
STATUS OF THESIS

Title of thesis: Semantic-Based, Scalable, Decentralized and Dynamic Resource
Discovery for Internet-Based Distributed System

I

MAHAMAT ISSA HASSAN

Hereby allow my thesis to be placed at the Information Resource Center (IRC) of

Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

2. The IRC ofUTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

D Confidential

[I] Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for years.
Remarks on disclosure:

Maharnat Issa Hassan
Department of Computer
Information Sciences (CIS)
Universiti Teknologi PETRONAS
Date 0?> \ q \\ 0

~
Azween Bin Abdullah
Department of Computer
Information Sciences (CIS)
Universiti Ie ologi PETRONAS
Date .:l. 0 9 I o

UNIVERSITI TEKNOLOGI PETRONAS

SEMANTIC-BASED, SCALABLE, DECENTRALIZED AND DYNAMIC
!

RESOURCE DISCOVERY FOR INTERNET-BASED DISTRIBUTED SYSTEM

By

MAHAMAT ISSA HASSAN

The undersigned certify that they have read, and recomm;end to the Postgraduate

Studies Programme for acceptance this thesis for the fullfilm,ent of the requirements

for the degree stated.

Signature:

Main Supervisor: Assoc. Prof. Dr Azween Bin Abdullah

Signature:

Head of Department: Dr. Mohd Fadzil Bin Hassan

Date:

SEMANTIC-BASED, SCALABLE, DECENTRALIZED AND DYNAMIC

RESOURCE DISCOVERY FOR INTERNET-BASED DISTRIBUTED SYSTEM

by

MAHAMAT ISSA HASSAN

A Thesis

Submitted to the Postgraduate Studies Programme

As a requirement for the degree of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR

PERAK

SEPTEMBER 2010

DECLARATION OF THESIS

Title of thesis
Semantic-Based, Scalable, Decentralized and Dynamic Resource

Discovery for Internet-Based Distributed System

I MAHAMA T ISSA HASSAN

hereby declare that the thesis is based on my original work except for quotations and citations

which have been duly acknowledged. I also declare that it has not been previously or
'

concurrently submitted for any other degree at UTP or other institutions.

Witnessed by

Signature of Author Signature of Supervisor

Permanent address: Name of Supervisor

Universite Roi Fays;al
B.P. 582, Ndjamena, Chad Azween Bin Abdullah

Date : '2P \ 1 I I 0

lV

ACKNOWLEDGEMENT

First and famous I would like to express my gratitude to the Almighty Creator for

guiding me throughout my lifetime.

My sincere appreciation goes to my entire family members for their daily prayers

and love for the duration of my academic years in UTP. Their kindness made this

work possible.

I also want to acknowledge the financial support I have received from UTP that
I

made possible for me to be a graduate student and finished t,nY work. I am profoundly

thankful to my supervisor Assoc. Prof. Dr. Azween Bin Abdullah for his kindly
I

support and intellectual guidance. He has taught me to improve and trust my research

skills, as well as the intricacies of academia and how to nav~gate them. I am also very

grateful to my other lecturers and the entire staff of my department for their support

during my study period.

My research lab has been a wonderful place to work on, and I want to say 'thank

you' to all the lab mates. I am indebted to them.

Finally may I cease this opportunity to extend my warm appreciation to my

parents: Issa Hassan and my mother Radya Mahamat who have been my true parents

supporting in good and bad times during the last 28 years. T1:J.eir analytical mind and

critical thinking has constantly challenged me to achieving befter results in my career,

I am proud of them.

VI

ABSTRACT

Resource Discovery (RD) is a key issue in Internet-based distributed sytems such as

grid. RD is about locating an appropriate resource/service type that matches the user's

application requirements. This is very important, as resource reservation and task

scheduling are based on it. Unfortunately, RD in grid is very challenging as resources

and users are distributed, resources are heterogeneous in their platforms, status of the

resources is dynamic (resources can join or leave the system without any prior notice)

and most recently the introduction of a new type of grid called intergrid (grid of grids)

with the use of multi middlewares. Such situation requires an RD system that has rich

interoperability, scalability, decentralization and dynamism features. However,

existing grid RD systems have difficulties to attain these features. Not only that, they

lack the review and evaluation studies, which may highlight the gap in achieving the

required features. Therefore, this work discusses the problem associated with intergrid

RD from two perspectives. First, reviewing and classifying the current grid RD

systems in such a way that may be useful for discussing and comparing them. Second,

propose a novel RD framework that has the aforementioned required RD features. In

the former, we mainly focus on the studies that aim to achieve interoperability in the

first place, which are known as RD systems that use semantic information (semantic

technology). In particular, we classify such systems based on their qualitative use of

the semantic information. We evaluate the classified studies based on their degree of

accomplishment of interoperability and the other RD requirements, and draw the

future research direction of this field. Meanwhile in the latter, we name the new

framework as semantic-based scalable decentralized dynamic RD. The framework

further contains two main components which are service description, and service

registration and discovery models. The earlier consists of a set of ontologies and

services. Ontologies are used as a data model for service description, whereas the

services are to accomplish the description process. The service registration is also

vii

based on ontology, where nodes of the service (service providers) are classified to

some classes according to the ontology concepts, which means each class represents a

concept in the ontology. Each class has a head, which is elected among its own class
I

nodes/members. Head plays the role of a registry in its class and communicates with
I

the other heads of the classes in a peer to peer manner during the discovery process.

We further introduce two intelligent agents to automate the discovery process which

are Request Agent (RA) and Description Agent (DA). Eaclj. node is supposed to have

both agents. DA describes the service capabilities based on the ontology, and RA
I

carries the service requests based on the ontology as well. We design a service search
I

algorithm for the RA that starts the service look up from the class of request origin

first, then to the other classes.

We finally evaluate the performance of our framework ~ith extensive simulation

experiments, the result of which confirms the effectiveness of the proposed system in

satisfying the required RD features (interoperability, scalability, decentralization and

dynamism). In short, our main contributions are outlined new key taxonomy for the

semantic-based grid RD studies; an interoperable semantic description RD component

model for intergrid services metadata representation; a semantic distributed registry

architecture for indexing service metadata; and an agent-qased service search and

selection algorithm.

Vlll

ABSTRAK

Penemuan Sumber atau Resourse Discovery (RD) adalah isu utama di dalam sistem

teragih berasaskan Internet. RD bertujuan untuk menempatkan jenis sumber/

perkhidmatan yang sepadan dengan keperluan pengguna di lokasi yang sesuai. Ini

adalah amat penting dalam penyimpanan sumber dan penjadualan tugas. Namun

begitu, grid di dalam RD adalah amat mencabar kerana sumber dan pengguna adalah

teragih, sumber di platform adalah heterogeneous (pelbagai), status sumber yang

dinamik (sumber boleh menyambung atau meninggalkan sistem tanpa notis

pemberitahuan) dan yang terkini adalah pengenalan kepada sejenis grid dipanggil

intergrid (grid di dalam grid) yang menggunakan pelbagai pengantaraan. Situasi

situasi sedemikian memerlukan sistem RD yang mempunyai ciri-ciri interoperasi,

berskala, tidak terpusat dan dinamik. Kajian-kajian yang lalu mendapati, grid sistem

RD sedia ada mempunyai kesukaran untuk mengekalkan ciri-ciri yang dinyatakan.

Selain itu, terdapat kekurangan pada sistem sedia ada dalam penyemakan semula dan

penilaian yang menyebabkan kepada jurang untuk mencapai ciri-ciri yang

dikehendaki.

Kajian ini membincangkan masalah-masalah integrid RD dalam dua perspektif.

Pertama, penyemakan semula dan pengklasifikasi grid sistem RD sedia ada yang

berguna dalam perbincangan dan perbandingan. Kedua, mencadangkan kerangka RD

baru yang mempunyai maklumat sebelurnnya yang diperlukan dalam RD. Sebelum

ini, kami hanya menumpukan kajian untuk mencapai interoperasi yang dikenali

sebagai maklumat semantik! teknologi semantik sistem RD. Secara khususnya, kami

mengklasifikasikan sistem-sistem tersebut berdasarkan fungsi kualitatif maklumat

semantik. Kami menilai maklumat yang telah diklasifikasi kepada darjah pencapaian

interoperasi dan keperluan-keperluan lain serta potensi RD. Pada penghujungnya,

kami menamakan kerangka baru ini sebagai RD dinamik berskala tidak terpusat

berasaskan semantik atau "semantic-based scalable decentralized dynamic RD".

ix

Kerangka bam ini mengandungi dua komponen utama iaitu penerangan perkhidmatan
I

atau service description dan model pendaftaran dan penemuan perkhidmatan atau

service registration and discovery models. Komponen pertama mengandungi urutan

set-set ontologi dan perkhidmatan. Ontologi digunakan sebagai model data untuk

penerangan sumber yang diperlukan ketika proses penerangan. Komponen kedua,

iaitu pendaftaran perkhidmatan turut berdasarkan ontoldgi, yang mana nod-nod

perkhidmatan (penyumbang perkhidmatan atau service provider) diklasifikasikan
I

mengikut konsep ontologi iaitu setiap kelas memaparkan satu konsep ontologi. Setiap

kelas mempunyai kepala atau head yang dipilih daripada nod kelas/ ahli sendiri. Head

berperanan sebagai pendaftar di dalam kelas dan berkomunikasi dengan head kelas

kelas lain secara peer-to-peer semasa proses pencarian. Seterusnya, kami

memperkenalkan dua agen bijak untuk mengautomasikan pn~ses pencarian iaitu Agen

Pemohon atau Request Agent (RA) dan Agen Penerangan atau Description Agent

(DA). Setiap nod perlu mempunyai kedua-dua agen ini. DA menerangkan kebolehan

perkhidmatan berdasarkan ontologi manakala RA inembawa permohonan

perkhidmatan berdasarkan ontologi. Seterusnya, algoritma pencarian perkhidmatan
I

RA direkabentuk bermula dari kelas asal sehingga kelas-kelas yang lain.

Akhimya, kami menilai prestasi kerangka dengan simulasi-simulasi eksperimen bagi
I

memastikan keberkesanan sistem yang dicadangkan memenuhi ciri-ciri RD yang

dikehendaki iaitu interoperasi, berskala, tidak terpusat . dan dinamik. Secara

kesimpulannya, sumbangan besar kami dalam penyelid~kan ini adalah kunci

taksonomi bam bagi pengajian grid RD yang berdasarkan sernantik; model komponen

penghuraian RD semantic interoperasi bagi mewakili metadata perkhidmatan

intergrid; rekabentuk daftar semantic tersebar bagi perkhidmatan indeks metadata;

dan perkhidmatan ejen pencarian serta algoritma pemilihan.

X

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the
university, the copyright of this thesis has been reassigned by the author to the legal
entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained
in, or derived from, this thesis.

© Mahamat Issa Hassan, 2010
Institute of Technology PETRONAS Sdn Bhd
All rights reserved.

xi

TABLE OF CONTENTS

STATUS OF THESIS ... ,i

APPROVAL PAGE ... ii

TITLE PAGE ... ,iii

DECLARATION OF THESIS .. iv

DEDICATION ... v
I

A CKN 0 WLEDG EMENT ... vi

ABSTRACT ... vii
'

ABSTRAK ... ix

TABLE 0 F CONTENTS .. xii
I

LIST OF FIGURES .. xvi
I

LIST OF TABLES .. xix
'

LIST OF ABBREVIATIONS .. xxi

CHAPTER 1: INTRODUCTION .. !

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Introduction ... ' 1
I

Motivation ... 1

Objectives .. · 4

Research Questions ... 6

Methodology ... 8

Our Contributions .. : 9

Organization of the Thesis , 10

CHAPTER 2: BACKGROUND KNOWLEDGE ... 12

2.1 Introduction .. 1

................................. 12

2.1 Grid Computing ... 13

2.1.1 Grid Requirements .. : 15

Xll

2.1.2 Grid Architecture ... 16

2.1.3 Grid Middleware .. l7

2.1.4 Grid Types ... 19

2.2 Grid RD Enabled Technologies and Related Grid Components 2I

2.2.1 Peer-to-Peer Computing (P2P) .. 22

2.2.2 Intelligent Agent .. 23

2.2.3 Broker and Meta-Broker .. 23

2.3 Grid Resource Discovery: The Big Picture ... 24

2.3 .I Grid RD Components .. 26

2.4 Grid RD Requirements .. 29

2.5 Existing Grid RD Systems .. 30

2.5 .I Existing RD Systems' Description .. 3I

2.5.2 Existing RD Systems' Registration ... 35

2.5.3 Existing RD Systems' Discovery .. 39

2.6 Assessment Summary of the Existing RD Systems 40

CHAPTER 3: THE STATE OF THE ART IN SEMANTIC-BASED GRID RD

SYSTEMS .. 41

3.I Introduction ... 4I

3.2 Methodology ... 42

3.3 Semantic Technology .. 43

3.3 .I Ontology Languages .. 44

3.4 Semantic Technology and Its Use in Grid Technology 51

3.4.I SemanticGrid .. 51

3.4.2 Grid Domain Ontologies .. 53

3.4.3 Semantic-Based Grid RD Systems' Description 57

3.4.4

3.4.5

3.5

3.5.1

Semantic-Based Grid RD Systems' Registration 66

Semantic-Based Grid RD Systems' Discovery 70

Discussion and Comparison Summary .. 73

Interoperability .. 74

3.5.2 Scalability, Decentralization and Dynamism 75

3.6 Semantic-Based RD Systems and Emerging Grids and Clouds 77

3.7 Related Work ... 78

X111

3.7.1 A Taxonomy of Grid Monitoring Systems .. 78

3.7.2 Peer-to-Peer RD in Grids ... 79

3.7.3 Peer-to-Peer Based RD in Global Grids ' 80

3.7.4 Summary .. 81

CHAPTER 4: SEMANTIC-BASED RESOURCE DESCRIPTION MODEL 82

4.1 Introduction ... 82

4.2 Methodology ... 83

4.3 Foundation of the Semantic Description Model.. 84

4.3.1 Intergrid Services ... ' 85

4.3.2 Service Grid Information Aggregation Mechanism 88

4.3.3 Service Grid Information Representation .. 89

4.3.4 Service Grid Request Formulation , 92

4.3.5 Service Grid Information Manipulation ; 95

4.4 The Description of Model Building Block , 96

4.4.1 Semantic Description Manager (SDM) ' 97

4.4.2 Service Grid Metadata Provider (SGMP) .. 98

4.5 The Description Process .. 100

4.6 Evaluation .. 101

CHAPTER 5: SEMANTIC REGISTRATION AND DISCOVERY MODEL .. 103
I

5.1 Introduction .. : 1 03

5.2 Methodology ... 104
'

5.3 The Model Components .. 104

5.3 .1 The Dictionary Ontology ... 105

5.3.2 Intelligent Agent .. 106

5.4 The Model Description .. 107

5.4.1 The Registry Architecture : 107

5.4.2 Fault Tolerance and Load Balancing Strategy 112

5.4.3 The Discovery Algorithmi.. 118

5.4.4 Application .. 122

5.5 Computational Complexity of the New RD System 123

5.6 Discussion ... 126

xiv

CHAPTER 6: RESULTS AND DISCUSSION ... 128

6.1 Introduction ... 128

6.2 Methodology ... 128

6.3 Grid Simulation Tools ... 129

6.4 PeerfactSim.KOM ... 130

6.5 Experimental Setup ... 131

6.6 Performance Indices .. 133

6.7 Performance of the New RD Framework .. 134

6.8 Comparative Study .. 151

CHAPTER 7: CONCLUSION ... 155

7.1 Introduction ... 155

7.2 Contributions ... 156

7.3 Limitations and Future Work .. 157

REFERENCES .. 159

Appendix A ... 170

Appendix B .. 178

Appendix C .. 231

XV

LIST OF FIGURES

Figure 2.1 The grid architecture ... • 17

Figure 2.2 Grid types classified by size, source (http://www.oracle.com) 20

Figure 2.3 The autonomy ofRD system with other grid components 24

Figure 2.4 Grid RD components and their interactions .. 26

Figure 2.5 The relation between Resource modeling aspects ~ 27

Figure 2.6 Grid RD systems taxonomy based on the technol~gies used 31

Figure 2.7 The Condor RD centralized registration ... 35

Figure 2.8 The Globus MDS hierarchical registration model 36
'

Figure 3.1 The taxonomy of ontology languages .. .44
'

Figure 3.2 SAWDL overview, source (Jacek, Tomas et al. 2007) 49

Figure 3.3 The Service Ontology Model... ... 50

Figure 3.4 S-OGSA entities and their relationships .. 52
'

Figure 3.5 The main class grid resource ontology that propose by (Pernas and

Dantas 2005) ... , 53

Figure 3.6 Overview of the Core Grid Ontology classes ... 54

Figure 3.7 The grid knowledge architecture .. 56

Figure 3.8 The taxonomy of semantic-based RD system description 58

Figure 3.9 The grid architecture using the ontology approach as proposed by

(Pernas and Dantas 2005) .. 59

Figure 3.10 The semantic-based RD model presented by (~omasundaram et al.

2006) .. 61

Figure 3.11 The S-MDS system architecture proposed by (Said and Kojima 2009) ... 62

Figure 3.12 Overview of the active ontology architecture ... 63

Figure 3.13 The taxonomy of semantic-based RD systems regi'stration 66

Figure 3.14 (A) A centralized registry on top one hierarchical information service;

(B) centralized registry on top of two hierarchical information services .. 69

XVI

Figure 4.1 The relationship between providers and consumers at intergrid level.. 87

Figure 4.2 Fragment of service grid domain ontology .. 90

Figure 4.3 The extraction of application goals from the service grid domain

ontology ... 93

Figure 4.4 The description of model building block ... 96

Figure 4.5 The data exchange between the service grid information and the

semantic metadata repository ... 1 00

Figure 5.1 A fragment of the Dictionary Ontology .. ! 05

Figure 5.2 The proposed DA and RA agents ... ! 06

Figure 5.3 Class Formulation Algorithm ... ! 08

Figure 5.4 Head Appointment Algorithm .. 1 09

Figure 5.5 Node Subscription Algorithm ... 111

Figure 5.6 Head Replacement Algorithm ... ll3

Figure 5.7 Member Replacement Algorithm ... 114

Figure 5.8 Class Management Algorithm .. 117

Figure 5.9 The overall inter grid system ... 118

Figure 5.10 The Discovery Algorithm .. 121

Figure 6.1 The layered architecture of PeerfactSim.KOM .. l30

Figure 6.2 Proportion of the generated service requests to intergrid size 134

Figure 6.3 Discovered Services for generated requests equivalent to 25% of the

inter grid size with different TTL values .. 13 5

Figure 6.4 Discovered Services for generated requests equivalent to 50% of the

intergrid size with different TTL values .. 13 7

Figure 6.5 Discovered Services for generated requests equivalent to 75% of the

intergrid size with different TTL values .. 13 8

Figure 6.6 Discovered Services for generated requests equivalent to 100% of the

inter grid size with different TTL values .. 140

Figure 6.7 Service Request Response Time for generated requests equivalent to

25% of the intergrid size with different TTL values l42

Figure 6.8 Service Request Response Time for generated requests that equivalent

to 50% of the intergrid size with different TTL values143

XVll

Figure 6.9 Service Request Response Time for generated requests equivalent to

75% ofthe intergrid size with different TTL values 144

Figure 6.10 Service Request Response Time for generated requests equivalent to

100% of the intergrid size with different TTL v~lues 145

Figure 6.11 Average Hops for generated requests equivalent to 25% of the

inter grid size with different TTL values .. 14 7

Figure 6.12 Average Hops for generated requests equivalent to 50% of the
'

intergrid size with different TTL values ... 148

Figure 6.13 Average Hops for generated requests equivalent to 75% of the
'

intergrid size with different TTL values .. 149

Figure 6.14 Average Hops for generated requests equivalent to 100% of the

intergrid size with different TTL values ! 150

Figure 6.15 Discovered Services for generated requests equivalent to 100% of the
!

intergrid obtained with the super-peer model and the semantic RD

model .. l53

Figure 6.16 Average Response Time with the super-peer mbdel and the semantic

RD model ... 153

Figure 6.17 Average Hops obtained with the super-peer model and the semantic

RD model ... 154

XV111

LIST OF TABLES

Table 3.1 Comparison summary of semantic-based RD systems description 72

Table 3.2 Comparison summary of semantic-based RD systems registration 73

Table 3.3 A summary of the grid monitoring systems with their levels 79

Table 3.4 A summary of the P2P and semantic information based grid RD studies .. 80

Table 6.1 Simulationparameters ... 132

Table 6.2 Percentage of Discovered Services (SRH) for generated requests

equivalent to 25% of the intergrid size with different TTL values (2-5).135

Table 6.3 Percentage of Discovered Services (SRH) for generated requests

equivalent to 50% ofthe intergrid size with different TTL values (2-5).136

Table 6.4 Percentage of Discovered Services (SRH) for generated requests

equivalent to 75% of the intergrid size with different TTL values (2-5) .137

Table 6.5 Percentage of Discovered Services (SRH) for generated requests

equivalent to 100% of the intergrid size with different TTL values (2-

6) .. 138

Table 6.6 Average Response Time (RT) for generated requests equivalent to 25%

of the intergrid size with different TTL values (2-5) 141

Table 6.7 Average Response Time (RT) for generated requests equivalent to 50%

of the intergrid size with different TTL values (2-5) 142

Table 6.8 Average Response Time (RT) for generated requests equivalent to 75%

ofthe intergrid size with different TTL values (2-5) 143

Table 6.9 Average Response Time (RT) for generated requests equivalent to

100% ofthe intergrid size with different TTL values (2-5) 144

Table 6.10 Average Hops (AH) for generated requests equivalent to 25% of the

intergrid size with different TTL values (2-5) ... 146

Table 6.11 Average Hops (AH) for generated requests equivalent to 50% of the

intergrid size with different TTL values (2-5) ... 14 7

xix

Table 6.12 Average Hops (AH) for generated requests equivalent to 75% of the

intergrid size with different TTL values (2-5) ' 148

Table 6.13 Average Hops (AH) for generated requests equivalent to 75% of the

intergrid size with different TTL values (2-5) ... 149

Table 6. 14 Performance of the proposed RD system in node fault condition151

Table 6.15 A comparison between the semantic super peer/RD and the super-
' peer model. ... 152

XX

CERN

EGEE

GLUE

LDAP

MDS

OGSA

OIL

OWL

P2P

RDF

R-GMA

SAWSDL

SDM

SGMP

SPARQL

TTL

vo

WSDL

LIST OF ABBREVIATIONS

The European Organization for Nuclear Research

Enabling Grids for E-sciencE

Grid Laboratory Uniform Environment

Lightweight Directory Access Protocol

Monitoring and Discovery Service

Open Grid Services Architecture

Ontology Inference Layer

Ontology Web Language

Peer-to-Peer

Resource Description Framework

Relational Grid Monitoring Architecture

Semantic Annotations for Web service Description

Language

Semantic Description Manager

Service Grid Metadata Provider

SP ARQL Protocol and RDF Query Language

Time to live

Virtual Organizations

Web Service Description Language

XXl

CHAPTER!

INTRODUCTION

1.1 Introduction

The aim of the present work is to highlight the current use of semantic technology in

grid technology more specifically on the resource discovery part, and to develop a

new semantic-based, scalable, decentralized and dynamic resource discovery

framework in order to meet the current grid requirements that are inherited from the

deployment of the intergrid systems.

To introduce into the work, this chapter describes the motivation for which the

work is conducted, and the objectives that need to be achieved. The chapter thereafter,

identifies the relevant research questions which should be· answered and the

methodology that is followed. Lastly, the chapter concludes with the contributions

and the structure of the thesis.

1.2 Motivation

The last few years have seen a convergence between Internet and distributed systems.

This has brought an emergence of a new generation of distributed systems known as

Internet-based distributed systems such as grid computing (Berman et al. 2003) ,

peer-to-peer (P2P) computing (Schoder et al. 2005), and most recently cloud

computing (Buyya et al. 2009). Grids enable sharing, exchange, discovery, selection,

and aggregation of geographically/Internet-wide distributed heterogeneous resources

such as computers, databases, visualization devices, and scientific instruments in

order to achieve a common goal (Foster and Kesselman 2003) and (Asadzadeh et al.

2005).

1

A very basic and first step in sharing resources over grids is the detection of

suitable resource for a given task/application which is commonly known as Resource

Discovery (RD). This process is very important as resource reservation and task

scheduling are based on it. RD process entails description df the resource through its

properties, registration/indexing of the described resource in common registry(s),

and discovering the registered resources that match ' with resource request

specifications. These steps correspond to the main components of the RD system,

which are Description, Registration and Discovery (which is composed of search and

selection). Eventually, the performance of the grid RD system depends on how these

components are modeled. For example, having an expressive resource description

makes the matching process between resource requests and advertised resources

easier, and hence enhances the precision.

In fact, the ultimate aim of the grid RD research is to provide a system that allows

the full use of the resources which in turn fulfills the actual aim of the grid technology

(Trunfioa et al. 2007) and (Mastroianni et al. 2008). However, grids are normally

associated with some complexities such as resources and us~rs are distributed across

different locations; resources are heterogeneous in their platforms; status of the

resources is dynamic (resources can join or leave the syktem without any prior

notice); and grids are often distributed across security domains with a large number of

resources involved. Moreover, in the most recent years, the grid scope has been

extended from organizational level to multi organizational ~d from country to cross

countries, producing a new type of grid called Intergrid/GloHal Grid (a grid of grids)
I

(Assuncao et al. 2008) with a large number of resource and service types, and multi

middlewares. These complexities pose a challenge to the development of an efficient

RD system to discover the resources and services. Therefore', the aim of using fully

the resources on global grids creates some requirements that should be fulfilled by

any developed RD. These requirements include high searcha~ility in order to retrieve

the relevant and precise resources and services, and high performance in order to

make the RD system sustainable with the scale of the global grid.

The first requirement is related to the functional quality of the RD system. The
I

RD system should be able to discover all relevant resources/services (recall) and

2

present only the relevant resources/services (precision). In other words, the RD should

have interoperability to overcome the resource and service information heterogeneity.

This may be achieved by using the semantic technology in the description, and

matchmaking of the resources/services and their requests.

The second requirement is related to computational performance of the RD system

which is very vital in large scale environment such as intergrid. The computational

performance concerns about reducing the processing time of the discovery process,

while guaranteeing the scale of the system. This requirement can be broken further

into sub-requirements which are scalability, decentralization, and dynamism.

Respectively, the RD system should perform as it supposed to, regardless of the

quantitative scale of the resources and the users that use the resources, should be

independent from any global control to avoid any point of failure, and should support

the intermittent availability of the resources (Padmanabhan 2006).

Currently, there is a wealth of work on grid RD (e.g. Globus1
, Condor2

,

(Lamnitchi 2003), (Mastroianni et al. 2005), and (Shen 2009)) which can be

classified into two classes based on the component description of the models, which

are keyword-based RD systems and semantic-based RD systems. Keyword-based

system uses syntactic information and data models such as directories (Tuttle et al.

2004) and special databases to describe and discover the resources and services.

Unfortunately, syntactic information and data models are not efficient in describing

resources at intergrid level. This is because resources and services are initially

described by using multi information services that belong to different grid

middlewares. As a matter of fact, much of the efforts in keyword-base~ RD systems

have been focused on achieving the high performance requirement; staring from

introducing centralized registration models such as Globus MDS-1 (Fitzgerald et al.

1997), R-GMA3 (Cooke et al. 2003) and Hawakeye (Zanikolas and Sakellariou

2005); then followed by hierarchical registration models (Steven 2001), (Schopf et al.

2006) and (Ruay-Shiung and Min-Shuo 2010), and lastly peer-to-peer (P2P)

1 http://www.globus.org/.
2 http://www.cs.wisc.edu/condor/.
3 Relational Grid Monitoring Architecture: http://www.r-gma.org/index.html

3

registration models (Trunfioa et al. 2007), (Marzolla et al: 2007), (Shen 2009) and

(Brocco et al. 201 0). Keyword-based RD systems that are based on P2P registration
' models have achieved high performance compared to the centralized and hierarchical

models, but we cannot go far as to say that they have'. achieved full scalability.

Moreover, their use of syntactic description, especially at the intergrid level, prevents

them from fulfilling the high searchability requirement.

Semantic-based RD systems, on the other hand, use semantic information and data

models (ontology and ontology languages) (Chandrasekarah et al. 1999) to describe

and discover the resources and services. Although, there is 'a considerable amount of

work on semantic-based RD systems (e.g. (Ludwig and Reyhani 2005), , (Said and
I

Kojima 2009)), most of the existing approaches fail to acP.ieve high searchability.

This is due to the lack of a proper use of semantic description mechanism as the
I

semantic technology is initially imported from the semantic web (Berners-Lee et al.

2001). To the best of our knowledge, the main obstacle that leads to the continuous

existence of this issue is the ad hoc research nature of these semantic-based RD

studies (different research communities doing the same thing by different ways). As

the result, there has been no systematic research trend that allows these studies to
I

benefit from each other in terms of lesson learnt, such as the case of keyword-based

RD studies (Zanikolas and Sakellariou 2005) and (Mastroiaruii et al. 2008). Therefore,

the challenge with semantic-based RD studies is not 1 only to achieve high

searchability, but also to have a review or survey study to compare and evaluate them.

Regarding the second requirement (high performance), most of the semantic-based

RD studies (Ludwig and Reyhani 2006), (Said and Kojima 2009) and (Xing et al.
I

2010) do not address this issue as they normally rely on the registration models of the

keyword-based RD systems, which some of them may have been associated with the

lack of high performance, initially.

1.3 Objectives

Based on the importance of the RD aspect to grid technology and the issues associated

with the current RD systems, this thesis aspires at contributing to the development of

4

an efficient grid RD system that is able to fulfill the identified requirements, and at

providing scientific progress beyond the state-of-art.

In contrast to other previous works, we address the RD problem from two

perspectives. First, we provide a taxonomical model to classify and discuss the current

efforts on developing semantic-based RD systems. This is to highlight the research

gap with regard to the latest requirements of the grid technology (intergrid), and the

potential of this field. Second, we design a novel RD framework that uses the

semantic technology in a way that is useful for the grid technology, and tailor the

system to meet the intergrid requirements. For this, we introduce a semantic

description model, semantic distributed registration model, and an agent-based

optimized search and selection algorithm. The description model is grounded on

abstracting the information of resources and services of intergrid. Therein, we refine

the intergrid system architecture by treating each small grid within the intergrid as

service (including the grid applications) that provides some functionalities. This is to

reduce the amount of unnecessary information during the discovery and to prevent

redundancy of the application development, and to ensure the anatomy of each small

grid within the intergrid system. The model introduces ontology as an information

model that can formally represent the services (the abstracted resources and services)

and their relations. This is to create a meaningful naming system for the services,

which will enable interoperability among the small grids. To reduce the user

interaction with the system in formulating service request, the model introduces a

goal-based request formulation mechanism, which is based on extracting the relations

between services on the service ontology in a way that formally defines which service

needs what service. Our registration model organizes the service provider nodes into

set of classes which are based on the semantic relation between the services that they

provide. Each class has a head in which the metadata of the class member's services is

indexed. This is to ensure that our RD system can meet the requirement for high

performance. To further automate the search and selection of the services, we define

two kinds of agents to perform the discovery process. In this case, the first agent

formulates the service request, searches for the services on the distributed registries

and conducts the semantic matchmaking with the second agent that holds the

capabilities of the service provider.

5

The overall aim of this work can be summarized in number of specific goals as

follows:

• To present a taxonomy for semantic-base grid RD studies and to provide a survey

and qualitative comparison of existing studies, which will be used to identify the

pros and cons of these systems and to draw the future direction of this field.
I

• To propose a semantic description component model for
1
intergrid RD system that

is able to provide high searchability on the intergrid platforms.

• To propose a semantic, scalable, decentralized and dynamic RD system

registration model that is able to achieve high performan6e with an unprecedented

scale on the intergrid platforms.

• To propose an intelligent discovery model for the semantic RD system that will
I

provide a high abstraction in terms of end user interaction with the system.

1.4 Research Questions

Based on the aforementioned issues that motivate us to co~duct this work and the
I

identified objectives, our work is centered on the following questions:

• What is the stage of convergence between the semantic technology and the grid

technology, how this convergence impacts the grid RD systems, and has this

convergence been successful at enabling the grid technology to meet its recent

requirements?

• How can the semantic technology be properly implemented to describe the grid

resources, services and applications?

Semantic technology has been a very promising tool in enabling the web service

technology that is based on service oriented architecture(SOA) (Erl 2005) and

(Michael et al. 2007). In particular, the semantic technology is used on the

discovery and composition of the services. However, the applications and the
I

focus of web services are different from the case of grid technology. As the

6

former is dominated with business applications, while the latter is dominated with

scientific applications. Therefore, there is a need to find the ways and means of

using semantic technology on the grid RD in a flexible manner. In particular,

what are the RD components that should involve the semantic technology and to

what extent this involvement should be?

• How the P2P network topology can be adapted to the intergrid node topology?

P2P network is a resource sharing environment in a decentralized and dynamic

manner, which gives the ability to scale the system. The resources in P2P network

are limited to normal files. There are several scenarios to arrange the network for

the discovery of the files (e.g. structured and unstructured). Grid technology seeks

to have the scale, but with different kind of resources and management from the

P2P. Therefore, the thesis will find out what is the appropriate method to transfer

the scalability from the P2P to the grid technology by examining the arrangement

scenarios of the P2P network in their suitability to intergrid level systems.

• How can intelligent agents be adopted to the grid application development and

deployment process?

Intelligent agents have some useful characteristics in dealing with complex and

dynamic environments, and to a certain extent is able act on behalf of human

(Perez et al. 2009). The grid technology, on the other hand, also believes in

abstraction and virtualization. To that end, how we find the right places on the RD

components where the abstraction is really need, and can how the intelligent

agents be involved in these places and provide the needed abstraction?

• Does the adoption of three technologies (semantic technology, P2P and intelligent

agents) able to effectively improve the quality of service of the RD system on the

grid technology? And will this enable the grid technology to meet its current

requirements, which has arisen mainly by the deployments of the intergrid level

systems?

7

1.5 Methodology

In order to address the identified research questions in a proper manner and provide a
I

suitable solution to each one, we divide the work into four main parts. The first part

presents a survey and comparative study on the current sefllantic-based RD studies.

Namely, we classify the semantic technology models based on their expressiveness

capabilities and review them accordingly; propose a taxonomy to the semantic-based

RD systems based on the qualitative implementation of semantic technology models;

discuss and evaluate these studies in terms of their accomplishments of the identified

RD requirements (interoperability, scalability and so on); and finally discuss the

future direction of semantic-based RD systems with regard to the emerging grids and
'

grid related technologies.

The second part addresses the resource and service metadata representation by

proposing a new semantic description model. Initially, we identified some of the facts

in the current grid technology that would be vital for improving the design of a

semantic-based RD system for intergrid system and refine the intergrid system in such

a way that makes full use of the resources and services when the semantic technology

is applied. The refinement of the intergrid is based merely on the latest standard grid

system requirements. We then introduce the use of common ontology to represent

formally the intergrid components. More importantly, we define some set of

definitions that formalize the essential requirements and 'guidelines that can be

followed to build this ontology, and for selecting the information manipulation tools.

