional n, Optional m)
rl = Range(Ref)-row
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cl = Range(Ref).Column
n = Range(Ref).Rows.Count
m = Range(Ref).Columns.Count
With Range(Ref).Worksheet

Mat = .Range(.Cells(rl, cl), .Cells(rl +n-l,cl+m-l))
End With

End Sub

'II11IIllllII11III11 matrix qr decomposition operation routine /////////////////////////////////

Private Sub Mat_QR_Decomp(ref_inpl, ref_ouf)

Dim A, b, c(), n&, m&, Fmp
InputMatrixl A, refjnpl, n, m
'dimension check

If n < m Then

ErrMsg = "Error: rows < columns": Exit Sub
End If

Elaboration_Initialize

'QR Decomposition...
b = Mat_QR(A)
rl = Range(ref_out).row
cl = Range(ref_out).Column
'write matrices Q R
Cells(rl,cl) = "matrix Q"
r = rl + 1

ReDim c(l To n, 1 To m)
For i = 1 To n

For j = 1 To m
c(i,j) = -b(i,j) 'matrix Q

Next j, i
Range(Cells(r, cl), Cells(r + n- l.cl +m- l)) = c

r = r + n + 2

Cells(r- l,cl) = "matrix R"
ReDim c(l To m, 1 To m)
For i = 1 To m

For j = 1 To m
c(i, j) = -b(i, m + j) 'matrix R

Next j, i
Range(Cells(r, cl), Cells(r + m-l,cl+m-l)) = c

End Sub
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APPENDICES

Appendix Al

Visual Basic Code for QR Decomposition Solver

QR Decomposition: Solver £2,

...._. .

• 'Matrix rz - Unmeasured

::l J::::::

. -Starting j _J .
' 'from cell: "' '=~^ '

. n i :::::::::: :
c> Run r

r

Private Sub CommandButton_exit_Click()
Unload Me

End Sub

Private Sub CommandButton_OK_Click()

IfMe.RefEdit4 = ""Then

MsgBox "Enor: missing matrix Al", vbExclamation, "Matrix Operations"
Me.RefEdit4.SetFocus

Exit Sub

End If

IfMe.RefEdit3 = ""Then

MsgBox "Enor: missing output cell", vbExclamation, "Matrix Operations"
Me.RefEdit3.SetFocus

Exit Sub

End If

Call ElaborationStarter

'stop the time counter
Time_Stop = Timer
Time_Elaps = Time_Stop - Time_Start

'reset the status message
Application.StatusBar = False
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'check error

IfEnMsgo""Then
'show a warning or an error message

If Left(EnMsg, 3) = "En" Then MsgBox EnMsg, vbCritical

End If

Unload UserForm2

UserForml.Show

End Sub

Private Sub CommandButtonl_Click()
Dim Ref As String, ref_new As String
If Me.RefEdit4 o "" Then

Ref=Me.RefEdit4

With Range(Ref)
If .Cells.Count = 1 Then

ref_new = .CunentRegion.Address
RefEdit4.Value = ref_new

End If

End With

n = Range(Me.RefEdit4).Rows.Count
m = Range(Me.RefEdit4).Columns.Count
Me.Label_diml = DimArrayFormat(n, m)

End If

RefEdit4.SetFocus

End Sub

Private Sub CommandButton2_Click()
Dim Ref As String, ref_new As String
If Me.RefEdit2 <> "" Then

Ref=Me.RefEdit2

With Range(Ref)
If .Cells.Count = 1 Then

refnew = .CunentRegion.Address
RefEdit2.Value = refjiew

End If

End With

n = Range(Me.RefEdit2).Rows.Count
m = Range(Me.RefEdit2).Columns.Count
Me.Label_dim2 = DimArrayFormat(n, m)

End If

RefEdit2.SetFocus

End Sub
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Private Sub UserForm_Activate()

If Me.RefEdit4 o "" Then

n = Range(Me.RefEdit4).Rows.Count
m = Range(Me.RefEdit4).Columns.Count

'set the default output cell
getDimRange Me.RefEdit4, n, m
rO = Range(Me.RefEdit4).row
cO = Range(Me.Reffidit4).Column
If IsEmpty(Cells(rO + n + 1, cO)) Then

Me.RefEdit3 = Cells(rO + n + 1, cO).Address
Elself IsEmpty(Cells(rO, cO + m + 1)) And cO + m + 1 Then

Me.RefEdit3 = Cells(rO, cO + m + 1).Address
End If

End If

Me.Reffidit4.SetFocus

End Sub

Private Sub UserForm_Initialize()
FirstArraylnit Ref
IfRefo""Then

Me.RefEdit4 = Ref

End If

End Sub

Sub gefDimRange(Ref, n, m)
n = Range(Ref). Rows.Count
m = Range(Ref).Columns.Count

End Sub

Sub FirstAnaylnit(Ref)
Ref=""

If Selection.Cells.Count > 1 Then

Ref = Selection.Address

Else

If Not IsEmpty(ActiveCell) Then
Ref = ActiveCell.CurrentRegion.Address

End If

End If

End Sub
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Private Function DimArrayFormat(n, m)
DimAnayFormat = "(" + CStr(n) + " x " + CStr(m) + ")"

End Function

Private Function IsRef(Ref) As Boolean
On Enor Resume Next

x = Range(Ref).Value
IsRef = (Err.Number = 0)

End Function

Private Sub ElaborationStarter()
'QR decomposition

Mat_QR_Decomp Me.RefEdit4, Me.Reffidit3
End Sub

Private Sub Elaboration_Initialize()
'performs all actions for true starting elaboration

EnMsg = "" 'reset error message area
Time_Start = Timer 'reset time counter
DoEvents

End Sub

Private Sub OutputMatrix(Mat, Ref, Optional sel As Boolean)
If IsMissing(sel) Then sel = False
n = UBound(Mat, 1)
If getAnayDim(Mat) = 2 Then m = UBound(Mat, 2) Else m = 1

r2 = Range(Ref).row
c2 = Range(Ref).Column
With Range(Ref).Worksheet. Activate

.Range(.Cells(r2, c2), .Cells(r2 + n - 1, c2 + m - 1)) = Mat
If sel Then

,Range(.Cells(r2, c2), .Cells(r2 + n - 1, c2 + m - l)).Select
End If

End With

End Sub

Private Sub InputMatrixl(Mat, Ref, Optional n, Optional m)
rl = Range(Ref).row
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cl = Range(Ref).Column
n = Range(Ref).Rows.Count
m = Range(Ref).Columns.Count
With Range(Ref).Worksheet

Mat = .Range(.Cells(rl, cl), .Cells(rl +n-l,cl+m-l))
End With

End Sub

'/////////////////// matrix qr decomposition operation routine lllllllllllllllllllllllllllllllll

Private Sub Mat_QR_Decomp(ref_inpl, ref_out)

