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ABSTRACT 

Wounds that fail to heal within an expected period develop into ulcers that cause 

severe pain and expose patients to limb amputation.  Ulcer appearance changes 

gradually as ulcer tissues evolve throughout the healing process.  Dermatologists 

assess the progression of ulcer healing based on visual inspection of ulcer tissues, 

which is inconsistent and subjective.  The ability to measure objectively early stages 

of ulcer healing is important to improve clinical decisions and enhance the 

effectiveness of the treatment.  Ulcer healing is indicated by the growth of granulation 

tissue that contains pigment haemoglobin that causes the red colour of the tissue.  An 

approach based on utilising haemoglobin content as an image marker to detect regions 

of granulation tissue on ulcers surface using colour images of chronic ulcers is 

investigated in this study.  The approach is utilised to develop a system that is able to 

detect regions of granulation tissue on ulcers surface using colour images of chronic 

ulcers.  The system first employs data transformation using independent component 

analysis to extract grey-level images that show the distribution of haemoglobin on 

ulcer surface reflecting identified regions of granulation tissue.  Clustering-based 

segmentation using fuzzy c-means techniques is then applied to segment the identified 

regions of granulation tissue on extracted haemoglobin images. Ulcer tissues 

reference images are developed to investigate the performance of the developed 

system. Results indicate the system’s ability to detect clearly granulation tissue 

regions in ulcer images corrupted with white noise corresponding to Signal-to-Noise 

Ratio (SNR) levels of more than 12dB with more than 96.0% sensitivity, 99.6% 

specificity and 99.5% accuracy.  The performance degrades gradually for images with 

SNR levels of less than 12dB due to increased effect of noise.  The system is applied 

on real ulcer images and output is compared with dermatologists’ assessment.  A high 

correlation value of 0.961 is obtained which indicates a strong similarity between 

system detection and dermatologists’ assessment of granulation tissue.  Furthermore, 
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the system is able to identify granulation tissue regions that cannot be discerned 

visually at early stages of ulcer healing.  It is hoped that this work contributes to the 

development of a new objective and non-invasive scheme to assess the healing 

progression of chronic ulcers in a more precise and reliable way.  
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ABSTRAK 

Luka-luka yang gagal untuk sembuh dalam tempoh masa yang dijangka akan 

berkembang menjadi ulser yang menyebabkan kesakitan yang teruk dan 

mendedahkan pesakit untuk pemotongan anggota.  Penampilan ulser berubah secara 

beransur-ansur kerana tisu ulser berkembang sepanjang proses penyembuhan.  Ahli 

dermatologi menilai perkembangan peyembuhan ulser berdasarkan pemeriksaan 

visual tisu ulser yang tidak konsisten dan subjektif.  Keupayaan untuk mengukur 

secara objektif peringkat penyembuhan ulser adalah penting untuk meningkatkan 

keputusan klinikal dan meningkatkan keberkesanan rawatan.  Penyembuhan ulser 

ditunjukkan oleh pertumbuhan tisu granulasi yang mengandungi pigmen hemoglobin yang 

menyebabkan warna tisu menjadi merah tisu.  Satu pendekatan berdasarkan penggunaan 

kandungan hemoglobin sebagai petanda imej untuk mengesan kawasan-kawasan tisu 

granulasi pada permukaan ulser berdasarkan imej warna ulser kronik disiasat dalam kajian ini.  

Pendekatan ini digunakan untuk membangunkan satu sistem yang dapat mengesan tisu 

granulasi pada permukaan ulser berdasarkan imej warna ulser kronik.  Sistem ini akan 

menggunakan transformasi data berdasarkan analisis komponen bebas untuk mengekstrak 

tahap kelabu imej yang menunjukkan taburan hemoglobin pada permukaan ulser.  Segmentasi 

berasaskan kelompok menggunakan teknik ‘fuzzy c-means’ dan diaplikasikan di kawasan 

yang dikenal pasti tisu granulasi dalam imej-imej hemoglobin yang diekstrak.  Imej tisu ulser 

rujukan dibangunkan untuk menyiasat prestasi sistem.  Keputusan menunjukkan keupayaan 

sistem dengan jelas dapat mengesan kawasan-kawasan tisu granulasi dalam imej ulser yang 

rosak dengan hingar putih sepadan dengan 'Signal-to-Noise Ratio' (SNR) tahap lebih daripada 

12dB dengan lebih daripada sensitiviti sebanyak  96.0%, spesifikasi sebanyak 99.6% dan 

ketepatan sebanyak 99.5%.  Prestasi semakin menurun untuk imej tahap SNR kurang daripada 

12dB disebabkan oleh kesan peningkatan hingar.   Sistem yang digunakan pada imej-imej 

ulser yang sebenar dan keputusannya dibanding dengan penilaian ahli dermotologi. Satu nilai 

korelasi yang tinggi, iaitu 0.961 diperolehi. Ini menunjukkan persamaan yang kuat antara 

sistem pengesanan ini dan penilaian ahli dermotologi.  Tambahan pula, sistem ini mampu 

mengenal pasti kawasan tisu granulasi yang tidak boleh di lihat secara visual pada peringkat 
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awal penyembuhan ulser. Dengan penilaian ini, diharapkan bahawa kajian ini dapat 

menyumbang kepada pembangunan objektif yang baru dan memperkenalkan pemeriksaan 

ulser yang tidak invasif yang dapat menilai perkembangan penyembuhan ulser kronik dengan 

cara yang lebih tepat dan boleh dipercayai. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

When the skin is injured due to a certain trauma, it goes through a series of 

overlapping procedures to repair the damaged tissues.  Chronic wounds or ulcers 

occur when the injured tissues do not follow a normal course of healing within an 

expected period of time due to untreated underlying aetiologies or improper wound 

management [1].  Non-healing ulcers could remain for years causing pain and 

discomfort to patients and expose them to the risk of infection and limb amputation.  

It is reported that 66% of patients who went through limb amputation in Malaysia 

between 2003-2005 were suffering from diabetic foot complications [2]. 

According to recent studies, more than 3.0% of the adult population has the 

potential to develop chronic wounds during their lifetime with a significantly 

increased prevalence in the elderly [3].  In Malaysia, the prevalence of chronic foot 

ulcers in patient with diabetes between 1999 - 2008 was reported as 9.9% with an 

annual prevalence of 1% [4].  Chronic ulcers introduce not only a major problem in 

dermatology but an economic dilemma especially in western countries. The annual 

cost associated with the treatment and care of ulcers was estimated to be around $5 

billion to $10 billion in the United States and around £400 million in the United 

Kingdom [3], [5].  The average cost of treating diabetic ulcers was estimated to be 

more than RM 600 per day in Malaysia in the year of 2006 [6].  The prevalence of 

chronic wounds may increase significantly due to the increase in the population’s age 

or underlying aetiologies such as diabetes and venous and arterial insufficiencies.   
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Leg ulcers are common types of chronic wounds that are found on the lower 

extremity below the knee and mostly affect people above the age of 60.  There are 

three main types of leg ulcers according to the aetiologies that cause them: vascular 

(venous and arterial), diabetic (neuropathic) and pressure ulcers.  Most leg ulcers are 

either vascular or diabetic and affects 1% of the adult population and 3.6% of people 

older than 65 years [7].  Figure  1.1 shows examples of two chronic leg ulcers acquired 

at Hospital Kuala Lumpur, Malaysia. 

 
Figure  1.1: Chronic leg ulcers acquired at Hospital Kuala Lumpur 

An accurate and thorough assessment of the ulcer is important to provide baseline 

information on the ulcer severity status and to determine the appropriate course of 

treatment [8], [9].  This reflects on the effectiveness of ulcer care and management in 

terms of time and cost of treatment.  There are several ulcer assessment parameters 

that need to be thoroughly analyzed by clinicians to determine the severity status of 

the ulcer such as the physical appearance of the ulcer, the condition of the 

surrounding skin, the odour and pain associated with the ulcer as well the amount and 

characteristics of the exudates on the ulcer surface.  The patients’ medical history of 

previous ulcers and their corresponding treatments are also needed to acquire a full 

analysis of the ulcer condition.  

The physical appearance of the ulcer in particular plays a significant role in 

determining the ulcer’s severity status and monitoring its healing progression.  There 

are four main types of tissues that are present on the ulcer surface: necrotic tissue, 

slough, granulation tissue, and epithelial tissue.  Depending on the severity of the 

ulcer, it may initially appear covered with a mixture of black necrotic tissue and 

yellow slough.  These tissues contain dead skin cells and cellular debris that result 

from bacterial infection and white blood cell activities.  These tissues are unhealthy 
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and need to be debrided to promote healing.  As ulcers heal, healthy red granulation 

tissue starts to grow from the base of the ulcer gradually replacing the black necrosis 

and yellow slough.  Granulation tissue consists of a collagen-based extracellular 

matrix combined with newly formed blood capillaries.  The growth of granulation 

tissue indicates that the ulcer is healing and the patient is positively responding to the 

treatment.  At later stages of ulcer healing, pink epithelial tissue starts to grow from 

the edges of the ulcer slowly covering the granulation tissue and eventually closing 

the ulcer. 

  It is evident from the discussion above that the physical appearance of the ulcer 

surface provides valuable information on the severity and healing status of the ulcer.    

Hence, it must be thoroughly examined and assessed.  The colour of the ulcer surface 

changes gradually from black to yellow to red as the ulcer’s tissues evolve throughout 

the healing process.  At any one time during the course of the treatment, all four types 

of tissues may be present on the ulcer surface.  Recognizing and measuring the 

amount of each tissue, particularly granulation tissue, is a well-known and approved 

method of ulcer assessment and understanding of healing progression. 

1.2 The Role of Digital Imaging 

In medicine, the use of digital photography has been employed to provide pictorial 

representations of chronic wounds and their physical appearance.  In most 

dermatology and wound care clinics, ulcer photographs are normally utilised as 

documented records that are made accessible to the medical personnel for an easy 

reference to patients’ medical histories.  Furthermore, colour images of chronic ulcers 

are acquired at successive visits to provide chromatic data that help clinicians 

determine the severity and healing progression throughout the course of treatment 

[10].   

The accuracy of the information contained in these images depends greatly on the 

performance of the device used to acquire the images and the surrounding 

environment conditions.  Hence, the correct standardization of these parameters is 

essential to obtain a uniform record of the same patient over the period of the 
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treatment [11].  Digital single-lens reflex (DSLR) cameras offer many advantages 

over the compact digital cameras represented mainly in their unique viewing system 

in which a mirror reflects light from the lens through a separate optical viewer.  When 

acquiring images, the mirror flips out of the way allowing light to fall onto the sensor.  

DSLR cameras are used to provide accurate and high-resolution colour images that 

can be acquired within a few seconds.  

The use of digital imaging in medicine enables data to be easily acquired in 

remote locations and transmitted to the main reference where clinicians can perform 

ulcer analysis and assessment [11].  This forms the basis of telemedicine, which 

ensures providing quality healthcare regardless of the geographical location of the 

medical personnel.    

1.3 Problem Statement 

In most wound care clinics, the use of non-invasive assessment methods is preferred 

to avoid any contact with the ulcer, which may cause pain or discomfort to the 

patients and expose the ulcer to the risk of infection.  Most of the assessment methods 

implemented currently depend on a visual inspection of the ulcer appearance and the 

tissue types on the ulcer’s surface [11].  Several schemes are utilized to evaluate the 

ulcer severity and healing progression based on the colours of the tissues such as the 

red/yellow/black scheme and the Wound Healing Continuum (WHC) [10], [12].  

Using these schemes, the ulcer’s surface tissues are described as estimated 

percentages of red, yellow, and black colours that refer to granulation, slough and 

necrotic tissues, respectively.   

Although these schemes are widely used in clinical settings to provide a 

somewhat quantitative evaluation of ulcer tissues, they are based on the human vision 

and inspection.  The human vision inspection is highly subjective and suffers from 

huge inter and intra-ratter variability and hence not sufficient to perform an accurate 

assessment.  Inaccurate assessment of the ulcer’s severity status leads to improper 

clinical decisions regarding treatment and may prolong the healing duration or worsen 

the ulcer condition in some cases. There is a need for an objective and quantitative 
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method that provides accurate and reproducible assessment of ulcer condition and 

healing progression. 

Chronic ulcers heal slowly and detecting small changes on the ulcer’s surface 

visually is difficult.  The ulcer’s surface appearance changes gradually throughout the 

treatment course as depicted in Figure  1.2 [10].  Depending on the condition and 

severity status of the ulcer, it can initially appear covered with a layer of black 

necrotic tissue (stage 1) or overlying layers of black necrotic tissue and yellow slough 

(stage 2).  As the ulcer heals, red granulation tissue starts to grow from the base of the 

ulcer gradually replacing the black necrosis and yellow slough, filling the wound 

cavity and reducing its volume (stage 3).  As the ulcer is filled with granulation tissue 

(stage 4), pink epithelial tissue grows from the ulcer boundaries covering the 

granulation tissue (stage 5) and eventually closing the ulcer (stage 6). 

 
Figure  1.2: Typical healing stages of an ulcer [10] 

If the ulcer is responding to the treatment, healing would be promoted by the 

growth of the granulation tissue on the ulcer’s surface provided that there are no 

underplaying aetiologies that delay healing.  On the other hand, if the current 

treatment is not effective, the granulation tissue will not grow and unhealthy black 

necrosis and yellow slough will be present on the ulcer’s surface as a result of 

infection.  A detailed elaboration on ulcer healing and the physical appearance of 

chronic ulcers is given in Chapter 2 (sections  2.4 and  2.7.2).  Detecting small tissue 

changes that reflect early stages of healing accurately would enable the clinicians to 
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determine the efficacy of the current treatment and make appropriate clinical 

decisions such as the medicine applied, the type of ulcer dressing, and so on.  This 

reflects on the effectiveness of the ulcer care and management in terms of time and 

cost of treatment.   

Colour has been utilised as the key element for analysis in colour image 

processing in the field of wound assessment for most of the work that has been 

developed so far.  Earlier developed methods in the area of wound tissue classification 

and segmentation are based on analyzing colour information in a single colour 

channel in digital images using conventional colour models such as RGB and HIS 

[13-16].  Ulcer tissues normally appear mixed with each other on the ulcer surface 

and hence the use of only one colour channel is not adequate to classify each type of 

tissue fully.  Studies showed that pixel clusters in RGB space for a given type of ulcer 

tissues formed an irregular shaped 3D cloud that distinguished the three types of 

necrotic, slough and granulation tissues and hence colour pixels are considered in all 

colour channels in the image to be able to classify different ulcer tissues [17-19]. 

Segmentation-based classification of wound tissues utilising colour and texture 

attribute was also proposed [20], [21].  The method utilises unsupervised 

segmentation to segment colour wound images into different regions.  It then extracts 

both colour and texture descriptors from coloured images for automatic classification 

and labelling of these regions. 

The major drawback of the colour content interpretation in the image is that it is 

always impaired because of the unavoidable differences in the acquisition conditions 

present when acquiring the images such as the type of camera used, the illumination 

in the room, and the type of flashlight used.  These varying conditions alter the colour 

quality and scales in images which leads to inaccurate results which poses the main 

shortcoming of the analysis based on colour features and attributes.  

1.4 Research Hypothesis and Implemented Approach 

The colours of ulcer’s tissues are produced due to the human vision perception of the 

light reflected from ulcer’s surface.  Most of the light penetrates into the ulcer and 
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skin tissues and follows a complex path where it interacts with different interior 

structures and pigments and gets reflected back from the ulcer [22].  These 

interactions (mainly absorption and scattering) are responsible of changing the 

spectral composition of light which reflects the optical properties of the ulcer tissue 

structures and pigments.  The reflected light is captured by the human eye producing 

colour vision and can be registered with cameras producing colour digital images.   

Hence, an understanding of the colour image formation would reveal diagnostically 

important facts about the internal structure and composition of the skin ulcers and the 

underlying causes of the changes during ulcer healing [23].  Detecting these causes 

can provide a better analysis of wound tissues.  

The first indication of ulcer healing is the growth of the healthy red granulation 

tissue on the ulcer’s surface.  Granulation tissue appears red in colour when viewed 

under the visible light due to the pigment haemoglobin present in the newly-formed 

blood capillaries within the tissue [24].  This is explained by the fact that the 

haemoglobin pigment (both oxy-haemoglobin and deoxy-haemoglobin) gives off a 

reflection of the light in the range of 600nm and above as shown in Figure  1.3 which 

corresponds to the red colour component in the visible light spectrum [22].  A detailed 

explanation of the formation of the ulcer’s surface colours, particularly the 

granulation tissue, is given in Chapter 2 (section  2.10).  

 

Figure  1.3: Absorption spectra of oxy-haemoglobin and deoxy-haemoglobin [22] 
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Studies show that haemoglobin contains certain optical characteristics that can be 

detected in colour images and used to show their content within human skin [25], 

[26].  Therefore, this study focuses on utilising the optical characteristics of the 

pigment haemoglobin and determining its content within and below the visible 

surface of ulcers.  It is hypothesised that identified regions of haemoglobin 

distribution can be utilised as image markers to detect regions of granulation tissue 

indicating the ulcer healing progression.  The approach is to apply data transformation 

utilising independent component analysis to extract source grey-level images that 

show the distribution of pigment haemoglobin.  Extracted haemoglobin images show 

regions of haemoglobin distribution that reflect regions of granulation tissue on ulcer 

surface.  This approach is fundamentally unique in a way that it does not focus on 

colour image features and attributes directly from the colour images like previous 

works in this field; instead it draws an understanding of tissue histology utilizing a 

physics-based interpretation of the image colour. 

1.5 Research Objective  

Since the first indication of ulcer healing is the growth of granulation tissue, this 

research focuses on identifying regions of granulation tissue from colour images of 

chronic ulcers.  Identifying and quantifying the amount of detected granulation tissue 

gives an indication of the healing progression which reflects on the efficacy of the 

ulcer management and treatment.   

The objective of this research work is to develop an image analysis system that 

identifies and detects regions of granulation tissue on the ulcer’s surface based on the 

content of pigment haemoglobin.  The developed system would be able to detect 

regions of granulation tissue that are mixed with other tissues on the ulcer surface and 

cannot be discerned visually.  This is very significant in detecting early stages of ulcer 

healing especially in ulcers where granulation tissue is spreading slowly over the ulcer 

surface and cannot be detected using simple visual inspection.  
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1.6 Scope of Work  

The study is conducted using colour images of chronic leg ulcers of different 

types; vascular (venous and arterial), pressure, and diabetic ulcers; that contain a 

mixture of tissues acquired at Hospital Kuala Lumpur, Malaysia.  This is very crucial 

to this study as it ensures working on ulcers images taken under actual acquisition 

conditions.  The target population for this study is adult patients above eighteen years 

with chronic leg ulcers who are attending the ulcer clinics at the Department of 

Dermatology and Outpatient Department at Hospital Kuala Lumpur during the study 

period. This research work is a collaborative study between Universiti Teknologi 

Petronas (UTP) and Hospital Kuala Lumpur.  It has been approved by the Ethics 

Committee of Ministry of Health, Malaysia, and registered with the National Medical 

Research Registry; (NMRR, Malaysia) under study code NMRR-11-50-8340.  

It is hoped that the work presented in this study contributes to computer-aided 

diagnosis, especially in the field of ulcer assessment. Ultimately, the goal is to 

develop a new objective and non-invasive scheme to assess the healing progression of 

chronic ulcers in a more precise and reliable way. 

1.7 An Overview of the Thesis Structure 

The thesis is structured according to the sequence of the processes involved in the 

development of the granulation tissue detection system.  The thesis is organized as 

follows:  

 Chapter 2 discusses ulcer anatomy, ulcer care and management as well as clinical 

assessment of the healing progression.  The chapter also presents an overview of the 

related research work on wound tissue assessment and analysis using digital imaging. 

 Chapter 3 explores the concept of colour vision and the formation of digital colour 

images.  It also investigates the mathematical formulation of important statistical data 

analysis and image processing techniques that are utilized to develop the granulation 

tissue detection system. 
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 Chapter 4 describes the developed system for detecting granulation tissue regions 

from colour images of chronic ulcers.  The chapter presents a block diagram of the 

overall granulation tissue detection system development.  Each process of the system 

development is then explained in detail accordingly.  

 Chapter 5 analyses the application and performance of the developed granulation 

tissue detection system.  First, the performance of the developed granulation tissue 

detection system is investigated utilising ulcer tissue reference images.  Then the 

application of the developed granulation detection system is explored by utilising the 

system to detect regions of granulation tissues on real ulcer images.   

 Chapter 6 summarises the main ideas and findings of this study.  The chapter also 

presents the main contributions of the study and highlights possible avenues for 

enhancement and future work.  
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CHAPTER 2 

WOUND CARE AND ANALYSIS 

2.1 Introduction 

In this chapter, a medical background on skin chronic wounds and ulcers is presented.  

In particular, the chapter elaborates on ulcer anatomy and histological properties, 

ulcer care and management as well as the clinical assessment of the healing 

progression.  The chapter also presents an overview of the related research work on 

wound tissue assessment and analysis using digital imaging. 

Section  2.2 defines chronic wounds, their prevalence and economical impact on 

society.  Section  2.4 illustrates the wound healing process and the formation of 

chronic wounds.  Chronic leg ulcers, their types and underlying aetiologies are 

discussed in section  2.5.  Ulcer care and management procedures are elaborated in 

section  2.6.   Section  2.7 demonstrates ulcer assessment parameters focusing on ulcer 

surface tissues as an important assessment parameter.  Several clinical and imaging 

based techniques of chronic wound tissue assessment are discussed in sections  2.8 and 

 2.9 respectively.  Section  2.10 illustrates the importance of detecting the growth of 

granulation tissue to detect ulcer healing and investigates the optical characteristics of 

haemoglobin pigment upon which the research hypothesis is formulated.  Section  2.11 

summarizes the main ideas and findings of this chapter. 
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2.2 Chronic Wounds and Ulcers 

In pathology, a wound refers to any discontinuity of an anatomical structure and 

function of  skin tissues caused by a trauma [1], [27].  Wounds appear as open lesions 

that involve the epidermis and several layers of the dermis in the skin.  Figure  2.1 

represents a schematic illustration of a deep wound involving the epidermal layer and 

parts of the dermal layer of the skin. 

 
Figure  2.1: Schematic illustration of a deep wound [1] 

There are two types of wounds: acute wounds and chronic wounds.  Acute 

wounds heal within three or four weeks from the time of injury, depending on the size 

and severity of the wound, leaving a minimal scar that fades away with time [28], 

[29].  Wounds that do not follow the normal healing process within three to four 

months from the time of the injury are classified as chronic wounds [1], [28].  Such 

wounds normally fail to heal due to some underplaying aetiologies or improper 

wound management which impairs the natural process of healing [3], [29].  Ulcers are 

a common type of chronic wounds. 

2.3 Prevalence and Economic Impact of Chronic Wounds  

Accurate prevalence estimates on chronic ulcers had not been published until quite 

recently.  Earlier studies that were conducted in Europe established only a few earlier 

Dermis 

Epidermis 
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estimates between 1.48 - 3.0/1000 populations in some of the major areas such as 

Scotland, Ireland and Sweden [30-33].  However, these estimates were regionally 

based and were concluded from studies that had been conducted over short periods.  

Hence, it is not an accurate way to establish the prevalence of chronic wounds in 

Europe based on these figures.  According to Werdin et al., approximately 1.0 - 3.0% 

of the population have the potential to develop chronic ulcers during the course of 

their lifetime [3].  In Malaysia, the prevalence of chronic foot ulcers in patient with 

diabetes between 1999 - 2008 was reported as 9.9% with an annual prevalence of 1% 

[4].  The prevalence  increases significantly due to several factors such as the increase 

in population age, underlying aetiologies of diabetes, and venous and arterial 

insufficiency as well as the inclusion of foot ulcers which corresponds to high 

prevalence figures [3], [34]. 

Chronic wounds also introduce an economic dilemma when it comes to wound 

management and care.  In the United States, chronic wounds affect 3 to 6 million 

people and their treatment costs an estimated $5 billion to $10 billion each year [3].  

The annual ulcer care is estimated to be around £400 million in the United Kingdom 

[5].  The average cost of treating diabetic ulcers was estimated to be more than RM 

600 per day in Malaysia in the year of 2006 [6].  Wound care costs can be greatly 

reduced if a proper, thorough and objective assessment is conducted to determine the 

appropriate course of treatment. 

2.4 Wound Healing Process 

Wound healing is the complex and dynamic process that occurs after skin injury to 

restore the anatomical structural continuity and function of the skin [27].  Wounds 

generally heal by growing new tissue from the base of the wound following four main 

distinct yet overlapping stages: Haemostasis, Inflammation, Proliferation, and 

Maturation.  Figure  2.2 illustrates the four main phases of healing and their estimated 

durations which vary depending on the wound severity and the course of treatment. 
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Figure  2.2: Wound healing phases 

2.4.1 Haemostasis 

This phase occurs within minutes after injury and may remain for a few days in sever 

wounds [28].  When the skin gets injured, small cell fragments called the platelets 

form a  fibrin plug that stops bleeding and protects the wound from bacterial 

contamination [27].  During this phase, blood vessels dilate which causes an increase 

in the blood supply to the wound site.  This phase is characterized with redness, heat, 

pain, and swelling with some loss of sensation in the wounded area. 

2.4.2 Inflammation 

This phase, which normally lasts 4 or 6 days, aims to clean the wound site and prepare 

it for wound healing [1].  During this phase, platelets stimulate white blood cells such 

as neutrophills and macrophages to clean the wound site from bacteria and debris 

through the process of phagocytises [1], [15], and [17].  A yellow-green slough tissue 

is observed at this stage because of phagocytises and needs to be debrided as part of 

wound management to ensure healthy healing. 

2.4.3 Proliferation 

This phase  starts at day 4 or 6 and lasts up to two or three weeks in acute wounds 

[28], [29].  At this phase, connective cells, called fibroblasts, deposit collagen which 
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is used to build a extracellular matrix which serves as a platform for new cells and 

blood vessels to be built [1], [27].  Fibroblasts also stimulate endothelial cells to form 

new blood vessels via a process of angiogenesis.  The newly formed blood capillaries 

branch out and invade the extracellular matrix within the wound site forming the 

granulation tissue which serves as the foundation for tissue repair [1], [29].  As more 

collagen gets deposited on the matrix, the elasticity and strength of the new formed 

granulation tissue increases. 

