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ABSTRACT 

This project is entitled 2D modeling of overpressure in the West Baram Delta, 

Sarawak, and the focus is on the basin study, reservoir fluid pressure, petroleum 

system and geophysical method. The main objective for this project is to 

reconstruct overpressure history in West Baram Delta area, with the aid of basin 

modelling. The study carried out in two phases. In the first phase, model 

reconstruction was based on disequilibrium compaction as the overpressuring 

mechanism. In the second phase, additional contribution to the development of 

overpressure from hydrocarbon generation was investigated. The methodology 

employed in this study include: seismic time to depth conversion, I D modelling, 

pore pressure estimation and 2D Basin modelling. Based on seismic interpretation, 

the tectonics in the Baram Delta is shown very active as where many growth faults 

can be seen. This high tectonism in Baram Delta leads to shale diapirism. From 

I D modelling the modeled basal heat flow range from 25 m W /m2 to 53 m W /m2 

The comparison of top overpressure suggest that in Well H is shallower, located at 

the depth of 1000 m, while the top of overpressure in Well 0 is at 1800 m. The 2D 

models have been calibrated with the observed pressure, temperature and vitrinite 

reflectance datasets. 

The calibrated heat flow for the 2D modelling ranges from 35mW/m2 to 

53mW/m2
. From the modeled overpressure in 2D basin modelling, the onset of 

overpressure is estimated to occur at 3050 m. In Well P, the top of overpressure 

was occurs at 3048 m, in Well A4 the depth occurs at 3100 m, Well 0 at 2987 m 

and Well Hat 2682 m. In the first model of2D basin modeling, the disequilibrium 

compaction indicates that overpressure starts approximately at 3050 m. In the 

second model, which includes the hydrocarbon generation, the depth of 

overpressure does not seem to vary much from the first model. It is therefore 

concluded that the main origin of overpressure in the West Baram Delta is 

disequilibrium compaction. Hydrocarbon generation does not contribute 

significantly to the development of overpressure in the Baram Delta. 
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CHAPTER ONE 

1.0 Introduction 

This project is entitled 2D modeling of overpressure in the West Baram Delta, 

Sarawak, and focused on the basin study, reservoir fluid pressure, petroleum system 

and geophysical method. 2D forward modeling will be applied to predict overpressure 

development due to disequilibrium compaction, as well as the possible contribution of 

overpressuring from hydrocarbon generation and oil-gas conversions. 

1.1 Problem Statement 

The West Baram Delta is Tertiary in age, which experienced the rapid 

deposition of thick low permeability sediments leading to the development of 

overpressure. The main overpressuring mechanism is disequilibrium compaction. In a 

recent study of the West Baram Delta, it was found that the interval pressure gradient 

at the onset of overpressure varies from shelfal to the deeper water areas. The study 

concluded that the variation is due to the sedimentation and tectonic histories. The 

active tectonisms in the area are reflected by the development of growth faulting and 

shale diapirism. This are closely associated with the overpressured shale (M J amaal 

Bin Hoesni, 2004). 

For this project, the number of well control and depth of penetration are 

limited. Poor seismic reflection made the prediction of the onset and the magnitude of 

overpressure problematic. Thus, forward basin modeling, which incorporates 

sediment compaction, hydrodynamic and thermal evolution, helped to improve the 

prediction of overpressure. Through basin modeling, other overpressuring 

mechanisms, such as volume expansion and lateral fluid transfer, can also be 

assessed. 



2 

1.2 Objectives 

The objective for this project is to reconstruct overpressure in The West Baram area, 

with aid of basin modelling: 

In the first phase, model reconstruction will be based on disequilibrium 

compaction as the over pressuring mechanism. 

In second phase, the additional contribution of hydrocarbon generation will be 

investigated. 

1.3 Scope of Work 

To accomplish the objectives, this study will apply 20 forward modeling in 

predicting overpressure. Therefore this study aims to provide reliable prediction of 

pore pressure for drilling. Several softwares have been utilized, such as Seiswork for 

interpreting the seismic line, Genex for 10 modeling, Temis 20 for predicting 

overpressure due to disequilibrium and Drillworks Predict for estimating the pore 

pressure in the formation. 

1.4 Overpressure : Concept and Terminology 

Overpressure is defined as when the amount of pore pressure exceeding the 

hydrostatic line (Dickinson, 1953). In order to understand more about overpressure, 

other terminologies such as hydrostatic pressure overburden and effective stress also 

need to be understood. Figure l.l is a diagram describing the terminologies related to 

overpressure. 
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Pressure ----- Surface 

Top of Overpressure 

Depth 

Effective Stress 

Underpressure 

Hydrostatic Pore Pressure Overburden 

Fig. 1.1 Pressure vs. depth plot. Rocks with pressures plotting above hydrostatic line and pore 
pressure line are overpressured; rocks with pressures plotting below the hydrostatic line are 
underpressured (adapted from Swarbrick & Osborne, 1998). 

Pore pressure is the pressure of the liquid in the pore space of the rock. As 

suggested in Figure 1.1, this can be higher than hydrostatic pressure. The point where 

the pore pressures exceed the hydrostatic pressure is the "top of overpressure" (Bruce, 

2002). Overpressure also can be described, in terms of the dynamics of subsurface 

fluid flow, as the inability of formation fluids to escape at a rate which allows 

equilibrium with hydrostatic pressure. One of the primary controls on the presence 

and distribution of overpressure is permeability, the rock attribute which controls seal 

behavior (Swarbrick & Osbourne, 1998). The hydrostatic pressure gradient varies 

from 0.433 psilft (9.71 kPa/m) for fresh water, to approximately 0.51 psilft (11.44 

kPa/m) for saturated brine (Swarbrick & Osbourne, 1998). 

When the pore pressure is lower than the hydrostatic pressure, underpressure 

condition will occur. Usually, underpressure results from the depletion of oil and gas 

during production (Swarbrick & Osbourne, 1998). Swarbrick and Osborne ( 1998) 

categorize the processes which lead to overpressure in to three categories (Figure 1.2). 



4 

Process which created overpressure I 

I 
Stress related - e.g. compression I Fluid volume increase I fluid movement and buoyancy 
leading to pore volume reduction) 

Mechanisms: Mechanisms: Mechanisms: 
•Disequilibrium •Temperature increase •Osmosis 
compaction (aquatermal) •Hydraulic head 
(vertical loading stress) •Water release due to mineral •Buoyancy due to 
•Tectonic stress transformation 
(lateral compressive •Hydrocarbon generation 

•density contrasts 

stress) 
•Cracking of oil to gas 

fig. 1.2 Overpressure generating mechanisms adapted from Swarbrick and Osbourne ( 1998). 