To address the issue of resource/service request abstraction, ~e introduce a semantic

query formulation by treating every application as a goal, which can be formally
I

described and made reusable. Finally, our model is evaluated qualitatively by

examining how it meets interoperability feature.

In the third part, we address the resource/service registration and discovery issues

jointly by proposing a new semantic registration and discovery model. The model

integrates super-peer architecture, ontology and intelligent agent. Super-peer
I

architecture is used to ensure distribution of the registry into sub registries, ontology
I

is used to manage the distribution of the registries, and intelligent agent is used to deal

8

with the dynamism of the serv1ce grid provider nodes' status in their respective

registries, and to abstract the discovery process from the end user.

Lastly, we address the performance examination of the proposed RD framework

by conducting extensive simulation and analysis. PeerfactSim.KOM simulators is

used to simulate the intergrid environment with the application of the framework. The

evaluation of the system is based on some common performance metrics found in the

literature. This include the percentage of the discovered services in a given goal

request, and the response time for the service request to be answered. These metrics

are calculated in different settings of the nodes and service requests. We analyze the

results by highlighting the causes of the effects of the different setting to the results.

1.6 Our Contributions

In this work, we provide some insights on semantic-based RD systems and present the

design, implementation and evaluation of an effective RD framework that enables

resource sharing in the global grids. Our framework attempts to meet the recent grid

technology requirements, which we have identified above. All in all, our primary

contributions can be summarized as follows:

• An outlined new key taxonomy for the semantic-based grid RD studies

• A detailed discussion and analysis of the semantic-based RD studies, how they

meet the current grid requirements, and what should be the future focus in this

field.

• A proposed model of semantic description component for the RD system that

abstracts the resources and services information, and adds semantics to the

abstracted information. Hence, improving the representation of resources and

services information, and provides interoperability.

• A proposed model for evaluating semantic registration architecture that organizes

the service providers based on their semantic relations. Thus, reducing the search

spaces and improving the scalability.

9

' • A fault tolerance and load balancing algorithm for the registration model, which

provides dynamism to the system.

• An agent-based discovery algorithm that automates the search and selection

procedures, hence reducing the end user interaction with the system.

1. 7 Organization of the Thesis

After having explained the motivation, objectives, research questions and
!

contributions of the work, the rest of the thesis is organized as follows:

Chapter 2 introduces the basic ideas about grid technology and presents the related

technologies that are mainly used in designing RD systems. The chapter then

discusses the RD problem in grid technology, and identifies the key requirements that

need to be fulfilled. The chapter thereafter examines the existing keyword-based RD
I

systems that have been developed with some of the grid middlewares and other

research oriented studies. Finally, the chapter highlights the issues of these systems

and studies.

Chapter 3 discusses the semantic technology and its use, in the grid technology.

More importantly, on the RD part, and provides a taxonomy for the current studies
'

that involve the use of semantic technology. The chapter then presents a deep analysis

on these studies with regard to the current grid requirements. The chapter finally

discusses the future of semantic technology coupled with RD systems, for future grids

and clouds.

Chapter 4 presents a model of the new semantic description component for the RD

system, which includes identification of the key components of the model, and

explanation of the building block of the model. The chapter, thereafter, demonstrates

the process of constructing the resources and services metadata, and the formulation

of resource/service request based on the new model. Finally,' the chapter provides a

qualitative analysis to show how the model meets interoperability feature and fits the

intergrid system.

10

Chapter 5 presents the semantic registration and discovery model for the RD

system. Initially, the chapter highlights the main components that form the model,

which are ontology and intelligent agents. The chapter thereafter focuses on the

depiction of the model, which contains the registry architecture, fault tolerance and

load balancing strategy, and the discovery algorithm. The chapter, finally, illustrates

the complexity of the new RD system and how the system meets the identified

intergrid RD requirements, qualitatively.

Chapter 6 presents a quantitative evaluation of the proposed RD system. This

includes an extensive simulation of the proposed system and a comparative simulation

study for the system against related studies. For this, the chapter identifies the

performance metrics for the evaluations, and the experimental setups. The chapter,

later, discusses the results and findings of the experiments.

Chapter 7 concludes the work by summarizing the mam contributions and

findings of the study, the limitations of the study and some possibilities for future

research and development. The appendices (A and B) provide additional information

about the experimental settings, data and the simulation output. It should be noted that

portions of work presented in this thesis have been partially or completely derived

from the set of publications, which are listed in appendix C.

11

CHAPTER2

BACKGROUND KNOWLEDGE

2.1 Introduction

This chapter presents some important literatures for understanding the grid RD
'

problem, the related technologies that have been used to build solutions and the

current RD solutions. The chapter starts with an introduction on grid technology,

which includes grid requirements, architecture, types and ~iddleware. The chapter

then provides a discussion on the related technologies that ate partially used by some

prior works in RD solutions. This includes P2P networks and intelligent agent. The

chapter thereafter discusses the RD system components, issues and requirements that

need to be met by any developed RD system. Next, the chapter explains the current

grid RD systems, which include the middleware provided RD systems and some of

the research oriented RD studies.

On the whole, the main contributions of this chapter are as follows:

• An extensive literature about grid technology and identification of its current

requirements.

• A deep insight into the grid RD problem and identification of the characteristics

that need to be considered in response to the latest advancement in grid

technology.

• An examination of some of the current solutions and identification of those that
I

can provide a partial solution to fulfil the identified RD characteristics.

12

2.1 Grid Computing

The idea of grid computing is initially borrowed from the Power Grid (PG). PG is an

infrastructure that provides electric power to satisfy the power needs of our devices.

Usually, when we plug these devices, we really do not concern with neither how the

electricity is produced nor how it is delivered, rather we only use the power. This

concept has been used recently to describe a new type of distributed computing

infrastructure. In this case, users can connect heterogeneous devices to a computing

grid, and then access computing and storage power and services provided by the

heterogeneous sources. The connection and access processes are transparent to the

user in a similar way as the usage of the PG.

Foster and Kesselman define the grid as "a hardware and software

infrastructure that provides dependable, consistent, pervasive and inexpensive access

to high-end computational capabilities, allowing coordinated resource sharing and

problem solving in dynamic, multi-institutional Virtual Organizations (VOs)" (Foster

and Kesselman 2003). This definition depicts the main characteristics of a grid

system, which are coordinated resource sharing and problem solving in a dynamic,

multi-institutional virtual organizations manner. Sharing here is not only primarily file

exchange, rather a direct access to computers, software, data, and other resources, as

is required by a range of collaborative problem-solving and resource brokering

strategies, which are emerging in the industry, science, and engineering. The sharing

also has to be highly controlled by resource providers and consumers. The control

scenario should define clearly and carefully what is shared, who is allowed to share,

and the conditions under which sharing occur. Virtual organization (VO) is a set of

individuals and/or institutions that meet the defined sharing rules. The works of

(Foster et al. 2001) and (Foster and Kesselman 2003) present four examples for a

simple understanding of the concept ofVO, which are:

• "A company needing to reach a decision on the placement of a new factory

invokes a sophisticated financial forecasting model from an application service

provider (ASP), providing it with access to appropriate proprietary historical data

from a corporate database on storage systems operated by a storage service

provider. During the decision making meeting, what-if scenarios are run

13

collaboratively and interactively, even though the division heads participating in
I

the decision are located in different cities. The ASP itself contracts with an on-

demand cycle provider for additional "oomph" during particularly demanding

scenarios, requiring of course that cycles meet desired security and performance

requirements".

• "Thousands of physicists at hundreds of laboratories and universities world-wide

come together to design, create, operate, and analyze the products of a major
I

detector at CERN, the European high-energy physics laboratory. During the

analysis phase, they pool their computing, storage, and networking resources to

create a "Data Grid" (Chervenak et al. 2000) capable df analyzing petabytes of

data".

I

• "A large-scale Internet game consists of many virtual world, each with its own

physical laws and consequences. Each world may have a large number of

inhabitants that interact with one other and move from o~e world to another. Each

virtual world may expand in an on-demand basis to accommodate population

growth, new simulation technology to model the physical laws of the world will

need to be added, and simulations need to be coupled to determine what happens

when worlds collide".

• "A biologist wants to understand how a change in neuron synapse response

induced by a drug impacts the performance of specific br~in functions. To answer

this question, he needs to perform low-level chemical simulations of the synapse

and then map this information upward in the structural hierarchy of the brain. This

analysis requires mapping simulation across may different databases, each

containing information about different levels of the biological system".

It is obvious that, these examples are different from one other in many aspects

such as the number and type of participants, the nature of activities, the period and

scale of the interaction, and the resources being shared. As the same time, the

examples share some commonalities. For example, in each case, a number of

mutually distrustful participants with varying degrees of prior relationship (perhaps

none at all) want to share resources for the purpose of carrying out some tasks, and

14

yet again, sharing here is not a simple file exchange, rather, a direct access to remote

resources such as software , data, computers, and so on. This allows each case to be

considered as aVO. In order to make the resource sharing a reality, there are several

technical requirements that need to be considered, which will be discussed next.

2.1.1 Grid Requirements

From the above examples, we can observe that the main components that lead to a

grid are the remote resources and participants. The only connection means between

the two components is the Internet network. This raises a deep consideration to some

requirements that related, in one hand, to the Internet network environment, and on

other hand, to end user interaction with resources. A set of such requirements is

defined by (Tarricone and Esposito 2004). The Internet network environment

requirements are:

i. Fault tolerance: robustness with respect to failure of network connections,

machines, software components, and so on should be addressed.

ii. Security: grid users must be recognizable and access to resources must be

traced and controlled as the Internet is intrinsically insecure and decentralized.

iii. Dynamism: grid must adapt its behavior in agreement with the Internet

environment conditions, which is the fact that, resources are dynamically

added or removed, and their status (load, traffic, and so on) are variable.

iv. Scalability: grids performance must not be affected by the expected increase

in the number of resources and users when they are operative.

v. Heterogeneity: grids must define uniform and standard ways of interaction

with their heterogeneous resources (network, platforms, operating systems,

electronic devices, and software tools are provided by different vendors and

use different architectures and paradigms), which in tum hides the

heterogeneity.

15

I

vi. Autonomy: grids must federate their resources as they belong to various

organizations, and allow these organizations to establish and implement their

own policy regarding security, scheduling, and so on. 1

Meanwhile, the user interaction requirements are:

a. Transparency: users must access the dispersed resources while perceiving

them as a whole. Location and access to a resource must be straightforward,

for both local and remote resources.

b. Uniformity: the interaction with a grid must happen! via a uniform interface,

possibly the Web browser.

c. Homogeneity: grids must mask to end users their upderlying heterogeneity,

allowing the access to each resource regardless of its peculiar characteristics.

The above-identified requirements can be fulfilled by 1having some dedicated

software, which will drive the distributed resources at bottom level and allow user

friendly interaction at the upper level. Consequently, the grid is composed of three

kinds of entities: resources, grid software that hides the complexity of the Internet
'

environment; and tools for the interaction of end users with the grid.

2.1.2 Grid Architecture

Baker et al. define a three-level architecture which corresponds to the three entities

that the grid is composed of (Baker et al. 2000). The architecture includes fabric level,
'

middleware level, and application level (see Figure 2.1). Respectively, fabric level

includes everything that will be shared. This include all the distributed resources

which can be physical, such as hardware (CPU, memory, electronic devices, network)

and software (application components, databases) entities, or logical (clusters,

distributed pools). Middleware level includes the software re~ponsible for mediating

between the resources and their higher level managers in order to hide from grid end

users and application developers the complexity of the fabric level. The middleware

operates on grid resources and the local managers (i.e., single domain schedulers,

16

allocators, and load balancers) to offer core grid services to distributed applications.

Middleware level contains also the basic elements needed to develop grid-enabled

applications. Application level includes both high-level services that allow software

developers to implement grid-aware applications and Web tools to permit end users to

work with the grid by submitting jobs, collecting and analyzing results, and

cooperating with remote colleagues.

Application

Simulation, Problem-Solving Environment, £-Business

Middleware

Fabric

Figure 2.1 The grid architecture

2.1.3 Grid Middleware

As we have mentioned, the middleware level is supposed to mediate between the

resources at bottom and applications the top. This is because resources are owned by

different organizations which are initially geographically distributed. Each resource

owner has its own policies with regard to security, resource allocation, platform

maintenance, and so on. Therefore, the interaction between users and these resources

17

can take place only if there are some basic services, which are able to take out

mismatches among different machines, security and scheduling policies, operating

systems, platforms, file systems, and so on. Such basic services are called
I

middleware. Middleware provides services such as discovery of new resources and

reporting changes in existing ones, matching the requirements of user jobs with the

characteristics of existing and available resources, verifying ~ecurity rights, etc.

Currently, there are several grid middlewares which include Globus4
, Condor5

,

gLite6
, Legion7 and Unicore8

. These middlewares differ fro~ one another in terms of

their services, which are focused on particular resources. Fpr example, Globus and

Condor focus on computing resources (e.g. CPU, Memory) whereas Unicore focuses
'

on data resources (e.g. databases, file system) as well as the computing resources.
I

Despite the different focus of these resources, the middleware generally provides the

following basic services:

2.1.3.1 Security

Security provides resource owners the ability to define their authorization policies to

monitor their resources access. These policies include what i~ shared, who is allowed

to share, and the conditions under which sharing occur.

2.1.3.2/nformation Service (IS)

IS provides a continuous monitoring of resources and status of the resources. IS

contains the resource discovery system which provide two methods, registration and

discovery. Registration allows the resource owners to enroll themselves as part of a

resource pool. Discovery locates and accesses the resources and their attributes after

their registration.

4 http://www.globus.org/
5 http://www.cs.wisc.edu/condor/
6 http://glite.web.cern.ch/glite/
7 http://legion.virginia.edu/index.html
8 http://www.unicore.eu/

18

2.1.3.3 Management Service (MS)

MS is responsible for scheduling and tracking the accesses to the resources in order to

extract the maximum performance from them. For example, it gives to the users the

ability to schedule their jobs, to track their behavior, and to analyze the status of

allocated resources. RM also provides to application components the ability to change

their working machines either to improve load balancing or because of a failure.

2.1.3.4 Data Management Service (DMS)

DMS provides a standardized way for accessing and transferring large amounts of

data from the distributed storage systems. DMS also deals with issues that such as

speed, and reliability of data transformation.

2.1.4 Grid Types

Grid systems can be classified into several types which may base on nature of

emphasis, size, accessibility, and so on. Here we discuss two kinds of classifications

(nature of emphasis and size) as they are related with our research context.

2.1.4.1 Grid Types Based on the Nature of Emphasis

There are six types of grids based on the nature of their emphasis: computation, data,

application service, interaction, knowledge, and utility (Yeo et al. 2006) and (Ranjan

et al. 2008). Respectively, Computational grids aggregate computational power of

widely distributed computers (e.g. TeraGrid9 and ChinaGrid10
). Data grids focus on a

wide scale management of data in order to provide data access, integration and

processing through distributed data repositories (e.g. LHCGrid11 and GriPhyN12
).

Application service grids focus on providing remote access to applications and

9 https://www.teragrid.org/
10 http://www.chinagrid.net/
11 http://www.fnal.gov/gridfest/
12 http://griphyn.org/

19

libraries that are located on some data centers or computational grids (e.g.

GridSolve/NetSolve13
). Interaction grids focus on interaction and collaborative

visualization between participants (e.g., AccessGrid14
). Knowledge grids focus on

I

knowledge applications such as acquisition, processing, management, and provide

business analytic services driven by integrated data mining services (e.g. Knowledge

Grid15
). Utility grids focus on providing all the grid serlrices IT utilities, which

include computing power, data, and service to end users, on subscription basis and

provides infrastructure necessary for negotiation of required quality of service,

establishment and management of contracts, and allocation of resources to meet

competing demands.

i

• Departmental grids • Intra-grids k:'lt .:IIntergrid I Global grids

Figure 2.2 Grid types classified by size, source (http://;www.oracle.com)

13 http://icl.cs.utk.edu/netsolve/
14 http://www.accessgrid.org/
15 http://www.knowledgegrid.net/

20

All these grids follow a layered design which allocates the utility grid at the top

layer and the computational grid at the bottom. Each grid at a high level uses the

services of the low level grids in the layered design. For example, Computational grid

services are utilized by the Data grids to process huge amount of data. Therefore, Data

grid is located on top of the Computational grids. Another aspect that is worth

mentioning is that, higher-level grids focus more towards users and quality of service

delivery, whereas lower-level grids focus heavily on infrastructure aspects.

2.1.4.2 Grid Types Based on Size

Grids also have many types in terms of the scope, which include Departmental grids/

Cluster grids, Intra-grids/Campus grids, and Intergrid/Global grids. Respectively,

Cluster grids are the simplest that are made up of a set of computer hosts that work

together and provide a single point of access to users within a departmental boundary.

Intra-grids/Campus grids enable multiple departments within a single organization to

share resources. Intergrid/Global grids (in some literatures is also called multi-grid

(Chao-Tung et a!. 2009)) are known as a grid of grids, as they are a collection of

campus grids that cross organizational boundaries to create very large virtual systems

that can be accessed from anywhere in the world. Intergrids are normally associated

with the use of multiple middlewares as each campus grid may use a particular

middleware. For this, in the rest of this dissertation, we use the term "grid level"

(when we refer to system not the grid technology) to systems that normally use one

single middleware (e.g. cluster grid, campus grid) and use the term "intergrid level" to

denote systems that use multiple middleware. We also use the term "intergrid",

"global grid" and "multi-grid" interchangeably. More information on the

classification of grids can be found in (Kurdi et a!. 2008)

2.2 Grid RD Enabled Technologies and Related Grid Components

Grid technology normally is enabled with other technologies in building its

middleware components. For this, we describe two technologies that have been used

in the resource discovery aspects, which are peer-to-peer computing and intelligent

21

!

agents. We also discuss a grid component that usually uses RD systems, which is

known as Broker at a grid level and Meta-broker in the case qfthe intergrid level.

2.2.1 Peer-to-Peer Computing (P2P)

A P2P system is a resource sharing environment on which participants have an equal

status and equal capabilities (peers), use appropriate information and communication
I

systems in order to establish collaboration without having a central coordination. The

P2P system differs from the other network systems such as in the appointment of

client/server, where in these other networks participants are initially appointed as
!

resource providers (Server) and consumers (Client); whereas in peer to peer,

participants can act both as a client and a server. Peer-to-Peer systems have three

characteristics as defined in (Schoder et al. 2005):

• Sharing: distributed resources and services such as information, files, and storage.

• Decentralization: there is no central management for organizing the network

(setup aspect) or the use of resources and communication between the peers in the

network (sequence aspect).

• Autonomy: each node (peer) in the network can autonomously determine when
I

and to what extent it makes its resources available to other entities (peers).

The first P2P network characteristic is related with resource discovery process,

which raises two issues: what resources are available in the P2P network and who is

having that resource; and it is the responsibility of the P2P resource discovery
I

mechanism to handle these arising issues. Several P2P resource discovery

mechanisms have been proposed since P2P emerged. These mechanisms can be

categorized into several kinds, such as unstructured and structured network. Some of
!

these mechanisms have been implemented in the grid RD, which will be discussed in

the next sections. More literature about the P2P resource discovery mechanisms can

be found in (Lua et al. 2004), (Edwards 2006) and (Meshkova \!tal. 2008).
!

22

2.2.2 Intelligent Agent

Intelligent agent is a computer system that is situated in some environment, and that is

capable of autonomous actions in this environment in order to meet its design

objectives (Weiss 1999). Agents have some properties such as autonomy, intelligence,

social-ability, reactivity and mobility. Jennings characterizes agents as clearly

identifiable problem-solving entities that have clear boundaries and interfaces; embedded

in an environment where they receive inputs that allow them to act in order to control that

environment; designed to accomplish some specific goals; able to control their internal

state as well as their own behavior; can demonstrate flexible problem-solving behavior in

achieving their design objectives; and being both reactive and proactive (Jennings

2001). Agents have two types: mobile and static agents. Mobile agents can move

within a network and act on behalf of the user or another entity. Mobile agents

function independently or cooperatively to solve problems, while the static agent can

function only locally and acts as a host for other (mobile) agents. More details about

agent technology can be found in (Wooldridge 2006).

2.2.3 Broker and Meta-Broker

Broker is a grid component that mediates between the resource provider and

consumer. It works within the grid management service. Broker gets the consumer's

task and uses the RD system to retrieve the relevant resources and services to which it

can assign the deposed consumers' tasks. Broker, then, schedules the tasks and

monitors the progress of execution until the end to provide the results to the

consumers. Broker is also known as Superscheduler, Condor-G (James et al. 2001)

Grid-Bus Broker (Srikumar et al. 2006) are example of brokers.

Normally, brokers work at grid level by having one broker at any given system. In

order to provide interoperability between the middlewares at the intergrid level,

another type of broker has been introduced, which is called Meta-Broker (Kertesz and

Kacsuk 2007). Meta-broker sits on top of the set of brokers within the intergrid level

and uses metadata to assign the consumers' tasks to these brokers. The study of

23

(Kertesz and Kacsuk 2010) and (Ivan et al. 2010) are the most recent research

advancement in meta-broker.

lntergrid Level

-------------------·
Grid Level

____________ ..
Site Level ________ ...
Resource

I

'-------------------- --------------------¥

Resource Providers

Figure 2.3 The autonomy of RD system with other grid components

2.3 Grid Resource Discovery: The Big Picture

Many definitions of RD system and its relation to other grid ~ervices can be obtained

by taking a closer look at the current grid RD systems and *e research studies. For

example, in the course of reviewing some literatures on related works, we may come

across grid information service, grid monitoring system, resource discovery, service

discovery, and so on. In fact, these expressions may inherit soine kind of confusion in

understanding the RD problem and its requirements in grid technology. To that end,

in this section we give some insights into the RD system and its relation with the other

services and clarify the ambiguity among the used RD expressions. Figure 2.3

24

presents a generic grid system and illustrates the RD system and its related services

(we ignore the other grid services such as security and management as they are out of

the scope of this work), where there are four levels (Resource, Site, Grid, Intergrid)

for the resource information flow and two sets of actors (resource Providers and

Consumers). We elaborate each level and describe its relation with the upper and

lower levels in terms of the resource information16 flow and RD activity.

Resource: contains the actual resources (software or hardware) with their attached

sensors. Sensors measure the status of the resources and generate information about

the resources. For example, CPU loads, memory size, available storage space and so

on. The generated information is then sent to the upper level, which sits the grid host.

Site Resource Information System (SRIS): accommodates all resources

information of the grid site coming from the sensors. Each resource is treated as a web

service by using some mechanisms such as the WS-Resource Framework (WSRF)

(Czajkowski 2004). SRIS provides an API so that its metadata can be quarried,

registers the site resources at the grid level, and handles incoming metadata queries

for the grid level.

Grid Resource Information Service (GRIS): accommodates all incoming metadata

from the site level· in a registry or set of registers, which depends on the registration

architecture. On top of the GRIS, we have a RD system which is responsible for

retrieving suitable resources among the registered resources based on the consumer's

specifications. Consumers may be a grid broker or a user's portal that gets the

information and informs the user to schedule his/her tasks. The collections and

monitoring of the information from resource level up to GRIS is called Grid

Monitoring System in some literature (Zanikolas and Sakellariou 2005). Meanwhile,

the monitoring and discovery of the information in GRIS is called Grid information

system in some literature (Mastroianni et al. 2008).

Intergrid Resource Iriformation Service (IRIS): intergrid level has a higher

resource information service (IRIS) that is composed of a federation of GRISs. In

16 We use the terms resource information, information of the resource(s) and metadata interchangeably.

25

fact, the metadata in IRIS is not only about the resources of the bottom level, but also

it may be the other grid services such accounting, scheduling and brokers. The RD at

this level performs as the RD at the grid level with some extra functions such as

discovering the other grid services. Consumers at this level rhay be a meta-broker or a

normal user portal that allows the user to schedule his/her task on the available

resources.

Based on the above details, we can observe that the RD process involves several

steps, which starts from describing the resources capabilities,! registering the described

resource capabilities, updating these capabilities when there is a change of their status,

getting consumer resource requests, routing the query request on the registries when

they are distributed, and matchmaking the query request with the available resource

capabilities. All of these activities are performed by dedicated RD components, which

form the RD system.

2.3.1 Grid RD Components

As we have mentioned in chapter 1, a grid RD system should contain three

components, namely Description, Registration and Discover;: (which is composed of

search and selection) that correspond to the overall RD process which we have

described above. Figure 2.4 illustrate these components.

Figure 2.4 Grid RD components and their interactions

26

Key basic elements &
relationship

Information model
examples include
GLUE schema

Representation of

information models

Figure 2.5 The relation between Resource modeling aspects

2.3.1.1 Description

Description refers to the abstract representation of Resource 17 nature and its

capabilities. This representation is done through an information system. The data at

this level is called Resource Information (metadata). This metadata may be further

abstracted through some algorithms that focus on showing their capabilities, and then

publishing them at another component called Registration. The performance of RD

description mainly depends on how the grid resources are modelled (Resource

Modelling). In fact, Resource Modeling (RM) has three aspects: Reference Model

17
The term Resource (with capital R) includes both resource and service, whereas, resource is for

hardware and software resources only, and service for middleware services (e.g. security)

27

(RM), Information Model (IM) and Data Model (DM). RM is a general abstract

model that uses modeling notations such as UML to define some basic key grid

elements and their relationships. IM is an abstraction that represents entities in a data

processing environment by defining the entities, and also their properties, operations
'

and relationships. DM is a representation of the IM in a given language. It also

defines access to the IM on the wire so that the latter can be communicated. For this, a

DM renders an IM according to a specific set of mechbisms for representing,

organizing, and storing data. It may also define operations that can be applied to the

representation, such as data retrieval and update, enumeration of entities, etc (Maciel

2008). Figure 2.5 (adopted from (Stokes et al. 2008)) depicts, the relation between the

Resource modeling aspects, where a DM is developed based on an IM, which is

derived from a RM.

2.3.1.2 Registration

Registration is related to publishing and storing of the Resource information and how

long to keep this information. It has two main aspects: registry architecture and update

mechanism. The former refers to the registry location and its distance with regard to

the Resource providers in the network, whereas the latter is a monitoring scenario for

the status of the registered advertised Resource capabilities.

2.3.1.3 Discovery

Discovery is further composed of two subcomponents: search and selection. The

former is about how to distribute a Resource request (activity requirements) from the

consumer node to the registry node(s). Meanwhile, the latter ~s about how to evaluate

the advertised capabilities that are located in the registry with regard to Resource

request.

28

2.4 Grid RD Requirements

Having a clear understanding how grid system work and location of RD within the

grid system, we now turn towards the requirements that are posed by the recent

development in the grid technology, which is the intergrid system. These

requirements include high searchability and high performance as we have mentioned

in chapter 1. These requirements can be explained into more specific details as

follows:

2. 4.1.1 Interoperability

In intergrid level environment, each grid level participant may have its specific

information service to describe its resources. This means there is heterogeneity in the

information and data models that are used for the description of the resources and

services. Resource consumers may not know what term to use for referring to a

particular resource, and what attributers can be used to make their constraints towards

wanted resources. In such situation, an RD system will not be able to discover the

resources effectively unless it has interoperability. Interoperability happens with the

use of scenarios that can clearly define schemes and formats of the resources and

services, and request representations. For this, interoperability allows RD system to

cross the resource description heterogeneity. Consequently, in order to achieve high

searchability, RD system needs to have interoperability. In the rest of this thesis, we

use the term "interoperability" to specify high searchability. We also break the high

performance requirement into three specific requirements, which are scalability,

decentralization and dynamism.

2.4.1.2 Scalability

The number of grid participants including resource and service providers, and

consumers increasing continuously. Especially at the intergrid level, this number may

move from thousands to millions. This causes performance degradation in discovering

the resources and services with an acceptable processing time. Therefore, RD system

should have scalability to discover the resources and services as efficiently as it is

29

supposed to, regardless of any quantitative changes in both ~esources/services, and the

consumers that use these resources and services.

2. 4.1. 3 Decentralization

Grids (intergrid level and grid level) initially federate resources from multiple

providers which mean, there is no common control for the entire system. This implies

that RD system should work in a decentralized manner. In this case, the resources and

services information (RD registration or registry) will not ,be put under a common

control. This is to avoid the problem of bottle neck and lack ofload balance, and fault

tolerance features.

2.4.1.4 Dynamism

Since resource and service providers are allowed to join or leave the system without

any prior notice, or even using the resources and services for their own tasks, there is

a need to monitor the status of these resources and services upon their registration on

the system. Therefore, RD system should be dynamic enough to track the status of the

resource and service information in order to maintain relia,bility in the discovered

resources and services.

2.5 Existing Grid RD Systems

As we have mentioned in chapter 1, there is a wealth of work on grid RD that includes

the developed services within the current grid middlewares and the research oriented

ones. To discuss these systems clearly, we classify these systems according to the

technologies that they use in their components. Figure 2.6 illustrates the taxonomy of
'

the existing RD systems in term of the technologies used in the components.

30

Figure 2.6 Grid RD systems taxonomy based on the technologies used

2.5.1 Existing RD Systems' Description

The description components of existing RD systems are initially divided into two

categories: keyword-based description18 (non-semantic) and semantic-based

description. The former uses syntactic information and data models to describe

resources and service. Meanwhile, the latter uses semantic information and data

models (Ontologies and Makeup languages) to describe resources and services. In the

rest of this thesis, by the term "keyword description approach" we mean the syntactic

information and data models, and framework that are used to describe resources or

services, and use the term "keyword-based approaches/RD systems" to denote RD

systems that use keyword description approaches regardless of their registration and

discovery components. In this sub-section we discuss the keyword-based approaches

18
We use the term keyword based and non-semantic based interchangeably

31

and leave the semantic-based ones to be discussed in the next chapter, where we

elaborate more on this topic.

2.5.1.1 Keyword-Based Approaches

There are three main keyword description approaches that have been used by the
I

leading grid middlewares. These models include Classified Advertisement language

(Solomon 2004), Lightweight Directory Access Protocol (LDAP) (Tuttle et al. 2004),
!

and Relational Grid Monitoring Architecture (R-GMA)(Cooke et al. 2003).

Classified Advertisement language is used by Condor19 middleware. The basic

representation of a resource in Classified Advertisement language is called

ClassAds/advertisement. ClassAds is a set of uniquely named expressions. Each

named expression (name, expression) is called an attribute. Expressions are composed

of simple literals (integer, floating point, or string) and 1 attribute references are

composed with operators and functions. The attributes are organized in a tree based

structure. The root of attributes is called record. Resource providers construct

ClassAds that describes their capabilities and declares; their constraints and

preferences towards the jobs they are willing to run. Consumers also construct and

submit ClassAds describing their jobs with their constraints and preferences with

regard to execution sites. The query is then done through the, evaluation of records of

the resource provider and consumer. For example, if X,Y are record expressions, each

of which is expected to have a "top-level" definition of the attribute Requirements.

X's Requirements attribute is evaluated in an environment in which the attribute refers

other evaluates to Y, and Y's Requirements are evaluated in ap. environment in which
I

it refers other evaluates to X. If both Requirements attributes evaluate to the specific

true value (not undefined, error, or a value of some non-Boolean type), the

expressions A and Bare said to match (Solomon 2004).

19 http://www.cs.wisc.edu/condor/

32

Lightweight Directory Access Protocol (LDAP) (Tuttle et al. 2004) is used in

Globus20 middleware. The basic representation of a resource in LDAP is called entry.

An entry represents an object of interest in the real world, which is composed of a set

of attributes, and each attribute a data type and one or more value. Entries are then

organized in a tree-like structure, which is known as Directory Information Tree

(DIT). DIT arranges entries based on their distinguished name (DN). A DN is a

unique name that explicitly identifies a single entry. For this, DN is used as the

primary key for an entry in the directory. DNs are made up of a chain of relative

distinguished names (RDNs). Each RDN in a DN matches to a branch in the DIT

leading from the root of the DIT to the directory entry. The common format of RDN

is <attribute name>=<value>. The query process in directories, begins with the user

specifying four things in the query message, which are: the starting point within a

DIT, how deep within the DIT to search, what attributes an entry must have to be

considered a match, and what attributes to return for matched entries. Respectively the

components are formally called as: Base, which is a DN that defines the starting

point; base object - a Scope that specifies how deep within the DIT to search from the

base object; a Search Filter - a Boolean combination of attribute value assertions that

identifies the criteria an entry must match in order to be returned from a search;

Attributes to Return specifies which attributes to retrieve from entries that match the

search criteria; and Limits specifies the time and size limits of the search (number of

entries to be returned and the total time of the search).

R-GMA is implemented with gLite21 middleware. R-GMA is an implementation

of special relational database. In this context, resources and attributes information are

organized into tables, and upon that they can be inserted and queried using standard

SQL constructs and views, and indices can be used. The query process in R-GMA

begins with consumers using the select statement to return the relevant information

about a particular resource or service.

In addition to that, traditional web services discovery framework is implemented

1s grid RD. For example, Pastore proposes Universal Description, Discovery and

20 http://www.globus.org/
21 http://glite.web.cem.ch/glite/

33

Integration (UDDI) as RD model to Globus-based grid system. UDDI initially uses
'

the Web Service Description Language22 (WSDL) and data model through which web

services can be described. The described services are then published into a centralized

registry that responds to service requests made by consumers!(Pastore 2008).

Since all of these description mechanisms belong to different middlewares,

initially they used different information models to represent the resources and
I

services, which inherited some heterogeneity if a grid used two description

mechanisms at the same time. To address that, a common res,ource information model

was introduced, which is called Grid Laboratory Uniform1 Environment (GLUE)23

schema. GLUE schema is an abstract modeling for grid resources and mapping to
!

concrete schemas that can be used in grid information services. The GLUE schema

defines a clear separation between the entities involved in a grid system. More

precisely, it defines two main categories: System and Service.! The earlier is defined as

a set of connected items or devices which operate together as a functional whole.

Meanwhile, the latter is an abstracted, logical view of actual spftware components that

participate in the creation of an entity providing one or more functionalities, useful in

a grid environment. The GLUE schema defines further the components of each

category. For example, the system contains two main compbnents of computational

grids, which are cluster and storage systems, and the service contains computing and

storage services. In addition to that, the GLUE schema defines the relations between

the components. More details about the GLUE schema can be found in (Andreozzi et

al. 2007). Besides that, the GLUE Schema has been mapped to several concrete data
I

models such as the ClassAds language (Garzoglio et al. 2b08) , LADP directory

(Andreozzi et al. 2009 -c), Relational schema (Andreozzi et
1

al. 2009 -a), and XML

schema (Andreozzi et al. 2009 -b).

22 www.w3.org/TR/wsdl
23 http://forge.ogf.org/s£'projects/glue-wg

34

2.5.2 Existing RD Systems' Registration

Existing RD systems that use keyword description approaches, which have been

described above, use in their registration components either centralized or

hierarchical architecture. However, there are other mainly research oriented RD

systems that use distributed registration architectures. In this sub-section we discuss

briefly these registration models.