2.4.4 Maturation 

This phase lasts from 6 months till two years in acute wounds [28], [29].  At this 

phase, epithelial cells from the edge of the wound begin to migrate across the wound 

surface over the granulation tissue forming a pale layer of epithelial tissue which 

closes the wound [29].  Strength is gradually built up in the tissue as collagen fibres 

mature and become more stable and organized. 

It is very important to understand the phases of wound healing to provide the best 

care in daily clinical practice.  Understanding the role of white blood cells in 

protecting the wound site and stimulating the growth of blood and fibre cells to form 

the new granulation tissue encourages the medical personnel to decide on the 

treatment that best protects the wound and provide a good environment to promote 

healing of the wound.  It is also important to remember that some of these stages may 

overlap and at any given time, evidences of more than one stage may appear in the 

wound especially for chronic wounds which do not follow a normal predictable 

course of healing. 

2.5 Chronic Leg Ulcers 

Leg ulcers are chronic wounds that occur on the lower limbs and constitute around 

98% of all lower limb wounds [34].  There are three main types of leg ulcers 

according to the aetiologies that cause them: vascular (venous and arterial), diabetic 

(neuropathic) and pressure ulcers.  Most leg ulcers are either vascular or diabetic and 
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affect about 1% of the adult population and 3.6% of people older than 65 years [7].  

Figure  2.3 indicates common locations of several types of chronic leg ulcers. 

 
Figure  2.3: Most common locations of leg ulcers [7] 

2.5.1 Vascular Ulcers 

These ulcers are caused by aetiologies related to blood vessels (veins and arteries) and 

are divided into two types: venous and arterial ulcers. 

Venous Ulcers: Venous ulcers are the most common of leg ulcers and are 

associated with venous insufficiency which occurs when the veins get damaged and 

are not able to push the blood back to the heart which results in pooling of the blood 

around the lower part of the leg [35], [36].  The increased pressure of the blood in the 

veins obstructs the flow of oxygen and nutrients to the skin cells causing cell death 

and ulceration [35].  Venous ulcers appear as irregular shaped, partial thickness moist 

wounds with a well defined boundary surrounded by highly pigmented skin at [7], 

[37].  Figure  2.4 shows a chronic venous ulcer. 
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Figure  2.4: A chronic venous ulcer [1] 

Arterial Ulcers: Arterial ulcers are associated with arterial perfusion which refers 

to poor blood circulation and fusion at the lower leg due to large cholesterol and fatty 

materials deposited in the arteries.  The arteries fail to deliver oxygen and nutrients to 

the cells resulting in tissue breakdown and ulceration [35]. These ulcers appear 

relatively smaller than venous ulcers with regular, punched out boundary and dry base 

[7], [38].  Figure  2.5 shows a chronic arterial ulcer. 

 
Figure  2.5: A chronic arterial ulcer [39] 

2.5.2 Pressure Ulcers 

They are known as pressure sores or bedsores and mainly are caused by excessive 

unrelieved pressure which causes poor blood circulation and prevents oxygen and 

nutrients from reaching the cells which causes ischemia and tissue breakdown [40], 

[41].  Pressure ulcers normally occur at bony areas of the body such as tailbones, hips, 

buttocks, heels, elbows and shoulders and appear as deep wounds with regular 

boundary.  Figure  2.6 shows a chronic pressure ulcer at the heel. 
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Figure  2.6: A chronic pressure ulcer [42] 

2.5.3 Diabetic Ulcers 

Diabetic ulcers often occur at the toes and heels.  These ulcers are caused by the 

combination of arterial leakage and nerve damage (diabetic neuropathy) and they 

normally start of as calluses or corns at weight bearing areas such as heels and toes.  

Patients would not be able to feel or notice any pressure or small injuries that get 

worsened with time and develop into ulcers [35].  Diabetic ulcers usually appear as 

small deep wounds with smooth edges on the feet, specifically on toes and heels [38].  

Figure  2.7 shows a diabetic leg ulcer. 

 
Figure  2.7: A chronic diabetic ulcer [1] 
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2.6 Ulcer Care and Management 

Ulcer care aims to create an optimal healthy environment with minimal exudates to 

promote ulcer healing [43], [44].  Chronic ulcers do not follow a predictable course of 

healing and keep on evolving slowly over time.  Healing may prolong usually due to 

underlying aetiologies such as venous insufficiency, arterial perfusion, prolonged 

pressure and diabetes. These aetiologies cause further wound inflammation and 

accumulation of debris and foreign materials, which impairs the natural course of 

healing. 

Ulcer management should aim to remove the factors impairing the healing by 

treating any underlying aetiologies and preparing the ulcer for healing.  Hence, it is 

important that medical personnel attending to the ulcer have sufficient knowledge on 

the wound anatomy and physiology, and are able to identify  factors that impair 

healing [45].  Misdiagnosis of aetiologies can cause improper clinical decisions and 

lead to long periods of treatments.  Furthermore, the ulcer care plan should include an 

accurate initial assessment of the ulcer to determine the appropriate treatment as well 

as continuous monitoring of the healing progression throughout the course of 

treatment [46].  Ulcer care mainly  involves cleaning the ulcer, removing unhealthy 

tissues and debris, assessment for bacterial infection and selection of the appropriate 

dressing [47].  

2.7 Chronic Ulcers Assessment and Documentation 

For efficient ulcer care and management, an initial accurate assessment of the ulcer is 

important to provide baseline information on the severity status and to determine the 

appropriate course of treatment [8], [9].  After an appropriate course of treatment is 

determined, ulcer care should include an ongoing consistent assessment and 

recordings of the physiological changes of the ulcer at specific intervals throughout 

the course of the treatment to predict healing and monitor the ulcer for complications 

and improper management [44], [46].  Ulcer assessment documentation allows 

information to be easily accessed by clinicians to review, revaluate and determine 
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alternative choices of dressing and treatment when required which reflects an overall 

improvement in ulcer management and care [9], [45]. 

2.7.1 Ulcer Assessment Parameters 

Ulcer assessment is normally recorded using specialised assessment charts that 

include several assessment parameters.  These parameters are the location and size of 

the ulcer, the patient’s medical history, the physical appearance of the ulcer, the 

condition of the skin surrounding the ulcer, the cause and severity of the pain 

associated with the ulcer and the nature and amount of the exudates on the ulcer 

surface [38], [44]. 

Patient’s Medical History: One of the important assessment parameters is to 

inspect the  patient’s medical history of previous ulcers and the corresponding 

treatments provided, the duration of the current ulcer as well as information on any 

type of vascular or diabetic diseases in the family [47]. 

Ulcer Appearance: The physical appearance of the ulcer plays a very important 

role in evaluating the ulcer severity and determining the appropriate course of 

treatment.  Inspection of the ulcer’s appearance includes measuring the ulcer’s 

dimensions, such as surface area, depth and volume, and classifying and quantifying 

the different types of tissues that exist on the ulcer surface. 

Skin Surrounding the Ulcer: Assessment should also include an inspection and 

analysis of the skin surrounding the ulcer, for callus formation, excess moisture 

oedema or erythematic irritated skin [5], [32], and [33]. 

Pain: Pain is a common symptom associated with chronic ulcers reflecting the 

presence of underlying aetiologies or the exposure of nerve endings [48].  The 

frequency and severity of the pain is normally evaluated using verbal rating scales to 

determine the appropriate treatment.  Incorporating specific leg exercise routines into 

the course of treatment helps to manage and reduce the pain [49]. 
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Exudates: The amount and type of exudates vary throughout the ulcer healing 

process. A considerable amount of exudates is noticeable during the inflammatory 

stage of healing compared to maturation [50].  However, heavy  exudates can indicate 

prolonged inflammation or early signs of an increased bacterial load or infection [44].  

Ulcer exudates should be inspected in terms of type, quantity, colour and odour to 

determine their effect and suggest appropriate treatments, accordingly [47], [50]. 

2.7.2 Physical Appearance of the Ulcer Surface 

The appearance of the ulcer surface provides important information on the healing 

status of the ulcer.  Hence, it must be thoroughly examined and assessed.  There are 

four main types of tissues existing on the ulcer surface: necrotic tissue, slough tissue, 

granulation tissue, and epithelial tissue. 

Necrotic Tissue: Necrotic tissue appears as black or dark brown dehydrated tissue 

caused by the death of cells on the wounds surface due to bacterial infection, toxin or 

trauma [47], [48].  The existence of necrotic tissue on the ulcer surface prolongs 

healing and stimulates bacterial growth.  It should be debrided to promote a healthy 

environment for healing.  Figure  2.8 shows a leg ulcer covered fully with black 

necrotic tissue.  After removing the necrotic tissue, the wound bed will contain mostly 

slough or both slough and granulation tissue depending on the amount of slough 

existing on the wound surface. 

 
Figure  2.8: A leg ulcer covered with black necrotic tissue [1] 

Slough Tissue: Slough tissue appears as a yellow-green or white soft tissue 

caused by the accumulation of cellular debris on the wound surface resulting from 
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phagocytises during the ulcer healing process [48].  Slough facilitates the growth of 

bacteria, prolonging ulcer healing, and should be debrided to promote a healthy 

environment for healing.  Figure  2.9 shows a leg ulcer mostly covered with a yellow-

green loose layer of slough.  After removing the slough, the ulcer stimulates the 

growth of granulation tissue given the condition that there are no underlying factors 

that might impair healing. 

 
Figure  2.9: A leg ulcer covered with yellow slough [1] 

Granulation Tissue: Granulation tissue is a red moist tissue with a granular or 

peddled texture [47].  This tissue is formed during the proliferation stage of the ulcer 

healing as the combination of a collagen based extracellular matrix with the newly 

formed blood capillaries [1], [29].  Granulation tissue is red due to the vast content of 

blood capillaries [24], [48].  Figure  2.10 shows a healing leg ulcer covered with 

healthy granulation tissue. 

 
Figure  2.10: An ulcer covered with granulation tissue [51] 

Epithelial Tissue: Epithelial tissue appears as pink pale tissue on the surface of 

the ulcer.  Epithelial cells start to grow from the edges of the ulcer across the surface 
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gradually covering the granulation tissue and closing the wound [47], [48].  Epithelial 

cells can also grow from hair follicles and sweat glands in partial thickness ulcers 

[50].   Figure  2.11 shows an ulcer fully covered with pale epithelial tissue. 

 
Figure  2.11: An ulcer covered with pink epithelial tissue [47] 

In terms of both dimensions and colour, an ulcer’s surface appearance changes 

gradually throughout the treatment course as depicted in  Figure  2.12 [10].   

Depending on the condition and severity status of the ulcer, it can initially appear 

covered with a layer of black necrotic tissue (stage 1) or overlying layers of black 

necrotic tissue and yellow slough (stage 2).  As the ulcer heals, red granulation tissue 

starts to grow from the base of the ulcer gradually replacing the black necrosis and 

yellow slough, filling the wound cavity and reducing its volume (stage 3).  As the 

ulcer is filled with granulation tissue (stage 4), pink epithelial tissue grows from the 

ulcer boundaries covering the granulation tissue (stage 5) and eventually closing the 

ulcer (stage 6). 

 
Figure  2.12: Typical healing stages of an ulcer [10] 



 

24 

Since chronic ulcers do not follow a normal course of healing, all four types of 

tissue could exit at the same time.  Detecting and quantifying these tissues is a very 

important parameter in ulcer assessment.  In clinical practice, physicians normally 

depend on non-invasive methods for ulcer tissue assessment to avoid causing any pain 

or discomfort to the patients.  Most of the methods implemented depend on a visual 

inspection of the ulcer appearance and analysis of the tissue types and amounts on the 

ulcer surface [11]. 

2.8 Ulcer Tissues Assessment in Clinical Practice 

As explained earlier, the ulcer surface provides valuable information on healing 

progression or regression throughout the treatment course.  Analyzing and inspecting 

the  type and amount of each tissue on the ulcer surface is very important in ulcer care 

and management and needs to be documented regularly [47].  In clinical practice, 

ulcers are normally evaluated based on a simple visual inspection utilizing several 

schemes based on the colours of the tissues [10], [12]. 

Some developed schemes have been designed to describe the appearance of the 

ulcer surface in terms of percentages of each tissue colour such as the 

red/yellow/black scheme [47].  Using this scheme, ulcers surface tissues are described 

as estimated percentages of red, yellow, and black colours which refer to granulation, 

slough and necrosis respectively.  Figure  2.13 shows a chronic ulcer that has been 

assessed utilising this scheme; it is seen to have approximately 25% black necrosis, 

35% yellow slough and 40% red granulation.  The more the shift towards the red 

colour is, the better the ulcer is healing.  This scheme is widely used in hospitals and 

clinical settings and is normally recorded on the patient assessment chart. 
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Figure  2.13: An ulcer with approximately 25% black, 35% yellow and 40% red [47] 

Gray et al. developed the Wound Healing Continuum (WHC) which identifies the 

tissue colours on the ulcer surface and associates them to a colour spectrum extending 

from black till pink with intermediate gradations as shown in Figure  2.14 [12].  In this 

scheme, the colour spectrum extends from black at the left side of the spectrum 

through yellow, red and continues until pink at the right side of the spectrum 

reflecting the gradual change in ulcers colour as it heals.  If the ulcer has a mixture of 

tissues of different colours, the most significant colour is attributed to the ulcer 

utilizing this scheme. 

 
Figure  2.14: Wound healing continuum [12] 

Clinicians utilise this scheme to make clinical decisions on ulcer status by 

identifying the ulcer colour which is furthest to the left and determining the 

appropriate treatment and ulcer management procedures which promote healing and 

shift the ulcer colour to the right [12].  For example, if an ulcer is described as 

yellow/red using this scheme, this refers to an ulcer that contains both slough and 
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granulation tissues.  Hence, ulcer management should aim to remove the yellow 

slough and create a fully granulating ulcer that should gradually be covered with pink 

epithelial tissue following the normal course of healing. 

These methods are simple and widely used in clinical settings to evaluate the ulcer 

status and progression towards healing.  However, they are based on the human vision 

perception and thus the inspection of the ulcer is subjective and lacks precision and 

consistency and hence not sufficient to perform tissue analysis.  Moreover, chronic 

ulcers change slowly over time as they heal and hence recognizing small changes with 

simple visual inspection is difficult.  Therefore, monitoring the healing of chronic 

ulcers requires objective, precisely quantitative and reproducible assessment 

parameters. 

2.9 Ulcer Tissue Assessment using Digital Imaging 

In medicine, colour photographs of chronic wounds provide  reliable chromatic data 

and a pictorial representation of the wound’s environment, severity and healing 

progression throughout the course of the treatment [10].  The accuracy of the colour 

information contained in these images depends greatly on the camera and illumination 

used and image resolution of the wound.  Hence, the correct standardization of these 

parameters is essential to obtain a uniform record of the same patient over the entire 

period of the treatment [11].  The use of digital imaging enables data to be easily 

acquired in remote locations and transmitted to the main reference where clinicians 

can perform wound analysis and assessment [11]. 

Wound imaging requires the colour information for an effective analysis of tissue. 

Colour plays an important role in assessing and diagnosing the tissue characteristics 

and healing status as the ulcer tissues changes in appearance and colour as they heal.  

Thus, imaging techniques based on colour digital images are developed to provide 

precise, objective and reliable data that aid medical practitioners to evaluate healing 

status of ulcers. 
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Callieri et al. developed an integrated wound assessment tool that incorporates 

both 3D measurements of wound dimensions as well as 2D colour assessment of 

tissues on wound’s surface [52].  The segmentation of different tissues was 

implemented by manually selecting a colour seed in the image and utilising the region 

growing algorithm to segments regions of different types of tissues based on a pre-

defined similarity measure.  Although this technique utilises colour images, the 

classification is based on the user selection of a specific colour seed and hence the 

classification obtained is subjective and not reproducible. 

Imaging techniques have been developed and implemented on colour images of 

chronic wounds and ulcers to segment and classify the different types of tissues on 

wounds surfaces as a measure of their healing.  Most of the methods developed in this 

area are based on three main approaches: 

a) Information from a Single Colour Channel 

b) RGB Histogram Distributions 

c) Colour and Texture Descriptors 

2.9.1 Information from a Single Colour Channel 

Earlier developed methods in the area of wound tissue classification and segmentation 

are based on analyzing colour information in a single colour channel in digital images 

using conventional colour models such as RGB and HIS. 

Herbin et al. developed methods to quantify the colour content and design colour-

based healing indices from digitized RGB images of wounds [13], [14].  Digital 

images of artificial skin blisters induced on the forearms of eight healthy volunteers 

were acquired during a clinical trial conducted to test the blanching effects (reduce 

skin redness) of a new topical corticosteroids (TC) drug [14].  The drug was applied 

on two blister sites for every patient for a period of 12 days.  Colour photographs 

were obtained of each blister site at days 1, 3, 5, 6, 7, 8, 9 and 12.  The acquisition and 

digitization of the colour images were performed using a high quality vidicon camera 

equipped with a ring flash to provide a homogenous illumination.  The digitized 

colour images were recorded as Red, Green and Blue frames using tri-chromatic 
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filters.  Sixty nine images were acquired and digitized (8 volunteers with two blister 

sites and 8 days of photography).  Colour variables r, g, b H, and S were derived from 

the main Red, Green and Blue digital images and were used to design the colour index 

(Icolor) based on the variations between the mean of each variable in the blanching 

site compared with the mean in the surrounding healthy skin taking into account the 

variation in the skin colour of the various subjects [14].   The variable “g” was 

selected for the colour index as it was seen to give accurate results compared to the 

results of the visual assessment of the observers.  Figure  2.15 gives the values (mean 

and standard deviation) of the developed colour index (Icolor) at days 1,3,5,6,7,8,9 

and 12 on the blisters treated with the TC drug.  Throughout the healing of these 

wounds, the value of the healing index increased (as the wound redness decreased) 

from 24.2% at day 5 to 28.7% on day 12.  At day 12, the wound region colour was 

very close to the normal skin colour, which was estimated to be 31.4%. 

 
Figure  2.15: Time course of colour index (Icolor) in percentages of green on 16 

wound sites [14] 

Although the developed colour index produced more accurate and reliable results 

when compared to the visual assessment, its design was affected by light conditions 

and the colour of the patient’s skin.  The index was developed based on light skinned 

Caucasians and hence different skin tones would produce different results when 

analyzing the colour variables.  Moreover, this study was conducted on uniformly 

coloured wounds specially created for this purpose and hence the developed indices 

are not applicable to analyse real wounds that have a high variety of colours. 
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Hoppe et al. conducted a study to develop and apply a computer system  to 

analyse  the colour variability between images taken under clinical conditions with a 

particular attention given to assessing the amount of slough in leg ulcers [15].  RGB 

colour images of chronic leg ulcers were acquired from 30 patients using a 3CCD 

digital video camera provided with a flashlight to provide a uniform and adequate 

illumination.  A colour scale (FUJI colour scale) was included in the image close to 

the wound as shown in Figure  2.16 as a colour reference to compare the variability of 

the colour values between different images. 

 
Figure  2.16: FUJI colour scale held near wound [15] 

Since the aim of this study is to study the colour variations of wound tissues in 

digital images acquired in varying lighting conditions, the acquired images were 

represented and analysed in the HIS colour model instead of the RGB colour model as 

the later is very sensitive to variation in lighting conditions.  Each of the components 

H, I and S were analysed in red colour patches of 10 wound images acquired with 

different lighting conditions.  It was noted that the H (Hue) component experienced 

less variations as compared to the-I (intensity) and S (saturation) component (10% 

over its range) and hence was included in the study.  The red hue values were found to 

be within the range of 120o-180o and the yellow hue 180o-240 o. 

The range of hue values occurring within each wound region was analysed in 10 

ulcer images and found to fall within the hue values of 110o-190o extending over the 

whole range of red into yellow.  Two thresholds were selected based on clinicians’ 

perception of the slough colour which were T1=180o and T2=240o and were used to 
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calculate the amount of slough within the wound region in relation to the overall size 

of the wound in 30 images of leg ulcers.  All pixels that fell within these two 

thresholds were calculated and compared to the visual inspection (% amount) of 

slough determined by the doctors. 

The results obtained showed agreement in 75% of the cases between the 

clinicians’ assessments and the computer analysis.  However, the computer 

assessment was based on analysis of only the hue (H) component which, according to 

the analysis of the results obtained, also experienced some variation (10 %) and hence 

was not enough to quantify the colour of the tissue.  Generally, the system contributed 

to a more objective assessment of the colour in the wound images taken under clinical 

conditions. 

A group at the University of Sao Paulo, Brazil developed algorithms to analyse 

different types of tissues in colour digital images of wounds utilizing one of the colour 

channels R, G, or B [16].  All images included in this study contained only two types 

of tissues, granulation and slough and hence only these two tissues were included in 

the analysis.  The group developed some functions based on information obtained 

from the histogram of the Red Green and Blue channels of each type of tissue 

accordingly and were used to attribute membership grades (from 0-1) to each pixel 

referring to each type of tissue, granulation and slough.  Each pixel in the original 

image that belongs to the wound region resulted in two pixels with two membership 

grades; one was for granulation tissue and the other one was for slough.  The values 

of the membership grades of each pixel, in each channel, for each tissue was summed 

and normalised. The proportions of each type of tissue for each wound was then 

plotted to compare with the quantity of tissues observed by the clinicians in the 

images.  This provided a quantitative measuring of the tissues in the leg ulcers. 

The developed method addressed a major challenge that slough appeared covering 

the granulation tissue in most cases and sometimes mixed with it.  Hence, it was 

improper to develop algorithms to separate them into two distinctive clusters. Instead, 

the method attributed membership grades to each pixel and assigned the pixel to the 

tissue type with the higher grade.  However, this method was not sufficient as it only 

considered one colour channel and only two types of tissues were analysed. 
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2.9.2 RGB Histogram Distributions 

For better segmentation of tissues, analysing the Red, Green and Blue frames 

separately is not adequate. Studies have shown that colour pixels should be 

considered in all three channels to be able to classify different wound tissues [17-19].  

This is because wound tissues normally appear mixed with each other on the wound 

surface and hence the use of only one colour channel is not adequate to classify each 

type of tissue fully.   Mekkes and Westerhof used large classifications tables of 

wound tissues and found that pixel clusters in RGB space for a given type of tissue 

formed an irregular shaped 3D cloud that distinguished the three types of necrotic, 

slough and granulation tissues [19]. Hence, in order to analyse the colour tissues of 

wounds thoroughly, information from all colour channels is needed. 

Berris and Sangwine proposed a 3D RGB colour histogram clustering technique 

to automatically segment different types of tissues within the wound site in colour 

digital images of leg ulcers [17].  The images were cropped manually to include only 

the wound within the image.  The proposed method scanned all the pixels within the 

wound region and computes the RGB coordinates of each pixel creating a 3D RGB 

histogram. The bins of this histogram corresponded to the Red Green and Blue 

coordinates computed from the original colour image.  The computed 3D RGB 

histogram formed several colour clusters that corresponded to the different colour 

tissues on the wound site.  After the 3D RGB histogram was computed, it was 

smoothened, eroded and dilated in order to form clusters that were more distinct.  

After that, the algorithm scanned the image again and segmented it according to each 

cluster formed in the 3D RGB histogram. This was done by comparing the RGB 

coordinates of each pixel in the original image with the RGB coordinates of the bins 

belonging to a specific cluster.  The rest of the unmatched pixels were set to mid grey 

in the segmented image.   

Using this process, several colour images were created, each representing one 

cluster. Each segmented image successfully separated the granulation tissue and 

slough from the surrounding skin.  However, some pixels were incorrectly assigned to 

a cluster due to the lack of priory colour information about the different tissue types.  
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Moreover, the method was designed and tested successfully on only a few wound 

images and therefore a large data set is required to further enhance the algorithm. 

Zheng et al. came up with a procedure for binary classification of wound tissues 

using three 2D Red, Green and Blue histogram distributions of pixels using colour 

images of venous leg ulcers [18].  The ulcers included in this study were carefully 

selected to ensure that the wound bed contained a combination of black necrosis, 

yellow slough, red granulation and pink epithelial tissues. 

Several regions of interest (ROIs) were selected from each wound image using 

region growing.  Each ROI represented one type of tissue and hence several ROIs 

could be required to sample a particular type of tissue within the same image.  The R, 

G and B histograms were calculated from these ROIs for each type of tissue and used 

as features for classification [18].  These histograms were input to a Case-Based 

Reasoning (CBR) classifier as shown in Figure  2.17 which uses information from the 

histogram to classify different types of tissues.  To determine the type of tissue of a 

specific ROI, the extracted Red Green and Blue histogram vectors were compared 

with the ones that existed in the database of the previously identified and classified 

cases of tissue types and the most K similar cases were retrieved from the database 

based on the Euclidean distance measure. The tissue was then classified based on the 

type of tissue found in the majority of the retrieved cases. 

 
Figure  2.17: Schematic illustration of the CBR approach for tissue classification [18] 
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When comparing the classification accuracies obtained, it was noticed that using 

all of the channels for multi-class problems provided the best accuracies.  Textural 

features were also included to improve the results of the classification [53].   Three 

textural features were selected as being the most significant ones:  angular second 

moment, contrast feature and correlation feature.  However, the accuracy of the 

results obtained from the classification based on textural features was lower than 

those obtained from the RGB feature based classification due to the small sizes of 

ROI (10x10 pixels) regions involved in the classification.  Increasing the size of ROIs 

was not applicable in this case as it would have affected the accuracy by the risk of 

mixing two types of tissues within the same ROI. 

2.9.3 Colour and Texture Descriptors 

Most recently, as part of the EScarre Analyse Lisibilite' Evaluation (ESCALE) 

project dedicated to the design of a complete 3D and colour wound assessment tool, a 

segmentation-based classification of wound tissues was proposed [20], [21].  The 

ESCALE project aims to develop a complete automatic wound assessment system 

that incorporates a 3D model for wound dimension measurements as well as a robust 

colour tissue classification tool. The colour tissue classification tool utilizes the 

segmentation driven classification approach using Support Vector Machine (SVM) 

classifier [21]. 