1.4.1 Disequilibrium Compaction 

Disequilibrium compaction is defined as a condition where fluids cannot be 

expelled fast enough relative to sediment loading resulting the pressure of the pore 

fluids increase (Swarbrick & Osbourne, 1998). Terzaghi's (1923) lab experiment cited 

that, for disequilibrium compaction, anomalously high porosity estimates are 

observed in low permeability sections (Swarbrick & Osbourne, 1998). 

During slow burials, the equilibrium between overburden stress and the 

reduction of pore fluid volume due to compaction can be most easily maintained. 

However, in fast burials, the liquid will not be able to escape due to rapid increase of 

overburden stress leading to their entrapment. This results in overpressure due to 

disequilibrium compaction. The overburden stress is also referred to as lithostatic 

stress and/or geostatic stress (Swarbrick & Osborne, 1998). 
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1.4.2 Hydrocarbon Generation 

The generation of liquid and gaseous hydrocarbons from kerogen maturation 

IS kinetically controlled and dependent on time and temperature (Swarbrick and 

Osborne, 1998). 

A study that involve hydrocarbon as the mechanism of overpressure is in 

Williston Basin, North Dakota, USA Meissener ( 1978 a). Meissner ( 1978b) cited that 

the abnormal pressure of the hydrocarbon generation is due to the increasing volume 

of hydrocarbon and residue relative to unaltered organic material (Figure 1.3). 

Another reason of the abnormal pressure is due to the remaining collapse of the rock 

framework as overburden-supporting solid organic matter is converted to hydrocarbon 

pore fluid. However, Swarbrick & Osborne (1998) believed that it is premature to 

assume that there is an overall fluid volume increase in all cases of kerogen - oil 

conversiOn. 

Wet gas 
& 

condensate 

Dry gas 

Volume of fluid & gaseous hydrocarbons 

Volume 
increase 

Volume of solid (kerogen/metamorphosed organic material 

Fig. 1.3. Estimation of volume change when Type II kerogen in the Bakken shale, Williston Basin, 
matures to produce oil then wet gas and condensate, and finally dry gas. Note the increase in 
volume at all stages of thermal maturity of the kerogen (after Meissner, 1978b). 
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CHAPTER TWO 

2.0 Study Area 

The study area is the West Baram Delta (Figure 2.1). Eventhough the Baram 

Delta is included in the Sarawak Basin, it is only a third of the total delta area (Figure 

2.2). The remainder of the Baram Delta lies in Negara Brunei Darussalam and Sabah 

(Mazlan B. Hj Madon, 1999). Hence, the Baram Delta province of the Sabah Basin 

lies to the east of the West Baram line and which are characterized by lower 

geothermal gradients, and much higher post-Middle Miocene subsidence rates 

(Mazlan B. Hj. Madon, 1999 adapted from Noor Azim Ibrahim, 1994). 

South China Sea 

Sarawak .·· 
.. · 

.· .. · ..... 'i --. . .... ~· -.: 
.. -.. ... ···- ..... .. 

,100km, Kalimantan 

0 

Sebah 

Sulu 
Sea 

Celebes 
Sea 

Fig 2. I. Map of Northern Borneo showing location of Baram Basin. Crocker Rajang accretionary 
complex and the northwest Borneo active margin (expressed in the present day by the outer 
zone of thrusting and the northwest Borneo trough) (adapted ffom Tingay et. al., 2002). 
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2.1 Regional Geology of the Baram Delta 

The Baram Delta Province covers an area of 7500 km2 including 2500 km2 

onshore (Mohammad Yamin Ali et. a!., 1995). This province evolved during the 

Middle Miocene to present day from a foreland basin to a shelf margin (Morley et. a!., 

2002). The basin is perhaps best described as a peripheral foreland basin that formed 

after the collision of Reed Bank and Dangerous Grounds micro continental fragments 

with northwestern Sabah (Mazlan B. Hj. Madon, 1999). The Baram Delta depocentre 

developed during the early Miocene, probably as a fault-controlled depression formed 

at the intersection of two major crustal-scale faults, namely the West Baram Line to 

the west and the Jerudong-Morris fault to the east. This two major crustal scale 

basement appear to confine the Baram Delta Province Figure 2.2, (Mazlan B. Hj. 

Madon, 1999). 

--· 

4"N 

\ 

l.EQCN) SU'UFIED GEOI..OGV 

__.,-a.-. OI.Ah D ~: ~.;, 
2~ .....- ........ =rw D ~ fOdl8 

,...--~ lxuld8ty D ::::..;~· 

Fig. 2.2 Sedimentary basin and structural-stratigraphic provinces of the northern and eastern 
continental margins ofSarawak and Sabah. (After Mazlan B.Hj Madon, 1999). 

This late Neogene Baram Basin is composed of several rapidly prograding 

delta systems built outwards from the Crocker-Rajang accretionary complex and 

deposited adjacent to the northwest Borneo active margin (Koopman & James, 

1996a). The active tectonic setting has resulted in a complex interaction between 

sedimentation and tectonics in variable uplift of the hinterland, sediment reworking 
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and fast depositional rates (Tingay et. a!., 2002). Transpressive deformation 

associated with the active margin has caused uplift in the proximal and the eastern 

part of the basin (Koopman & James, l996b; Figure 2.3). The uplifted sediments were 

then eroded, reworked and deposited further down the delta (Tingay et. al., 2002). 

Episodic folding events affected the region, causing uplift of the hinterland, delta 

progradation and the inversion of gravity-related faults (Morley et. al., 2002). 

" 24 

23 s. gradient at 
22 1500mdepth 
21 (MPIIIl<m) 
20 

11 

Fig. 2.3. Schematic geological cross section across the Baram Basin (adapted from Koopman and 
James (1996a and b). The delta hinterland has been uplifted and eroded (Tingay et. al. 2002). 

The rapid deposition of fine-grained prodelta sediments led to the 

development of widespread overpressure generated by disequilibrium compaction 

(Schreurs & Ellenor, 1996). Overpressures within the prodelta shales are commonly 

associated with undercompaction and shale diapirism (Schreurs & Ellenor, 1996). 