Dim A, b, c(), n&, m&, Fmp
InputMatrixl A, refjnpl, n, m
'dimension check

If n < m Then

EnMsg = "Enor: rows < columns": Exit Sub
End If

Elaboration_Initialize

'QR Decomposition...
b = Mat_QR(A)
rl = Range(ref_out).row
cl = Range(ref_out).Column
'write matrices Q R
Cells(rl,cl) = "matrix Q"
r = rl + 1

ReDim c(l To n, 1 To m)
For i = 1 To n

For j = 1 To m
c(i,j) = -b(i,j) 'matrix Q

Nextj, i
Range(Cells(r, cl), Cells(r + n-l,cl+m-l)) = c

r = r + n + 2

Cells(r- 1, cl) = "matrix R"
ReDim c(l To m, 1 To m)
For i = 1 To m

For j = 1 To m
c(i, j) = -b(i, m + j) 'matrix R

Nextj, i
Range(Cells(r, cl), Cells(r + m-l,cl+m-l)) = c

End Sub

66



Appendix A2

Visual Basic Code for Linear Data Reconciliation Solver

; Linear Data Reconciliation Solver

•Input• •Input-

•Matrix A1 •Permuted A2 Matrix

T!

•• Input • •Input •

•Matrix Q •Matrix R

"U

"3

~2

p--Input • Input
, , ... £ ,. . i^

• Y — measurement.values

: | |:: : :| : :
: 1 _=J 1 -I

• Input p Output 1
M. Jul• -unr - Assigned values

: T ::::: : j j'::
1 -i . 1 -j

Run |

Private Sub CommandButton_exit_Click()
Unload Me

End Sub
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Private Sub CommandButton_OK_Click()

IfMe.RefEditl = "" Then

MsgBox "Enor: missing matrix Q", vbExclamation, "Matrix Operations"
Me.RefEditl.SefFocus

Exit Sub

End If

If Me.RefEdit4 = "" Then

MsgBox "Enor: missing matrix Permutation", vbExclamation, "Matrix Operations"
Me.RefEdit4.SetFocus

Exit Sub

End If

IfMe.RefEdit6 = ""Then



68

MsgBox "Enor: missing matrix Y: Values of Measurements", vbExclamation,
"Matrix Operations"

Me.RefEdit6.SetFocus

Exit Sub

End If

IfMe.RefEdit7 = ""Then

MsgBox "Enor: missing matrix var: Variance", vbExclamation, "Matrix Operations"
Me.RefEdit7.SetFocus

Exit Sub

End If

IfMe.RefEdit8 = ""Then

MsgBox "Enor: missing matrix unr: Assigned Values", vbExclamation, "Matrix
Operations"

Me.RefEdit8.SetFocus

Exit Sub

End If

If Me.RefEdit9 = "" Then

MsgBox "Enor: missing Matrix Y", vbExclamation, "Matrix Operations"
Me.RefEditl.SetFocus

Exit Sub

End If

IfMe.RefEditll = "" Then

MsgBox "Enor: missing Matrix Al", vbExclamation, "Matrix Operations"
Me.RefEditll.SetFocus

Exit Sub

End If

If Me.RefEdit3 = "" Then

MsgBox "Enor: missing output cell", vbExclamation, "Matrix Operations"
Me.RefEdit3.SetFocus

Exit Sub

End If

Call ElaborationStarter

'stop the time counter
Time_Stop = Timer
Time_Elaps = Time_Stop - Time_Start

'reset the status message
Application.StatusBar = False
'check enor



IfEnMsgo""Then
'show a warning or an enor message

If Left(ErrMsg, 3) = "En" Then MsgBox EnMsg, vbCritical

End If

Unload UserForml

End Sub

Private Sub UserForm_Activate()

If Me.RefEditl <> "" Then

n = Range(Me.RefEditl).Rows.Count
m = Range(Me.RefEditl).Columns.Count

'set the default output cell
getDimRange Me.RefEditl, n, m
rO = Range(Me.RefEditl).row
cO = Range(Me.RefEditl).Column
If IsEmpty(Cells(rO + n + 1, cO)) Then

Me.RefEdit3 = Cells(rO + n + 1, cO).Address
Elself IsEmpty(Cells(rO, cO + m + 1)) And cO + m + 1 Then

Me.RefEdit3 = Cells(rO, cO + m + l).Address
End If

End If

Me.RefEditll.SetFocus

End Sub

Private Sub UserForm_Initialize()
FirstArraylnit Ref
If Ref <> "" Then

Me.RefEditl = Ref

End If

End Sub

Sub getDimRange(Ref, n, m)
n = Range(Ref).Rows.Count
m = Range(Ref).Columns.Count

End Sub

Sub FirstArraylnit(Ref)
Ref = ""
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If Selection.Cells.Count > 1 Then

Ref = Selection.Address

Else

If Not IsEmpty(ActiveCell) Then
Ref = ActiveCell. CunentRegion.Address

End If

End If

End Sub

Private Function DimArrayFormat(n, m)
DimArrayFormat = "(" + CStr(n) + " x " + CStr(m) + ")"

End Function

Private Function IsRef(Ref) As Boolean
On Enor Resume Next

x = Range(Ref).Value
IsRef = (En.Number = 0)

End Function

Private Sub Sleep(sec)
tO = Timer

While Timer - tO < sec

DoEvents

Wend

End Sub

Private Sub ElaborationStarter()
'Start of the operation!

Linear_Data_Recon Me.RefEditl, Me.RefEdit4, Me.RefEdit6, Me.RefEdit7,
Me.RefEdit9, Me.RefEditl 1, Me.RefEdit8, Me.RefEdit3
End Sub

Private Sub Elaboration_Initialize()
'performs all actions for true starting elaboration

EnMsg = "" 'reset enor message area
Time_Start = Timer 'reset time counter
DoEvents

End Sub
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Private Sub OutputMatrix(Mat, Ref, Optional sel As Boolean)
If IsMissing(sel) Then sel = False
n = UBound(Mat, 1)

If getArrayDim(Mat) = 2 Then m = UBound(Mat, 2) Else m = 1

r2 = Range(Ref).row
c2 = Range(Ref).Column
With Range(Ref).Worksheet

.Activate

.Range(.Cells(r2, c2), .Cells(r2 + n - 1, c2 + m - 1)) = Mat
If sel Then

.Range(.Cells(r2, cl), .Cells(r2 + n - 1, c2 + m - l)).Select
End If

End With

End Sub

'Matrix Q
Private Sub InputMatrixl(Mat, Ref, Optional n, Optional m)

rl = Range(RefEditl).row
cl =Range(RefEditl).Column
n = Range(RefEditl).Rows.Count
m = Range(RefEditl).Columns.Count
With Range(RefEditl).Worksheet

Mat = .Range(.Cells(rl, cl), .Cells(rl + n - 1, cl + m - 1))
End With

End Sub

'Matrix Permutation

Private Sub InputMatrix2(Mat2, Ref, Optional n3, Optional m3)
r3 = Range(RefEdit4).row
c3 = Range(RefEdit4).Column
n3 = Range(RefEdit4).Rows.Count
m3 = Range(RefEdit4).Columns.Count
With Range(RefEdit4).Worksheet

