Real-Time Stereopsis

By
Sayed Ali Kasaei Zadeh Mahabadi

Dissertation submitted in partial fulfiliment of
the requirements for the
Bachelor of Technology (Hons)
(Information Communication Technology)
JANUARY 2008

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Real Time Stereopsis

By

Sayed Ali Kasaei Zadeh Mahabadi

A project dissertation submitted to the
Information communication Technology Programme
Universiti Teknologi PETRONAS
In partial fulfiliment of the requirement for the
BACHELOR OF TECHNOLOGY (Hons)

(Information Communication Technology)

Approved by,
\o 4 ™

(Assdc. Prof. Dr. Abas Md Said)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

January 2008

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original
work is my own except as specified in the references and acknowledgements, and that the
original work contained herein have not been undertaken or done by unspecified sources or

persons.

[..

SAYED ALI KASAEI ZADEH MAHABADI

se
1

ABSTRACT

The computerized development always was on the center of attraction. More accurate
result generation in shorter time period has done by computers, make humans eager to
gives computers more responsibility and tasks. Computer vision is one of these tasks that

for past centuries take lots of time and effort one the rode of perfection.

One of the arecas in the computer vision is stereo vision or Stereopsis. This area start in
early 1970’s and still up to day is one of the mysteries part of computer vision. Peoples
try to make computer sees as human see. Up today there are many aigorithm developed

and invented by scientist but it’s long way to go.

The main purpose of this report is to shows how it’s possible for computer to calculate
depth from 2D images and then base on some algorithms, it tries to construct 3D result.
But why we need to make all these efforts and why it’s so important to make computer

sees as human see.

One of the strongest effects of this process is for 3D animation development. Generating
3D libraries and assist game developers or generally graphic developers. Imagine for
development of one hour movie 60 computers work for one year and see how fast it will

be to have all the models available in very short time.

Another effect of this system if for virtual realities systems. Beside 3D modeling which
require real-time rendering it also require certain amount of tracking for user interaction,
This process normally handle by sensors, where its limited to few sensors and also it
makes users uncomfortable and its harder for virtual environment to be more realistic for

users.
jii

Finally in robot vision 3 dimension is essential. Finding exact location of object,
obstacles and etc. is the main goal of robots before they can perform any tasks. So base

on understanding of depth the robots can easily move without any collision.

iv

ACKNOWLEDGMENT

All my gratitude is towards God Almighty for giving me the strength, wisdom and patience in
order to complete this project in the most efficient and timely manner.

I would like to express my utmost gratitude towards the assistance and generosity of all the
people to whom which without this project wouid have not achieved its completion. In this
process 1 would fike to thank my supervisor Assoc. Prof. Dr. Abas Md Said for being as
generous and understanding as human can be. Without his helpful guidance, advice and
motivations, I might have not been able to complete this project with the required quality.

To Dr. Mohamed Nordin Zakaria who guided me with patients and caring, to my dear family,
my supporting parents who have helped me to grow as the independent man I am and guided me
in the darkest and most tough times. Lastly but not least my respectful friends who have truly
proven their friendship and support throughout the entire process by motivating me, raising me

up when I got down and being there for me when I needed a hand.

And to all those people who have shared their experience and ideas which I have forgotten to
mention in this small but gratified acknowledgment,

Thank you.

TABLE OF CONTENTS

CERTIFICATION OF APPROVALcvcirvnerrrerccccncsinsmmsisiesinssaesrisasssssismssssssersessssssssessascrsssns i
CERTIFICATION OF ORIGEINALITY ..coveoriririnmircccoseisissisessisisssserssissssmsmsessermeessassssesss Lii
ABSTRACTcoeervirereirermmresessnsessessesssssessassasessmesssssssatsssnsmsesssssbestssssassessstsssens iii
ACKNOWLEDGMENT........covvivernriinenrane reotsaraeaseneserasonens s seas st r e bre et e bbb v
TABLE OF CONTENTS.....ccrirircisirtiniassesisnssirisins vi
TABLE OF ILLUSTRATION.....cciviiminnirisssmssssmsirincsssmsressasomsssssmsassssssssssncssassesisssssssassansesensssasane ix
FIUIES . cccovevemrertireerermsncsusssssssmsmaissssssssntsssssssassasasasamssssssssssssssssnssessssasssssssassansssnseetssssssasassssssssnses ix
TADIES .vevereereeeeeeererersesserssseaessssineresassesstssassesessnssasiessnsisssssnsssasssessantssssassesasssararssnsesaes o Xi
Equations.............. eeebeeteeieaserestoteRe et Lo Rsat saR ARt d AT e LS SRR SRR SRR e RR SRR e se R er dbsn b e Rk sren xi
Chapter 1 INTRODUCTION ...t issmsisnssesininsisssssssssssssessssssssssessssesssssssssrnsassrssnasasaes 1
1.1 BACKGROUND OF STUDY ...ocoovriieririnsinsresssssornsscsismssesmemsesssessssssessoressenssssasses w1
1.2 PROBLEM STATEMENTcoocccrimssisteisinsississssesisssssmsssasssssasesssesssmsssssassssans 1
1.3 OBJECTIVE AND SCOPE OF STUDYccoiiniirmrenniissssnmsmtssestssssiessessssssssssnes 5
Chapter 2 LITERATURE REVIEWiiininrsessnsnssssstsnsieten st annssssssssansssssaenes 6
2.1 INTRODUCTTON....c.oeoirieecetnrceissesnsnsrssasesssssssessassssissonssssssrsssssasssssssssssssasnsssasssssnsassssass 6
2.2 DEPh PEICEPUON « ...t rree e neeoremcem e rebene s bstnstsrnsssestsisbasbsmsssbenshsmsbssnsissmsssbesrabes 7
2.3 COITESPONAEINCEee e eeneaacrrernienteoressasssssnsssssissnasassnssasossssinssssssssassesstasssssass rassanssssnsessenasiss 9
2.3.1 INIFOQUCHION.ceevrevrerssersesnerssssssssneseracnasssnrsssntssspassassssssstssssssssessensesesssssnssas sassasbbrssstonsons 9
2.3.2 DISCONTINMUILY «..ccevereeversestiriressssssorsssessssasssesssnsasreanssssssssesssssassssssssesenserassassassases .9
2.3.3 OCCIUSION 1.rervrrverserscrmserssrnssssenssermaninssssssassssnsssssessissstssessssersnsisasssorassassnosasssasssarse 10

2.4 General information about CCD cameras........... wresestsireansesensnrsnane 11
2.4.1 INIEOAUCKION: c.c1veaseneesvseseressasseressorsssissesraessssssiassasssassrnsssassssssasstonasaestessassassarassassansonssares 11
2.4.2 Charge-coupled device (COD)......ii it rstasssessneseriarnss 13
2.4.3 BAYET fIHET ...ttt ettt ssssessssas e s sasr st ea e e s s snen 15

Chapter 3 METHODOLOGY ..crerieeirrereaserinsssneenssabassssssassninssssssmsisssssssisssssssssesssssssssesssssansssass 16

3.1 RESEARCH METHOD ...t rsneactninsisn b s sssensssssatsnssssmssvassassssassssasasns 16

K D - L1 OO OO SOOI 17
32,1 INIEOAUCTION.....c.ceeeeeicrencricrseraesemrsinesssstrsassasssessasssssassbssssssssnessasssssnssnsssanssssssonsnssnns .17
3.2.2 Depth CAICHIAONcveeereeerecererecenraereecstearseernsssmenessar e eessastrsrcsesessensns .17

3.3 COITESPONUENICEeeveiserssrseraresrorsessisssssssisssssesessmsssesssassstossassssesssnessarssesasssessessosserassensusonsens 2t
3.3.] INrOQUCTION ...ccvvee i rcm e cccriesisst s sesser e rest s s ses e rrses e sas s e s casabensstsasans 21
3.3.2 Block MatChiNgcovrvrrviererernssensonssrssssonssiescorsssessssesmssssissssess asssnsenssorensansae 21
3.3.3 Finding good features 10 fTackvervreesinsccnimninrisinsssisenensssisssscsessesnesesnasesns 21
3.3.4 Detecting points in SECONA HNMAZEcovvriercermssscresisiisnsssseressssssrssssssssssassvsesissssassarsns 22

3.4 3D FECONSIIUCTION ..ovserennersrasorssensssssssssesossassrssssssrsasmessssssssasssensressassssssassssessnareessasasanns 24
34,1 INOQUCLIONcureeceenrnememrieeremerenescresnsaresssssesssssssssssassesssnsssnsrssssssessssarnssnssasssssssssssasonse 24
342 DOt ClOUA ..ottt e s bbb bbb R R R SRR SRS 24
3.4.3 Wired reconStruCtiON.....cuvrressesnerssssssssessessessossesssssssssonsesasnsasssssassnsss 24
3.4.4 Solid reCONSIUCHIONoocvurrsrerisisrirsessssinssissanismsessensasssssssnanenssesssosssssisenessassasses 25

3.5 Experimental SYStem deSIZN......cccuivirrmirsinissmsniisininssessisnssenisssisisissssnsssssorsssssssssns 26
3.5.1 Class DIAZIAMcuvevcrieirrircsrnrrnssasisnssiissssissssssssassnsrsssssesesnorsansnsassassmasansssssanssnsnass sasss 26
3.5. 2 FIOW CHAIT c.ecvererrererrnsenrenenecasreconisacanacssaseseasnsamsmssessnsssessnessssssasssessssssssnesssnassace 27
3.5.3 GUI eeereceenesmesereressesssscetsaseeesmasesessssbstmesinretssssbesssbostsansassonssssasssssssssssnsasass 30

3.6 Experimental system Implementation..........cvecircnsennnimesnsnstsesssserermssisssssssssessensnss 31
361 MAIN ettt issssssssesa st st as s sr son s s s R n s SRS sa R s s R s 31
3.6.2 TMAZE PIOCESSING veeeeeereinirsincsesissaeneressnstsasssserssesecssssssssessssessantssssmsssasr s ssnessbrssssersssrease 32

FT TOOLS ...oooreerreeetrestacaseasasaessrsisssssssssssesmemsmsesesstresmsesssassnssssssssssssssssssnsnssnessressasssrsnsassersasassess 37
Chapter 4 RESULT AND DISCUSSION.....coeicrevsnesessesststssssesnsssersssasssssssasssersssesassasanas 38
4.1 DePth CAICUIALION. ...coneevsicmivrcsiririsinrsssnsmsisssssrsesssssssnsessssssssanssssnssessasseassnsassassasesrsrenssssasasas 38
4.1.1 Simple obJect ..eereecrrrreinecccrirnacnes veenressssnssasrsessrsnsnass veernene 38
4.1.2 Transparent BOE.........cocceceiincineicniinnsisnrsisenssnserist s sssssssssasasssssssasesssnsssssanss 40

4.2 Fining COMMESPONUBNCEcovirirersrssisescssssnsssisssisissssvessssasssnsasssnsasssisssesssssstanssessansassassssssnsns 41
4.3 3D TECONSITUCTIONouviveresresicrsrsrmorssescasssssesasessssseasssonsssresssssssrassntenbsrsssssssainsiabossesosorisssnsans 42
B.3.1 DOt CLOU. . et rteccississnsisstssisis s sssssans s s sass e s s sans e sebesasspssanrasassanasane 42
4.3.2 WITEA TESUIL....cvvrvererrreecnsnerrsesrnssssssinesesnessmsasanssinbansomersssntansassnsssastsssssssnnsnsasssssnansssans 43
4.3.3 SOIA TESUIL ...cvererevrmrrerensesiinaraesesssssacssenrsessassessssesisnsseesessssssssbabesssmersssssastes - 43
Chapter 5 CONCLUSIONcccuimiiemiirisiririsesissenssssssssssssssssesssssssnsssissstsnsessensssssssssases v 44
Chapter 6 REFERENCES ...t erersssinasstsnssssassere s st pesansssssassssssases w45
APPENDIX ©.....covcvrrramsesrsssssssssssssasresemtormmssssnmacssssassonsssssssssssasssssssssssssssmssnsnsessssssssansases N |
1) SChedle FYP L.ttt csnesssnssisabsssesssntansensssnsasanssensnsasasasesas 1
2) SChedUIE FYP L. crectsineemeereccccncncerenesssssissssssssasssssasssessssssssssssssssnsanssnssasssssnas Al
APPENDIX IE.....cccovimmnmirmiisiniissccscsencssssnssnnnans sessustessrss st easrs s e sen bR a s I
1) Main class BEAAEr:......ccrr i sesnsssns s sotes st sas s s e s snamarasess s snssans 11
2) MaiD Class SOUTCE: ...coeermrrecensiiscsisscsertssssssssnssssssssanesrstsssmssssssstessssssssssssosssissssessassessnsensen v
3) Tmage processing class header:ccvvviinnisneresenrsasiersisinisnsnesssarsessssessesesnosssnnasnes VIl
4) Tmage Processing CIASS SOUTCE:ccrcrreecimimiminssicsissssssssnsssssisssssssssassrassssssssassssssnsesasses vill
5) Graphic class REAdEr:cccureiintiinsisisnssensseririsssssessrmsescsssessnssssessasssssasas XVII
6) GIaphiC Class SOUICE: ...ccvimreririncscscririrsnsescrirsssessassesstessmerers s s enssass s sessnesssssnssssassssesons XVvill