Sedimentation in the Baram Delta started with a predominantly argillaceous sequence 

interbedded with limestones and minor sandstone until the middle Miocene (Mazlan 

B. Hj. Madon, 1999). 

Reservoir sands occur mostly in Upper Miocene-Lower Pliocene Middle 

Cycle V- to Cycle VI topsets. Stacked rollover structures are present on the hanging 

wall of growth faults (Mazlan B. Hj. Mad on, 1999). The prolific hydrocarbon 

province of the Baram Delta was formed in Middle Miocene-recent deltaic 

sedimentary rocks (Morley et. a!., 2003). 
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2.2 Structural Geology 

While many of the structural features are typical of gravity tectonics in large 

deltas such as growth faults, shale diapirs and toe thrusts (James, 1984; Sandal, 1996), 

the structures have been commonly modified by the growth of compressional or 

strike-slip related folds and thrusts (Bol and van Hoom, 1980; James, 1984; Levell, 

1987; Bait and Banda, 1994; Sandal, 1996; Morley et al., 1998). 

Most large delta provinces described in the literature are developed on passive 

margins (e.g. the Mississippi, the Nile, the Niger Deltas) but the Baram Delta 

Province is different as it developed on a tectonically active margin (Morley et. al., 

2003). Another example of such a delta is the Kutei Basin of Eastern Borneo 

(Ferguson and McClay, 1997; McClay et al., 2000). 

The structure of the Baram Delta Province is dominated by regional growth 

faults which are downthrown basinwards to the north and northwest (Figure 2.4). 

BARONI A 
BERYL BETTY BAKAU TUKAU SIWA 

SE, A 
MIRI 

Fig. 2.4. Growth faults are downthrown basin wards to the north and northwest. (After Mazlan 
B. Hj . Madon, 1999). 

2.3 Hydrocarbon System 

The identification of source rock intervals in the Baram Delta Province is 

challenging as the organic matter is not abundant and appears to be concentrated 

within very thin layers (Mohammad Yamin Ali et. al. , 1995). Furthermore, the 

deepest well only penetrated Cycle IV sequences (Mohammad Yam in Ali et. at., 

1995). The higher land-plant debris transported into the West Baram Delta would 
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have been reasonably preserved by virtue of their rapid removal from the oxidation 

zones (Denis N.K Tan et. al., 1999). Today, it is accepted that the hydrocarbons in the 

West Baram Delta were generated mainly from transported terrigenous organic matter 

(Denis N .K Tan et. al., 1999). The terrigenous source for the Baram Delta oils was 

proven by Azlina Anuar & Abdul Jalil Muhamad (1999) through GCMSMS analysis. 

Good reservoir characteristics were best developed during Cycles V to Cycle 

VI regressions. These reservoirs are mainly beach, coastal barrier and shallow neritic 

sheet sands deposited in deltaic coastal plain, coastal and fluviomarine environments 

(Mohammad Yamin Ali et. al., 1995) 

The seals in this delta are the thick shale sequences. These shales are well 

developed very well during the Cycle VI deposition. Therefore, none of the 

hydrocarbon would be leaked out into the sequences younger than Cycle VI 

(Mohammad Yamin Ali et. al., 1995). 

Fault-closed structures within the Cycle V sequences act as traps for the 

hydrocarbons. The main trapping mechanisms are the major growths faults 

(Mohammad Yamin Ali et. al., 1995). 

Hydrocarbon migration occurred between 3.0 to 3.6 Ma when the amounts of 

overpressure decreased and hydrocarbon might expel and migrate into reservoir rocks, 

as suggested by Mohammad Yamin Ali et. al. (1995). 

2.4 Overpressure Distribution in the Baram Delta 

Table 2.1 shows previOus study (Abdul Jalil Muhammad & Azlina Anuar, 

1999) the depth to the top of overpressure seen in several wells. This overpressure is 

due to disequilibrium compaction. High sedimentation rates can be found in proximal 

part of the delta. In the hinterland, the sediments were uplifted and eroded and 

subsequently transported to the distal parts. From the data observed (Table 2.1), the 

trend of the overpressure is deeper in the distal area. While the depth of overpressure 

is shallower in the proximal area (Figure 2.5). 
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• Top of overpressure 

Fig. 2.5. The distribution of overpressure in the Bararn Delta. From proximal to distal, the top of 
overpressure occurs deeper. This is related to the sedimentations rates. The sedimentation 
rates in the proximal is higher, thus the depth to overpressure depth in this area is 
shallower. The depth to overpressure in the distal area is deeper due to low sedimentation rates. 
(Adapted from Mazlan B. Hj . Madon, 1999) 

Table 2.l .The top of overpressure observed in selected Baram Data wells (Abdul Jalil Muhammad & 
Azlina Anuar, 1999) 

Well name Top of overpressure (m) 

1 A5 2652 

2 A6 2896 

3 A7 2987 

4 D 3272 

5 AS 3444 

6 A9 3063 

7 G 3319 

8 Bl 3658 

9 F 3048 

10 B2 2305 

11 H 2774 

12 J 2225 

13 A 1996 
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CHAPTER THREE 

3.0 Methodology and Data 

Data for this study were derived from various sources such as from technical 

reports (final well reports, well test reports) or geochemical reports (from UDRS) and 

from Petronas Management Unit, (PMU). Figure 3.1 illustrates the workflow for this 

study. 

Methodology 

Data gathering 
I 

Seismic Interpretation It D Modeling (Genex) Pore Pressure Estimation 
(Seiswork) (Drill works Predict) 

I 
ltnout I I Input I I Comoare I 

. 
Depth conversion 20 Basin Modelling 
-Easy Depth (Temis 20) 

Fig. 3.1 The workflow for this study includes data gathering, sesmic interpretation, I D modeling, pore 
pressure estimation, depth conversion and 2D Basin modeling. 

3.1 Data 

The data needed for seismic interpretation are seismic sections to determine 

the horizons of Cycles VI, Middle Cycle VI, Lower Cycle VI, and Upper Cycle V. As 

for I D basin modeling (Genex), the data needed are temperature and vitrinite 

reflectance; this data is gathered from geochemical report. For pore pressure 

estimation (Drillworks Predict) the data needed are ASCII Data of wireline logs, 

pressure data (mudweight, Repeat Formation Test (RFT), Leak off Test (LOT). Below 

are the well data statistic (Table 3.1 ), from selected wells for I D modeling (Figure 

3.2) and seismic lines in SK307 (Table 3.2 and Figure 3.3). 
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Fig. 3.2 Selected wells for lD modeling and oiVgas field distribution. 
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Table 3.1. Summary of data availability. 

+ + 

Data 

Numbers of wells 

Geochemistry data 

Wireline logs 

Pressure 

Temperature 

....,_, 
• 

+ + t + 

Availability 

135 wells 

26 reports 

57 logs 

54 reports 

11 reports 

Fig 3.3. The three lines that were selected for seismic interpretations. 
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Table 3.2 The available seismic line in the West Baram Delta. 