Mat2 = .Range(.Cells(r3, c3), .Cells(r3 + n3 - 1, c3 + m3 - 1))
End With

End Sub

'Matrix R

Private Sub InputMatrix3(Mat3, Ref, Optional n4, Optional m4)
r4 = Range(RefEdit6).row
c4 = Range(RefEdit6). Column

71



n4 = Range(RefEdit6).Rows.Count
m4 = Range(RefEdit6).Columns.Count
With Range(RefEdit6).Worksheet

Mat3 - .Range(.Cells(r4, c4), .Cells(r4 + n4 - 1, c4 + m4 - 1))
End With

End Sub

'Variance

Private Sub InputMatrix4(Mat4, Ref, Optional n5, Optional m5)
r5 = Range(RefEdit7).row
c5 = Range(RefEdit7).Column
n5 = Range(RefEdit7).Rows.Count
m5 = Range(RefEdit7).Columns.Count
With Range(RefEdit7).Worksheet

Mat4 - .Range(.Cells(r5, c5), .Cells(r5 + n5 - 1, c5 + m5 - 1))
End With

End Sub

'Measurement Values

Private Sub InputMatrix5(Mat5, Ref, Optional n6, Optional m6)
r6 = Range(RefEdit9).row
c6 = Range(RefEdit9). Column
n6 = Range(RefEdit9).Rows.Count
m6 = Range(RefEdit9).Columns.Count
With Range(RefEdit9).Worksheet

Mat5 = .Range(.Cells(r6, c6), .Cells(r6 + n6 - 1, c6 + m6 - 1))
End With

End Sub

'Matrix Al

Private Sub InputMatrix6(Mat6, Ref, Optional n7, Optional m7)
r7 = Range(RefEditl l).row
c7 = Range(RefEditl l).Column
n7 = Range(RefEditll).Rows.Count
m7 = Range(RefEditl 1).Columns.Count
With Range(RefEditl 1).Worksheet

Mat6 = .Range(.Cells(r7, c7), .Cells(r7 + n7 - 1, c7 + m7 - 1))
End With

End Sub

'Matrix unr

Private Sub InputMatrix7(Mat7, Ref, Optional n8, Optional m8)
r8 = Range(RefEdit8).row
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c8 = Range(Reffidit8).Column
n8 = Range(RefEdit8).Rows.Count
m8 = Range(RefEdit8).Columns.Count
With Range(Reffidit8).Worksheet

Mat7 = .Range(.Cells(r8, c8), .Cells(r8 + n8 - 1, c8 + m8 - 1))
End With

End Sub
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'/////////////////////////// matrix operation routine /////////////////////////////////

Private Sub Linear_Data_Recon(ref_inpl, ref_inp2, ref_inp3, ref_inp4, ref_inp5,
ref_inp6, ref_inp7, ref_out)

Dim Mat_Q, Mat_Al, Mat_A2, Mat_R, Mat_Var, b, Mat_Y, Mat_Unr, c(), n&, m&,
Fmp

InputMatrixl Mat_Q, refjnpl, n, m 'matrix Q
InputMatrix2 Mat_A2, ref_inp2, nl, ml 'unmeasured MB
InputMatrix3 Mat_R, ref_inp3, n2, m2 'matrix R
InputMatrix4 MatJVar, ref_inp4, n3, m3 'variance
InputMatrix5 Mat_Y, ref_inp5, n4, m4 'measured values Y
InputMatrix6 Mat_Al, ref_inp6, n5, m5 'measured MB
InputMatrix7 Mat_Unr, ref_inp7, n6, m6 'matrix unr

'dimension check

If n<m Then

EnMsg = "Enor: rows < columns": Exit Sub
End If

Elaboration_Initialize

rl = Range(ref_out).row
cl = Range(ref_out).Column

Elaboration_Initialize

'bi = Rank Calculations

bi = M_RANK(Mat_A2)

'b2 = Ql
b2 = MatExtract(Mat_Q, Mat_A2, n, bi)
r = rl

Cells(r, cl) = "Submatrix QI: row * rank"
Range(Cells(r + 1, cl), Cells(r + n, cl + bi - 1)) = b2

'b4 = Q2



b4 = MatExtract2(Mat_Q, Mat_A2, m, bi)
r = r + 2 + n

Cells(r, cl) = "Submatrix Q2: row * (col - rank)"
Range(Cells(r + 1, cl), Cells(r + n, cl + (m - bi) - 1)) = b4

'b5=Rl

b5 = MatExtract3(Mat_R, Mat_A2, n, bi)
r = r + 2 + n

Cells(r, cl) = "Submatrix Rl: rank * rank"
Range(Cells(r + 1, cl), Cells(r + bi, cl + bi - 1)) = b5

'b6 = R2

b6 = MatExtract4(Mat_R, Mat_A2, m, bi)
r = r + bi + 2

Cells(r, cl) = "Submatrix R2: rank * (row-rank)"
Range(Cells(r + 1, cl), Cells(r + bi, cl + (m - bi) - 1)) = b6

'b3 = Diagonal variance Matrix

b3 = M_DIAG(Mat_Var)
r = r + bi + 2

Cells(r,cl) = "diagonal"
Range(Cells(r + 1, cl), Cells(r + n3, cl +n3-l)) = b3

'b7 = Transpose Q2, Q2'

b7 = M_T(b4)
r = r + n3 + 2

Cells(r, cl) = "Transpose Q2"
Range(Cells(r + 1, cl), Cells(r + (m - bi), cl + n - 1)) = b7

'G=Q2'*A1
G = WorksheetFunction.MMult(b7, Mat_Al)
r = r + (m - bi) + 2
Cells(r,cl) = "Matrix G"
Range(Cells(r + 1, cl), Cells(r + (m - bi), cl + m5 - 1)) = G

'b8 = Transpose G, G'
b8 = M_T(G)

Ti=G*V*G'

'b9 = fi try = G*V

b9 = WorksheetFunction.MMult(G, b3)
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fi = WorksheetFunction.MMult(b9, b8)
r = r + (m - bi) + 2
Cells(r, cl) = "Matrix fi"
Range(Cells(r + 1, cl), Cells(r + (m - bi), cl + (m - bi) - 1)) = fi

'blO = inverse fi

blO = M_INV(fi)

'bll =V*G'

bl 1 = WorksheetFunction.MMult(b3, b8)

'bl2 = G* Y

bl2 = WorksheetFunction.MMult(G, Mat_Y)

'bl 3= V*G'*inv(fi)
bl3 = WorksheetFunction.MMult(bl 1, blO)

T=V*G'*inv(fi)*G*Y
T = WorksheetFunction.MMult(bl3, bl2)
r = r + (m - bi) + 2
Cells(r, cl) = "T"
Range(Cells(r+ 1, cl), Cells(r + (m5), cl + 1 - 1)) = T