Central Manager

Query
Node I

Reply

Node2 Node 3 Noden

Figure 2. 7 The Condor RD centralized registration

2.5.2.1 Centralized Models

In centralized RD systems, resources information is indexed under a common

centralized server/node. Consumers send their resource queries to that server, and the

common server/node will match the queries. Resource providers update their resource

status at periodic intervals using resource update messages. The Condor system is an

example of centralized registration model. Condor contains a central scheduler

called Central Manager (CM) which performs the scheduling task. In this case, CM

35

gathers the information of the resources and receives users' requests as ClassAds. The

CM then find matches between these ClassAds, and finaly decides where to schedule

the jobs (see Figure 2. 7). Condor uses intelligent agent to represent the resource

providers, which are called Resource owner Agents (RA). Each RA periodically

checks the state of its resource and then constructs a ClassAds of the resource. A

Condor scheduler can thus, discover new resources and update the state of existing

ones, only when they advertise their state by sending ClassAds. The validity of the
'

information contained in the ClassAds is also related to its rate of update. The Condor

scheduling process includes the possibility that a resource may reject an assigned job

due to changes incurred in its state since the last ad was sent.

Hierarchical MDS

Query
I

Reply

Node4 Node 5

Figure 2.8 The Globus MDS hierarchical registration model

2.5.2.2 Hierachical Models

In hierarchical RD systems, the resource information is indexed under a set of server

nodes in a hierarchical manner. Each parent nodes can answet queries/requests about

its child nodes. The monitoring and discovery service (MDS) of Globus implements

this model. It uses two services: a configurable information provider called Grid

36

Resource Information Service (GRIS) and a configurable aggregate directory service

called Grid Index Information Service (GIIS). A GRIS answers queries about the

resources of a particular grid node. A GIIS combines the information provided by a

set of GRIS services managed by a given Virtual Organization (VO). Figure 2.8

describes the hierarchical Globus MDS model, where Node 4 and Node 5 run the

GRIS that connects to the GIIS hosted at Node 2. It should be noted that, Node 2

hosts both GIIS and GRIS, and updates the information about its local resources along

with the child GRISs with the root GIIS service hosted at Node 1.

Both of the described models (centralized & hierarchical) have some issues with

regard to the RD requirements. For example, in Condor system, the Central Manager

that matches the resources with the users' tasks may be a point of the failure. In

Globus MDS, the updates on GRISs at the lowest levels do not automatically

propagate up to the top of the hierarchy, which means the available resource

information may not be completely up-to-date. This has motivated researchers

recently to focus on distributed peer-to-peer based registration models.

2.5.2.3 Distributed Models

Distributed RD registration models are mainly research oriented studies. These

studies use P2P resource discovery protocols and architectures to build their

registration. In fact, P2P resource discovery mechanisms can be classified into three

classes which are unstructured systems, structured systems and super system. All

three models are adopted on grid RD registrations.

2.5.2.4 Unstructured P2P

In unstructured P2P systems, each peer maintains a consistent number of connections

to other peers, called its neighbors, by doing so a network of peers is formed. This

network has no underline structure, therefore there is no information about the

37

location of files or resource. Systems like Gnutella24 and Rquting Indices (Crespo and

Garcia-Molina 2002) are examples of unstructured P2P network. The discovery

process is based on broadcast-like process called "flooding". A peer looking for a
I

resource issues a query message and broadcasts it in the network. Upon receiving a

query, each peer broadcasts it to all of its neighbors except the upstream one, and
!

sends all matching query responses to the originating peer through the reverse path.

Grid studies such as (Iamnitchi and Foster 2004) and (Talia and Trunfio 2005)
'

followed the unstructured P2P models.

2.5.2.5 Structured P2P

Structured P2P systems are introduced to enhance the resource discovery performance

of unstructured systems by using distributed indexing service, which is based on

hashing, and is known as Distributed Hash Table (DHT). In ~hese systems, Peers and

files are mapped through a hash function to a key space. Peers and file indices are
I

organized in a rigid structure according to their keys, which facilitates the location of
' files. Examples of these systems are Chord (Ratnasamy et a!l. 2001), CAN (Content

Addressable Network) (Rowstron and Druschel 2001) an1 Pastry (Rowstron and

Druschel 2001). Grid RD studies such as (Bharambe et al. 2004) and (Shen 2009)

followed the structured P2P models.

2.5.2.6 Super-peer

Although, structured P2P aims to improve the performance of the unstructured one,

the maintenance of the tables DHTs limit their scalability of the network. Therefore, a

new model known a super-peer network has been proposed ,(Nejdl et al. 2003) and

(Yang and Garcia-Molina 2003). A super-peer is a node in a P2P that performs as a
'

server on a set of clients and as an equal with regard to other super-peers. Together, a

super-peer and its clients is called a cluster, and the number of nodes (clients and
I

super-peer) is known as cluster size. Each super-peer keeps and maintains an index

24 http://wiki.limewire.org

38

over its clients' data, which contains the resource information. The look up for

resources is as follows: a client submits a query to its super-peer only. The super-peer

will then submit the query to its neighbors as if it was its own query, and forwards any

response messages it receives back to the client. Grid RD studies (Mastroianni et a!.

2005) and (Puppin et a!. 2005) have adopted the super-peer architecture.

2.5.3 Existing RD Systems' Discovery

Discovery involves search and selection. Search initially depends on the registration

architecture as it is supposed to route a consumer resource or service request into

registration component. Generally all, but the existing RD systems including

middleware RDs and the research oriented ones, implement or extend one or some of

the known Packet Propagation algorithms such as Unicast , Multicast , and Anycast

for their searches. For example, in Condor system the search is unicast one-to-one

communication that involves the CM and consumer. Meanwhile, unstructured P2P

based RD systems use as multicast one-to-many communication. More details about

the Packet Propagation algorithms related RD can be found in (Meshkova et a!.

2008).

Selection is the act of deciding which resource to select from the set of resources

or services that match with consumer's request. Selection in the RD systems is either

done manually by the user or some algorithm. In the manual case, users use their

browser and ports to select any resource from the retrieved list based on their own

preferences. Some Globus users use this method. Algorithm is further divided into

two, namely broking and matchmaking. In broking, grid broker such as Condor-G is

used to perform the selection by using criteria based algorithms. In matchmaking

case, Matchmakers are used to perform the selection, which are similar to brokers, but

matchmakers do not interfere in the next step after the matchmaking, which is the

interaction between matched request and selected resource, as is the case of brokers.

39

2.6 Assessment Summary of the Existing RD Systems

We conclude this chapter by providing an assessment on the existing RD systems

with regard to the identified RD requirements, to see if they provide a partial solution

to intergrid RD problem. Existing grid middleware RD that use keyword description

approaches work fine at grid level but they are not efficient at intergrid level due to

the information and data models heterogeneity. We understalnd that GLUE schema is

a good effort to provide a standard information model among these information

services, but at present GLUE schema is mainly focusing on the computational

resources (CPU and Memories). However, intergrid level resources go beyond the
I

basic computational resources. To sum up, keyword description approaches are

associated with a lack of interoperability. i

Centralized and Hierarchical are acceptable at the grid level as the number of
I

participants is relatively small. However at the intergrid level, centralized model will

be a point of failure with the addition of lack of load balancing. Hierarchical models

are associated with a delay during the update from the bottom nodes to the upper level

nodes. This means there is a lack of dynamism. Therefore, we can say that centralized

models have no scalability and decentralization, and hierarchal models lack

dynamism although they are more scalable than centralized ones. Regarding the
I

distributed registration, thanks to the study by (Mastroianni et al. 2008) that has

provided a broad simulation based comparative study on i.mstructured P2P based

model, Hierarchical model and super-peer model. The authdrs concluded, based on

the results, that hierarchical model is more scalable than unstructured P2P model, and

super-peer model is more scalable than hierarchical. Based OJil these comparisons and

considering other facts related to fault-tolerance, load balancing, and administrative

features, super-peer is the good candidate for intergrid registration component
!

compared to the other models, but we cannot go far as to say that it achieves a full

scalability as it uses blind distribution of the resources and service requests.

40

CHAPTER3

THE STATE OF THE ART IN SEMANTIC-BASED GRID RD SYSTEMS

3.1 Introduction

In the previous chapter, we have concluded that keyword description approaches that

are used by the current grid middleware RD systems are not able to provide

interoperability at the intergrid level. A potential candidate to provide interoperability

in the RD system description is the semantic technology. This is because semantic

technology was initially introduced to make the current web meaningful (Sheila et al.

2001), and has been implemented in some grid RD studies (e.g. (Pemas and Dantas

2005), (Said and Kojima 2009), and (Xing et al. 2010)). However, the lack of a

proper implementation of semantic technology that is suitable with grid technology in

terms of resources, services and behaviors is preventing most of these studies to

achieve interoperability. In fact, the main drawback that has contributed indirectly to

that is the lack of review and survey studies to review and compare these studies so

that they can benefit each other from the lesson learnt. On the contrary, in the case of

keyword-based RD systems, there have been several review studies (Zanikolas and

Sakellariou 2005), (Trunfioa et al. 2007), (Mastroianni et al. 2008) and (Ranjan et al.

2008), who have evaluated these studies and identified the focus of future directions.

As the results, keyword-based RD systems have been gradually heading towards

achieving scalability and decentralization features. All in all, providing a review or

survey study to compare and evaluate studies that have introduced semantic

technology and drawing future research directions in this field remains a challenge

(Trunfioa et al. 2007). This is equally challenging as providing interoperable RD

system through the use of semantic technology.

41

To that end, this issue is being addressed in this chapter. Initially, we will discuss
I

semantic technology and its use in grid technology. Then we will focus on the use of

semantic technology in grid RD system components and present the current works in

this perspective. In addition, we will present a detailed analysis of these systems and

the future research directions in this field.

Overall, the main contributions of this chapter are as follriws:

• A comprehensive review on the available semantic technologies with a focus on
!

their information expressiveness capabilities, and classify them in that regard.

• A discussion on the use of semantic technology in grid technology with the focus

on current efforts in providing grid domain ontologies l¥1d semantic description

services.

• A taxonomy for semantic-based grid RD systems based on their qualitative use of

semantic technology, a review of these studies with regard to the identified grid
I

RD requirements and the future direction of this field.

The rest of this chapter is organized as follows. Section 3.~ discusses the semantic

technology. The use of semantic technology in grid and semantic-based RD systems

are presented in Section 3.3 In Section 3,4 we discuss the reviewed RD systems and

provide a comparative summary. Section 3.5 tells the future use of semantic-based

RD systems in emerging technologies. Section 3.6 presents related work in this area.

Finally, section 3.7 concludes the chapter.

3.2 Methodology

We address the surveying and comparison issue on semantic-based RD studies in four

parts which are: reviewing the semantic technology models, r~viewing the RD studies

that implement the semantic models, evaluating the reviewed studies in terms of their

accomplishments of the identified RD requirements, and discussing the future of the

RD system usage with emerging grids and grid related technolCJgies.

42

In the first part, we review only the semantic technology models that are standard

of the WC325 or have been used by any semantic-based RD study. The reason behind

that is, as in the case of the standard models, it is to highlight the competencies of

these models for future research use if they are not used at this time around.

Meanwhile in the case of models that are used by some semantic-based RD studies

and are not standard, it is to grant a deeper understanding on how these models are

implemented in the grid technology.

In the second part, we review the studies that have been presented from 2005 until

the present date when this thesis is written. The reviewed studies are selected based

on the scientific maturity. Particularly, we mainly select studies that appear in the

most reputed journals of the well known publishing houses such as Elsevier and

Springer. The study review covers all aspects of the use of semantic technology in the

studies.

In the third part, we discuss and evaluate the reviewed studies with regard to the

RD identified requirements. The evaluation is based on a deep analysis and

observations of the studies capabilities, and mapping these capabilities to the required

capabilities; which then results the ability of the studies to fit into the required

capabilities. This method has been followed by some of the related works in the

case ofkeyword-based RD studies (Trunfioa et al. 2007) and (Ranjan et al. 2008).

In the last part, we discuss the future of semantic-based RD with the ongoing

advancement in grid technology and the most related technology to the grid, which is

the Cloud technology. The discussion is based on what the semantic-base RD systems

can offer to these technologies in achieving their goals.

3.3 Semantic Technology

Semantic technology is a type of information and data models, and mechanisms that

are used in resource and service description, and information integration. Information

25 http://www.w3.org/

43

model in semantic technology is called ontology and data model is called makeup

language/ontology language. Ontology primarily is a formal, explicit specification of

a shared conceptualization (Gruber 1995) and (Chandrasekaran et al. 1999).

Conceptualization here is an abstract, simplified view of a ,domain, which identifies

the relevant concepts of that domain. For this, ontology consists of concepts and

relationship between these concepts. It should be noted that, ,establishing relationships

between domain concepts allows us to understand the concept not merely by its

properties, but by its presence in relation to other concepts within the ontology
'

(Flahive et al. 2009).

Figure 3.1 The taxonomy of ontology languages

3.3.1 Ontology Languages

Currently, there are several languages available to encode ontologies. The difference

between these languages is mainly on their expressiveness dpabilities to represent a

given domain of interest. Therefore, they can be classified based on their

expressiveness capability. Accordingly, they initially can be divided into two classes.
'

The first class includes languages that have their basic infom1ation model for a

domain description. In other words, the languages are them~selves ontologies. This

class can be further divided into those that provide the basic ontology components,

44

which are useful for constructing ontologies of any domain of interests such as

biology, chemical and physics, and others that provide a basic ontology for the web

services (see Figure. 3.1).

3. 3.1.1 Not-supported with Information Model

Resource Description Framework26 (RDF) is the only language that represents this

class. RDF provides a simple way to express resources. A RDF expression is basically

a collection of triples, each consisting of a subject, a predicate and an object. A set of

such triples is called an RDF graph. Each triple corresponds to a declaration of a

relationship between the things denoted by the nodes that it links. The collection of

the triples in the same document is called RDF document.

3.3.1.2 Supported with Information Model

Ontology languages that are supported with information models compnse of all

domains and web service ontology languages. The earlier includes Resource

Description Framework Schema27
, Ontology Inference Layer (OIL), DARPA Agent

Markup Language + Ontology Inference Layer28 (DAML+OIL), Ontology Web

Language29 (OWL), and Semantic Annotations for WSDL30 (SA WSDL). Meanwhile,

the former is represented by OWL-S31
•

• Resource Description Framework Schema32 (RDF-S)

RDF is extended with an information model that is called RDF Schema (RDFS) .

RDFS provides methods that are able to describe groups of related resources and their

relationships to each other. The basic elements of the schema are classes and

properties. Classes describe the kinds of resources and properties characterize these

26 http://www.w3.org/RDF/
27 http://www. w3 .org/TR/rdf-schema/
28 http://www.w3.org/TR/daml+oil-reference
29 http://www.w3.org/TR/owl-features/
30 http://www.w3.org/2002/ws/sawsdl/
31 http://www.w3.org/Submission/OWL-S/
32 http://www.w3.org/TR/rdf-schema/

45

resources. RDFS class and property system is similar to the type systems of object

oriented programming languages such as Java. Therefore, rdsources can be defined as

instances of one or more classes (rdfs: Resource), and classes can be organized

in a hierarchical fashion so that a class may have a subclass1 (rdfs: subClassOf).

Each class is often identified by RDF Uniform Resource Ide,ntifier (URI) and may be

described using RDF properties. A property is the relation between subject resources

and object resources. For example, the rdf: type property may be used to state that

a resource is an instance of a class. Each property has range (rdfs: range) and
I

domain (rdfs: domain) attributes. Range is used to state that the values of a

property are instances of one or more classes; meanwhile, dbmain is to state that any

resource that has a given property is an instance of one or more classes.

• Ontology Inference Layer (OIL)

I

OIL has emerged to further provide a more expressive power than RDFS. OIL is
'

based on three components, namely, frame-based system, description logic and web

standard. Frame-based systems have rich modeling primitive1s (Horrocks et al. 2000).

The central modeling primitive in frame-based systems are classes (Frames), which

have some properties called Attributes. These attributes Have a local scope that

bounds them to be applicable to the frames for which they are defined. A frame also

provides a certain context for modeling one aspect of a domain. OIL is based on the

idea of a class and the definition of its super-classes and attributes. Relations can also

be defined as independent entities with a certain domain and range. Description logic

provides formal semantics and efficient reasoning support. In description logic

knowledge is represented as concepts and roles, and translated into mathematical

format, which is used to automatically derive classification taxonomies (reasoning).

Web standard includes XML and RDF. OIL has well define,d syntax in XML. It is

also defined as an extension of the RDF and its schema.

46

• DARPA Agent Markup Language+ Ontology Inference Layer33 (DAML+OIL)

DAML was initially proposed by the US Defense Advanced Research Projects

Agency. The aim was to introduce a simple language for expressing more

sophisticated RDF class definitions than permitted by RDFS. However, to improve

the language standardization on the semantic web, the DAML group pooled its efforts

with the Ontology Inference Layer (OIL) to produce what is known as DAML+OIL

(McGuinness et al. 2002). DAML+OIL was initially built on RDF and RDFS, and

these models have been extended with richer modeling primitives. DAML+OIL

provides modeling primitives commonly found in frame-based languages. It has three

characteristics: first, an underlying mapping to an expressive Description Logic (DL)

that provides a well defined semantics and clear understanding of the formal

properties of the languages. Thus, using DL allows DAML+OIL to be flexible in

composing classes and slots to form new expressions, unlimited nesting of class

elements, transitive and inverse slots, general axioms, etc. The second characteristic is

a machine-readable syntactic encoding in the languages of the web. As RDF has

gained a wide use in the metadata deployments, DAML+OIL ontologies are

accessible by any agent written by RDF. Third, a layered architecture, avoiding the

temptation to throw everything into the core language, mixed up features that cannot

be reasoned over with those that can be. Therefore, the limits are clear and explicit

(Bechhofer and Goble 2001).

• Ontology Web Language34 (OWL)

OWL is the first ever standard language for ontologies. It is compatible with the early

ontology languages that have been described above, and provides us more power to

express semantics. This includes exitencially, conjuction, disjunction, and universally

quantified variable. This allows reasoners to take the advantages of these capabilities

(Pulido et al. 2006). The OWL language has three sublanguages, which are designed

for supporting some specific domains. First, OWL Lite is designed for users primarily

needing a classification hierarchy and simple constraint features. Second, OWL

33 http://www. w3 .org/TR/daml+oil-reference
34 http://www.w3.org/TR/owl-features/

47

DL(short for Description Logic) is designed for users yvho want the max1mum

expressiveness with a reasonable time-complexity. It allows efficient reasoning and

inferencing. Last, OWL Full is meant for users who want !llaximum expressiveness

and the syntactic freedom of RDF with no computational guarantees. For one thing, it

is possible to treat a class simultaneously as a collection of individuals and as an

individual in its own right. The basic elements in OWL .are classes, instances of

classes (individual), subclass and properties. Classes are the roots of various
!

taxonomic trees, and they should correspond to the most basic concepts in a domain.

Every individual in the OWL world is a member of the class owl: Thing. Subclass

(rdfs: subClassOf) relates a more specific class to a mor~ general class. If A is a

subclass ofB, then every A's instance is also an instance of B. The rdfs: subclassof
I

relation is transitive. If A is a subclass of B and B is a subcl~ss of C, subsequently A

is a subclass of C. Therefore, each user-defined class is implicitly a subclass of
I

owl: Thing. A property is a binary relation that allows the assertion of general facts

about the classes and specific facts about instances. It has two types: datatype
I

(DatatypeProperty) and object (Obj ectproperty) .The former relates instances of

classes and RDF literals, and XML Schema data types, meanwhile the latter relates

instances of two classes. OWL provides an exceptional prop'erty which is the import
I

of external ontology to an existing one. The owl: imports provides an include-style

mechanism that imports another ontology, which means btinging the entire set of

assertions provided by that ontology into the current ontology.

• Semantic Annotations for WSDL35 (SA WSDL)

SA WSDL (Jacek et al. 2007) initially is not an ontology languages for representing a

given domain, rather it is a mechanism that allows the WSDL36 and XML schema37 to

have additional tags that refer to a domain ontology. The dorhain ontology can be in

OWL. SA WSDL consists of two parts as shown in Figure 3.2. First is schema

mappings, which specifies the data transformations between messages of XML data

structure and the correspondence ontology/semantic model; and second is model

35 http://www.w3 .org/2002/ws/sawsdl/
36 http://www.w3.org/TR!wsdl20/
37 http://www. w3 .org/TR/xmlschema-11

48

reference which points the XML Schema element to one or more semantic concepts in

the ontology/semantic model.

schema mappings

Figure 3.2 SA WDL overview, source (Jacek, Tomas et al. 2007)

• OWL-S38

In order to improve the description and discovery of the semantic web services, there

have been some efforts to provide ontology for the semantic web services. This

ontology represents an upper layer ontology that is made specially to describe the web

service using the ontology languages. OWL-S (formally called OWL-S) has emerged

in that context. OWL-S defines a set of classes and properties, specific to the

description of services, within OWL-S. The class Service is at the top of the OWL-S

ontology. The class Service is characterized by three components, which are service

profile, service model and service grounding (see Figure 3.3 taken from:

http://www.w3.org/Submission/OWL-S/). Service profile is a class that describes the

38 http://www. w3 .org/Submission/OWL-S/

49

capabilities and parameters of a service. Therefore, the class Service presents a
I

ServiceProfile. Service profile answers to the question of 'what does the service

require of agents, and provide for them'. Service model is :a class that describes the

workflow and possible execution paths of a service. Accordingly, the class Service is

described by a ServiceModel. Service model answers to the question of 'how does the

service work'. Service grounding is a class that provides information about a service

that can be used by an agent to determine if the service meets its requirements. It

answers to the question of 'how to communicate with the ,service'. Hence, Service

supports ServiceGrounding. In short, the service profile is used for the discovery,

whereas, the service model and service grounding are used for communication

between the service requesters and providers.

Figure 3.3 The Service Ontology Model

3.3.1.3 Ontology Query Language

In order to manipulate the semantic information and reasoning with them, a query
I

language is most needed in ontology languages. In this regard, in the recent years the

W3C has recoinmended the use of SPARQL as the query language RDF. SPARQL

has the capability to query required and optional graph patterns, along with their

conjunctions and disjunctions. A SP ARQL query contains a set of triple patterns

called a basic graph pattern. The triple patterns are similar to the RDF triples; the

50

only difference is that each of the subject, predicate and object may be a variable. A

basic graph pattern matches a sub-graph of the RDF data when RDF terms from that

sub-graph may be substituted for the variables, and the result is a RDF graph

equivalent to the sub-graph. It should be noted that SPARQL is data-oriented as it

only queries the information held in the models with no inference in the query

language itself. Therefore, ontology language such as RDFS and OWL may use their

inference engine to produce some entailments against which SP ARQL queries are

executed.

3.4 Semantic Technology and Its Use in Grid Technology

Initially, the use of semantic technology in grid technology aims at adding well

defined meaning to the grid resources, services and other entities so that we can cope

with grid heterogeneity and provide self-management to the system. For this, the idea

of the Semantic Grid (SG) is introduced (Zhuge 2005). In SG, resource and service

metadata are exposed and handled explicitly, so that it can be shared and managed by

the grid protocols. Several studies have been conducted in transforming the

conventional grid to SG (Corcho et al. 2006). This includes providing ontologies to

describe the grid domain semantically, and services and mechanisms to accomplish

the semantic description and management. In fact, providing grid domain ontology is

the most important part in this case.

3.4.1 Semantic Grid

SG has two important aspects, namely ontologies to describe the grid domain

semantically, and services and mechanisms to accomplish the semantic description

and management. In this line, a SG reference architecture has been proposed by

(Corcho et al. 2006) , where the authors extended the Open Grid Services

Architecture (OGSA) (Foster et al. 2005) to support the explicit handling of

semantics, and defined the associated knowledge services to support a spectrum of

service capabilities. The architecture is known as the Semantic-OGSA (S-OGSA). S

OGSA defines a model, capabilities and mechanisms for SG.

51

The model is the elements that S-OGSA is composed of and their

interrelationships. It consists of three main components namely: Grid Entities (G

Entities), Knowledge Entities (K-Entities) and Semantic Binding (S-Binding). G

Entities are anything that carries an identity on the grid, including resources and

services. K-Entities are special types of G-Entities that represent some form of

knowledge. This includes ontologies, rules, knowledge bases, and so on. K-Entity has

two types: knowledge services and knowledge resources. S-Binding are the entities

that come into existence to represent the association of a GlEntity with one or more

Knowledge Entities (see Figure 3.4 taken_from source (Corc~o et al. 2006)).

Figure 3.4 S-OGSA entities and their relationships

S-OGSA capabilities are the services needed to deal with the model components.

These services should be provided by the grid middleware to include Semantic

Provisioning Services (SPS) and Semantically Aware Grid Services (SAGS). SPS

supports the provision of semantics, by allowing the creation, storage, update,

removal and access of different forms of knowledge and metadata (i.e. Knowledge

Entities and Semantic Bindings of the S-OGSA model). SPS are further divided into
I

two: Knowledge Provisioning Services and Semantic Binding Provisioning Service.

The former include ontology services, which are in charge of the storage and access to

the conceptual models of representing knowledge, and reaso~ing services, in charge

of computational reasoning with those conceptual models .. Meanwhile, the latter

includes metadata services, in charge of storage and acces~ to semantic binding,

normally considered as sets of ontology instances, and annotation services, in charge

52

of generating metadata from different types of information sources. SAGS are those

enhanced grid services that deliver OGSA enumerated capabilities semantically.

OGSA mechanisms are to ground the conceptual definitions regarding the use of

metadata in the grid into concrete grid modeling element. The first mechanism is that

knowledge entities and semantic binding are treated as grid resources. The second

mechanism states that semantic bindings are delivered by the grid services.

3.4.2 Grid Domain Ontologies

As ontologies are the key aspect in SG for modeling resources and services, from the

literature survey, there are three studies that have proposed grid domain ontologies.

We briefly discuss these studies in this section with aim of highlighting the current

efforts in providing grid domain ontology.

TypeOJMachine

Clust~"
Supercomputer

Computational Rresources

FileSystem OpSystem

~
Unix Windows

I
Linux

Architecture

IBM~D
INTEL

Figure 3.5 The main class grid resource ontology that propose by (Pernas and

Dantas 2005)

Pemas and Dantas introduced ontology for resource description to improve the

search for resources and their selection. The authors defined a common ontology for

the grid environment (Pemas and Dantas 2005). In designing the reference model for

the ontology, the authors searched for the most utilized vocabulary by the community,

and which resources were commonly employed in grid configurations. The search

was realized by considering the NP ACI , ESG (Earth System Grid), NASA

53

Information Power Grid (IPG) and the Distributed ASCI Supercomputer Project 2

(DAS- 2) (Henri et al. 2000). The search was then documented for designing the

ontology components, which are Data Dictionary, Concepts Classification Tree,

Table of Classes Attributes and Instances, Table of Instances and Tables of Attributes

Classification. Data Dictionary gathers all the classes and in~tances from the ontology

together with their meanings. It has 14 classes and the first class created is

Computational_Resources (see Figure 3.5). Concepts Classification Tree is comprised

of all the classes and subclasses of the ontology. Table of Classes Attributes and

Instance presents to each class and instance all their attributes (e.g. the attribute

related to Cluster is TypeOjMachine). Table of Instances accommodates attributes and

value of each instance of the ontology. Tables of Attributes Classification graphically

illustrates attributes, which are deduced upon the existence of other attributes from

higher hierarchy. The documentation is then reproduced to OWL language, using the

Protege-2000 editor.

core classes general classes architecture~specific
' classes

Figure 3.6 Overview of the Core Grid Ontology classes

Xing et al. · proposed a core grid ontology that is general enough to capture the

grid system, and easily extensible to be used by different grid middleware or grid

architectures (Xing et al. 2006). The ontology is built on an abstract, generic model,

54

which is a layered-structure and designed on three layers scheme. The top layer

includes grid VOs, users and application. Grid services and grid middleware lay in the

middle layer. The bottom layer contains the grid resources. The basic concepts of the

ontology are defined according to the model structure. These concepts correspond to

the classes that are fundamental elements or the very important aspects of a grid

system. The classes are organized into core, general and platform-specific. Seven core

classes of a grid system from the abstract grid model are defined. They are: VO,

GridResource, GridMiddleware, GridComponent, GridUser, GridApplication, and

GridService (see Figure 3.6). Each of these classes has a description and constraints.

For example a GridUser is described as " a person who can access to a grid "; while

its constraints are: (1) has an ID, (2) registered VO, (3) gridEntry. In order to

describe a grid system, the 7 core classes are divided into two parts. First are VO,

GridMiddleware, and GridResource as the three vital and crucial aspects that define

distinct features of a grid. The second part consists of GridUser, GridApplication,

GridComponents, and Grid-Service as the associated concepts of basic grid entities.

Subsequently, the authors defined 24 general classes that correspond to the general

grid entities referring to VO, Grid middleware, and Grid Resources. These general

classes (e.g. JnfoService, storageComponent, DataMgt) can be used to describe the

Grid in further details. Lastly, the authors introduced the grid platform specific classes

to represent the entities of specific grid architecture. For instance, the MDS

information service of Globus-2 can be represented by a class MDS, which is a

subclass of JnfoService. To represent the relationships and constraints among the

ontology classes, properties are defined to provide a semantic meaning for the Core

Grid Ontology. They are defined according to the constraints of the classes. To

provide flexibility and extensibility to the CGO, the authors suggested that users can

add their classes and properties on "required-to-have" basis. The COG uses the Web

Ontology Langue OWL as makeup language.

55

, Foundational
Ontology

Figure 3. 7 The grid knowledge architecture

Parkin et al. also introduced a grid ontology to provide 1nteroperability between

Globus and Unicore grid middlewares. Whereby, a resource broker can use resource

information that are described by either the Monitoring Discovery Service (MDS) of

the Globus or' the Unicore Incarnation DataBase(IDB) (Pkkin et al. 2006). The

authors defined two requirements for the proposed ontology: (i) the ontology must

allow consumer /resource provider to express resource requirements in an abstract,

resource and middleware independent form; and (ii) the ontolpgy must express again,

in an abstract manner, both the actions requested and the resources that enable these

actions. To fulfill the requirements, they defined three layers grid knowledge

architecture: Basic Concept, Domain Independent Ontologies and Instant !eve/layers.

Ontologies in these layers can import concept each other hierarchically (a lower layer

ontology can import form it upper layer ontology) (see Figure 3.7 taken from (Parkin

et al. 2006)). Tile Basic Concept layer includes foundational ontology that defines the

56

high-level, common, general-purpose grid ontology concepts that can be reused in the

description of any grid middleware or application, protocols, services, resources and

Virtual Organizations. The foundational ontology includes 104 classes and 154 object

properties. In the domain of independent ontologies layer, there are middleware

specific ontologies that describe the instances of implementations of grid middleware.

Examples of these middleware are Globus, Unicore , UniGridS39 and so on. All of

these ontologies import and extend the basic concepts from the upper layer. The final

layer is the instant level, this contains the actual grid deployments ontologies. They

hold the details of the grid systems such as The UK National Grid Service40 and US

TeraGrid41
. This ontology is implemented using the OWL.

From RD system perspective, the use of semantic technology means the

involvement of semantic technology in the RD components mainly in description.

This means, resources and services are semantically described, which is known as

semantic information. However, some studies have gone beyond using semantic

information for description to other RD components such as registration. In this case,

the resource and service registries are distributed semantically so that the distribution

of the resource and service queries during the discovery process will be based on

semantic sub-registries. To this end, in the rest of this thesis we mean the term

"semantic-based RD system" to any RD system that involves the use of semantic

information in its components. We also use the term "semantic-based RD system" and

"RD based on semantic information" interchangeably.

3.4.3 Semantic-Based Grid RD Systems' Description

The use of semantic information in description components of grid RD systems is

generally the application of the available ontology languages or grid semantic

information, and data models. For this, we classify the descriptions of the RD systems

based on their use of which semantic description, and what that semantic description

supports. The taxonomy initially classifies RD system description into using semantic

39 http://www.unigrids.org/
40 http://www.ngs.ac.uk/
41 https://www.teragrid.org/

57

information (semantic description) and non-semantic information (keyword-based

description). Semantic description is further divided into using the same ontology and

using different ontologies. The former is further divided into supporting one

middleware information service and supporting different. middleware information

services (see Figure 3.8).

Figure 3.8 The taxonomy of semantic-based RD system description

3.4.3.1 Using the Same Ontology

Using the same ontology is a kind of grid RD system that uses homogeneous

information and data models. The RD systems that fall in this class normally use the

existing grid domain ontologies that we have discussed earlier to build a semantic grid
I

metadata service. This semantic metadata service can integrate metadata sources that

belong to a particular middleware information service or multiple grid middleware
I

information services.

58

• Supporting One Grid Middleware Information Service

Pernas and Dantas used their own ontology, that we have mentioned above, with an

interaction service to build a semantic grid information service on top of the Globus

Monitoring and Discovery Service (MDS) (Pemas and Dantas 2005). The main

elements of the system are ontology, metadata, semantic view and MDS (see Figure

3.9). Metadata stores all the information about existing resources, and semantic view

gets the status of the resources from the MDS. Ontology utilizes metadata and

semantic view to obtain information about any computational resource in order to

answer any user resource queries. The interaction between the ontology and

consumers is made through a Java based application service. The service has three

modules. The first module provides a list of all classes and instances defined in the

ontology. The names of these classes and instances are used by a consumer to process

queries into the metadata and computational resources of the remaining modules. In

the second module, consumers can search for metadata from any class listed by the

first module. The third module allows a search of any existing computational

resource, where a consumer can visualize the entire configuration. The system was

tested at the Federal University of Pelotas, and has shown a clearer description of the

computational resources.

Grid Environment

Query Applications

Figure 3.9 The grid architecture using the ontology approach as proposed by

(Pernas and Dantas 2005)

59

Somasundaram, Balachandar et al. proposed a knowledge layer on top of the

Gridbus broker architecture for semantic description ar;td discovery of resources

(Somasundaram et al. 2006). This yields five layers of grid architecture, which are

fabric, core middleware, high level middleware, knowledge' and application layer. The

knowledge layer provides knowledge discovery from , a huge amount of data

aggregated from underlying information services layer. The knowledge layer consists
'

of three main components, and works with other two a~ditional components. The

main components are resource description, semantic repository, and resource

discovery. Meanwhile, the additional components are monitoring and discovery
I

service (MDS), and job description (see Figure 3.1 0). The resource description

defines resource ontology template, and provides necessary concepts and properties

with which a resource can be described. Different possible computing resources are
I

considered for creating ontology template (although the aurhors did not provide any

details about the ontology structure, it is obvious that they used one grid domain
' ontology). Semantic repository is made up from the ontology and knowledge base.

The knowledge base is built with the instances and specific !property instantiations of

the ontology of the resource description. Resource discove~y allows users to submit

their queries. It then generates appropriate Algernon q~ery depending on the

requirements specified by the user, and executes these qveries over the ontology

knowledge base to obtain the best possible resources that closely match the request.

The MDS provides the value of the properties concepts' for the ontology. The
I

discovery process is done as follows: user forms a query with the format label:

label value in which the properties of the resource are denoted as label and requested

value as label_value. Query generator converts the query into
1

an Algernon query. The

discovery executes the queries over the knowledge base of the semantic repository

and finds the resource that corresponds to the user's request.