A database that consists of several hundreds of digital colour images (3 Mpixels, 

24 bits) of chronic wounds was obtained.  To provide adequate reproducible lighting 

to compensate for different lighting conditions, a flashlight was used.  Specifically, a 

ring flashlight with Evaluative-Through the Lens (E-TTL) control was used to avoid 

shadows and specular reflections.  A small colour scale (Machbeth colour checker 

pattern) was placed near the wound when acquiring the images to correct for colour 

shifts.  Acquisition and colour shift correction was performed in the RGB colour 

model.  Since this model is highly sensitive to light conditions and corresponding 

colour shifts, it was necessary to provide reproducible ambient light and correct for 

colour shifts using the colour scale. 
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After acquiring the images database, the images were shown to a group of 

clinicians for labelling of tissues within the wound site as ground truth.  Each 

clinician was provided with a pen tablet and a graphical user interface which allowed 

the clinician to sketch a contour around a specific tissue region and fill it with a 

specific colour according to the tissue colour code (red-granulation, yellow-slough, 

black-necrotic). The clinicians had no knowledge on the patients’ medical history or 

wound treatment to ensure no external factors would affect the labelling. The ground 

truth was obtained using manual tracings rather than simple visual inspection because 

tests showed that tissue proportions using manual tracing exceeded visual inspection 

by more than 20% in most cases and hence visual inspection was discarded in this 

study.  Two tracings, one month apart, were assessed by four clinicians to measure 

labelling stability and the difference between clinicians.  Inter and intra observer 

variability was observed in this study especially for slough as it is difficult to trace, 

and it often appears mixed with granulation tissue in this study.  The clinicians’ 

tracings were merged to create a single ground truth labelling for each wound in order 

to evaluate the algorithm performance. 

For better results, only the regions similarly labelled by six clinicians out of eight 

were considered.  A database of a total 905 labelled regions was obtained: 302 

granulation tissues, 243 slough tissues, 73 necrotic tissues and 287 healthy tissues. 

First, the algorithm utilizes three selected unsupervised methods, J-SEG, Mean 

Shift and Colour Structure Code (CSC), were utilised to segment the wound images 

into different regions.  The regions were labelled according to the tissue type mostly 

found across the segmented region and compared with the ground truth.  Results 

showed that the segmentation results were more similar to the ground truth than the 

clinicians’ tracings.  This indicated that segmentation is an important step prior to 

classification.  The J-SEG algorithm provided the best results to separate the regions 

with homogeneous colour and texture parameters [20] and was used in this study.  

Figure  2.18 shows the results of the unsupervised segmentation in this study. 
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Figure  2.18: Segmentation results of the three unsupervised techniques used in 

ESCALE [21] 

After that, an SVM classifier was utilised to obtain a supervised learning of the 

three types of tissues from the developed database of the tissue regions traced by the 

clinicians. The database tissue samples were divided into 40% (362 regions) for 

training and 60% (543 regions) for testing.  Both colour and texture based descriptors 

(20 descriptors) are used to label each type of tissue during the learning phase.  Then, 

the same descriptors were extracted from the segmented regions and were input to the 

SVM based classifier for automatic classification and labelling of these regions during 

the testing phase. The automatic segmentation driven classification was compared 

with the expert ground truth. The best results were obtained for the granulation tissue 

(75%) while moderate results were obtained for slough (60%) for the reason described 

above. Degraded results were obtained for the necrotic tissue as not enough samples 

of this tissue were included in the database.  Results could be further improved with 

the addition of more samples in the database. 

Colour has been utilized as the key element for analysis in colour image 

processing in the field of wound assessment for most of the work that has been 

developed so far.  However, the interpretation of the colour content in the image has 

always been impaired because of the unavoidable differences in the acquisition 

conditions present when acquiring the images such as the type of camera used, the 

illumination in the room, and the type of flashlight used.  These varying conditions 

alter the colour quality and scales in images which leads to inaccurate results which 

poses the main shortcoming of the analysis based on colour features and attributes.  
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Furthermore, colour-based analysis of ulcer tissues poses a major challenge when 

analysing regions of mixed tissues, especially regions where granulation tissue is 

mixed with slough tissue and cannot be identified accurately.  

2.10 Ulcer Colour and Ulcer Healing 

Human skin is a highly heterogeneous medium with a multi-layered structure.  

Various types of light-absorbing chemical compounds called chromophores or 

pigments such as melanin, haemoglobin, bilirubin and b-carotene exist in this media 

with melanin and haemoglobin being dominantly contained in the epidermal and 

dermal layer, respectively [54].  Melanin is produced by cells called melanocytes in 

the epidermis layer of the skin.  Haemoglobin is present within the red blood cells in 

the blood vessels found in the dermis.  Two other pigments are found in the dermis, 

bilirubin and b-carotene, which give the skin its yellowish or olive tone. 

When light is focused on the skin, around 4-7% of it is reflected back due to the 

change in the refractive index between air and skin.  The remaining 96-93% of the 

light gets transmitted into the skin following a complex path where it interacts with 

the different structures and chromophores and gets remitted back from the skin [22].  

These interactions (mainly absorption and scattering) are responsible for changing the 

spectral composition of the light that represents the optical properties of the skin 

structures and chromophores.  The remitted light is captured by the human eye 

producing colour vision and can be registered with the camera producing colour 

digital images.  Hence, an understanding of the colour image formation would reveal 

diagnostically important facts about the internal structure and composition of the skin 

ulcers [23]. 

One of the major changes during ulcer healing is the colour of the tissues.  Ulcers 

change colour gradually from black to yellow to red as they heal as explained in 

section  2.7.2.  Colour is the perceptual sensations of light appearing upon the retina in 

the visible region of the spectrum, which extends from violet at about 380 nm to red 

at about 750 nm as shown in Figure  2.19.  Different colour modules reveal different 
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reflectance ranges within the visible spectrum.  The red colour exists at the 

wavelengths between 620-740 nm in visible spectrum. 

 
Figure  2.19: Reflectance Spectrum of the Visible Light 

From the wound healing process explained in section  2.4 and the wound tissue 

analysis given in section  2.7.2, it is evident that the first indication of ulcer healing is 

the growth of the healthy red granulation tissue.  Granulation tissue contains small 

blood capillaries (small arteries and veins) mixed with the collagen based 

extracellular matrix.  One of the main skin chromophores, pigment haemoglobin 

exists in the red blood the cells in the blood vessels.  It binds with oxygen and carries 

it from the lungs to the cells through the arteries.  It also binds with carbon dioxide 

and carries it back to the lungs through the veins.  The absorption spectra of oxy-

haemoglobin (haemoglobin bounded with oxygen) and deoxy-haemoglobin 

(haemoglobin not bounded with oxygen) are shown in Figure  2.20 [22].  The figure 

shows that both oxy- and deoxy-haemoglobin exhibits the maximum absorption at the 

short and middle wavelength ranges of the visible spectrum (around 420-430 nm) 

while both of them exhibit reflection (total absorption) at wavelengths above 600nm. 

 
Figure  2.20: Absorption spectra of oxy-haemoglobin and deoxy-haemoglobin [22] 
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The granulation tissue that contains the haemoglobin pigment is seen as red when 

viewed under visible light; this is explained by the fact that the haemoglobin pigment 

(whether deoxy-haemoglobin or oxy-haemoglobin) gives off a reflection at 600nm 

and higher [24].  The optical characters of pigment haemoglobin can be studied and 

recognized in colour images and used to show their content within the human skin 

[25], [26].  Hence, this study focuses on analysing the optical characteristics of 

pigment haemoglobin and determining its content on ulcers surface in colour images 

of chronic ulcers.  Due to the fact that the haemoglobin pigment causes the red colour 

of granulation tissue, it is hypothesized that images due to haemoglobin could be 

extracted from colour images of chronic ulcers.  Images caused by the haemoglobin 

are particularly significant because areas of the haemoglobin distribution on the ulcer 

surface are clearly shown; this leads to the indication of the areas with granulation 

tissue.  Identifying and quantifying the amount of granulation tissue on ulcer surface 

gives an indication of the healing progression and effectiveness of treatment.  

2.11 Summary 

Ulcers are chronic wounds that fail to heal within a specified period of time due to 

underlying aetiologies or improper wound care and management [1].  They cause 

severe pain and discomfort to the patients and put them at the risk of limb amputation.  

Leg ulcers often occur at the lower limb and account for 98% of all lower limb 

wounds [34].  According to the aetiologies that cause them, ulcers are divided into 

three main types: vascular ulcers (venous ulcers and arterial ulcers), pressure ulcers 

and diabetic ulcers.  The prevalence increases with increasing age and underlying 

aetiologies. 

Ulcer care and management aims to illuminate any underlying factors that may 

impair healing and provide a healthy wound environment that promotes healing.  It 

focuses on cleaning the ulcer from any damaged tissues and cellular debris, treating 

any bacterial infections and selecting the appropriate dressings.  Ulcer care and 

management should include an ongoing evaluation of the physiological changes of the 

ulcer throughout the course of the treatment to monitor the ulcer for complications. 
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One of the most prominent changes during ulcer healing is the colour of the 

tissues on the ulcer surface [10].  Ulcers can initially appear covered with layers of 

unhealthy black necrosis and yellow slough. As ulcers heal, healthy red granulation 

tissue starts to grow from the ulcer base gradually replacing the unhealthy tissue and 

filling the ulcer cavity.  Identifying and classifying different tissues on ulcer surface is 

very crucial for ulcer healing assessment.  In clinical practice, the ulcer surface is 

evaluated based on a simple visual inspection which is subjective and lacks precision 

and consistency.  The monitoring of ulcers requires an objective, precisely 

quantitative and reproducible assessment.  The digital image analysis has been 

employed to detect and classify ulcer tissues to provide an accurate objective 

assessment of wound healing.  Most of the work developed in the field of wound 

assessment via digital imaging utilised colour as the main component for analysis.  

However, colour-based analysis is always compromised by the unavoidable 

differences in the acquisition conditions that affect the colour quality and leads to 

inaccurate results.  Furthermore, colour-based analysis of ulcer tissues poses a major 

challenge when analysing regions of mixed tissues, especially regions where 

granulation tissue is mixed with slough tissue and cannot be identified accurately.   

Colour vision is the result of light interaction with colour objects.  Light reflected 

from the ulcer carries valuable information on the internal structure and properties of 

the ulcer’s surface. Hence, an understanding of the colour image formation would 

reveal diagnostically important facts about the internal structure and composition of 

the skin ulcers. Ulcer healing is indicated by the growth of the granulation tissue 

which appears red in colour due to the pigment haemoglobin content in the newly 

built blood capillaries [24].  Therefore, it is hypothesized that images due to 

haemoglobin could be extracted from colour images of chronic ulcers.  These images 

represent regions of haemoglobin distribution on the ulcer surface, which in turn 

reflects regions of granulation tissue on ulcers surface as an indication of healing 

progression.  This approach is fundamentally unique in a way that it does not focus on 

colour image features or attributes directly like previous works in this field, instead it 

draws an understanding of the tissue histology utilising physics-based interpretation 

of image colours. 

  



 

40 

CHAPTER 3 

DIGITAL IMAGING AND DATA ANALYSIS TECHNIQUES 

3.1 Introduction 

This chapter explores the concept of colour vision and the formation of digital colour 

images.  It also investigates some of the important image processing and data analysis 

techniques that are utilised in this research work.  Section  3.2 explains human 

perception of colours and acquisition of digital colour images using digital cameras.  

It also elaborates the concept of colour consistency and colour shift correction.  

Sections  3.3,  3.4 and  3.5 explore important statistical data analysis techniques which 

are principal component analysis, independent component analysis and fastICA 

respectively.  An unsupervised machine learning and data classification technique 

namely fuzzy c-means clustering is presented in section  3.6.  Thresholding-based 

segmentation employing Otsu’s thresholding technique is elaborated in section  3.7.  

Finally, a summary of the chapter is given in section  3.8.  

3.2 Colour Vision and Formation of Digital Colour Images 

Colour vision is the ability to distinguish objects based on the wavelength of the light 

reflected, emitted or transmitted from/through them.  The human visual system has 

the ability to perceive a variety of colours depending on the optical properties of the 

objects and the light reflected upon them. 
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3.2.1 The Perception of Colours 

Colour perception is a complex process whereby the brain responds to the stimuli that 

are produced when the incoming light reacts with the cone cells in the retina.  There 

are three main types of cone cells that are sensitive to three different spectra spaced 

through the visible spectrum [55].  They are labelled according to the order of the 

wavelengths of their spectral sensitivities peaks, short (S), medium (M) and long (L) 

as shown in Figure  3.1.  These cells interact with the incoming light and send output 

signals to the visual cortex of the brain which processes these signals and perceives a 

wide range of colours.  

Figure  3.1: Spectral responsiveness of L, M and S cones [55] 

White light (flashlight used in photography) represents a mixture of all the 

wavelengths in the visible range of the electromagnetic spectrum between 

approximately 400nm-700nm.  If white light is allowed to pass through a prism, it 

will spread out and appear to consist of six main colours; violet, blue, green, yellow, 

orange and red as shown in Figure  3.2. 
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Figure  3.2: A schematic diagram of the electromagnetic spectrum indicating the 

visible light spectrum extending from 400nm-700nm 

A plot of the relative energy of light at each wavelength creates a power 

distribution curve quantifying the spectral characteristics of the light source.  White 

light has a uniform light emission throughout the visible spectrum. Hence, an object 

viewed under white light will be viewed with its real colour. 

The colour perceived is the result of the interaction of three main components; 

light source, object and the observer as shown in Figure  3.3.  When light is shed upon 

a red object for example, it reflects back with a modified spectrum.  The reflected 

light incorporates the optical properties of both the light source and the object having 

wavelengths in the red colour range of the visible spectrum (red light).  The reflected 

light then enters the retina in the eye where it interacts with the cone cells, which send 

signals to the visual cortex of the brain that interprets the colour of the object as red. 

 
Figure  3.3: Perception of colour 
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3.2.2 Digital Camera and RGB Colour Images 

A digital camera is a device that is used to acquire either video or still photographs by 

recording images through an electromagnetic sensor.  Digital single-lens reflex 

(DSLRs) digital cameras have a unique viewing system in which a mirror reflects 

lights from the lens through a separate optical viewer.  When acquiring images, the 

mirror flips out of the way allowing light to fall onto the sensor. 

Most digital cameras use a Charge-Coupled Device (CCD) as a sensor device to 

acquire the image.  A CCD is  an integrated circuit which contains an array of 

coupled, light sensitive capacitors [56].  In a CCD, the electrical field at different 

parts of the surface is controlled by an array electrode called the gates.  The surface of 

the CCD is further broken down into smaller regions called pixels, or picture 

elements.  CCD is has better quantum efficiency than photographic film and generally 

responds to 70%-90% of the incident light [56]. 

When incoming light meets with the CCD, electric charges are generated due to 

the photoelectric effect.  These charges are collected in the electrodes (gates).  Each 

electrode then transfers its electric charge to one or other of its neighbours under the 

control of an external circuit.  Finally, the individual charge packets are converted to 

an output voltage and digitally encoded to create a digital image [56]. 

A digital colour camera usually uses a Bayer mask over the CCD to generate a 

digital colour image.  Bayer mask is a colour filter array with Red, Green and Blue 

(RGB) colour filters arranged on a square grid of CCD sensor [57].  The mask pattern 

is 50% green, 25% red and 25% blue as shown in Figure  3.4.  There are twice as 

many green elements as red or blue in order to mimic the human vision that is more 

sensitive to the green colour (luminance-sensitive element) than red and blue 

(chromatic-sensitive elements).  The sensor elements sample values sensed by this 

filter on the CCD then gets interpolated to create colour image pixels. 
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Figure  3.4: The Bayer filter pattern on the CCD profile 

3.2.3 RGB Colour Model Representation 

As it has been explained in the previous section, most digital cameras utilise the 

spectral distribution of the primary colours Red, Green and Blue to produce RGB 

colour images.  The RGB colour model  is a device-dependent additive colour model 

in which red, green and blue are added together to produce a broad variety of colours 

or what is called an RGB colour cube shown in  Figure  3.5.  The three primary 

colours red, green and blue (RGB) can be treated as a 3D colour space that contains 

all the possible colours to mix from the RGB. 

 
Figure  3.5: The RGB colour cube 

RGB colour model is ideal for sensation, representation and displaying of colour 

images in electronic systems because it corresponds to human visual system colour 
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model.  In the RGB colour space, zero intensity of each primary colour produces 

black while full intensity of each gives white.  The quality of this white light depends 

on the nature of the primary light sources.  If they are properly balanced, the result is 

a neutral white. 

An RGB digital colour image is formed from a concatenation of the three spectral 

bands Red, Green and Blue.  They represent three separate grey-level images that can 

be extracted from the RGB colour image as shown in Figure  3.6. 

 
Figure  3.6: Red, Green and Blue grey-level images of a digital colour image 

3.2.4 Colour Constancy and Colour Shift Correction 

Human visual system has the ability to perceive the correct colour of the surrounding 

objects even under different illumination.  This phenomenon is known as "colour 

constancy".  Digital cameras and other devices on the other hand do not have this 

ability and normally produce images with incorrect colours of objects when 

photographed under different illuminations. 

The output from the digital camera is affected by the spectrum of the incident 

light and the object's surface reflectance.  If the intensity value of one pixel is taken at 

location (x,y) in the image, its value is obtained as: 
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 )(),,()(),(  cc CyxSEyxf   ( 3.1) 

where ],,[ BGRc  , )(cC  is the spectral sensitivity of the camera's sensor, )(E is 

the spectrum of the incident illumination, and ),,( yxS is the spectral reflectance of 

the surface [58].  The spectrum of the incident illumination depends on the type of the 

light source used in the acquisition.  Assuming white light is used, the spectrum of 

white illumination is evenly distributed across all wavelengths and colours can be 

rendered correctly under this illumination.  If the spectrum of the incident white 

illumination is altered due to varying ambient light conditions, the perceived colour of 

the object will not be realistic. 

Colour imaging is employed in many applications such as object identification 

and medical diagnosis of skin lesions in which accurate colour rendition is critical.  

Hence, it is important to correct any colour shifts in the acquired colour images before 

processing.  Colour correction, often referred to as "white balance", is an image 

processing technique whereby unrealistic colour casts caused by inadequate 

acquisition condition (in particular lighting conditions) are removed from digital 

images resulting in corrected colour images.  The main goal for colour shift correction 

is to compensate for the change in the spectrum of the incident light in relation to the 

actual illumination used in the acquisition [58].  Most digital colour cameras have the 

"white balance adjustment" feature, where the levels of red and blue are fitted to the 

green level either from a camera specific mode or when pointing the camera at a 

white surface.  The White Balance can also be set to factory pre-set values, often 

given in a colour temperature.  However, colour casts can still be produced due to the 

avoidable variations in the ambient light during image acquisition. 

Most of the developed techniques for colour shift correction are based on 

assumptions about the statistical properties of the illumination source used in the 

photography and surface reflectance [59].  They generally involve two phases.  First, 

the illumination source parameters are estimated from the image.  Then the image 

colours are corrected based on this estimate [60].  Figure  3.7 shows the effect of 

varying illumination on the perceived colours of objects.  Figure  3.7 (a) shows an 
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image of a room photographed by two light sources; the tungsten lamp and the 

daylight from the window.  The yellow cast caused by the light from the tungsten 

lamp makes the objects in the room appear with colours that differ from their original 

ones. Figure  3.7 (b) shows the same image after colour correction has been applied 

resulting in correct rendering of the objects colours. 

 
Figure  3.7: Effects of varying illumination on the perceived colours of objects 

3.3 Principal Component Analysis 

Principal Components Analysis (PCA) is a mathematical technique that utilises an 

orthogonal linear transformation to convert a dataset of observations into a new 

dataset of uncorrelated variables called the principal components.  The main idea 

behind PCA is to obtain a new dataset of principal components so that most of the 

variance (hence signal energy) in the original dataset is retained in the first few 

principal components ordered from greatest variance in the first principal component, 

second greatest variance in the second principal component, and so on [61].  The main 

goal of PCA is to identify the most meaningful basis to re-express complex 

multidimensional datasets as simple lower dimensions datasets to filter out noise and 

extract useful hidden information underlying within the original datasets [62].  This 

linear transformation is applied in multivariate data analysis of many fields such as 

neuroscience, computer graphics and image data compression [63].  In the following 

subsections, the theories behind the formulation of the PCA as well as estimating the 

principal components are elaborated.  

(b) Image after colour correction (a) Image before colour correction 
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3.3.1 Eigenvalues and Eigenvectors 

Consider a square matrix A of size (kxk).  If there are a scalar   and a vector   that 

fulfil the following relation:     

        A                                       ( 3.2) 

then  is an eigenvalue of the matrix A  if it satisfies the k-th order polynomial 

equation:  

      0||  IA                                        ( 3.3) 

where I  is an identity matrix.   

There are up to k  eigenvalues of the matrix A  that can be found by solving 

Equation ( 3.3).  For each eigenvalue  , there exists corresponding eigenvector  that 

can obtained by solving Equation ( 3.2) [64].   

3.3.2 Covariance Matrix 

Covariance matrix is a square matrix of co-variance values that measure the degree of 

the relationship between variables in the datasets.  A large positive co-variance value 

indicates strongly correlated data while a large negative value denotes strongly 

uncorrelated data.  The covariance between two equal X and Y is found as:  

      )1(
))((

),( 1




  

n
YYXX

YXCOV
n

i ii                               ( 3.4) 

where X and Y are the means of vectors X  and Y  respectively, and n  is the 

number of elements in the vectors.  Note that ),(),( XYCOVYXCOV  .  

Assuming a dataset of three vectors X , Y and Z , the corresponding (3x3) square 

matrix XYZC  is found as follows: 
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
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Covariance matrix XYZC  is a square matrix that is symmetrical along the main 

diagonal.  The diagonal values of XYZC  represent the covariance between one of the 

dimensions and itself.  The off-diagonal values represent the covariance between the 

vectors [63]. 

The covariance matrix provides the advantage of easily inferring statistical 

information about the variables in the dataset and the relationship among them given 

that they are measured in the same unit [61].  Hence, the covariance matrix is 

employed to estimate the principal components of the observed dataset. 

3.3.3 Standardized Linear Combination 

The main objective of PCA is to find suitable basis to re-express a given dataset as a 

linear combination of these basis vectors for the purpose of either dimension 

reduction or extraction of useful hidden information from the dataset.  Hence, the 

problem of finding these basis vectors is simplified by confining these vectors to this 

linear combination [64].  

Given a dataset A , there exists a weighted average expressed as: 

       














AjjA
n

j

T

1

                                       ( 3.6) 

where n  denotes number of elements in the dataset,  denotes the weighting vectors. 

The aim is to maximize the variance of AT  by choosing   according to the 

condition 


)(max)(max
}1{}1{

AVarAVar TT


  which occurs when   is selected as the 

eigenvector   corresponding to the largest eigenvalue,   of the covariance matrix 

AC  [64].  The resultant weighted vector is a projection of A  into the one-
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dimensional space, weighted by the elements of the eigenvector,  , which is referred 

to as the first principal component.  The second principle component can be found by 

selecting   as the eigenvector corresponding to the second largest eigenvalue and so 

on.  

3.3.4 Estimation of Principle Components 

To find the principal components of a dataset; an image for example, the mean value 

is initially subtracted from each of image spectral bands Red, Green and Blue to 

obtain a zero mean variable data as follows:
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                                      ( 3.7) 

where 0R , 0G  and 0B  denote image spectral bands before subtraction and 0R , 0G

and 0B denote the mean value of image spectral bands.   

The covariance matrix is then computed for the three spectral bands of the image.  

The covariance matrix of an image in RGB form is defined as follows: 

      
















BBGBRB

BGGGRG

RRGRRR

RGB

COVCOVCOV
COVCOVCOV
COVCOVCOV

C   ( 3.8) 

where XXCOV is calculated using Equation ( 3.4). 

The eigenvectors are then determined from the covariance matrix by solving the 

following equation:                   

       
T

RGBC                                        ( 3.9) 

where   is a diagonal matrix representing eigenvalues of covariance matrix RGBC  

and   is a matrix of eigenvectors of covariance matrix arranged as columns. 
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The eigenvectors are used as linear transformation of original Red, Green and 

Blue values.  It is reported that the resulting vectors have uncorrelated components,  

or in other words, the primary axis of the data has been aligned where the variance is 

maximal [65].  The vectors in new space [X1 X2 X3]T are obtained by:   
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where 
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

 are the eigenvectors of the covariance matrix. 

3.4 Independent Component Analysis 

Many observations of physical systems are produced by a linear combination of 

underlying sources.  Independent Component Analysis (ICA) is a multivariate data 

analysis technique used to recover source signals from observed linear combinations 

of them.  The term "independent" implies that the recovery depends on the 

assumption that the sources are mutually independent [66].  ICA is the most widely 

applied solution to the problem of Blind Source Separation (BSS) where the sources 

of observed signals are mixed and unknown [66], [67]. 

3.4.1 Linear Mixing Model 

Consider M source signals in vector form, T
M tststststs )](),...,(),(),([)( 321 , the N 

observations, T
N txtxtxtxtx )](),...,(),(),([)( 321 , are generated by a mixture; often 

corrupted by additive observational or sensor noise )(tn ; as follows:   

       )())(()( tntsftx                                      ( 3.11) 

The goal of blind source separation is to invert the function f  and recover the 

sources.  The term "blind" implies that the source signals and the way they were 
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mixed are unknown [68].  The mixing function f , the noise n , and the sources s  are 

unknown and must be estimated.  ICA makes the assumption that the sources are 

linearly mixed by a mixing matrix A  [67].  Thus, observations are assumed to be 

generated by: 

       )())(()( tntsAtx                                      ( 3.12) 

Although the function f  has been replaced with an unknown square matrix A , 

the problem of identifying the sources s  is still under-determined, because there are 

MN  unknown signals of the sources and the noises, with N  known signals (the 

observations).  Furthermore, assumptions about the characteristics of the noise and the 

source densities lead to a range of ICA models.  However, the majority of ICA 

models are noiseless [67].  Hence, the linear mixing model of ICA can be written as: 

       Asx                                       ( 3.13) 

The aim of ICA is to recover the original sources from the observations alone.  In 

ICA, the sources are assumed independent such that each source signal is generated 

by a process unrelated to the other sources [67].  The concept of independence is 

explained in the next section.  The ICA model therefore seeks a separating matrix W

which when applied to the observations, recovers estimated sources u  as: 

       Wxu                                      ( 3.14) 

The ICA model is illustrated in Figure  3.8.  The signals ],...,,,[ 321 nsssss  are 

mixed using elements from the mixing matrix A  to create a set of observations 

],...,,,[ 321 nxxxxx   according to Equation ( 3.13).  Independent source signals 

],...,,,[ 321 nuuuuu   are then estimated from the observation set using the separating 

matrix W according to Equation ( 3.14). 
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 Figure  3.8: Basic model of Independent Component Analysis (ICA) [68] 

3.4.2 Definition of Independence 

In ICA models, the sources are assumed to be statistically independent [66], [67].  