'Reconciled Values

'X = Y - T

x - M_SUB(Mat_Y, T)
r = r + m5 + 2

Cells(r, cl) = "X"
Range(Cells(r + 1, cl), Cells(r + (m5), cl + 1 - 1)) = x

'Determination of unmeasured variables

'tl=-inv(Rl)*Qr*Al*X
temp = M_INV(b5)
bl4 = M_PRODS(temp)
bl5 = M_T(b2)
bl6 = WorksheetFunction.MMult(Mat_Al, x)
bl7 = WorksheefFunction.MMult(bl5, bl6)
tl = WorksheetFunction.MMult(bl4, bl7)
r = r + m5 + 2

Cells(r, cl) = "tl"
Range(Cells(r + 1, cl), Cells(r + bi, cl + 1 - 1)) = tl

't2=-i.nv(Rl)*R2*Mat_Unr
bl8 = WorksheetFunction.MMult(b6, Mat_Unr)
t2 = WorksheetFunction.MMult(bl4, bl8)
r = r + bi + 2
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Cells(r, cl) = "t2"
Range(Cells(r + 1, cl), Cells(r + bi, cl + 1 - 1)) = t2

'Unmeasured values

*U=tl+t2

unmeas = M_ADD(tl, t2)
r = r + bi + 2

Cells(r, cl) - "Unmeasured"
Range(Cells(r + 1, cl), Cells(r + bi, cl + 1 - 1)) = unmeas

'Gross Error Detection

'r=G*T

'tau=r'*inv(fi)*r

btau = M_SUB(Mat_Y, x)

r = r + bi + 2

Cells(r, cl) = "Step 1"
Range(Cells(r + 1, cl), Cells(r + 27, cl + 1 - 1)) = btau

r = r + 29

Cells(r, cl) = "Step2"
Cells(r+ l,cl).Select

ActiveCell.FormulaRlCl = "=R[-29]CA2"
Cells(r+ l,cl).Select
Selection.AutoFill Destination—Range(Cells(r + 1, cl), Cells(r + 26, cl)),

Type:=xlFillDefault
Cells(r + 28, cl - l).Select
ActiveCell.FormulaRlCl = "Global Test"

Cells(r + 28, cl).Select
ActiveCell.FormulaRlCl - "=SUM(R[-28]C:R[-2]C)"
Range(Cells(r + 28, cl), Cells(r + 28, cl)).Select

If Cells(r + 28, cl) > 32.01 Then
MsgBox "Gross Enor Detected at 10% probability level with 23 DOF"
Cells(r + 28, cl).Select
End If

End Sub
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Appendix A3

Visual Basic Code for Linear Data Reconciliation Solver Functions

Private Function Matrix_Mult(Al, a2)
Dim a3()
MMultiply Al, a2, a3() 'fast multiplication routine
Matrix_Mult = a3
End Function

Sub MMultiply(A, b, c, Optional h)
Dim i&, j&, k&, n&, m&, p&
Dim ii&, jj&, kk&, nl&, ml&, pl&, il&, jl&, nb&, mb&, pb&
Dim imax&, jmax&, kmax&, imin&, jmin&, kmin&
DimAl(),bl(), cl
If IsMissing(h) Then h = 70
n = UBound(A, 1) 'rows of A
p = UBound(A, 2) 'columns of A = rows of B
m = UBound(b, 2) 'columns of B
If n <= h And m <= h Then

'fast multiplication
c = WorksheetFunction.MMult(A, b)
Exit Sub

End If

nb = Int(n / h) 'row-blocks of A
pb = Int(p / h) 'column-blocks of A = row-blocks of B
mb = Int(m / h) 'column-blocks of B
If nb * h < n Then nb = nb + 1

If pb * h < p Then pb = pb + 1
If mb * h < m Then mb = mb + 1

ReDim c(l To n, 1 To m)
For ii = 1 To nb

For jj = 1 To mb
For kk = 1 To pb

imin = h * (ii - 1) + 1
imax = h * ii

If imax > n Then imax = n

kmin = h*(kk- 1)+1
kmax - h * kk

If kmax > p Then kmax = p
nl = imax - imin + 1

pi = kmax - kmin + 1
ReDim Al(l Tonl, 1 Topi)
Fori = 1 ToUBound(Al, 1)
For k = 1 To UBound(Al, 2)

Al(i, k) = A(i + imin - 1, k + kmin - 1)
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Next k, i

kmin = h*(kk- 1)+ 1
kmax = h * kk

If kmax > p Then kmax = p
jmin = h* (jj - 1) + 1
jmax = h * jj
If jmax > m Then jmax = m
pi = kmax - kmin + 1
ml = jmax - jmin + 1
ReDim bl(l Topi, 1 To ml)
Fork= 1 ToUBound(bl, 1)
Forj = l ToUBound(bl,2)

bl(k,j) = b(k + kmin- l,j +jmin- 1)
Nextj, k
cl = WorksheetFunction.MMult(Al, bl)
imin - h * (ii - 1) + 1
jmin = h*(jj-l)+l
Fori = 1 ToUBound(cl, 1)
For j = 1 To UBound(cl, 2)

il = i + imin - 1

jl = j +jmin - 1
c(il,jl) = c(il,jl) + cl(i,j)

Nextj, i
Nextkk

Next jj
Next ii

End Sub

Sub Mat_Transpose(A, b)
Dim i&, j&
On Enor GoTo Transpose_Vector

ReDim b(LBound(A, 2) To UBound(A, 2), LBound(A, 1) To UBound(A, 1))
For i = LBound(A, 1) To UBound(A, 1)
For j = LBound(A, 2) To UBound(A, 2)

bO,i) = A(i,j)
Nextj
Next i

Exit Sub

Transpose_Vector:
On Enor GoTo 0

ReDim b(LBound(A, 1) To UBound(A, 1), LBound(A, 1) To LBound(A, 1))
For i = LBound(A, 1) To UBound(A, 1)

b(i, LBound(A, l)) = A(i)
Next i

End Sub

78



Function M_T(Mat)
Dim A, b
A = Mat

Mat_Transpose A, b
M_T = b
End Function

Sub MatHouseholder(u, v)
Dim i&, j&, tiny#
tiny = 10 A-100
n = UBound(v)
v_modulus = VectNorm(v)
For i = 1 To n

v(i) = v(i) / v_modulus
Next

ReDim u(l To n, 1 To n)
For i = 1 To n

For j = 1 To n
u(i,j) = -2 * v(i) * v(j)
If Abs(u(i, j)) < tiny Then u(i, j) = 0 'mop-up mod. 4-6-2005
If i = j Then u(i, j) = 1 + u(i, j)