Seismic line No. Wells located on the seismic line Interpreted line 

I 88-501 w A 

2 96SKE-002M K 

3 96SKE-012 L,M 

4 96SKE-030M H,O,P,A4 --1 

5 96SKE-02 Q,R 

6 96SKER-03M S, T, U 

7 96SKER-04 V,W,X, Y 

8 CW97-044 z 
9 CW97-045A AI 

10 CW98- 096 8 v 
II SK2K-04A A2,A3 " 

3.2 Seismic Interpretation (Seiswork) 

The interpreted seismic line, 96SKE-030M, is used as input for the Temis 20 

modeling. There are four (4) wells located on the seismic line, namely H, 0, P and 

A4. However, two wells (Well H and well 0) available in digital format logs, so this 

two wells were chosen as the control wells and used for horizon picking. As for well 

A4, there are no composite logs that provide the depth of the cycles. As for well P, 

there is no wireline curve provided in the workstation database. The interpreted 

horizons are the top horizon Cycle VI, Cycle VI Middle, Lower Cycle VI, top of 

Cycle V, middle of Cycle V, (Table 3.3). There were some difficulties in interpreting 

the NE part of the seismic line. This part is near to the deep water area where the 

seismic reflection is poor and unclear. Other interpreted lines are CW 98-096 and 

CSK2K-04A. The control well for line CSK-04A is Well A3 and the control well for 

CW 98-096 is Well B. 

In order to determine and to identify the horizons of the Top Cycle VI, Middle 

Cycle VI, Lower Cycle VI, Top Cycle V and Lower Cycle V, the two way time 

(TWT) vs. depth graph is used. This data is obtained from check shot data that are 

available in the workstation database. The depth of Cycles from Top Cycle VI to 

Middle Cycle V can be obtained from the composite logs in final well report. Since 
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the information of the cycles in the composite logs is in depth and not in time, the 

time vs. depth graph is used to determine the time of each cycles. After the time of 

each cycle has been identified, interpretations of the cycles were proceed. Selected 

horizons were interpreted with the major faults also interpreted. The major faults 

were identified by the present displacement along the horizons. Figure 3.4 show the 

workflow for seismic interpretation. 

Table 3.3. Interpreted horizons. 

Cycle (horizon) Age Ma 

Top Cycle VI Late Pliocene 3.0 

Middle Cycle VI Middle Pliocene 3.8 

Lower Cycle VI Early Pliocene 4.2 

Top Cycle V Late Miocene 5.6 

Middle Cycle V Middle Late Miocene 6.7 

Select the seismic lines that will be 
interpreted 

Select horizon for interpretation (Cycles) 

Well Logs 

I Quality control I TZ graph from Check Shot 
I 

I fault Interpretation I Control Wells 

I Velocity picking for selected cycle I 
Fig. 3.4 Workflow method for seismic interpretation. 
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3.3 lD Modeling (Genex) 

The purpose of I D modeling is to reconstruct the past thermal history of the 

basin based on the well data. The required data for I D modeling are temperature, 

vitrinite reflectance (VRo), and well lithology. The temperature data obtained for the 

I D modeling are from production tests, such as Repeat Formations Tests (RFT). 

These tests provide the present day temperature and the present day heat flow. 

Vitrinite reflectance (VRo), represents the past temperature history and also the past 

heat flows. These two (2) different heat flows, the past and the present will have their 

own significances in calibrating the temperature and the vitrinite reflectance. In 

certain cases, the heat flow is different from the past and the present day, making the 

calibration more difficult. 

However, calibration is crucial in reconstructing the past history of the basin; 

therefore, temperature data and vitrinite reflectance (VRo) data are essential. If both 

data calibrate, then the result of the I D modeling is reliable. The result obtained from 

I D modeling is the heat flow. However, in this study, there are several wells where 

heat flows do not calibrate with vitrinite reflectance. This will be discussed in the 

Results and Discussion section. Below is an example of the I D modeling that 

calibrated reasonably well with temperature and vitrinite reflectance data (Figure 3.5 

& 3.6). 

The selection of the well for I D modeling is based on the availability of the 

temperature data and vitrinite reflection (VRo ). The selection of wells was also based 

on the location of the wells. The locations of the wells represent area from the 

proximal to the distal. This is to see whether there is a certain trend of the heat flow 

from proximal to distal. Figure 3.7 shows the workflow of I D modeling. 
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Fig.3.6. An example of a calibrated 10 model with the vitrinite reflectance. The heat flow used is 54 
mW/m2 There are four points of VRo measurements that are not well calibrated. The past 
temperature indicated by the vitrinite reflectance was higher in the past, this is possibly due to 
the higher temperature sample !Tom other vicinities which had been eroded and redeposited in 
this area. 
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I Data gathering I 

I I 
Well Lithology: Temperature Datu: Vitrinite Renectance (VRo): 
I) Final Well Report I) Final Well Report I ) Geochemical report 
2) Geochemical report 2) Final drilling report: 

Repeat Formation Test (RFf) 

Construct Stratigraphy 

I Calibrate present day 
temperature 

Calibrate vitrinite 
reflectance (past history 
temperature) 

Fig. 3.7. Workflow for ID Genex. 

3.4 Pore Pressure Estimation Using Drillworks Predict 

For the pore pressure estimation, two wells (Well H and Well 0) were 

selected. The wells were selected as they are located on the modeled section seismic 

line. There are several methods in estimating the pore pressure (Drillworks Pro 

Training Course, 2005). The five methods are: 

I) Velocity /effective stress relationship 

2) Horizontal and vertical methods 

3) Eaton's equations 

4) Bower's methods 

5) Miller's Method 

In this study, Eaton's method was applied in estimating the pore pressure. The 

basic relationship between total vertical stress or overburden, effective vertical stress 

(rock or matrix stress) and formation fluid pressure (pore pressure), (Figure 3.8) was 

explained by Terzaghi, using the equation below: 



Sv = Oe + Pr 

Sv =Total vertical stress/ overburden 

Oe = Effective vertical stress (Rock or Matrix stress) 

Pr = Formation fluid pressure (pore pressure) 

I-I"'- 1-+- Tho Efftctin Stress is 
• o tho ana "-ltntll tho PP 

ud tho OBP 

0 

H-

Ovorllurdm Prosmn 

00 

;,. !;J Pore Pri!Slan 

1-r--- 1-\.- ~ 

00 

H- -1--• 1--1-- • 1-----.. 
7.UO 

Fig. 3.8. The relationship between the overburden pressure, pore 
pressure and the effective stress. (Drill works Pro Training 
Course, 2005). 
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Below IS the flow chart for estimating pore pressure by Drillworks Predict 

(Figure 3.9). 