The statistical independence means that the joint probability density function of the 

original sources can be written as the product of marginal independent distributions 

described as )()(
1 ii

M

i
spPsp


 .  If the probability density function of the estimated 

sources is also the product of its marginal distributions, then the estimated sources are 

independent and the separation has been achieved [67]. 

The definition of independence comes from information theory.  The 

independence between the sources is measured by the amount of mutual information 

they contain, which is defined in terms of entropies [67].  Let X and Y , be random 

variables, the (differential) entropy of X is defined as: 

        dxxpxpxpHXH
def

)(log)()]([)(                            ( 3.15) 

The joint entropy X, Y is: 

       
x y

yxPyxPYXH )],([log),(),( 2                            ( 3.16) 

where  x  and y are particular values of X and Y respectively, and ),( yxP is the 

probability of these values occurring together.  
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The conditional entropy of X given Y is given as: 

       
),()()|( XYHYHYXH                             ( 3.17) 

Finally, the mutual information between X and Y is: 

       
)|()()();( YXHYHXHYXI                             ( 3.18) 

The mutual information measures the average amount of information that X

conveys about Y or vice versa.  It will always be positive and will only equal zero 

when the components are independent [67].  Hence, the problem of ICA is formulated 

as to minimize the mutual information between source signals [69]. 

3.5 FastICA 

FastICA is an ICA technique developed by Aapo Hyvärinen [66], [69-71].  In this 

method, the independent components are found as projections that maximize non-

Gaussianity.  The following subsections describe the principles and processes 

involved in estimating the independent source components using FastICA.  

3.5.1 Whitening 

The aim of ICA is to find a linear transformation W of the observed signals x  that 

makes the output u  as independent as possible.  However, due to the complexities of 

ICA algorithms, it is important to pre-process the observed signal x  to simplify the 

estimation of the transformation  W  [70]. 

The input data is pre-processed using whitening.  One popular method for 

whitening is to use principle component analysis (PCA) [70].  As explained in section 

 3.3.4, PCA utilises the eigenvalue decomposition of the covariance matrix 
TTxx ~~

 where   is the orthogonal matrix of eigenvectors of Txx~~ and   is the 

diagonal matrix of its eigenvalues.  Whitening can be performed as follows: 
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       xx T 2
1

~ 
                            ( 3.19) 

where the matrix 2
1


  is computed as ),...,( 2

1
2
1

1
2
1


 ndiag  .  Subsequently, 

whitening transforms the mixing matrix A  into a new one A~  such that: 

       sAAsxx TT ~~ 2
1

2
1



                            ( 3.20) 

Whitening transforms the signals x  linearly to the new vector x~  whose 

components are uncorrelated and their variances equal unity [70].  In this case, the 

covariance matrix of x~  equals the identity matrix, 1}~~{ TxxE .   

3.5.2 Basic Principle of ICA Estimation in FastICA 

The basic intuitive of ICA comes from Central Limit Theory which states that the 

distribution of a sum of random independent variables tends to be a Gaussian 

distribution (normal density function) under the condition that the variables are 

defined under the same probability space and share the same probability distribution 

and are independent [66]. 

Given whitened dataset x~  that is distributed according to the ICA model as

sAx ~~  , estimating the independent components s  can be accomplished by finding 

the appropriate linear combinations of the mixture variables.  Thus, to estimate one of 

the independent components, it is possible to consider a linear combination of ix~  that 

can be expressed as follows: 

       


i
ii

T xwxwa ~~                                     ( 3.21) 

where w  is a vector to be determined. 

If w  is one of the rows of the inverse A~ , this linear combination would actually 

equal to one of the independent component [66].  By defining wAz T~
 , Equation 

( 3.21) can be re-written as: 
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szsAwxwa TTT 

~~                                     ( 3.22) 

Central Limit Theory ensures that the sum of original variables, szT  is more 

Gaussian than any of the independent components is  and become least Gaussian 

when it equals to one of them.  Therefore, taking w  as a vector that maximizes the 

non-Gaussianity of xwT ~ , this vector will correspond to a z  which has only one 

nonzero component [66], [68].  In this case, szsAw TT 
~  equals to one of the 

independent components.  

3.5.3 Measures of Non-Gaussianity 

According to information theory, a Gaussian variable has the largest entropy among 

all variables of equal variance.  Entropy is interpreted as the degree of information 

that the variable gives.  Negentropy, or negative entropy, measures the difference of 

entropy between a Gaussian variable and a given variable.  Hence, negentropy can be 

used as a measure for non-Gaussianity.  

Negentropy J  is defined as: 

       )()()( xHxHxJ gaussian                                      ( 3.23) 

where gaussianx  is a Gaussian random variable of the same covariance matrix as x . 

Negentropy is always non-negative, and it is zero if and only if x  has a Gaussian 

distribution [66]. 

Using negentropy, as a measure of non-Gaussianity is well justified by statistical 

theory.  However, computing negentropy using Equation ( 3.23) is very difficult. 

Hence,   a simplified approximation of negentropy is used. 
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3.5.4 Approximation of Negentropy 

General non-quadratic functions to generalize the higher order cumulant are proposed 

to approximate negentropy [72].  In general, the approximation of negentropy )(xJ

can be written as: 

      
222

2
21

1 )})({)}(({()})(({()( vGExGEkxGEkxJ                  ( 3.24) 

where 1G  and 2G  are odd and even non-quadratic functions respectively, 1k  and 2k  
are positive constants, and v  is a Gaussian variable of zero mean and unit variance.  

The variable x  is assumed to have zero mean and unit variance.  Roberts and Everson 

pointed out that this approximation is not very accurate.  However, it can be used to 

construct a consistent measure of non- Gaussianity in a sense that it is always non-

negative and equals zero if x  has a Gaussian distribution [67].  If only one non-

quadratic function G  is used, Equation ( 3.24) becomes: 

       |)}]({)}({[)(| 2vGExGExJ                                  ( 3.25) 

The performance of the approximation of negentropy shown in Equation ( 3.25) 

depends on the non-quadratic functionG .  Choosing G  that does not grow so fast,  

one obtains robust estimation of negentropy [69].  Generally, the following choices of 

G  have been proven useful: 

      )tanh()( 11 uauG                                      ( 3.26) 

      )2/exp()( 2
2 uuuG                                      ( 3.27) 

      
3

3 )( uuG                                      ( 3.28) 

where 21 1  a  is some suitable constant [69]. 

3.5.5 Fixed Point Algorithm 

Fast ICA is based on fixed-point iteration scheme for finding a maximum of the non-

Gaussianity of xwT ~ . The maxima of the non-Gaussianity of xwT ~  are obtained at 
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certain optima of )}.~({ xwGE T   The optima of )}~({ xwGE T under the constraint 

12 w  are obtained at points where:  

      0)}~(~{  wxwGxE T                                      ( 3.29) 

where   is some constant. 

Newton's method is implemented to solve Equation ( 3.29).  Denoting the term on 

the left side by F , we obtain its Jacobian matrix, )(wJF as: 

      IxwGxxEwJF TT  )}~(̀~~{)(                                 ( 3.30) 

To simplify the inversion of the matrix, the first term of Equation ( 3.30) is estimated 

first.  Since the data is whitened, the approximation can be written as: 

      IxwGExwGExxExwGxxE TTTTT )}~(̀{)}~(̀{}~~{)}~(̀~~{                 ( 3.31) 

Thus the Jacobian matrix becomes diagonal, and can be inverted.  From Equation 

( 3.29), the approximation of Newton's iteration becomes: 

       






)}~(̀{

]~)}~(~{[
xwGE

xxwGxEww T

T

 
              ( 3.32) 

which can be simplified to give the following basic fixed-point iteration: 

       
})~(̀{)~(~{ wxwGExwGxEw TT                 ( 3.33) 

3.5.6 Estimation of Independent Components 

Given a dataset x  that constitutes of linear mixtures of independent source signals, 

these steps should be followed to estimate the independent sources employing the 

FastICA algorithms: 

1. Pre-process the input dataset, x , and transform it into the whitened dataset x~ . 

2. Initialize the weight vector w  of unit norm. 

3. Let })~(̀{)~(~{ wxwGExwGxEw TT  , where G  is chosen to be one of the 

functions defined in Equations ( 3.26), ( 3.27) and ( 3.28). 
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4. Divide w   by its norm w
ww  . 

5. Repeat the two previous steps until convergence criterion is met  

Convergence means that the old and new values of w  point in the same direction 

(their dot product is almost equal to 1).  This implies that either vectors w  or w  

could be estimated and both would define the same direction.  

3.6 Machine Learning and Clustering-Based Classification 

Machine learning is divided into two approaches: supervised learning and 

unsupervised learning.  In supervised learning, labels are assigned to the datasets to be 

learned so that when new data arrive, they can be classified according to the labels 

learned [73].  Unsupervised learning on the other hand does not assign any labels to 

the data.  Instead, it tries to find a suitable natural representation of the underlying 

distribution or characteristics of the data [73], [74].  Clustering is an unsupervised 

data classification technique that has been used by many applications in pattern 

recognition and data classification. 

3.6.1 Clustering 

Clustering is a common technique of unsupervised learning and classification where 

elements of a dataset are partitioned into several disjoint groups (clusters) so that 

points in one group are similar to each other and are as different as possible from 

points in other groups [74].  This is done through selection of a suitable proximity 

measure that groups similar data together.  The choice of an appropriate proximity 

measure depends on the nature of the data and directly affects the performance of the 

clustering algorithm. 

Clustering can be classified into hard clustering and fuzzy clustering based on 

membership of each data.  A hard clustering algorithm divides data into distinct 

clusters, where each data element belongs to exactly one cluster.  In fuzzy clustering, 

data elements can belong to more than one cluster and defined by belonging 
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probabilities or membership degrees [74]. A fuzzy clustering becomes a hard 

clustering when each data element is assigned to the cluster with the largest 

membership level. 

3.6.2 Fuzzy C-means Clustering 

The simplest and most commonly used soft clustering algorithm is fuzzy c-means 

clustering.  In fuzzy c-means, each point in the dataset is assigned membership grades 

to each of k  number of clusters based on a similarity measure, usually the Euclidean 

distance, between the point and the cluster centre [75].  The fuzzy c-means aims to 

optimize an objective function mJ  via an iterative process.  The objective function  

mJ  is defined by the Euclidean distance between data points and the cluster centres: 
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where m  is any real number greater than 1 chosen to adjust the merge of the clusters 

[76], iju is the degree of membership of data point ix  in the cluster jc  and jv  is the jth 

class centre.  This function is a generalized form of lease-squares objective function 

often used in unsupervised machine learning [75], [76].   At each iteration step, the 

memberships iju  and the cluster centres are updated as follows: 
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Given a dataset with n  number of data points ),...,,( 21 nxxx  which to be 

partitioned into k clusters ),...,,( 21 kccc , where nk  .  The fuzzy c-means performs 

clustering of this dataset following these steps:  
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1. Choose cluster centres ),...,,( 21 kvvv randomly based on the data and given 

clusters number k .  

2. Calculate initial matrix ijuU  , 0U  so that 10  m
iju , 1

1




c

i

m
iju  and





m

j

m
ij nu

1

0 .  

3. Assign each data to the nearest cluster centre based on the objective function 

mJ  given by Equation ( 3.34).  

4. For the next i-th step, calculate new cluster centres ),...,,( 21 kvvv via iU

according to Equation ( 3.36).  

5. Update iU  to 1iU .  

6. Stop the iteration if the condition  ii UU 1 otherwise return to step 3.  

When the stopping criterion is met, the process converges to a local minimum of the 

objective function mJ  and the optimum fuzzy clustering of data is achieved [75]. 

Figure  3.9 represents an example of fuzzy c-means clustering on a two-

dimensional data.  The three initial cluster centres; shown as light pink dots; are 

chosen randomly and their associated Voronoi tessellations are indicated by line 

number 1.  The membership grades and associated cluster centres are adjusted with 

each iteration step.  The algorithm converges after four iterations. The final cluster 

centres are denoted by bold red dots and their Voronoi tessellations are indicated by 

line number 4. 
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Figure  3.9: Illustration of cluster centres trajectories in fuzzy c-means clustering 

applied in a two-dimensional data [76] 

The performance of clustering algorithms depends on the selected cluster number 

k  and the initial positions of cluster centres.  Usually, the number of clusters k  is 

provided by the user or determined from the data using some pre-defined criteria.  

The choice of the initial cluster centres depends on the type of the data given and can 

be inferred from the data itself.  The final cluster centres differ based on the initial 

starting centres used when performing fuzzy c-means clustering. 

3.7 Threshold-Based Segmentation 

Thresholding is one of the simplest and most common segmentation techniques in 

image processing.  The goal of thresholding is to segment regions of pixels with 

intensity values more than or less than a certain threshold from the rest of the image. 

The most common thresholding technique which is used in this work is thresholding 

using Otsu’s method [77]. 

3.7.1 Otsu’s Thresholding Method 

Otsu’s thresholding method is based on maximizing the inter-class variance which is a 

common measure in statistical discriminative analysis [77], [78].  The basic idea is 
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that an optimum threshold value is selected so that distinctive regions are well 

separated with respect to intensity values [78].  The computation of the threshold 

value utilises information derived from the histogram of the image. 

The algorithm assumes that there are two classes or regions in the image that are 

represented by a bi-modal histogram of the image.  The algorithm then calculates the 

optimal threshold based on information from the histogram separating these two 

regions so that their combined inter-class variance is maximal. 

Let the pixels of a given image A  be represented by L grey levels ],...,2,1[ L .  The 

total number of image pixels is given by N .  The histogram of the image is 

normalized and computed as a probability distribution represented as: 

       Nnp ii /  given that 0ip  and 
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1                                   ( 3.37) 

Suppose the pixels in the image are partitioned into two classes oC and 1C  by a 

threshold value j such that all pixels with levels ],...,2,1[ j belong to class oC and all 

pixels with levels ],...,1[ Lj  belong to class 1C  respectively.  The probabilities of 

class occurrence are given by: 
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where 
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)( is the 0th – order cumulative moment of the histogram evaluated 

up till level j .  The class mean levels are given by: 
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.)( is the 1st- order cumulative moment of the histogram up till level 
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.)( is the total mean level of the original image A . 

To calculate an optimum threshold level that best segments both classes oC and 1C

the inter-class variance is used as a measure of class separation [77].  The inter-class 

variance 2
B is defined as: 

2
11

2
11

22 )()()( ooTTooB                    ( 3.42) 

The threshold value is then determined as the value that maximizes the inter-class 

variance define in Equation ( 3.42).  Figure  3.10 illustrates an example of image 

segmentation based on Otsu’s thresholding method.  Figure  3.10 (a) shows the 

original grey-level image that depicts two distinctive regions, the coins and the wall 

background.  Figure  3.10 (b) shows the bi-modal histogram of the image with the 

location and value of the segmentation threshold selected based on Otsu’s method 

indicated by the arrow.  As depicted in the histogram, pixels with intensity values less 

than the calculated threshold belong to the coins regions while the pixels intensity 

values more than the threshold belong to the background.  Figure  3.10 (c) shows the 

binary images resulted from the segmentation. The image clearly shows the coins 

regions segmented from the background.  Otsu’s thresholding method is best used to 

separate distinctive objects from backgrounds [78]. 
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Figure  3.10: Segmentation using Otsu’s thresholding method 

3.8 Summary 

This chapter explores the concept of colour vision and the formation of digital colour 

images.  It also investigates some of the important data analysis and image processing 

techniques that are utilised in this research work.  

Colour vision is the ability to distinguish objects based on the wavelength of the 

light reflected, emitted or transmitted from/through them.  The light reflected from an 

object incorporates both the light source spectral properties and its spectral properties 

corresponding to wavelengths in the visible spectrum.  The reflected light then enters 

the retina in the eye where it interacts with the cone cells that send signals to the 

visual cortex of the brain to interpret the colour of the object.  The light reflected from 

(a)  Original grey-level image (b)  Grey-level image histogram 

(c)  Image segmented using Otsu’s method 
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objects can be registered with acquisition devices such as digital cameras.  Most 

digital cameras use CCD sensors covered with Bayer colour filter mask to generate an 

RGB colour image [56], [57].  Digital cameras and other devices however do not have 

the ability to perceive colours correctly especially if the spectrum of the incident 

illumination is altered due to varying ambient light conditions.  It is important to 

correct any colour and compensate for the change in the spectrum of the incident light 

in relation to the actual illumination used in the acquisition [58].  

Principal Components Analysis (PCA) is a mathematical technique that is applied 

in multivariate data analysis of many fields such as neuroscience, computer graphics 

and image data compression.  The main idea behind PCA is to utilise an orthogonal 

linear transformation to obtain new datasets of principal components so that most of 

the variance in the original datasets is retained in the first few principal components 

[61].  The goal of PCA is to identify the most meaningful basis to re-express complex 

multidimensional datasets as linear combinations of these basis vectors for the 

purpose of either dimension reduction or extraction of useful hidden information from 

the dataset [64].   

Independent Component Analysis (ICA) is a multivariate data analysis technique 

used to recover source signals from their observed linear combinations.  It is the most 

widely used technique applied in blind source separation.  ICA assumes that the 

observed signals are generated by linearly mixing original source signals with an 

unknown mixing matrix [66], [67].  ICA estimates the source signals by relaying on 

the assumption that the sources are statistically independent which is achieved when 

the probability density function of the sources can be written as the product of their 

marginal independent distributions [67].  In this study, fastICA technique is 

implemented where the independent components are found as projections that 

maximize non-Gaussianity [66], [69-71].  In this method, Negentropy, which 

measures the difference of entropy between a Gaussian variable and a given variable, 

is used as a measure for non-Gaussianity.  Since computing negentropy is very 

difficult, Newton’s iterative approximation is used to find the independent 

components.  The performance of the approximation depends on the choice of non-

quadratic function used. 
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Clustering is a common technique of unsupervised learning and classification 

where elements of a dataset are partitioned into several clusters so that points in one 

group are similar to each other and are as different as possible from points in other 

groups [74].  In this study, soft clustering is employed utilising fuzzy c-means 

algorithms.  In fuzzy c-means, each point in the dataset is assigned membership 

grades to each of k  number of clusters based on a similarity measure, usually the 

Euclidean distance, between the point and the cluster centre [75].  The performance of 

clustering algorithms depends on the selected cluster number k  and the initial values 

of cluster centres.  A fuzzy soft clustering becomes a hard clustering when each data 

element is assigned to the cluster with the largest membership level.  

Thresholding is one of the simplest and most common segmentation techniques in 

image processing.  The goal of thresholding is to segment regions of pixels with 

intensity values more than or less than a certain threshold from the rest of the image. 

The most common thresholding technique which is used in this work is thresholding 

using Otsu’s method [77].  Otsu’s  method performs thresholding based on 

maximizing the inter-class variance which is a common measure in statistical 

discriminative analysis [77], [78].  The method assumes that there are two classes or 

regions in the image that are represented by a bi-modal histogram of the image.  The 

algorithm then calculates the optimal threshold based on information from the 

histogram separating these two regions so that their combined inter-class variance is 

maximal.  
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CHAPTER 4 

GRANULATION TISSUE DETECTION SYSTEM FOR CHRONIC ULCERS 

4.1 Introduction 

The ability to measure objectively early stages of ulcer healing is crucial for ulcer 

assessment and management.  In chronic ulcers, healing is indicated by the growth of 

granulation tissue. This Chapter presents the developed system for detection of 

granulation tissue from colour images of chronic ulcers.  Identifying and quantifying 

the amount of detected granulation tissue gives an indication of the healing 

progression which reflects on the efficacy of the ulcer management and treatment. 

Section  4.2 illustrates the flow of the granulation detection system development. 

Section  4.3 elaborates the process of acquiring the digital colour images of chronic 

ulcers required for this study.  Section  4.4 illustrates the pre-processing procedures 

applied on the acquired images.  Sections  4.5 and  4.6 explore the main algorithms 

developed to detect regions of granulation tissue in images of chronic ulcers. Section 

 4.7 illustrates how the detected regions of the granulation tissue can be utilised to 

monitor the ulcer healing progression. Finally, the main ideas and findings of this 

Chapter are summarized in section  4.8. 

4.2 Flow Chart of Granulation Tissue Detection System 

Figure 4.1 depicts the flow chart of the granulation tissue detection system developed 

in this study.  The system comprises five main sections: acquiring colour images of 

chronic ulcers, pre-processing of acquired ulcer images and dataset preparation, data 

transformation applied on ulcer images to determine regions of granulation tissue, 
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clustering-based segmentation of granulation tissue regions and finally, measuring the 

amount of detected granulation tissue that can be used for healing assessment and 

monitoring.  These processes are elaborated in the following sections. 

Figure  4.1: Flow chart of granulation tissue detection system 

4.3 Data Collection and Acquisition of Ulcer Images 

Colour images of chronic leg ulcers of different types and aetiologies that contain a 

mixture of tissues were acquired at Hospital Kuala Lumpur, Malaysia.  This was very 

crucial to this study as it ensured working on ulcer images taken under actual 

acquisition conditions.  For this study, ninety colour images were acquired from sixty-

nine patients with chronic leg ulcers at ulcer clinics at the Department of Dermatology 

and at the Out-Patient Department in Hospital Kuala Lumpur. 
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This research work is a collaborative study between Universiti Teknologi Petronas 

(UTP) and Hospital Kuala Lumpur.  It has been approved by the Ethics Committee of 

the Ministry of Health, Malaysia, and registered with the National Medical Research 

Registry (NMRR, Malaysia) under the study code NMRR-11-50-8340. 

4.3.1 Data Acquisition Settings 

Acquisition Device: Ulcers are chronic wounds that cause severe pain and discomfort 

to the patients.  There is a high chance of bacterial infections if these ulcers are not 

managed properly during data acquisition sessions.  Hence, it was important to ensure 

that the data acquisition device used in this study did not come in contact with the 

ulcer and the overall acquisition process was non-invasive.  Furthermore, the selected 

acquisition device had to produce high resolution images to ensure an accurate 

assessment and analysis.  A handheld digital single lens reflector (DSLR) camera, 

Nikon D300, with a resolution of 12.3 megapixels was used to acquire the colour 

images of the chronic ulcers.  Since the ulcer size can vary from small and deep to 

large and shallow, a standard lens AF-S DX Nikon 16-85mm f/3.5-5.6G ED VR was 

used to ensure that the ulcer region was enclosed within the field of view of the lens.  

Figure  4.2 shows the digital camera and lens used to acquire the ulcer images. 

 
Figure  4.2: Digital Single Lens Reflector Camera (Nikon D300) and AF-S DX Nikon 

16-85mm f/3.5-5.6G ED VR Lens 

Light Source: Due to the severe conditions of the ulcers for some patients who 

were unable to walk or sit properly, it was not possible to conduct the data acquisition 

sessions in a photography room that is specifically designed for this purpose.  Instead, 

the images were acquired at the dressing room where the ulcers were examined by the 
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attending nurses.  The ambient light in the dressing room is a combination of 

fluorescent light from the ceiling and daylight coming from the window as shown in 

Figure  4.3.  This ambient light was not adequate to acquire images and could vary 

depending on the weather conditions.  Hence, a Nikon SB-900 flashlight, shown in 

Figure  4.4, was used to provide adequate reproducible lighting for image acquisition.  

A diffuser dome was mounted on the flashlight to avoid harsh lighting and shadows. 

 
Figure  4.3: Wound dressing room where most of the images are acquired 

 
Figure  4.4: Nikon SB-900 flashlight with diffuser dome 

Colour and Size Reference:  As has been explained in Chapter 3 (section  3.2.4), 

varying ambient light can cause undesirable colour casts in the acquired digital 

images.  During the acquisition sessions for this study, colour casts were produced 

due to the combined effect of several light sources (fluorescent light and sunlight) and 
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the flashlight reflected back from the surrounding brown-yellow walls in the dressing 

room.  Hence, a white reference (white point) was included in the image to correct for 

these colour shifts.  A 3x6cm white colour sticker was placed near the ulcer during the 

photography sessions to provide a reference for colour shifts correction.  For small 

ulcers that were located in challenging locations such as toes, heels and the sides of 

feet, a small white sticker of size 9x13 mm was used instead.  The white sticker was 

also used as a size reference to measure the area of the detected granulation tissue.  

Figure  4.5 shows the reference stickers placed next to ulcers during the data 

acquisition sessions. 

 
Figure  4.5: Reference stickers placed near ulcers for colour and size reference 

4.3.2 Data Acquisition Procedure 

Chronic ulcers cause severe pain and discomfort to the patients which make them 

unable to walk most of the time.  When patients come in to the dressing room in the 

clinic, their comfort must be given a high priority.  Patients will be attended to by the 

nurses who will help them to lie down or sit comfortably on the dressing bed 

extending their legs on the bed and their feet rested on a special pillow.  The ulcers 

are then examined and cleaned by the nurses.  The ulcer images for this study were 

acquired before the new dressing was applied to the ulcers. 

The data acquisition procedure involved three main steps as depicted in the flow 

chart of Figure  4.6:  

a) Fulfilling Inclusion/Exclusion Criteria: The target population for this study 

was adult patients above eighteen years with chronic leg ulcers attending the 
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ulcer clinics at the Department of Dermatology and the Outpatient Department 

at Hospital Kuala Lumpur during the study period.  All ulcers of different 

types and aetiologies which contained a mixture of several tissues were 

included in the study.  However, there were ulcers that were excluded from 

this study such as large ulcers that extended around the leg curvature or ulcers 

located in challenging positions such as between the toes.  Ulcers that contain 

heavy exudates would cause severe specular reflections when photographed 

with flashlight and hence were excluded from the study as well.  Furthermore, 

due to infection that affected a number of ulcers, some parts of the ulcer heal 

and rose faster than other parts resulting in an uneven ulcer surface. Uneven 

ulcer surfaces would obstruct the light path and cause shadows when 

photographed with flash and hence were excluded from the study. 

b) Obtaining Patient Consent: Before acquiring the ulcer images, the patients 

were informed as to the nature and objective of the study.  A written consent 

on participation in the study as well as acquisition of the ulcer image was then 

obtained from the patients. Study information sheets and patient consent forms 

used in this study are attached in Appendix A. 

c) Acquisition Images of Ulcers: Colour images of the ulcers were acquired 

using a high-resolution handheld DSLR camera.  The camera was placed 

perpendicular to the ulcer to ensure the inclusion of the whole ulcer wound 

within the field of the view of the camera.  The flashlight was directed to 

either the wall or the ceiling to provide a more diffused illumination to avoid 

specular reflections.  Several images were acquired of the same ulcer from 

different sides. 