viii

TABLE OF ILLUSTRATION

Figures
Figure 1: Some sensors performance comparison Moerriveorececemsnmeesseensesseseseessnsorescesanse 2
Figure 2: Magnetic tracker accuracy degradation vceceovunonseeceemsmmesssssscassmesnsesesssen 3
Figure 3: Sensors B e teecbeessessaessssess s s ety SRR RR A R R R SRR R AR Ra e e 4
Fgure 4: Data GIoVe 1o.cveoee et sressssss e msssss s ssssss s sassssssnsrsssasssassecsssasanssanesss 4
Figure 5: Different VIEW POt Ploooovrvvvvvvesseseesssscesssssssresssmssssssssessssssssssssnssesssssssacassasesssss 6
Figure 6: Stereopsis for MMan €y€ 1coovivucrmnrrrrssmnnsssssssssssmssssssssesssssasmsesssssssssnesssrsssanss 7
Figure 7: Depth in human e¥es 'l ... eecsrionesssssssmssonsssesssssssssomsssssssssesssssssssessessasenss 8
Figure 8: Epipolar Geometry ™ eeeertessaestme st R e s Ra SR bbbt e et R s ERe b 9
Figure 9: Sample of Digital camera | single-lens reflex camera........ocveveeiveceeiincestennnsesnnnns 11
Figure 10: Single-Lens Reflex camera cross section 28ccoovveeeeeurerivmsemsmomesinssssssensssanes 12
Figure 11: charge-coupled device [6/6! 5) TSRO 13
Figure 12: Two-dimensional CCD-SENSOTcviimrimriismsmsnasesissrssssssssssssssassssssssssssans 14
Figure 13: CCD color sensor | Bayer pattern on sensor 271 eeeeersesssssrissssmssssnssssrmsssassssnsssases 14
Figure 14: Profile/cross-section of sensor)ooerveromrenrrercereonssensssessonnn .15
Figure 15: MethodOIOZY ...occiririrnearisrsscnincninresisimintsssistenssnssiessssasssssssnssmsinsssrstsassiesssossons i6
Figure 16: THIEE-PIANE VIEW c.coivuivisrrririssrsmsnsssnssnsisscsossmrossssssrsmsimsmsrsssmmerensassssssassssasmssssses 17
Figure 17; Cameras view and object triangle O TP 18
Figure 18: DOt CLOUAucereieireecct s sttt sttt sssssssrssnsasresssassssssreasssssssssssssrasassanssass 24 .
Figure 19: WIred StITUCIUTEvorerrrercrcersascsnsineccrmsssiostsssssnssmstssmsssassrsessssssesnstsnsnnsies eraeasebinsesans 25
Figure 20: SOl SHUCIUIE ...t inncncns s ssereriss s st s s s b be o sasans s bens 26

Figure 21: Active Stereo Vision Class Diagram.........cevvennvncniisnsesrencercisesssmessssesenennes 26
Figure 22: Main Class FIOW Chart.......cocvcmuemmsinsnimssnsioisminssessosssssnssssssesssessasesssssssssses 27
Figure 23: Image processing main flow Chart...........coocoiincuiiiinsccnc e sesseerenaesssssions 28
Figure 24: Transfer Flow Chart ..ot rensssnsnsans 29
Figure 25: 3D DISPIAYeueuerierrriesemressirisisississsssssssssssssssssssssssssensissssossrsasssssnsasssssasasassasssnesssses 29
Figure 26: Error MESSAEE.cuvvuinmimrrmisiiiniinsssssssssessssiassssnsssssessssssssssssasssasasmsssess .30
FIUIE 272 3D DISPIAY ..ottt asesaessssnsnsnissssssss s s sssnssssssssssssnsassssesmasssnsnsasssssas 30
Figure 28: Main file inerfaceccoeecererinieiniieinisininssssssssnisssssissssssssesnssssssnss .31
Figure 29: Camera Selection FOMM ... verreimrscscecnentnniiisscses st nsasssasesessssssssssesmsmsmssnes 33
Figure 30; Image diVISIONcccurmieeeeermreirinimriiisnnsninisssisissssrsssssssssssssessssssssassses 33
Figure 31: optical fellow and good Features to track result.........ooevvvinnivsnisisssnressnisssnissns 35
Figure 32: Delaunay Trangulation ... sssrassrssesmsessssassens 35
Figure 33: Points On IMAge.......ccvniimsismriniinnisi s sssssssssssssssesssssnsssssnsasarensesasansssens 38
Figure 34: Object Depth RESUIL ...ttt s sssens e sesssssssassssesssrssssnsssnns 39
Figure 35: Transparent Bottlecouovvuiiminncicine et e 40
Figure 36: Transparent Object Depth Graph ... nsssissssssssssssesass 41
Figure 37: Sample of 200d feature 10 trackcoveinrsrmsesmsncscinsisssererensissssssesssssssassessans 42
Figure 38: Dot cloud Resll.......... ittt sssessssssssnsssssisssssasares 42
Figure 39: Wired SITUCIUIE ..c.ceccvvivinrniiriinsiscsssssssserssntstsmssssssrsssssssssssssssssssnsssssssassasessssssossonerssasens 43
Figure 40: Sold SIUCIULE........c.ccvececereircnsine st sssserereseessssssssssseservassnssasees .. 43

Tables

Table 1: Simple OBJECt ...cveveeeeerreieerrerrcecsssmemrrannsnens et s 39
Table 2: Transparent Object RESUILccooriiiiinininisimsitiiisessnsisssssesssassssses s 40
Table 3: Schedule and MIlEStONE FYP L. ieccecceeeeceenecrensssssrmsasesassessssesasesssosssassemsosesssensnse I
Table 4: Schedule and milestone FYP Iccccmminnrmimisicmemssmiessssmmsssmsssens I
Equations
Equation 1: Similar THANEIE.......cccooevevr ettt sssense st msimcsesesssssssssssessaessssnsssssses 19
Equation 2: Similar THANGIE...........ccciriricctniirvsissssssniisisnnsiessersessnssssssssnsnssessnsssssssasssssnnes 19
Equation 3: Similar THangle..........o it enssensasssesssssssasseses 19
Equation 4: Similar THangle.........c.coeiiiimiiiimsismsssssssessssssssns 19
Equation 5: calculation of 01h (A) 1eNGth ... ssases 20
Equation 6: Calculation of 0bject depth............covocrinininscsisnsinssnssssssssssssssssssssess 20
Equation 7: Calculation of object depth from Camera View............cvrvinienintiieinsissnsnssninens 21

CHAPTER 1
INTRODUCTION

1.1 BACKGROUND OF STUDY

Stereopsis (from “stereo” which means solidity and “opsis™ which means vision or sight) is the
process in visual perception that leads to perception of stereoscopic depth. In turn, stereoscopic
depth is the sensation of depth that emerges from the fusion of the two slightly different

projections of the world on the two retinas.

In computer vision, structure from motion refers to the process of building a 3D model from
video of a moving rigid object. Algorithmically, this is very similar to stereo vision where a 3D
model is built from two simultaneous images of the same object. In both cases, multiple images
are taken of the same object and corresponding features are used to compute 3D locations. In
structure from motion, the images are taken at different points in time comparing to stereo vision

where images are taken at different points in space.

Colloquially, structure from motion is sometimes used for any 3D reconstruction built from 2D
images of a rigid (or static) object. Because of this colloquial usage, structure from motion has

significant overlap with stereo vision.

1.2 PROBLEM STATEMENT

3D modeling has significant impact on virtual realities, game development, simulations
environment and many other graphical fields. There are many methods to develop 3D models

and model database but current methods have many problems as follow:

Time: Even by using many advance computer tools to develop models but still each model

requires lots of time to develop. Normally these tools only provide basic shape like cube or
1

calendar and developer requires developing the models by combining and reshaping these basic

shapes. Even when special tools have capabilities like laser scanner, etc. because of design the

scanning is too slow.
ACCURACY RANGE LATENCY UPDATE RATE™
(mm) fm) {seex 10— (datasets/sec)
Best performance
0.5:0.03 30 x 30 00002 2.000
Hitsall (R Push Hilkall
RS 1222122] 236
Fastiack HiBall Hiball foterTrax2
1435 2 4 244 .
laserBIRI laserBIRD inter 'rax2 laserBIRD
205 152 7 I8N0
JlockBIRDS Logitech laserBIRD PS-900
410,27 1.2 . ER _ Ly
I S-GiH) CEckBIRDS - flackBIRTY - F-DBIRD
4NN 073 R.3 144
Push Fastrack Fastrack FiockBIRDS
NA4 CONA W 20
D BIRD CATYBIRD - {5801 Fastrack
MNASS NA 15 Fir
Inferteax2 inbertrasl 3-DIRD Push
M NA _ 34) MMy
Logitech < Pushe Logitech LogHech

Waorst performance
* For single sensing elament i

Figure 1: Some sensors performance comparison .

Cost: Since the production too slow companies require hiring many 3D developers and spending
lots of money on expensive tools. However, the model is not completely similar to reality, The

cost will increase as the quality of models getting better.

Efficiency: Using sensors is another method used for Virtual Environment (VE) and 3D
animation. These devices are normally having lots of problem, like accuracy (the tracker
position), jitter (change position of tracker because of noises), drift (decrease accuracy base on
time) and latency (also known as delay). Another problem is environmental affect on the output.

For exampie, for magnet sensors the metals affect the result.

Feromagnetic
. Ohbject
. _A3<A2..N_A3 o .

Surface of Accuracy Accuracy
equal accuracy Aq<A
\ T

_ Receiver.

E
1
i
'
]
[]
[
]

a) o o b)

Figure 2: Magnetic tracker accuracy degradation !

Weight: Sensors are normally heavy devices. The movement in these devices is really hard and

uncomfortable. This has negative impact on immerse in VE.

Exoskeleton
structure Interface
e With.

computer

Figure 3: Sensors 12

Others: There are many other problems such as sensors coverage. Normally tracker and sensors
are designed for specific part of body like head, hand and etc. A sample of these sensors is data

glove.

Figure 4: Data glove 2

1.3 OBJECTIVE AND SCOPE OF STUDY

The objectives of the projects are:

Design a system to calibrate the camera and extract the epipolar geometry of the image

sequence automatically.
Cailculate stereoscopic depth of objects

Design a system which displays the result in three dimension environment.

CHAPTER 2
LITERATURE REVIEW

2.1 INTRODUCTION

Nowadays simulation environments, virtual reality systems, game developing and animation
companies are highly dependent on the 3D construction. Currently these developments are done
manually and it requires large amount of time to increase the quality of the system. Also it

requires more sensors to build more realistic 3D motions which increase the cost of production.

By using one or two cameras it allows us to extract 3D information simply based on the different
angle view point as shown in Figure 5. This can be done by using two cameras or by rotating
one camera in some angle(s). There is also another way to simuiate the camera rotation which

calculates the rotation angle of the object without rotating the camera.

fabeoarne

Figure 5: Different view point

2.2 Depth Perception

Human normal inter-papillary distance is 2.5 to 2.6 inches. If we could increase this distance we
wouid increase our perception of depth. Stereo pairs greatly stretch thié normal eye base (inter-
papillary distance) and give us the exaggerated 3-D photographic effect we perceive when
viewing the stereo pairs [4] Figure 6.

Figure 6: Stereopsis for human eye 5

In other words each eye captures its own view and the two separate images are sent on to the
brain for processing. When the two images arrive simultaneously at the back of the brain, they
are united into one picture. The mind combines the two images by matching up the similarities
and adding in the small differences. The small differences between the two images add up to a
big difference in the final picture! The combined image is more than the sum of its parts. It is a
three~-dimensional stereo picture {6] Figure 7.

Figure 7: Depth in human eyes !

In this project we try to simulate human eyes by using two cameras and extract 3D depth from
two different viewing points of these two cameras and each time there are two shots from the

scene. The method used to compute the depth of a point is called triangulation.

Figure 8 shows a simple illustration of how triangulation works based on the epipolar geometry.
The focal length of the cameras (f), the angles ©1 and ©2, the camera center points (¢! and c2)
in the image planes (IP1 and 1P2), the image points (of three-dimensional point P) p1 and p2, and

the horizontal distance (v1 and v2) between the image points and the camera center image point
for each image are known. This leaves the perpendicular distance D from the baseline to the
point P as the only unknown.

Figure 8: Epipolar Geometry *s]

2.3 Correspondence

23.1 Introduction

stereo correspondence is considered as a classical difficult problem due to its significance in
computer vision and inherited ambiguity. It takes two or more images sirnultaneously captured
by cameras from different viewpoints as its input. The resultant output is a dense disparity map
that represents the correspondence between points in different images. The obtained disparity

map can be used to recover the three~dimensional structure in the scene.

Two of the main challenges in stereo are discontinuity and occlusion problems.