60

Seman tlcCompcnent

1------ Toll!Solll

Gridbus Broker

Figure 3.10 The semantic-based RD model presented by (Somasundaram et

al. 2006)

Said and Kojima work proposed a RD system known as Semantic Monitoring and

Discovery System (S-MDS), which is built on top of the Globus Toolkit 4 (Said and

Kojima 2009). The system uses ontology, OWL and other services to create the

semantic resource metadata. The ontology does not have a predefined full structure, as

the non-semantic resource metadata that are presented as XML resource properties

(RP) documents are mapped into OWL classes. These classes construct an ontology

called domain specific ontology (DSO). This is done through three services and a

semantic repository, which are semantic metadata manager (SMM), semantic

metadata provider service (SMP), semantic metadata index service (SMI), and a RDF

repository (see Figure 3.11). Respectively, SMM reads any RP, maps it into the

ontology (DSO), and instantiates the ontology using the defined values in the RP. The

created ontology instance (semantic metadata (SMD)) contains all the values specified

in the mapped RP. The SMM also allows users to enrich any SMD further by

associating it with other relevant ontologies, and then instantiating these ontologies.

The enriched SMD is then published at SMP through a registration process. SMP

service stores SMDs in their RPs and monitors SMDs changes by tracking their

mapped RPs. Therefore, when a RP is updated, the SMP updates the corresponding

61

SMD to reflect the change. The SMP finally registers the ! SMDs into one or more

SMis. SMI service uses a RDF framework to store and maintain the SMDs that are

registered by SMPs. SMDs are stored in a local or remote 1 RDF repository and can

optionally be placed in the SMI's RP. SMI is similar to SMP in a sense that it

monitors the changes of the stored SMDs in SMPs. When SMD is updated, SMI

updates the corresponding stored metadata. S-MDS uses SPARQL query language for

querying the RDF repository. The system also provides some GUI-based tools for

creating, enriching, and registering the semantic metadata, and constructing SPARQL
'

queries. S-MDS has been implemented and its result is promising.

local RDF

11111111111111111111111111

data update

Light blue arrows show semantic metadata creation & management.
Green arrows: show the relatio:n of the connected entities.
Gray arrows show the data update flow.

Figure 3.11 The S-MDS system architecture proposed by (Said and Kojima

2009)

• Support Multiple Grid Information Services

RD systems fall in this class that uses ontology to integrate multiple grid information

services to provide a semantic grid information services on top of these services.

Normally, this kind ofRD is related to intergrid level.

62

Events

Metadata Cache

Metadata Scheduler

lnfomation source
Selector

Figure 3.12 Overview of the active ontology architecture

Xing et al. proposed an ontology based information services integration for grid

infrastructures such as Enabling Grids for E-sciencE42 (EGEE). The model allows

grid distributed metadata services such as BDII43 and Globus MDS to be integrated

into a common pool (Xing et al. 2010). Active Ontology (ActOn) (Xing et al. 2007) is

used for this integration. ActOn initially is an information integration approach that is

able to generate and maintain up-to-date metadata in a dynamic, large-scale

distributed system. It consists of a set of knowledge components and software

components. In the proposed model, knowledge components comprise domains and

information sources ontologies. Domain ontologies describe information and data

models for the resources, components, services, and applications of the EGEE (see

Figure 3.12). For this, the author uses the ontologies of (Xing et al. 2006) and (Parkin

et al. 2006) as domain ontologies. Information sources ontology provides information

42 http://public.eu-egee.org/
43Berkeley Database Information Index (BDII): http://lfield.home.cem.ch/lfieldlcgi-
bin/wiki.egi?area=bdiipage=documentation.

63

about the information services that are deployed in EGEE. The two ontologies are
I

related by means of mappings that identify which domain concepts, and which of their

properties cah be generated by which information sources. Software components

include metadata cache (MC), metadata scheduler (MSch), information source

selector (ISS), and a set of information wrappers. MC stores and manages the

metadata that are obtained from the information sources
1
. The metadata use the

domain ontology as a data model for the stored metadata. The MSch updates the

information in the metadata cache using on-demand based policy. The demand takes

place when there is an event such as queries. Information sburce selector is used to

select the most suitable information sources among the available sources, which are

described in the information sources ontology. The selection is based mainly on the

actual information needed and the geographical proximity.· Information wrapper is

used to retrieve the up-to-date information from the sources. Wrapper is called by the
I

metadata cache as soon as the selection of the information resources is done. Each

type of infomiation source has a special wrapper. The system uses SPARQL as the

query language. The proposed system has been implemented and compared to other

existing grid information services; it shows promising results.

3.4.3.2 Using Different Ontologies

RD systems are those which do not restrict resource and service providers to use

common domain ontology, rather they propose a specific ontology language and/or a

set of rules upon which each resource or service provider' site can build its own

ontology. The sites' ontologies will then be federated to have a virtual ontology or

remain as they are. Several studies have proposed the ipea of using different

ontologies as we see next:

Li and Vuong proposed RDF as a data model for grid resource providers to encode

their resources' metadata without any defined specific grid d(i)main ontology (Li and

Vuong 2005). Each grid node stores its resource metadata in a local database which
' belongs to the node itself. The stored metadata is then summarized using the Bloom

filter, which will make the query process easier. A hash function is used to map the

resources with their attributes. For example, if x is a resource and (H1, H2) are

64

functions, so H(2, 3) means x is located in the second and the third bit in the Bloom

filter bitmap. The query matching has two phases. First, a matching between the query

and the resource summary, if there is a complete or partial matching based on the

resource attributes combination. For example, if R is a resource with two attributes {a,

b) it can satisfy 3 queries , {b), (Padmanabhan). If the first matching exists then it

goes for the second phase, which involves the database of the resource provider.

Ludwig and Reyhani proposed DAML-S to describe grid services such as

authentication, authorization, job submission and applications (Ludwig and Reyhani

2005). In this case, each grid service will have the DAML-S's description

components, which are profile, model and grounding. All of the information related to

these components for each grid service is stored locally (service provider). As service

profiles contain the functional capabilities, the profiles are then federated and stored

in a registry for matchmaking with the service requesters. The authors extend the

work in(Ludwig and Reyhani 2006), and propose DAML language instead of DAML

S. For this, each grid service is treated as a DAML class and the request of a service is

also considered as DAML classes. The set of service classes from different sites

construct an ontology named grid service ontology. Likewise, the set of application

classes from different consumers create another ontology known as application

ontology. The query system is done through the similarity calculation between an

application class and service class using the DAML parser, which parses the grid

services ontology.

Groleau et al. proposed OWL-S for both resource description and request, where

each resource and request is presented as an OWL-S class through its elements, which

are profile, model and grounding (Groleau et al. 2007). The selection of a resource

takes place by a matchmaking process between the profiles of resource and the

resource request using Pellet OWL Reasoner44
.

Han and Berry assumed the availability of ontology to describe the resources in

each grid resource provider (Han and Berry 2008). However, this ontology should

fulfill the definition of (Gruber 1995), which is about ontology components (concepts,

44 http://www.mindswap.org/2003/pellet/index.shtml

65

I

relations, axioms), the hierarchy of concepts and the equivalence between concepts.

The query system is based on the calculation of semanti~ similarity between the
I

concepts. The similarity of concepts represents the degree of commonality between
I

concepts, which are the requested resource and the advertised resource. The similarity

function of (Andreasen et al. 2003) is used to perform the similarity degree

calculation, which can result a range of values between "0" ~d "1 ".

3.4.4 Semantic-Based Grid RD Systems' Registration

As we have mentioned, RD registration involves two aspects: registry architecture
I

and update mechanism. In this section we discuss semarttic-based RD systems'

registration components. Our discussion covers three kinds of RD systems: (i) RD

systems that use semantic information in their description and registration

components, (ii) RD systems that use semantic informatfon in their registration

components only, and (iii) RD systems that use semantic information in their

description only. Accordingly the registration components of the first two types ofRD
i

systems are called semantic registrations as semantic information is involved in both.

Meanwhile, the registration components of the last type of RD systems are called non

semantic registration as they do not involve semantic information. We further classify

each class based on registry architecture as shown in Figure 3.13.

Figure 3.13 The taxonomy of semantic-based RD systems registration

66

3.4.4.1 Semantic Registration

RD systems that use semantic registrations keep their resources and services metadata

into distributed sub-registries. The distribution of the sub-registry nodes is based on

some well defined concepts such as resource interest, geographical locations and

application type. In turn, resource and service queries are distributed to the sub

registries according to the defined concepts. Such systems sometimes use ontology to

drive concepts to build their registrations. Semantic registration models are further

classifieds architecturally into clustering and hierarchical.

• Clustering

In clustering architecture, nodes are classified according to some groups; each group

represents a well defined concept related to a type of applications or resources. Each

group will have a registry (sub-registry). The sub-registries are connected with each

other to construct a network in top of the groups.

Li and Vuong implemented a P2P architecture to construct the registry. Nodes are

grouped into some clusters according to their resource interests (Li and Vuong 2005).

Each cluster is a tree structure. Every node in the tree has a local resource summary as

well as aggregated summaries from the children nodes. Consequently, the top root

node will have the entire knowledge about the cluster. To share the resources among

the clusters, root nodes are connected with each other to form an overlay network on

top of the clusters. In addition to that, each root node may have some knowledge

about its neighboring root nodes. The update mechanism is through the propagation of

the update messages from the resource provider nodes to the root nodes.

Li and Vuong again proposed a semantic community-based P2P approach but, in

this time, the authors assume the availability of an otology in which domain interest

of the grid nodes is defined (Li and Vuong 2006). The domain interest is used to

categorize the nodes to communities (groups). The SkipNet P2P network is used to

organize the node communities. It has two overlay layers. The first contains all grid

nodes, in which nodes are organized in multi rings for each defined domain interest.

67

Each node has a numerical ID and name ID. Numerical ID ik obtained by hashing the

node IP address, and the name ID is obtained by concatenating node interest and its

identification. The second layer is the category overlay, which accommodates
'

representative nodes for the different domains. Therefore, each domain interest has

one node to represent it. When a node wants to join the system, it registers its interest

in the category overlay. The category overlay returns the ~ew node all the related

interest responsible nodes. The update mechanism is such th~t the system imposes on

each node to update timely its own resources information, and upon the domain

representative nodes to update the existence of the domain no~es.

• Hierarchical

In hierarchical registration model, the sub-registries are organized in hierarchical

manner which means that each semantic defined parent sub-registry accommodates
'

the related information of its child sub-registries. The work of (Kou et al. 2007) is

example of this model as it proposes a registration that is based on classifying the

nodes to some groups named Personalized Grid Information System (PGIS). Grid
I

resources are considered as services, and personalization is done on these services

through a rank model. The model ranks nodes into three ranks, which are resource

service (RS), virtual organization cluster point (VCP) and domain cluster point
I

(DCP). RS represents service providers, requesters or the base services with simple

operations. Services and users with similar characteristics are grouped, and the group

is treated as a virtual organization (VO), which provides a Cfntralized management.

This management includes metadata access, retrieval and storage. VCP is used to

describe the VO it represents and the sub-registry for the VO, which is in charge of

recording the information and characters of RSs in the corre~ponding VO autonomy

region (V AR) to provide uniform access to dynamic and static information. DCP

represents a domain registry, which is responsible for managing the information of all

VCPs registered in its domain autonomy region (DAR), ,query forwarding and

information accessing, retrieving and storing. The update mechanism is that, each RS

updates its VCP about the status in each period of time.

68

3.4.4.2 Non-semantic Registration

RD systems that use non-semantic registrations are those that do not involve semantic

information in their registration models. Such RD systems include those that use

semantic information in their description components and those that do not. However,

the latter systems we have already discussed them in the previous chapter a more

about the can be found some of the related work (Zanikolas and Sakellariou 2005) and

(Mastroianni et al. 2008). We classify the former systems based on their registries'

architectures, which are centralized and distributed models.

(A) (B)

Figure 3.14 (A) A centralized registry on top one hierarchical information

service; (B) centralized registry on top of two hierarchical information services

• Centralized

In centralized registration models, the semantic resources or services metadata of an

entire system is indexed under a centralized registry and users would send their

resource and service queries to that registry. It should be noted, centralization of

registration in semantic-based RD systems is different from the key-word based RD

systems as normally the earlier is built on top of the former, which itself can be

centralized or hierarchical. Figure 3.14 describes the centralizations of the semantic

based RD systems, where (A) represents a registry (node R) that is located on one

hierarchical grid information service, and (B) represents a registry (R) that is located

69

on top ofthe set of hierarchical grid information services. Most of the semantic-based

RD systems use one hierarchical grid information service (case (A)) as their

information sources. Systems such as (Pernas and Dantas 2005), (Somasundararn et

a!. 2006), (Ludwig and Reyhani 2005), (Ludwig and Reyharti 2006) and (Groleau et

a!. 2007) are included in this class. Meanwhile only one study in the literature uses

multi hierarchal grid information, which is (Xing eta!. 2010)!

• Distributed

Semantic-based RD systems that fall in this class use a flat P2P network as registry

architecture. In this case, each resource provider node registers its resources and

maintains their metadata in its own registry, and it may inform its neighboring nodes

about its resources. The work of (Han and Berry 2008) is an example of this class,

where each node has its own registry whereby it accepts the resource queries from the

other nodes and solves them. The node also provides a summary of its resource

information to its neighbors. As the registry is local, the update mechanism is done

directly on the registry from the resource sensors. In tum, the node updates its

neighbor about the changes.

3.4.5 Semantic-Based Grid RD Systems' Discovery

As we have described that RD system discovery includes search and selection of the
I

registered resources in the registry. In fact, is quit hard sometimes to differentiate

between the two sub-components as they may be independent or integrated as one

component. In This section, we discuss the search and selection in semantic-based
I

RD systems.

3.4.5.1 Search

Search initially depends on the registration architecture as it supposed to search the

resources that are registered in the registry(s). Therefore, the iAvolvement of semantic

information in registration has a clear impact on the search performances. However,

70

generally all but the discussed Semantic-based RD systems do not focus on the search

algorithm as they relay on the keyword-based RD systems search algorithm. The

latter as we have mentioned in the previous chapter that they implement or extend one

or more of the known Packet Propagation algorithms such as Unicast , Multicast ,

and Anycast. This implies that RD system such as (Ludwig and Reyhani 2005)

,(Pemas and Dantas 2005), (Somasundaram et al. 2006), (Said and Kojima 2009),

(Xing et al. 201 0), implement unicast search algorithm. Where, the query is sent

directly from resource requester node to a centralized registry. The work of (Kou et

al. 2007) implements both unicast and multicast in different levels. The system

initially has two types of registry which are cluster registry and domain registry, so

between the resource requester node and cluster registry a unicast is used. If the

cluster registry cannot solve the query, anther unicast will take place between the

cluster registry and domain registry. If again the domain registry cannot solve the

query a multicast will take place between the current domain registry and the other

domain registries.

Some RD systems extend the anycast algorithm, as the case of (Li and Vuong

2005), in which each node checks its local cache where it has some information about

its neighbors. If it cannot get an answer to its query, it will select one of its neighbors

and forwards the query. The query will be forwarded with this manner until an answer

is got or the TTL expires. In (Han and Berry 2008), the request node sends queries

based on the information exchange with its neighbors. Therefore, it sends to neighbor

that most likely may have the resources. The neighbor in tum forwards the query

using the same manner when it cannot solve the query until an answer is found.

3.4.5.2 Selection

Semantic based RD systems such as the one proposed by (Pemas and Dantas 2005),

(Said and Kojima 2009), (Xing et al. 2010), and (Kou et al. 2007) use manual

selection. On the other hand, studies such as (Ludwig and Reyhani 2005), (Ludwig

and Reyhani 2006) and (Groleau et al. 2007) use matchmaker (algorithm). The wok

of (Han and Berry 2008) also implement matchmaking but using agent as the agents

themselves are matchmakers. In such situation, the resource requester and the

71

resource provider are presented as agents. Each of them describes its capabilities.

Requester agent interacts with the provider, performs the matchmaking process. If the

capabilities of the provider meet the requirements, the requester agent selects that

provider. Lastly, the study of (Somasundaram et al. 2006) uses broker.

Table 3.1 Comparison summary of semantic-based Rrl systems description

Authir(s) Information Model Data Model

Pemas and Dantas 2005
One common ontology with a

OWL
project scope

Li and Vuong 2005
Each resource provider may have

RDF
its own ontology

Ludwig and Reyhani 2005
Each grid service provider uses its

DAML-S
own ontology

Li and Vuong 2006 Hash tables XML

Each grid service provider may
have it s own and the applications

Ludwig and Reyhani 2006
also have their own ontology, the

DAML
ontology will then construct to
ontologies, one for application and
another for services

I

Somasundaram eta!. 2006
One common ontology with a

OWL
project scope

Groleau et a!. 2007
Each grid resource provider uses

OWL-S
the OWL-S framework

Kou et a!. 2007 Extended UDDI XML

Han and Berry 2008
Each grid resource provider has its

Not defined
own ontology

One common ontology that is
Said and Kojima 2009 constructed by all the resource OWL

providers

One common ontology that is
Xing eta!. 2010 supported by information sources OWL

ontology and integration tools

72

3.5 Discussion and Comparison Summary

In this section, we present a qualitative comparison between the presented semantic

based RD systems. The comparison is based on the effectiveness of the systems with

regard to current the identified RD requirements which include interoperability,

scalability, decentralization, and dynamism. We discuss how these requirements are

met by the respective semantic-based RD systems. In fact, each requirement is related

to one or more RD components. For example, interoperability is related to

description, whereas scalability, decentralization and dynamism are related to

registration. Note that, this relation does not mean we can meet a requirement fully

through the performance of the corresponding component(s), rather, they may be

dependent upon each other in meeting the requirements. For example, it does not

make sense if we have scalable registration without an expressive description, then

there is no sense for the scalability. Table 3.1 and 3.2 illustrate a qualitative summary

of description and registration mechanisms of the discussed systems.

Table 3.2 Comparison summary of semantic-based RD systems registration

Pernas and Dantas 2005 Non-semantic centralized registry Timestamp

Li and Vuong 2005 Semantic clustering registers Timestamp

Ludwig and Reyhani 2005 Non-semantic, centralized registry Timestamp

Li and Vuong 2006 Semantic , clustering registers Timestamp

Ludwig and Reyhani 2006 Non-semantic centralized registry Timestamp

Somasundaram et a!. 2006 Non-semantic centralized registry Timestamp

Groleau et a!. 2007 Non-semantic centralized registry Not defined

Kou et a!. 2007 Semantic , Hierarchical registers Timestamp

Han and Berry 2008 Non-semantic, distributed registries Timestamp

Said and Kojima 2009 Non-semantic centralized registry Timestamp

Xing et a!. 20 I 0 Non-semantic centralized registry Timestamp

73

3.5.1 Interoperability

Interoperability entails a meaningful description for resources and services that can

cross the different middlewares, languages, and programming environments.

Meaningful description relies on well accepted ontology that is able to be extended
i

with the required time. Using common ontology seems to be more close to meeting

interoperability if it is able to provide two aspects. First, the common ontology should

be able to integrate all grid information services that may belong to different
'

middlewares; for example, the Globus MDS and gLite BDII or allow each participant

to describe its resources and services. Second, the defined concepts of the ontology

should be acceptable to all the parties (e.g. inspiring the concepts from the standard
!

recommendation provided by OGF45
• In fact, most of the semantic-based RD systems

that use common ontology integrate only resource information that comes from one

grid middleware information service. Initially, semantic teclufology is associated with

a high computational cost compared to key-word based models. Therefore, the trade

off of using semantic technology is to provide users with an easy view of the shared

resources and flexible resource/service query matching , which is supported by key

word approaches, rather than achieving interoperability. In su
1

ch situation, it would be

better to have a key-word based common information model between all participants

especially if the type of shared resources is dominated by the hardware resources.

However, the work of (Xing et al. 201 0) uses a common ontology that integrates more

than one grid information service that belong to different middleware. This study can

be considered as the most interoperable compared to other RD systems in this context.

On the other hand, we have some RD systems which use different ontologies.

They seem to be more flexible for management by local grid nodes as there is no need
I

to describe the resources in syntactic manner, and later they can be integrated into

semantic pool as the case of some that use common ontology systems such as (Xing et

al. 2010). However, they raise another issue, which is seman~ic interoperability or in

other words, how to ensure that two concepts from two different ontologies are

referring to the same resource that they represent. Therefore, using different

ontologies do not bring the system closer to achieving interoperability. In fact, there

45 Open Grid Forum http://www.ogf.org/

74

are some ontology tailoring mechanisms (Flahive et al. 2009) that work on a grid

environment for adopting an ontology from the existing ones. This may be used to

adopt existing common ontologies among the grid participants instead of having

different ontologies.

3.5.2 Scalability, Decentralization and Dynamism

Scalability, decentralization and dynamism requirement are much related to

registration than the other RD components. To fulfill them, there is a need for a

scalable decentralized dynamic registration component model on top of an

interoperable semantic description. Scalable decentralized dynamic registration

requires a well established distributed registry architecture that can provide both a low

latency during the discovery process, and a dynamic update mechanism that makes

metadata in the registry reliable.

Most of the semantic-based RD systems use centralized registration model as they

are initially built on top of the existing grid information services. Centralized

registration would be effective in small grids, but it may suffer in intergrid level due

to the large number of resources, services and users. Most of the centralized

registration models also use a time defined update mechanism, which causes high

traffic messages due to the dynamic nature of the grid in addition to the expected

traffic associated with centralization of the registry. Time defined update mechanism

would be effective in decentralized registry. Therefore, the work of (Xing et al. 201 0)

introduces on demand update mechanism which is indeed suitable for the centralized

registry.

On the other hand, we have other semantic-based RD systems that have

distributed registry architecture, most of which use semantic information to distribute

the sub-registries across the network, while few do not. When semantic information is

used to distribute the sub-registries, the resource request will be pointed only to the

most reliable sub-registry, and failure of a sub-registry may not affect the whole grid

system. In addition to that, the management of the resource information in terms of

update and query processing will be much easier. This idea is promising for achieving

75

I

scalability, decentralization, and dynamism compared to the canalized registry.

However, there are some factors that need to be taken into consideration such as,

providing a systematic distribution to ensure some balance in both, the number of

resources and the type of resources that are assigned to each sub-registry. Apart from

that, the description of sub-registry concepts should be expressive. These factors have
I

not been considered by most of the semantic RD semantic registrations that we have

reviewed here.

It would be very difficult for semantic-based RD system that use non-semantic,
I

distributed registration to have scalability as the resource r~quest will be forwarded

from node to node, and controlled by some mechanism S!fch as TTL, which may

cause low precision. They may be effective in small grids as they have low cost in

their update mechanism since each node updates only its neighbors at far.

All in all, the main issue in semantic-based RD systems is that each work focuses

either on the description or registration. This means a system may meet only one or

two of the RD requirements. Therefore, most of the discusst:;d studies have not been
'

able to provide interoperability, scalability, decentralization and dynamism at one

time to fulfill the intergrid level requirements. The reason behind that maybe from the

ad-hoc nature of the studies and/or the ultimate aim of each pioject. Hence, in order to

have an RD system that meets the defined requirements, research communities should

work in how to synthesize the good features of the discussed ~tudies. For example, the

expressive description of (Xing et a!. 201 0) with centralized registration may benefit

from the idea of the semantic distributed registration model of Li and Vuong (Li and
I

Vuong 2005). Another aspect we urge to be considered is that, the scope of

description and discovery should be extended to services as most of the discussed

systems are restricted to hardware resources. In fact, this is very vital in the current

intergrid level systems, in which we need to discover not only resources but also

services such as job management and security. Furthermore, it is also to make the

current developed grid applications (e.g. medical imaging) more reusable. They may

be treated as services; therewith they can be described and discovered.

Another issue with the current semantic-based RD systems but is related to the

semantic technology itself, is the high computation cost. Semantic technology has

76

been initially used in web service applications which are dominated by sharing

services (e.g. online reservation), however it is not the case in grid systems. Grids are

dominated by hardware resources, and for this reason the leading grid middleware

Globus does not involve semantic technology. Therefore, full use of semantic

technology in the grid is not worthy compared to the web services applications. One

way to overcome this issue, is to have semantic data models that can support both

key-word based and semantic matching. For example, CPUs and memory resources

can be described and discovered syntactically, while Clustering Algorithms for

dataset may be described and discovered semantically.

3.6 Semantic-Based RD Systems and Emerging Grids and Clouds

In the most recent years, there has been a wide agreement that the current grids have

not been able to deliver the promise of better applications and usage scenarios (Jha et

a!. 2009). This may be mainly due to high programming details when a user wants to

describe, discover or use the resources and services. Several ongoing research projects

have focussed on overcoming this matter. Some of them focus on how to provide

virtualization to the grid systems in a way that the complexity can be wholly hidden

from the user. These include the emergence of meta-brokers (Kertesz and Kacsuk

2010) and (Ivan et a!. 2010), new type of grids that focus on pervasiveness and the

ability to self-manage which are known as Emerging Grids(Kurdi et al. 2008), and a

new area called Cloud Computing (Buyya et al. 2009). For this, we describe some of

the application opportunities of the semantic-based RD systems on these new systems

as well as the potentials of these systems to achieve their goals through the use of

semantic information.

Since meta-broker schedules the user tasks to sub-brokers in intergrid level. A key

issue here is to discover the capabilities of the brokers or the other peer meta-brokers

(in case of P2P meta-brokers). Therefore, using the semantic technology to describe

and discover these meta-brokers and brokers may help to automate the task

scheduling process, which is what the meta-broker looks for.

77

Emerging grids that are looking for pervasiveness, suqh as ad hoc, mobile and

wireless grids, may not have worthy use of semantic RD system, as their devices are

associated with low energy. Meanwhile those looking for manageability such as

autonomic grids may benefit from the use of semantic RD systems, as they can detect

suitable services for self-composition, which in turn can provide self- manageability.

Although, there is no standard definition for cloud t~chnology, there is wide

acceptance of cloud feature that computing resources (e.g. CPUs and storage) are

provided as services (Zhang et al. 201 0). In fact, an obvious question here is how to

move the current grid infrastructures to the cloud technology. One way to do that is to

treat each grid (e.g. for organization) as a service. This means we will not deal with

neither a single resource capabilities description nor how, to program, and use it

through its middleware. Rather, we just need to describe abstract information of the

overall system that can show what the system is able to provide. This information can
i

then be federated into registries. Thereafter, we can discover these service grids and

invoke them. Of course in this situation, the description is not only limited to

functional capabilities but also the pre-conditions and post-conditions for invocation

as in the case of web services. The use of semantic RD systetps in this situation, when

it exists, will allow for service grids to be described and discovered for applications.

3.7 Related Work

Several works have been conducted with regard to grid RD systems' taxonomies and

surveys. In this section, we describe such works.

3.7.1 A Taxonomy of Grid Monitoring Systems

The work of (Zanikolas and Sakellariou 2005) introduces ~ broad taxonomy to the

grid monitoring systems (GMS). The aim is to provide an advanced understanding of

GMS. For this, the work classifies GMSs based on the mapping of Grid Monitoring

Architecture (GMA) components (Producer, Directory Service (Registry), Consumer,

and Republisher) that have been presented by (Tierney et al. 2002) to the grid

78

monitoring phases (GMP). GMP includes generation of metadata, processing

metadata, distribution of metadata, and presentation/computation of the metadata.

This mapping produces four phases, which are then leveled from zero to three, and the

proposed GMSs are classified according to the levels that they fall into (see table 3.4

the summary the classified studies).

Although, the taxonomy classifies the GMSs with respect to their compliance to

the core GMA components: main target of monitored entities, and the dependency to

each other, it does not discuss the issues that are related to metadata modeling,

selection process, and management of the overall GMS.

Table 3.3 A summary of the grid monitoring systems with their levels

MapCenter
(Bonnassieux et al.
2002).

Grid!CE (Andreozzi
et al. 2005).

CODE (Smith 2002).

GridRM (Baker and Smith 2003).

Hawkeye46
•

HBM (Stelling et al. 1999). Ganglia (Massie et al. 2004).
JAMM (Tierney et al. 2001).

Globus MDS (Foster and
Mercury (Balaton and Gombas Kesselman 1997).

Autopilot (Ribler 2004). MonALISA (Newman et al.
et al. 1998)

NetLooger (Tierney and Gunter 2003).
2003).

NWS (Wolski et al. 1999).

OCM-G (Balis et al. 2004).

Remos (Dinda et al. 200 I)

SCALEA-G (Truong and Fahringer
2004)

Paradyn (Miller et al. 1995).

RGMA (Cooke et al. 2003).

3.7.2 Peer-to-Peer RD in Grids

The work of (Trunfioa et a!. 2007) reviews the grid RD systems that adopt peer-to

peer RD models and protocols in their building blocks. It presents qualitative

comparison of the existing approaches, describes their advantages and disadvantages,

46 http://www.cs.wisc.edu/condor/hawkeye/

79

and finally discusses the future research directions of grid 'RD systems. Initially, P2P

based grid RD systems are classified into two groups which are: RDs based on

unstructured P2P and RDs based on structured P2P systems. Both of the classes are

qualitatively compared. Based on these comparisons the study concludes that, grid

RD systems based on structured P2P perform better than unstructured systems but

associated with high cost of network maintenance. The ~ork also discusses briefly

grid RD systems that are based on semantic information (see table 3.5 is the summary

of the discussed systems). This includes the potential of semantic technology in this

filed, the current efforts on building semantic information and P2P based Grid RD

systems. The work finally raises the need for studies to discuss and compare the

growing grid RD based on semantic information approaches. In response to this need,

this chapter mainly focused on the RD systems based on semantic information.

Table 3.4 A summary of the P2P and semantic information based grid RD

studies

(Iamnitchi and Foster 2004);

(Talia and Trunfio 2005);

(Mastroianni et a!. 2005);

(Puppin et a!. 2005);

and (Marzolla and Mordacchini
2005).

MAAN (Cai eta!. 2003);

(Andrzejak and Xu 2002);

SWORD (Oppenheimer
2004);

XenoSearch (Spence and Harris
2003);

Mercury (Bharambe eta!. 2004);

(Schmidt and Parashar 2003); and
(Ratnasamy eta!. 2003)

3.7.3 Peer-to-Peer Based RD in Global Grids

(Li and Vuong 2005)
and

(Kashani et a!. 2004).

Another study on P2P based grid RD systems has been conducted recently by (Ranjan

et al. 2008). The work has focused mainly on structured P2P! systems (e.g. distributed

hash tables) and how they can be extended to indexing d-dimensional grid resource

queries. Towards the end, the authors classify P2P SiYStems based on their

80

supportiveness to d-dimensional query routing, review the existing work that can

support d-dimensional grid resource queries, and classify the reviewed approaches

based on the proposed P2P classification. The use of semantic information is out of

the scope of the paper.

3.7.4 Summary

The recent years have seen a convergence between grid and semantic technology. The

most concerned grid part in this convergence is the RD system. Thus, we reviewed the

current RD systems that use semantic technology as information and data models for

their Resource description or other aspects. First, we discussed both grid RD system

and the semantic technology. We then presented a taxonomy for the RD systems,

which is based on how they integrate the semantic technology. We then compared

and analyzed these systems in terms of how they fulfill the grid RD requirements. We

highlighted the pros and cons of each system, and what the research community in

this field should be focusing on in the future. We believe this chapter can be

profitably used by grid and cloud resource discovery designers, and developers as it

provides some hints on how to select an appropriate semantic-based RD system.

81

CHAPTER4

SEMANTIC-BASED RESOURCE DESCRIPTION MODEL

4.1 Introduction

This chapter presents the proposed RD semantic descriptiqn model for the intergrid

system. This appears to be essential in the RD syste~ as it is related to the

representation of the services and resources for the discovery process. For this, the
1

chapter starts by identifying the methodology and the key components of the model

that represent the foundation, which forms the basis for building the model. The

foundation components include some set of definitions that are related to intergrid

system modeling, the resources and services representation and the resource/service

request formulation. The chapter then gives an explanatidn of the building block,

which is about the assembly of the identified foundation components to form the new

model, the available data models and tools for editing and exporting the semantic

information that can be implemented in the model compdnents, and collaboration

method between the components. The chapter, thereafter, depicts the process for the

construction of resources and services metadata, and the, request formulation of

resource/services based on the new model. Finally, the chapter presents an evaluation

of the model as to how the model meets the interoperability feature, and its suitability

to the intergrid system.

In short, the main contributions of this chapter can be summarized as follows:

• A proposal for a new architecture for the intergrid system: based on the refinement

of the latest grid system standard requirements.

• A proposal for a novel semantic representation mechanism for the resources and

services ofthe refined intergrid system.

82

• A demonstration on the applicability of the semantic representation mechanism

with the current grid information services without posing an overhead on the

serv1ces.

4.2 Methodology

As we have described in the previous chapters, the use of semantic information on RD

system description is one of the solutions to the existing problem of metadata

heterogeneity at the intergrid level. However, the problem here is how to use a proper

semantic technology mechanism that is useful to intergrid systems, due to high

computational cost of the semantic technology. One way of addressing that is by

using the semantic description only when it is needed. The second issue is the

interaction between the end user and RD system in discovering the resources and

services. In addressing this issue, we have identified some of the facts in the current

grid technology that would be vital for improving the designing of a semantic-based

RD system for intergrid system. This is based on our experience· with the grid

technology. We use the identified facts to refine the idea of the intetgrid system in

such a way that makes full use of the resources and services when the semantic

technology is applied. The refinement of the intergrid is based merely on the latest

standard grid system requirements. The problem of information heterogeneity is

addressed by introducing ontology as an information model for the refined intergrid

system. We use one common ontology that is able to formally represent the intergrid

components. It should be noted here that we build neither the intergrid domain

ontology nor the tools of the information manipulation, as they are out of the scope of

the present work. Instead, we define some set of definitions that formalize the

essential requirements and guidelines that can be followed to build the respective

ontology, and for selecting the information manipulation tools. To address the issue of

abstraction, we introduce the semantic query formulation by treating every application

as a goal, which can be formally described and made reusable. We illustrate the

standard ontology languages and the editing tools for the model implementation to

ensure the applicability of the model. The model is evaluated qualitativ~ly by

83

examining how the model meets interoperability as it is the requirement that is very
I

much related to the description component in the RD system.

4.3 Foundation of the Semantic Description Model

I

A description model for an RD system should be based on a deep consideration of

everything related to the RD system, either directly or indirectly. This is to ensure that

the system can effectively work with related entities in the e~tire system. To that end,

we present some observations from our experience with the grid technology, which

could be useful for consideration in our new description model.

First, existing grid systems are associated with many redundant developed

applications. For example, a grid user may develop a parallel clustering algorithm to

cluster some datasets. In this case, the required resources are CPUs and memories,

where the clustering will take place, and the dataset. If the dataset is not available in
I

his/her side, there is nothing to do with finding clustering algorithm. It may happen

that another user from a different grid level system wants to do the same clustering
'

application, which requires the development of the application from the beginning

since the clustering algorithm is not sharable. Obviously, this is an application

redundancy, which wastes time and efforts. In contrast, if there is a mechanism that

allows the reuse of such applications at the intergrid level: the redundancy can be

overcome.