From the ninety images acquired for this study, seventy five images that have met 

the inclusion criteria and provided the best view of the ulcers under optimum lighting 

conditions were used in the study. 
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Figure  4.6: Flow chart of data acquisition procedure 

4.4 Pre-processing and Ulcer Dataset Preparation 

Before the ulcer images can be input to the granulation tissue detection algorithms, a 

set of pre-processing steps are needed to be performed. These steps comprises of 

correcting colour shifts and selecting regions of interest (ROIs).  

4.4.1 Correcting Colour Shifts 

The dressing rooms at the clinic in the Department of Dermatology and the Out-

Patient Department, Hospital Kuala Lumpur are not equipped with adequate ambient 

illumination to perform standard digital photography.  Furthermore, the light from the 

flash falls onto the yellow-brown wall in the room and reflects back creating a yellow 

cast over the acquired images.  To correct these colour shifts, the digital camera was 

calibrated so that it produces equal RGB values for a white patch under flashlight 

(white illumination) photography.  However, due to the variety of light sources 

constituting the ambient illumination in the dressing room, colour shifts that could not 

be easily corrected using the camera settings were still produced.  Hence, there was a 

need to correct for these colour shifts before processing the ulcer images. 
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Since the dominant illumination source used in this study was white flashlight, a 

white point estimation algorithm, or "max white", has been implemented to correct for 

colour shifts.  The white point algorithm assumes that there is a white reference in the 

image through which the chromaticity scaling factors are calculated.  These scaling 

factors are determined based on the assumption that the maximum of each of the Red, 

Green and Blue channels in the image are found in this reference point and 

correspond to pure white [58], [60].  Figure  4.7 is a flow chart of the colour correction 

procedure applied on the acquired colour ulcer images in this study. 

 
Figure  4.7: Flow chart of the colour correction procedure 

A small area from the white reference sticker was selected manually and 

maximum intensity values maxR , maxG , and maxB were obtained from each colour 

channel, respectively.  By comparing these values with values of a white illuminant, 

the scaling coefficients were calculated accordingly: 
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      max/2 RR n
gain                                        ( 4.1) 

      max/2 GG n
gain                                        ( 4.2) 

      max/2 BB n
gain                                        ( 4.3) 

where n  is the number of bits per channel (in this case 8n  and 2562 n
 which 

corresponds to the full intensity of white light), and maxR , maxG , and maxB are the 

maximum values extracted from the white reference sticker. 

By scaling the Red, Green and Blue channels of the ulcer image using the 

calculated scaling factors, the corrected image was obtained.  Figure 4.8 shows an 

ulcer image corrected using the developed colour shifts correction algorithm.  Figure 

4.8 (a) shows the ulcer image before colour correction and Figure 4.8 (b) shows the 

ulcer image after colour correction had been applied. 

Figure  4.8: Ulcer image corrected using developed colour shifts correction algorithm 

4.4.2 Selecting Regions of Interest (ROIs) 

After colour correction had been applied on the acquired ulcer images, two main 

regions of interest were manually selected from the images.  The first region is the 

"ulcer region" which included the ulcer and some of the surrounding skin.  Ulcer 

regions had to be excluded from the background which might contain unwanted 

regions of the surroundings such as other parts of the patient’s body and the wall of 

the room. These unwanted regions could have affected the algorithm performance and 

(a) Ulcer image before  colour correction (b) Ulcer image after colour correction 
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produced inaccurate results.  Hence, the images that input to the granulation detection 

system had to be carefully selected to include the ulcer region only. 

The second region selected from the image was the "reference patch region" 

which included the size reference patches.  This was needed to calculate the area of 

the detected regions of the granulation tissue.  Figure  4.9 illustrates the two selected 

regions from the colour corrected ulcer image. 

 
Figure  4.9: Selection of regions of interest (ROIs) from colour corrected ulcer image 

4.5 Data Transformation to Determine Granulation Tissue Regions 

Ulcer healing is indicated by the growth of granulation tissue which appears red in 

colour due to the pigment haemoglobin content in the small blood capillaries formed 

within the granulation tissue [24].  In this study, the main objective was to utilise the 

optical characteristics of pigment haemoglobin to detect the regions of the granulation 

tissue that formed a measure of ulcer healing.  The approach is to apply data 

transformation on the acquired and pre-processed the colour images of chronic ulcers 

to extract grey-level images that show the distribution of pigment haemoglobin.  

Extracted areas of haemoglobin distribution reflect regions of granulation tissue on 

ulcer surface.  Figure  4.10 is a flow chart of the developed algorithm to extract the 

images of the haemoglobin distribution.  A detailed explanation of the algorithm is 

given in the following sub-sections. 
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Figure  4.10: Flow chart of the developed algorithm to determine regions of 

haemoglobin distribution from colour ulcer images 

4.5.1 Creating Observation Input Dataset 

Each colour ulcer image comprises three grey-level images representing the spectral 

bands of Red, Green and Blue channels respectively.  These images represent three 

observations of linear combinations of image source signals.  For each ulcer image, 

these bands are used to create column vectors of a data matrix comprising an 

observation dataset (observation matrix) as shown in Figure  4.11. 
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The observation matrix X contains observations of the colour ulcer image. Each 

column of X  corresponds to a set of intensity values from each of the Red, Green and 

Blue colour channels (three observations).  Each row of X  corresponds to intensity 

values of Red, Green and Blue channels of one particular pixel location. 

 
Figure  4.11: Create observation input dataset from colour ulcer image 

4.5.2 Pre-Processing of Input Dataset 

The Independent Component Analysis (ICA) was applied on the observation dataset 

to extract the independent source images from the observed ones. However, before 
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applying the algorithm, it was important that the dataset was pre-processed 

accordingly. 

As depicted in Figure  4.12, pre-processing of the observation dataset involved two 

steps. First the dataset was normalized to centre on a zero point by extracting the 

mean value from each spectral band.  Data whitening was then applied by employing 

the Principle Component Analysis (PCA) to transform the dataset linearly so that its 

components were uncorrelated and their variances equalled unity. The pre-processing 

steps were performed to simplify the ICA algorithms and reduce the number of 

parameters to be estimated as explained in Chapter 3 (section  3.5.1).  

4.5.3 Detection of Haemoglobin Distribution 

In this work, the independent component analysis was employed to extract the source 

grey level images that represented the regions of granulation tissue in the colour 

images of chronic ulcers.  ICA was implemented using the fastICA algorithm 

explained in Chapter 3 (section  3.5).  FastICA is based on a fixed-point iteration that 

uses maximization of non-Gaussianity as a measure of independence to estimate the 

independent components.  The non-quadratic function G  that is used to approximate 

negentropy as a measure for non-Gaussianity is defined in Equation ( 3.26).  

The algorithm has been developed so that it estimates all the independent source 

images at once.  The output from the ICA algorithm is a matrix that contains row 

vectors of independent components equal to the number of observations, which were 

three observations in this case.  These row vectors are rearranged as matrices, each 

representing a grey-level image of an estimated independent source.  One of the 

estimated source images was an image that showed regions of the haemoglobin 

distribution reflecting the existing regions of the granulation tissue on the ulcer’s 

surface.  Figure  4.12 shows a colour ulcer image and the corresponding estimated 

independent source images.  Figure  4.12 (c) shows the second independent source 

image which represented the regions of a significant intensity value range (dark 

region in the image) that could be clearly distinguished from the rest of the image. 
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These areas indicated haemoglobin distribution that reflected the regions of 

granulation tissue. 

 

 

 
 

Figure  4.12: Extracted independent sources from observed colour ulcer image 

It should be noted that there was no order for the estimated independent 

components.  Figure  4.12 indicates that the second source image was the extracted 

haemoglobin image that showed the regions of the granulation tissue in this case.  If 

however, the algorithm was applied on the same image again, the granulation tissue 

might be detected in the first or the third estimated independent source image.  This is 

not a significant issue since the algorithm was developed to estimate all the 

independent sources from the original image. 

(a) Original ulcer image  (b) 1st independent component 

(c) 2nd independent component (d) 3rd independent component 
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It should also be noted that the estimated source images could have a negative 

sign and show inverted images when estimated using the developed algorithm.  This 

is due to the nature of the convergence criterion that has to be met when estimating 

the independent components as explained in Chapter 3 (section  3.5.6).  This would 

also not be an issue because the detected regions of the granulation tissue would still 

appear with a distinguished range of intensity values even in the inverted images.  

Figure  4.13 shows an example of two source images estimated at two different times 

from the colour ulcer image shown in Figure  4.12 (a).  In both images, the arrow 

clearly indicates the identified region of the granulation tissue that appears with a 

distinctive range of intensity values that could be easily segmented from the rest of 

the image.   However, all extracted haemoglobin images were further processed to 

ensure that the identified granulation regions appeared as distinctive dark regions, 

shown in Figure  4.13 (a), to simplify the segmentation algorithm explained in the next 

section.  The performance of the developed data transformation algorithms to identify 

regions of granulation is investigated in the next Chapter. 

 
 

Figure  4.13: Extracted Image Due to Pigment Haemoglobin 

4.5.4 Post-Processing of Extracted Haemoglobin Images 

It has been explained in section  4.3 that ulcers with heavy exudates have been 

excluded from this study.  However, exudates are an essential part of the wound 

environment and as a result most ulcers have at least a little amount of exudates 

present on the surface.  Hence, some unavoidable specular reflections were caused 

(a) Extracted haemoglobin image (b) Extracted haemoglobin image inverted 
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when these ulcers were photographed with the flashlight.  The specular reflections 

pixels appeared in the extracted haemoglobin image with distinctive intensity values 

that differed from other neighbouring pixels.  Some of these pixels were perceived as 

white pixels within dark grey or black neighbouring pixels while others were 

perceived as black pixels within light grey or white neighbouring pixels.  Hence, this 

type of noise is normally referred to as a salt and pepper type of noise.  It was 

important to identify and remove these pixels to ensure a better detection of the 

granulation regions. 

Median filters are nonlinear spatial filters often used to remove salt and pepper 

noise (impulse noise) from images [79].  The advantage of using median filters is that 

they remove the noise while maintaining the details and edges in the image.  The 

working principle of a median filter is that it uses a defined (nxn) size window which 

slides over the whole image pixel by pixel replacing it with the median value of the 

neighbouring pixels contained within the window.  The median filter operation forces 

distinct pixels values to be similar to their neighbours and hence effectively remove 

salt and pepper pixels [79].  However, the drawback of using median filters is that the 

edges and details get blurred when increasing the window size of the filter. 

In this study, a median filter with windows sizes of 3x3 and 5x5 pixels was used 

to remove the resulted salt and pepper noise pixels from the extracted haemoglobin 

images.  The size of the window was chosen after applying median filtering on 

extracted haemoglobin images with varying window sizes of 3x3, 5x5, 7x7, and 9x9 

pixels.  In this study, window sizes of 3x3 and 5x5 pixels best removed most of the 

impulse noise from the extracted haemoglobin images while maintaining the overall 

shape and details in the image.  Figure  4.14 depicts an example of the removal of the 

salt and pepper noise from the extracted haemoglobin images.  Figure  4.14 (a) shows 

the original ulcer image with the specular reflections indicated by the green arrows, 

while Figure  4.14 (b) shows the extracted haemoglobin images with impulse noise 

pixels (salt and pepper noise) indicated by the green arrows.  Figure  4.14 (c) shows 

the extracted haemoglobin image after removing the affected impulse pixels using 

median filtering with window size of 5x5 pixels. 
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Figure  4.14: Removal of impulse noise from extracted haemoglobin images 

4.6 Clustering-Based Segmentation of Granulation Tissue Regions 

Segmentation is an image processing technique that is used to subdivide an image into 

constitute regions.  It is needed to isolate regions of interest from the rest of the 

images for further processing and analysis.  Segmentation normally results in a binary 

image with only two possible intensity values; 0 (black) or 1 (white).  In this study, 

the identified regions of the granulation tissue on each extracted haemoglobin image 

(a)  Original colour ulcer image (b)  Extracted Haemoglobin Image 

(c)  Filtered Extracted Haemoglobin Image 
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were segmented from the rest of the image.  The segmented regions of the granulation 

tissue can be measured and utilised as an objective measure to monitor the ulcer 

healing progression. 

The input images to the segmentation algorithms were the grey-level images that 

were extracted from the colour images of the ulcers using the data transformation 

algorithms explained section  4.5.  These images, referred to as "haemoglobin images" 

in the remainder of this text, indicated the distribution of pigment haemoglobin 

reflecting the identified regions of the granulation tissue which appeared with a 

distinctive range of intensity values that could clearly be separated from the rest of the 

image as shown in Figure  4.13. 

Clustering-based segmentation was employed in this study to segment the 

identified regions of the granulation tissue on the extracted haemoglobin images.  

Fuzzy c-means clustering was applied to the haemoglobin images to classify the 

granulation regions based on their range of intensity values.  The classified 

granulation regions were then segmented from the rest of the images accordingly.   

These steps are explained in more detail in the following sub-sections.  However, 

before elaborating further on the clustering-based segmentation algorithms employed 

in this study, it is important to describe the granulation region reference image which 

was used to select the optimum number of clusters needed to correctly classify the 

regions of granulation tissue on the extracted haemoglobin images. 

4.6.1 Granulation Region Reference Image 

As illustrated in section  4.4.2, ulcer regions, that include the ulcer and part of the 

surrounding skin, were manually selected from the colour corrected ulcer images and 

input to the granulation tissue detection system.  These ulcer images were shown to 

two dermatologists1 at Hospital Kuala Lumpur who were asked to trace the region of 

the granulation tissue manually by drawing a line around the granulation tissue 

region’s boundary. The traced regions produced by each of the two dermatologist 

                                                   
1 Dermatologists who participated in this study are Dr Adawiyah Jamil and Dr Felix Yap Boon Bin – 
Department of Dermatology – Hospital Kuala Lumpur. 
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were further examined visually by both dermatologists to determine an optimum 

tracing reference of the granulation tissue regions for each ulcer image.  The traced 

regions of the granulation tissue from all of the ulcer images were utilised to create 

binary images that contained the segmented regions of the granulation tissue which 

could be used as references for further analysis.  These images were referred to as 

granulation assessment reference images.  Figure  4.15 shows a granulation assessment 

reference image produced from the manual tracing of the granulation tissue regions 

from a colour ulcer image.  Figure  4.15 (a) shows the colour ulcer image with the 

traced granulation regions indicated with a green boundary.  Figure  4.15 (b) shows the 

binary assessment reference image produced from the tracing. 

 
 

Figure  4.15: Granulation assessment reference image obtained from manual tracing of 

granulation tissue 

Although the granulation assessment reference images were created based on 

visual tracing of the granulation region, this was the closest approximation of an 

actual granulation tissue region in the ulcer.  The granulation assessment reference 

images were utilised to determine the optimum number of clusters to classify the 

granulation regions in the extracted haemoglobin image as is shown later in the 

following section.  They were also used to compare the amount of the detected 

granulation tissue using the developed algorithm with the amount traced manually by 

the dermatologists to calculate the amount of the region overlap for the agreement 

analysis discussed later in Chapter 5. 

(a) Traced granulation tissue region (b) Granulation region reference image 
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4.6.2 Classifying and Segmenting Granulation Tissue Regions 

Data clustering is an unsupervised classification approach where similar data 

items are grouped together into clusters.  Fuzzy c-means clustering was the method of 

soft clustering employed in this study to assign membership grades to each pixel in 

the extracted haemoglobin images.  These membership grades determined the extent 

to which each pixel belonged to a certain number of clusters based on the Euclidean 

distance of each pixel value to the mean of the cluster centre as explained in Chapter 3 

(section  3.6.2).  Depending on the number of clustersk , each cluster was assigned a 

number k,...,2,1 .  After performing fuzzy c-means clustering, the membership grades 

of all the pixels for each cluster were determined.  The pixels were then assigned to 

each cluster k,...,2,1  according to the highest membership grades corresponding to 

each cluster.  As shown in section  4.5, the granulation tissue region appeared as a 

distinctive dark region in the extracted haemoglobin image.  Hence, the cluster with 

the minimum cluster centre value was regarded as the granulation cluster and assigned 

the cluster number 1 accordingly.  Figure  4.16 illustrates an example of the 

classification of the regions in the extracted haemoglobin image utilizing the fuzzy c-

mean clustering algorithm.  Figure  4.16 (a) shows the extracted haemoglobin image 

while Figure  4.16 (b) shows corresponding classified image where the pixels were 

assigned to different regions according to the highest membership grades.  The 

classified granulation tissue regions in the image are indicated by the arrows in the 

figure. 

 
 

Figure  4.16: Classification of regions in extracted haemoglobin image  

(a) Extracted haemoglobin image (b) Clustered regions in haemoglobin image 
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The classified image was then converted into a binary image based on the 

intensity values of the clustered granulation tissue. The segmentation algorithm 

scanned the classified image resulted from the clustering algorithm for pixels values 

that belonged to cluster number 1 (clustered granulation tissue) and converts them to 

value 1 (white) while retaining all other pixels with the value 0 (black).  This process 

produces a binary image where the detected granulation tissue appeared as a black 

region separated from the rest of the image which appeared as a white background.  

Figure  4.17 illustrates an example of the granulation tissue segmentation in the 

classified image.  Figure  4.17 (a) shows the classified haemoglobin image and Figure 

 4.17 (b) shows the corresponding binary image with the segmented granulation tissue 

indicated by the arrow. 

 
 

Figure  4.17: Segmentation of clustered granulation tissue in classified image 

4.6.3 Selection of Number of Clusters 

As discussed in Chapter 3 (section  3.6.2), the selection of the number of clusters k
is crucial to the clustering algorithm performance and output accuracy.  In order to 

determine the optimum number of clusters needed for segmentation of the granulation 

tissue, the segmentation algorithm using fuzzy c-means was applied iteratively on 

each extracted haemoglobin image with parameter k  ranging from 2k till 10k .  

The iteration process started with 2k  because the developed algorithm was 

(a) Clustered regions in haemoglobin image (b) Segmented granulation tissue regions 
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expected to classify at least two clusters, the granulation tissue cluster and the cluster 

for the rest of the ulcer parts. 

At each k-th iteration step, the segmentation performance was computed by taking 

the difference between the detected granulation tissue regions using the developed 

clustering based segmentation algorithms for each number of clusters with the traced 

granulation region in the granulation assessment reference image obtained from the 

dermatologist’s tracing as explained in section  4.6.1.  Figure  4.18 illustrates an 

example of the computation of the difference between the assessment image and the 

algorithm image.  Figure  4.18 (a) shows the granulation assessment reference image, 

Figure  4.18 (b) shows the image resulted from the algorithm segmentation of the 

granulation tissue and Figure  4.18 (c) shows the difference image. 

 

 

         
 

Figure  4.18: Computing the difference between the granulation regions detected using 

the developed algorithm and the granulation region traced by dermatologists 

(a) Granulation tissue reference image  (b) Detected granulation tissue image  

(c) Granulation tissue difference image 
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The optimum number of clusters k  was chosen based on the minimum 

segmentation difference error between the algorithm image and the assessment image.  

As shown in Figure  4.18 (c), the difference image contained wrongly segmented 

pixels which were either granulation pixels in the assessment image not detected in 

the algorithm image or vice versa.  The segmentation difference error Er  was then 

obtained by calculating the number of white pixels (wrongly segmented pixels) in the 

difference image using the following formula: 

       N

x
Er

n

i
i

 1  
                                     ( 4.4)                                

where n  is the number of white pixels (wrongly segmented pixels) in the difference 

image and N is the total number of pixels in the difference image. 

The clustering based segmentation algorithm was applied on the haemoglobin 

images extracted from the seventy-five ulcer images included in this study to segment 

the identified regions of the granulation tissue from the rest of the images.  The 

minimum segmentation difference error values and the optimum number of clusters 

obtained for each ulcer image is presented and discussed in Chapter 5. 

4.7 Ulcer Healing Assessment and Monitoring 

In daily clinical practice, dermatologists depend on a subjective visual inspection of 

the ulcer appearance to evaluate the its severity and the healing progression.  The 

ulcer surface is normally described as estimated percentages of red, yellow, and black 

colours which refer to granulation, slough and necrotic tissues, respectively as 

illustrated in Chapter 2 (section  2.8).  The estimated percentage of granulation tissue 

is particularly important as it indicates the early stages of ulcer healing. 

The detected and segmented regions of the granulation tissue from the ulcer 

images can be utilised as a measure for ulcer healing progression.  For each ulcer 

image, the regions of the granulation tissue can be identified and segmented using the 

developed granulation tissue detection system.  The amount of detected granulation 



 

91 

tissue, in terms of surface area, can be measured during consecutive visits throughout 

the course of a treatment and used to monitor the healing progression.  If the current 

treatment is effective, the amount of detected granulation tissue should increase 

throughout the course of the treatment. 

Before the surface area of the detected granulation tissue can be utilized to 

indicate the healing progression, it is important to eliminate any regions that may be 

wrongly detected as part of the granulation tissue.  The ulcer boundary reference 

image has been developed for this purpose as shown in the following sub-section. 

4.7.1 Ulcer Boundary Reference Image 

It was elaborated in Chapter 2 (section  2.5) that chronic ulcers occur mostly due to 

underlying aetiologies such as venous insufficiency, arterial perfusion and diabetes. 

Such aetiologies may cause the blood to pool at the surface of the skin that surrounds 

the ulcers, causing erythema and skin inflammation or laceration.  The lacerated skin 

surrounding the ulcer may have been wrongly detected as part of the granulation 

tissue in some of the images included in this study.  This is illustrated in Figure  4.19 

where the arrows indicate a region of skin laceration near the ulcer that was wrongly 

detected as part of the granulation tissue. 
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Figure  4.19: Skin laceration situated near the ulcer that is wrongly detected as 

granulation tissue 

The original ulcer images were shown to dermatologists at Hospital Kuala 

Lumpur whom were asked to trace manually the boundary of the ulcer on each image.  

The traced ulcer boundaries were then utilised to create binary images in which the 

ulcer region was segmented from the rest of the image.  These images were referred to 

as ulcer boundary reference images.  Figure  4.20 (a) shows an ulcer image with the 

ulcer boundary traced with the green line while Figure  4.20 (b) shows the binary ulcer 

reference image which resulted from the tracing. 

(a)  Original ulcer image (b)  Extracted haemoglobin image 

(c)  Detected granulation tissue image 
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Figure  4.20: Ulcer boundary reference image obtained from manual tracing of the 

ulcer’s boundary 

The developed ulcer boundary reference images were used as masks that were 

applied over the output images from the granulation detection system.  By doing so, 

the detected regions of the granulation tissue within the ulcer boundary region were 

retained and any wrongly detected parts of the surrounding skin outside the ulcer 

boundary were eliminated.  Figure  4.21 (a) shows the output image from the 

granulation detection system before applying the ulcer boundary image mask where 

the arrows indicate the regions wrongly detected as part of the granulation tissue.  

Figure  4.21  (b) on the other hand shows the output image after applying the ulcer 

boundary image mask where detected regions outside the ulcer boundary were 

eliminated and the granulation tissue within the ulcer boundary was retained. 

 
 
 

Figure  4.21: Removing regions outside the ulcer boundary wrongly detected as 

granulation tissue 

(a)  Traced ulcer boundary (b)  Ulcer boundary reference image 

(a)  Detection of granulation tissue 
before applying ulcer region mask 

(b)  Detection of granulation tissue 
after applying ulcer region mask 
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4.7.2 Granulation Region Area Measurement 

The surface area of the detected regions of the granulation tissue within the ulcer 

needed to be measured as an objective measure of the ulcer healing progression.  The 

number of detected granulation pixels (white pixels) were calculated and multiplied 

with the area per pixels unit (in mm2) to measure the surface area of the granulation 

tissue.  Therefore, a reference of the area per unit pixel needed to be included in each 

image. 

As illustrated in section  4.4.2 of this chapter, the selected reference patch region 

from the colour corrected ulcer image included the size reference patch. The grey-

level image was extracted from the original colour reference patch image.  The size 

reference patch was then segmented using Otsu’s thresholding, explained in Chapter 3 

(section  3.7), from the rest of the grey-level image and used to provide a reference of 

the area per unit pixel to calculate the area of the detected granulation tissue.  Figure 

 4.22 (a) shows the original reference patch image and Figure  4.22 (b) shows the grey-

level image of the reference patch image.  Figure  4.22 (c) shows the bimodal 

histogram of the grey-level image indicating two separable regions; the reference 

patch region (the light region) and the skin region (the dark region).  A threshold 

value of 0.66 was determined from the histogram using Otsu’s thresholding method 

explained in Chapter 3 (section  3.7). The grey-level reference patch image was then 

segmented using the threshold value so that the pixels of values more than the 

threshold value were assigned the intensity value 1 (white) and pixels with values less 

than the threshold value were assigned the pixels value 0 (black).  Figure  4.22(d) 

shows the binary image resulting from Otsu’s thresholding based segmentation where 

the reference patch was segmented from the rest of the image. 
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Figure  4.22: Segmentation of reference patch for area measurements 

The number of white pixels within the segmented reference patch and the number 

of white pixels within the detected region of the granulation tissue were calculated for 

each ulcer image.  The area of the detected granulation tissue can then be calculated 

as follows: 

ngranulatio
ref

pixelsnum
pixelsnum
arearefArea _*

_
_











                          ( 4.5) 

where arearef _  is the area of the reference patch (9x13mm=117mm2, or 

3x6cm=360mm2), refpixelsnum_ is the number of white pixels of the segmented 

reference patch and ngranulatiopixelsnum_  is the number of white pixels of the detected 

granulation region. 

Dividing the area of the reference patch over the number of the pixels contained 

within the reference patch for each image gave the area per unit pixel for that 

particular image. Multiplying the number of granulation pixels with the area per unit 

pixel gave the surface area of the detected granulation tissue region.  Monitoring the 

(a) Original reference patch image (b) Grey-level of reference patch image 

(c) Histogram of reference patch image (d) Segmented reference patch  



 

96 

change in the surface area of the granulation tissue reflected on the progression of the 

ulcer healing and treatment efficacy. The surface area of the detected granulation 

tissue could be calculated using Equation ( 4.5) for all of the seventy-five ulcer images 

included in this study. 

4.8 Summary 

This research work aims to develop a system that is able to detect regions of 

granulation tissue on the surface of wounds and utilize them to provide an objective 

assessment of the severity condition and healing status of chronic ulcers.  Identifying 

and quantifying the amount of the detected granulation tissue gives an indication of 

the healing progression which reflects on the efficacy of the ulcer management. 