2.3.2 Discontinuity

The discontinuity issue stems from a smoothness assumption, which is explicitly or implicitly
used in many dense stereo approaches [9]. It assumes the disparity map to be smooth almost

everywhere. However, this is violated at the boundary of the object. The convex smoothness
9

function entails a significant penalty for large discontinuity and, therefore, leads to poor object
boundary results [10], [11]. To cure this, some discontinuity-preserving smoothness functions are
designed to improve the accuracy at discontinuity areas [9]. Common discontinuity preserving
smoothness functions include the Potts function [12] and the truncated function [13]. A fixed
amount of penalty is imposed for large discontinuity in these methods. Moreover, the intensity
differences between neighboring pixels are also used to guide the smoothness criteria {14], {13]
so that neighboring pixels with similar colors are given harder smoothness constraints because
they are more likely to have similar disparities. Recently, several segment-based methods have
been proposed [15], [16], [17}, [18], [19], [20]. Tao et ai. [15] provided a global matching
framework using image segmentation information. Hong and Chen [16] used graph-cuts to
provide a global solution for segment matching, whereas a region-growing strategy was used by
Wei and Quan {17]. Bleyer and Gelautz {[18] formuiated the correspondence problem' in
combination with the pixel and segment levels. The correspondence problem is modeled in the
segment level and the occlusion is detected in the pixel level using the uniqueness constraint. In
all these algorithms, a color segmentation process initially separates the reference image into
several regions with uniform (or similar) colors and each region is assumed to correspond to a
plane in the scene. With this polyhedral approximation of the scene, matching is performed using
a segment as a unit. The discontinuity is constrained to be at the boundaries of a segment. The
untextured area is matched as a large unit, so more information than as individual pixels can be
gathered and improved performance can be obtained when processing images from a natural
scene. Although impressive results are reported, only the segmentation information in the left (or
reference) image is used and the occlusion result is still not accurate, Moreover, the violation of

the discontinuity assumption still causes obvious artifacts in the result.

2.3.3 Occlusion

The second challenge in stereo correspondence is occlusion handling. Due to the structure of the
scene, some parts of an object within it may be visible in only one of the cameras. These points
are called half-occlusion points [21], and their projection onto the image is known as occluded
points or occlusions, since their corresponding points in other images are not visible. The main

difficulty for the occlusion problem is that occluded points cannotlbe detected directly, and we

10

can only use the correspondence of visible (opposite of occluded) points with other assumptions
to detect them. Methods using ordering an& uniqueness constraints are two traditional ones for
occlusion handling. The ordering constraint inhibits the ordering change of corresponding points
in different images. It is often used in a dynamic programming framework [21] because it can
reduce the solution space and allow for a more efficient algorithm. But, it is often violated when
thin, front objects exist in the scene. The uniqueness constraint, however, only prevents a point
in one image from being matched with more than one point in the other image and ordering
change is allowed. Zitnic and Kanade [22] used the uniqueness as the inhibition in their
cooperative framework, while Ishikawa and Geiger [11] imposed it in a max-flow framework.
Kolmogorov and Zabih [14] used the pixel assignment formulation for the correspondence
problem and tried to find an optically unique configuration using graph-cuts. Sun et al. [23] used
a variant version of uniqueness constraint, the visibility constraint, to detect occlusions in an
iterative belief propagation framework. The visibility constraint can avoid some problems raised
from the sampling problem pointed out by Ogale and Aloimonos [24] when horizontally slanted
planes exist in the scene. Promising improvements on occlusion results are reported in the above
papers. For other occlusion handling techniques, readers can refer to surveys by Egnal and
Wildes [21] and by Brown et al. [25].

2.4 Generat information about CCY cameras

2.4.1 Introduction:

Figure 9: Sample of Digital camera | single-lens reflex camera

11

A digital camera as shown in Figure 9 is an electronic device used to capture and store
photographs digitally, instead of using photographic film like conventional cameras, or recording
images in an analog format to magnetic tape like many video cameras. All digitai cameras use
cither a charge-coupled device (CCD) or a CMOS image sensor to sense the light intensities

across the focal plane.

FLI

@ i\\é) @f' m@;l

Figure 10: Single-Lens Reflex camera cross section 26

Figure 10 displays basic structure of digital camera. This camera uses a mirror to show the
image that will be captured in a viewfinder. The cross-section (side-view) of the optical
components of a SLR shows how the light passes through the lens assembly (1), is reflected by
the mirror (2) and is projected on the matte focusing screen (5). Via a condensing lens (6) and
internal reflections in the roof pentaprism (7) the image appears in the eyepiece (8). When an
image is taken, the mirror moves in the direction of the arrow, the focal-plane shutter (3) opens,

and the image is projected in the sensor (4) in exactly the same manner as on the focusing screen.

12

2.4.2 Charge-coupled device (CCD)

A charge-coupled device (CCD) as in Figure 11 is an analog shift register, enabling analog
signals (electric charges) to be transported through successive stages (capacitors) controlled by a
clock signal. CCDs which contain grids of pixels are used in digital cameras, optical scanners
and video cameras as light-sensing devices. They commonly respond to 70% of the incident light
(meaning a quantum efficiency of about 70%) making them far more efficient than photographic
fitm, which captures only about 2% of the incident light. As a result, CCDs were rapidly adopted

by astronomers.

Figure 11: charge-conpled device (CCD)

In One-dimensionai CCD, an image is projected by a lens on the capécitor array, causing each
capagcitor to accumulate an electric charge proportional to the light intensity at that location. An
one-dimensional array, used in line-scan cameras, captures a single slice of the image, while a
two-dimensional array, used in video and still cameras, captures the whole image or a

rectangular portion of it as shown in Figure 12,

13

Figure 12: Two-dimensional CCD-sensor

Once the array has been exposed to the image as in Figure 13, a control circuit causes each
capacitor to transfer its contents to its neighbor. The last capacitor in the array dumps its charge
into an amplifier that converts the charge into a voltage. By repeating this process, the control
circuit converts the entire contents of the array 1o a varying voltage, which it samples, digitizes
and stores in memory. Stored images can be transferred to a printer, storage device or video
display. CCDs are also widely used as sensors for astronomical telescopes, and night vision

devices.

Figure 13: CCD color sensor | Bayer pattern on sensor 7!

14

2.4.3 Bayer filter

A Bayer filter mosaic is a color filter array (CFA) for arranging RGB color filters on a square
grid of photo sensors, shown in Figure 14. The term is derived from the name of its inventor, Dr.
Bryce E. Bayer of Eastman Kodak, and refers to a particular arrangement of color filters used in
most single-chip digital image sensors used in digital cameras, camcorders, and scanners to
create a color image. The filter pattern is 50% green, 25% red and 25% blue, hence is aiso called
RGBG or GRGB.

I conventional systems, color fillers

ate applied to a single layer of The fillers Jat anly ome color of light-red,

pholpdetectors in tled messic green or blua~pass hrough o any diven

patiem. pixgt location, allowing it o recosd only
pne color.

. gn;j; e

,"

A5 & resyil. mosaic sensmrs sapture oniy 28%,
of the red and biue Sight, and just 50% of the
graen,

Figure 14: Profile/cross-section of sensor %

15

CHAPTER 3
METHODOLOGY

3.1 RESEARCH METHOD

Base on the methodology in Figure 15, depth Calculation is the first step in this project which
calculates depth of specific point in two cameras view. The next step is to find all points future in
first camera and find its corresponding points on the next camera view. Base on this finding it is
possible to generate dot cloud. By connecting these points (dots), we generate basic structure of
3D model and it will be completed by texturing the polygens.

Figare 15: Methodology

16

3.2 Depth

3.2.1 Introduction

Depth is the most basic part of this project. This calcuiation is based on similar triangles. In this
part we assume that two cameras are identical and have almost same focal length,
and two cameras view are in the same plane, and the height of object in two views are the same.

With those assumptions, two point views are in one line and parallel to x axis, as in Figare 16,

A 4

Z

Figure 16: Three-plane view

3.2.2 Depth calculation

Based on these assumptions, every object creates a triangle 7, [0,,0,,¢] as shown in Figure 17).

17

.

4 P B P2 &
P : h P,

renaned

o1’ ,hl ’ ’h l:«‘2 -02

Figure 17: Cameras view and object triangle !

in this triangle ¢ is the object and o, is focal point of camera one, where all the light enters to
the camera will gather on that point o, is similar to o; and represents focal points of camera two.
Pla,,b,] is the first camera view and P,{a,,b,] is second camera view. The object reflection in

camera one is p; and for camera two is p,. There are 4 triangles we work on.
Tioi.q.%]

7,[02,9,4]

T, [01 » Py hl]

T4[02,p2,h2]

7, and 7, are similar triangles because p,A(Z) is parallel with p A, (F)since F, is altitude of
T, and Z is altitude of 7, . They have shared angle so the two triangles are similar to each other.

So the ratio of o,A,(N,)over o h(A)is equal to ratio of F, overZ . So we have:

18

=
N

Equation 1: Similar Triangle

Same goes for 7, andT,, p,h,(F,) is parallel with Z and they share an angle. The ration of

0,h,(N,)over o,h(B) is equal to ratio of F, over Z

N_E
B Z
Equation 2: Similar Triangle

Since the two camera are align to each other and the focal is same so ba, is parallel with
0,0,(()and F, and F, are perpendicular lines toQ, F, and F, are parallel and they are equal to

each other. In this situation the two equations above are equal to each other:

Equation 3: Similar Triangle

In Figure 17, sum of 4 and B is equal to QO so we can replace B by
Qg-A—>Q=A+B-—>B=0- A, by putting this value in Equation 3 and equal the ration of ¥,
over (Q~ A)and N,over 4 we have:

N, _
-4

N | =

Equation 4: Similar Triangle
By simplifying that equation we obtain:
N,A=N, (0~ 4>
N,A=N,Q-N,A~>
NA+N,A=N,Q>>

19

AN, +N,)=NQ
Base on the above equations the 4 will be equal to:

_ -——-——-———N!Q
N, +N,

Equation 5: calculation of o:h (A) length
Now if we locate 4 to Equation 1 and simplify that equation we have:
NZ=FA—> |
ENG

_B4_N+N, FQ

VA
N, N, N, +N,

Equation 6: Calculation of object depth

N, is the distance of object image from the camera center if the camera length is 2*Oand b, p,

be B, , so the relation of N, and B, is:

The same result shows the relation of N, and B,[b,, p,]:
N,=0-8B,

So from above equations we have:

N,+N,=B, ~0+0-B,—>

N,+N,=8 -8,

This process simplifies the distance caiculation (B, and B, are primary values that we can extract

from cameras images).

Besides, Z is the object distance from the focal of camera where to simplify, we subtract the
focal length from the result and we get the actual object depth (Z') from camera images.
20

Z=27"-F

7= FQ o
Bl"Bz

Equation 7: Calculation of object depth from Camera view

F, is the focal length and Q is the distance of two cameras, B, is the object view in camera one
and B, is object view in camera two. To calculate the focal length of each camera, simply assigns

value forZ', B,, B, and Q to the above formula.

3.3 Correspondence

3.3.1 Introduction

As it discussed before stereo correspondence is considered as a classical difficult problem due to
its significance in computer vision and inherited ambiguity. Stereo correspondence may be
determined in a number of ways and by exploiting a number of constrains. one of these methods

is block matching algorithm that implemented and tested in this system.

3.3.2 Block matching

Block matching method seck to estimate disparity at a point in one image by comparing a small
region about that point (the template) with a series of small regions extracted from the other
image (the search region). The Epipolar constrain reduce the search to one dimension. The first
step in this algorithm is to find point with good features and then base on optical fellow search

for correspondence in the next image.

3.3.3 Finding good features to track

The next step is to find the points automaticaily. In this step we need to ensure the selected
points can be found in both images. The points normally are selected based on their neighbors.
The neighbors should be evident. This process is implemented in OpenCV library and it is called

21

cvGoodFeaturesToTrack. The function cvGoodFeaturesToTrack finds corners with big Eigen
values in the image. The function first calculates the minimal Eigen value for every source image
pixel using cvCornerMinEigenVal function and stores them in temporary image. Then it
performs non-maxima suppression (only local maxima in 3x3 neighborhoods remain). The next
step is rejecting the corners with the minimal Eigen value less than quality level*max
(eig_image(x, y)). Finally, the function ensures that ail the corners found are distanced enough
one from another by considering the corners (the strongest corners are considered first) and
checking that the distance between the newly considered feature and the features considered
carlier is larger than min_distance. Then the function removes the features than are too close to
the stronger features [30].

3.3.4 Detecting points in second image

The examination of visual cues in an image-such as shading an occlusion- often yields
information about the relative distances of objects in a scene; however, it cannot provide a
quantitative measurement of the distance to objects. When the scene is imaged simultaneously
from two locations, stereo correspondence between the resulting images can be used to
determine the distance of objects {31], [32].

X, x+d/2
f z
Xz _x—d/2
¥ z
Yo e Y
f r z

After spotting points on the first picture, correspondence points are to be identified on the second
picture. This task has not been done before with satisfactory precision. In order to increase the
accuracy of this process, we aligned cameras so that they would be parallel to X -axis. As stated

before, image is Bi-Dimensional matrix with every point having two elements, X andY. ¥ is

22

height of the point and X is distance of the point fromY ’s axis. In this system ¥ -Axis situated
at most left part of the picture and X -Axis is at top. Thus the origin is at the most top left point
of the picture. Actual height of the object in image is equal to image width minus object’s ¥
value [33].

Since cameras are aligned to X Axis every point’s height is equivalent in both images. So in
order to determine depth of the object, we need to calculate precisely X amount, which is the
distance of the object from ¥ -Axis. Furthermore, to facilitate indentifying the correspondence
point, we divide the second picture into equivalent horizontal slices. This reduces search area and

increases search accuracy.

Another problem that we face is viewing point; there are some objects in the first image that are
not visible in the second image. Same applies to the first image in which some apparent objects
in the first picture are not visible in the second image. To solve this probiem we cut out an
invisible area in each image. After finishing these pre-processing on the two images, it is the

time to find the points on each slice of the image

Here we use another function from Open CV library. This function will search feature of first
image in second image. There are many types of optical flow but optical flow for a sparse feature
in pyramids is best choice for this project since the function searches correspondence slice on the

second image.