Secondly, most of the existing grid projects have been focused on a particular type

of grid based on the nature of the emphasized perspective, which we have mentioned

in chapter two. For example, data grid project where consJmers can access pooled

data and store their data into distributed storage. Normally, such systems provide

some tools for easy access and hide the complexity from tAeir users, and so on. In

addition to that, these kinds of systems work fine at their scope level. A need for

resources may rise in these systems only in two situations. First, when they need the

same type of resources, but beyond their scope. For example, a bioinformatics

research center has data grid that provides bioinformatics data only; then one of the

user wants to access some medical imaging data which is a data resource but out of

84

the scope of that bioinformatics data grid. The second situation is when the need of

resources is out of the focus of the current grid. Back to the bioinformatics data grid

project as an example, for instance a user wants to run a large application that requires

a huge amount of computing power but it is not supported by the current

bioinformatics data grid system.

Third, the current intergrid level architecture that is supported by broker and

meta-broker are mainly focused on computing resources and data resources. For

example, in the case of broker, the broker is provided with the information about the

computing/data resources of different level grid nodes, and the broker will have the

ability to assign the jobs to these resources. In the case of meta-broker, the meta

broker is provided with information about the brokers and the meta-broker then

assigns the task based on their capabilities. In either situations, grid level systems are

provided with the facility of having computing/data resources beyond their scope, or

those with computing resources can access data resources and vice versa. However,

the sharing of resources beyond the computing and data resource is not supported.

This implies that the redundancy of the developed applications still exists.

From these observations, it is obvious that there is a need to share resources

beyond computing and data resources such as application software, but the current

architecture does not support that entirely. Therefore, a solution is needed to make the

intergrid level system able to share beyond these resources. In the next subsection,

we will refine the idea of the intergrid level in order to make the sharing of resources

possible beyond the current implementation.

4.3.1 Intergrid Services

We merely rely on the latest grid system requirements that have been presented by the

OGF47 (Subramaniam et al. 2009) in defining the grid level and intergrid level. As a

result, we treat grid level system as a service grid that is provided by a provider to

consumers, and this service grid is assumed to be among the grid types (e.g.

47 Open Grid Forum: http://www.ogf.org/

85

I

computing, data and application) that we have emphasized in chapter two. For this,

the three new terms (service grid, provider and consumer) are formally defined as

follows:

Definition 4.1: A service grid is a software/set of softwares that abstracts the entire

grid level system and provides some functionality that is based on the focus of the

system such as data, application service, interaction, knowledge, and utility to

consumers.

Definition 4;2: A provider is an entity who provides service grid to consumers. A

provider may provide one or more service grids such as! data service, application

service, interaction service, knowledge service, and utility service.

Definition 4.3: A consumer is an entity who makes use of one or more of the service

grids upon some agreement with the providers.

I

Definition 4.4: An intergrid level system is a collection of service grids that have

agreed to work cooperatively as consumers and providers. Consequently, a service

grid may be a consumer as well as a provider. It becomes a consumer when it uses

other service grids without providing any service to them, whereas it functions as a

consumer/provider when other services are added to its own and at the same time it

also provides a complete service to the end user (see Figure ~.1).

Initially, intergrid level systems are distinguished by the 11se of multi-middlewares

in their grid level systems. The above definitions ensure that the use of multi

middleware still exists. Thereupon, each service grid has its own local information

service that describes its internal components, which incorporate both resources and

services. The local information service contents represent the overall capabilities of a

given service grid. In the rest of this thesis, we mainly replace the term "resource and

service" with "service grid" since we treat the grid level' system as service grid.

However, this does not affect the overall system name which is resource discovery
I

system (RD). We also mainly replace the "intergrid level" system with "intergrid

service" to be consistent with definition 4.4.

86

, , , , , ,
Provider/ . .·

Consumer/ End user

' ' ' ' ' ' ' ' ' I
I J
I I
I I

;.~~~ I 0 I
' ,
0 I ' , ' , ' , ' , ' ,

\ Consumer I /
'•, Provider •• ',, ___ ,

............. -·

Figure 4.1 The relationship between providers and consumers at intergrid level

In order for service grids to exchange their services with each other, they need a

description mechanism that will allow them to reveal their capabilities for discovery.

This description must be based on information model that is able to represent service

grids, their properties and the inter-relationship between the service grids, and a data

model that is acceptable to every service grid. The normal way to have such a

description mechanism is to integrate all internal local information services of the

service grids into a common metadata pool, which is based on a common information

and data model. This is quite costly as we need space in the metadata pool(s) that may

be as much as the sum of the spaces of each service grid level in local metadata space.

Therefore, we introduce a new scenario for integrating the information services by

aggregating the local metadata content and then integrating them into a common

information model.

87

4.3.2 Service Grid Information Aggregation Mechanism

Each service grid uses any other service grid only when .it needs services that are

either of the ;same type of its service, or service(s) that is different from its service.

The internal management services (e.g. scheduling), that are provided by the

middleware of each service grid, is strong enough to get service request and provides

the service as it does with its local end users. For that reason, the only information

needed here is the one that tells the capabilities of a given service grid so that we can

invoke it through its defined invocation method. Accordingly, the entire internal

information of each service grid components has no importance to be integrated and

known.

Capabilities of service grid can be either quantitative or qualitative. Quantitative

capabilities are the features of service components that can qe measured; for example,

the number of computing elements in computing service grid. Further, the quantitative

capabilities can either be dynamic or static. Static capabilities are those that stay for a

period of time unless the service components have been changed (e.g. the maximum

number of CPUs), whereas dynamic quantitative capabilities are those that change

from time to time due to local usage circumstances (e.g. the actual load of the CPUs at

a given time). Qualitative capabilities is related to features of the service components

that can make the component identifiable in terms of what it offers, for example a

domain name of a given data, and the type of events that a given simulation tool can

support.

Our aggregation scenario here is to sum up the static quantitative capabilities of

the service components to maximum and minimum, and thtr dynamic capabilities to

the total of the current status. Meanwhile, qualitative capabilities can be abstracted

from the most important feature that is important to differentiate the overall service

from the others. For instance, operating system, scheduling mechanism, CPU model,

CPU vendor of a service grid can be abstracted from the name of the service

middleware.

Definition 4.5 Let SG be a service grid, R, S be the sets of the local resources

(hardware or software) and services respectively, hence, ri E R, s1 E S. Let c denotes

88

capabilities of a given ri or sj. The overall capability of the service grid C59 can be

represented as:

Where CR , Cs are the aggregation and abstraction of Cr, and C5 •

4.3.3 Service Grid Information Representation

The service grid metadata aggregation mechanism assists us to highlight the

capabilities of the service grids. To formalize these capabilities and make it reusable

for every appearing service grid, there is a need for information model. In fact, we

have discussed in the previous chapter that using common ontology is much closer

toward achieving interoperability compared to using different ontologies. Therefore,

we introduce the use of common ontology that can be used as an intergrid service

grids information model. We call this ontology as service grid domain ontology.

Service grid domain ontology defines all the service grid types, the attributes that are

needed for each service grid, the relationships between all the services, the structure

of the values of each attributes and so on.

Figure 4.2 shows a fragment of example of service grid domain ontology. The

rounded rectangles represent the concepts and the arrows represent the relation

(subclass of) between the concepts. The dashed arrows denote the continuation of the

subconcepts and their relations. The super concept is the intergrid system. The

intergrid system treats every grid level system as service, hence the subconcept of

intergrid is service. The subconcepts of service are the six grid types (computing,

data, application, interaction, knowledge, and utility) based on the current grid

technology. The subconcepts and properties under each of the six services concepts

represent the detailed subservices of each service concept. For example, a file system

is the property of data concept and data is service grid. File can also be a concept for

other properties. Based on the above details, we can formally define our ontology as

follows:

89

Definition 4.6 Let SGo denotes service grid domain ontology. Then SGo consists of

three entities: set of concepts (C), properties (P), and r(dationship between those

concepts (R).

:. SGo = {C, R, P} (4.2)

I

Where C is the set of service grid concepts, P is the set of properties for the concepts,

and R is the relations between the service grids which ~an produce the concept

hierarchy.

~- ---

Figure 4.2 Fragment of service grid domain ontology
I

-..

/I ' ' .. '•

In order to ensure that SGo can effectively serve as information model for service

grids, it must meet two requirements, which are completeness, and expressiveness.

Definition 4.7. SGo must be Complete and Expressive. Complete means all the given

intergrid services are covered. Meanwhile, expressive refer~ to the situation where

SGo is semantically perfect with no ambiguity on its terms and notations of the

services. This indicates that SGo is accepted not based on its interconnectivity, but on

the meaning of the contents.

90

Once definition 4.7 is met we can have the following definition regarding the

concepts relations.

Definition 4.8 Let ci and cj be sets of concepts within SGo, where ci E ci and

Cj E cj ' thus ci 'cj E SGo ' 8 be a denotation that is given to a concept c ' p

denotes ci and cj that are synonyms, and p be the set of properties of a given

concept, either Ci or Cj.

This means that two different concepts (ci, cj) are semantically equivalent only when

they have the same denotation names, are synonyms or their properties are same.

Definition 4.9 Let ci and cj be sets of concepts within SGo, where ci E ci and

Cj E cj 'thus ci ,Cj E SGo.

(4.4)

This means that two sets of concepts (Ci, Cj) are semantically equivalent when there

are at least two subconcepts that are approximately equivalent.

Definition 4.10 Let ci and cj be different concepts within 560 , and p be the property

set of a given concept ci or cj.

This means that the two concepts (ci, cj) are semantically inclusive when there is at

least one property set of a concept that is a subset of property set of another concept,

OR when there is at least one property set of concept that is a superset of property set

of another concept.

Definition 4.11 Let ci and cj be sets of concepts within SGo, where ci E ci and

Cj E cj 'thus ci ,Cj E SGO·

91

I

This means that the two sets of concepts (Ci, Cj) are semantitally inclusive when there
!

is at least one subconcept of a set of concepts that is a subset of the subconcept of
I

another set of concepts, OR when there is at least one subconcept of a set of concepts

that is a superset of the subconcept of another set of concepts.
!

4.3.4 Service Grid Request Formulation

I

As we have described above that a mechanism to reduce the user interaction with

programming details in using the grid technology is highly needed. From the RD

perspective, it would be more useful to reduce the user interaction with the RD system

in building the service grid requests. For this, we introdube a kind of mechanism

which is called Goal-based Service Grid Request Description (GSGR). A goal is

"something you want to do successfully in the future" according to the Cambridge

dictionary48
. In the context of the service grids here, a gdal is referring to what a

given consumer/end user wants to achieve by using the service grids. For example, if

a user wants to simulate the weather condition of the earth so the simulation is his/her

goal. Obviously, a goal requires a set of the grid services in order to be accomplished.

For example, the simulation of weather condition of the earth requires computing
'

service grid, satellite images data and temperature dataset which can be under the data

service grid and so on. To accurately describe goals we define some of the
I

requirements that should be considered in the definition of goal:

• Goals should describe the required service grids as clear a's possible so that service

grids can be reasoned.

• Goals must have two parts, which are information model (schema) and the

instance of the schema. The former is a generic goal I format that describes a

general class of service grids, whereas the latter is instantiated from the goal

format with its concrete information.

48 http://dictionaries.cambridge.org

92

- -- -- -...

Figure 4.3 The extraction of application goals from the service grid domain

ontology

In brief, goals should be expressive, allow less human intervention and provide

format and instances. The service grid domain ontology, among other concepts of

application service grid, includes all software applications that are available on the

intergrid level system. In fact, these applications represent the goals that a user may

want to achieve because application service grids are the only services that need one

or more service grids to work on, as they cannot stand alone. A goal that is not

covered in a given service grid domain ontology may be added into the service

application concepts. Thus, we can extract the goals from the service grid domain

ontology. However, this needs a definition of a clear relation between the concepts of

the application service grids and the concepts of the other service grids. For this, we

introduce a relation so called "use" between the application service concepts and the

other service grid concepts. The "use" relation is a binary relation between a

particular application service concept and another service grid (e.g. data service).

Denoting this application service requires the second service grid with which the

93

relation is established. Therefore, we can formally define the goals as follows:

I

Definition 4.12 Let G = (V, E) be a graph, then V = {v1 , v2 , •.• , vi, ... , Vn }, E =
{ev e2 , ••• , ei, ... , ex}, where V represents the set of nodes and E the set of

connections between the nodes. We can treat our service grid domain ontology as

graph SGo = (C,R) where C = {c1 ,c2 , ••.• ,ci, ... ,cn} as1the set of concepts and

R = {r1 , r2 , ••.. , ri, ... , rx} as the relations between the concepts. Let U =

{ u1 , , ui , ... , Un} be a set of the "use" relation between the concepts U E R and <p

denotes a concept c as the goal.

This means that a concept is a goal if there is at least one "use" relation between two

concepts.

Based on definition 4.12, we can derive the overall g9als with their respective

required service grids in a given service grid domain ontology. We call the overall set

of goals with their required service grids as the Goal Template Matrix.

Definition 4.13 Let A= [a1 ,a2, ••. ,ai, ... ax]be a set of goals in SGo = (C,R),

where A E C and A = C - A = {il1 , a2 , •.• , ai, ... ad represents the set of concepts

that are not goals. Let w denotes the Goal Template Mattix. Using the adjacency

matrix of the graph then:

(4.8)

Where the elements of w, aiai E [0, 1], aiai = 1, when a goal ai requires aj service

grid and 0 if otherwise.

Figure 4.3 illustrates the use relation between a simulation tool application service
I

and three other service concepts, namely storage, compute (computing power), and

files. The arrows represent the use relationship. Simulation tool is a descendent

concept of the application service grid and the other services
1
are descendents of their

respective super concepts. In fact, any simulation tool reqmres a data entry, a

94

computing platform, and storage to store the result, and probably analysis software to

study the results. Therefore, this relation can be extracted to describe the goal format

of simulation. However, the simulation goal format at this stage is too general, so

during the service request process the format will be instantiated with concrete values.

4.3.5 Service Grid Information Manipulation

As soon as service grids are semantically described in the ontology, their request can

be formulated through the goals. There is a need for a method that is able to process

the semantic information when a concrete goal instance is introduced against the

available service grid information. The method is known as similarity function.

Several similarity functions have been proposed (Resnik 1999) and (Rodr et al. 2003)

and embedded in the ontology query languages, but for the purpose of giving an

insight into the idea of similarity in the ontology in the context of this thesis, we

formally define the similarity function as follows:

Definition 4.14 A similarity function is a real valued function that computes the

similarity degree between two concepts based on their properties.

sim (a, b): C XC~ [0 -1] (4.9)

Where a and b are concepts, the value sim (a, b) ranges between 0 and 1;

sim (a, b)= 1 means that they have exactly the same properties; sim (a, b)= 0

means that there are no common properties between the concepts. We compute the

similarity using the Dice distance fraction as follows:

. 2ia n hi
Stm(a,b) = iai + lbl (4.10)

Where (a n b) is the set of common properties of the concepts, and I a I + I b I is the

sum of property sizes of the two concepts.

It should be noted that in the rest of the thesis, we use the

term"Sim(vriable1 , vriable2)"to refer to equation 4.10.

95

Semantic Description Manager

Browsing , Querying,
Instantiation, Registration &

Update

Service Grid Metadata Provider

Figure 4.4 The description of model building block

4.4 The Description of Model Building Block

Having described the fundamental components of the description model, in this

section we illustrate the building block of the description mpdel. Figure 4.4 shows

the components of the model and their related subcomponents. The model is initially

composed of· Semantic Description Manager (SDM) and Service Grid Metadata

Provider (SGMP). SDM generally is responsible for the global service grid

description in the intergrid system, and a pool that can be u~ed to accommodate the

service grid metadata coming from SGMPs. Meanwhile, SGMP is responsible for

managing local service grid metadata that belongs to a service grid provider. The
'

reason for having the SDM and SGMP in such architecture is that, SDM will provide

96

all the needed information and data model management for a set of intergrid

members. Therefore, interoperability can be ensured. In the meantime, SGMP

provides autonomy for each service grid member as it concerns about the local

information of the service grid.

4.4.1 Semantic Description Manager (SDM)

SDM consists of Service Grid Ontology, Goal Template Pool and Semantic Metadata

Repository. Service Grid Ontology is where the service grid domain ontology is

accommodated. SGO is supposed to provide browsing and querying tools for viewing

contents of the ontology. SGO should allow the addition of new concepts, properties

and relations to the ontology in order to provide adaptability with time change. The

reason behind having the service grid ontology in such position is for easy

maintenance of ontology, without involving all the participants in the intergrid system

since there may be only some dedicated nodes that are responsible for this

management. SGO can be implemented by using some of the available tools, which

provide the functionalities that SGO looks for. First, these tools include ontology

language to encode the ontology and browsing, and the second is an extraction and

manipulation tool. The Web Ontology Language49 (OWL) can be used as an ontology

language for service grid ontology since OWL is the standard that has been

recommended by W3C 50 for semantic web, and is suitable for semantic data storing.

Protege51 is an ontology editing, browsing and exporting tool, which is very relevant

to SGO.

Goal Template Pool (GTP) stores the application services with their required

services in terms of goals. This is done by extracting the information from the

application services and the other services that have the "use" relations between them

(the goal template matrix). GTP should provide a browsing and instantiation

functions, so that the consumers can understand the available templates and get

instances of these templates for use in their query formulation. In addition to that, goal

49 http://www.w3.org/TR/owl-features/
50 http://www. w3 .orgl
51 http://protege.stanford.edu/

97

template pool is updated timely when there are new concepts or relations added to the

service grid domain ontology. The reason for separating the goals from the SGO is

that we will have two kinds of interests among the participants of the intergrid system,
I

which are the provider and the consumer. Providers are very interested on knowing

how to describe their services, whereas the consumers are yery concerned on how to

prepare a proper service request. For that, the consumers do not need to know about

the other services concepts or navigate the whole service grid domain ontology.

Semantic Metadata Pool contains the actual semantic information about a given
I

set of service grids. The information is based on the service grid domain ontology. In

such situation, the service grid domain ontology is populated with some actual values

of the semantic service grids and stored in a repository that belongs to the semantic

metadata pool. Semantic metadata pool provides a query 'tool to solve queries or

requests that come to the semantic metadata pool. It also accepts registration of the
I

service grid metadata providers according to prior agreements. The Sesame52 open

source framework for storage, inferencing and querying of RDF data is a very useful

tool to be used in the semantic metadata pool.

In order to support decentralization in the registry, we may have a set of semantic
I

description managers that can work in a distributed manner. Where each SDM can be

responsible for managing some parts of the service grid domain ontology and some

set of service grid metadata providers. When there is an update in the service grid

domain ontology, the SDMs can notify each other about the update.

4.4.2 Servic~ Grid Metadata Provider (SGMP)

' SGMP consists of local information service and service grid information. Local

information service is the actual information service that are embedded in any given

grid middleware such as the Globus Monitoring and Discovery Service53
, which are

supposed to manage the service grid internal information, initially. Local information

service also interacts with SDM to get the necessary service grid attributes/properties
'

52 http://www.openrdf.org/
53 http://www.globus.org/toolkit/mds/

98

from the service grid ontology, and creates a service grid information file that has the

actual values of the service grid attributes of a given provider. Upon that, the local

information service registers its service grid into the SMR in SDM, and keeps a link

between the service grid information file and semantic service grid information in the

SMR. An obvious question here is the type of data model that belongs to the service

grid information file. It is possible to have a semantic file for service grid information

same as the SDM with values of the service grid information of different properties.

However, we do not have many elements in the service grid information that should

be represented in a subontology in the service grid information file. Therefore, a

normal XML file that is based on the XML schema can be used to accommodate the

service grid information. Once the description of the service grid information in an

XML file is done, we need to ensure that communication between the SMR and the

XML file in terms of data exchange can take place. The data exchange includes the

registration of service grid information and the service query that may come from

SMR. Thus, we need a tool that has the ability to wrap the XML information to the

semantic information in the SMR during the registration, and to wrap the semantic

query to XML query during a service request. The SA WSDL model (Jacek et al.

2007) that we have discussed in chapter 3 provides such facilities. SA WSDL has, in

its schema mapping component, two attributes for attaching schema mappings:

• sawsdl: liftingSchemaMapping, and

• sawsdl: loweringSchemaMapping.

Lifting mappings transforms XML data into a semantic model, and lowering

mappings transforms data from a semantic model into an XML message. The

implementation of the SA WSDL in our model is illustrated in Figure 4.5. The SMR

leaves the XML data containing the service grid information, in order to be stored as

semantic information. SMR lowers the semantic request into an XML format when

there is a request for the service grid information.

99

~~- ~ ~ -SGMP- ~-,I (~ - - SDM - - - \

! I
I I I I
I I I ~-Lowerin~~

I
I
I

I
I
I

\•. ·•······· '-- - ·-- - ---- -- ··- -)

Figure 4.5 The data exchange between the service grid information and the

semantic metadata repository

4.5 The Description Process

The description process includes the description of a service that will be advertised,

and the service request formulation. The steps of the first case are as follows:

• The user invokes the Service Metadata Provider system. '

• The user browses/queries the service grid ontology through which all the available
I

content of the ontology can be manipulated (e.g. using add and drag menu), and

selects the concept that is relevant to his/her service grids.

I

• The user gets an instance of the selected service grid con<;:ept, which is in the form

of XML elements that is based on XML schema, using the service grid ontology

tools.

• The user can adjust the XML file in a way that incorporates all of the most
I

needed attributes with which the service can be described, and populates the file

with the actual service grid information, which is an aggregated summary of the

overall service grid information.

• Finally, the user sends the service grids information to the respective SMR of the

SDM node that is responsible of holding the metadata of the current service

provider, apd in turn, the SMR stores the semantic inforillation about the service

grid for the discovery process.

100

Meanwhile for the service request formulation:

• The user invokes the Semantic Description Manager system.

• The user browses/queries the available goals in the goal template manager, and

selects the relevant goal.

• The user then gets an instance of the selected goal and adds it to his/her local

information system.

• Since each goal requires one or a set of service grids, the user adds the concrete

values of attributes of each service. For example, if among the required service is

computing service, and one of the attributes of the service is maximum number of

computing nodes, the user may add a concrete number for such requirements.

• Finally, the user sends the service grid request to the respective SDM, and the

SMR of that SDM will generate a proper query statement for each service among

the required service grids.

4.6 Evaluation

The first aim of the description model is to provide some interoperability in the

intergrid system. In this section, we will discuss how the model meets this feature and

other features that are convenient to the intergrid system, such as applicability with

middleware information service, reducing the cost of using semantic information, and

so on.

From the building block, it is clear that the model has introduced the use of

semantic information in way that does not require the use of local information service,

which exists currently in grid middleware. For example, the intergrid participants

(small grids) are able to use their local discovery system that would normally be

possible through a keyword-based RD system. They just need to have one file that

accommodates the summary of the overall capabilities of the service. As a result, this

provides interoperability among the participants in the intergrid system. The model

also reduces the cost of using semantic information in terms of processing time, as

101

well as storage of the semantic information, since the semantic information is used at
!

the intergrid level, and not at the grid level. Therefore, during the discovery we look

up for a complete service grid, not just for components of the service grid. This is in
I

contrast to the other semantic-based RD studies (Said and Kojima 2009) and (Xing et

al. 201 0) that use the semantic representation for each component of the service grid,

which results in the discovery at the service grid components level.
I

The model also provides useful application reusability through the use of semantic

service grid representation and goal-based service request formulation scenario. Grid

application developers can share their developed applicatio~s in a systematic manner

as each application can be described formally, as well as the service that are needed to

execute the applications.

Lastly, the model also provides standardization for the rnodel components that are

being suggested for the implementations. For example, base~ on the recommendation

by OGF11 the model introduces OWL54 as an ontology language for the ontology

and XML technology 55 service grid information, and SA WSDL (Jacek et al. 2007)

for data exchange as recommended by W3C 56
.

54 http://www.w3.org/TR/owl-features/
55 http://www. w3 ; org/ standards/xml/
56 http://www.w3.org/

102

CHAPTERS

SEMANTIC REGISTRATION AND DISCOVERY MODEL

5.1 Introduction

In the previous chapter, we have presented the semantic description model for the

service grids. Particularly, we have shown how the service grid can be represented

and stored as metadata information. In this chapter, we will propose a new registration

and discovery model for our RD system. The model addresses where the service grid

metadata should be stored and how a service grid request/query can be sent to the

stored metadata, and the selection of relevant service grid that meets the request

specification. For this, the chapter starts with the methodology that is used to design

the model. The chapter highlights the main components that form the model which are

ontology and intelligent agents. The chapter thereafter focuses on the depiction of the

model which contains the registry architecture, fault tolerance and load balancing

strategy, and the discovery algorithm. An application of the proposed model to

demonstrate how the discovery algorithm works with the remaining components

(description and registration) is also included. The chapter is ended by presenting the

complexity of the new RD system and a discussion on how the RD meets the

identified intergrid RD requirements.

The main contributions of this chapter can be summarized as follows:

• A new semantic registry model that uses ontology to organize the service grids

provider nodes and their metadata.

• Fault tolerance and load balancing scenarios for the proposed registry.

• An agent-based algorithm for the search and selection of the service grids.

103

5.2 Method~logy

Registration and discovery components in any RD system !are very much related, as

the routing of request is subjected to the registration architecture. For this reason, we

address the issues in registration and discovery jointly. We qesign a model for the two

components that integrates super-peer architecture, ontology: and intelligent agent.

Super-peer is used to grant distribution of the registry
1
to where the service grid

metadata is located. Namely, service grid provider nodes will be organized in sets of

classes, and each class will have a head which will be the registry for the class.

Ontology, on the other hand, is to manage the distributibn of the registries. More

specifically, ontology defines the criteria under which the ~lasses ofthe service grid

provider nodes can be formed, and how to control the n1J111ber of classes and the

elements in each class.

Lastly, intelligent agent is used to deal with the dynamism of the service grid

provider nodes status in their respective registries, and to abstract the discovery

process from the end user. Especially, we define two agents to achieve that. The first

one mainly focuses on the status of the service grid provider node metadata, and the

second agent deals with the discovery abstraction with the heip of some algorithms.

5.3 The Model Components

We have concluded in the prevwus chapters (2 & 3) that distribution of the

registration is the ideal method in the intergrid RD system. However, the distribution

should be systematic and dynamic, whereby the RD system can evolve with the scale

of the intergrid system. Considering this, our model adopts1 the distribution method

with systematic mechanism to manage the distribution. The model consists of three

components, a domain ontology to organize the service g;rids provider nodes, an

intelligent agent model to abstract the user interaction with the grid and cope with

service metadata dynamism, and super-peer architecture to organize the service node

providers. In the rest of this chapter, we use the term "node" to mean service grid

provider node ..

104

5.3.1 The Dictionary Ontology

We have stated in the previous chapter that ontology provides a formal representation

to intergrid services; and to explore more on the use of ontology in addressing the RD

problem, we have presented the idea of goal-based service request model. In the same

line, there is another potential that ontology may provide for the intergrid system RD

registration. This potential is the taxonomy of the ontology concepts. In the taxonomy

of the concepts, the concepts are arranged hierarchically. Therefore, whenever we

visit the concepts from the root concept, as we go down deeper into the subconcepts

we will move from a more general class of concepts to a more specific class of

concepts, and vice versa. We use this feature to classify nodes into several classes,

which produce registry architecture to the RD system. The ontology that supplies

service grid taxonomies is called Dictionary Ontology (DO).

I \
tl ~

Figure 5.1 A fragment of the Dictionary Ontology

Figure 5.1 illustrates an example of a fragment of the DO, where the root

concept is the service grid and the super-concepts are the children i.e. the six types of

service grids that have been classified according to grid types from the nature of the

emphasis perspective. Each of these super concepts will have its subconcepts that can

be broken down further to generate several tiers of subconcepts until very specific

service grid concepts have been defined. The DO may be the same as the service grid

domain ontology by omitting the relations that are out of the hierarchical relation such

105

as the "use" relationship.

5.3.2 Intelligent Agent

Intelligent agents have the ability to react and work on behalf of the end user in

dynamic environments such as the intergrid system. For this, we propose two

intelligent agents for this model namely Description Agent and Request Agent.

Definition 5.1. Description Agent (DA) is a static agent that carries some information;

automatically performs some set of functions and belongs to a service grid provider

node.

The information carried by DA is the one that is needed for communication

between the nodes. The DA functions are: describes service grid capabilities using the

service grid domain ontology, informs its respective registry about its service status as
!

well as updating them when there is a change on the service grid information.

+ locateClassNodeO

+ sendServicelnformation()

+ updateServicelnformation()

,..---Request Agent--......

+ formServiceRequestO

+ lookupforService()

+ calculateSimDegree()

Figure 5.2 The proposed DA and RA agents

Definition 5.2 Request Agent (RA) is a mobile agent that carries some information;

automatically performs some set of functions and belongs to a' service grid node.

RA information consists of service grid request and node information. RA forms

service requests, and acts on behalf of the end user by using goal template; RA then

106

roams the network to find the node that owns the requested service. Figure 5.2 shows

a class diagram of DA and RA.

The reason for using DA and RA is that DA is adaptive to the dynamic nature of

the intergrid. In this context, when a node changes its service status, the registry node

of that node should be aware of that change, which in tum optimizes the request

routing. While RA helps the user to formulate his/her service requests. Therefore,

implementing the two agents will guarantee some abstraction on the RD system

invocation.

5.4 The Model Description

The registration and discovery model consists of three elements registry architecture,

fault tolerance and load balancing strategy, and discovery algorithm. In this section

we discuss all these elements.

5.4.1 The Registry Architecture

Registry architecture is about the organization of the classes of nodes and the

management of these classes. The registry architecture includes node class

formulation, head appointment, node subscription.

5.4.1.1 Class Formulation

To support scalability and dynamism in intergrid environment, we model an intergrid

system that contains some nodes to class based organization in which nodes are

gathered together in a set of classes. This classification is based on the hierarchal

relations among the service grids in the DO, which means their defined semantic

relation on the DO. For example, nodes that provide service grids that belong to the

computing concept in the DO can form a class of nodes called computing class. The

computing class itself can be split into two classes, one that contains all the nodes that

provide service grids under the compute subconcept, and another that contains all

107

I

nodes that provide the service grids under the storage subconcept. We systematize the

formulation of the classes with a dedicated algorithm as illustrated in Figure 5.3.

Figure 5.3 Class Formulation Algori~hm

108

Figure 5.4 Head Appointment Algorithm

109

5.4.1.2 Head Appointment

The class formulation algorithm gets a set of classes that c~rresponds to the selected

concepts. Each class needs to have a head that will ease the communication between
I

the different classes. This process is called head appointment process. In this two-step

process, we first need to define the headship features, whicp. a node needs to qualify

for it to become a head. In the second step, a head appointment algorithm calculates

the similarity between the nodes and the predefined headship features, and selects the

class head based on the degrees of similarity. For th~ first step, we suggest

performance capabilities and availability as the headship features. Performance

capabilities refer to the basic infrastructure that is needed in order to manage the

service grid metadata of the entire class. This may include, the speed of the server,

network bandwidth, and reserved memory space for ! service grid metadata.

Availability is the proportion of time when the node persists in an intergrid system.

Figure 5.4 illustrates the head appointment algorithm.

The selected head maintains two kinds of information: a summary of the service

metadata of its class and concept information of other c~asses. The first type of

information allows it to forward the service request to relevant node within the class.

The second information is helpful for forwarding the service request to the relevant

class when the request is not related to the class of the requester node. Therefore, each

node will have semantic description components as we have described in the previous

chapter. Meanwhile, the member node may have the service grid information provider

only.

5.4.1.3 Node Subscription

The first two components of the registry architecture produce a set of classes with

their heads. In order to allow these classes to be joined by new nodes we provide a
i

mechanism for that purpose, which is called node subscription. Subscription primarily

is the procedure of assigning a new node to an existing class or set of classes that

corresponds to its service concept. Subscription is done by the node subscription

algorithm. In this algorithm, we assume that the new node has been given the

110

information about the selected service grid concepts during the settings, and the new

node sends a message that contains its service concept to any existing node (member/

head).

Figure 5.5 Node Subscription Algorithm

111

The algorithm takes the service concept of the new . node, and calculates the

similarity degree between the service concept and the related class heads. If the

similarity degree attains the predefined threshold, the new node is added to the class

of that head. Finally, the algorithm returns the list of heads, for which the node has

been assigned to, if the new node has more than one service grids that belong to

different concepts. Figure 5.5 illustrates the node subscription algorithm.
I

5.4.2 Fault Tolerance and Load Balancing Strategy

Some very crucial issues in the intergrid RD systems are the dynamicity of the

service grid nodes status, and the management of the node bf classes in terms of the

number of classes and the number of nodes in each class. The first issue is related to

fault tolerance of the system, whereas the second issue is reJated to load balancing in

the registries. In this section, we have incorporated two approaches to deal with these

situations, namely class maintenance to handle the dynamicity of the service grid
I

nodes status and class management to handle the settings of the number of classes and

their sizes.

5.4.2.1 Class Maintenance

Intergrid node dynamism has an effect on node organization. Thus, a class

maintenance scenario to cope with this situation is required. Class maintenance takes

effect in two cases: failure of a class head and failure of a class member. Both of

these cases ca:n take place in the intergrid system either voluntarily or due to other

network problems. In this subsection, we propose two meehanisms to handle head

replacement and member replacement.

112

In the case of head replacement, existing heads are supposed to replicate their

resource information to their predecessors in the headship ranking. Remember that a

head is selected based on the similarity degree with predefined headship features.

Since the existing head has the highest similarity degree, a predecessor can be the

second highest and so on. When the head wants to leave or fails the predecessor, the

new head informs its class node about itself and performs all functions of the previous

head. Figure 5.6 shows the head replacement algorithm.

Figure 5.6 Head Replacement Algorithm

Member replacement can be achieved by connecting the direct neighbors of the

withdrawn member. As each class is a connected graph, each member is connected to

113

I

some neighbors say two (back neighbor and front neighbor) and its leader. A member

informs its back neighbor about the front one, and likewise the front about the back.

When the member in between the back and front members is dropped, the two

remaining members fill the gap through their connections. Figure 5.7 shows the

member replacement algorithm.

Figure 5. 7 Member Replacement Algorithm

5.4.2.2 Class Management

The classes of the service provider nodes are supposed to be managed by their

respective assigned heads. The management include accepting registration of new

service grid provider nodes or assisting newly joined nodes to get their respective

head, hosting the service grid metadata of the class members, updating the service

grid metadata when is needed, processing the incoming sen;ice requests, forwarding

the request of class members to the respective class and forwarding the replies, and

114

so on. The whole managing process involves a huge amount of messages, coming to

and going from the head to the other heads and class members. As a matter of fact, if

we do not have optimization strategy to manage this tremendous amount of traffic, we

will eventually be in a situation of bottle neck in the head. The management strategy

should be able to balance between the number of nodes and the number of classes in

way that there would not be any management issues. In fact, using the dictionary

ontology, the number of class C in a given intergrid system is between (1- Sh) (we

treat the ontology as a rooted tree).

c = {1
sh

if h = 0
(5.1)

if h > 0

Where S is the number of the leave concepts, and h is the total level of concept

hierarchy. C = 1 when we assign all nodes to one concept which is the root, and

C = Sh when we assign the nodes to each leave concept. However, the two

situations will rarely occur. Therefore, in our case we assume that the number of

classes falls between the two situations. Previously, we have mentioned in chapter

two that centralized registration models work effectively in small grids, where there

are only few hundreds of nodes; but they have no fault tolerance. Since we have fault

tolerance in our class heads, we use the idea of having few hundreds of nodes to be

managed by one head. Therefore, we can define a variable called the max number of

nodes in the class, 11 that should be within hundred, to control the number of nodes

in the class. Therefore, the number of class starts by selecting the most general

concepts in the DO, then when the nodes under a particular class (concept) has

reached the {L, we split the concept by selecting a number of more specific

subconcept. This will ensure that every class can grow smoothly with a balanced

management in the heads. Figure 5.8 illustrates the class management algorithm

(CMA). In order to implement CMA, we first need to define the next concepts that

will be used to split the current class concept when the number of members has

exceeded the defined maximum class size. Upon that, CMA takes the set of this

concepts and the set of the current class members, and formulates new classes based

on the identified set of concepts. Namely, for each concept the CMA calls the class

formulation algorithm which will return the list of nodes for that concept, calls the

115

head appointment algorithm to return a head for the class, add finally removes the list

of nodes of the new class for the global list of the initial class (the class that is being
I

split currently). This will continue until all the new classes h~ve been formulated.