Nextj
Next i

End Sub

Function Mat_QR(Mat)
Dim r, q
Dim v() As Double, u() As Double, p As Double
r = Mat

m = UBound(r, 1)
n = UBound(r, 2)
ReDim v(l To m)
If n = m Then p 1 = n - 1 Else p 1 = n
For k = 1 To p 1

'compute the modulus of vector k
s = 0

For i = 1 To m

s = s + r(i, k) A2
Next

s = Sqr(s)
For i = 1 To m

v(i) = r(i,k)/s
Next

D = 0

For i = k To m

D = D + v(i) A2
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Next

D = Sqr(D)
Ifv(k)>0ThenD = -D
'compute V
For i = 1 To m

Ifi<kThen

v(i) = 0
Elself i = k Then

v(k) = Sqr((l - v(k) / D) / 2)
p = -D * v(k)

Else

v(i) = v(i) / p / 2
End If

Next

Call MatHouseholder(u, v)
r = Matrix_Mult(u, r)
Ifk=lThen

q = u

Else

q = Matrix_Mult(u, q)
End If

Next

q = M_T(q)
For i = 1 To n

If r(i, i)<0Then
Change_Sign_Row r, i
Change_Sign_Column q, i

End If

Next

ReDim u(l To m, 1 To 2 * n)
'load matrix out QR
For i = 1 To m

For j = 1 To n
u(i,j) = q(i,j)'-q(i,j)
If i <= n Then

u(i,j+n) = r(i,j),-R(i,j)
End If

Next

Next

Mat_QR = u
End Function

Private Sub Change_Sign_Column(A, j)
For i = LBound(A, 1) To UBound(A, 1)

A(i,j) = -A(i,j)
Next i
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End Sub

Private Sub Change_Sign_Row(A, i)
For j = LBound(A, 2) To UBound(A, 2)

A(i,j) = -A(i,j)
Nextj
End Sub

Private Function VecfNorm(v)
s = 0

For i = LBound(v) To UBound(v)
s = s + v(i) A2

Next

VectNorm = Sqr(s)
End Function

Function SysLinSing(Mat, Optional v, Optional MaxEn)
Dim Al, A() As Double, m, n, Det, tol#
Dim b, elem_max, count1%, count2%
Al = Mat

na = UBound(Al, 1)
ma = UBound(Al,2)
If IsMissing(v) Then

nb = na: mb = 1

Else

b = v: nb = UBound(b, 1): mb = UBound(b, 2)
End If

If na <> nb Or mb o 1 Then

SysLinSing = "?": Exit Function
End If

n = Max(na, ma): m = 1
elem_max = 0
ReDim A(l To n, 1 To ma + m)
For i = 1 To na

For j = 1 To ma
A(i,j) = Al(i,j)
If Abs(A(i, j)) > elem_max Then elemjnax = Abs(A(i, j))

Nextj
For j = 1 To m

A(i, j + ma) = 0
If Not IsMissing(v) Then A(i, j + ma) = b(i, j)

Nextj
Next i

If IsMissing(MaxEn) Then tol = 10 A-13 Else tol = MaxEn
If elem_max > 1 Then MaxEnRel = tol * elem_max Else MaxEnRel = tol
If MaxEnRel > 10 A -6 Then MaxEnRel = 10 A -6
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Call GaussJordan(A, n, n + m, Det, "D", MaxEnRel)
m = n + m

For i = 1 To n

Forj = 1 To m
If Abs(A(i, j)) < MaxEnRel Then A(i, j) = 0

Nextj
Next i

For i = 1 To n

Count = 0

il =0

For j = 1 To n
IfA(i,j)<>0Then

Count = Count + 1

il = j
End If

Nextj
If Count = 1 And il <> i Then

SwapRow A, i, il
End If

IfCount = 0Then

Forj = n + 1 To m
If A(i, j) <> 0 Then GoTo Enor_Handler

Nextj
End If

Next i

For k = 1 To n

If A(k, k)o0Then
Fori = k- 1 To 1 Step-1

If A(i, k) o 0 And i <> k Then
pi = -A(i, k)
pk = A(k, k)
Forj = 1 To m

A(i,j) = pk*A(i,j) + pi*A(k,j)
If Abs(a(i, j)) < tol Then a(i, j) = 0

Nextj
End If

Next i

End If

Nextk

For i = 1 To n

If A(i, i) <> 0 And A(i, i) o 1 Then
pi = A(i, i)
Forj = 1 To m

A(i,j) = A(i,j)/pi
Nextj
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End If

Next i

For i = 1 To n

countl = 0: count2 = 0

Forj = 1 To m
IfAbs(A(i,j))> tol Then

Ifj <= n Then countl = countl + 1 Else count2 = count2 + 1
End If

Nextj
If countl = 0 And count2 > 0 Then GoTo Enor_Handler

Next i

For j = 1 To n
IfA(j,j) = 0Then

For i = 1 To n

A(i,j) = -A(i,j)
Next i

A(j,j)=l
Else

AG,j) = 0
End If

Nextj
imp = MatMopUp(A, tol)
SysLinSing = tmp
Exit Function

Enor_Handler:
SysLinSing = "?"
End Function

Private Function Max(A, b)
If A > b Then Max - A Else Max = b

End Function

Sub GaussJordan(A, n, m, Det, F, Optional dTiny)
Dim i As Integer, j As Integer, k As Integer
If IsMissing(dTiny) Then dTiny = 10 A-100
Det=l

For k = 1 To n

If F = "T" Then

w = k + 1 ' Triangolarizza
ElseIfF = "D"Then

w = 1 ' Diagonalizza
Else

Exit Sub

End If

ipivot = k
PivotMax = Abs(A(k, k))
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For i = k + 1 To n

If Abs(A(i, k)) > PivotMax Then
ipivot = i: PivotMax = Abs(A(i, k))

End If

Next i

If ipivot > k Then
SwapRow A, k, ipivot
Det = -Det

End If

If Abs(A(k, k)) <= dTiny Then
A(k, k) = 0
Det = 0

Exit Sub

End If

pk = A(k, k)
Det = Det * pk
For j = 1 To m

A(k,j) = A(k,j)/pk
Nextj
For i = w To n

If i o k And A(i, k) o 0 Then
pk = A(i,k)
For j = 1 To m

A(i,j) = A(i,j)-pk*A(k,j)
Nextj

End If

Next i

Nextk

End Sub

Sub SwapRow(A, k, i)
'Swaps rows k and i
Dimj&, temp
Forj = LBound(A, 2) To UBound(A, 2)

temp = A(i, j)
A(i,j) = A(k,j)
A(k, j) = temp

Next

End Sub

Sub SwapCol(A, k, j)
Dim i&, temp, n&
n = UBound(A, 1)
For i = 1 To n

temp = A(i, j)
A(i,j) = A(i,k)
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A(i, k) = temp
Next i

End Sub

Function MatMopUp(Mat, Optional EnMin)
Dim A

If IsMissing(EnMin) Then EnMin = 10 A-14
A = Mat

For i = 1 To UBound(A, 1)
Forj = l To UBound(A, 2)