The function evCalcOpticalFlowPyrLK implements sparse iterative version of Lucas-Kanade
optical flow in pyramids. It calculates coordinates of the feature points on the current video

frame given their coordinates on the previous frame. The function finds the coordinates with sub-

pixel accuracy {34].

23

3.4 3D reconstruction

3.4.1 Introduction

After finding the points with their correspondence it’s require to transfer points from a 2-
Dimention environment to a 3-Dimention environment. In this section, the steps of 3D

reconstruction will discussed.

3.4.2 Dot cloud

After finding the points and their correspondence it’s required to transfer the points to a 3-
Dimentional environment and calculate depth [35]. The result of this action is called dot cloud

Figure 18,

Figure 18: Dot cloud

3.4.3 Wired reconstruction

In 3D reconstruction after location points and construction of dot cloud, it’s required to connect
the points together. There are many methods and algorithms available such as Delaunay
friangulation, shortest distance and etc. shortest distance make a dynamic connection between

24

points in such a way that it’s possible to reduce/increase the connection of one points to other

points. The result of this step is called wired structure Figure 19.

Figure 19: Wired structure

3.4.4 Solid reconstruction

The final steps of 3D reconstruction is to find a path between the connected points in such a way
that the result polygons be a planner. To ensure the planarity of the polygons it suggested using
triangles since the triangles are always a planner polygons. The result of generating this polygons
is a shape with solid color and by adding light effect on that it’s possible to see better result on
the solid construction Figure 20.

25

Figure 20: Solid Structure

3.5 Experimental system design

3.5.1 Class Diagram

The system is working on two important libraries. The first one is OpenCV and second one is
OpenGL. But unfortunately these two classes have some clashes with each other so we need to
separate them as much as possible. So we put each of them in separate classes. And to handle
these two classes we put a base class. The base class which is considered as a main program calls

the image processing (OpenCV) part first and then converts the variable and transfers to 3D
display environment (OpenGL), shown in Figure 21.

simplementation: class
Active Sterédn Vislon

FOperGVi]

[+Opentla)

.OpenCV ' OpenGL
+Select Camerd - void [Hoorven VWariable © voirf
-SansoCalthack < void” M s void-
-Foimt,_Selector : void L Epacialicay : void
L Deiaunay - void - |-fasterBase - void
FConvert Viriable : void LPline:vold

Figure 21: Active Stereo Vision Class Diagram
26

3.5.2 Flow chart

The flow of the main class is shown in Figure 22. Firstly, the image processing class will be
called by the system and then data will be converted and transferred to OpenGL class. By

displaying the result, the process will end but in each class an infinite loop will continue until

_ Stan)

h

user requests for program termination.

tmiage
- Procasaing

h 4

Transfer Data

30 Display

End

Figure 22: Main Class Flow chart

Now we start analyzing each class. The first class for this process is image processing. In image
processing class, the first step is to ask user to select the camera and then send the image to the
“stereoCallBack™ function, from there this function handles the processes. First is preprocessing
where the image will be divided to smaller arca and then each area will be sent to the
“pointSelector” function. This function first gets the first image and selects the points (objects)
on it, then based on the object specification it searches on the second image. After specifying the
objects with their correspondence it sends the points to Delaunay triangulation function to locate
the points and connects them together. Next, the 21D construction will end as in Figure 23.

27

{ ‘sum)

. J

Camerg.
Salechin

1 ————

SterenCaliBa
Tk

¥

PéimSeEe«:!mr_

F.

ﬁelak_may I

“End

Figure 23: Image processing main flow chart
After processing on the image, it is time for transferring data to OpenGL. This step is very
important and it works as translator for both [ibrary based on the original C++ class variables. So

first the system translates from OpenGL to C++ variable type and then transfers it to graphical
class and finally it transfers to OpenGL type, as in Figure 24.

28

Coaveri
Vegiable fram
QpenCV o
s

TFransfes
Variable

Goirveri,
Variabie from
G+ io

‘Opentil

e

Figure 24: Transfer Flow Chart

Finally, to display the result we first need to create windows and then assign special key for
specific tasks like scale the view or move to left or right, etc. After that it calculates the point’s

location and displays them in the environment as shown in Figure 25.

{ Sart

Creale
Wiy

Special
Keyes

Display
Regardt

End

Figure 25: 3D Display

29

353 GqUI

As it explained before, this system contains three main classes. Each of these classes has their
own interface. We tried to simplify the design as much as possible so the user can simply use the
system. The main class is basically has four button and a message display area. The functionality
of each button will be explained more in the implementation, in Figure 28. The next interface is
for camera selection, This interface is also very simple as shown in Figure 29. The requirement
from user is clear and if user makes any mistake the system will inform user about that, shown in
Figure 26.

Figure 26: Error Message

Finally, we need a 3D display interface. It is very simple interface where the user can view the

3D result as in Figure 27.

Sayed Ali Kasaei zadeh (6148)

L
B

Figure 27: 3D Display

30

3.6 Experimental system Implementation

In this system there is one main file which handles two classes. The first class is related to image
processing using computer vision library OpenCV. The second class is for computer graphic
part. Here we explain how this system implemented. First we start the main file and then explain

about each class.

3.6.1 Main file

This file (Active Stereo VisionDlg.cpp) which is created by Microsoft MFC contains the main
interface where allows user specified the operations. There are 4 buttons on this interface. The
first 2 buttons (Ok and Cancel) Figure 28 is design to terminate the program. We explain later
how this 2 buttons terminate each class base on class terminator. Also these 2 butions after

closing the classes will terminate the main file.

The next button is “Process™ button that allows the user to select camera and do the process on

the image. Finally the result button where allow user to view the processed result in 3D.

Figure 28: Main file interface

The main file is consisting of many sub functions where most of these function is predefine by

Microsoft visual studio, For start it’s require to call the include files.
#include "stdafx.h"

#include "Active Stereo Vision.h"

#include "Active Stereo VisionDlg.h"

#include "oc.h"

#include "og.h"

31

The 3 first headers are belonging to Microsoft. The “stdafx.h” is calling MFC class for
implementation of interface. The “Active Stereo Vision.h” is for calling resources specified in

the “Active Stereo VisionDlg.h”.

Finatly the 2 remaining classes are the “oc.h” and “og.h” that we will explain later in detail about
them. Here before any process is started is requiring making an instance of each class and calling

their constructor. As follow:

oc *ocl = new oc{);

il

0g *ogi = new ogl();
the next step is to assign each button a class. first we start with the image processing class and

assign it to the process button,

oci->camselect{);

This function will allow user to select the cameras and then allow the class to process its required

steps. After process finished the user can press the next button to follow the following steps.

oci->data transfer();

aogi->dei{oci-»artoc,oci->cart,oci->vecoc, oci->veccoc) ;

ogi->win{);

The “data_transfer” function will convert all OpenCV variables to be understandable for
OpenGL. The “dc” also altocates this data to OpenGL class. And finally by calling “win”
function new 3D windows will created and displayed to user. These processed even though fooks
like simple but ptay very important role in this application since it translate the OpenCV
variables to be understandable for OpenGL.

3.6.2 Image processing

Oc class handling the image processing part of this project. First it requires acquiring two
cameras. This part handies by “highgui.h” header. The first step is to ensure the user have 2
cameras and in other case warn the user to apply two cameras for this system. This process done
by “cvcamGetCamerasCount” the next step is asking user to select cameras from the list

provided to user Figure 29. After selecting the cameras and assign them to their own specific

32

variables now is time to enable the camera property and start rendering. These 2 processes
handle by “CVCAM_PROP_ENABLE” and “CVCAM_PROP RENDER”. The next property
need to set is which function needs to call and passes images received by each camera. This
property set by “CVCAM_STEREQ CALLBACK” this property «calls “void
stereocallback (IplImage* Image,IplImage* Image2)” function and this is the main
function in the image processing part. Finally by calling “cvcamlInit()” the properties will assign
to cameras and by “cvcamStart()” cameras will start capturing images. To ensure this process run
continuously we apply and infinite loop as “while (1)” and this process will break and go to end

by pressing ok or cancel button in main interface.

Select camerals)

Figure 29: Camera Selection Form

In the “stereocallback™ function first we divide the height of image to smaller division and the
process the result on each divisions Figare 30. The next step is to initial points (objects) in the
first image and then finds the objects in second image (find correspondence). This 2 process
handle by “void pointselector{IplImage* frame}” as you can see this function get the
image and then process on it. In this function set of points with their correspondence will set and
displayed. The process of point selection will continue until all image sections processed and the

points stores in specific array belong to them.

Figure 30: image division

33

“Pointselector” function is to process and extract objects and their corespondance. The first step
is to initial the memory space and point arrays. Here to allocate point array we use dynamic array

alocation to optimum the process. A sample of code will be as follow

CvPoint2D32f* points{37(8]1;:

points{0][0] = {CvPoint2D32f*)cvAlloc(MAX COUNT*sizecf{points[01{0}[C])};

this process will perform only one time since its consider as initialization. The function will
check if the image is initials or not if its not initial it call the initial function and followed by the
object selection. The object selection use a function from OpenCV liberary the sample code will
be as follow:

cvGoodFeaturesToTrack(grey, elg, temp, points{l}[icnt], &count,quality,
min distance, 0, 3, @, 0.04);

cvFindCornerSubPix(grey, points[l]{icnt], count,cvSize({win size,win size},
cvSize(-1,-1),

cvTermCriteria(CV_TERMCRIT ITER|CV_TERMCRIT EPS,10,0.03));

These functions first allocate the point on the first image and then base on the point’s neighbors
it specified the best object to track in second image. After selecting the objects in first image the
function will return and second image will send to the function to track the points. Here we use
optical fellow (another OpenCV functions) to track the points in second image. A sample code is

as follow:

cvCalcOpticalFlowPyrLK(prev_grey, grey, prev_pyramid,
pyramid,peintsi0] [ient], points[l][icnt], count,
cvSize(win size,win size), 3, status, O,

cvTermCriteria(CV_TERMCRIT ITER|CV_TERMCRIT EPS,20,0.03), flags);

After selecting point in both image it’s require to remove extra points which help us to eliminate
invisible views on either of images and then display result on the images Figure 31. After
allocation objects in both images the function will return to original function and continue the

process.

Figure 31: optical fellow and good Features to track result

The next step is connecting the point using Delaunay Triangulation Algorithm. This algorithm
also implemented in OpenCV. For start there are few initialization such as memory allocation
and also temporary images used in this algorithm. Then it starts reading the point one by one and
base on Delaunay algorithm the points will connect to each other. For start we need to allocate

the points on their own subdivision using following sample function:

cvSubdiv2DLocate (subdiv, fp, &el0, &p }:

then the points will sent to Defaunay algorithm to connect to its neighbors using another function
of OpenCV as following sample:

cvSubdivDelaunay2DInsert({ subdiv, cvPoint2D32f(artijl[i1(0]),art[j]1[4i111]))

the function will return the connection and the system will display the result to user Figure 32.
This is the end of processing part. The next step is to transfer the calculation data and combine
them all to gether and transfer to OpenGL.

M source

Figure 32: Delaunay Trianguiation

After finishing the calculation and make the connection between objects now it’s time for pass
the process to the graphic library but before that there is one function need to implement to
ensure when the user ask for program termination the process class release all the memory space
it requires. It does require terminating ail the windows created for displaying images and all

memory resource it created. Sample of termination code is as follow:

cvReleaselmage (&imagep?);//cloasing image resocurces

35

cvDestroyAllWindows () ; //cloasing ail display image windows
cvcamStop(}; //stop the cameras

cvcamExit(); //terminate camera resources

After ensuring all the resources will distroy on termination now its time to transfer data to a data
type that OpenGL underestand. For example in OpenCV “cvPoint2032£” is defining points
where it store the x and y position of the point so we need to store these type of variable in an
array where for example “array[0]” holds “x” and “array[1]” hold the “‘y™ value. There are many
other similar data type is required that system need to convert before it use.

After conversion and transferring data to OpenGL environment now is time to construct 3D
view. For time being this process only consist of points and connection between them in 3D
mode. But before start it’s require to specify certain criteria for displaying windows Like the

name, size, accepting key for 3D manipulation and ETC. You can see the samples as follow:

glutInitWindowSize {320,240); //size of windows
glutSpecialfunc(SpecialKeys); //call function special key
glutbisplayFunc {(myDisplay): //cail function myDisplay

And also special keys for manipulation:
iftkey == GLUT_KEY F6)
xRot += 51
iftkey == GLUT_KEY_F8)
scale — .051;
iftkey == GLUT_KEY_LEFT)
xp -= .05f;

To ensure this variable is affecting the view we need to refresh the windows after each

modification

giutPostRedisplay();

36

And finally by specifying the location of points we can connect them together in a 3D

environment as you can see in the following sample:

dline(vecog(j][0]{0], vecog{ilf01[1].vecog[il[0][2]* 10,vecogj]{1][0].vecog(j][1][1].vecogli][1][2
1*10);

void dline(double x,double y,double z,double x1,double y1,double z1)

and finally we can achive to a result in 3D envoirnment [36].

3.7 TOOLS

The project is developed using:
C++
Camera (webcam)
Open CV
Open GL

Visual Studio

37

CHAPTER 4
RESULT AND DISCUSSION

4.1 Depth calculation

As it discussed before to calculate depth of an object we can use the location of object in each
image. Here we manually select the point to show how this formula can extract 3" dimension

from 2D images.