Apparently, the CMA provides a load balance based on load management. For

example, the class will not be split only because the class size has exceeded the

expected number of nodes that it can manage, if it does not then we do need to split.

In another aspect, the split of a concept to few subconcepts will allow the distribution

of current class members among new classes, and each class will have the chance to

grow its member (since we have node subscription mechanism) until the class reaches

its maximum size. Therefore, we conclude that CMA grants load balancing in the

registry architecture. I

116

Figure 5.8 Class Management Algorithm

117

Member Node

Semantic Metadata &

Ontology

Interaction between Heads

Nodes

I
0

..

Head Node

Interaction between Member
Nodes

Description Agent
!

Request Agent

Figure 5.9 The overall intergrid syst()m

5.4.3 The Discovery Algorithm

In the previous chapter, we have presented the description model component which

confers the semantic representation of the service grid infoirna~ion. So far in this

chapter, we have discussed the registration component, vyhich is covered by the

registry architecture. The only remaining component of our new RD system is

118

discovery. In the discovery component, we use the identified two agents to abstract

the discovery process from the user, and to deal with the status change of the service

grid metadata. Therefore, each service grid node is supposed to have both agents, and

the communication between the nodes will be through the exchange of messages

between the agents. Figure 5.9 shows the overall framework elements, where there are

some nodes assigned to some classes with their heads. The collection of heads forms a

head node layer, whereas the collection of classes and members forms the member

node layer. Each node has two agents (DA and RA), and implements the service grid

information provider element to describe their service grid information. In addition to

service grid information provider implementation, heads implement the semantic

description manager element to assist the members to describe and register their

services. When this has been achieved, our model now is ready for the discovery

process.

Our intergrid system initially consists of the set of nodes with their services and

connections between these nodes. This can be represented as a graph structure

:.G = (N~E)~ N= {n1 ~n2 1 ... 1nil"'lnn}~ E= {e11 e2 1"'1 eil"'l ex}whereN

represents the set of grid nodes (the total number of nodes regardless of the class

structure) and E the set of connections between nodes. The overall number of services

can be represented in a vectorS = [s1.sz, ... I si, ... I sk] . Therefore, the existence of

service within the different nodes can be represented in an adjacency matrix that is

made of the set of nodes, Nand the vector of the services, S. Let us denote this matrix

by an intergrid service matrix, M. Therefore we get:

Where the elements of M 1 nisi E [01 1], niri = 1 when node ni has the service Sj,

and 0 if otherwise.

Since the intergrid service matrix contains the existing services with the entire

number of nodes, an adjacency matrix is made from nodes of a class and is a subset of

the overall services, which is actually a submatrix of the intergrid service matrix (M),

which we call class service matrix (me). Therefore, the service metadata in each

119

head will h~ve a class service matrix(me)· In addition to that, each node may have

some neighbors with which it exchanges service metadata.
1

The set of neighbors with

the services. that exist with them represents a submatrix of the class service matrix

(me), which we call node service matrix (mn)·

The goal template matrix (w) in chapter 4 (equation 4.7) can be recalled back

here by having the set of goals G = {g1 , Bz , ... , Bi , ... , Bx }. :

I

Where the elements of w, gisi E [0, 1]; gisi = 1 when a goal Bi requires sj service

grid, and it becomes 0 if otherwise. Each class head is supp~sed to have a copy of the

goal template matrix. However, it is possible that a node in a class may have a

submatrix of the goal template matrix, which may be obtained when a consumer

among the member nodes gets an instance of goal. The submatrix of the goal template

of the node is called node goal template matrix Wn.

To allocate the services for user's goals, we develop an algorithm that searches for

service on the network based on the cached information and dynamic matching. The

cached information is the presence of a particular service in a node, which is

illustrated in the service submatrices (mn & me). Dynamic matchmaking is the

similarity calculation between agents that represent service provider and requester,

using the similarity function. Figure 5.10 illustrates the discojVery algorithm.

120

Figure 5.10 The Discovery Algorithm

121

5.4.4 Application

In order to clarify the interaction between the components m our system in

describing/discovering a service using the discovery algorithm, we introduce an
I

example that shows how a user can describe or request a service.

Let assume that we build an intergrid with 1024 nodes. distributed in different

locations. Using the dictionary ontology, we can define the service concepts, say 4

concepts, each concept may contain 32 services so that the t6tal number of services is

32*4= 128. Then the two agents (DA and RA) in each node are initialized. Each node

can be represented by its DA agent.

Implementing the class formulation and head appointment algorithms respectively

on nodes or DAs (the DA represent the service grid as it, carries the service grid

information), we get a set of classes with their heads. For simplicity, we may have 4

classes as the selected service concepts are 4 and each class has 256 nodes. Each DA
' I

sends its service information to its head; therefore the head will have the entire

information of class summary, which will be a class service matrix (me) of the

previous section. In case new nodes want to subscribe to the system, the node

subscription algorithm in section 5.4.1.3 is activated. On the other hand, if an existing

class member or head node quits the system, the mechanism of class maintenance in

section 5.4.1.4 will manage the exit.

Assuming an end user wants to run some applications. ;I'he steps for him/her to

request and discover the services according to our new framework are as follows:

a) Based on the goals that are stored in the service goal template of the semantic

description manager or the head of that user' node, the 1:1ser selects the preferred

goal and obtains instance of the goal. The user then adds the concrete values of

the service capabilities, which enable the RA to form a service request vector(s),

say 6 services.

b) If there is local information about some neighbouring nodes that has been given

by their DAs (node service matrix(mn)), RA sends a request to any neighbouring

122

node ni, that is associated with all or part of the 6 requested services and the

threshold of the similarity degree.

c) Based on the description of services in RA and DA, the similarity degree of the

two agents sim (RA, DA) concerning the service properties of the requested

service and provided service is calculated.

d) If the similarity degree of sim (RA, D A) reaches a user defined threshold value,

then the node ni is selected; and the check is done whether there are still

remaining requested services to be searched.

e) If there are remaining service request, steps c and d are repeated until none of the

nodes in the class is any longer associated with the requested service.

f) If so, then the remaining requested services are sent to a class head ci.

g) From the service matrix (me), head ci sends the service request to another class

head/heads Cj that may have the remaining requested service based on the

concepts.

h) For each head, the steps (b), (c), (d) and (e) are performed until all the 6

requested services are found.

These are the main steps that represent the invocation of the new RD system. It

should be noted that the system can also work without the use of agents, if the

developers are not concerned with the user interaction abstraction and frequent

update of the service metadata in the set of subregistries at the class head. When that

happens, all the interactions may be done manually by the end user.

5.5 Computational Complexity of the New RD System

A very critical feature in any given system is computing complexity, which includes

the time and space that are need by the system to solve a presented problem. In the

context of the RD system, time complexity is very important to ensure that the time

taken from formulating the request until receiving the response for that request

123

(latency) is acceptable. In this section, we will discuss the tike complexity of our new

proposed RD system.

From the formalism that we have presented in section 5.'t.3, let us bring the set of

nodes = { n1 , n 2 , ... , ni , ... , nn } , the connection between the nodes E = { ev e2 , ... ,

ei, ... , ex} and the set of services S = [s1,s2 , ... , si, ... , sk]. For each, node ni we

assign weight w(na, which refers to the time cost when service request passes

through ni. We do not take into consideration the time cost on the edges or

connection between the nodes, as these are not included in our scope of study. The

aggregation of nodes that connects to node ni, we called by neighbor y of ni so we

denote it as y(na.

Regardless of the distribution of nodes N into some

classes C = { c1 , c2 , ... , ci , ... , c11 } and the number of classes identified as I C I, we can

sort out N into two categories as service providers and heads, which we denote as N P

and NH respectively. The reason for that is that head nodes are the one that is

responsible for forwarding the request from their members or to respond to any

request that has been forwarded to them. Hence, the head
1
nodes can be a provider,

but the member cannot forward the request as they do not have this privilege. All of

these nodes have service metadata with them, which vary from one category to

another. For example the service providers Np have the dt;tailed information about

what they provide. Meanwhile the heads, NH have a summary of the members in their

classes that are service providers that will enable them to chose the right service

provider when a request is sent to them, and other information about each other that

will allow them to forward the request to the right heads, among them when the

request is beyond the concepts of their classes. Therefore, in any case we need to

check the information of the nodes by calculating the similarity degree between a

node and a request. However, the similarity calculation may vary from one case to

another in terms of threshold value, and the features that we use as input for the

similarity function. For example, when a request for a senrice si is sent by any

member ni to its head, the first similarity calculation is to check whether si belongs

to the concept of this class or not, through sim (si, ca 'where ci is the concept of the

class. If the si has a similarity degree that reaches the definea threshold, then it will

124

be forwarded to one of its member node nj ·' So the next similarity calculation will be

between the si and the selected member candidate, through sim (si, nj)· To that end,

we assume that the time for checking the information in any given node will be the

same, which is sim (a, b); where a is a service request, and b is an information

input such as a class concept or provided service. Therefore, by using the Dice

distance function, we can have the time complexity for information checking (r) as

follows:

r=w(ni) =O(axb) (5.2)

Since services S must belong to the dictionary ontology, concepts T are based on

the classes that are formed, we donate the concept of every service s by t(s). If we

have several services s1,s2 , ... , si ,i $ lSI have the same concept, then we will have

this formula t(s1) = t(s2) = ... = t(si) . Based on the intergrid service matrix

M, we can formulate the existence of a service with a concept in a class ci E C as

(ci, t(s)) = 1, when the service exists with a given class, and (ci, t(s)) = 0 when the

service does not exist.

Based on the discovery algorithm, the routing (R) of a service request t(si)

among the classes to reach a provider node ni is given as:

(5.3)

Therefore, the RD process can be seen as routing the request t(si) from the head

of the requester (n0) to a provider node Cna i.e. when t(si) = 1. This can be

formulated as path P and can be calculated through this equation:

(5.4)

Where 1 $ i $ N, ni E Np, nj E NH, 0 $ j $ i . The shortest path (Ps) from the

requester node (nr) that belongs to a class (ex) to reach ni can be calculated as:

(5.5)

125

Where ni-l must be the head of nr or the direct neighbor in class Cx, where the

connection e(nr, ni-l) = 1. The weight of the path 1 W(P) is actually the

summation ofthe sum ofweight of each surpass node w(nj) and the connection time

w(ej)·

i-1

W(P) = L (w(nj) + w(ej)) (5.6)

j=O

The weights of the shortest path P min and the longest pathl P max can be denoted as

Wmin and Wmax respectively. Therefore, the time complexity of our RD system Ttotal

to find a given t(si) at the worst case is the Wmax of the path Pmax .

T total = 0 (Wmax) (5._7)

To that end, we conclude that the complexity of our RD system is linear, which

renders the system as capable of providing high performancef

5.6 Discussion

As we have mentioned in chapter 2, the features of the RD system that are expected to

be achieved mainly by the registration and discovery components are scalability,

decentralization, and dynamism. This section discusses how the new model meets

these characteristics.

Scalability, the model is scalable by using the class based node organization,

which gives an opportunity for any class to grow rather than' treating all the nodes as

one group, which is the case of the current centralized RD methods.

Decentralization is achieved in our system as follows:
1

each node maintains its

service information; and each head node maintains a summary of information of other

class members including the class heads as well (service concepts). This means that

no node controls the entire intergrid system. In addition to that, we show how a head
i

node can be succeeded when it wants to leave the system or fails due to connection.

126

Therefore, the system may not be completely down as m the centralization

circumstances.

Regarding dynamism, we use intelligent agents, DAs to track the status of each

node resources, which in turn allows nodes to update their subservice matrices. In

addition to the above features, the model provides fault tolerance and load balancing.

In this case, the model can tolerate the failure of member nodes and class heads as

described in section 5.4.2, and split the class into subclasses when the number of

member node rises beyond a manageable number, which has been predefined for each

class (class size).

127

CHAPTER6

RESULTS AND DISCUSSION

6.1 Introduction

This chapter presents a comprehensive quantitative evaluation with respect to the

overall performance of the proposed RD framework. The aim is to examine the

performance of the system and highlight the performance indrease that is attainable by

the framework. The chapter begins with the methodology that has been adopted to

conduct the evaluation. The chapter then discusses the simulation tool that is used in

this evaluation. The chapter thereafter identifies the experimental settings, and reports

and discusses the achieved experimental results. The chapter lastly presents a

comparative study between the proposed RD and the most promising related work.

Overall, the main contributions of this chapter can be summarized as follows:

• An extensive simulation to evaluate the proposed RD framework.

• An analysis of the performance of the proposed RD system and a comparative

study with some of the related work.

6.2 Methodology

!

Evaluation of the proposed RD system is very important, as it allows an examination

of the performance of the proposed system, and eventually to draw a conclusion on its

performance. For this, we have chosen one of the P2P simulators called

PeerfactSim.KOM to simulate the intergrid environment with the application of the

proposed system.

128

The evaluation of the system is based on some common performance metrics

found in the literature (Mastroianni et al. 2008) and (Mastroianni et al. 2005) . This

includes the percentage of the discovered services in a given goal request, and the

response time for the service request to be answered.

These metrics are calculated in different settings of the nodes and service requests.

Therefore, we start with a few numbers of nodes, and scale them gradually to simulate

the increase of the services in the actual intergrid system. We also vary the rate of

service requests from small number of requests to bigger number to simulate the

increase of users in the intergrid system. We analyze the results of the different

settings by highlighting the causes of the effects of the different setting to the results.

6.3 Grid Simulation Tools

Generally, there are two simulation tools developed specially for grid technology

research. These simulators are GridSim57 (Buyya and Murshed 2002) and SimGrid58

(Henri et al. 2008). GridSim provides a framework for modeling and simulation of

grid entities such as resources, applications, users, and resource brokers/schedulers in

order to design and evaluate scheduling algorithms. GridSim is originally based on a

discrete event simulation package that is called SimJava (Howell and Ross 1998).

SimGrid also is a discrete event simulation tool that offers core modeling and

simulation capabilities for simulating distributed and parallel scheduling applications

in heterogeneous distributed environments. These environments range from simple

network of workstations to Computational Grids. SimGrid relies on C and Java

languages.

We have examined both simulators, and found that they mainly focus on the

scheduling algorithms and frameworks; they do not address the simulation of the RD

framework directly. As a matter of fact, most of the studies in RD field are using other

alternatives such combining the simulation tools of P2P network with grid simulators

57 http://www.gridbus.org/gridsirn!
58 http://simgrid.gforge.inria.fr/

129

or using them alone, or developing their own simulator. For example, Rajiv et al

combine GridSim with PlanetSim (Garcia et al. 2005) to simulate their work (Rajiv et

al. 2007). Studies such as (Han and Berry 2008) and (Mastroianni et al. 2008) have

developed their own discrete event simulators. Therefore, we further examined two

discrete event based P2P simulators which are PlanetSim: and PeerfactSim.KOM59

(Kovacevic et al. 2007) that provide the core entities to simulate RD systems. We
'

find that, the second simulator (PeerfactSim.KOM) has more flexibility and

documentation compared to the first one. Based on these findings, we opted for the

second simulator.

6.4 PeerfactSim.KOM

PeerfactSim.KOM is an object-oriented java based Peer-to-Peer evaluation platform,

which gives us the ability to create an overlay and simulate large-scale networks with
i

it. Therefore, PeerfactSim.KOM allows us to conclude about functionality of any

overlay network and answer the most important questions such as scalability,

efficiency, and flexibility.

Application •

Overlay

Figure 6.1 The layered architecture of Peerfac~Sim.KOM

59 http ://peerfact.kom. e-technik. tu -darmstadt. de/

130

PeerfactSim.KOM simulates distributed systems in four layers as illustrated in

Figure 6.1 (taken from http://peerfact.kom.e-technik.tu-darmstadt.deQ. The reason

behind that is to effectively address the complexity of distributed systems and analyze

them smoothly in distinguishable parts.

6.5 Experimental Setup

Our experimental setup initially is divided into two components namely intergrid

environments and the semantic service grid RD system. This component arrangement

follows the typical architecture of the PeerfactSim.KOM. Initially, we build our

simulation of the new RD system by using the available packages in the

PeerfactSim.KOM that provides the network and the transportation infrastructures.

We also modify some of the implemented P2P networks in the simulator. We use an

integrated development environment (IDE) NetBeans60 6.8 to edit the code of the

simulation components.

We build an intergrid system that consists of n nodes. The size of the nodes n is

scaled from 100 to 1000 with scale of 100 and 200. Since the creation of service grid

domain ontology and dictionary ontology are outside the scope of our work, we

simulate these ontologies by representing them numerically. Where the concepts of

the ontology are simulated by positive integer values such as 1, 2, ... k, and each

concept has subconcepts/properties which are some predefined set of values. Based on

that, the concepts are representing the services' concepts and the predefined values

are representing the services themselves. Each of the nodes has a set of the services.

The number of these services is varied between 1 and 6 services. The reason of

having this range of numbers is that our RD system is based on aggregating the

service grid resources and services metadata information, which obviously reduces

the range of services in the intergrid system. The allocation of the size of services in

each node is random, which is the same as the assignment of concepts to node. This is

to simulate the fact that in intergrid system we may not be able to neither express

precisely the number of the services in each node nor the type or the concept to which

60 http://netbeans.org/

131

these services belong, but surely we can define the concepts in the first place. During

the simulation of class formulation, each of these nodes will be joining a particular

class based on the randomly assigned concept. The number of class is based on the
i

number of concepts (if the selected concepts for the overall nodes are five, the
'

corresponding number of the classes is also five). The selection of concepts is

proportional to the size of the intergrid system. This is in correspondence to the super-
1

peer architecture where the number of super peers is based on the size of the network.

In (Yatin et al. 2003) the number of super-peer node is implemented to be 5% of the

nodes that have very high capacity to handle queries. We have adopted the same

percentage so as to systemize the distribution of the node to ~lasses in way that allows

us to conveniently discuss the performance of the system, Therefore, an intergrid

system that has a size of 1000 nodes will have 10 classes. As we have discussed

previously, centralized registration model is effective fer handling the service

metadata of hundred nodes; therefore, we set the class size tp 100 nodes so that each

head of the class can accommodate the service information of hundred nodes that

belong to its class.

Table 6.1 Simulation parameters

Number of intergrid node (service
100

to
1000

grid) N

Number of the provided service in
each node 1 to 7 which is selected randomly

Number of the Classes/Concepts 10

Maximum size of each class 100 nodes

Number of neighbors for each 1 to 9
head

Time to live TTL 2 to 5

For simplicity, during the simulation, nodes that have high capacity which are

supposed to be the heads of classes will join the network first and declare themselves

132

as heads. Then they will connect with each other in order to form the network. The

number of neighbors for each head varies from one to the total number of heads in the

network. This is because the connection of the heads is random as it is based on which

head starts the communication first. Table 6.1 presents the summary of the main

parameters.

Our simulator is enabled by passing two configuration files, which are known as

configuration file and action file. Configuration file holds the values of the above

mentioned simulation parameters such as the size of network, the classes and

procedures that will be called by the simulator to create the components of the system

(host server, service and so on). Meanwhile, the action file holds the command that

has been developed to simulate the processes of the system such as the class

formulation, node subscription, discovery algorithm, and so on. It is suggested in the

simulator documentation that the commands should be passed to the nodes in portion

basis. As such, the total number of nodes should be divided into several groups, and

each group should be given a name. When the group name command is given, all the

nodes that belong to the group will be concerned. It should be noted that this has no

effect to the simulated architecture, rather it eases the simulation of the different

procedures.

6.6 Performance Indices

The performance indices used in this evaluation are request/query hit, and the

response time for the request as defined in (Mastroianni et al. 2008).

Request/query hit or the percentage of the service requests that are answered

successfully with regard to the total number of the generated requests by a node in a

given time is very critical in proofing how efficient the RD system is.

Response time is the time interval between the generation of the service requests and

the reception of the results. All of these metrics will have different values when we

implement different simulation parameters. In order to have a fair examination, we

vary the number of service requests that are generated by the nodes. In this case, the

service requests are generated in percentage proportional to the intergrid size. For

example, 25% of the total number of nodes that belong to several different classes can

133

generate requests at one time. Figure 6.2 illustrates the rate of service requests

generation with regard to the different intergrid sizes. For example, in an intergrid

size of 100 nodes we have a generation of 25, 50, 75 and 100 requests. Meanwhile,

for an intergrid of size 800 nodes we have a generation of 200, 400, 600 and 800

requests.

1000
900
800

......
til 700 (!)
;:!

600 0"'
(!)

~ 500
(!)
u 400
~
(!) 300 [/)

200
100

0

100 200 400 600

Intergrid Size

800 1000

1111 Request = 25 %

1111 Request = 50 %

II Request= 75%

II Request = 100%

Figure 6.2 Proportion of the generated service reque,sts to intergrid size

6.7 Performance of the New RD Framework

We conducted 16 (this number corresponds to the variation of service request

generation and TTL values) independent experiments for 1different service request

portions and intergrid sizes. In each experiment, the mechanisms and algorithms that

we have designed in the previous chapters are simul~ted. This includes the

formulation of classes, subscription of new node, the discovery algorithm, and so on.

We first start our evaluation with the first performance metric, which is the

service request hit. Tables 6.2 - 6.5 and figures 6.3 - 6.6 sh0w the simulation results

for service requests generated by the nodes in percentages of 25%, 50%, 75% and

100% of the actual size of the intergrid. We control the forwarding of the request

message from the requester node to the provider by the TTL values since we

implement the super-peer architecture in our registry.

134

Table 6.2 Percentage of Discovered Services (SRH) for generated requests

equivalent to 25% of the intergrid size with different TTL values (2-5)

100 25% 50% 70.83% 95.83%

200 19.14% 52.08% 78.72% 85.1%

400 19.54% 48.27% 75.58% 97.67%

600 20% 30.4% 57.48% 77.6%

800 17.57% 40.11% 58.18% 75.3%

1000 12.8% 31.86% 80.58% 91.78%

100
90

..... 80
:::r:: 70
"' Q) 60 & --..-TTL=2
~ 50

Q) 40 -+-TTL=3 u
I:: 30 _._TTL=4
Q)

~ rJJ 20 • $ • $----. ~TTL=5
10
0

100 200 400 600 800 1000

Intergrid Size

Figure 6.3 Discovered Services for generated requests equivalent to 25% of the

intergrid size with different TTL values

135

It appears from all the figures (6.3- 6.6) that the rate of discovered services is low

when the TTL is equal to 2. This is because the scope of service request forwarding is

limited to within the classes only, or between the heads if it happens that the head

node itself generated the request.

It is also very clear that the rate of discovered services ,becomes smaller with the

increase of request rate and intergrid size. For example, in .Figure 6.3 the rate of the

discovered services achieves 25% initially, then drops gradually until 15.62% in
I

Figure 6.6. This is because as the service requests increase, the portion of the requests

that is sent out of the requester node classes may be higher. This may also happen

when the size of the intergrid system is scaled up.

Table 6.3 Percentage of Discovered Services (SRH) for generated requests

equivalent to 50% of the intergrid size with differerlt TTL values (2-5)

100 18.333% 30.35% 58.33% 86.2%

200 !

16.66% 36.36% 84.42% 93.49%

400 20.98% 54.58% 7.9.16% 95.88%

600 20.38% 34.9% 64.54% 78.67%

800 18.16% 33.96% 61.97% 80.21%

1000 14.19% 29.95% 6j1.38% 92.33%

136

100
90

...... 80
:::r:: 70
"' v 60 ::s
0" -+-TTL= 2 v 50 ~
v 40 -.-TTL=3
u
~ 30 -.-TTL=4 v

r:/J 20 ... 0

" .- ij ---. -*-TTL= 5
10
0

100 200 400 600 800 1000

Intergrid Size

Figure 6.4 Discovered Services for generated requests equivalent to 50% of the

intergrid size with different TTL values

Table 6.4 Percentage of Discovered Services (SRH) for generated requests

equivalent to 75% of the intergrid size with different TTL values (2-5)

100 17.72% 34.61% 64.1% 87.34%

200 17.61% 38.6% 80.12% 94.93%

400 20.31% 50.15% 82.13% 97.49%

600 21.68% 35.71% 67.22% 83.92%

800 16.66% 33.8% 54.34% 71.87%

1000 16.35% 34.59% 72.98% 90.53%

137

100
90

..... 80 ·-:r: 70
rJl

~ 60

~ 50
Q) 40 ()

-+-TTL=2

-+-TTL=3 ·-~ 30
Q)

_._TTL= 4
r:tJ 20

10
0

100 200 400 600 800 1000

Intergrid Size

Figure 6.5 Discovered Services for generated requests equivalent to 75% of the

intergrid size with different TTL values

i

Also the four figures (6.3- 6.6) unambiguously indicate that the increase of TTL

will allow the discovery of more services. For instance, the discovered service rate

reaches its highest value 95.83% for an intergrid system consisting of 400 nodes.

However, the cases of intergrid size 600 and 800 nodes app~ar to be different as the

rate of discovered services decreases gradually until it reaches the lowest value at size

of 800 nodes. The reason behind that is due to the implementation of the load

balancing algorithm.

Table 6.5 Percentage of Discovered Services (SRH) for generated requests
'

equivalent to 100% of the intergrid size with different TTL values (2-6)

100 15.62% 32.29% 58.33% 85.71% 97%

200 16.32% 38.19% 80.71% 94.94% 98.46%

138

400 18.62% 52.02% 83.79% 96.44% 97.47%

600 18.95% 33.89% 69.81% 86.34% 92.95%

800 16.94% 28.14% 57.86% 69.94% 85.56%

1000 16.07% 32.76% 65.45% 82.82% 94.45%

In fact, the initial idea of the load balancing mechanism is to split the concept from

general to a more specific concept so that we get more classes when a class reaches

the maximum predefined size. However, this is hard to be simulated with the

simulator as the creation of the nodes, services, and concepts is supposed to be before

the intergrid join process starts. Therefore, we simulate the load balancing algorithm

by creating new classes during the join process. In this case, if a head of class gets

100 hundred nodes in its class it will reject any new node that wants to join the

system. When this happens, the rejected node will create a new class of the same

concept and accept other nodes that want join the intergrid and have the same service

concepts. Therefore, in the case of intergrid size 600, there are few classes that

created, and there are more in the case of size 800 nodes. So these nodes cannot reach

the services that are available beyond the TTL of value 4 for instance. As can be

observed in all of the figures (6.3 - 6.6) the rate of the discovered services starts

increasing at TTL of value 5. To further investigate that observation, we increase the

TTL value up to 6. As indicated in Figure 6.6 the rate of the discovered services is

slightly increased at the 800 intergrid size. Meanwhile, it achieves the highest rate

with the small intergrid sizes such as 100 and 200 nodes. In addition to that, the rate

of discovered services also increases with intergrid size of 1000 nodes. This could

possibly be because the created new classes have more number of nodes, which

influences the rate of the local discovered services to be higher.

139

100
90

..... 80
:r:: 70
"' Q) 60 ;:l
0"

~ 50
Q) 40 u
i: 30
Q)

r/:J 20
10
0

100 200 400 600

Intergrid Size

-------,------,

800 1000

-+-TTL= 2

-o-TTL=3

-.~<-TTL= 4

~TTL=5

-+-TTL= 6

Figure 6.6 Discovered Services for generated requests eq~ivalent to 100% of the

intergrid size with different TTL values

All in all, it is observed that providing more TTL value causes the discovery of

more services. However, one may argue that the increase of the TTL may inherit high

traffic in the intergrid network. Nevertheless, in our case, tpe forwarding of service

requests takes place only if the request has some semantic relation with the provider,

if this not the case then the service request will be forwarded to all neighbors of the

head node. Obviously, this will reduce the traffic in the intergrid system and the
I

increase of the TTL value will not cause overhead on the network.

Our second point of discussion is on the service request response time of the

proposed RD framework. In fact, we use the simulator tiili.er to measure the time

between the generation of service request by the requester node until when an answer

is given to the requester node. For example, a node may generate a request at time

180000000 (simulation time) and a response may be given at the time of 180017503,

therefore the response time is 17503 millisecond (ms). We calculated the average

value of the response time in each set of generated service requests percentage. Tables
'

6.6-6.9 and figures 6.7-6.10 illustrate these values. It is apparent from figures 6.7-

6.10 that the increase of service request generation will increase the response time.

140

This also happens when we increase TTL value. For example in Figure 6.7, the

average response time for generated service request equivalent to 25% of intergrid

size of 100 nodes and TTL value 5 is 33486ms. The value becomes considerably

higher (35569ms) in figure 6.10 when the service request rate is equivalent to 100%

of intergrid nodes. However, the increase of intergrid size does not affect the request

response time much, as the curve of the response time fluctuates in all four figures

(6.7-6.10).

Table 6.6 Average Response Time (RT) for generated requests equivalent to 25%

of the intergrid size with different TTL values (2-5)

100 21982ms 27514ms 29983ms 33486ms

200 21873ms 25183ms 29104ms 31957ms

400 19790ms 2192lms 26960ms 26680ms

600 19308ms 22954ms 30787ms 34505ms

800 20058ms 24026ms 26912ms 28825ms

1000 16766ms 22780ms 29162ms 31242ms

141

40000 .----------------

]: 35000 ~ ~ .. ~

~ ~~~~~ t. ~-~:=-~""'"l:~:::':::::~=:::;;::=-:::::::;::j::::::::::::' -~~-~---
~ 20000 • • .:::::::: • •--.......
~ --.
<!) 15000 -------·-------------------·-····---------
~ i

~ 10000 +--------------------------------
& P:l 5000 -t-------------------

0 ----····T----···-,·· .. ··--·--,-----,··-.. --····...,.--··----;
I

100 200 400 600 800 I 1000

Intergrid Size

.....,_TTL=2

-+-TTL=3

....,.,_TTL= 4

~TTL=5

Figure 6. 7 Service Request Response Time for generated requests equivalent to

25% of the intergrid size with different TTL values

I

Table 6.7 Average Response Time (RT) for generated requests equivalent to

50% of the intergrid size with different TTL values (2-5)

100 24916ms 27952ms 30975ms 35209ms

200 22098ms 23873ms 30039ms 29957ms

400 18806ms 23871ms 26255ms 27450ms

i

600 19122ms 21584ms 29640ms 31623ms

800 18215ms 23314ms 26816ms 29198ms
I

1000 16674ms 24054ms 31589ms 35752ms

142

40000 .,...-----------------

"""' s 35000 -1----X..:-----------~-
'-' s 30000

~ 25000 r-....... ~~===:::i:::::::===~D==::=;:;o
§ 20000 r----~~::::::;~~===:;:::::=
~
~ 15000

~ 10000 +-----------------------------------
~
~ 5000

0 ----r---r·-·----,--··--···T-·-.. -···--r---·-·--..,

100 200 400 600 800 1000

Intergrid Size

-+-TTL=2

-e-TTL=3

-.~<-TTL=4

"""'*""'TTL = 5

Figure 6.8 Service Request Response Time for generated requests that equivalent

to 50% of the intergrid size with different TTL values

Table 6.8 Average Response Time (RT) for generated requests equivalent to 75%

of the intergrid size with different TTL values (2-5)

100 24332ms 28128ms 31334ms 34390ms

200 21269ms 24054ms 30003ms 31107ms

400 18830ms 22325ms 26357ms 26881ms

600 18631ms 22136ms 29084ms 32979ms

800 19037ms 23308ms 25912ms 28767ms

1000 16624ms 21635ms 27743ms 30455ms

143

40000

~ 35000 g s 30000

f,::: 25000 +-~~ --~::::::::._ __ .::::::~:::::::=
Ill
ttl

§ 20000
~
~ 15000
ti
~ 10000

~ 5000

100 200 400 600 800 1000

Intergrid Size

-+-TTL=2

-+-TTL= 3

-r-TTL=4

-*-TTL= 5

Figure 6.9 Service Request Response Time for generated requests equivalent to

75% of the intergrid size with different TTL values

Table 6.9 Average Response Time (RT) for generated requests equivalent to

100% of the intergrid size with different TTL values (2-5)

100 22823ms 28128ms 31063ms 35569ms

200 22034ms 24892ms 29529ms 31137ms

400 18730ms 23468ms 26769ms 27812ms

600 18936ms 22557ms 85ms 32426ms

800 19036ms 21906ms 26385ms 28491ms

I
I

1000 18855ms 23763ms ' 19ms 33176ms

144

,......_ 40000 -.-----------------
"' 5 35000 +-_,_..::--------------

s 3oooo 1~:-~:::::::::::::;;~:::;:;;~::::::x/....-
~ 25000 l•===::::=;;;;;;:::o::=:=;:==::=::::::i.-
§ 20000 -f---
0..
~ 15000 ---·--·-------------·------------·--·-·-·-·-···-·--·-· --.. --·-···-··----.. -··-
~ ti 1 0000 .. ----·-·-------.. -· .. -----------............... _ ... ______ _
<I)

g. 5000
<I)

~ 0 +------,----,-----,---......... --...----------,

100 200 400 600 800 1000

Intergrid Size

-+-TTL=2

-e-TTL=3

-+-TTL=4

""*-TTL= 5

Figure 6.10 Service Request Response Time for generated requests equivalent to

100% of the intergrid size with different TTL values

Clearly, this indicates that the increase of the response time is not linearly related

to the size of the intergrid nodes. This due to the decentralization of service requests

processing as each head processes the service requests that are directed to it only.

This ensures that the scale of the intergrid size will not cause performance

degradation to the proposed RD system, which ensures sustainability of the system

irrespective of the scale ofthe intergrid users as well as service grids.

Another aspect that is much related to the response time is the average number of

hops that are crossed during the discovery process, which is supposed to be as low as

possible with regard to the set TTL value. Tables 6.10 - 6.13 and figures 6.11- 6.14

show the average hops of the generated requests. Generally, the average hops values

are slightly smaller than their respective defined TTL values, regardless of the number

of generated service requests. For example the average hops in TTL 5 has a minimum

value of 3.97, as shown in figure 6.11, for the intergrid size of 400 nodes and the

request rate is 25%; then it fluctuates to 4.36 as the intergrid size is scaled up to 1000

. However, in all the cases the corresponding rate of the discovered services is good.