I 
Gamma Ray I 

Import wireline logs I 
I I I Caliper 
I 

I 

I Density I 
I 

·I Sonic I 

·I Resistivity I 
Log Quality control I I Removing Bad data J I 

Picking shale intervals on lithology 
curves using gamma ray 

Smoothing curves by shrinking boxcar 

Density curve determination I 

Calculate overburden gradient (OBG) 

Determine NCT- Eaton Sonic Method 
I 

Calculate pore pressure gradient 
I 

Fig.3.9. flow chart of pore pressure estimation in Drill works Predict. 
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3.5 Depth Conversion (Easy Depth) 

In order to construct the modeling, firstly, the seismic time section need to be 

converted to seismic depth section, to do this, software called Easydepth was utilized. 

Figure 3.10 shows the workflow of the conversion seismic time section to seismic in 

depth section. 

Creating a new studv and collecting input data 

Editing the time interpreted section 

Defining the velocity model: velocity units 

Refining the velocitY model locally (patches) 

Calibrating the velocitv model with check shot 

Fig. 3.10. Flow chan of conversion seismic time section to seismic depth section. 

3.6 2D Basin Modelling (Temis 2D) 

After converting the time seismic section to depth seismic section, the section 

can then be exported to Temis 20 for constructing the model. Below are steps of the 

method to run the simulations. Figure 3.11 shows the workflow of 20 basin 

modelling. 
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Export the seismic depth section 
from Easydepth to Temis 20 

I 
Loading the template that been imported 
in Temis 20 

l 
Defining the: 
I )Shape of the present geometry 
2)Shape of basin 
3)New intermediate markers 

l 
Editing the shape of marker by hand I 

l 
Filling the section with the lithologies 

I 
Viewing the mesh, simplifying and editing the 
vertical lines of the mesh 

Incorporates data: I Calibrate I I) Surface temperature history Temperature 
2) Bottom heat flow temperature history Vitrinite reflectance 
3) IFP kerogen and hydrocarbon component Pressure 
4) Main simulation options 

l 
I Run simulation I 

l 
I J Change parameter: 

I Good calibration I I Bad calibration Heat flow, permeability 

Fig. 3.11 Flow chart methodology of basin modeling (Temis 20) 
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CHAPTER FOUR 

4.0 Results and Discussions 

Results and discussion for setsmtc interpretations, I D modeling, and pore 

pressure estimation are as below. 

4.1 Seismic Interpretations (Seiswork) 

Five horizons were interpreted, and the interpreted horizons are as below 

(Table 4.1, table 4.2, table 4.3) and (Figure 4.1, 4.2, 4.3). 

Table 4.1. Interpreted horizon for line 96SKE-030M. 

horizons interpretations Well H Well 0 Well P Well A4 

Top Cycle VI v 320 ms 748 ms 1136 ms 1030 ms 

Middle Cycle VI v 542 ms 1062 ms 1288 ms 1252 ms 

Lower Cycle VI v 752 ms 1374 ms 1556 ms 1538 ms 

Top Cycle V v 988 ms 1728 ms 1840 ms 1874 ms 

Middle Cycle V v 1802 ms 2178 ms 2264 ms 2298 ms 

Table 4.2. Interpreted horizon for line CW 98-096. 

Cycle interpretation Well 8 

Top Cycle VI v 1352 ms 

Middle Cycle VI v 1696 ms 

Lower Cycle VI v 1916 ms 

Top Cycle V v 2196 ms 

Middle Cycle V v 2812 ms 

Table 4.3. Interpreted horizon for line CSK2K-04A. 

Cycle Interpretation Well A3 WellS Well 83 

Top Cycle VI v 786 ms 804 ms 798 ms 

Middle Cycle VI v 1140 ms 1116ms 1074 ms 

Lower Cycle VI v 1440 ms 1422 ms 1428 ms 

Top Cycle V v 1920 ms 1896 ms 1896 ms 

Top Cycle V v 2520 ms 2514 ms 2538 ms 
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4.2 10 Modeling (Genex) 

In order to perform the I D modeling, data such as temperature and vitrinite 

reflectance need to calibrate the heat flow. However, not all wells are well calibrated 

with both temperature and vitrinite reflectance. Mostly, the vitrinite reflectances are 

not well calibrated. This may be due to vitrinite suppression whereby the sample had 

been impregnated with oil, thus affecting the accuracy of the vitrinite reflectance 

measurements (Figure 4.5). Weathering of the sample, if the sample had been eroded 

and exposed, can also influence the accuracy of the measurement. The vitrinite 

sample that had been eroded, recycle and redeposited also influence the measurement 

of vitrinite reflection (Figure 4.6). Since the temperature data is more reliable 

(temperature from production tests), by calibrating the temperature, assumptions were 

made that the heat flow is acceptable. In this study, an assumption is made, that the 

heat flow in the past was similar to the present day. This assumption was made 

because the VR data is unreliable. This assumption works well in D, thus justifying 

the application to other wells. The present day temperatures are well calibrated all the 

wells (Figure 4.4, 4.6, 4.8, 4. I 0, 4. I 2, 4. I 4, 4. I 6, 4. I 8, and 4.22). The vitrinite 

reflectances of the wells that are not well calibrated due to vitrinite suppression are 

Well D (Figure 4.5), Well A(Figure 4.7), Well G (Figure 4.9), Well I (Figure 4. I I), 

Well H (Figure 4. I 3), Well F (Figure 4. I 5), Well J (Figure 4. I 7). The vitrinite 

reflectance in Well C (Figure4. I 9) and Well 8 (Figure4.2 I) are eroded and 

redeposited. While in Well E (Figure 4.23), the vitrinite suggests the possibility of the 

occurrence of both vitrinite erosion and redeposition and suppression occurring 

simultaneously. 
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Fig. 4.4. The temperature in Well D is well calibrated with the temperature. 
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Fig. 4.5 The vttnmte reflectance is not well calibrated. The vitrinite reflectance value indicate a 
lower heat flow in the past, possibly due to vitrinite suppression, whereby the sample had been 
impregnated by oil. 
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Fig.4.6. The temperature in well A is quite well calibrated 
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Fig. 4.8 The temperature in Well G is well calibrated. 
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Fig 4.9. The vitrinite reflectance in Well G is suppressed. 
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Fig. 4.11 The vitrinite reflectance in Weill is suppressed. 
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Fig-4.12. The temperature in Well H is well calibrated. 
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Fig. 4.15. The vitrinite reflectance in Well F is suppressed. 