4.1.1 Simple object

First sample is one cup. The main point here is how to chose the points in first image and track

them in the second image. For start we track the shape points on the cup Figure 33.

Figure 33: Points on Image

38

in (Table 1: Simple Object) the selected point’s value and the result is stated in this part we use.

Table 1: Simple Object

PointNo {1 2 3 4 5 6

B1 22.30 12092 | 19.62 |18.10 16.51 14.92
B2 8.57 | 7.02 547 4.16 2.72 1.80
a=B1-B2 | 13.73 [13.90 14.15 1394 {13.79 |13.12
Z 13.34 | 13.03 12.58 1296 | 13.23 14.54

In this part the Q (distance of 2 camera is 28.5 centimeters and the camera value is 12.4.

Base on the result Figure 34 you can see the point’s depth shows some curve which is the cup

curve. Even though the heights of the points are different but since the camera are in horizontal

line this difference doesn’t affect the calculation.

15.00
14.50

13.50

12.00

Distance

12.50
12.00
11.50

Object Depth Resuit

14.00 -

Points

s D3t

Figure 34: Object Depth Result

39

4.1.2 Transparent Bottle

In the second image it tries to show even if the selection is in transparency mod but still the

result is correct. As you can see Figure 35 the selection is a transparent bottle. Here tries to show

the calculation is independent from object material.

Figure 35: Transparent Bottle

Here also the value in Table 2: Transparent Object Result are the point position in first image,

the second image, the difference of 2 and the final row shows the depth result.

Table 2: Transparent Object Result

Point No. |1 2 3 4 5 6 7 8

N 2138 [19.02 1877 |1828 |[17.89 |1732 |[1351 |1845
n’ 12.07 | 949 9.17 8.64 8.22 7.73 4.55 8.96
a=n-n' 9.31 9.53 9.60 9.64 9.67 9.59 8.96 9.49
z 2557 [24.69 (2442 2427 2415 |2446 |27.05 |24.85

40

Here Q as distance of 2 cameras is 28.5 centimeters and the camera value (F) is 12.4 the result is
in centimeters. Base on the result Figure 36 you can see that the depth calculated respectfully to

the object regardless of the object material.

Object Depth Resuit

27.50
27.00 +

26.50 ‘ﬁ\

26.00 - - %w\ff

SR AN J A

24.50
24.00
23.50
2300
22-50 { T [I ¥ 1 7

Distance

s Dt h

Figure 36: Transparent Object Depth Graph

4,2 Fining correspondence

For start an automated system it’s require to select the base points on one image and then track
them in second image. Figure 37 is sample of this function resuit. Green dot on the image
indicate the points found by the function. And the red dots on the second image are the points
that corresponded to the first image points. As it’s clear the points selection and their

correspondence is on the image part that is contain texture.

41

Figure 37: Sample of good feature to track

4.3 3D reconstruction

4.3.1 Dot cloud

The first outcome of this project from the correspondence result is dot cloud. But before that it’s
required to transfer result in 3D modeling environment and calculate depth. Then display result
for farther process. As you can see the shape of the dot cloud is exactly similar to the curve on

the can displayed in the image Figure 38.

Figure 38: Dot cloud Result

42

4.3.2 Wired result

By connecting the points in dot cloud the wired structure is created. In 2 dimensions there are
many algorithms where it’s requiring to modify them to fit the 3D environment. Here the shortest
distance is implemented Figure 39.

Figure 39: Wired Structure

4.3.3 Solid result

After generating the wired structure we can find triangles within the points and by connecting
them together and form triangles and with help of lighting the solid result will be generated
Figure 40

Figure 40: Solid Structure

43

CHAPTER 5
CONCLUSION

In this report it tries to shows how computer can understand depth. There were sequences of
tasks required to achieve fully automated system. In this project we use block matching
algorithm to find correspondence of object where the result only limited to textured object. For
future it suggested to use other algorithm or a mixture of algorithms to achieve better

performance and results.

Also for wired structure the shortest path implemented. This algorithm is good because of the
dynamic connection of the points but it’s better to advance 2D algorithm to be implemented in

3D environment such as Delaunay triangulation or other methods.

The current result is base on only 2 images which is best case can return one side of the object.
For future job it suggested a system with ability of generating fully 3D object sample. Also it’s
suggested to improve the solid structure by adding texture and generate a fully realistic 3D object

in the computer.

44

CHAPTER 6
REFERENCES

Input Devices and Sensors for Virtual Environments (January 3ist 2007)
<http://wings.buffalo.edu/courses/sp07/mae/574-410/Course Notes/C5 and C6-Sensors
and Input Devices.pdf>

Govindarajan Srimathveeravalli 1998, “VR Lab”

Vision Group at SIRS Lab - University of Siema. 8 August 2007
<http://sirslab.dii.unisi.it/vision/index i .htm>

RSCC Volume 1 Module 7 - Stereoscopy and Height Measurement. 8 August 2007

<http://www.r-s-c-c.org/rscc/vIm7.html>

RSCC Volume 1 Moduie 7 - Stereoscopy and Height Measurement. 8 August 2007

<http://www.r-s-c-c.org/rscc/vim7images/stereo_viewing_eyes_building.jpg >
What is Stereo Vision? 21 August 2007 <http://www.vision3d.com/stereo.htmi>
What is Stereo Vision? 21 August 2007 < http://www.vision3d.com/images/bb.jpeg >

Fundamentals of Stereo Computer 21 August 2007
<http://egweb.mines.edu/faculty/tvincent/Welding/fundamentals_of stereo_computer.ht

m>

D. Scharstein and R. Szeliski, May 2002 “A Taxonomy and Evaluation of Dense Two-

Frame Stereo Correspondence Algorithms,” Int’l J. Computer Vision, vol. 47, no. 1, pp.
7-42.

10-S. Roy, 1999 “Stereo without Epipolar Lines: A Maximum-Flow Formulation,” Int’l J.

Computer Vision, vol. 34, nos. 2/3, pp. 147- 161.

45

11-H. Ishikawa and D. Geiger, 1998 “Occlusions, Discontinuities, and Epipolar Lines in
Stereo,” Proc. European Conf. Computer Vision, pp. 232-249.

12-Y. Boykov, O. Veksler, and R. Zabih, 2001, “Fast Approximate Energy Minimization
Via Graph Cuts,” Proc. IEEE Int’] Conf. Computer Vision, vol. 1, pp. 532-339.

13-J. Sun, N.-N. Zheng, and H.-Y. Shum, July 2003, “Stereo Matching Using Belief
Propagation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 7, pp.
787-800.

14-V. Kolmogorov and R. Zabih, 2001, “Computing Visual Correspondence with
Occlusions Using Graph Cuts,” Proc. IEEE Int’} Conf. Computer Vision.

15-H. Tao, H.S. Sawhney, and R. Kumar, 2001, “A Global Matching Framework for Stereo
Computation,” Proc. IEEE Int’1 Conf. Computer Vision, vol. 1, pp. 532-539.

16- L. Hong and G. Chen, 2004, “Segment-Based Stereo Matching Using Graph Cuts,” Proc.
IEEE Int’1 Conf. Computer Vision and Pattern Recognition, vol. 1.

17-Y. Wei and L. Quan, 2004, “Region-Based Progressive Stereo Matching,” Proc. IEEE
Int’l Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 106-113.

18- M. Bleyer and M. Gelautz, Jan. 2005, “Graph-Based Surface Reconstruction from Stereo
Pairs Using Image Segmentation,” Proc. SPIE, vol. 5656.

19-Y. Zhang and C. Kambhamettu, 2002, “Stereo Matching with Segmentation-Based
Cooperation,” Proc. European Conf, Computer Vision, pp. 556-571.

20-C. Baillard and H. Mari'sire, Dec. 1999, “3-D Reconstruction of Urban Scenes from
Aerial Stereo Imagery: A Focusing Strategy,” Computer Vision and Image
Understanding, vol. 76, no. 3, pp. 244-258.

21-G. Egnél and R.P. Wildes, Aug. 2002, “Detecting Binocular Half-Occlusions: Empirical
Compafisons of Five Approaches,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 24, no. 8, pp. 1127-1133.

46

22-C.L. Zitnic and T. Kanade, July 2000, “A Cooperative Algorithm for Stereoc Matching
and Occlusion Detection,” TEEE Trans. Pattern Analysis and Machine Intelligence, vol.
22, no. 7, pp. 675-684.

23-J. Sun, Y. Li, S.-B. Kang, and H.-Y. Shum, June 2005, “Symmetric Stereo Matching for
Occlusion Handling,” Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition,
vol. 2, pp. 399-406.

24-A.S. Ogale and Y. Aloimonos, 2004, “Stereo Correspondence with Slanted Surface:
Critical Implication of Horizontal Slant,” Proc. IEEE Int’i Conf. Computer Vision and
Pattern Recognition, vol. 1, pp. 568-573.

25-M.Z. Brown, D. Burschka, and G.D. Hager, Aug. 2003, “Advances in Computational
Stereo,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993-
1008.

26~ DigitalCamera2, 3" Aprii 2008,
< hitp://earthenterprisesl.com/Digital%20Cameras2.htm>

27- Embedded Technology — Camera, 3™ April 2008,
< http://www.bluewatersys.com/design/technology/camera.php>

28- Digital Photography Essentials #003 @Digital Outback Photo 3™ April 2008,
< http://www.outbackphoto.com/dp_essentials/dp_essentials_03/essay.html>

29- Fundamentals of Stereo Computer, 3™ April 2008, <
http://egweb.mines.edv/faculty/tvincent/ Welding/fundamentals of stereo_computer.htm>

30- Open CV reference opencvref_cv.htm cvGoodFeaturesToTrack
31-Computational Stereo Vision Using Color, IEEE, 1988

32- Gang Xu and Zhengyou Zhang. , 1996, “Epipolar Geometry in Stereo, Motion and Object

Recognition”, 1% edition, Kluwer Academic Publishers.

33- Emanuele Trucco and Alessandro Verri, 1998, “Introductory Techniques for 3-D
computer Vision”, 1¥ edition, Prentice-Hall, Inc,

47

34- Rafael C. Gonzalez and Richard E. Wood, 2002, “Digitat Image Processing”, 2™ Edition,
Prentice-Hall, Inc.

35-Richard S. Wright, Jr and Benjamin Lipchak, 2005, “OpenGL Supper Bible”, 3™ edition,
Sams Publishing.

36~ GlauCAD: Workplan, 3" April 2008, < http://www.msr.uni-
bremen.de/glaucad/workplan html>

48

APPENDIX I

1) Schedule FYPI

Table 3: Schedule and milestone FYP 1

No. | Detail/week

1 | Selection of project Topic

2 | Preliminary Research Work

3 | Submission of Preliminary
Report

4 | Seminar 1 (optional)

5 | Project Work

6 | Submission of Progress Report

7 | Seminar 2 (compulsory)

8 | Project work continues

9 | Submission of Interim Report
Final Draft

10 | Oral Presentation

2) Schedule FYP I

Table 4: Schedule and milestone FYP 11

No. | Detail/week iTz[314][5[6]7 8 |9 10 |11

1 Project work continue

2 Submission of progress report 1

3 Project work continue

4 Submission of progress report 2 Z
7

5 Seminar 3
g

6 Project work continue g

7 Pre EDX

8 Dissertation

9 Oral Presentation

10 | Hard Bound Project submission

APPENDIX I

1) Main class header:

1. // Active Sterec VisionDlg.h : header file

2. /7

3.

4. fpragma once
5.

6.

7. // CActiveStereoVisionDlg dialog
8. class CActiveStereoVisionDlg : public CDialog

9. {

10, // Construction

11. public:

12. CActiveSterecVisionblg (CWnd* pParent = NULL); // standard
constructor

13.

14. // Dialog Data

15. enum { IPD = IDD_ACTIVESTEREOVISION DIALOG };

16.

17, protected:

18. virtual void DoDataExchange (CDataExchange* pbX): //
DDX/DDV support

19.

20.

21. // Implementation

22, protected:

23. HICON m hlcon;

24,

25. // Generated message map functions

26. virtual BOOL OnInitDialogl();

27. afx msg void OnSysCommand (UINT niD, LPARAM 1Param) ;

28. afx msg void OnPaint{);

29. afx_msg HCURSOR OnQueryDragIcon();

30. DECLARE MESSAGE_MAP ()

31. public:

32. afx msg void OnEnChangeEditl():;

33. public:

34. afx msg void OnBnClickedButtonl(};

35. public:

36. afx msg void OnBnClickedOk()};

37. public:

38. afx_msg vold OnBnClickedCancel();

39. public:

40. afx msg void OnBnClickedButton2():

41.1;

2) Main Class source:

1. // Active Stereo VisionDlg.cpp : implementation file

2. //

3.

4. #include "stdafx.h"

5. #include "Active Stereo Vision.h"

6. #include "Active Stereo VisionDlg.h"

7. #include “oc.h"

8. #include "og.h"

9.

10. #ifdef DEBUG

1i. #define new DEBUG NEW

i2. fendif

13.

14.

15. // CAboutDlg dialog used for App BRbout

16.

17. class CAboutDlg : public CDialog

18. {

19. public:

20. ChboutDlg(}:

21.

22. // Dialog Data

23. enum { 1IDD = IDD ABOUTBOX };

24,

25. protected:

26. virtual void DoDataExchange (CDataExchange* pDX); //
DDX/DDV support

27.