Therefore, we deduce that having a TTL between 4 to 5 and an intergrid size of 400-

1000 nodes will give an acceptable performance to our RD system. A further note on

145

the average hop values when the TTL value is 2 or 3 clearly indicate that the curve of

the average hop is quite stable while scoring a poorer service request hits. This

happens in the four cases (Figures 6.11 - 6.14). For exa'mple, in figure 6.14 the

average hop value for TTL 2 starts with a value of 2.93 and maintains almost the

same value to finally end with the value of2.98 where the size of the intergrid is set to
I 1000 nodes. Therefore, we can deduce that our RD ·system can have good

performance with TTL values such as 2 or 3 only if the number of concepts is reduced

to three or four concepts and the intergrid size is limited to between 100-300 nodes.

Table 6.10 Average Hops (AH) for generated requests equivalent to 25% of the

intergrid size with different TTL values (2-5)

200 3 3.52 I 4.05 4.45

400 3 3.45 I 4.06 3.97

600 3 3.47 4.02 4.52

800 3 3.58 4.03 4.44

1000 2.96 3.43 4.3 4.36

146

5
4.5

"' 4
~ ~ ~

0.
0 Jt-'

::r: 3.5
"0

....

~ 3
2.5 -+-TTL=2

0

'"" 2 -e-TTL=3
~

"'
~ 1.5 -w-TTL=4

~ 1 ------·- ----·--·---- """*"""TTL = 5 0.5 ____________________ .. ______________ _

0 ------.. --.,..----·----.. ·---,-------·---,--------.... .,.. ________ ,.--·----------.. -,

100 200 400 600 800 1000

Intergrid Size

Figure 6.11 Average Hops for generated requests equivalent to 25% of the

intergrid size with different TTL values

Table 6.11 Average Hops (AH) for generated requests equivalent to 50% of the

intergrid size with different TTL values (2-5)

100 3 3.52 4.05 4.66

200 3 3.52 4.25 4.2

400 2.98 3.51 3.92 4.15

600 2.95 3.32 4.11 4.14

800 2.97 3.46 4.09 4.47

1000 2.96 3.51 4.28 4.81

147

•
-.-TTL=2

-a-TTL= 3

->~~-TTL= 4

"""'*"""TTL = 5
0.5

0 +-----,-----,------.-----.-----.~---.

100 200 400 600 800 1000

Intergrid Size

I

Figure 6.12 Average Hops for generated requests equivalent to 50% of the

intergrid size with different TTL valp.es

Table 6.12 Average Hops (AH) for generated requests equivalent to 75% of the

intergrid size with different TTL values (2-5)

100 3 3.44 I 4.02 4.52

200 3 3.36 4.31 4.38
I

400 2.9 3.46 3.94 4.17

600 2.99 3.34 4.05 4.51
!

800 2.99 3.51 4.05 4.52

1000 2.97 3.53 ! 4.2 4.61

148

5 .-----------------------------------
~

4.5 t--*-:::~::;:==::---:::;;;;;;;-"*---*-'""":~
~ 4 +-~~~~~~~~~~~----~====~~~~~~--0

::c: 3.5 t-~=~=~ =~:;;;:;:::;:::;o--41---..._-1 3 +-~--~--==~=-~----+----.--
0 2.5 +--------------------------

~ 2 +----------------------t::
1:-l 1.5+---------------------

£ I c---------·-·----------------·--·-··-----··---

0.5 -----------------------------·-------·--

0 - ------·---r------,---------,-----··-.-----·--·----,-------·-··

100 200 400 600 800 1000

Intergrdi Size

-+-TTL=2

-+-TTL=3

...,.._TTL=4

~TTL=5

Figure 6.13 Average Hops for generated requests equivalent to 75% of the

intergrid size with different TTL values

Table 6.13 Average Hops (AH) for generated requests equivalent to 75% ofthe

intergrid size with different TTL values (2-5)

100 2.93 3.48 4.07 4.59

200 3 3.55 4.16 4.55

400 2.97 3.59 4.17 4.28

600 2.98 3.41 4.14 4.45

800 2.98 3.42 4.14 4.5

1000 2.98 3.46 4.22 4.65

149

5

4.5

"' 4 g.
::t: 3.5

'00~
""'

3

2.5

1

0.5

0

-
-+-TTL=2

-+-TTL= 3

- --·---------·-·-···-·---·------------··------·-------'--- -.~:-TTL= 4

--TTL=5

' '

100 200 400 600 800 1obo
Intergrid Size

I

Figure 6.14 Average Hops for generated requests equivalent to 100% of the

intergrid size with different TTL values

To further examine the performance of the proposed RD system, we conduct an

additional experiment specifically to check dynamicity of the system with regard to

node status. For this experiment, an intergrid size of 200 noqes with TTL value 5 has

been selected as an stable intergrid size. During the simulation, while 75% of the

nodes are generating their service requests, we ask the remaining 25% of the nodes to

leave the network and rejoin it later, after 20 second (simul~tion time) of leaving the
!

network. Then, these nodes will send their service requests (25%) to make the portion

of the generated requests 100% of the intergrid size. A control experiment was also

conducted i.e. by generating 100% service request of the same settings but without

any portion of the nodes having to leave the network. Table16.14 shows the result of

the experiment as well as the result of the control experiment. In the column of

intergrid size, the letter L marks the case where some nodes leave the intergrid,

whereas the letter W denotes for when no node left the intergrid. From these results,

it is noted that the RD system when 25% of the nodes left tP.e network has achieved

almost as much as the case when no node has left the system. In fact, the average

response time and hops are even lesser. This is because the time interval between the

150

requests by the first active node and the newly joint nodes (the nodes that left the

system before) allows the heads to respond faster than having all the requests

simultaneously. The flexibly of the joining process and the fault tolerance

mechanisms of the proposed RD enable it to sustain the dynamic nature of the

intergrid system.

Table 6. 14 Performance of the proposed RD system in node fault condition

200L 94.91% 28887ms 4.21

200W 94.94% 31137ms 4.55

With that, it is convincing that the proposed RD system is able to meet the

performance requirements for the intergrid RD system. This includes scalability,

decentralization and dynamism. From the service request hit rates obtained from

different intergrid sizes, we can see that the proposed RD system can scale with the

intergrid system as well. Decentralization feature of the proposed system has been

proven by the response time, which did not show a linear dependency on the scale of

the intergrid size. Lastly, the dynamism feature has been achieved by the fault

tolerance mechanism.

6.8 Comparative Study

Since the aim of the study is to provide an advance progress beyond the state-of-art in

this field, a comparative study to proof that is therefore needed, through which we can

show the scientific advancement that has been made. Consequently, we compare the

proposed RD system with the most promising scalable RDs that we have found in the

literature. The most scalable RD systems are the super-peer based RDs (Mastroianni

et al. 2005) and (Mastroianni et al. 2008) systems, which we have identified as the

good candidate for the intergrid level. In fact, our RD system is also an extension of

151

the super-peer model with the addition of the semantic technology into the

architecture and optimized discovery algorithm. Therefore, our comparative

simulation is done by simulating the same system with and without the use of

semantic technology. In the case of semantic technology, we have the implementation

of class formulation, head appointment, and so on are bast;d on the ontology, which

represent the proposed RD system. Meanwhile, in case of without the semantic

technology, we formulate the class, appoint the head and forward service request

messages without involving the ontology, which is the case of the super-peer model.

In order to have a fair comparison between the two situations, we set the intergrid

size in the range of 100 - 600 nodes as the stable range where the load balancing
I

mechanism has no much effect on the performance, which will easy the discussion

about the scalability of the systems. The random distribution of services to the nodes,

the assignment of the number of services in any nodes, and rhe random generation of

the service request for any given node are same in the two situations. The total

number of service requests that should be generated by the nodes is equal to their

sizes. Table 6.15 and figures 6.15 - 6.17 show the results of the two models in term of

service request hit, average response time and average reque~t forward hops.

Table 6.15 A comparison between the semantic super p~er/RD and the super

peer model

152

100
90

.._. 80 ·-:::r::
70 .._.

rfJ

~ 60
0'

~ 50
11) 40 u -+-Super-Peer ·- 30 c
11)

20 ~

-41- Semantic RD

10
0

100 200 400 600

Intergrid Size

Figure 6.15 Discovered Services for generated requests equivalent to 100% of the

intergrid obtained with the super-peer model and the semantic RD model

,-.., 40000
rfJ

5 35000

s 30000
~

11)
u

25000

§ 20000
0.,

~ 15000
t;; 10000 ! 5000 . -------------------------·--·--·····-·--

0 -------,--·---------,--,---··-,----·--·-,

100 200 400 600

Intergrid Size

-+-Super-Peer

-41- Semantic RD

Figure 6.16 Average Response Time with the super-peer model and the semantic

RD model

153

I

It is clear from figure 6.15 that the semantic RD system has a better request hit

rate compared to the super-peer model in all the intergridi sizes. This is because in

super-peer model the services in the classes are not organized in a particular relation,

instead they are based on their joining time to the network, which makes it difficult to

reach every node in the network. Meanwhile, the average ~esponse time of semantic

RD model is also slightly higher most of time compared to the super-peer model. This

because as the semantic RD model achieves high service request hit rate, it consumes
'

more time. The average number of the hops of semantic is also a bit higher compared
' the super-peer. This is due to the discovery algorithm of the semantic RD, which

optimizes the forwarding of messages in the network so that the service request can
I

reach more nodes while scoring high service request rate.

"'

5
4.5

§< 4
:I: 3.5

"00~ 3
2.5

>"-< 2
t;
g 1.5

~ 1
0.5

0

41"

100

/

/
--

' '
200 400 600

Intergrid Size

I

'

'

-+-Super-Peer

-o-Semantic RD

i

Figure 6.17 Average Hops obtained with the super-peer model and the semantic

RD model

In short, based on the results of the comparative study on the intergrid of 100, 200,

400 and 600 nodes the semantic RD has a better perform~ce than the super-peer

model, but we cannot go as far as to generalize these findings because further

investigation involving larger intergrid size than what we have used is needed.

154

7.1 Introduction

CHAPTER 7

CONCLUSION

This chapter concludes the thesis. Our aim has been to highlight the use of semantic

technology in grid RD technology, and to develop a semantic-based scalable

decentralized dynamic RD framework since it is very critical in intergrid system,

which is the recent advancement in the grid technology. For this, we have presented in

the first place an extensive review on the convergence of semantic technology and

grid with focus on the RD part. More specifically, we have examined the current

status of RD system using the semantic information, what have been achieved in

meeting the recent grid technology requirements and the future outlook of this field.

We then embarked on proposing the new RD framework. The framework has

included: a conceptual model for semantic description that treats the small grids of the

intergrid system as services (service grids) and their semantic representation has been

based on that, a semantic registry architecture that specifies semantically the

distribution of the service grids metadata directories and their management with

regard to scalability and dynamism of the service grids metadata, and an agent based

discovery algorithm that exploits the description model and the registry architecture to

search and select the service grids on behalf of the intergrid user. We have shown the

effectiveness of the framework through some discussions and analysis, and an

extensive simulation work which has confirmed the effectiveness of the framework.

In the following sections we summarize the contributions from this work, discuss the

limitations of the work and recommend some future work.

155

7.2 Contributions

The main contributions of the thesis are as follows:

• A systematic review study on the convergence of grid1 technology and semantic

technology.

This has included a discussion on the current semantic technology tools that have

been used in the grid RD studies (semantic-based RD systems) and what we think

will be useful for the grid technology in the future, key taxonomies for the

semantic-based grid RD studies that have been based on the implemented

semantic technology, an extensive qualitative evaluarion and analysis of the

semantic-based RD studies, a discussion on the future applications of the

semantic-based RD studies in the Emerging Grids and Cloud systems. With this

we have answered our first research question.

• An interoperable semantic description RD component, model for the intergrid

services metadata representation.

The model initially refined the architecture of the intergrid system by treating the

overall grid system as service. The model introduced , ontology as information

model for services representation, a formal service request formulation that is

known as goal-based service request formulation. The model also highlighted the
!

available tools to implement the semantic service metadata creation and service

request formulation, and the formal scenario that allows the model to work with

the current related grid information services by not posing to them an additional

overhead. Hence, we have answered our second researc~ question.

• A semantic distributed registry architecture for indexing the service metadata for

the discovery.

The architecture used super-peer model as an infrastructure to provide a

decentralized set of registries, introduced ontology as formal criteria for the

distribution of the registries. The architecture provided all the algorithms to build
!

the registries. This included the distribution scenario of intergrid nodes into

classes based on the semantic relation of the services that they provide, which is

known as the class formulation mechanism and all the related mechanisms for

156

maintaining the architecture such as, the subscription of new nodes, the fault

tolerance and load balancing. Thus, we have answered our third research question.

• An agent-based service search and selection algorithm.

The algorithm introduced intelligent agents as tools to hide the direct interaction

of user with the entire proposed RD framework. Thus, the algorithm used two

agents, one is to track the status of the services in the nodes and the second is to

formulate the service request. The algorithm uses the semantic description of the

services and the semantic registry architecture to search and select the specified

service request by the user in an optimized manner. Hence, we have answered the

fourth research question.

• An extensive experimental performance evaluation of the proposed RD

framework.

A set of simulations have been conducted, which examined the performance of the

new system by using the related performance metrics such as the response time

and service request hit. The result and discussion have confirmed that our new

framework has contributed some advancement in this field. By this, we have

answered the last research question.

7.3 Limitations and Future Work

As the nature of knowledge, every work has to have some limitations to ensure the

future research continuation in this field. Therefore, we identify the limitations of this

work as follows:

• The presented review study on the semantic-based grid RD system does not

include a quantitative evaluation and analysis due to the unavailability of the

required tools, therefore further quantitative studies are needed.

• The proposed semantic description model for the service grid metadata creation

and representation is yet to be implemented in a real intergrid system so that it can

be compared quantitatively with other related studies. Therefore, further

157

I

• collaboration with the information service communities on the creation of the

ontologies is recommended.

• We have simulated the proposed work as well as the comparative study for an

intergrid system with size of 1000 nodes as the maximum size due to limitation of

the computing platform resource. Therefore, further work to extend the simulator

to work in grid environment is required so that additional analysis on the proposed

system can be obtained.

158

REFERENCES

Andreasen T, Bulskov H, and Knappe R. 2003. From ontology over similarity to
query evaluation. In: Bernardi R, and Moortgat M, editors. 2nd CoLogNET
ElsNET Symposium - Questions and Answers: Theoretical and Applied
Perspectives. Amsterdam, Holland. p 39-50.

Andreozzi S, Bortoli ND, Fantinel S, Ghiselli A, Tortone G, and Vistoli C. 2005.
GridiCE: a monitoring service for Grid systems. Future Generation Computer
Systems 21(4):559-571.

Andreozzi S, Burke S, Donno F, Field L, Fisher S, Jensen J, Konya B, Litmaath M,
Mambelli M, Schopf JM and others. 2007. GLUE Schema Specifcation
version 1.3. GLUE Working Group. Report nr 14185.

Andreozzi S, Burke S, Ehm F, Field L, Galang G, Horat D, Konya B, Litmaath M,
Millar P, and Navarro J. 2009 -a. GLUE v. 2.0.1 - Reference Realizations to
SQL Schema. GLUE Working Group. Report nr 15517.

Andreozzi S, Burke S, Ehm F, Field L, Galang G, Konya B, Litmaath M, Millar P,
and Navarro J. 2009 -b. GLUE v. 2.0 - Reference Realization to XML
Schema. GLUE Working Group Report nr 15515.

Andreozzi S, BurkeS, Ehm F, Field L, Horat D, Konya B, Litmaath M, Millar P, and
Navarro J. 2009 -c. GLUE v. 2.0.1 - Reference Realizations to LDAP
Schema. GLUE Working Group. Report nr 5526.

Andrzejak A, and Xu Z. 2002. Scalable, Efficient Range Queries for Grid Information
Services. Proceeding 2nd International Conference on Peer-to-Peer Computing
(P2P 2002). p 33-40.

Asadzadeh P, Buyya R, Kei CL, Nayar D, and Venugopal S. 2005. Global Grids and
Software Toolkits: A Study of Four Grid Middleware Technologies. In: Yang
L, and Guo M, editors. High Performance Computing: Paradigm and
Infrastructure. New Jersey, USA: Wiley Press

Assuncao MD, Buyya R, and Venugopal S. 2008. InterGrid: a case for
internetworking islands of Grids. Concurrency and Computation: Practice &
Experience 20(8):997-1024.

159

!

Baker M, Buyya R, and Laforenza D. 2000. The Grid: Inte~ational Efforts in Global
Computing. Proceedings of the International Con!ference on Advances in
Infrastructure for Electronic Business, Science,and Education on the Internet
(SSGRR 2000). Aquila, Rome, Italy. 1

Baker MA, and Smith GC. 2003. GridRM: an extensible resource monitoring system.
Proceedings of the IEEE International Cluster Computing Conference. p 207-
214.

Balaton Z, and Gombas G. 2004. Resource and Job Monitoring in the Grid Lecture
Notes in Computer Science (LNCS): Springer Berlin p404-411.

!

Balis B, Bubak M, Szepieniec T, Wismiiller R, and Radecki M. 2004. Monitoring grid
applications with grid-enabled OMIS monitor. Grid Computing: Springer
Berlin I Heidelberg. p 558-567

Bechhofer S, and Goble C. 2001. Towards Annotation using DAML+OIL. K-CAP
2001 Workshop on Knowledge Markup and Semantic Annotation. Victoria
B.C-Canada: ACM. '

Berman F, Fox G, and Hey T. 2003. Grid Computing Making the Global
Infrastructure a Reality. Hutchison D, editor. West SJssex: John Wiley & Sons
Ltd.

Berners-Lee T, Hendler J, and Lassila 0. 2001. The Semantic Web. Scientific
American 284(4):34-43.

I

Bharambe AR, Agrawal M, and Seshan S. 2004. Mercury: supporting scalable multi-
attribute range queries. Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications.
Portland, Oregon, USA. p 353-366.

Bonnassieux F, Harakaly R, and Primet P. 2002. MapCenter: an open grid status
visualization tool. Proceedings of the ISCA 15th International Conference on
Parallel and Distributed Computing Systems. Louisville, KY, USA.

Brocco A, Malatras A, and Hirsbrunner B. 2010. Enabling efficient information
discovery in a self-structured grid. Future Generation Computer Systems
26(6):838-846.

Buyya R, and Murshed M. 2002. Gridsim: A toolkit for the modeling and simulation
of distributed management and scheduling for Grid computing. Concurrency
and Computation: Practice and Experience 14:13-15.

i

Buyya R, Yeo CS, Venugopal S, Broberg J, and Brandic I. 2009. Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Generation Computer System~ 25(6):599-616.

160

Cai M, Frank M, Chen J, and Szekely P. 2003. MAAN: A Multi-Attribute
Addressable Network for Grid Information Services. Proceeding 4th
International Workshop on Grid Computing (GRID 2003). p 184-191.

Chandrasekaran B, Josephson JR, and Benjamins VR. 1999. What are ontologies, and
why do we need them? IEEE Intelligent Systems 14(1):20-26.

Chao-Tung Y, Wen-Jen H, and Kuan-Chou L. 2009. A Resource Broker with Cross
Grid Information Services on Computational Multi-grid Environments.
Proceedings of the 9th International Conference on Algorithms and
Architectures for Parallel Processing. Taipei, Taiwan: Springer-Verlag.

Chervenak A, Foster I, Kesselman C, Salisbury C, and Tuecke S. 2000. The data grid:
Towards an architecture for the distributed management and analysis of large
scientific data sets. Journal ofNetwork and Computer Applications 23(3):187-
200.

Cooke A, Gray AJG, MaL, Nutt W, Magowan J, Oevers M, Taylor P, Byrom R,
Field L, Hicks S and others. 2003. R-GMA: An Information Integration
System for Grid Monitoring On The Move to Meaningful Internet Systems
2003: Coop IS, DOA, and ODBASE: Springer Berlin I Heidelberg. p 462-481.

Corcho 0, Alper P, Kotsiopoulos I, Missier P, Bechhofer S, and Goble C. 2006. An
overview of S-OGSA: A Reference Semantic Grid Architecture. Web
Semantics: Science, Services and Agents on the World Wide Web 4(2):102-
115.

Crespo A, and Garcia-Molina H. 2002. Routing Indices for Peer-to-Peer Systems.
Proceedings of 22nd International Conference on Distributed Computing
Systems (ICDCS'02). p 23-30.

Czajkowski K, and D.F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D.
Snelling, S. Tuecke, W. Vambenepe. 2004. The WS-Resource Framework.
http://www.globus.org/wsrf/.

Dinda P, Gross T, Karrer R, Lowekamp B, Miller N, Steenkiste P, and Sutherland D.
2001. The Architecture of the Remos System. Proceedings of the 1Oth IEEE
International Symposium on High Performance Distributed Computing: IEEE
Computer Society. p 252-265.

Edwards WK. 2006. Discovery systems in ubiquitous computing. IEEE Pervasive
Computing 5(2):70-77.

Erl T. 2005. Service-Oriented Architecture (SOA): Concepts, Technology, and
Design Crawfordsville, Indiana Prentice Hall

Fitzgerald S, Foster I, Kesselman C, Laszewski Gv, Smith W, and Tuecke S. 1997 A
directory service for configuring high-performance distributed computations.
6th IEEE Symposium on High Performance Distributed Computing: IEEE
Computer Society Press. p 365-375.

161

Flahive A, Taniar D, Rahayu W, and Apduhan BO. 2009. !Ontology tailoring in the
Semantic Grid. Computer Standards & Interfaces 31(5):870-885

I

Foster I, and Kesselman C. 1997. Globus: A Metacomputing Infrastructure Toolkit.
International Journal of High Performance Computing Applications
11(2):115-128.

Foster I, and Kesselman C. 2003. The Grid 2: Blueprint for a New Computing
Infrastructure. San Francisco: Morgan Kaufman.

Foster I, Kesselman C, and Tuecke S. 2001. The AnatoJy of the Grid Enabling
Scalable Virtual Organizations. International Journal Supercomputer
Applications 15(3):200-222.

Foster I, Kishimoto H, Savva A, Berry D, Djaoui A, Grimshaw A, Hom B, Maciel F,
Siebenlist F, Subramaniam R and others. 2005. The Open Grid Services
Architecture, Version 1.0. Open Grid Services Architecture WG. Report nr
GFD-1.030.

Garcia P, Pairot C, Mondejar R, Pujol J, Tejedor H, and Rallo R. 2005. PlanetSim: A
New Overlay Network Simulation Framework. 123-1f6 p.

Garzoglio G, Levshina T, Andreozzi S, Reddy S, Mambelli M, Roy A, Wang S, and
Wenaus T. 2008. GLUE Schema vl.2 I vl.3 Mapping to Old ClassAd Format
(vl.l).

Groleau W, Vlassov V, and Popov K. 2007. Towards Semantics-Based Resource
Discovery for the Grid. Integrated Research m GRID Computing:
springerlink. p 175-187.

Gruber TR. 1995. Toward principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies 43(5-6):907-928.

!

Han L, and Berry D. 2008. Semantic-supported and agent-based decentralized grid
resource discovery. Future Generation Computer Systems 24 (8):806-812.

Henri B, Raoul B, Rutger H, Ceriel J, Thilo K, Jason M, Rob van N, John R, Luc R,
Tim R and others. 2000. The distributed ASCI , Supercomputer project.
SIGOPS Oper Syst Rev 34(4):76-96.

Henri C, Arnaud L, and Martin Q. 2008. SimGrid: A Generic Framework for Large
Scale Distributed Experiments. Proceedings of ~he Tenth International
Conference on Computer Modeling and Simulation: IEEE Computer Society.

!

Horrocks I, Fensel D, Broekstra J, Decker S, Erdmann M, Goble C, Harmelen FV,
Klein M, Staab S, Studer R and others. 2000. The Ontology Inference Layer
OIL.

162

Howell F, and Ross M. 1998. Simjava: a discrete event simulation package for Java
with applications in computer systems modeling. . First International
Conference on Web-based Modeling and Simulation. San Diego CA: Society
for Computer Simulation.

Iamnitchi A, and Foster I. 2004. A peer-to-peer approach to resource location in Grid
environments. Grid resource management: state of the art and future trends:
Kluwer Academic Publishers. p 413-429.

Ivan R, Francese G, Julita C, Liana F, and Sadjadi SM. 2010. Grid broker selection
strategies using aggregated resource information. Future Generation Computer
Systems 26(1):72-86.

Jacek K, Tomas V, Carine B, and Joel F. 2007. SA WSDL: Semantic Annotations for
WSDL and XML Schema. IEEE Internet Computing 11(6):60-67.

James F, Todd T, Miron L, Ian F, and Steven T. 2001. Condor-G: A Computation
Management Agent for Multi-Institutional Grids. Proceedings of the lOth
IEEE International Symposium on High Performance Distributed Computing:
IEEE Computer Society.

Jennings NR. 2001. An agent-based approach for building complex software systems.
Communications of the ACM archive 44 (4):35- 41.

Jha S, Merzky A, and Fox G. 2009. Using Clouds to Provide Grids Higher-Levels of
Abstraction and Explicit Support for Usage Modes. Concurrency and
Computation: Practice and Experience 21 (3): I 087-1108

Kashani FB, Chen CC, and Shahabi C. 2004. WSPDS:Web services Peer-to-Peer
discovery service. In Proceedings International Conference on Internet
Computing (IC '04).

Kertesz A, and Kacsuk P. 2007. Grid Meta-Broker Architecture: Towards an
Interoperable Grid Resource Brokering Service. Euro-Par 2006: Parallel
Processing. p 112-115.

Kertesz A, and Kacsuk P. 2010. GMBS: A new middleware service for making grids
interoperable. Future Generation Computer Systems 26(4):542-553.

Kou Y, Yu G, Shen D, LiD, and Nie T. 2007. PS-GIS: personalized and semantics
based grid information services. Proceedings of the 2nd international
conference on Scalable information systems. Suzhou, China: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

Kovacevic A, Kaune S, Mukherjee P, Liebau N, and Steinmetz R. 2007.
Benchmarking Platform for Peer-to-Peer Systems , vol. 46, no. 3, 2007 .. it
Information Technology (Methods and Applications of Informatics and
Information Technology) 49(5):312-319.

163

Kurdi H, Li M, and Al-Raweshidy H. 2008. A Classification of Emerging and
Traditional Grid Systems. IEEE Distributed Systems Online 9(3):1.

!

Lamnitchi AL. 2003. Resource Discovery in Large Resource-Sharing Environments.
Illinois: The Univercity of Chicago. 1-1 p.

Li J, and Vuong S. 2005. Grid Resource Discovery Using Semantic Communities.
Grid and Cooperative Computing- GCC 2005: Sprirtger Berlin I Heidelberg. p
657-667.

Li J, and Vuong S. 2005 A Scalable Semantic Routing Architecture for Grid Resource
Discovery. Proceedings of the 11th International Conference on Parallel and
Distributed Systems IEEE Computer Society p29-3S

Li J, and Vuong S. 2006. Grid resource discovery based on semantic P2P
communities. Proceedings of the 2006 ACM symposium on Applied
computing. Dijon, France: ACM. p 754-758.

Lua K, Crowcroft J, Pias M, Sharma R, and Lim S. 2004. A survey and comparison of
peer-to-peer overlay network schemes. Communications Surveys and
Tutorials 7(2):72.

Ludwig SA, and Reyhani SMS. 2005. Introduction of semantic matchmaking to grid
computing. Journal ofParallel and Distributed Computing 65(12):1533-1541

Ludwig SA, and Reyhani SMS. 2006. Semantic approach to service discovery in a
Grid environment. Web Semantics: Science, Services and Agents on the
World Wide Web 4(1):1-13 !

Maciel FB. 2008. Guidelines for Information Modeling for OGSA Entities. Open Grid
Forum.

Marzolla M, and Mordacchini M. 2005. Resource discovery in a dynamic Grid
environment. 16th International Workshop on Database and Expert Systems
Applications (DEXA'05). .

Marzolla M, Mordacchini M, and Orlando S. 2007. Peer-to-peer systems for
discovering resources in a dynamic grid. Parallel Computing 33(4-5):339-358.

Massie ML, Chun BN, and Culler DE. 2004. Ganglia Distriouted Monitoring System:
Design, Implementation, and Experience. Parallel Computing 30(7): 817-840.

Mastroianni C, Talia D, and Verta 0. 2005. A super-peer model for resource
discovery services in large-scale Grids. Future Generation Computer Systems
21(8):1235-1248.

Mastroianni C, Talia D, and Verta 0. 2008. Designing an information system for
Grids: Comparing hierarchical, decentralized P2P !and super-peer models.
Parallel Computing 34(10):593-611

164

McGuinness DL, Fikes R, Hendler J, and Stein LA. 2002. DAML+OIL: An Ontology
Language for the Semantic Web. IEEE Intelligent Systems 17(5):72-80.

Meshkova E, Riihijarvi J, Petrova M, and Mahonen P. 2008. A survey on resource
discovery mechanisms, peer-to-peer and service discovery frameworks.
Computer Networks 52 (11):2097-2128.

Michael PP, Paolo T, Schahram D, and FrankL. 2007. Service-Oriented Computing:
State of the Art and Research Challenges. IEEE Computer 40(11):38-45.

Miller B, Callaghan M, Cargille J, Hollingsworth J, Irvin R, Karavanic K,
Kunchithapadam K, and Newhall T. 1995. The Paradyn Parallel Performance
Measurement Tool. IEEE Computer 28(11):37-46.

Nejdl W, Wolpers M, Siberski W, Schmitz C, Schlosser M, Brunkhorst I, and Loser
A. 2003. Super-peer-based routing and clustering strategies for RDF-based
peer-to-peer networks. Proceedings of the 12th International Conference on
World Wide Web WWW'03. p 536-543.

Newman HB, Legrand IC, Galvez P, Voicu R, and Cirstoiu C. 2003. MonALISA: a
distributed monitoring service architecture. Computing in High Energy and
Nuclear Physics (CHEP03) La Jolla, California.

Oppenheimer D, Albrecht J, Patterson D, and Vahdat A. 2004. Scalable wide-area
resource discovery. Univ. of California.

Padmanabhan A. 2006. SOG: A Self-Organized Grouping Infrastructure for Grid
Resource discovery [PhD Thesis]. Iowa: University of Iowa. 5 p.

Parkin M, Burghe Svd, Corcho 0, Snelling D, and Brooke J. 2006. The Knowledge of
the Grid: A Grid Ontology. 6th Cracow Grid Workshop. Poland: Cracow.

Pastore S. 2008. The service discovery methods issue: A web services UDDI
specification framework integrated in a grid environment. Journal of Network
and Computer Applications 31(2):93-107.

Perez A, Sanchez A, and Abawajy J. 2009. An agent architecture for managing data
resources in a grid environment. Future Generation Computer Systems 25
(7):747-755.

Pernas AM, and Dantas MAR. 2005. Using Ontology for Description of Grid
Resources. Proceedings of the 19th International Symposium on High
Performance Computing Systems and Applications (HPCS'05): IEEE Society
p223-229

Pulido JRG, Ruiz MAG, Herrera R, Cabello E, Legrand S, and Elliman D. 2006.
Ontology languages for the semantic web: A never completely updated
review. Knowledge-Based Systems 19 (7):489-497.

165

Puppin D, Moncelli S, Baraglia R, Tonelotto N, and Silvestri F. 2005. A Grid
I

Information Service Based on Peer-to- Peer. Lecture Notes in Computer
Science (LNCS): Springer-Verlag. p 454-464. ·

Rajiv R, Lipo C, Aaron H, Shanika K, and Rajkumar B. 2007. Decentralised Resource
Discovery Service for Large Scale Federated Grids. Proceedings of the Third
IEEE International Conference on e-Science and / Grid Computing: IEEE
Computer Society.

Ranjan R, Harwood A, and Buyya R. 2008. Peer-to-Peer Bflsed Resource Discovery
in Global Grids A Tutorial IEEE Communications Surveys & Tutorials
1 0(2):6-33.

Ratnasamy S, Francis P, Handley M, Karp RM, and Shenker S. 2001. A Scalable
Content-Addressable Network. Proceedings of ACM SIGCOMM 2001
Conference=- on Applications, Technologies, Archit~ctures, and Protocols for
Computer Communication. p 161-172.

Ratnasamy S, Hellerstein JM, and Shenker S. 2003. Range queries over DHTs. Intel
Corporation.

I

Resnik P. 1999. Semantic Similarity in a Taxonomy An Information-Based Measure
and its Application to Problems of Ambiguity in Natural Language. Journal of
Artificial Intelligence Research 11 95-130.

Ribler RL, Vetter JS, Simitci H, and Reed DA. 1998. Autopilot: Adaptive Control of
Distributed Applications. Proceedings of the 7th IEEE International
Symposium on High Performance Distributed Computing: IEEE Computer
Society.p 172-179.

Rodr MA, guez, and Max JE. 2003. Determining Semantic Similarity among Entity
Classes from Different Ontologies. IEEE Trans on Knowl and Data Eng
15(2):442-456. I

Rowstron A, and Druschel P. 2001. Pastry: Scalable, Decentralized Object Location
and Routing for Large Scale Peer-to-Peer Systems~ Proceeding IFIP/ACM
International Conference on Distributed Systems Platforms LNCS, Springer. p
329-350.

Ruay-Shiung C, and Min-Shuo H. 2010. A resource discovery tree using bitmap for
grids. Future Generation Computer Systems 26(1):29-37.

I

Said MP, and Kojima I. 2009. S-MDS: Semantic Monitoring and Discovery System.
Journal of Grid Computing 7(2):205-224.

Schmidt C, and Parashar M. 2003. Flexible Information Discovery in Decentralized
Distributed Systems. Proceedings of the 12th IEEE International Symposium
on High Performance Distributed Computing: IEEE Computer Society. p 226-
235.

166

Schader D, Fischbach K, and Schmitt C. 2005 Peer-to-Peer Computing: The
Evolution of a Disruptive Technology. Hershey, USA: Idea Group Publishing.
1-27 p.

Schopf JM, Pearlman L, Miller N, Kesselman C, Foster I, D'Arcy M, and
Chervenakand A. 2006. Monitoring the grid with the Globus Toolkit MDS4.
Journal of Physics: Conference Series 46(1):521.

Sheila AM, Tran Cao S, and Honglei Z. 2001. Semantic Web Services. IEEE
Intelligent Systems 16(2):46-53.

Shen H. 2009. A P2P-based intelligent resource discovery mechanism in Internet
based distributed systems. Journal of Parallel and Distributed Computing
69(2):197-209.

Smith W. 2002. A System for Monitoring and Management of Computational Grids.
Proceedings of the 2002 International Conference on Parallel Processing
(ICPP2002) IEEE Computer Society. p 55

Solomon M. 2004. The ClassAd Language Reference Manual Version 2.4.

Somasundaram TS, Balachandar RA, Kandasamy V, Buyya R, Raman R, Mohanram
N, and Varun S. 2006. Semantic-based Grid Resource Discovery and its
Integration with the Grid Service Broker. International Conference on
Advanced Computing and Communications (ADCOM 2006) p84-89.

Spence D, and Harris T. 2003. XenoSearch: Distributed Resource Discovery in the
XenoServer Open Platform. Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing: IEEE Computer
Society. p 216-225.

Srikumar V, Rajkumar B, and Lyle W. 2006. A Grid service broker for scheduling e
Science applications on global data Grids: Research Articles. Concurr Comput
: Pract Exper 18(6):685-699.