If IsNumeric(A(i, j)) Then
If Abs(A(i, j)) < EnMin Then A(i, j) = 0

End If

Nextj
Next i

MatMopUp = A
End Function

Function M_RANK(Mat)
Dim A, At, b, u
Const tiny = 10 ^ -18
A = Mat

n = UBound(A, 1): m = UBound(A, 2) 'get A dimension
If n o m Then

At = M_T(Mat)
If n < m Then

b = Application.WorksheetFunction.MMult(A, At)
nb = n

Else

b = Application.WorksheetFunction.MMult(At, A)
nb = m

End If

Else

b = A 'nothing to do
nb = n

End If

u = SysLinSing(b,, tiny)
Rank = nb

Forj = 1 To nb
s = 0: For i = 1 To nb: s = s + Abs(u(i, j)): Next i
If s > tiny Then Rank = Rank - 1

Nextj
M_RANK = Rank - 1
End Function

Function MatExtract(Mat, Mat2, newrow, newcol)
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Dim A, D, c()
Dim n As Integer, m As Integer
Dim i As Integer, j As Integer
A = Mat

D = Mat2

n = UBound(A, 1) 'extract matrix has same no of rows
m = M_RANK(Mat2) 'extract matrix has rank no. of col
ReDim c(l To n, 1 To m)
For i = 1 To n

For j = 1 To m
il=i:jl=j
If i >= newrow Then il = i

Ifj >= newcol Then j 1 = j
c(i,j) = A(il,jl)

Nextj
Next i

MatExtract = c

End Function

Function MatExtract2(Mat, Mat2, newrow, newcol)
Dim A, D, c()
Dim n As Integer, m As Integer
Dim i As Integer, j As Integer
A = Mat

D = Mat2

k = M_RANK(Mat2)
n = UBound(A, 1) 'extract matrix has same no of rows
m = UBound(A, 2) - k 'extract matrix has rank no. of col
ReDim c(l To n, 1 To m)
For i = 1 To n

For j = 1 To m
jl=j + k
Ifi>=OThenil =i

Ifj>=OThenjl =j + k
c(i,j) = A(il,jl)

Nextj
Next i

MatExtract2 = c

End Function

Function MatExtract3(Mat3, Mat2, newrow, newcol)
Dim E, D, c()
Dim n As Integer, m As Integer
Dim i As Integer, j As Integer
E = Mat3

D - Mat2
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n = M_RANK(Mat2) 'extract matrix has same no of rows
m = M_RANK(Mat2) 'extract matrix has rank no. of col

ReDim c(l To n, 1 To m)
For i = 1 To n

For j = 1 To m
il=i:jl=j
If i >= newrow Then il = i

If j >= newcol Then j 1 = j
c(i,j) = E(il,jl)

Nextj
Next i

MatExtract3 = c

End Function

Function MatExtract4(Mat3, Mat2, newrow, newcol)
Dim E, D, c()
Dim n As Integer, m As Integer
Dim i As Integer, j As Integer
E = Mat3

D = Mat2

n = M_RANK(Mat2) 'extract matrix has same no of rows
m = UBound(D, 2) - M_RANK(Mat2) 'extract matrix has rank no. of col

ReDim c(l To n, 1 To m)
For i = 1 To n

Forj = 1 To m
jl=j+n
Ifi>=OThenil =i

Ifj >=0Thenjl =j + n
c(i,j) = E(il,jl)

Nextj
Next i

MatExtract4 = c

End Function

Function M_DIAG(Diag)
Dim w(), DO
LoadVector w, Diag, n
ReDim D(l To n, 1 To n)
For i = 1 To n

For j = 1 To n
If i = j Then D(i, i) = w(i) Else D(i, j)

Nextj
Next i

M DIAG = D

87



End Function

Sub LoadVector(vector, w, n)
IfIsObject(w)Then

Dim area As Range
Set area = w

If area.Columns.Count = 1 Then

rows_max = ActiveSheet.Rows.Count
n = area.Cells.Count

If n = rows_max Then
rl = area.End(xlDown).row
If area.Cells(2) = "" And rl = rows_max Then

n=l

Else

n = rl

End If

End If

Else

col_max = ActiveSheet.Columns.Count
n = area.Cells.Count

If n = col_max Then
'full row selected. Example: (2:2)

cl = area.End(xlToRight).Column
If area.Cells(2) = "" And cl - col_max Then

n= 1

Else

n = cl

End If

End If

End If

k = 0

If Not IsNumeric(area.Cells(l)) Then
n = n - 1

k=l

End If

ReDim vector(l To n)
For i = 1 To n

vector(i) = area.Cells(i + k)
Next i

Elself IsMatrix(w) Then
If UBound(w, 1) > UBound(w, 2) Then

'vector column

n = UBound(w, 1)
ReDim vector(l To n)
For i = 1 To n: vector(i) = w(i, 1): Next

Else
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n = UBound(w, 2)
ReDim vector(l To n)
For i = 1 To n: vector(i) = w(l, i): Next

End If

Elself IsVector(w) Then
n = UBound(w)
ReDim vector(l To n)
For i = 1 To n: vector(i) = w(i): Next

Else

n = 0 'something enor
End If

End Sub

Private Function IsMatrix(A) As Boolean
On Enor GoTo Enor_Handler
IsMatrix = False

n = UBound(A, 1)
n = UBound(A, 2)
IsMatrix = True

Enor_Handler:
End Function

Private Function IsVector(A) As Boolean
On Enor GoTo Enor_Handler
IsVector = False

n = UBound(A, 1)
IsVector = True

n = UBound(A, 2)
IsVector = False

Enor_Handler:
End Function

Function Mat_Block(Mat)
Dim A, n&, i&, j&, k&, Iter&, Iter_max&, s&, s0&
Dim Perm() As Integer
A = Mat

n = UBound(A, 1)
If n o UBound(A, 2) Then GoTo ErrorJHandler '"Matrix not square"
Iter_max = 2 * n
Block_Matrix_Reduction A, Perm, Iter
If Iter >= Iter_max Then GoTo Enor_Handler '"Iteration overflow"

Mat_Block = A
Exit Function

Enor_Handler:
Mat_Block = "?"

End Function
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Function Mat_BlockPerm(Mat)
Dim A, n&, i&, j&, k&, Iter&, Iter_max&, s&, s0&
Dim Block(), Nblock, DimMax, Perm()
A = Mat

n = UBound(A, 1)
If n <> UBound(A, 2) Then GoTo Enor_Handler '"Matrix not square"
Iter_max = 2 * n
Block_Matrix_Reduction A, Perm, Iter
If Iter >= Iter_max Then GoTo Enor_Handler '"Iteration overflow"
Mat_Block_Extract A, Block, Nblock, DimMax
If Nblock = 1 Then GoTo EnorJHandler 'irriducible matrix
Mat_BlockPerm = PasteVector(Perm)
Exit Function

Enor_Handler:
Mat_BlockPerm = "?"