34 



WELL STATE TEMPERATURE 

• 10 20 

Temperature ("C) 

M 
TYPEIII - IO.ot 

L-1 

,.,_,. __ 
Temperature ("C) 

Depth (km) 

Age : 0.00 Ma 

~ Sandatone 

- Siltstone 

-Shale - ..... 
- U..atone 
Co.pufing PtN~ 

No Calibtation 
Constant Heat flow 

lmpoaed Pressure 

04/e.: 24-Nov-2007 

Fig. 4.16 The temperature in Well J is well calibrated. 
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Fig.4.18. In Well C, the temperature is well calibrated. 
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Fig. 4.19. The vitrinite reflectance is not well calibrated in this welL The vitrinite reflectance indicated 
that the past temperature is higher than the temperature in present day. This is possibly due 
to vitrinite was recycling where the sample could have been eroded from another place that 
had higher past temperatures where redeposited in this area. 
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Fig. 4.20. The temperature in Well B is well calibrated. 
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Fig 4.21 . The vitrinite reflectance in Well B is eroded and recycled. 

37 



WELL STATE TEMPERATURE 

0 20 •o 60 •• - 120 1&0 IH 100 200 

0 .0 0 .1 

Temperwtunt rc) 

Fig.4.22. The temperature in Well E is well calibrated. 
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Fig. 4.23 . The vitrinite reflectance in WellE indicate the presence both eroded and recycled, and 
suppressed vitrinite. 
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There are two scenarios regarding the vitrinite reflectance that does not fit 

with the calibrated heat flow. The first scenario is that the temperature data is correct 

and the vitrinite reflectance is suppressed or recycled. In the second scenario, the 

vitrinite reflectance is correct which shows that the temperature was very low in the 

past. Commonly, the scenario is more typical. This supported by study from Azlina 

Anuar and Peter Abolins (2005) and Zielinski et. al. (2005). Azlina Anuar & Peter 

Abolins (2005) also reported the heat flow values increasing seaward in the Sabah 

Basin, thus supporting the trend observed here. A similar trend in the offshore Brunei 

area, Zielinski et. al. (2005) also reported that on the Brunei continental margin. In 

seaward area, the mean heat flow is 59.0 ± 22.6 mW/m2 and in the landward area, the 

mean heat flow is 83.7 ± 66.5 mW/m2
. 

Below are the wells for which I D modeling was undertaken for heat flow 

determination (Table 4.4). All the wells are not well calibrated. Well A, D, F, G, H, I, 

J are not well calibrated due to vitrinite suppressions. While well B and Well C are 

not well calibrated with vitrinite reflectance may be due to the sample have been 

eroded and redeposited. In well E, the calibration of vitrinite reflectance is not good 

and it shows that the samples may have been eroded and redeposited, and/or 

suppressed. 

Table. 4.4 Selected well for I 0 modelling. 

Wells I 0 model Heat flow (mW/m') 

A " 53 

B " 54 

c " 43 

D " 39 

E " 37 

F ..J 32 

G " 35 

H " 30 

I " 30 

J " 25 

Abdul Jalil Muhammad & Azlina Anuar (1999) cited that the heat flow in 

West Baram Delta is 65 mW/m2. From this study, the heat flow from the I D 

modeling ranging from 53 mW/m2 to 25 mW/m2 It was observed that heat flow 
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increases seawards (Figure 4.24). This may be related to the low sedimentation rates 

in the distal area and high sedimentations rates in the proximal. In the landward area, 

the sedimentations rates are high, while in the seaward areas the sedimentation rates 

are relatively lower. The high sedimentation rates create a condition called a transient 

state (unsteady state). The thick sediment in the landward area need higher value of 

heat flow to heat up the cold sediments thus the temperature is reduced quickly, 

therefore heat flows are low. Since the burial is fast in high sedimentations rates, 

water along with the heat can escape quickly from pore pressure, resulting low heat 

flows. 

In the seaward area, the heat flow is high due to the relatively lower 

sedimentation rates, creating a steady state condition. In this steady state regime, the 

temperature is evenly distributed from the heat flow. So, this is why the heat flow is 

high in areas with low sedimentation rates. The heat flow mentions here are basement 

heat flow. 



41 

N 

./ 
I Well F- 32 mW/m2 

~ 
~ 

~ 

Legend 

Oil field 

Gas field 

prospect 

Minor gas field 0 10 20km 

Fig. 4.24. Modeled heat flow distribution in the Baram Delta. 
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4.3 Pore Pressure Estimation 

Figure 4.25 shows the selected wells for pore pressure estimation usmg 

Drillworks predict. The selected wells are Well Hand Well 0. 

N 

g 

Legend (f 
Oil field 

Gas field 
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0 10 20km 
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Fig. 4.25 . Well Hand Well 0 for pore pressure estimation using Drillworks Predict. 
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Pore pressure estimation is done by applying the Drillworks Predict software 

in deriving normal compaction trend. The sonic Eaton method is preferred due to its 

appropriate calculation. Miller methods have been applied in this study, but shows no 

overpressure occurs. Since the well data shows that the overpressures occur, another 

method was selected. By using Eaton method, the overpressure can be calculated. 

Thus sonic Eaton method is preferred. From this analysis, we can calculate the normal 

compaction trend and the pore pressure. Below are the calculated normal compaction 

trend calculated (Figure 4.26). 
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Fig. 4.26. The overburden gradient trend for Well Hand Well 0. 
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Fig. 4.27. The pore pressure estimation for Well Hand Well 0 

Figure 4.27 shows the pore pressure estimation using the sonic Eaton method. 

Overpressure was indicated in both wells and in hydrostatic pressure. The 

overpressure of both well is due to the uplift and erosion of the delta hinterland 

(Tingay et. al., 2002). 
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Fig. 4.28 Comparison of pore pressure between Well 0 and Well H. 
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Figure 4.28 shows the comparison of pore pressure between Well Hand Well 

0. The top of overpressure in Well H is shallower (1000 m) than the top of 

overpressure in Well 0 (1800 m). In the proximal are~ the sedimentation rate is high 

and burial was rapid. In the proximal area where Well H is located, the fluid in the 

pore cannot escape due to the rapid burial and high sedimentation rates (as high as 

1550 m/Ma prevailed between 10 Ma and the present day), thus creating overpressure 

at a shallower depth. While overpressure in Well 0 is at deeper depth due to the 

relatively lower sedimentation rates (as high as 1300 m/Ma prevailed between 10 Ma 

and the present day) than in Well H, the water can escape slowly and creating a 
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deeper depth of disequilibrium compaction. Sedimentation rates as high as 950 m/Ma 

that prevailed between 10 Ma and the present day seem to preclude the development 

of coal rich layers in the delta (Noor Azmi Ibrahim, 1994). 