28. // Implementation

29, protected:

30. DECLARE MESSAGE MAP ()

31. bi

32.

33. CAboutDlg: :CAboutDlg () : CDialog(CAboutDlg::IDD)

34. {

35, }

36.

37. void CAboutblg::DoDataExchange {(ChataExchange* pDX}

38. {

39, Chialog::DoDataExchange (pDX) ;

40. }

41,

42. BEGIN MESSAGE MAP (CAboutDlg, CDialog)

43. END MESSAGE MAP ()

44,

45,

46, // CActiveStereoVisionDlg dialog

47 .

48.

49,

50.

51. CActiveStereoVisionDlg: :CActiveStereoVisionDlg (CWnd* pParent
/*=NULL*/)

52, : Chialog(CActiveStereoVisionDlg::IDD, pParent)

54. m hlcon = AfxGetApp()->LoadIcon{IDR MAINFRAME);

55. }

56.

57. void CActiveStereoVisionDlg::DoDataExchange {CDataExchange* pDX)

58. {

59. CDialog: :DoDataExchange (pDX} ;

60. }

61.

02. BEGIN MESSAGE MAP {CActiveStereoVisionDlg, CDialog)

63. ON_ WM SYSCOMMAND ()

64. ON_ WM PAINT()

65. ON WM QUERYDRAGICON()

6. //11AFX_MSG MAP

67. ON_EN CHANGE(IDC EDIT1,
&CActlveStereoV131onDlg :OnEnChangeBditl)

68. ON_BN CLICKED{IDC_ BUTTONW1,
sCActiveStereoVisionDlg: :OnBnClickedButtonl)

69. ON_BN CLICKED({IDOK, &CActiveStereoVisionDlg::0nBnClickedOk)

70. ON_BN_CLICKED{IDCANCEL,
&CActiveStereoVisionDlg: :OnBnClickedCancel)

T1. ON_BN CLICKED(IDC_ BUTTCNZ,
&CActlveStereovlslonDlg::OanCllckedButtonZ)

72. END MESSAGE_MAFP()

73.

14.

75. // CActiveStereoVisionDlg message handlers

76.

17. BOOL CActiveStereoVisionDlg::OnInitDialog()

78. {

79. CDhialog::0OnInitDialog();

80.

81. // Add "About..." menu item to system menu.

82.

83. // IDM ABOUTBOX must be in the system command range.

84, ASSERT ((IDM _ABOUTBOX & 0xFFF(Q) == IDM ABOUTBOX);

85. ASSERT (IDM ABOUTBOX < 0xFO00);

86.

87. CMenu* pSysMenu = GetSystemMenu(FALSE);

88. if (pSysMenu != NULL)

89. {

90. CString strAboutMenu;

91. strAboutMenu.LoadString (IDS ABOUTBOX) ;

92. if (!strAboutMenu.IsEmpty{))

93. {

94. pSysMenu~>AppendMenu (ME_SEPARATOR) ;

95h. pSysMenu->AppendMenu (MF_STRING, IDM_ABCUTBOX,
straiboutMenu) ;

96. }

97. }

98.

99, // Set the icon for this dialog. The framework deoes this
automatically

100. // when the application's main window is not a dialog

101. SetIcon(m hlIcon, TRUE); // Set big icon

102. SetIcon(m hIcon, FALSE}: // Set small icon

103.

104, // TODO: Add extra initialization here

105.

106. return TROE; // return TRUE unless you set the focus to a
control

107. }

108.

1009. void ChActiveStereoVisionDlg: :OnSysCommand (UINT nlID, LPARAM
lParam)

110. {

111. if {{nID & OXFFF0) == IDM ABOUTBOX}

112. {

113. CAboutDlg dlgAbout;

114. dlgAbout.DoModal (};

115. }

116. else

117. {

118. CDialog: :OnSysCommand (nID, lParam);

119. }

12¢. I

121.

122. // If you add a minimize button to your dialog, you will need the
code below

123. // to draw the icon. For MFC applications using the
document /view model,

124. // this is automatically done for vou by the framework.

125.

126. void CActiveStereoVisionblg::OnPaint ()

127. {

128. if {IsIconic()}

129. {

130. CPaintbC dc(this); // device context for painting

131.

132. SendMessage (WM ICONERASEBKGND,
reinterpret cast<WPARAM>(dc.GetSafeHdc()), 0):

133.

134. // Center icon in client rectangle

135. int cxlcon = GetSystemMetrics(SM CXICON);

136. int cyIcon = GetSystemMetrics{SM _CYICON};

137. CRect rect;

138. GetClientRect (&rect);

1309, int x = (rect.Width{) - cxIcon + 1)} / 2:

140. int y = (rect.Height() - cyIcon + 1} / 2;

141,

142. // Draw the icon

143. de.Drawiconi(x, ¥y, m_hlcon);

144. I3

145. else

l4e. {

147. CDhialog::0nPaint (};

148. }

149. 1

150,

151. // The system calls this function to obtain the cursor to display
while the user drags

1%2. // the minimized window.

153. HCURSOR CActiveStereoVisionDlg: :OnQueryDragicon()

154. {

155. return static cast<HCURSOR>(m_hIcon):

156. }

157.

158.

159. void CActiveStereoVisionDlg::OnEnChangeEditl {)

160. {

1el. // TODO: If this is a RICHEDIT control, the control will
not

162. // send this notification unless you override the
Chialog::OnInitPialog(}

163. // function and call CRichEditCtrl().SetEventMask(}

164. // with the ENM CHANGE flag ORed into the mask.

165.

166. // TODO: Add your control notification handler code here

167. }

168. oc *ocl = new oc(};

169. og *ogi = new og();

170, void CActiveStereoVisionDlg::0nBnClickedButtonl (}

171. {

172.

173. oci->camselect();

174.

175. // TODO: Add your control notification handlexr code here

176. }

177.

178. void CActiveSterecoVisionDlg::0OnBnClickedOk()

179. {

180. // TODO: Add your control notification handler code here

181%. oci-»stopit = 1;

182. oci~>final();

183. ogi~>~og();

184, OnOK () ;

185. }

186.

187. void CActiveStereoVisionDlg::0OnBnCliickedCancel/()

188, {

189, // TODO: Add your control notification handler code here

190. oci->stopit = 1;

191. oci->finall();

192. ogi->~og();

193. delete ogi;

194. OnCancel():

195, }

196.

197, void CActiveStereoVisionDlg::0nBnClickedButtonZ ()

198. {

199, oci->pntt(};

200. //ogi->dc();

201. ogi->win(oci~->pos,oci->posc);

202.

203.

204.

205. // TODO: Add your contreol notification handler code here

206. }

3) Image processing class header:

42.
43.
44.
45.
46.
47.
48,
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
6L,
62.
63.
6d.
65.
66.
67.
68.
69.
70.
L.
2.

#include <stdio.h>

#include <math.h>

#include <time.h>

#include "cv.h" // include core library interface
#include "highgui.h" // include GUI library interface
#inciude "cvcam.h"

#include "cxcore.h"”

#pragma once

class oc

{

private:
int ncams,cami,cam?,nselected;
int* out;
char tstc{300];

IplImage* img2;
char c¢;
public:
int pos[2]1{500][3}:
int posc;
oc(void);
int stopit;
veid pntt():;
void final();
//void houghlines (IplImage* src2):
void camselect();
public:
virtual ~oc({void};:
+:

4) Image processing class source:

#include "StdAfx.h"

#include "oc.h"

IplImage* Im, * Iml,*imagep, *imagep?;

Iplimage *image = 0, *grey = {, *prev_grey = 0, *pyramid = 0,
*prev pyramid = 0, *swap_temp;

. CvPoint2D32f* points{3]}1([8] = {0,0}, *swap points;

const int MAX COUNT = 500;
int ilo2 =1,flags = O,count = 0,win_size = 10,need to init = 2,1,
c,add remove pt = {,pcount = 0;

. char* status = 0;

int sy,icnt,inj;
CvPoint pt;
char ctv[100];
int setv=0,omk=0, omk2=0;
int omx[500] [3],omx2[500]11[3]1;
FILE *ri,*li;

15. errnc t err;
16. void save_point (char rin[],char lin[}){

17. int i;

19. if{ (err = fopen s(&ri, rin, "w" }) !=0)

19. MessageBox (NULL, "Warning!\nCannot open the right
image file","File Manager”,MB ICONERROR];

20. if{ (err = fopen s({ &li, lin, "w" }) =0)

21. MessageBox (NULL, "Warning!\nCannot open the left image
file","File Manager”,MB_ICONERROR);

22, if{rin){

23. for (i=0;i<omk; i++)

24.

fprintf (ri, "td\tsd\t%d\n",omx [i] [0],0omx[i] [1],omx[i] [2])~
//lens, 1024, pn);

25. }

26. if(lin){

27. for(i=0;i<omk2;i++)
2B.

fprintf(1i, "2d\t¥d\ted\n", omx2 [i] [0] ,omx2[1i] [1],omx2[1i] [2}):
//{pns, 1024, ,pn);

29. }

30. if(ri)

31. {

32. if { fclose(ri))

33. {

34, MessageBox (NULL, "Warning!\nCannot clese the right image
file","File Manager",MB ICONERROCR) ;

35. }

36. }

37. if (34)

38. {

39, if (fclose(1i))

40. {

41. MessageBox (NULL, "Warning!\nCannot clese the left image
file","File Manager",MB ICONERROR);

42. }

43. }

44, }

45, void Text On_Image(IplImage* img,char text[],CvPoint
Start_Pnt,CvScalar coler)

46. {

47. CvFont fontl;

48. cvinitFont (&fontl,CV_FONT HERSHEY SCRIPT COMPLEX,0.4,0.4,0,
1,CV_RA);

49, cvPutText (img, text, Start_ Pnt, &fontl,color);

50. }

51. void copy2img(char rin[],char lin[]}{

52. int i=1;

53. if((err = fopen_s{ &ri, rim, "r")} I!=0)

54. MessageBox (NULL, "Warning!\nCannot open the right
image file™,"File Manager™,MB ICONERRCR]);

55. if{ {(err = fopen s{ &li, lin, "r")) !=0)

56. MessageBox (NULL, "Warning!\nCannot open the left image
file","File Manager",MB ICONERROR) ;

57. if{rin){

58. i=0;

59. while(! feof(ri)}{

60.
fscanf(ri, "ed\tid\tsd\n", somx{i] [0], &domx[i] (1], somx[i][2]);
61.
cvCircle{imagep, cvPoint {omx (1] [0],omx[i][1]),3,CV_RGB(0,255,0},~
1,CV_AA,0);

62. i++; //(pns,1024,pn);
63. }

64. omk = i-~1;

65. }

66. if(1lin) {

67. J/for{i=0;i<10;i++)

68. i=0;

69. while{! feof{li))}{

70.

fscanf (1i, "3d\t3d\t%d\n", somx2 (111{0], somxZ2[i] [1],&omx2 [i] [2]}:
71.
cvCircle{imagep2, cvPoint (omx2[i] [0],omx2[1][1}),3,CV_RGB{255,0,0)
,~1,CV_AR,0);

2. i++; //{pns,1024,pn};

73. }

74. omk2 = i-1;

75. }

T6. cvShowImage {"camviewl™, imagep} ;

77. cvShowImage {"camview2"”, imagep2};

78. if(ri)

79. {

80. if { fclose{ ri } }

81, {

B2. MessageBox {NULL, "Warning!\nCannot close the right image
file","File Manager™,MB ICONERROR) ;

B3. }

84. }

85. if{1i)

B6. {

B87. if { felose{ 1i)} }

88. {

B9. MessageBox (NULL, "Warning!\nCannot close the left image
file","File Manager",MB ICONERRCR);

90. }

91. }

92. }

93. void oc::pntt(){

94, int i,3;

95, if (omk>omk2)

96. j = omk2;

97. else

98. j = omk;

99. for {i=0;i<j;i++){

100. pos[0]1§i][0] = omx[i+1][0];

101. pos([0]11i] [1] = imagep~>height - omx{[i+1}[1];

102. pos[011i][2] = omx{i+1]}[2]*4;

103. pos(1111110) = omx2{3i+1] [0}

104. pos[1][1]{l] = imagep->height - omx2[i+1][1];

i05. pos[11[i]li2] = omx2{i+1]{2]*4;

106. }

107. posc = J;

108. 1}

109,
110. wvoid on mouse(int event, int x, int y, int flags, void* param)
111. |

112. / /MessageBox (NULL, "onmouse", "Camera”,MB_OK) ;
113. if (flags == 2}{
114. if({setv == 0){
115. omk++;
ile. omx [omk]} {0]l=x;
117. omx [omk] [1]=y:
118. if (omk<=omk2) {
119. omx {omk] [2]=omx [omk] {0} -omx2 [omk] [(];
120. omx2 [omk] [2}=omx [omk] [0] ~omx2 [omk] [0] ;
121.
sprintf(ctv,"%$4.2£",3023.622047244/ (float)omx[omk] [2]};
122.
Text On_Image(imagep,ctv,cvPoint{x+1,y+1),CV_RGB{0,255,0)});
123.