End Function

Sub Block_Matrix_Reduction(A, Perm, Optional Iter)
Dim n&, i&, j&, k&, Iter_max&, s&, s0&
n = UBound(A, 1)
Iter_max = 2 * n
ReDim Perm(l To 1, 1 To n)
Forj = 1 To n: Perm(l, j) =j: Nextj
s0 = 0

Iter = 0

Do

s0 = s

For i = 1 To n

Forj = n To i + 1 Step -1
If A(i,j)<>0Then

'trova uno zero sulla Stella riga
For k = 1 To j - 1

IfA(i,k) = 0Then
T = Scorel(A, k,j)
IfT>0Then

swap_rows A, k, j
swap_columns A, k, j
swap_columns Perm, k, j
s = s + T

Exit For

End If

End If

Nextk

End If

Nextj
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Next i

For i = 1 To n - 1

If A(i, i + 1) o 0 And A(i + 1, i) = 0 Then
T = Scorel(A, i, i+ 1)
IfT>0Then

swap_rows A, i, i + 1
swap_columns A, i, i + 1
swap_columns Perm, i, i + 1
s = s + T

End If

End If

Next

Iter = Iter + 1

Loop While s > sO And Iter < Iterjnax

End Sub

Private Function PasteVector(v)
On Enor GoTo Enor_Handler
If Application.Caller.Rows.Count > 1 Then

PasteVector = Application.WorksheetFunction.Transpose(v)
Else

PasteVector = v

End If

Exit Function

EnorJHandler:
PasteVector = v

End Function

Private Function Scorel(Mat, p, q)
Dim A, i&, j&, k&, m&, n&
A = Mat

n = UBound(A)
s0 = 0

Forj = p + 1 To n
If A(p, j) = 0 Then sO = sO + Weig(p, j, n)

Nextj
For j = q + 1 To n

If A(q, j) = 0 Then sO = sO + Weig(q, j, n)
Nextj
For i = 1 To p - 1

If A(i, p) = 0 Then sO = sO + Weig(i, p, n)
Next i

For i = 1 To q - 1
If A(i, q) = 0 Then sO - sO + Weig(i, q, n)
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Next i

If A(p, q) = 0 Then sO = sO - Weig(p, q, n)

si =0

For j = p + 1 To n
If A(q, j) = 0 Then si = si + Weig(p, j, n)

Nextj
For j = q + 1 To n

If A(p, j) = 0 Then si = si + Weig(q, j, n)
Nextj
For i = 1 To p - 1

If A(i, q) = 0 Then si = si + Weig(i, p, n)
Next i

For i = 1 To q - 1
If A(i, p) = 0 Then si = si + Weig(i, q, n)

ext i

If A(q, p) = 0 Then si = si + Weig(p, q, n)
Scorel = si - sO

End Function

Sub swap_rows(A, rl, r2)
Dim j&, tmp
Forj = 1 To UBound(A, 2)

tmp = A(rl,j)
A(rl,j) = A(r2,j)
A(r2, j) = tmp

Next j
End Sub

Sub swap_columns(A, cl, c2)
Dim i&, tmp
Fori = 1 ToUBound(A, 1)

tmp = A(i, cl)
A(i,cl) = A(i,c2)
A(i, c2) = tmp

Next i

End Sub

Sub Mat_Block_Extract(A, Block, Nblock, DimMax)
Dim n&, Ib&, i&, j&, Edge&(), edge_max&, Block_dim&
n = UBound(A)
ReDim Block(l To n), Edge(l To n)
For i = 1 To n

Forj = n To 1 Step -1
If A(i, j) <> 0 Then Exit For

Nextj
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Edge(i) = j
Next i

DimMax = 0

Nblock = 0

For i = 1 To n

Block_dim = Block_dim + 1
If Edge(i) > edge_max Then edge_max = Edge(i)
If i >= edge_max Then 'one block found

lb = lb + 1

Block(Ib) = Block_dim
If Block_dim > DimMax Then DimMax = Block_dim
Block_dim = 0

End If

Next i

Nblock = lb

End Sub

Function MatPerm(Pennutations)
Dim v, A() As Integer
LoadVector v, Permutations, n
ReDim A(l To n, 1 To n)

For i = 1 To n

If 1 <= v(i) And v(i) <= n Then
A(v(i), i) = 1

End If

Next i

MatPerm = A

End Function

Function M_INV(Mat, Optional IMode, Optional tiny)
Dim A, m, n, RetEn
A = Mat

If IsMissing(IMode) Then EVIode = False
If IsMissing(tiny) Then tiny = 10 A-100
If IsArray(A) Then

If UBound(A, 1) o UBound(A, 2) Then
RetEn = "?"

GoTo HerrorHandler

End If

If Not IMode Then

Call GJ(A,,, tiny, RetEn) 'Gauss-Jordan subroutine
Else

Call GJI(A,,, tiny, RetEn) "Gauss-Jordan integer subroutine
End If

If RetEn o "" Then GoTo HenorHandler
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M_INV = A
Else

IfMat = 0Then

RetEn = "?"

GoTo HenorHandler

End If

M_INV = 1 / Mat
End If

Exit Function

HenorHandler:

M_INV = RetEn
End Function

Sub GJ(A, Optional b, Optional Det, Optional dTiny, Optional RetEn-)
Dim i%, j%, irow%, icol%, ID(), sw%, m, CalcDet As Boolean
If IsMissing(dTiny) Then dTiny = 10 A-100 'change 10.12.05
If Not IsMissing(Det) Then CalcDet = True
If IsMissing(b) Then m = 0 Else m = UBound(b, 2)
n = UBound(A, 1)
ReDim ID(1 To 2 * n, 1 To 3) 'trace of swaps
sw = 0 'swap counter
Det=l

RetEn =""

On Enor GoTo Enor_Handler
For k = 1 To n

irow = k: icol = k

PivotMax = 0

For i. = k To n

Forj = k To n
If Abs(A(i, j)) > PivotMax Then

irow = i: icol = j: PivotMax = Abs(A(i, j))
End If

Nextj
Next i

If irow = icol And Abs(A(k, k)) o 0 Then
irow = k

icol = k

End If

If irow > k Then

SwapRow A, k, irow
If m > 0 Then SwapRow b, k, irow
If CalcDet Then Det = -Det

sw = sw + 1

ID(sw, l) = k
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ID(sw, 2) = irow
ID(sw, 3) = 1