4.4 Depth Conversion (Easydepth) 

Figure 4.29 shows the time seismic section that was imported into EasyDepth. 

The horizons in this time seismic section were already edited. 

Fig. 4.29. Interpreted horizons in time. 

Figure 4.30 shows the interpreted horizons in time. The velocity each layers 

were assigned with velocity for depth conversions and edited locally (by patches). 

Fig. 4.30 Velocity model after edited by layers and by patches. 
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After the definition of the velocity for each layer, then the time seismic section 

is converted into depth seismic section (Figure 4.31 ). 

Fig. 4.31 . Depth section - converted from seismic time section. 

4.5 2 D Basin Modelling (Temis 2D) -Overpressure Origins 

2 cases have been look into in 2D basin modelling. In the first model, the sole 

mechanism overpressure is the disequilibrium compaction. For the second case the 

model will include other possible overpressure mechanism, such as the hydrocarbon 

generation. Below is the lithology model in Temis 2D (Figure 4.32) and the 

petrophysical data of the lithology (Figure 4.33). 

I ... -· I -~-........ ,. ........ .... --
I 

Fig. 4.32 The lithology model for disequilibrium compaction. 
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4.5.1 Disequilibrium Compaction Model 

To reconstruct the pressure modeling, the model must be calibrated with the 

observed pressure, temperature and vitrinite reflectance dataset. Figure 4.34, the 

temperature in Well E is calibrated. The temperature data is from the Repeat 

Formation Test (RFT). From lD Modelling (Genex) the heat flow varies from 

53mW/m2 to 25mW/m2
. Heat flows ranging from 53mW/m2 to 35mW/m2 was used as 

an input for the heat flow in Temis 2D since the cross section for this modelling lies 

on this range. As the result, the temperature is well calibrated by using the heat flow 

modelling from 1 D Genex. 

·• WBaram 261/cv run3<> ·Well Log :11 Temperature 0 0 Ma at X: m 34262.5 (C. ft ) 1-1@1~ 

x:r ...... elllc 
Y:.,.llll 
WII:•••U212E 

~ .... 
+ WIIE-T 

Fig. 4.34 Calibration for temperature in Well E - disequilibrium compaction. 
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Figure 4.35 shows the pressure calibration in Well H for disequilibrium 

compaction. To get a good calibration for the pressure, the permeability of the seal 

can be varied. The permeability can be decreased to create overpressure conditions to 

match the calibration data. Fluid retention leading to overpressure is largely controlled 

by the low permeability non reservoir rocks such as shales, evaporites and cemented 

carbonates (Swarbrick & Osborne, 1998). 

-:.~~~~---Ja. "'-' 

Fig. 4 .35. The calibration of pressure in Well H. 
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Figure 4.36 shows the calibration with the vitrinite reflectance in the 

disequilibrium compaction model. The model is calibrated with vitrinite relectance 

data from Well E. The calibration in Well E is quite good. The model from vitrinite 

reflectance will also be used to determine the oil window, from which we can then 

determine the depth to the oil window. 
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Fig. 4.36. The calibration of vitrinite reflectance in disequilibrium compaction model. 
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Figure 4.37 shows the modeled vitrinite reflectance along the section. The 

present day top of oil window generally occurs at depth approximately 10000 ft (3050 

m). This is considering the cutoff of the oil window is 0.6 % Ro of the vitrinite 

reflectance. 
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I 
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Fig. 4.37 the vitrinite reflectance model 
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From the temperature model (Figure 4.38), the temperature varies from 30-

1500C. As the depth increases, the temperature also increases. Comparing the 

temperature model and the vitrinite reflectance model, it shows that when the depth 

increases, the value of the vitrinite reflectance also increases. In which this 

temperature will affect the thermal maturity of the kerogen. As mention before, the 

cut off of 0.6%Ro of the vitrinite reflectance marks the top of the oil window. 
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Fig. 4 .38. The temperature model in present day for disequilibrium compaction. 
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Figure 4.39 shows the modeled overpressure distribution in the Baram Delta 

cross section. The onset overpressure is estimated at depth of 3050 m. Four wells 

were located on the seismic line from the model, the depth of overpressure for Well P, 

Well A4, Well 0 , and Well Hare as below in table .The hydrostatic pressure gradient 

for the overpressure is 0.433 psi/ft. If the value of the pressure gradient is above this 

value, it is considered as overpressure. The overpressure predicted from the model is 

similar to the exact overpressure from the report (Table 4.5). This shows that the 

model of the overpressure is reliable. 
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Fig. 4.39. The overpressure model for disequilibrium compaction 

Table 4.5. The depth of overpressure from the model and from report. 

Depth of overpressure from model (m) Depth of overpressure (m) (After PRSS research 

group unpublished report, 2006) 

- 3048 3021.952 

- 3100 Not available 

- 2987 2959.14 

- 2682 2652.43 

In the pore pressure estimation using Drillworks Predict the depth of the 

overpressure is much shallower than the actual top of overpressure in the report (The 

top of overpressure for Well H is 1 OOOm and the top of overpressure for Well 0 is 

1800m). This discrepancy is possibly related to incorrect normal compaction trend 

(NCT) or possibly due to the interbeded shale and sandstone, making it difficult to 

pick the clean shale. Since the top of overpressure in pore pressure estimation using 

Drillworks Predict is not really near to the actual top of overpressure, the 2D 

modeling is used to solve this problem. 
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4.5.2 Hydrocarbon Generation Model 

Below is the construction of lithology model for hydrocarbon generation 

model (Figure 4.40). The present day top of oil window in West Baram Delta is 4000 

m to 5000 m (Denis N. K. Tan et. al., 1999). In order to simulate the oil generation in 

the past, the depth of the section is added to 8000 m. Therefore, for this model, 

additional 4000 m of sediments is added. From the simulation of the model that 

includes hydrocarbon generation, the pressure model does not vary much from the 

first model (disequilibrium compaction). The overpressure model also does not vary 

much from the first model. Since the overpressure from the first and the second model 

does not vary much, it is likely that the origin of the overpressure in the West Baram 

Delta is due to disequilibrium compaction. Schreurs & Ellenor (1996) mentioned that 

rapid deposition of the fine-grained prodelta sediments can lead to the development of 

widespread overpressures generated by disequilibrium compaction. This overpressure 

within the prodelta shales is commonly associated with undercompaction and shale 

diapirism (Schreurs & Ellenor, 1996). Harrold et. al. (1999) also cited that the 

overpressure occurring in South East Asia is due to disequilibrium compaction. Kho 

et. al. (1994) also noted that the overpressure in Baram Delta can be due to shale 

diapirism. 
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Fig. 4.40. The lithology model for hydrocarbon generation model. 