For this study, seventy-five colour images of chronic ulcers were acquired at 

Hospital Kuala Lumpur.  The ulcers included in the study were of different types and 

aetiologies and contained a mixture of several ulcer tissues.  After obtaining the 

patients’ consent in participating in the study, images of the ulcers were acquired 

under controlled acquisition settings using a high resolution digital camera.  A white 

reference sticker was also included in the image and used to correct the undesired 

colour shifts using the white point estimation algorithm.  The ulcer region, which 

included the ulcer and some of the surrounding skin, was manually selected from the 

colour corrected images. 

The ulcer region images were input to the granulation detection system developed 

in this study.  The system was designed to detect regions of granulation tissue based 

on the distribution of pigment haemoglobin on the ulcer surfaces which reflected the 

existence of the granulation tissue.  The approach was to apply data transformation 

utilising the independent component analysis to extract source grey-level images that 

show the distribution of pigment haemoglobin.  The extracted haemoglobin images 

showed regions of haemoglobin distribution that reflected the regions of the 

granulation tissue on the ulcer’s surface. The extracted source images may have 

contained salt and pepper type noise caused by unavoidable specular reflection during 
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the image acquisition.  Hence, a median filter was utilised to remove the any noise 

from the images to ensure better detection of the granulation regions. 

The extracted haemoglobin images identified the regions of the granulation tissue 

which appeared with a distinctive range of intensity values that could clearly be 

contrasted and separated from the rest of the image.  Clustering-based segmentation 

was employed in this study to segment the identified regions of the granulation tissue 

on extracted haemoglobin images.  Fuzzy c-means clustering was applied to the 

haemoglobin images to classify the granulation regions based on their range of 

intensity values.  The classified granulation regions were then segmented from the 

rest of the images accordingly.  The algorithm was applied iteratively with the number 

of clusters k   varying from 2k  till 10k .  The optimum number of clusters was 

then chosen based on the minimum segmentation difference error between the 

segmented granulation regions obtained from the developed system and the 

dermatologists’ traced granulation regions at each iteration step. 

The algorithm ultimately produced binary images that contained segmented 

regions of the granulation tissue.  The detected and segmented regions of the 

granulation tissue from the ulcer images could be utilised as a measure for the ulcer 

healing progression.  The amount of the detected granulation tissue, in terms of 

surface area, can be measured during consecutive visits throughout the course of 

treatment and used to monitor the healing progression.  If the current treatment is 

effective, the amount of detected granulation tissue should increase throughout the 

course of the treatment.  
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CHAPTER 5 

RESULTS AND ANALYSIS 

5.1 Introduction 

This chapter presents the main results and findings of this research work.  The 

performance and limitations of the developed granulation tissue detection systems 

was investigated and is analysed in section  5.2.  This was performed by first 

developing ulcer tissue reference images utilising the sample images of ulcer tissues 

taken from the ulcer images collected for this study.  Then, the granulation detection 

system was applied on these images and subsequently the sensitivity, specificity and 

accuracy of the system was analysed accordingly.  The application of the developed 

granulation detection system is explored by utilising the system to detect the regions 

of granulation tissues on seventy-five ulcer images in section  5.3.  The results 

obtained are discussed and analysed using the granulation assessment reference 

images.  A general discussion and summary of the overall results obtained is 

presented in section  5.4. 

5.2 Performance Analysis of Granulation Tissue Detection Algorithms 

The main objective of this research work is to identify regions of healthy granulation 

tissue on ulcers surfaces as a measure of the healing progression.  This was performed 

by extracting the grey level images that showed the distribution of the haemoglobin 

on the ulcers’ surfaces in colour images of the chronic ulcers.  The identified regions 

of the haemoglobin distribution, or granulation tissue regions, were then segmented 

from the rest of the ulcer image and their surface area was measured to provide an 

objective measure of the ulcer healing progression. 
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However, before applying the developed granulation detection algorithms on real 

ulcer images, it was important to investigate the algorithms’ performance and 

limitations.  Ulcer tissue reference images that contained the regions of ulcer tissues 

were developed to investigate the performance of the developed algorithms. 

5.2.1 Ulcer Tissue Sample Images 

A representative set of tissue sample images was required to create the ulcer tissues 

reference images that contained the regions of the ulcer tissues.  Tissue sample images 

were selected from the ulcer images collected in this study.  There were a few points 

that needed to be considered when selecting the tissue samples from the ulcer images: 

a) The sample image had to represent a pure tissue type that was not mixed 

with any other type of tissues on the ulcer’s surface.  

b) The sample image had to not include any shadows or specular reflections 

that might have distorted the data and caused a huge variation in the 

intensity values distribution.   

c) The sample images had to be selected after colour shifts corrections had 

been performed on the acquired ulcer images. 

Three types of ulcer tissues were included in the tissue reference images, 

granulation tissue, slough and necrotic tissue.  Epithelial tissue was not included as it 

represents later stages of ulcer healing and therefore was not included in the dataset of 

the ulcer images collected for this study.  Skin sample images were also included to 

represent the skin surrounding the ulcer. 

Tissue types were identified on the acquired ulcer images with the help of 

dermatologists at Hospital Kuala Lumpur.  Then, the sample images are manually 

selected from ulcer images.  Three sample images of the same tissue type were 

selected from one image and then combined to form one tissue sample image.  For 

each combined tissue sample image, the Red, Green and Blue channel images were 

identified as the three main data vectors of the tissue sample image.  To ensure further 
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accuracy, outliers were identified from the Red, Green and Blue channels data vectors 

for each combined tissue sample image and they were later removed.  Outliers 

generally are data points whose values differ significantly from the rest of the data 

within the sample and affect the mean and standard deviation of the sample.  In 

reference to the tissue samples images selected in this study, the outliers could have 

been a few random pixels of specular reflections, shadow or mixed tissues that were 

accidently included within the sample images.  Identifying and removing these outlier 

pixels was important before creating the tissue images. 

The outliers were identified using the concept of box plots.  Box plots are 

graphical means to display groups of numerical data and indicate any outliers within a 

sample, if any.  Figure  5.1 shows a diagram illustrating the concept of box plots. As 

can be seen from the figure, the box plot consists of a box extending from the first 

quartile (Q1) which represents 25% of the data in the sample to the third quartile (Q3) 

which represents 75% of the data.  The length of the box is called the inter-quartile 

range (IQR) and is defined as IQR=|Q3-Q1|. The red line within the box indicates the 

median (M) of the sample.  The lower and upper inner fences are defined as |Q1-1.5 

IQR| and |Q3+1.5IQR|.  The whiskers of the box plot extend to the extreme data 

within the inner fences.  Data points located outside the inner fences are considered 

outliers in the sample [80]. 

 
Figure  5.1: A schematic diagram illustrating a box plot with detected outliers 
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One of the advantages of using box plots is that they indicate the degree of 

dispersion in the data and identify outliers without making any assumptions of the 

underlying statistical distribution of the sample.  In this study, the pixel distribution of 

the selected tissue sample images did not assume a normal distribution and hence the 

IQR was a more robust estimate of the spread of the data than the standard deviation, 

and more representative of the outlier detection.  In the selected tissue sample images 

for this study, most of the outliers identified were random pixels of mixed tissues that 

were accidently included within the sample images. 

The selected tissue sample images and total number of pixels of each tissue type 

after identifying and removing the outliers are specified in Table  5.1.  The variation in 

the number of sample images and total pixels was due to the lack of images that 

contained regions of pure tissues samples, especially slough and necrotic tissues.   

Most of the acquired ulcer images for this study contained a mixture of at least two 

types of tissues especially slough and granulation tissues respectively. 

Table  5.1: Ulcer tissue sample images and total number of pixels selected 

Tissue Type Number of Sample Images Total Number of Pixels 

Granulation Tissue 10 Sample Images 1258 Pixels 

Slough Tissue 4 Sample Images 406 Pixels 

Necrotic Tissue 3 Sample Images 209 Pixels 

Skin Tissue 5 Sample Images 4218 Pixels 

For each type of tissues (granulation, slough, necrotic and skin tissues), pixels 

from Red, Green and Blue channels of all the sample images were collected to obtain 

its distribution.  Figure  5.2, Figure  5.3, Figure  5.4, and Figure  5.5 show the obtained 

overall distribution of the Red, Green and Blue channels pixels of granulation, slough, 

necrotic and skin tissues respectively. 
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Figure  5.2: Distributions of Red, Green and Blue channels pixels of granulation tissue 

 
Figure  5.3: Distributions of Red, Green and Blue channels pixels of slough tissue 

 
Figure  5.4: Distributions of Red, Green and Blue channels pixels of necrotic tissue 

 
Figure  5.5: Distributions of Red, Green and Blue channels pixels of skin tissue 
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The probability density functions (PDFs) of the pixel distribution of the Red, 

Green and Blue channels pixels of granulation, slough, necrotic and skin tissues were 

computed and utilized to create the ulcer tissue image.  Based on the PDFs of the 

pixel distribution of the Red, Green and Blue channels pixels of all four tissues 

sample images: granulation, slough, necrotic and skin, image patches were created to 

represent each type of tissue.  For each tissue image patch, the pixels values were 

selected based on the Red, Green and Blue vectors and their distribution was selected 

from the PDF of the tissue accordingly.  For example, to create the R-channel vector 

of the granulation tissue image patch, the following steps are followed:  

a) Select the size of the image patch as 50x50 pixels, 100x100 pixels or 200x200 

pixels, and so on, depending on the size of the ulcer tissue reference that needs 

to be developed.   

b) Multiply the size of the image patch with the computed PDFs for the R-

channel vector of the granulation tissue to determine the required number of 

pixels of each specific intensity value from the R-channel vector.  

c) Create a new R-channel data vector of the same size as the image patch that 

contains a mixture of all pixel values of the original R-channel distributed 

according to the PDFs computed previously. 

d) Repeat steps 1- 3 for the remaining G-channel and B-channel vectors to create 

the granulation tissue image patch. 

Figure  5.6 shows 200x200 pixel sized image patches of skin, granulation, slough 

and necrotic tissues created utilising the PDFs of the Red, Green and Blue channels of 

each tissue type respectively. 

 

 



 

104 

 

     
 

Figure  5.6: Image patches of size 200x200 pixels of skin, granulation, slough and 

necrotic tissues 

5.2.2 Ulcer Tissue Image 

In analysing the algorithm performance, three main aspects of the performance 

analysis needed to be investigated: 

a) The developed algorithm had to be able to clearly detect and distinguish 

granulation tissue from the rest of the ulcer tissues. 

b) The developed algorithm had to be able to detect regions of granulation tissue 

of different sizes in pixel units.  

c) The developed algorithm had to be able to detect regions of granulation tissue 

in images corrupted by white Gaussian noise. 

(a) 200x200 pixels skin tissue image (b) 200x200 pixels granulation tissue image 

(c) 200x200 pixels slough tissue image (d) 200x200 pixels necrotic tissue image 
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The ulcer tissue image was designed according to the above criteria utilising the 

tissue image patches developed in the previous section. The developed ulcer tissue 

image is shown in Figure  5.7.  It consisted of a 250x250 pixel skin image that 

includes slough tissue and necrotic tissue regions of a size of 50x100 pixels 

accordingly. Two sets of granulation tissue regions were included within the tissues 

regions.  The first set was included between the skin and slough tissues while the 

second set was included within the skin and necrotic tissues.  This was necessary to 

test the ability of the algorithm to detect and distinguish granulation tissue from the 

rest of the tissues types.  Furthermore, each set of granulation tissue regions consisted 

of eight patches of sizes 30x30, 20x20, 10x10, 5x5, 4x4, 3x3, 2x2, and 1x1 pixels 

respectively.  This in turn, was required to test the ability of the algorithm to detect 

granulation tissue regions of different sizes in pixel units. 

 
Figure  5.7: Ulcer tissue image 

Granulation tissue regions in the ulcer tissue image were manually segmented 

from the rest of the image to create a binary reference image as shown in Figure  5.8.  

In this binary image, referred to as a granulation tissue reference binary image, the 

granulation regions were represented with white pixels (pixels of value 1) while the 

rest of the image was represented with black pixels (pixels with value 0).  The 
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granulation tissue reference binary image was used to analyse the performance of the 

developed granulation detection algorithm as it is shown later in section  5.3.2. 

 
Figure  5.8: Granulation tissue reference binary image 

5.2.3 Detection of Granulation Tissue Patches 

The data transformation algorithms discussed in Chapter 4 (section  4.5) were applied 

on the ulcer tissue image developed in the previous section to extract the haemoglobin 

image.  The extracted haemoglobin image represented patches of granulation tissue 

with intensity value range that could be contrasted from the rest of the image.   Figure 

 5.9 shows the extracted haemoglobin image from the ulcer tissue image.  It can be 

seen that the two sets of granulation tissue patches in all sizes are clearly identified 

with a distinctive low intensity value range (dark shade) that can be segmented from 

the rest of the image. 

 
Figure  5.9: Extracted haemoglobin image from ulcer tissue image 
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For further analysis of the algorithm performance, the identified granulation tissue 

patches needed to be segmented from the rest of the image.  Figure  5.10 (a) shows the 

extracted haemoglobin image and Figure  5.10 (b) shows its bimodal histogram which 

clearly indicates two distinctive regions, the identified granulation patches (the dark 

region) and rest of the image (the bright region).  A threshold value of 0.43 was 

determined using Otsu’s thresholding method explained in Chapter 3 (section  3.7).  

The extracted haemoglobin image was then segmented using the threshold value so 

that the pixels with intensity values less than the threshold value were assigned the 

intensity value 1 (white) and the pixels with an intensity value higher than the 

threshold value were assigned the pixel value 0 (black).  Figure  5.10 (c) shows the 

binary image resulting from Otsu’s thresholding based segmentation where the 

granulation patches were segmented from the rest of the image. 

 

 

 
 

Figure  5.10: Otsu’s thresholding based segmentation of haemoglobin image extracted 

from ulcer tissue image 

(a)  Extracted haemoglobin image (b)  Histogram of extracted haemoglobin image 

(c)  Binary image obtained from Otsu’s based segmentation of haemoglobin image 
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5.2.4 White Gaussian Noise Models 

Real images are normally corrupted with some degree of white noise affecting the 

resolution and quality of the image.  The more noise added to the image, the more 

degraded the image.  White Gaussian noise images were generated and added to the 

ulcer tissue image to simulate and test the granulation detection system’s robustness 

to noise before testing with real ulcer images. 

Let I  be the ulcer tissue image and N  be the developed white Gaussian noise 

image.  The ulcer tissue reference image R would consist of: 

       NIR                                        ( 5.1)                                   

Image N is a noise image simulating white Gaussian noise defined as follows: 
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where i  refers to the ith pixel of the noise image, and   and  are the mean and 

standard deviation of the Gaussian distribution, respectively. 

A common way of measuring the effect of adding noise to a signal is the signal to 

noise ratio (SNR) which is calculated as follows: 
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where P is the power and A  is the RMS (root mean square) value of the signal.  

Assume the signal x , the RMS value of the signal relates to its mean and standard 

deviation as follows: 
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where  RMSx  is the RMS value of ,x x is the mean value of ,x and x is the standard 

deviation of x .  Hence Equation ( 5.4) can be written as follows: 
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If x  is a zero-mean, the RMS value of x  is equal to the standard deviation, Equation  

( 5.5) can be written as: 
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Using Equation ( 5.6), noise images could be generated with specified noise 

variance values and added to the ulcer tissue image to create the ulcer tissue reference 

images with varying noise levels.  The developed ulcer tissue image had a constant 

variance value of 89.59Signal .  In this work, twenty four ulcer tissue reference 

images are created with SNR values ranging from 36dB, which was the highest SNR 

level associated with the ulcer tissue reference image which resulted by adding a 

noise image with a variance 1Noise , until 1dB, which was the lowest SNR level 

which resulted by adding a noise image of a variance 51Noise .  Table  5.2 lists the 

variance values of the ulcer tissue image, the variance values of the noise images 

added and the corresponding SNR value of the output ulcer tissue reference images 

accordingly. 

Table  5.2: Signal to Noise Ratio (SNR) values of ulcer tissue reference images 

 
No. 

Image 
Variance 
 ( Signal ) 

Noise 
Variance  
( Noise ) 

SNR 
(dB) 

 

 
No. 

Image 
Variance 
 ( Signal ) 

Noise 
Variance  
( Noise ) 

SNR 
(dB) 

 
1 59.89 1 36 13 59.89 15 12 
2 59.89 2 30 14 59.89 16 11 
3 59.89 3 26 15 59.89 18 10 
4 59.89 4 24 16 59.89 21 9 
5 59.89 5 22 17 59.89 24 8 
6 59.89 6 20 18 59.89 28 7 
7 59.89 7 19 19 59.89 30 6 
8 59.89 8 17 20 59.89 32 5 
9 59.89 9 16 21 59.89 36 4 

10 59.89 11 15 22 59.89 41 3 
11 59.89 12 14 23 59.89 46 2 
12 59.89 13 13 24 59.89 51 1 

Figure  5.11 shows an example of one of the developed ulcer tissue reference 

images.  Figure  5.11 (a) shows the original ulcer tissue image while Figure  5.11 (b) 

shows the ulcer tissue reference image which resulted by adding a noise image with 
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variance of  18Noise  .  The corresponding SNR of the image was calculated and 

found to be about 10dB as indicated in Table  5.2.  The performance of the developed 

algorithms for detecting regions of granulation tissue were investigated using the 

ulcer tissue reference images created with varying Gaussian white noise levels and are 

discussed in the following section. 

 
 

Figure  5.11: Developed ulcer tissue reference image with SNR of 10dB 

5.2.5 System Performance Measures 

The ulcer tissue reference images were created to test the algorithm performance 

in detecting regions of granulation tissue of different sizes and clearly distinguishing 

them from the rest of the ulcer tissues in images corrupted with Gaussian white noise.  

The developed system for identifying and segmenting granulation tissue patches and 

Otsu’s thresholding algorithms were applied on the twenty-four ulcer tissues reference 

images created with varying Gaussian white noise levels.  When applying noise to the 

ulcer tissue reference images accordingly, some granulation pixels might have been 

detected as non-granulation pixels and vice versa.  Hence, the algorithm performance 

could be further investigated comparing the resulted binary images from the 

algorithms with the granulation tissue reference binary image shown in Figure  5.10. 

For each binary image which resulted from the algorithms, the pixels could be 

divided into true positives (TP), true negatives (TN), false negatives (FN) and false 

positives (FP).  True positives (TP) were granulation pixels that are correctly detected 

(a)  Original ulcer tissue image  (b)  Ulcer tissue reference image  
with SNR of 10dB 
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as granulation, false positives (FP) were non-granulation pixels that are incorrectly 

detected as granulation, true negatives (TN) were non-granulation pixels that were 

correctly detected as non-granulation, and false negatives (FN) are granulation pixels 

that are incorrectly detected as non-granulation.  It is useful to note that the total 

number of granulation pixels of all the granulation patches (true positives) in the 

granulation tissue reference binary image was 2910 while the rest of the pixels that 

corresponds to non-granulation pixels were 59590. 

Figure  5.12 shows the number of granulation pixels which were detected as non-

granulations (false negatives) for all of the twenty-four ulcer tissues reference images.  

It was noted that at the reference image with the SNR level of 17dB, the number of 

false negative pixels increased slowly till reaching the SNR level of 14dB.  It then 

increased rapidly above 100 pixels as more noise was added to the image.  The 

maximum number of detected false negatives was 355 out of 2910 that occurred at the 

SNR level of 1dB. 

 
Figure  5.12: Number of granulation pixels detected as non-granulation for all ulcer 

tissue reference images 

Figure  5.13 shows the number of non-granulation pixels that were wrongly 

detected as granulation (false positives) for all of the twenty four ulcer tissue 

reference images.   It was noted that the number of detected false positives generally 

increased for the reference image with SNR levels of 16dB and below.  At SNR levels 

of 16-10dB, the number of false positives was less than 1000 pixels. It increased 

rapidly beyond 1000 pixels for SNR levels of 9dB and below. The maximum number 
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of detected false positives was 26714 out of 59590 which occurred at the SNR level 

of 1dB. 

 
Figure  5.13: Number of non-granulation pixels detected as granulation for all ulcer 

tissue reference images 

Statistical measures such as sensitivity, specificity and accuracy were employed to 

analyse the performance of the granulation detection algorithm. Sensitivity and 

specificity are statistical measures used to analyse the performance of a binary 

classification test.  The sensitivity measured the proportion of the true positives 

(granulation pixels) that were correctly identified as such (detected as white pixels) 

[81], [82].  Hence the value of the sensitivity represented the probability that the 

algorithm could correctly identify granulation pixels in the image.  Sensitivity was 

calculated as follows: 

FNTP
TPySensitivit


  
 

 

                                    ( 5.7)                                    

Since sensitivity was calculated from the population of true positives, a negative 

result in a highly sensitive test was used to rule out the condition [82].  This means if 

the developed algorithm has a high sensitivity value, the detected black pixels in the 

image most likely are non-granulation pixels. 

The specificity on the other hand measured the proportion of true negatives (non-

granulation pixels) that were identified as such (detected as black pixels) [81], [82]. 



 

113 

Hence, the value of the specificity represented the probability that the algorithm could 

correctly identify non-granulation pixels in the image.  Specificity was calculated as 

follows: 

       FPTN
TNySpecificit


  
 

 

                                    ( 5.8)                                 

Since specificity was calculated from the population of true negatives, a positive 

result in a highly specific test was used to rule in the condition [82].  This means that 

if the developed algorithm has a high specificity value, the detected white pixels in 

the image most likely are granulation pixels. 

The accuracy was a measure of the proportion of true pixels (both true positives 

and true negatives)[81].  In other words, accuracy measured how many granulation 

and non-granulation pixels were correctly identified and detected from all of the 

pixels in the image. 

     TNFNFPTP
TNTPAccuracy




                                 ( 5.9)                             

Figure  5.14 shows the sensitivity, specificity and accuracy values were obtained 

for all twenty-four ulcer tissue reference images with varying Gaussian white noise 

levels indicated with SNR levels from the maximum of 36dB down to the minimum 

of 1dB.  From the figure, it is evident that the system detects regions of granulation 

tissue with high sensitivity, specificity and accuracy for SNR levels above 8dB.  

Further analysis on the system performance is presented in the next section. 
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Figure  5.14: Sensitivity, specificity and accuracy of granulation detection system for 

all ulcer tissue reference images 

5.2.6 Discussion and Analysis 

Generally, the system retained high performance values (sensitivity, specificity and 

accuracy) of 99.0% and above for images with SNR levels above 14dB.  In particular, 

the system clearly detected all granulation patches in both slough/skin and 

necrotic/skin regions with 100% sensitivity, specificity and accuracy for images with 

SNR levels above 19dB.  For the reference image with the SNR level of 20dB which 

corresponded to the noise variance of about 6 , the system detected one 

granulation pixel only as non-granulation (false negative), while all other pixels were 

correctly identified according to the binary reference image as shown in Figure  5.15.  

This caused an insignificant drop in sensitivity to about 99.97%. 

 
Figure  5.15: Detection of granulation patches in image with SNR of 20 dB 
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For the reference image with the SNR level of 17dB corresponding to noise 

variance of 8 , more granulation pixels were detected as non-granulation (false 

negatives) as shown in Figure  5.16 causing the sensitivity to drop to 99.83%.  This 

also caused an insignificant drop in accuracy to 99.99%. 

 
Figure  5.16: Detection of granulation patches in image with SNR of 17dB 

For the reference image with the SNR level of 16dB corresponding to noise 

variance of 9 , one non-granulations pixel was detected as granulation (false 

positives) and several granulation pixels were detected as non-granulation (false 

negatives) as shown in Figure  5.17.  This caused the sensitivity, specificity and 

accuracy values to drop slightly to 99.69%, 99.99% and 99.98% respectively. 

 
Figure  5.17: Detection of granulation patches in image with SNR of 16dB 

For the reference images with  the SNR level of 15dB and 14dB which 

corresponded to the noise variance of 11  and 12  , respectively, more non-

granulations pixels were detected as granulation (false positives) and more 

granulation pixels were detected as non-granulation (false negatives) as shown in 
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Figure  5.18 and Figure  5.19.  Subsequently, the sensitivity, specificity and accuracy 

values dropped to 99.76%, 99.93% and 99.92% for the reference image with the SNR 

of 15dB and 98.66%, 99.97% and 99.91% for the reference image with the SNR of 

14dB respectively. 

 
Figure  5.18: Detection of granulation patches in image with SNR of 15dB 

 
Figure  5.19: Detection of granulation patches in image with SNR of 14dB 

When more noise was added to the images, more false negative and false positive 

pixels were detected and subsequently the performance of the system decreased 

gradually.  The system generally retained performance values of 90% and above in 

images with SNR levels of 13dB - 8dB.  However, the system failed to detect all of 

the granulation patches as more noise was added.  For example, for the image with the 

SNR level of 12dB, which corresponded to the noise variance of 15 , the 1x1 pixel 

granulation patch was detected at the skin/slough region but not detected at the 

necrotic/skin region for the same image. This is illustrated in Figure  5.20 where the 

1x1 pixel granulation patch is indicated by the arrows in the slough/skin region on the 

first row of the granulation patches and the necrotic/skin region at the second row of 
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the granulation patches.  The performance values obtained were 96.05%, 99.68% and 

99.52% for sensitivity, specificity and accuracy respectively. 

 
Figure  5.20: Detection of granulation patches in image with SNR of 12dB 

For the reference image with the SNR level of 10dB ( 18 ), the 1x1 pixel 

granulation patch could be distinguished clearly in the extracted haemoglobin image 

in either the slough/skin or the necrotic/skin regions.  However, due to the noise 

added to the image, those pixels and others were detected as granulation pixels as 

indicated by the arrows in Figure  5.21  Hence, the system could identify 1x1-pixel 

granulation patches or distinguish them from Gaussian noise at SNR levels below 

10dB. The performance values dropped accordingly to 94.67%, 98.57% and 98.38% 

for sensitivity, specificity and accuracy respectively. 

 
Figure  5.21: Detection of granulation patches in image with SNR of 10dB 

For reference the image with the SNR level of 8dB ( 24 ), the 1x1 pixel 

granulation patch could not be identified by the system in either the slough/skin or the 

necrotic/skin regions.  Furthermore, the 2x2-pixel granulation patch in the 
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necrotic/skin region was not detected.  The arrows in the first row of granulation 

patches row in Figure  5.22 indicate that the 3x3 pixel and 2x2 pixel granulation 

patches are detected in the slough/skin region.  The arrows in the second row of 

granulation patch row indicate that only the 3x3 pixel granulation patch was detected 

in the necrotic/skin region. The performance values dropped accordingly, to 89.79%, 

96.13% and 95.83% for sensitivity, specificity and accuracy respectively. 