Text On_Image (imagep2, ctv,cvPoint (omx2{omk] [0]+1,0omx2 [omk} [1]+1},
CV_RGB(255,0,0});
124. cvShowImage { "camview2™, imagep?);
125. }
126.
cvCircle (imagep, cvPoint (x,y),3,CV_RGB(0,255,0),-1,CV_AA,D0);
127. cvShowImage {"camviewl™, imagep);
128. setv = 1;
129. }
130. lelse
131, setv = 0;
132. 1}
133. void undo(}{
134, int i;
135. if {omk2>omk) {
136. omk2--;
137. omk--;
138. for (i=omk:i>=0;i--){
139.
cvCircle (imagep, cvPoint (omx[i]1[0],omx{1} [1]),3,CV_RGB(0,255,0),-
1,CV AR, 0);
140.
cvCircle(imagep?,cvPoint (omx2 (1] [0],omxZ2{i]1[1]},3,CV_RGB({255,0,0)
,~1,CV_AA,0};
141.
sprintf(ctv, "$4.2£",3023.622047244/ (float)omx2[1]{2]);
142.
Text On_ Image{imagep2,ctv,cvPoint{omx2[1]{0]+]1,omx2[i] [1]+1},CV R
GB(255,0,0)); B
143.
Text On_Image {imagep,ctv,cvPoint (omx[i] [0)+1,omx{i] [1}+1),CV_RGB{
0:25510) }H

144. cvShowImage ("camviewl", imagep) ;
145, cvShowlImage ("camview2", imagep?) ;
i46. }

147. for{i=omk+1;i<omk2+1;i++) {

148. omx2 [i} (0] = omx2fi+1][0];

149. omx2 [1} [1] omx2 [i+1] [1];

150.
chircle(imagepZ,choint(ome[iI[0],0mx2{i][1]),3,CV_RGB(255,0,0)
l“erV_AAr 0);

151. cvShowImage ("camviewl”, imagep) ;
152. cvShowImage {"camview2", imagep2) ;
153. }
154.
155. }elsel
156. omk—=;
157. omk2--;
158. for {i=omk2;i>=0;1i--}{
159.
cvCircle (imagep, cvPoint (omx[i] [0},omx([1]{1})},3,CV_RGB{0,255,0},~
1,CV_AA,0);
160.

cvCircle (imagep?,cvPoint {omx2[1] [0],omx2{i]{1}),3,CV_RGB{255,0,0)
(~1,CV_AR, D) '
161.
sprintfictv,"%4.2£",3023.622047244/ {float)omx2(i] [2]):
162.
Text On_Image {imagepZ,ctv,cvPoint (omx2[i] [01+1,omxZ2[1][1}+1),CV R
GB(255,0,0});
i63.
Text_On_Image(imagep,ctv,choint(omx{i][0]+1,omx[i][1]+1},CV_RGB(
0,255,0)) ¢

164. cvShowlImage {"camviewl™, imagep) ;
165. cvShowImage {"camview2", imagep2) ;
166. }

1e7. for {i=omk2+1; i<omk+1;i++) {

168. omx[i]{0] = omx[i+1]1([0];

169. omx[1i]1[1] = omx[i+1]{1];

170.

chircle{imagep,choint(omx[i}[0],omx[i}[1]),3;CV_RGB(0,255,0),—
i,Cv_AA,0);

17%. cvShowImage {"camviewl™, imagep} ;
172, cvShowImage {"camview2”, imagep2) ;
173. }

174. I3

175. 1}

176. wvoid on_mouse2(int event, int x, int y, int flags, void* param)
177. |

178. if {flags == 2){
179. if (setv == 0){
180. omk2++;
181. omx?2 fomk2] [0]=x;
182. omx2 [omk2] [1]1=vy}
183. if (omk2<=omk) {
184. omx [omk2] [21=omx [omk2] [0] ~omxZ [omk2] [0];
185. omx2 [onk2] [2]=omx{omk2] [0] ~omx2 [omk2] [0] ;
186.
sprintf (ctv,"%4.2£f",3023.622047244/ ({float) omx2 [omk2] [2})
187.
Text On_Image {imagep2,ctv,cvPoint (x+1,y+1),CV_RGB{255,0,0));
188.

Text*Oanmage(imagep,ctv,choint(omx[ome][0}+1,omx[omk2}[1]+1),€
V_RGB{0,255,0));
189, cvShowlmage {"camviewl™, imagep);

X1

190. }

191.
cvCircle{imagep2, cvPoint{x,y),3,CV_RGB(255,0,0),-1,CV _AA,0)};

192. cvShowImage ("camview2"”, imagep2) ;

193. setv = 1;

194. }

195. telse

1%96. setv = 07

197. }

198. void presetup{IplImage* frame){

199. /*¥ allocate all the buffers */

200. image = cvCreatelmage(cvGetSize(frame), B, 3)

201. image->origin = frame->origin;

202. grey = cvCreatelImage(cvGetSize (frame), 8, 1 }:

203. prev_grey = cvCreatelmage(cvGetSize(frame), 8, 1);

204. pyramid = c¢vCreatelmage({ cvGetSize(frame), 8, 1)

205. prev_pyramid = cvCreateImage{ cvGetSize(frame), 8, 1);

206. int jk=0;

207. for{jk=0;3k<B8;jk++){

208. points[G] [jk] =
{CvPointZD32f*)cvAlloc (MAX COUNT*sizeof (pointsf{0] [0][jk]));

209. points[1][jk] =
(CvPoint2D32f*}cvAlloc (MAX COUNT*sizeof {points[0]1 (0] [jk]l)};

210. points[2}[jk] =
(CvPoint2D32f*)cvAlloc (MAX COUNT*sizeof(points[0]1[0] [jk]}}:2

211. }

212, status = (char*}cvAlloc (MAX COUNT);

213. flags = 0;

214. %

215. wvoid initpoints{){

216. /* automatic initialization */

217. _ IplImage* eig = cvCreateImage{ cvGetSizel{grey), 32, 1):

218. IplImage* temp = cvCreatelmage{ cvGetSize(grey), 32, 1);

219. double gquality = 0.0001;

220. double min distance = 1;

221. count = MAX COUNT;

222. cvGoodFeaturesToTrack(grey, eig, temp, points([l]{icntl,

&count,quality, min_distance, 0, 3, 0, 0.04 };
223. cviindCornerSubPix(grey, points([1l][icnt],
count,cvSize(win size,win size), cvSize(-1,-1},
224.

cvFermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,10,0.03));

225. cvReleaseImage (&elg);

226. cvReleaselmage | &temp);

227. '}

228. vold pointselector(IplImage* frame) {
229. if(!image)

230. {

231. presetup (frame) ;

232. }

233. cvCopy(frame, image, 0);:
234. cvCvtColor(image, grey, CV_BGRZGRAY);
235. pcount = 0;

236. 1f(need to init)

237. {

238. initpoints(}:

239. }else if{ count > 0){

240, cvCalcOpticalFlowPyrLK{ prev_grey, Jrey,
prev_pyramid, pyramid,peints(0][icnt], points[l][iecnt], count,

241, cvSize (win size,win_ size), 3, status, 0,
242.
. chermCriteria(CV_TERMCRITHITERICV;TERMCRIT_EPS,20,0.03), flags
V2
243. flags |= CV_LKFLOW_PYR A READY;
244, for{ i =k = 0; 1 < count; i++ }
245, {
246, if (add remove pt)
247. {
248. double dx = pt.x - points{l] [icnt][i].x;
249, double dy = pt.y - peoints{l] [icnt][i].y;
250. if(dx*dx + dy*dy <= 25)
251. {
252, add_remove pt = 0;
253. continue;
254. }
255, }
256. if{ !status([i])
257. continue;
258. points[1] [icnt] {k} = points[i][icnt][i]:
259, pointsi2] {icent] [k++} = pointsi2)[icntl[i];
260. }
261. count = k;
262. }
263. for{ i= 0; i < count; i++)
264, {
265. if{inj==1}{
266. points(2] [ient] [i] = peints[l]f{icnt] [i];
267. telse(
268.

cvCircle (imagep, cvPoint ((int}points[2]{icnt] [i].x, (int)points[2}[
icnt] [i].y+sy),2,CV RGB(255,0,0),~1,CV_AA,0);

269.
cvCircle (image,cvPoint ({int)points[1]ficnt] [i].x, {int)points{1][i
cent} [i].y},3,CV_RGB(255,0,0),-1,CV_AA,0);
270. cvShowImage ("Sum4"™, imagep);
271.
cvCircle{imagepZ,cvPoint ((int)points[1]{icnt] [i].x, (int)points{1]
[ient] [i].y+sy),2,CV_RGB(255,0,0},-1,CV_AA,0);
272. cvShowImage{ "Sum", imagep? };
273. }
274. }
275. if{ add _remove_pt && count < MAX COUNT)
276. {
277. points{1l] [icnt] [count++] = cvPointTo32f (pt):
278. cvFindCornerSubPix (grey, points[l]{icnt] + count -
1, 1,cv8ize(win_size,win size), cvSize(-1,-1),
279.
chermCriteria{CV_TERMCRIT_ITERICV;TERMCRIT_EPS,20,0.03));
280. add remove pt = 0;
281. }
282, CV_SWAP({ prev grey, grey, swap_temp);
283. CV_SWAP(prev _pyramid, pyramid, swap_temp);
284. CV_SWAP(points[0] [icnt], points[l]{icnt], swap points }:
285. need to imnit = 0;

X

286. }

287.

288 SSLIITILITITIP 7SI F PP TEI T E P77 8707000077771 777777
289, JSSILTIFITI IS LIRS I I I I70 077770007717 77 707700777777

290. /1771 /
291. J/171/ Stereocallback
292, /f/111/

293, SIIITLIEIFEIIEII TSI LSS EEE SRR TP P P I TREE T
294, JSIILIIITEELIIIIILTILIEELP TSI IR0 07800777
295. wvoid stereocallback({IplImage* Image,IplImage* Image?2) {

296.

297. Im = cvCreatelmage{ cvGetSize{Image}, 8, 3);

298, cvShowImage | "camviewl", Image);

299. cvShowImage ("camview2?”, Imagel);

300, if({!imagep) {

301.

302. imagep = cvCreateImage(cvSize (Image->width, Image-
>height}, Image~>depth, Image->nChannels)

303. cvZero (imagep);

304. }

305. if (limagep2) {

306. imagep?2 = cvCreatelImage({ cvSize(Image->width, Image-
>height) , Image->depth, Image->nChannels);

307. cvZero (imagep2) ;

308. }

309. if(need_to_init == 2){

310. cvCopy (Image, imagep} ;

311. cvCopy (Image?2, imagep?2) ;

312, ' int §k=0;

313. for{jk=0;3k<8; k++) {

314. need to_init = 1;

315. inj=1;

316. sy = jk*Image2->height/8;

317%. cvSetImageROI (Image, cvRect {0, sy, imagep->width, ImageZ~
>height/B}};

318. ient = Ak;

319, pointselector (Image) ;

320. need_to_init = 05

321. inj=0;

322. cv3etImageROI (Image2, cvRect {0, sy, imagep-
>width, Image2->height/8));

323. peintselector (Image?);

324. }

325, cvFlip(imagep, imagep,-1};

326. cvFlip (imagep2, imagep2,-1};

327.

328. s

329. cvSetImageROI {ImageZ, cvRect (0, 0, Image->width, Image2-
>height));

330. cvShowImage{ "Sum2", imagep):

331, cvShowInmage { "Sum3", imagep2};

332. 1}

333. void oc::final(}({

334. cvDesgtroyAllWindows () ;

335. cvecamStop() ;

336. cvcamkExit{);

337. 1}

338, LSBT TIP PRI E PP I A LI ii i
339, SSTTITIEEIEII P E AL LS PSP T AP AN
340. /i1

341. S/ 1/4S CamSelect

342, [/ 107

343, SSSLEIISEFLST SIS I AP LA S P AP i
344, JSTPFPIIIEET PRI S LA L LT L LI LTI AP i iii7iiriiiiriiiisy
345. void oc::camselect(){

346. Iplimage* img, * img2;

347, char strFilter{] = { "jpg Files (*.jpg)l*.JjpgiBll Files
(P Fppx.x " };

348, char rif[100],1if[100];

349. CFileDialog FileDlg(FALSE, “.Jjpg"™, NULL, 0, strFilter);

350.

351. if{ FileDlg.DoModal (} == IDOK }

352. {

353. sprintf{rif,”%s.svi",FileDlg.GetFileName ()} ;

354, img = cvloadImage (FileDlg.GetFileName());

355, cvNamedWindow("camviewl”, 1 };

356. cvSetMouseCallback({ “camviewl", on mouse, 0 };

357. cvShowImage ("camviewl", img) ;

358, }

359. else

360. return;

36l. if{ FileDlg.DoModal ()} == IDOK }

362, {

363. sprintf(1if, "%s.svi",FileDlg.GetFileName ()}

364, imgZ = cvLoadImage (FileDlg.GetFileName(});

365. cvNamedWindow{ "camview2™, 1 };

366. cvSetMouseCallback{ "camviewz", on mousez, 0);

367. cvShowImage ("camnview2", img2) ;

368, }

369. else

370. return;

371. if({!imagep) {

372. imagep = cvCreateImage{ cvSize (img->width, img-
>height) , img->depth, img->nChannels };

373, cvZero{imagep} s

374, cvCopy (img, imagep) 5

375. }

376. if(!limagep2) {

377. imagep2 = cvCreatelmage(cvSize{img->width, img-
>height),img~>depth, img->nChannels };

378. cvZerc{imagep?) ;

379, cvCopy (img2, imagep?2) ;

380. }

381. cvShocwImage ("Sum”, imagep) ;

382. cvShowImage ("Sum2", imagep?) ;

383. while {1) {

384. c = cvWaltKey(10);

385. if(o=="1i"){

3ge6. need to_init = 2;

387. stereocallback(img, img2} ;

388. }

389. if{c=="s"}{

390. save point (rif,1lif);

381. }

392. if{e=="2"}{

393. if (omk>0 && omk2>0) {
394. cvZero {imagep2} ;
395. cvCopy {img2, imagep?) ;
396. cvZero (imagep)
397. cvCopy (img, imagep) ;
398. undo () ;

399. }

400. }

401. if{c=="c"}{

402. copyZ2img(rif,l1if};
403. }

404. if(stopit == 1}

405, break;

406. 1

407. '}

408. oc::oc{veoid)

409. {

410. '}

411.