.. 
,. --

-T-
GooF-/~ 

Of F.-d l a-y 

.... ~ 

Legend: 

Cross section for 2D 
basin modelling 

56 

Fig. 4.41 West Baram major oil and gas fields (Adapted from Denis N. K. Tan et. al., 1999) 
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Fig. 4.42. The hydrocarbon expulsion for hydrocarbon generation model - hydrocarbon expulsion 

model. 

Figure 4.41 show that there are many oil fields located in the proximal area, 

and many gas fields located on the distal area. This can be explained by the expulsion 

model from the basin modeling (Figure 4.42). In this model, it shows that in the 

proximal area, the gas evaporates and leaks; therefore, there are no gas accumulations 

(the gas is in green colour). In the distal area, the gas doesn't leak and traps, therefore, 

there are gas accumulations in this area 
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CHAPTER FIVE 

5.0 Conclusions and Recommendations 

From this study, there are several conclusions: 

I) In ID (using Genex) the heatflow of the Baram Delta varies from 25 mW/m2 

to 55 mW/m2 with the trend of the heatflow increases seaward. This is due to 

the high sedimentation rates in the proximal, and this will release the water in 

the pore. This will also lead to the quick dissipation of heat. The vitrinite 

reflectance data in this area is also not very reliable as the the vitrinite 

reflectance maybe suppressed and/or recycled. 

2) In seismic interpretation (using Seiswork), we can see that the tectonics in the 

Baram Delta is very active as many growth fault can be seen. This high 

tectonism in Baram Delta leads to shale diapirism. 

3) In pore pressure prediction (using Drill works Predict), the top of overpressure 

for the well situated closer to the proximal, the top of overpressure occurs at 

shallower depths. This is due to the high sedimentation rates and rapid burial, 

creating an overpressure condition at shallower depth. For wells that are 

located near to the distal, the top of overpressure is occurs at deeper depths. 

This is due to the low sedimentation rates and the sediment is buried slowly. 

4) In 2D basin modeling, the first model, which is the disequilibrium compaction, 

indicates that the depth to overpressure starts approximately at 3050 m (I 0000 

ft). In the second model, which includes the hydrocarbon generation, the depth 

of overpressure does not seem to vary much from the first model. So, it is 

concluded that the main origin of overpressure in the West Baram Delta is 

disequilibrium compaction. Hydrocarbon generation does not contribute 

significantly to the development of overpressure in the West Baram Delta. 
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Below are several recommendations for this study to go far: 

I) Better calibration can be done for the models if more and better data are 

available, such as temperature, vitrinite reflectance and pressure. 

2) In order for this study to obtain a good end result, more time is needed 

than 4 months. Due to time constrain, the calibration of the data could not 

be very good. 
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Appendix 1: Well data 

Wells Geochemical data Logs Pressure Temperature 
Laila-1 " sidetrack -I " " sidetrack-2 " sidetrack-3 -.J 
Laila-2 
Merak-1 -.J 
Merak 2 
Merak 3 
Merak 4 
Betty I -.J " " Betty- I sidetrack-! 
Betty- I sidetrack-2 
Betty- I sidetrack-3 
Betty-2 " Betty-3 " Betty-4 -.J 
Betty-5 " -.J -.J 
Betty-6 -.J -.J 
Betty-6 sidetrack -.J 
Betty-7 -.J 
Betty-8 -.J 
Betty-9 -.J 
Betty-!! -.J 
Betty-! I sdtr -.J 
Betty-12 str -.J 
Betty-13 -.J 
Betty-14 " Betty-IS " Betty-16 " Betty-17 " Bokor south-! " " Bokor-! " " Bokor-3 " Bokor-4 " " Bokor-5 -.J 
Bokor-6 -.J 
Bokor-7 -.J 
Bokor-8 -.J 
Hasnah-1 -.J -.J -.J -.J 
Bakau deep-! -.J -.J -.J -.J 
Bakau-1 -.J 
Bakau-2 -.J 
Tukau Timur-2 -.J 
Tukau-1 
Tukau-2 -.J -.J -.J 
Tukau-3 
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Wells Geochemical data Logs Pressure Temperature 
Tukau-4 v 
Tukau-5 v 
Tukau-6 
Tukau-7 
Tukau-8 
Tukau-9 v 
Tukau-10 v 
Tukau-11 " Tukau-12 " Tukau-13 " Tukau-42 " Sikau North-! " Sikau-1 
Sikau-2 v 
Loak Bay v 
Loak bay 604 
!oak bay 610 
Siwa-1 
Siwa2 v 
Siwa-3 v 
Siwa-4 " " " Siwa-5 " Midin-1 
Baronia timur laut-1 " " " Baronia barat-1 " " " Baronia-l " " Baronia-2 " Baronia-3 " Baronia-4 
Baronia-5 
Baronia-l! 
Baronia-19 
Baronia-46 
Baronia-29 v 
Faridah -I v 
Faridah-23 
Fairley Baram-1 v 
Fairley Baram-2 v 
Fairley Baram-3 v v " v 
Fairley Baram-11 " Fairley Baram-29 " Baram-1 v 
Baram-2 v " Baram-3 " Baram-4 " Baram-5 " Baram-6 " 
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Wells Geochemical data Logs Pressure Temperature 
Baram-7 -~ 

" " Baram-8 " Baram-16 " Baram-20 " Baram-21 " Baram-23 " " Baram-24 
Baram-25 
Baram-26 " Baram-27 
Baram-28 " Baram-32 " Baram-41 " Baram-42 " Baram-43 
Baram-44 " Baram-55 " Baram-56 
Baram-59 " Fatimah -I " Taniun11. Baram-1 " " Kuala Baram-1 " West Luton!!- I " " West Lutonl!-2 
West Luotonl!-3 
West Lutonl!-4 
West Luton11.-S 
Zarina-1 7 ~ " Sikao-1 7 " La yang-! 7 ~ " " Beryl-! 7 " Beryl-3 7 ~ " Bervl-4 " " Beryl-S " " Bervl-6 " " Beryl-7 " " Lembuk-1 " " Lembuk-2 
Lembuk-3 " Lembuk-4 " Lembuk-5 " Lembuk-6 " 