 
Figure  5.22: Detection of granulation patches in image with SNR of 8dB 

Subsequently with increasing the amount of noise added to the image, the image 

got more corrupted and more false pixels (false negatives and false positives) were 

identified which affected the detection of the granulation tissue patches. Granulation 

patches were detected but they were distorted with many false pixels detected due to 

noise.  Figure  5.23 shows the detection of the granulation patches in the image with 

the SNR level of 6dB which corresponded to the noise variance of 30  in which 

the detection of the granulation patches was distorted with image noise, especially for 

patches of the sizes 4x4, 3x3 and 2x2 accordingly.  The performance values dropped 

to 91.10%, 85.62% and 85.87% for sensitivity, specificity and accuracy respectively.  

The effect of the noise was more apparent in Figure  5.24 in which granulation patches 

could not be distinguished from the noise in the images with the SNR levels of 4dB (

36 ).  The performance values dropped further down to 90.0%, 74.69% and 

75.40% for sensitivity, specificity and accuracy respectively. 
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Figure  5.23: Detection of granulation patches in image with SNR of 6dB 

 
Figure  5.24: Detection of granulation patches in image with SNR of 4dB 

It is evident from Figure  5.14 that performance values decreased as more noise 

was added to the images and more false pixels were detected.  It could be noted that 

the sensitivity values change gradually as more noise was added to the image.  For the 

reference images with SNR values of 36dB to 4dB, the sensitivity values remain 

above 90% with the maximum value of 100% for images with SNR levels of 36dB to 

19dB.  Sensitivity dropped to 89.62%, 89.14% and 87.80% for images with SNR 3dB, 

2dB and 1dB respectively. This implies that the system can perform with high 

sensitivity even with degrading noise levels. It also implies that given the existing 

granulation region, the system has a maximum probability of 100% and minimum 

probability of 87.80% of identifying the region as granulation tissue under the 

existence of random white Gaussian noise.  On the other hand, specificity values 

change more rapidly as more noise is added.  For reference images with SNR levels of 

36dB to 8dB, the specificity values obtained were more than 96.0% with the 

maximum value of 100% for the images with the SNR levels of 36dB to 16dB.  
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However, for the image with the SNR level of 7dB, the specificity dropped to 87.83% 

and remained above 80.0% for the image with the SNR level of 5 dB.  It dropped 

down drastically after that to 74.69%, 67.28%, 59.41% and 55.17% for images with 

SNR levels of 4dB, 3dB, 2dB and 1dB respectively.  This implies that given a  

existing non-granulation region, the system has a maximum probability of 100% and 

minimum probability of 55.17% of identifying the region as granulation tissue under 

the existence of random white Gaussian noise. 

From the discussion above, it can be deduced that the developed system is able 

identify and detect regions of granulation tissue, from the smallest region size of 1x1 

pixels and above, in ulcer images corrupted with white Gaussian noise corresponding 

to SNR levels of more than 12dB with performance values of more than 96.0% 

sensitivity, 99.6% specificity and 99.5% accuracy.  For the images with SNR levels of 

12dB and below, some granulation regions, especially of sizes 1x1, 2x2 and 3x3 

pixel, might not be detected due to an increased number of detected false pixels for 

higher noise levels. 

5.3 Detection of Granulation in Ulcer Images 

As highlighted in Chapter 4 (section  4.3.2), seventy-five images of chronic ulcers 

were included in this study.  The developed granulation detection system was applied 

on these images to detect the regions of granulation tissue on these ulcers surfaces.  

First, grey-level images that showed the distribution of haemoglobin on the ulcers’ 

surfaces, referred to as haemoglobin images, were extracted from the colour images of 

the chronic ulcers using the data transformation algorithms illustrated in Chapter 4 

(section  4.5).  The identified regions of the haemoglobin distribution, or granulation 

tissue regions, were then segmented from the haemoglobin images utilising clustering 

based segmentation algorithms explained in Chapter 4 (section  4.6.2).  The surface 

area of the detected granulation tissue regions was measured to provide an objective 

measure of the ulcer healing progression. 
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5.3.1 Optimum Number of Clusters for Clustering-Based Segmentation 

The clustering based segmentation algorithms using fuzzy c-means clustering was 

applied iteratively on each extracted haemoglobin image with the number of clusters 

k  ranging from 2k till 10k  to determine the optimum number of clusters 

needed for the segmentation of the granulation tissue as explained in Chapter 4 

(section  4.6.3).  The segmentation difference error at each k-th iteration step was 

computed using Equation ( 4.4) and plotted for all of the ulcer images.  The optimum 

number of clusters was then determined as the cluster number at which the minimum 

segmentation difference error occurred.  Figure  5.25 shows an example of a plot of 

the segmentation difference error obtained from applying the clustering based 

segmentation on one ulcer image iteratively for 2k till 10k . The optimum 

number of clusters was chosen as 5k at which the minimum difference error in this 

case as indicated in Figure  5.25. 

 
Figure  5.25: A plot of the segmentation difference error obtained from applying the 

clustering based segmentation on one ulcer image iteratively for k=2 till k=10 

In some cases, the difference error reached a certain value at a specific cluster 

number and did not change much after that with increasing the cluster number 

resulting in an L shaped curve as indicated in Figure  5.26.  In this case, the optimum 

number of clusters was chosen to be the cluster number after which the change in the 

error value between two consecutive cluster numbers was very small and almost 

constant.  This point occurred normally at the knee of the graph as shown in Figure 

 5.26. 
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Figure  5.26: A plot of the segmentation difference error obtained from applying the 

clustering based segmentation on one ulcer image iteratively for k=2 till k=10 

Figure  5.27 shows the minimum segmentation difference error obtained when 

applying the clustering-based segmentation algorithms for each ulcer image. The 

figure also indicates the optimum number of clusters at which the minimum 

segmentation difference error occurred for each ulcer image. 

 
Figure  5.27: Minimum segmentation difference error and optimum number of clusters 

obtained for each ulcer image 

Figure  5.28 shows the frequency at which the optimum number of clusters 

occurred among all the cluster numbers from 2k till 10k  for all of the ulcer 

images.  It can be noted from the figure that the optimum number of clusters at which 
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the granulation tissue was successfully segmented with the minimum difference error 

was between 3k and 5k  with most cases occurring at 4k and 5k .  This can 

be explained by the fact that the surface of most ulcers contains a mixture of 

granulation, slough and necrotic tissues along with some damaged tissues or foreign 

materials that may exist on the surface.  Hence, in order to segment and separate the 

granulation tissue from other tissues and regions on the surface and the surrounding 

skin, a cluster number of 4k or 5k  is most appropriate.  A few ulcers may have 

more foreign materials or damaged tissues within the ulcer surface and may 

subsequently need bigger cluster numbers, such as 6k to segment the granulation 

tissue from the rest of the haemoglobin image as indicated in Figure  5.28. 

 
Figure  5.28: Frequency of optimum cluster number  

Eventually, the granulation tissue detection system that was developed utilising 

both data transformation algorithms and clustering based segmentation algorithms 

was applied on all seventy-five ulcer images included in this study.  The clustering 

based segmentation of the identified granulation regions is employed on each 

extracted haemoglobin image using fuzzy c-means clustering-based segmentation 

with the optimum number of clusters determined for that particular image as 

explained above.  The surface area of the detected granulation tissues was then 

measured using Equation ( 4.5) illustrated in Chapter 4.  The original colour images, 

the extracted haemoglobin images, and the detected granulation images in each of the 

seventy-five ulcer images are included in Appendix B. 
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5.3.2 Correlation and Overlap Analysis 

The developed granulation detection system has been applied on the seventy-five 

ulcer images to identify and segment the regions of the granulation tissue on the 

ulcers’ surfaces.  The amount of the detected granulation tissue was then measured 

from the overall ulcer region and compared with the amount of granulation tissue 

traced by the dermatologists in the granulation assessment reference images illustrated 

in Chapter 4 (section  4.6.1).  Figure  5.29 represents a scatter plot of the amount of the 

detected granulation tissue using the developed granulation detection system versus 

the amount of granulation tissue traced by the dermatologists.  Generally, it is noted 

from the figure that there is a strong similarity between the amount of granulation 

tissue detected by the developed system and the one traced by the dermatologists. 

 
Figure  5.29: Scatter plot of detected granulation tissue using the developed 

granulation detection system versus the amount of granulation tissue traced by the 

dermatologists 

In order to measure the relationship between the system’s detection and 

dermatologists’ tracings of the granulation tissue, the Pearson correlation coefficient 

was used.  The Pearson correlation coefficient, which is denoted as r , was used to 

calculate the linear dependency between two measures or variables.  It is defined as 

the covariance of the variables divided by the product of their standard deviation.  

Given two samples X andY , the Pearson correlation coefficient is calculated as 

follows: 
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where n is the number of data points in the sample and X and Y are the sample 

means. The value of the correlation coefficient ranges from 0 to (+)1 or (-)1 with 

values near (+)1 and (-)1 indicating strong correlation. In this study, the Pearson 

correlation coefficient was calculated using Equation ( 5.10).  The correlation value 

obtained was 0.961 indicating a strong positive relationship and similarity between 

the amount of the granulation tissue detected by the system and the amount traced by 

the dermatologists. 

The high correlation value obtained indicated a strong relationship and similarity 

between the system detection and the dermatologists’ tracing (dermatologists’ 

assessments) of the granulation tissue.  However, it was important to inspect the 

actual amount of overlap (regions shared) between the granulation tissue detected by 

the system and the amount traced by the dermatologists for further analysis.  The 

overlap between both amounts of granulation tissue was calculated as follows: 

100**2











FPFNTPTP
TPoverlap   

          

( 5.11)                  

where (TP) are granulation pixels in the dermatologists’ assessment that are correctly 

detected by the system as granulation, (FP) were non-granulation pixels that are 

incorrectly detected as granulation,(TN) were non-granulation pixels that were 

correctly detected as non-granulation, and (FN) are granulation pixels that are 

incorrectly detected as non-granulation.  

The amount of overlap between the system’s detection and dermatologists’ 

assessments of the granulation tissue was calculated using Equation ( 5.11) for all 

seventy-five ulcer images.  The results obtained can be divided into three main cases: 

Case One: Here, both amounts of the detected granulation tissue and the assessed 

granulation tissue are quite similar with a high percentage of overlap between the two 

regions.  Figure  5.30 shows a schematic diagram of this case.  From the figure it is 
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evident that both regions occupy almost the same location with similar amounts on 

the ulcer’s surface which results in a high overlap between both regions. 

 
Figure  5.30: Schematic diagram of the overlap between detected and assessed 

granulation tissue regions (case one) 

Such cases occurred mostly in ulcers where the granulation tissue covered most of 

the ulcer as one whole region or as a few regions with defined boundaries.  In this 

case, the dermatologists found it quite easy to trace the granulation regions and draw 

lines around their boundaries to separate them manually from the rest of the ulcer 

when creating the granulation tissue reference images.  Subsequently, the amount of 

detected granulation regions would be similar to the assessed ones within similar 

locations on ulcer surface which results in a high percentage of overlap. 

 
Figure  5.31: Percentage overlaps between detected and traced granulation tissue  
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In this study, this case has occurred in sixteen ulcer images as shown in Figure 

 5.31.  Table  5.3 lists the amount of granulation tissue traced by dermatologists, the 

amount of granulation tissue detected by the system, the percentage difference and 

percentage overlap for each of the sixteen ulcer images. The difference range between 

the two regions in these cases was found to be within 0.04-7.53% while the amount of 

the overlap between both regions was found to be within 89.94% - 98.80% percentage 

of overlap. The average percentage difference was estimated as 3.6% while the 

average percentage overlap was 94.7% which indicates that both amounts of detected 

and assessed granulation regions were similar with a high percentage of overlap.   

Table  5.3 Percentage overlaps between detected and traced granulation tissue  

Ulcer 
No. 

Dermatologists 
Tracings (%) 

System Detection 
(%) 

Difference 
(%)  

Percentage 
Overlap (%) 

1 47.56 48.94 1.38 89.94 
2 100.00 96.09 3.91 98.01 
3 66.98 71.76 4.78 90.28 
4 85.20 86.82 1.62 95.77 
5 90.03 89.47 0.56 97.65 
6 70.21 64.35 5.86 89.84 
7 100.00 97.12 2.88 98.54 
8 92.61 93.71 1.10 93.71 
9 90.16 87.40 2.77 91.94 
10 74.62 82.15 7.53 92.86 
11 63.95 67.46 3.51 95.11 
12 97.96 98.00 0.04 98.80 
13 100.00 93.77 6.23 96.78 
14 96.40 98.07 1.67 97.31 
15 87.81 94.13 6.32 95.55 
16 93.15 86.12 7.02 93.37 

Average 3.6% 94.7% 

Figure  5.32 shows an example of this case (case number 13 in Figure  5.31). 

Figure  5.32 (a) shows the original ulcer image in which the granulation tissue 

appeared to cover the whole ulcer surface with well defined boundary that could be 

easily traced.  Figure  5.32 (b) shows the extracted haemoglobin image with the 

granulation tissue region identified with a distinctive intensity range (darkest region).  

Figure  5.32 (c) shows the traced region of the granulation tissue while Figure  5.32 (d) 

shows the detected region of granulation tissue.  Both regions occupied the same 

location with similar amounts which led to a high percentage of overlap.  The 
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calculated percentage of overlap in this case was 96.78% with a difference of 6.2% 

between both regions. 

 

 
 

Figure  5.32: Example of granulation tissue detection (case one) 

Case Two: Here, both the amount of the detected granulation tissue and the 

amount of the assessed granulation tissue are quite similar but with a low percentage 

of overlap between the two regions.  Figure  5.33 shows a schematic diagram of this 

case.  From the figure it is evident that both regions have quite similar amounts on the 

ulcer’s surface.  However, both regions occupy slightly different locations within the 

ulcer which results in a low percentage of overlap between both regions. 

(a)  Original colour ulcer image (b)  Extracted haemoglobin image 

(c)  Granulation tissue reference image (d)  Detected granulation region image 
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Figure  5.33: Schematic diagram of the overlap between detected and assessed 

granulation tissue regions (case two) 

Such cases occurred mostly in ulcers where the granulation tissue was scattered 

all over the ulcer region mixed with other tissues especially with slough tissue.  The 

dermatologists found it quite difficult to discern the regions of the granulation tissue 

and draw lines along their boundaries to separate them manually from the rest of the 

ulcer when creating the granulation tissue reference images.  This led to either over 

segmentation or under segmentation of the granulation tissue in the reference images 

particularly in regions where the granulation tissue was heavily mixed with slough 

and could not be discerned visually.  Subsequently, this led to regions of granulation 

tissue that exist in the reference images not being detected by the system (over 

segmentation of granulation tissue in reference image) or vice versa.  In either case, 

the amount of the detected granulation regions could be similar to the assessed ones 

but would occupy quite different locations on the ulcer’s surface which results in a 

low percentage overlap. 

In this study, this case has occurred in twenty-two images as shown in Figure 

 5.34.  Table  5.4 lists the amount of granulation tissue traced by dermatologists, the 

amount of granulation tissue detected by the system, the percentage difference and 

percentage overlap for each of the twenty-two ulcer images. The difference range 

between the two regions in was found to be within 0.1 -5.0% while the amount of the 

overlap between both regions is found to be within 58.05% - 88.62% percentage of 

overlap. The average percentage difference was estimated as 2.5% while the average 
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percentage overlap was 73.5% which indicates that both amounts of the detected and 

assessed granulation regions were similar but with a low percentage of overlap.  

 
Figure  5.34: Percentage overlaps between detected and traced granulation tissue  

Table  5.4 Percentage overlaps between detected and traced granulation tissue  

Ulcer 
No. 

Dermatologists 
Assessment (%) 

Algorithm 
Detection (%) 

Difference 
(%)  

Percentage 
Overlap (%) 

1 35.98 31.72 4.3 60.79 
2 34.11 31.79 2.3 80.78 
3 35.69 33.40 2.3 77.68 
4 34.89 29.93 5.0 67.80 
5 23.09 24.87 1.8 64.30 
6 69.50 71.61 2.1 88.62 
7 13.61 14.87 1.3 81.06 
8 23.25 23.68 0.4 85.91 
9 21.49 19.21 2.3 73.19 
10 20.29 18.83 1.5 69.80 
11 25.83 28.53 2.7 74.85 
12 23.97 27.06 3.1 62.70 
13 19.50 18.52 1.0 78.10 
14 27.19 26.26 0.9 58.05 
15 49.16 53.38 4.2 82.42 
16 15.86 18.34 2.5 63.60 
17 22.44 18.74 3.7 76.59 
18 32.61 37.62 5.0 70.94 
19 42.62 46.48 3.9 66.94 
20 76.18 76.13 0.1 87.04 
21 21.20 19.41 1.8 63.36 
22 29.02 25.78 3.2 82.51 

 Average 2.5% 73.5% 
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Figure  5.35: Example of granulation tissue detection (case two) 

Figure  5.35 shows an example of this case (case number 9 in Figure  5.34).  Figure 

 5.35 (a) shows the original ulcer image in which the granulation tissue appeared to be 

scattered all over the ulcer surface mixed with slough and other foreign materials 

which made it difficult to be traced visually.  Figure  5.35 (b) shows the extracted 

haemoglobin image with the granulation tissue region identified with a distinctive 

intensity range (darkest region).  Figure  5.35 (c) shows the traced region of the 

granulation tissue while Figure  5.35 (d) shows the detected region of the granulation 

tissue using the developed system.  The green arrow in Figure  5.35 (c) indicates an 

example of a region that contained slough mistakenly identified as part of granulation 

region by the dermatologists.  This region however was correctly identified as non-

granulation by the system and did not appear in the system detection image as shown 

(a)  Original colour ulcer image (b)  Extracted haemoglobin image 

(c)  Granulation tissue reference image (d)  Detected granulation region image 



 

132 

in Figure  5.35 (d).  The red arrow on the other hand indicates an example of the 

granulation tissue regions detected by the system in Figure  5.35 (d) but not traced by 

the dermatologists in Figure  5.35 (c).  Subsequently, this would lead to both regions 

having similar amounts but occupying different locations in some parts on the ulcer’s 

surface which would lead to a low percentage overlap between both regions.  The 

calculated percentage of overlap in this case was 73.19% with a difference of 2.3% 

between both regions. 

Case Three: Here, both the amount of the detected granulation tissue and the 

amount of the assessed granulation tissue are not the same with a low percentage of 

overlap between the two regions.  There are two categories in this case: 

Case Three-One: The amount of the detected granulation tissue is more than the 

amount of the assessed granulation tissue.  Figure  5.36 shows a schematic diagram of 

this case.  From the figure it is evident that the detected region of the granulation 

tissue is more than the amount of the assessed granulation tissue.  Subsequently, the 

overlap between both regions is low. 

 
Figure  5.36: Schematic diagram of the overlap between detected and assessed 

granulation tissue regions (case three-1) 

Such cases occurred mostly in ulcers where the granulation tissue was scattered 

all over the ulcer region mixed with other tissues particularly with slough tissue. The 

dermatologists found it difficult to discern these regions visually.  If slough was the 

dominant tissue type in the ulcer and was slightly mixed with granulation tissue, the 
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dermatologists mistakenly marked the whole region as slough although there may 

have been some granulation tissue within the same region.  The algorithm could 

detect those regions of granulation tissue and clearly separate them from the slough 

resulting in a larger number of detected granulation tissue regions compared to the 

assessed ones which subsequently led to a low percentage of overlap. 

 
Figure  5.37: Percentage overlaps between detected and traced granulation tissue  

In this study, this case has occurred in sixteen images as sown in Figure  5.37.   

Table  5.5 lists the amount of granulation tissue traced by dermatologists, the 

amount of granulation tissue detected by the system, the percentage difference and 

percentage overlap for each of the sixteen ulcer images.  The difference range 

between the two regions in this case was found to be within 1.43 -14.03% while the 

amount of the overlap between both regions was found to be within 36.29% - 86.87% 

percentage of overlap. The average percentage difference was estimated as 6.6% 

while the average percentage overlap was 65.0% which indicates that the amounts of 

the detected and assessed granulation regions are not similar with a low percentage of 

overlap. 
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Table  5.5 Percentage overlaps between detected and traced granulation tissue  

Ulcer 
No.  

Dermatologists 
Assessment (%) 

Algorithm 
Detection (%) 

Difference 
(%)  

Percentage 
Overlap (%) 

1 9.96 20.64 10.68 59.81 
2 37.07 45.78 8.71 79.83 
3 5.82 10.20 4.37 67.82 
4 23.02 28.88 5.86 83.45 
5 44.63 58.66 14.03 85.84 
6 35.59 48.05 12.46 78.23 
7 26.48 34.37 7.89 84.95 
8 3.41 15.19 11.78 36.65 
9 3.79 5.66 1.88 64.54 
10 6.03 11.65 5.62 60.34 
11 33.04 39.94 6.90 78.48 
12 57.04 61.90 4.86 86.87 
13 1.04 2.47 1.43 36.29 
14 1.04 2.47 1.43 36.29 
15 5.15 10.65 5.50 52.33 
16 1.30 2.93 1.63 48.20 

Average 6.6% 65.0% 

Figure  5.38 shows an example of this case (case number 15 in Figure  5.37).  

Figure  5.38 (a) shows the original ulcer image in which the granulation tissue 

appeared to be scattered all over the ulcer surface mixed with slough and necrotic 

tissues which made it difficult to trace visually.  Figure  5.38 (b) shows the extracted 

haemoglobin image with the granulation tissue region identified with a distinctive 

intensity range (darkest region).  Figure  5.38 (c) shows the traced region of the 

granulation tissue while Figure  5.38 (d) shows the detected region of the granulation 

tissue.  It was noted that the amount of the detected granulation tissue was more than 

the amount of assessed the granulation tissue due to some regions of the mixed 

granulation and slough perceived as slough by the dermatologists as explained earlier. 

The system however detected the regions of the granulation tissue and clearly 

separated those (indicated by the red arrows in Figure  5.38 (d)) from the regions of 

slough which resulted in larger amounts of detected granulation tissue compared to 

the assessed ones and subsequently lower percentage of overlap.  The calculated 

percentage overlap in this case was 52.33% with a difference of 5.50% between both 

regions. 
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Figure  5.38: Example of granulation tissue detection (case three-1) 

Case Three-Two: The amount of the detected granulation tissue is less than the 

amount of the assessed granulation tissue.  Figure  5.39 shows a schematic diagram of 

this case.  From the figure it is evident that the amount of the detected granulation 

tissue is less than the amount of the assessed granulation tissue.  Subsequently, the 

overlap between both regions is low. 

(a)  Original colour ulcer image (b)  Extracted haemoglobin image 

(c)  Granulation tissue reference image (d)  Detected granulation region image 
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Figure  5.39: Schematic diagram of the overlap between detected and assessed 

granulation tissue regions (case three-2) 

Such cases occurred mostly in ulcers where the granulation tissue was scattered 

all over the ulcer region mixed with other tissues particularly slough tissue.  The 

dermatologists found it difficult to discern these regions visually.  If granulation tissue 

was the dominant tissue type in the ulcer and was slightly mixed with slough or other 

tissues, the dermatologists mistakenly marked the whole region as granulation tissue 

although there may have been some slough within the same region. The algorithm 

could detect those regions of granulation tissue and clearly separate them from the 

slough resulting in a fewer detected granulation tissue regions compared to the 

assessed ones which subsequently led to a low percentage of overlap. 

In this study, this case has occurred in twenty-one images as shown in Figure 

 5.40.  Table  5.6 lists the amount of granulation tissue traced by dermatologists, the 

amount of granulation tissue detected by the system, the percentage difference and 

percentage overlap for each of the twenty-one ulcer images. The difference range 

between the two regions in this case was found to be within 1.59 -30.03% while the 

amount of the overlap between both regions was found to be within 55.19% - 91.37% 

percentage of overlap. The average percentage difference was estimated as 13.4% 

while the average percentage overlap was 81.4% which indicates that the amounts of 

the detected and assessed granulation regions were not similar with a low percentage 

of overlap. 
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Figure  5.40: Percentage overlaps between detected and traced granulation tissue  

Table  5.6 Percentage overlaps between detected and traced granulation tissue  

Ulcer 
No. 

Dermatologists 
Assessment (%) 

Algorithm 
Detection (%) 

Difference 
(%)  

Percentage 
Overlap (%) 

1 98.24 84.39 13.85 91.37 
2 62.77 48.64 14.12 71.31 
3 53.30 46.67 6.63 86.50 
4 55.64 50.29 5.35 87.23 
5 33.46 21.54 11.93 55.19 
6 49.96 38.07 11.89 80.72 
7 28.90 21.01 7.89 82.34 
8 100.00 83.65 16.35 91.10 
9 80.08 75.02 5.05 85.86 
10 4.38 2.79 1.59 72.04 
11 61.99 51.99 10.00 86.67 
12 49.23 41.30 7.93 71.92 
13 98.76 76.33 22.44 86.16 
14 62.51 52.66 9.86 79.84 
15 58.98 32.24 26.74 67.95 
16 97.71 67.67 30.03 80.72 
17 85.02 68.31 16.71 84.43 
18 88.53 69.94 18.59 87.45 
19 60.16 50.38 9.78 87.15 
20 67.46 53.97 13.49 86.03 
21 100.00 78.04 21.96 87.66 

Average 13.4% 81.4% 
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Figure  5.41 shows an example of this case (case number 5 in Figure  5.40).  Figure 

 5.41 (a) shows the original ulcer image in which the granulation tissue appeared to be 

scattered all over the ulcer surface mixed with slough tissue which made it difficult to 

trace visually.  Figure  5.41 (b) shows the extracted haemoglobin image with the 

granulation tissue region identified with a distinctive intensity range (darkest regions).  

Figure  5.41 (c) shows the traced region of the granulation tissue while Figure  5.41 (d) 

shows the detected region of the granulation tissue.  It was noted that the amount of 

the assessed granulation tissue was more than the amount of the detected granulation 

tissue due to some regions of mixed granulation and slough perceived as granulation 

by the dermatologists as explained earlier.  The system detected the regions of the 

granulation tissue and separated them from the slough (indicated by the green arrows 

in Figure  5.41 (c)) which resulted in a lesser amount of detected granulation tissue 

compared to the assessed ones and subsequently a lower percentage of overlap.  The 

calculated percentage of overlap in this case was 55.19% with a difference of 11.93% 

between both regions. 