412. oc::~oc(void)

413. |

414, }

5) Graphic class header:

73. f#include <stdio.h>

74. #include <math.h>

75. #include <time.h>

16. #include "gl/gl.h" // include core library interface
77. #include "gl/glu.h" // include GUI library interface

8. #include "gl/glut.h”

79.

80. ¥pragma once

81.

82. class og

83. {

84. private:

85. int winid;

86. int lop:

87. public:

88. //void de(int ogp[2]1[500] [3},int cnt);
89. og(void) ;

90. void win{int ogp{23i[500][31,int cnt};
91. public:

9z, virtual ~og({veid):

93.}:;

6) Graphic class source:

1. #include "StdAfx.h"

2. #include "og.h"

3. int cnog,mod=0,initial=0;

4. double yRot=0,zRot=0,xRot=0,scale=1.0,xp=-1.0,yp=-1.0;
5. og ogt;

6. #define PI 3.1415

7. float xxRot = 0.0;

8. float x=0,y=3,z=0;

9, int artt{2]{500]([31]:

10. bocl conb[500] [500];

11. const int mxmt = 40;
12. int mxm = mxmt/4;
13. int minlocimxmt];
14. double mint [mxmt];

15. bool cand = false;
16. void dc{int ogpl2][500}[3],int cnt){

17. int i,3,k:

18. for{i=0;i<2;i++){

19. for (j=0;j<cnt;j++)

20. for{k=0;k<3;k++)

21. artt{i][JI[k] = ogpiilii][k];
22. }

23. cnog = cnt;

24. }

25, void fc(int cnt) {

26. int i,9,k,1;

27. double conn[1][500]:

28. for{i=1;i<cnt;i++){

29, x=0;

30, if(il= 1}

31. mint[0] = sgrt{pow({flcat) (artt[0){i][C]~

artt[01[1][0]),2)+pow({float) {artt[0}[1i]{1]-
artt[0][1]1[1]},2)+pow((float) {artt[01 [11{2]-artt[0]1[1}i2]},2));:
32. else
33. mint[0] = sqrti{pow((float} (artt[0]1{i]1([0]~
artt{0][2]1{0]},2}+pow((float) (artt[0I[i]1[11~
artt{0] [2]1[11},2)+pow({float) {artt [0 [1][2}-axrtt[0][2]1(2]),2));
34. for{j=2;:j<cnt;ij++) {
35. conni0] [j] = sqgrt{pow((float) (artt[0G][i] [0}~
artt[011J1[0)),2)+pow((float) {artt (0] {i}[1]~
artt[0)[3]1111),2)+pow(({float) (artt[0] {i][2]-arttiO}(J][2]),2));

36. if(conni0] [§] <= mintlk && 1 != 31){
37.

38. Y=k;

39. while({conn([0Jfj] <= mintil])({
40, mint[1+1] = mintfl};
41. 1-~-;

42. }

43. mint [1+1} = conn([01{]1:

44, 1f (k< (mxm-2))

45, k++;

46, telse if(k<({mum—~1) && i != j){

47, mint [k+l}=conn[d]{]j]i;

48. if(k<{mxm-2))

Xvll

49. k++;

50. }

51. }

52. for{j=2;j<cnt:i++) {

53. conb[il{j] = false;

54, for(1=0;1<=k;1++) {

55. if{conn[0][j] == mint[1]}
56. conb[i]l {j] = true;
57. }

58. }

59. }

60. }

6l.

62. void pointd{double x,double y,double z2)
63. {

64. giBegin (GL._LINES);

65. glVertex3f{l+x, l+y, 1+z};
66. glvertex3f(-1+x, -i+y, -l+z);
67. glEnd{):

63. glBegin(GL LINES};

€9. glVertex3f (-1+x, 14y, 1+z);
70. glVertex3f (1+x, ~-1l+y, -=1+z);
T1. glEnd(};

72. glBegin (GL_LINES):

73. glvVertex3f (14+x, vy, z+1):

74. givertex3f(-1+x, y, -1+z};
15, glEnd({):

76. }

7. void dline{double x,double y,double z,double xl,double yl,double
z1) {

8. glBegin(GL_LINES);
79. gilVertex3f{x, vy, z};
80. glvertex3f({xl, y1l, zl):
B1. glEnd{}:
B2. }
83. float red(float af[], float bf[], float cfl])
B4. {
85. float vi[3],v2{3],1[3],n[3],normn,norml,ia,id,ndotl=0.0;
86. int i;
87. for{i= 0;i<3;i++)
88. {
89. v1[i] = cf[i]-bE[i]:
90. v2[i] = af[i]l-bf[i]:
91. }
92. ni0] = (v1[1]*v2[2])~(vl[2]1*v2[1]);
93. nfl] = (v1[2]*v2[0])~(v1[Q]*v2[2]};
94. nf2] = (v1[0]1*v2[1])—-(v1[1]*v2[0]);
95. normn =
pow{ (pow(n[0],2)+pow({n{l],2)+pow(ni2],2)), (float)0.5);
96. 1[0] = x-bfi0];
87. 1{1] = y=bf{l1]:
g8, 1{2] = z-bf{2];
99%. norml =

pow ((pow(1[0],2)+pow(1[1],2)+pow(1(2},2)), {float)0.5);
100. for (i=0;1<3;i++)
101. {
102. 1[(i} = L[i] / norm};

103. nfi] = n(i}] / normn:;

104. ndotl += 1iif*n[i];

105. }

106. ia = 0.5;

107. id = 0.5*ndotl;

108. return {(ia+id};

109.

110. 1}

i1l.

112. vwvoid ditri(float af{],float bf[],float cE[]1){

113. glColor3f{red({af,bf,cf),0,0}:

114. glBegin{ GL_TRIANGLES }y:

115. glVertex3f(af[0), af{l], aff2]);
116, glvVertex3f(bf [0}, bf[1], bf[2]):
117. glVertex3f (cf[0}, cf[1l], cfl2]);
1is8. glEnd();

119. 1}

120. woid dotcloud(void) {

121. int i;

122. for{i=0;i<cnog;i++)

123. pointd(artt[0) [1]1[0],artt[0][i}{L],artt[0]1{1][2]);
124. 1}

125. vwvoid wiremod {void) {

126, int 1,3

127. for{i=1;i<cnog;i++)

128. for(i=i;j<cnog;j++){

129. if{conb[i}[j])

130.

dline(axrtt[0][i]1[0],artt[0][i]1[1},artt[0]{i][2],artt[03([j][0],art
t[0T0311],,arte (0} (3] (21}

131.)]
132. 1}
133. wvoid solid({void}{
134. int i,3,%,1,m,n,0,p;
135. float af([3],bf[3],cf[3];
136. for(i=1; i<cnog;i++) {
137. k = 0;
138. for{j=1;j<cnog;j++){
139. if(conb{il[j] && it=j){
140. minloc[k++] = 3j;
141. }
142. }
143, for (m=0;m<k;m++) {
144, for (1=0; 1<k; 1++) {
145. if{conb[minlioc([m]] [minloc[1l]] &&
minloc[l}!=minloc[m] && minloc{l]!=i){
146. af[0] = artt[0]{i}[0];
147. af{l] = artt[0][i)[11:
148. afi2] = arte[0)(i1[21;
149. bfi{o] =
artt{0] fminloc[1]1][0];
150. bfiil =
artt [0} fminloc{1]1][1i;:
151, bf[2] =
artt [0} [minloc[l]]{21;
152. cf[0] =

artt[0] [minloc{m}] [0];

153. cf[1]
artt[0] [minleoc[m]1(1];

154. cfl[2]
artt[0) minloc[mljf2];

155, n = aff0]:

156. o=0;

157. if(bE{0]>n){

158, n=bf[0];

159. o=1;

1690. }

1e1l. if(cf[0]>n){

162. n = cf0];

163. o=2;

164. }

165, n

le6. P

167. i

168. n=bf[1];

169, p=1l;

170. }

17%. if(cf{l]l>n){

172. n = cf[l];

173. p=2;

174, }

175. if(o=0}{

176. if(p=1}

1717. dtri{af,cf,bf};

178. else

179. dtri (af,bf,cf);

180. lelse if{o=1){

181. if (p=0)

182. dtri(bf,cf,af):

183. else

184. dtri(bf,af,cf});

185. }elsed

186. if {p=1)

187. dtri(cf,af,bf):

188. else

189. dtri(cf,bf,af);

190. }

191. }

182. }

193, }

194. }

195. }

196. woid MB(veid}{

197. if{initial == 0}{

198. fecl{cnog);

199. initial = 1;

200. }

201. switch {mod) {

202. case 0:

203. dotcloud()

204. break;

205, case 1:

206. wiremod() ;

207. break;

i

= af[1];
= 0;
{

208. default:

209, solid();

210. break:;

211. } !

212.

213.

214. }

215. woid lights()

216, |

217. glPushMatrix();

218. x=390;

219. y=300*cos (xxRot)+320;

220. z =150*sin (xxRot}+900;

221, glTranslatef({x,y,z);

222, glColor3£(1,1,1):

223, glutSolidSphere(10,10,10};
224. glPopMatrix(};

225. }

226, void myDisplay(void)

227. {

228. glEnable (GL._DEPTH_TEST} ;

229. glEnable (GI. CULL_FACE};

230. giCullFace (GL_ BACK) ;

231. // Save matrix state and do the rotation
232. glClear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT};
233, glPushMatrix();

234. glTranslatef{xp,yp, 0.0f};
235. glScalef (scale, scale,scale};
236. glScalef(2.0/500.0,2.0/400.0,2.0/5000.0);
237. glRotatef (xRot, 1.0, 0.0, 0.0);
238. glRotatef{yRot, 0.0, 1.0, 0.0);
239. giRotatef {zRot, 0.0, 0.0, 1.0):
240. glBegin(GL_LINES);

241, glVertex3£(0, 120, 0):
242. glvVertex3f (320, 120, 0):
243. glEnd{);

244, glBegin (GL. LINES);

245, glVertex3f {160, 240, 0);
246. glvertex3f (160, 0, 0});
247. glEnd({);

248. lights ()

249, MB({}:

250. glPopMatrix () ;

251. glutSwapBuffers();

2h2. 1}

253.

254,

255. void processNormalKeys (unsigned char key, int x, int vy} {
256. if (key=="1")

257, mod = 0;

258. if (key=='2")

259. mod = 1;

260. if (key=="3")

261, mod = 2;

262. if (key=='u')

263. XxRot—= 0.05f;

264. if (key=='y")

265. xxRot+= 0.05f;

266, if (key=="'1i")

267. 1f (mxm > 3){

268, mxm ——;

269, fc{cnog};

270. }

271, if (key=='o'}

272, if (mxm < mxmt) {

273, mEm ++;

274. fe{enog);

275. }

276.

277. glutPostRedisplay{):

278. }

279.

280, wvoid SpecialKeys{int key, int x, int y)
281, {

282. if (key == GLUT KEY F1)

283. vRot -= 0.5f;

284. if(key == GLUT_KEY F2)

285. yRot += 0.5f;

286. if (key == GLUT_XEY F3)

287. zRot -= 0.5f;

288. if(key == GLUT_KEY F4)

289. zRot += 0.5f;

290. if (key == GLUT KEY F5)

291. xRot -= .5f;

292, if(key == GLUT KEY F6)

293, xRot += ,5f;

294. if(key == GLUT_KEY F7)

295. scale += .05f;

296. if(key == GLUT KEY F8)

297. scale -= _05f;

298. if(key == GLUT KEY LEFT)

299. xp -= .05f;

300. if (key == GLUT KEY RIGHT)

301. Xp += ,05f;

302. if{key == GLUT_KEY UP)

303. yp += .05f;

304. if (key == GLUT KEY DOWN)

305. yp -= .05f;

306. glutPostRedisplay(}:

307.

308. 1}

309. woid og::win(int ogp[2][5001(3],int cnt){
310. glutInitDisplayMode (GLUT DOUBLE | GLUT_RGB} ;
311. glutInitWindowSize (320,240);
312. winid = glutCreateWindow("Sayed Ali Kasaei zadeh (6148)}™);
313. glutKeyboardFunc {processNormalKeys) ;
314. glutSpecialFunc (SpecialKeys};
315. dc{ogp,cnt};

3le. cnog = cnt;

317. glutDisplayFunc (myDisplay);
318. glCiearColor(0.3,0.3,0.7,0.0}:
319. 1f {(Lop==0)

320. glutMainLoop();

321. 1}

322.
323.
324.
325.
326.
327.
328.
329.

og: :og(void)
{

lop=0;
}

og::~og{void)
{
lop=1;}