End If

If icol >k Then

SwapCol A, k, icol
If CalcDet Then Det = -Det

sw = sw + 1

ID(sw, l) = k
ID(sw, 2) = icol
ID(sw, 3) = 2

End If

If Abs(A(k, k)) <= dTiny Then
A(k, k) = 0: Det = 0
RetEn = "singular"
Exit Sub

End If

pk = A(k, k)
If CalcDet Then Det = Det * pk
A(k, k) = 1
Forj = 1 To n

A(k,j) = A(k,j)/pk
Nextj
Forj = 1 To m

b(k,j) = b(k,j)/pk
Nextj
For i = 1 To n

If i o k And A(i, k) o 0 Then
pk = A(i,k)
A(i, k) = 0
For j = 1 To n

A(i,j) = A(i,j)-pk*A(k,j)
Nextj
Forj = 1 To m

b(ij) = b(i,j)-pk*b(k,j)
Nextj

End If

Next i

Nextk

'scramble rows

For i = sw To 1 Step -1
IfID(i, 3)=1 Then

SwapCol A, ID(i, 1), ED(i, 2)
Else

SwapRow A, ID(i, 1), ID(i, 2)
If m > 0 Then SwapRow b, ID(i, 1), ID(i, 2)

End If
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Next

Exit Sub

Enor_Handler:
RetEn = "overflow"

End Sub

Sub GJI(A, Optional b, Optional Det, Optional dTiny, Optional RetEn)
Dim i%, j%, irow%, pk#, pi#, Ai#(), det_d#(), CalcDet As Boolean
If IsMissing(dTiny) Then dTiny = 10 A-100
If Not IsMissing(Det) Then CalcDet = True
If IsMissing(b) Then m = 0 Else m = UBound(b, 2)
n = UBound(A, 1)
ReDim Ai(l To n, 1 To n), det_d(l To n)
RetEn = ""

On Enor GoTo Enor_Handler
'initialization

For i = 1 To n

Ai(i, i) = 1
det_d(i) = 1

Next

For k = 1 To n

'search max pivot
irow = k

PivotMax = 0

For i = k To n

If Abs(A(i, k)) > PivotMax Then
irow = i: PivotMax = Abs(A(i, k))

End If

Next i

' swap rows
If irow > k Then

SwapRow A, k, irow
SwapRow Ai, k, irow
If m > 0 Then SwapRow b, k, irow
If CalcDet Then det_d(k) = -det_d(k)

End If

' check pivot 0
If Abs(A(k, k)) <= dTiny Then

A(k, k) = 0: Det - 0
RetEn = "singular"
Exit Sub

End If

'integer linear reduction
For i = 1 To n

If Abs(A(i, k)) <= tiny Then A(i, k) = 0 'mop-up Aik
If i o k And A(i, k) o 0 Then
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MCM_ = MCM_2(Abs(A(k, k)), Abs(A(i, k)))
pk = MCM_ / A(k, k)
pi = -MCM_ / A(i, k)
If CalcDet Then det_d(k) = det_d(k) * pi
For j = 1 To n

A(i,j) = pi*A(i,j) + pk*A(k,j)
Ai(i, j) = pi * Ai(i, j) + pk * Ai(k, j)

Next j
Forj = 1 To m

b(i,j) = pi*b(i,j) + pk*b(k,j)
Nextj

End If

Next i

Nextk

'determinant computing
If CalcDet Then

Det=l

For i = 1 To n

Det = Det * (A(i, i) / det_d(i))
Next

End If

'normalization

For i = 1 To n

Forj = 1 To n
Ai(i,j) = Ai(i,j)/A(i,i)

Nextj
Forj = 1 To m

b(i,j) = b(i,j)/A(i,i)
Nextj

Next i

A = Ai 'substitute the given matrix with its inverse
Exit Sub

Enor_Handler:
RetEn = "overflow" 'overflow

End Sub

Function M_PROD(ParamArray Mat())
Dim b, Mi
b = Mat(O)
For i = 1 To UBound(Mat, 1)

b = Application.WorksheetFunction.MMult(b, Mat(i))
Next

M_PROD = b
End Function

Sub M_Multiply(Al, a2, a3Q)
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Dimi&,j&, k&
Dim nl&, ml&, n2&, m2&
nl =UBound(Al, 1)
ml =UBound(Al,2)
n2 - UBound(a2, 1)
m2 = UBound(a2, 2)
ReDim a3(l To nl, 1 To m2)

For i = 1 To nl

For j = 1 To m2
For k = 1 To ml

a3(i,j) = a3(i,j) + Al(i,k)*a2(k,j)
Next k, j, i

End Sub

Private Sub Mat_Multiplication(ref_inpl, ref_inp2, ref_out)
Dim Al, a2, b(), nl&, ml&, n2&, m2&, Fmp, u()
InputMatrix Al, ref_inpl, nl, ml
InputMatrix a2, ref_inp2, n2, m2
If ml o n2 Then EnMsg = "Enor: wrong dimension": Exit Sub
Elaboration_Initialize
MMultiplyAl, a2, b
OutputMatrix b, refout, True

End Sub

Function M_SUB(Matl, Mat2)
'matrix subtraction

Dim A, b, c()
Dim na As Integer, ma As Integer, nb As Integer, mb As Integer
Dim i As Integer, j As Integer
A = Matl:b = Mat2

na = UBound(A, 1): ma = UBound(A, 2)
ReDim c(l To na, 1 To ma)
For i = 1 To na

Forj = 1 To ma
c(i,j) = A(i,j)-b(i,j)

Nextj
Next i

M_SUB = c
End Function

Function M_ADD(Matl, Mat2)
Dim A, b, c()
Dim na As Integer, ma As Integer, nb As Integer, mb As Integer
Dim i As Integer, j As Integer
A = Matl:b = Mat2
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na = UBound(A, 1): ma = UBound(A, 2)
ReDim c(l To na, 1 To ma)
For i = 1 To na

For j = 1 To ma
c(i,j) = A(i,j) + b(i,j)

Nextj
Next i

M_ADD = c
End Function

Function M_PRODS(Mat)
Dimb

k = -l

b = Mat

Fori = l ToUBound(b, 1)
Forj = l To UBound(b, 2)

b(i,j) = k*b(i,j)
Next j
Next i

MPRODS-b

End Function

Function mident(n) 'nxn identity matrix
Dim row, col
ReDim matrix(l To n, 1 To n)
For col = 1 To n

For row = 1 To n

If row = col Then

matrix(row, col) = 1
Else

matrix(row, col) = 0
End If

Next row

Next col

mident = matrix

End Function

Function mzeros(n) 'nxn identity matrix
Dim row, col
ReDim matrix(l To n, 1 To n)
For col = 1 To n

For row = 1 To n

If row = col Then

matrix(row, col) = 0
Else

matrix(row, col) = 0
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End If

Next row

Next col

mident = matrix

End Function

Function Mat_Extract(Mat, newrow, newcol)
Dim D, c()
Dim n As Integer, m As Integer
Dim i As Integer, j As Integer
n = newrow 'extract matrix has same no of rows

m = newcol 'extract matrix has rank no. of col

ReDim c(l To n, m)
If j = newcol Then

For i = 1 To n

il=i:jl=j
If i >= newrow Then i 1 = i

If j >- newcol Then jl =j
c(i,j) = Mat(il,jl)

Next i

End If

Mat_Extract = c
End Function
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