 

 
 

Figure  5.41: Example of granulation tissue detection (case three-2) 

(a)  Original colour ulcer image (b)  Extracted haemoglobin image 

(c)  Granulation tissue reference image (d)  Detected granulation region image 
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From the correlation and overlap analysis discussed above, it can be generally 

concluded that the developed granulation detection system is able to identify regions 

of granulation tissue that could be difficult to discern visually on real ulcer surfaces 

using colour images of chronic ulcers.  The identified regions of the granulation tissue 

can be clearly contrasted and segmented from other non-granulation regions on the 

ulcer’s surface.  The amount of the detected granulation tissue, in terms of surface 

area, can also be measured using the developed system during consecutive visits 

throughout the course of treatment and used to monitor the healing progression as 

explained in Chapter 4 (section  4.7.2).  If the current treatment is effective, the 

amount of the detected granulation tissue should increase throughout the course of the 

treatment.  The original colour images, the extracted haemoglobin images, and the 

detected granulation images in each of the seventy-five ulcer images are included in 

Appendix B. 

5.4 Summary 

The main objective of this research work is to identify regions of healthy 

granulation tissue on ulcer surfaces utilising the developed granulation tissue 

detection system.    The identified granulation tissue regions can be segmented from 

the rest of the ulcer image and their surface area can be measured to provide an 

objective measure of ulcer healing progression. 

Ulcer tissue reference images that contain patches of skin, slough, necrotic and 

granulation tissues were developed to investigate the performance of the developed 

granulation detection algorithms.  These images were designed to test the algorithms’ 

ability to detect and distinguish granulation tissue regions of different sizes in pixel 

units from the rest of the tissues types.  Furthermore, noise images were created based 

on white Gaussian noise model and added to the ulcer tissue reference images to 

investigate the algorithms’ performance in images corrupted by noise as is the case 

with most real images.  In this study, twenty four ulcer tissue reference images were 

created with SNR values ranging from 36dB -1dB according to varying noise levels 

added to the images. 
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The developed algorithms were applied on the ulcer tissues reference images.  

The extracted haemoglobin images identified granulation tissue patches with intensity 

value range that could be contrasted from the rest of the tissues.  Otsu’s thresholding 

was applied on the extracted haemoglobin images to segment granulation tissue 

patches from the rest of the image.  It was found that the developed system was able 

identify and detect the regions of the granulation tissue, from the smallest region size 

of 1x1 pixels and above, in ulcer images corrupted with white Gaussian noise 

corresponding to SNR levels of more than 12dB with performance values of more 

than 96.0% sensitivity, 99.6% specificity and 99.5% accuracy.  It was also found that 

with more noise added to the images, more false pixels (false negatives and false 

positives) were detected and subsequently the performance of the system decreased 

gradually.  For images with SNR levels of 12dB and below, some granulation regions, 

especially of sizes 1x1, 2x2 and 3x3 pixel, might not be detected due to the increased 

number of detected false pixels. 

The developed granulation detection system was applied on seventy-five ulcer 

images to detect the regions of the granulation tissue on the ulcers’ surfaces.  The 

system extracted the haemoglobin images from the colour images of ulcers that 

highlight the regions of the granulation tissue with a range of intensity values that 

could be contrasted from the rest of the image.  Clustering-based segmentation was 

then applied on the extracted haemoglobin images to segment the granulation tissue 

regions from the rest of the image.  The optimum number of clusters k  at which the 

granulation tissue was successfully segmented with the minimum segmentation 

difference error occurred mostly at 4k  and 5k .  

The amount of the detected granulation tissue was measured and compared with 

the amount of the granulation tissue traced by the dermatologists at Hospital Kuala 

Lumpur.  It was found that there was a strong positive relationship and similarity 

between the amount of the granulation tissue detected by the system and the amount 

traced by the dermatologists as indicated by the obtained high Pearson correlation 

coefficient value of 0.961. 
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For further analysis, the actual amount of the overlap between the granulation 

tissue detected by the system and the amount traced by the dermatologist was 

inspected.  There are three sets of cases that can be observed.  In the first set of cases 

(occurred in sixteen ulcer images), both the amount of the detected granulation tissue 

and the amount of the traced granulation tissue are quite similar with a high 

percentage of overlap between them.  In the second set of cases (occurred in twenty-

two ulcer images), both the amount of the detected granulation tissue and the amount 

of the traced granulation tissue are quite similar but with a low percentage of overlap 

between them.  In the third set of cases the amount of the detected granulation tissue 

and the amount of the assessed granulation tissue are not the same with a low 

percentage of overlap between the two regions.  This set of cases has been further 

categorized into cases in which the amount of detected granulation tissue is more than 

the traced one (occurred in sixteen ulcer images) and cases in which the amount of the 

detected granulation is less than the traced one (occurred in twenty-one ulcer images).  

Granulation tissue appeared mixed with slough and other tissues in most of ulcer 

cases which made it difficult for the dermatologists to identify those regions based on 

visual inspection. The difference between the amount of the granulation tissue 

detected by the developed system and the amount traced by the dermatologists is due 

to the system’s ability to identify and clearly separate the regions of the granulation 

tissue that could be difficult to discern visually from the rest of the non-granulation 

regions on the ulcers’ surfaces.  This is very significant in detecting early stages of 

ulcer healing that is indicated by the growth of the granulation tissue on ulcers’ 

surfaces that could not be the detected using simple visual inspection.  The amount of 

detected granulation tissue, in terms of surface area, can be measured using the 

developed system during consecutive visits throughout the course of the treatment and 

used to monitor the ulcer healing progression.   
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CHAPTER 6 

CONCLUSION 

6.1 Introduction 

Chronic skin ulcers occur when the injured tissues do not follow the normal healing 

process within a specific period of time due to underlying aetiologies or improper 

wound management.  They cause severe pain to the patients and put them at the risk 

of limb amputation.  Detecting early stages of ulcer healing is important to improve 

clinical decisions and enhance the effectiveness of the treatment.  In this study, 

statistical and digital image processing techniques are employed to develop an image 

analysis system that detects regions of granulation tissue as an objective assessment 

measure of early healing stages in chronic ulcers.  

6.2 An Overall Summary 

The appearance of the ulcer’s surface changes throughout the healing process [10].   

Depending on the severity status, ulcers can initially appear covered with layers of 

unhealthy black necrosis and yellow slough.  As ulcers heal, healthy red granulation 

tissue starts to grow from the ulcer base gradually replacing the unhealthy tissue and 

filling the ulcer cavity.  Identifying regions of granulation tissue growing on the 

ulcer’s surface is an important measure of ulcer healing progression which reflects on 

the efficacy of ulcer management and treatment. 

Most of the assessment methods implemented currently in clinical practice 

depends on a visual inspection of the ulcer’s appearance and tissue types on the 

ulcer’s surface.  Human vision inspection is subjective and lacks precision and 
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consistency and hence is not suitable to perform tissue analysis.  Monitoring of ulcers 

requires an objective, precise quantitative and reproducible assessment.  Digital image 

analysis has been employed to detect and classify ulcer tissues to provide an accurate 

objective assessment of ulcer healing.  A detailed discussion on ulcer tissue 

assessment using digital imaging was given in Chapter 2.  Most of the work 

developed in the field of wound assessment via digital imaging utilized colour 

features and attributes as the main components for analysis.  However, colour analysis 

is always compromised by the unavoidable differences in acquisition conditions 

which affect the colour quality and leads to inaccurate results. 

Most of the incident light penetrates into the ulcer and skin tissues following a 

complex path where it interacts with different interior structures and pigments and 

gets remitted back from the skin [22].  These interactions change the spectral 

composition of the light which reflects the optical properties of the ulcer tissues 

structures and pigments.  The remitted light can be captured by digital cameras to 

produce colour digital images of chronic ulcers [56], [57].  Hence, an understanding 

of the colour image formation reveals diagnostically important facts about the internal 

structure and composition of the skin ulcers [23].   

Ulcer healing is indicated by the growth of granulation tissue which appears red in 

colour due to the pigment haemoglobin content in the newly built blood capillaries 

[24]. Anderson et al. studied the absorption spectra of haemoglobin and other skin 

pigments and found that haemoglobin exhibits total reflection of light at 600nm and 

above [22].  This range of wavelengths corresponds to the red colour component of 

the visible spectrum which explains why the granulation tissue that contains 

haemoglobin pigment appears red in colour when viewed under visible light [24].  

Studies show that the optical characteristics of haemoglobin can be detected in colour 

images and used to show their content within human skin [25], [26].   

Therefore, this study aimed to develop an image analysis system that identifies 

and detects regions of granulation tissue on ulcer surface based on the content of the 

pigment haemoglobin and its distribution on ulcers’ surfaces.  Since the growth of 

granulation tissue indicates ulcer healing, identifying and quantifying the amount of 
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detected granulation tissue gives an indication of the healing progression which 

reflects on the efficacy of the ulcer management and treatment.   

The approach utilized in developing the granulation tissue detection system is to 

apply data transformation utilising the independent component analysis (ICA) to 

extract source grey-level images that show the distribution of the pigment 

haemoglobin.  Independent component analysis is a multivariate data analysis 

technique used to recover source signals from their observed linear combinations.  

ICA assumes that the observed signals, in this case the Red, Green and Blue data 

vectors of each ulcer image, are generated by linearly mixing original source signals 

with an unknown mixing matrix [66], [67].  ICA estimates the source images 

assuming that they are statistically independent which is achieved when their 

probability density function can be written as the product of their marginal 

independent distributions [67].  In this study, the fastICA technique was implemented 

on each of the acquired seventy-five ulcer images to estimate their source images as 

projections that maximize non-Gaussianity which is used to measure independence 

[66], [69-71].  In this method, an approximation of negentropy, which is Newton’s 

iterative approximation, was used to measure non-Gaussianity and estimate the 

independent source images.  Among the estimated source images for each observed 

colour ulcer image is the haemoglobin image that showed the regions of haemoglobin 

distribution reflecting regions of granulation tissue on the ulcer’s surface. 

Ulcer tissues reference images that contained patches of skin, slough, necrotic and 

granulation tissues were developed to investigate the performance of the developed 

granulation detection algorithms.  The developed system successfully extracted 

haemoglobin images that identified granulation tissue regions with an intensity value 

range that could be contrasted from the rest of the tissues.  It was also found that the 

developed system was able to detect regions of granulation tissue, from the smallest 

region size of 1x1 pixels and above, in ulcer images corrupted with white Gaussian 

noise corresponding to SNR levels of more than 12dB with performance values of 

more than 96.0% sensitivity, 99.6% specificity and 99.5% accuracy.  With more noise 

added to the images, more false pixels (false negatives and false positives) were 

detected and subsequently the performance of the system decreased gradually.  For 
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images with SNR levels of 12dB and below, some granulation regions, especially of 

sizes 1x1, 2x2 and 3x3 pixel, might not be detected due to an increased number of 

detected false pixels.  

The developed granulation detection system was applied on seventy-five ulcer 

images to detect regions of granulation tissue on their surfaces.  The system extracted 

haemoglobin images that highlighted the regions of granulation tissue with a range of 

intensity values that could be contrasted from the rest of the image.  Clustering-based 

segmentation was employed in this study to segment the identified regions of 

granulation tissue on the extracted haemoglobin images.  Clustering is a common 

technique of unsupervised learning and classification where elements of a dataset are 

partitioned into several clusters so that points in one group are similar to each other 

and are as different as possible from points in other groups [74].    

In this study, soft clustering was employed utilising fuzzy c-means algorithms 

applied to the haemoglobin images to classify the granulation regions based on their 

range of intensity values.  In fuzzy c-means, each point in a dataset is assigned 

membership grades to each of the k  number of clusters based on a similarity measure, 

usually the Euclidean distance, between the point and the cluster centre [75]. The 

classified granulation regions are then segmented from the rest of the images 

accordingly.  The optimum number of clusters k  , at which the granulation tissue is 

successfully segmented with a minimum segmentation difference error, occurred 

mostly at 4k and 5k . 

The amount of detected granulation tissue was measured and compared with the 

amount of granulation tissue traced by the dermatologists at Hospital Kuala Lumpur.  

It was found that there was a strong similarity between the amount of granulation 

tissue detected by the system and the amount traced by the dermatologists as indicated 

by the obtained high Pearson correlation coefficient value of 0.961.  Furthermore, it 

was noted that the granulation tissue appeared mixed with slough and other tissues in 

most of the ulcer cases which made it difficult for dermatologists to identify those 

regions based on visual inspection. The developed system has the ability to identify 

and clearly separate regions of granulation tissue that could be difficult to discern 
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visually from the rest of the non-granulation regions on the ulcers’ surfaces.  The 

amount of the detected granulation tissue, in terms of surface area, could be measured 

using the developed system during consecutive visits throughout the course of the 

treatment and used to monitor the ulcer healing progression. 

6.3 Contribution and Future Work 

The main contribution of this work is the development of an imaging-based system 

that detects regions of granulation tissue growing on ulcer surfaces using colour 

images of chronic ulcers.  Detecting the growth of granulation tissue on ulcers 

surfaces is an important measure of the ulcer healing progression.  

The development of the granulation tissue detection system incorporates a unique 

approach which is based on investigating the optical characteristics of pigment 

haemoglobin and utilising its content to detect regions of granulation tissue.  This 

approach is unique in a way that it does not focus on colour image features and 

attributes directly like previous work in this field, instead it draws an understanding of 

tissue histology utilising a physics-based interpretation of image colour.  

The developed system is able to detect regions of granulation tissue, from the 

smallest size of 1x1 pixels and above, that are mixed with other tissues on the ulcer’s 

surface and cannot be discerned visually.  This is very significant in detecting early 

stages of ulcer healing especially in ulcers where granulation tissue is spreading 

slowly over the ulcer’s surface and cannot be detected using simple visual inspection. 

Clinicians inspect the ulcer visually and provide a subjective assessment based on 

the approximation of the amount of different tissues, particularly granulations tissue, 

to assess the healing progression.  This leads to an inaccurate and inconsistent 

assessment which affects the performance and quality of the treatment and care.  The 

system provides an objective, quantitative and reproducible assessment of the healing 

progression that can improve clinical decisions and enhance treatment efficacy.  
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In this study, ulcer boundary reference images have been developed based on a 

manual tracing of the ulcer boundary to illuminate any regions of the surrounding skin 

outside the ulcer wrongly detected as granulation tissue as explained in Chapter 4 

(section  4.7.1).  The developed granulation detection system can be further enhanced 

by incorporating algorithms that detect the ulcer boundary automatically and confine 

the granulation detection to the ulcer region.   

Since clustering-based segmentation is employed in this study, determining the 

number of clusters is critical in ensuring the correct segmentation of granulation 

tissue.  In this study, it has been found that the optimum number of clusters varies 

between 3k  and 5k  as shown in Chapter 5 (section  5.3.1).  The system’s 

segmentation can be further improved by investigating the properties of the intensity 

values of the identified granulation regions in the extracted haemoglobin images.  

Information obtained can then be integrated with the findings of this study to 

determine the number of clusters automatically. 

It is hoped that this study will open the door for possible avenues of more research 

works that focus on investigating the optical characteristics of ulcer tissues based on 

their histology and cellular composition and utilising them to detect their content in 

colour images of chronic ulcers.  Ultimately, the goal is to develop a new objective 

and non-invasive scheme to assess the healing progression of chronic ulcers in a more 

precise and reliable way.  
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PATIENT INFORMATION SHEET 

 

Study Title:   Digital Image Analysis of Chronic Ulcers Tissues 
 

Investigators:  Leena Arshad Mohammed Ahmed 

Dr. Felix Boon Bin 

 

Institution address:   

 

1. Department of Dermatology/Outpatient Department 
Hospital Kuala Lumpur 

Jalan Pahang 

50586 Kuala Lumpur 

 

2. Universiti Teknologi PETRONAS 
Bandar Seri Iskandar 

31750 Tronoh 

Perak Darul Ridzuan 

 

INTRODUCTION 

You are invited to participate in a study conducted by the Department of Dermatology 

Hospital Kuala Lumpur, Outpatient Department Hospital Kuala Lumpur and Universiti 

Teknologi PETRONAS. This is because you have a condition called chronic leg ulcer. As a 

potential research subject, you have the right to know the consequences of participating in this 

study. The following information explains the possible benefits and risks of being in the study 

to help you make a decision about participation. Your participation in this study is strictly 

voluntary and you have no obligations to participate whatsoever. 

It is important that you read this document thoroughly and discuss any queries with your 

doctor or anyone else you prefer before agreeing to participate. Your signature, dated, on the 

consent form is required before the researchers can perform study procedures on you. 

 

PURPOSE OF THE STUDY 

Leg ulcer is a chronic disease that is difficult to cure. It is a significant health and 

socioeconomic issue. It is a difficult condition to treat. It causes considerable discomfort, and 

limitations in social activities to the patient. Treatment of leg ulcer is time consuming and 
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often not very effective. In this study, we aim to build a new method for doctors to assess 

your ulcer condition in a more objective way. 

 

WHO WOULD THIS STUDY INVOLVE 

This study will involve patients who had been diagnosed to have chronic leg ulcer. 

 

WHAT WILL HAPPEN TO THE PARTICIPANTS AND THE INFORMATION 

OBTAINED IN THIS STUDY? 

Coloured photographs of the ulcer on your leg will be taken using a camera. You may be 

asked to move your leg in a few positions in order to get a good photograph. All medications 

and other treatment for your ulcer will be continued as usual. The information obtained in this 

study will be analyzed and the results will help us in the management of patients with leg 

ulcers in the future. 

POTENTIAL BENEFITS OF THE STUDY 

The results of this study may be able to help doctors to assess your ulcer condition more 

objectively. Your participation may contribute to the way doctors assess or examine leg ulcers 

in the future.  

 

POTENTIAL RISKS OF THE STUDY 

This study will involve taking photographs of your leg ulcer only. There are no expected 

risks, discomfort and radiation that could cause long term consequences associated with the 

study.  

 

VOLUNTARY PARTICIPATION 

Participation in this study is strictly voluntary. If you decide to participate in the study, you 

are expected to comply with the study requirements. You are allowed to withdraw from the 

study at any time without penalty or loss of benefits to which you are otherwise entitled. We 

will be interested to know if the reason for withdrawal is due to adverse events experienced. 

 

CONFIDENTIALITY 

All information given by you are confidential. Reports prepared on the study will not include 

your name or other identification. Information and records may be reviewed by the 

Institutional Review Board (IRB)/Ethics Committee (EC) and other regulatory authorities to 

determine the accuracy of the reported data and/or to protect your safety and welfare. 
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STUDY COSTS/COMPENSATION  

This research does not require any payment from you and neither will you get paid or receive 

any rewards for your participation. The cost of your ulcer treatment will remain the same 

whether you participate in this research or not. This research does not provide compensation 

for any problems that may occur.  

 

TREATMENT OF STUDY RELATED INJURY 

In the event that you suffer an injury or side effects or complications that is a direct 

consequence of the study, the attending doctor will be notified and you will be managed 

appropriately in Hospital Kuala Lumpur. 

 

ETHICAL REVIEW 

This study has been reviewed and approved by the Medical Research & Ethics Committee, 

Ministry of Health Malaysia. 

 

CONTACT NUMBERS 

If you have any enquiries regarding the study or experience any side effects of the study, 

please contact 

Dr. Felix Yap Boon Bin 

Dermatology Clinic Hospital Kuala Lumpur 

03-5555259 or 03-5556687 
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CONSENT FORM 

 

Study Title: Digital Image Analysis of Chronic Ulcers Tissues 

 

I have read the information on the research project stated above and have been given the 

explanation by a doctor about the purpose of this document. I understand that I retained the 

absolute right over the information given and I have the absolute right to withdraw from the 

study at any time. 

I_______________________________________IC Number:___________________ have 

received a copy of the Patient Information Sheet on the above study and agreed to participate 

in the study. 

 

 

Patient/Person giving consent 

Name  : ________________________ 

Signature : ________________________ 

Identity Card : ________________________ 

Date  : ________________________ 

Tel  : ________________________ 

Requesting Researcher 

Name  : ________________________ 

Signature : ________________________ 

Identity Card : ________________________ 

Date  : ________________________ 

Tel  : ________________________ 

Requesting Doctor 

Name  : ________________________ 

Signature : ________________________ 

Identity Card : ________________________ 

Date  : ________________________ 

Tel  : ________________________ 
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PHOTOGRAPHY REQUEST FORM 

 

Study Title: Digital Image Analysis of Chronic Ulcers Tissues 

 

I have read the information on the research project stated above and have been given the 

explanation by a doctor about the purpose of this document. I understand that I retained the 

absolute right over the information given and I have the absolute right to withdraw from the 

study at any time. 

I_______________________________________IC Number:___________________, give 

my consent for photographs to be taken, as indicated above, of the said patient and for the 

photographs to be used by the research and academic purposes only. 

I understand that the research authorities will, to the best of their ability, protect my identity in 

the event that the photographs are reproduced in the teaching sessions, academic 

discussions/meeting and medical/scientific journals. 

 

Patient/Person giving consent 

Name  : ________________________ 

Signature : ________________________ 

Identity Card : ________________________ 

Date  : ________________________ 

Tel  : ________________________ 

Requesting Researcher 

Name  : ________________________ 

Signature : ________________________ 

Identity Card : ________________________ 

Date  : ________________________ 

Tel  : ________________________ 

Requesting Doctor 

Name  : ________________________ 

Signature : ________________________ 

Identity Card : ________________________ 

Date  : ________________________ 

Tel  : ________________________ 
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APPENDIX B 

THE ORIGINAL COLOUR IMAGES, THE EXTRACTED HAEMOGLOBIN IMAGES, 

AND THE DETECTED GRANULATION IMAGES 
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Ulcer No.: P1-1                              Date Image was Taken : 19/03/2010 - Dermatology        

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

  

Ulcer No.: P1-2                               Date Image was Taken: 19/03/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

 

Ulcer No.: P2-1                               Date Image was Taken: 19/03/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

 

Ulcer No.: P2-3                               Date Image was Taken: 19/03/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
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Ulcer No.: P2-4                              Date Image was Taken: 07/01/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P3-1                               Date Image was Taken: 23/04/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P3-2                               Date Image was Taken: 18/01/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P3-3                               Date Image was Taken: 18/01/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
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Ulcer No.: P5                                 Date Image was Taken: 30/04/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P6-1                               Date Image was Taken: 23/04/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P6-1                               Date Image was Taken: 23/04/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P10-1                             Date Image was Taken: 14/05/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
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Ulcer No.: P12-1                             Date Image was Taken: 21/05/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

 

Ulcer No.: P12-3                             Date Image was Taken: 21/05/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

 

Ulcer No.: P13                                Date Image was Taken: 17/12/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P14                                Date Image was Taken: 07/01/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
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Ulcer No.: P16                                Date Image was Taken: 17/12/2010 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P17                                Date Image was Taken: 07/01/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P18-1                             Date Image was Taken: 07/01/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P18-2                             Date Image was Taken: 07/01/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
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Ulcer No.: P19-1                             Date Image was Taken: 07/01/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P19-2                             Date Image was Taken: 14/01/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P20                                Date Image was Taken: 07/01/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P21                                Date Image was Taken: 11/02/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
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Ulcer No.: P23-1                             Date Image was Taken: 11/02/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

   
 

Ulcer No.: P23-2                             Date Image was Taken: 11/02/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

    
 

Ulcer No.: P24                                Date Image was Taken: 11/02/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
 

 

Ulcer No.: P25-1                             Date Image was Taken: 11/02/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
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Ulcer No.: P25-2                             Date Image was Taken: 11/02/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
 

 

Ulcer No.: XX                                 Date Image was Taken: 11/02/2011 - Dermatology      

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
 

 

Ulcer No.: P2-1                                            Date Image was Taken: 12/01/2011 - OPD             

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 

    
 

Ulcer No.: P2-2                                           Date Image was Taken: 23/02/2011 - OPD             

Colour Ulcer Image Haemoglobin Image Granulation Segmentation 
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Ulcer No.: P2-3                                           Date Image was Taken: 12/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 

Ulcer No.: P3-1                                            Date Image was Taken: 12/01/2011 - OPD  

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 

Ulcer No.: P3-3                                            Date Image was Taken: 23/02/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 

Ulcer No.: P7                                               Date Image was Taken: 11/02/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 



 

173 

Ulcer No.: P9                                               Date Image was Taken: 18/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 

Ulcer No.: P11                                             Date Image was Taken: 18/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

 

Ulcer No.: P11                                             Date Image was Taken: 18/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 

Ulcer No.: P14-1                                          Date Image was Taken: 18/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 
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Ulcer No.: P14-5                                          Date Image was Taken: 18/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 

Ulcer No.: P15                                             Date Image was Taken: 18/01/2011 - OPD             
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Ulcer No.: P16                                             Date Image was Taken: 18/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 

Ulcer No.: P17                                             Date Image was Taken: 18/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 
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Ulcer No.: P18                                            Date Image was Taken: 18/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 

Ulcer No.: P21                                             Date Image was Taken: 19/01/2011 - OPD             
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Ulcer No.: P23                                             Date Image was Taken: 19/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 



 

176 

Ulcer No.: P24                                             Date Image was Taken: 27/01/2011 - OPD             
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Ulcer No.: P25-2                                          Date Image was Taken: 24/02/2011 - OPD             
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Ulcer No.: P26                                             Date Image was Taken: 27/01/2011 - OPD             
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Ulcer No.: P27                                             Date Image was Taken: 27/01/2011 - OPD             
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Ulcer No.: P28-1                                          Date Image was Taken: 27/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 

   
 

Ulcer No.: P28-2                                          Date Image was Taken: 24/02/2011 - OPD             
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Ulcer No.: P28-3                                          Date Image was Taken: 27/01/2011 - OPD             
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Ulcer No.: P28-4                                          Date Image was Taken: 24/02/2011 - OPD             
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Ulcer No.: P29                                             Date Image was Taken: 27/01/2011 - OPD             

Colour Ulcer Image Colour Ulcer Image Colour Ulcer Image 
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Ulcer No.: P32-1                                         Date Image was Taken: 11/02/2011 - OPD             
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Ulcer No.: P36                                             Date Image was Taken: 22/02/2011 - OPD             
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Ulcer No.: P40-2                                          Date Image was Taken: 23/02/2011 - OPD             
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Ulcer No.: P43-2                                          Date Image was Taken: 03/05/2011 - OPD             
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Ulcer No.: P48                                             Date Image was Taken: 04/05/2011 - OPD             
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