Stelling P, Foster I, Kesselman C, Lee C, and Laszewski Gv. 1999. A fault detection
service for wide area distributed computations Cluster Computing 2(2): 1386-
7857 (Print) 1573-7543 (Online).

Steven F. 2001. Grid Information Services for Distributed Resource Sharing.
Proceedings of the 1Oth IEEE International Symposium on High Performance
Distributed Computing: IEEE Computer Society.

Stokes EJ, Andreozzi S, Drescher M, and Savva A. 2008. Information and Data
Modeling in OGSA Grids. Open Grid Forum.

Subramaniam R, Nakata T, Itoh S, Oyanagi Y, Takefusa A, Anzaki T, Mizoguchi K,
Tazaki H, Mori T, Suzuki T and others. 2009. Guidelines of Requirements for
Grid Systems vl.O. Open Grid Forum.

167

Talia D, and Trunfio P. 2005. Peer-to-Peer protocols and Grid services for resource
discovery on Grids. In: Grandinetti L, editor. Grid Computing: The New
Frontier of High Performance Computing Elsevier Science.

!

Tarricone L, and Esposito A. 2004. Grid Computing for Electromagnetics. London:
Artech House. 88 p.

Tierney B, Aydt R, Gunter D, Smith W, Swany M, Taylor V, and Wolski R. 2002 A
Grid Monitoring Architecture. Global Grid Forum. !

Tierney B, Crowley B, Gunter D, Lee J, and Thompson M. 2001. A Monitoring
Sensor Management System for Grid Environments. Cluster Computing
4(1):19-28.

Tierney B, and Gunter D. 2003. NetLogger: a toolkit for distributed system
performance tuning and debugging. Proceedings Of the IFIP/IEEE Eighth
International Symposium on Integrated Network Management: IEEE Xplore.
p 97-100.

Trunfioa P, Taliaa D, Papadakisb H, Fragopouloub P, Mordacchinic M, Pennanend
M, Popove K, Vlassovf V, and Haridi S. 2007. Peer-to-Peer resource
discovery in Grids: Models and systems. Future Generation Computer
Systems 23(7):864-878.

Truong HL, and Fahringer T. 2004. SCALEA-G: A Unified Monitoring and
Performance Analysis System for the Grid Grid Computing: Springer Berlin I
Heidelberg. p 202-211.

Tuttle S, Ehlenberger A, Gorthi R, Leiserson J, Macbeth R, Owen N, Ranahandola S,
Storrs M, and Yang C. 2004. Understanding LDAP Design and
Implementation: IBM. '

Weiss G. 1999. Multiagent Systems: A Modem Approach to Distributed Artificial
Intelligence The MIT Press 1

Wolski R, Spring N, and Hayes J. 1999. The network weather service: a distributed
resource performance forecasting service for metacomputing. Future
Generation Computer Systems 15(5-6):757-768.

Wooldridge M. 2006. An Introduction to Multi-Agent Systems. Chichester: John
Wiley and Sons Limited.

Xing W, Corcho 0, Goble C, and Dikaiakos M. 2007. Active Ontology: An
Information Integration Approach for Highly Dynarrtic Information Sources
Europe Semantic Web Conference 2007 (ESWC-2007). Innsbruck, Austria.

168

Xing W, Corcho 0, Goble C, and Dikaiakos MD. 2010. An ActOn-based semantic
information service for Grids. Future Generation Computer Systems
26(3):324-336.

Xing W, Dikaiakos MD, and Sakellariou R. 2006. A Core Grid Ontology for the
Semantic Grid. Proceedings of the Sixth IEEE International Symposium on
Cluster Computing and the Grid: IEEE Computer Society.

Yang B, and Garcia-Molina H. 2003. Designing a Super-Peer Network. Proceedings
of the 19th International Conference on Data Engineering (ICDE' 03).
Bangalore, India: IEEE. p 49-60.

Yatin C, Sylvia R, Lee B, Nick L, and Scott S. 2003. Making gnutella-like P2P
systems scalable. Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications.
Karlsruhe, Germany: ACM.

Yeo CS, Buyya R, Assuncao MD, Yu J, Sulistio A, Venugopal S, and Placek. M.
2006. Utility Computing on Global Grids. In: Bidgoli H, editor. Handbook of
Computer Networks: John Wiley and Sons.

Zanikolas S, and Sakellariou R. 2005. A taxonomy of grid monitoring systems. Future
Generation Computer Systems 21(1):163-188.

Zhang Q, Cheng L, and Boutaba R. 2010. Cloud computing: state-of-the-art and
research challenges. Journal oflnternet Services and Applications 1(1):7-18.

Zhuge H. 2005. Semantic grid: scientific issues, infrastructure, and methodology.
Communications ofthe ACM 48(4):117- 119

169

APPENDIX A

Simulation Configuration File 1

<?xml version='l.O' encoding='utf-8'?>

<Configuration>

<!-- Here the variables are defined. They can be referred as
"&variable-name" and overridden via -->

<Default>

<Variable name="seed" value="O"/>

<Variable name="size" value="lOOO"/>

<Variable name="finishTime" value="Sm"/>
I

<Variable name="actions" value="config/SemanticRD
actions.dat"/>

<Variable name="gnpDataFile"
value="data/measured_data.xml" />

</Default>

<SimulatorCore
class="de.tud.kom.p2psim.impl.simengine.Simulator"
static="getinstance" seed="$seed" finishAt="$finishTime"
statusinterval="lh">

</SimulatorCore>

<NetLayer
1

class="de.tud.kom.p2psim.impl.network.simple.SimpleNetFactory"
downBandwidth="200" upBandwidth="lOO">

<LatencyModel
class="de.tud.kom.p2psim.impl.network.simple.SimpleStaticLatencyModel
" latency="lO"/>

170

</NetLayer>

<!--<NetLayer
class="de.tud.kom.p2psim.impl.network.gnp.GnpNetLayerFactory"
gnpFile="$gnpDataFile" downBandwidth="200" upBandwidth="l00">

<LatencyModel
class="de.tud.kom.p2psim.impl.network.gnp.GnpLatencyModel" />

</NetLayer> -->

<TransLayer
class="de.tud.kom.p2psim.impl.transport.DefaultTransLayerFactory"/>

<ComponentFactory
class="de.tud.kom.p2psim.impl.overlay.SemanticRD.SemanticRDOverlayNod
eFactory" />

<Monitor class="de.tud.kom.p2psim.impl.common.DefaultMonitor"
start="O" stop="$finishTime">

<Analyzer
class="de.tud.kom.p2psim.impl.overlay.SemanticRD.Analyzer.SemanticRDM
essageAnalyzer"/>

<Analyzer
class="de.tud.kom.p2psim.impl.overlay.SemanticRD.Analyzer.SemanticRDQ
ueryAnalyzer"/>

<Analyzer
class="de.tud.kom.p2psim.impl.overlay.SemanticRD.Analyzer.SemanticRDA
nalyzer"/>

</Monitor>

<HostBuilder
class="de.tud.kom.p2psim.impl.scenario.DefaultHostBuilder"
experimentSize="$size">

171

<Group groupiD="Groupl" size="10">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

<Group groupiD="Group2" size="198">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

<Group groupiD="Group3" size="198">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

<Group groupiD="Group4" size="198">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

<Group groupiD="Group5" size="198">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

172

<Group groupiD="Group6" size="198">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

</HostBuilder>

<Scenario
class="de.tud.kom.p2psim.impl.scenario.CSVScenarioFactory"

actionsFile="$actions"

componentClass="de.tud.kom.p2psim.impl.overlay.SemanticRD.Seman
ticRDOverlayNode">

</Scenario>

</Configuration>

Simulation Configuration File 2

<?xml version='l.O' encoding='utf-8 1 ?>

<Configuration>

<!-- Here the variables are defined. They can be referred as
"&variable-name" and overridden via -->

<Default>

<Variable name="seed" value="O"/>

<Variable name="size" value="400"/>

<Variable name="finishTime" value="5m"/>

173

<Variable name="actions" value="config/SemanticRD
actions.dat"/>

<Variable name="gnpDataFile"
value="data/measured_data.xml" />

</Default>

<SimulatorCore
class="de.tud.kom.p2psim.impl.simengine.Simulator"
static="getinstance" seed="$seed" finishAt="$finishTime"
statusinterval="lh">

</SimulatorCore>

<NetLayer
class="de.tud.kom.p2psim.impl.network.simple.SimpleNetFactory"
downBandwidth="200" upBandwidth="lOO"> 1

<LatencyModel
class="de.tud.kom.p2psim.impl.network.simple.SimpleStaticLatencyModel
" latency="10"/>

</NetLayer>

<l--<NetLayer .
class="de.tud.kom.p2psim.impl.network.gnp.GnpNetLkyerFactory"
gnpFile="$gnpDataFile" downBandwidth="200" upBandwidth="lOO">

<LatencyModel
class="de.tud.kom.p2psim.impl.network.gnp.GnpLatencyModel" />

</NetLayer> -->

<TransLayer
class="de.tud.kom.p2psim.impl.transport.DefaultTransLayerFactory"/>

<ComponentFactory
class="de.tud.kom.p2psim.impl.overlay.SemanticRD.SemanticRDOverlayNod
eFactory" />

174

<Monitor class="de.tud.kom.p2psim.impl.common.DefaultMonitor"
start="O" stop="$finishTime">

<Analyzer
class="de.tud.kom.p2psim.impl.overlay.SemanticRD.Analyzer.SemanticRDM
essageAnalyzer"/>

<Analyzer
class="de.tud.kom.p2psim.impl.overlay.SemanticRD.Analyzer.SemanticRDQ
ueryAnalyzer"/>

<Analyzer
class="de.tud.kom.p2psim.impl.overlay.SemanticRD.Analyzer.SemanticRDA
nalyzer"/>

</Monitor>

<HostBuilder
class="de.tud.kom.p2psim.impl.scenario.DefaultHostBuilder"
experimentSize="$size">

<Group groupiD="Groupl" size="10">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

<Group groupiD="Group2" size="78">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

<Group groupiD="Group3" size="78">

<NetLayer/>

<TransLayer/>

175

<ComponentFactory />

</Group>

<Group groupiD="Group4" size="78">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

<Group groupiD="GroupS" size="78">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

<Group groupiD="Group6" size="78">

<NetLayer/>

<TransLayer/>

<ComponentFactory />

</Group>

</HostBuilder>

<Scenario
class="de.tud.kom.p2psim.impl.scenario.CSVScenarioFactory"

actionsFile="$actions"

componentClass="de.tud.kom.p2psim.impl.overlay.SemanticRD.Seman
ticRDOverlayNode">

176

APPENDIXB

Sample of the Simulation Output File

SemanticRD-Analyzer

number of nodes

Lookups:

Average Delay:

Average Hops:

QueryMessages/Query:

1000

990.0 Succeeded; 820.0 Rate: 82.82828282828282
I

33176 ms

4.65

23.324242424242424

Load Balance Ratio Head: 1.093385711492276

Load Balance Ratio: 1.2056631892697467

180000000 Hops: 5.0 Delay: 40101 RDP: 2.227155696466509E-4

180000000 Hops: 6.0 Delay: 47115 RDP: 7.415014164305949

180000000 Hops: 5.0 Delay: 32780 RDP: 1.8205608971510833E-4

180000000 Hops: 5.0 Delay: 33523 RDP: 1.861899043938196E-4

180000000 Hops: 3.0 Delay: 16763 RDP: 9.311763054264948E-5

180000000 Hops: 5.0 Delay: 29443 RDP: 1.635228728361211E-4

180000000 Hops: 5.0 Delay: 35639 RDP: 1.979521981T615675E-4

178

180000000 Hops: 3.0 Delay: 17645 RDP: 14.16131621187801

180000000 Hops: 4.0 Delay: 31313 RDP: 1.7392395708890008E-4

180000000 Hops: 5.0 Delay: 35843 RDP: 1.9907696891137896E-4

180000000 Hops: 3.0 Delay: 28801 RDP: 5.564335394126739

180000000 Hops: 5.0 Delay: 38292 RDP: 2.1268548500713686E-4

180000000 Hops: 3.0 Delay: 25244 RDP: 5.079275653923541

180000000 Hops: 6.0 Delay: 34674 RDP: 1.925907461696123E-4

180000000 Hops: 4.0 Delay: 30192 RDP: 1.6768574691312184E-4

180000000 Hops: 3.0 Delay: 19947 RDP: 1.1080345027734747E-4

180000000 Hops: 6.0 Delay: 45656 RDP: 2.535780746097166E-4

180000000 Hops: 4.0 Delay: 24614 RDP: 3.156045646877805

180000000 Hops: 6.0 Delay: 39427 RDP: 2.1899074499021805E-4

180000000 Hops: 3.0 Delay: 14659 RDP: 8.143110045652522E-5

180000000 Hops: 5.0 Delay: 33694 RDP: 6.578289730573995

180000000 Hops: 4.0 Delay: 19927 RDP: 1.1067610587351712E-4

180000000 Hops: 5.0 Delay: 31691 RDP: 1.7601031746699542E-4

180000000 Hops: 6.0 Delay: 42963 RDP: 2.3862558064002777E-4

180000000 Hops: 4.0 Delay: 26819 RDP: 1.4897223847705235E-4

180000000 Hops: 4.0 Delay: 28109 RDP: 1.561284698523473E-4

180000000 Hops: 3.0 Delay: 19122 RDP: 4.565902578796561

180000000 Hops: 4.0 Delay: 31906 RDP: 8.02061337355455

180000000 Hops: 5.0 Delay: 32705 RDP: 1.8164107526917912E-4

180000000 Hops: 6.0 Delay: 41128 RDP: 2.284307481872364E-4

180000000 Hops: 4.0 Delay: 27476 RDP: 1.526204821808505E-4

180000000 Hops: 6.0 Delay: 36683 RDP: 2.0374978136042702E-4

180000000 Hops: 5.0 Delay: 33822 RDP: 1.8785092498946275E-4

180000000 Hops: 5.0 Delay: 32484 RDP: 1.8041247176244074E-4

180000000 Hops: 3.0 Delay: 17004 RDP: 22.2565445026178

180000000 Hops: 5.0 Delay: 35683 RDP: 1.981978773436692E-4

180000000 Hops: 6.0 Delay: 40491 RDP: 2.248935367293785E-4

180000000 Hops: 3.0 Delay: 18896 RDP: 4.034158838599487

180000000 Hops: 6.0 Delay: 41536 RDP: 2.306972096679282E-4

180000000 Hops: 6.0 Delay: 41486 RDP: 2.3042364742260408E-4

180000000 Hops: 3.0 Delay: 17363 RDP: 4.94531472514953

180000000 Hops: 3.0 Delay: 16274 RDP: 9.04013266741874E-5

180000000 Hops: 5.0 Delay: 39994 RDP: 2.221369384635469E-4

180000000 Hops: 6.0 Delay: 40857 RDP: 51.32788944723618

180000000 Hops: 5.0 Delay: 34153 RDP: 1.896978319547928E-4

180000000 Hops: 6.0 Delay: 49410 RDP: 3.936110889827133

179

I
180000000 Hops: 4.0 Delay: 27867 RDP: 1.5477707812957175E-4

180000000 Hops: 5.0 Delay: 33746 RDP: 1.8742310749855992E-4

180000000 Hops: 5.0 Delay: 41479 RDP: 2.303735383153338E-4

180000000 Hops: 5.0 Delay: 34394 RDP: 1.910350612767704E-4

180000000 Hops: 5.0 Delay: 30138 RDP: 1.6738662409587939E-4

180000000 Hops: 4.0 Delay: 20237 RDP: 1.123974042525686E-4

180000000 Hops: 3.0 Delay: 12413 RDP: 6.895455200089246E-5

180000000 Hops: 5.0 Delay: 34508 RDP: 1.916665890920938E-4

180000000 Hops: 5.0 Delay: 35387 RDP: 1.9654240110853312E-4

180000000 Hops: 4.0 Delay: 25433 RDP: 1.412590245288162E-4

180000000 Hops: 4.0 Delay: 27873 RDP: 1.5482170891305795E-4

180000000 Hops: 5.0 Delay: 33330 RDP: 1.8511582871799434E-4

180000000 Hops: 5.0 Delay: 34083 RDP: 1.893043061472584E-4

180000000 Hops: 5.0 Delay: 26940 RDP: 1.4962427395362576E-4

180000000 Hops: 5.0 Delay: 28829 RDP: 1.60119705g3426435E-4

180000000 Hops: 5.0 Delay: 27731 RDP: 1.5401787059394185E-4

180000000 Hops: 4.0 Delay: 31306 RDP: 1.7388520882346628E-4

180000000 Hops: 5.0 Delay: 30274 RDP: 24.296950240770464
i

180000000 Hops: 4. 0 Delay: 28746 RDP: 1. 596565716385524E-4

180000000 Hops: 5.0 Delay: 39159 RDP: 2.175002854764147E-4

180000000 Hops: 5.0 Delay: 28565 RDP: 1.586515212'753634E-4

180000000 Hops: 5.0 Delay: 33979 RDP: 1.8871586222996725E-4
I

180000000 Hops: 5.0 Delay: 42413 RDP: 2.355640891Q022138E-4

180000000 Hops: 3.0 Delay: 18496 RDP: 1.0274371034734929E-4

180000000 Hops: 6.0 Delay: 46372 RDP: 2.575517431S76989E-4

180000000 Hops: 3.0 Delay: 20521 RDP: 12.30275779~764988

180000000 Hops: 6.0 Delay: 45459 RDP: 2.5247823306225205E-4

180000000 Hops: 5.0 Delay: 32538 RDP: 1.8072021554726384E-4

180000000 Hops: 4.0 Delay: 27297 RDP: 1.5160745305282797E-4

180000000 Hops: 6.0 Delay: 42021 RDP: 2.333890478?694052E-4

180000000 Hops: 5.0 Delay: 38849 RDP: 2.1577385469274642E-4

180000000 Hops: 4.0 Delay: 27866 RDP: 1.5477397051731932E-4
I

180000000 Hops: 6.0 Delay: 43247 RDP: 52.676004872107185

180000000 Hops: 5.0 Delay: 42602 RDP: 2.3661447157590764E-4

180000000 Hops: 6.0 Delay: 42849 RDP: 2.3799319631277784E-4

180000000 Hops: 5.0 Delay: 38831 RDP: 2.156752656433773E-4
I

180000000 Hops: 3.0 Delay: 12442 RDP: 6.91151425277893E-5

180000000 Hops: 5.0 Delay: 42571 RDP: 2.3644490218381424E-4

180000000 Hops: 5.0 Delay: 40600 RDP: 2.2550331896451365E-4

180

180000000 Hops: 6.0 Delay: 34300 RDP: 1.905091157834314E-4

180000000 Hops: 4.0 Delay: 30375 RDP: 3.9310210948621718

180000000 Hops: 5.0 Delay: 48816 RDP: 52.88840736728061

180000000 Hops: 4.0 Delay: 39316 RDP: 2.1836857755482835E-4

180000000 Hops: 5.0 Delay: 46428 RDP: 7.326495186997001

180000000 Hops: 5.0 Delay: 41031 RDP: 2.2789237994386876E-4

180000000 Hops: 5.0 Delay: 40417 RDP: 2.2447713024197866E-4

180000000 Hops: 5.0 Delay: 29984 RDP: 1.6654630237714297E-4

180000000 Hops: 5.0 Delay: 36225 RDP: 14.95664739884393

180000000 Hops: 4.0 Delay: 28500 RDP: 1.5830734190624802E-4

180000000 Hops: 4.0 Delay: 27591 RDP: 1.5324148138208475E-4

180000000 Hops: 5.0 Delay: 32521 RDP: 1.8062575724964617E-4

180000000 Hops: 6.0 Delay: 41500 RDP: 4.179675697451908

180000000 Hops: 6.0 Delay: 55076 RDP: 3.0588173431188976E-4

180000000 Hops: 6.0 Delay: 44162 RDP: 23.169989506820567

180000000 Hops: 3.0 Delay: 12295 RDP: 6.829968026528207E-5

180000000 Hops: 6.0 Delay: 40975 RDP: 2.2758138792254817E-4

180000000 Hops: 5.0 Delay: 35814 RDP: 1.9891735173988115E-4

180000000 Hops: 5.0 Delay: 36041 RDP: 2.00185967826253E-4

180000000 Hops: 5.0 Delay: 35068 RDP: 1.947637433262677E-4

180000000 Hops: 6.0 Delay: 37052 RDP: 2.0579537482393295E-4

180000000 Hops: 5.0 Delay: 40555 RDP: 2.2524187842518098E-4

180000000 Hops: 4.0 Delay: 39537 RDP: 2.195958940116699E-4

180000000 Hops: 5.0 Delay: 37166 RDP: 2.0642578027053752E-4

180000000 Hops: 3.0 Delay: 25590 RDP: 4.9088816420487245

180000000 Hops: 5.0 Delay: 41097 RDP: 67.81683168316832

180000000 Hops: 3.0 Delay: 19105 RDP: 1.0612751084053222E-4

180000000 Hops: 4.0 Delay: 32778 RDP: 1.820491698490096E-4

180000000 Hops: 3.0 Delay: 8729 RDP: 4.849019912751083E-5

180000000 Hops: 6.0 Delay: 30162 RDP: 1.6753455866849786E-4

180000000 Hops: 3.0 Delay: 11128 RDP: 3.2509494595384165

180000000 Hops: 3.0 Delay: 8375 RDP: 4.652387700915654E-5

180000000 Hops: 5.0 Delay: 41129 RDP: 12.489826905557242

180000000 Hops: 6.0 Delay: 38108 RDP: 2.1166345273291215E-4

180000000 Hops: 5.0 Delay: 36794 RDP: 2.043542132216443E-4

180000000 Hops: 5.0 Delay: 38532 RDP: 2.1401369708767248E-4

180000000 Hops: 5.0 Delay: 37373 RDP: 30.91232423490488

180000000 Hops: 5.0 Delay: 33426 RDP: 1.8565273384536706E-4

180000000 Hops: 4.0 Delay: 31474 RDP: 1.7481444988004904E-4

181

180000000 Hops: 6o0 Delay: 42217 RDP: 2o344785119747138E-4

180000000 Hops: 300 Delay: 25582 RDP: 90126650017838031
!

180000000 Hops: 3o0 Delay: 13846 RDP: 7o691503579404453E-5

180000000 Hops: 6o0 Delay: 39855 RDP: 2o2136526934054694E-4

180000000 Hops: 3o0 Delay: 20575 RDP: 1.1429229d66530951E-4

180000000 Hops: 300 Delay: 14392 RDP: 7o99472739062819E-5

180000000 Hops: 6o0 Delay: 44734 RDP: 182058775510204083

180000000 Hops: 5o 0 Delay: 37208 RDP: 2 o 06660249j7274282E-4
'

180000000 Hops: 5o0 Delay: 36359 RDP: 2o019528320633978E-4

180000000 Hops: 600 Delay: 37732 RDP: 2o0957118465305305E-4

180000000 Hops: 5o0 Delay: 38197 RDP: 2o1215125544172525E-4
!

180000000 Hops: 6o0 Delay: 34871 RDP: 1o9368565652764014E-4

180000000 Hops: 5o0 Delay: 40508 RDP: 110517770827409723

180000000 Hops: 5o0 Delay: 31585 RDP: 1o75429037~4083887E-4

180000000 Hops: 6o0 Delay: 38155 RDP: 2o119222250599478E-4

180000000 Hops: 5o0 Delay: 29733 RDP: 3105302226~3531282

180000000 Hops: 4o0 Delay: 35261 RDP: 1o958458855451562E-4

180000000 Hops: 6o0 Delay: 44242 RDP: 126004558404558405

180000000 Hops: 600 Delay: 39258 RDP: 2o180495033691781E-4
I

180000000 Hops: 3o0 Delay: 25095 RDP: 22044633273703041

180000000 Hops: 3o0 Delay: 20733 RDP: 602411198073449725

180000000 Hops: 5o0 Delay: 43537 RDP: 2o4179515807542428E-4

180000000 Hops: 4o0 Delay: 31900 RDP: 1o771750828228252E-4

180000000 Hops: 5o0 Delay: 42074 RDP: 2o336832518884569E-4

180000000 Hops: 5o0 Delay: 42200 RDP: 5087661885531263
I

180000000 Hops: 6o0 Delay: 45327 RDP: 2o5175281515960843E-4

180000000 Hops: 5o0 Delay: 34670 RDP: 1o925614420267119E-4

180000000 Hops: 5o0 Delay: 38311 RDP: 2o127820666201206E-4

180000000 Hops: 3o0 Delay: 9737 RDP: 5o408967073050431E-5

180000000 Hops: 5o0 Delay: 34960 RDP: 1o9416268007901288E-4

180000000 Hops: 5o0 Delay: 37417 RDP: 2o07820687l1000684E-4

180000000 Hops: 6o0 Delay: 53069 RDP: 70085313751668892

180000000 Hops: 4o0 Delay: 30164 RDP: 1o6754800263606487E-4

180000000 Hops: 3o0 Delay: 15836 RDP: 8o796788139112128E-5

180000000 Hops: 5o0 Delay: 31267 RDP: 1o7365508945705834E-4

180000000 Hops: 500 Delay: 34508 RDP: 1o916624980'4806454E-4

180000000 Hops: 6o0 Delay: 40225 RDP: 2o23411547316948247E-4

180000000 Hops: 3o0 Delay: 18119 RDP: 5o757546870034954

180000000 Hops: 6o0 Delay: 49653 RDP: 52o65429480f817606

182

180000000 Hops: 4.0 Delay: 30088 RDP: 9.62816

180000000 Hops: 5.0 Delay: 31015 RDP: 1.7225737803787467E-4

180000000 Hops: 5.0 Delay: 43454 RDP: 2.4133940247076475E-4

180000000 Hops: 4.0 Delay: 33796 RDP: 4.354032465859315

180000000 Hops: 5.0 Delay: 31490 RDP: 1.7490613222788067E-4

180000000 Hops: 3.0 Delay: 8908 RDP: 4.948565939977239E-5

180000000 Hops: 6.0 Delay: 34880 RDP: 1.93734249997009E-4

180000000 Hops: 5.0 Delay: 42171 RDP: 2.3422218052446706E-4

180000000 Hops: 3.0 Delay: 19955 RDP: 1.1084845775965785E-4

180000000 Hops: 5.0 Delay: 38786 RDP: 2.1542378659286353E-4

180000000 Hops: 6.0 Delay: 38630 RDP: 2.1455459385517976E-4

180000000 Hops: 5.0 Delay: 33927 RDP: 1.8844278777373506E-4

180000000 Hops: 6.0 Delay: 47750 RDP: 19.77225672877847

180000000 Hops: 5.0 Delay: 37407 RDP: 25.726960110041265

180000000 Hops: 6.0 Delay: 45151 RDP: 15.248564674096588

180000000 Hops: 5.0 Delay: 34918 RDP: 1.9394011510483018E-4

180000000 Hops: 6.0 Delay: 42157 RDP: 2.3414928167819223E-4

180000000 Hops: 5.0 Delay: 36791 RDP: 2.0433227975386734E-4

180000000 Hops: 5.0 Delay: 33608 RDP: 1.8666447195576813E-4

180000000 Hops: 4.0 Delay: 27762 RDP: 1.5419994818788427E-4

180000000 Hops: 4.0 Delay: 25961 RDP: 1.4420159797766494E-4

180000000 Hops: 5.0 Delay: 45802 RDP: 9.53413821815154

180000000 Hops: 4.0 Delay: 29211 RDP: 6.161358363214512

180000000 Hops: 3.0 Delay: 21004 RDP: 1.1667462347159243E-4

180000000 Hops: 6.0 Delay: 45574 RDP: 2.5311848960586034E-4

180000000 Hops: 5.0 Delay: 38986 RDP: 2.1653666986796874E-4

180000000 Hops: 4.0 Delay: 30705 RDP: 1.7054212467127526E-4

180000000 Hops: 5.0 Delay: 37997 RDP: 2.1103926588349848E-4

180000000 Hops: 4.0 Delay: 34595 RDP: 1.9214707698751574E-4

180000000 Hops: 6.0 Delay: 47001 RDP: 33.23974540311174

180000000 Hops: 5.0 Delay: 38917 RDP: 2.1614356918230688E-4

180000000 Hops: 6.0 Delay: 36833 RDP: 2.045782777903744E-4

180000000 Hops: 3.0 Delay: 20066 RDP: 1.1146405779075326E-4

180000000 Hops: 6.0 Delay: 41391 RDP: 2.298882354169278E-4

180000000 Hops: 4.0 Delay: 28236 RDP: 1.5682306375626773E-4

180000000 Hops: 5.0 Delay: 33562 RDP: 1.8640285014967574E-4

180000000 Hops: 5.0 Delay: 39804 RDP: 2.2106951056563305E-4

180000000 Hops: 3.0 Delay: 16479 RDP: 9.15411571242218E-5

180000000 Hops: 3.0 Delay: 13154 RDP: 7.30722522976332E-5

183

180000000 Hops: 6.0 Delay: 37927 RDP: 2.10658405i52310158E-4

180000000 Hops: 3.0 Delay: 20744 RDP: 13.6383957,92241946

180000000 Hops: 4.0 Delay: 25386 RDP: 1.4100831689115777E-4

180000000 Hops: 3.0 Delay: 22617 RDP: 7.386348791639452

180000000 Hops: 5.0 Delay: 43625 RDP: 2.42293204~0235727E-4
180000000 Hops: 3.0 Delay: 16730 RDP: 13.690671031096564

180000000 Hops: 5.0 Delay: 36086 RDP: 2.0042792133234636E-4

180000000 Hops: 4.0 Delay: 26384 RDP: 1.465495759402167E-4
i

180000000 Hops: 3.0 Delay: 13580 RDP: 2.730197024527543

180000000 Hops: 6.0 Delay: 32011 RDP: 1.7780651921206632E-4

180000000 Hops: 3.0 Delay: 9803 RDP: 2.12969802302846

180000000 Hops: 5.0 Delay: 30055 RDP: 1.6692556003664242E-4
I

180000000 Hops: 6.0 Delay: 40715 RDP: 2.2614058027089703E-4

180000000 Hops: 5.0 Delay: 31523 RDP: 1.7507501016971263E-4

180000000 Hops: 5.0 Delay: 32355 RDP: 1.7971163156666053E-4

180000000 Hops: 5.0 Delay: 39013 RDP: 2.1668448061960797E-4
!

180000000 Hops: 4.0 Delay: 39008 RDP: 2.1665941015753057E-4

180000000 Hops: 4.0 Delay: 33375 RDP: 1.853795135224982E-4

180000000 Hops: 3.0 Delay: 15763 RDP: 8.756345906582438E-5

180000000 Hops: 4.0 Delay: 28405 RDP: 1.57773850q2387187E-4

180000000 Hops: 4.0 Delay: 27863 RDP: 1.5476819317941133E-4

180000000 Hops: 4.0 Delay: 30663 RDP: 1.7030752814094045E-4

180000000 Hops: 3.0 Delay: 16012 RDP: 2.0009997500624843

180000000 Hops: 6.0 Delay: 36710 RDP: 5.64161672q454895

180000000 Hops: 4.0 Delay: 36407 RDP: 2.0221179502450122E-4

180000000 Hops: 6.0 Delay: 48627 RDP: 13.744205765969474

180000000 Hops: 5.0 Delay: 39114 RDP: 18.511121628017037

180000000 Hops: 6. 0 Delay: 42166 RDP: 25.173731341328358

180000000 Hops: 3.0 Delay: 20521 RDP: 23.641705069124423

180000000 Hops: 5.0 Delay: 35440 RDP: 1.968405273584339E-4

180000000 Hops: 4.0 Delay: 37910 RDP: 2.1055209102053039E-4

180000000 Hops: 5.0 Delay: 46657 RDP: 2.591344936!7920836E-4

180000000 Hops: 5.0 Delay: 33279 RDP: 1.848377810890605E-4

180000000 Hops: 3.0 Delay: 21770 RDP: 10.542372881355933

180000000 Hops: 3.0 Delay: 10264 RDP: 5.7017561670084154E-5
!

180000000 Hops: 4.0 Delay: 28669 RDP: 1.5924085796590297E-4

180000000 Hops: 4.0 Delay: 34114 RDP: 1.8946853841706772E-4

180000000 Hops: 6.0 Delay: 44318 RDP: 2.461384346359776E-4

180000000 Hops: 4.0 Delay: 26419 RDP: 1.4673031930370284E-4
I

184

180000000 Hops: 5.0 Delay: 35069 RDP: 1.9477115347521468E-4

180000000 Hops: 5.0 Delay: 30955 RDP: 1.7194260988385334E-4

180000000 Hops: 5.0 Delay: 27199 RDP: 1.5107473547021556E-4

180000000 Hops: 6.0 Delay: 39067 RDP: 2.1697976913445872E-4

180000000 Hops: 6.0 Delay: 43732 RDP: 8.094021839718675

180000000 Hops: 3.0 Delay: 19480 RDP: 1.0820912230564354E-4

180000000 Hops: 5.0 Delay: 38822 RDP: 2.1561631035916793E-4

180000000 Hops: 5.0 Delay: 28678 RDP: 1.5927601182685758E-4

180000000 Hops: 5.0 Delay: 29818 RDP: 1.6560466064321043E-4

180000000 Hops: 5.0 Delay: 29543 RDP: 1.640909174880127E-4

180000000 Hops: 6.0 Delay: 38969 RDP: 2.1644500840452486E-4

180000000 Hops: 4.0 Delay: 34350 RDP: 2.683803422142355

180000000 Hops: 3.0 Delay: 21844 RDP: 8.479813664596273

180000000 Hops: 4.0 Delay: 24799 RDP: 1.3773379296360989E-4

180000000 Hops: 3.0 Delay: 15531 RDP: 8.627493446846282E-5

180000000 Hops: 3.0 Delay: 20731 RDP: 9.288082437275985

180000000 Hops: 5.0 Delay: 31944 RDP: 1.7741300021972798E-4

180000000 Hops: 3.0 Delay: 29720 RDP: 3.9069278296306034

180000000 Hops: 4.0 Delay: 31155 RDP: 1.7304772395724792E-4

180000000 Hops: 4.0 Delay: 22844 RDP: 2.8630154154655973

180000000 Hops: 5.0 Delay: 31100 RDP: 1.7273530888280774E-4

180000000 Hops: 4.0 Delay: 34523 RDP: 1.9175213007578478E-4

180000000 Hops: 4.0 Delay: 38615 RDP: 2.1447720047928476E-4

180000000 Hops: 5.0 Delay: 39517 RDP: 2.1947563113475962E-4

180000000 Hops: 3.0 Delay: 22076 RDP: 5.899518973810796

180000000 Hops: 5.0 Delay: 35373 RDP: 11.894082044384668

180000000 Hops: 6.0 Delay: 48507 RDP: 21.44429708222812

180000000 Hops: 5.0 Delay: 40412 RDP: 2.2445179224328443E-4

180000000 Hops: 5.0 Delay: 32880 RDP: 1.8262237262475526E-4

180000000 Hops: 5.0 Delay: 32596 RDP: 1.8104366015938862E-4

180000000 Hops: 5.0 Delay: 34860 RDP: 1.9362066132186625E-4

180000000 Hops: 5.0 Delay: 31418 RDP: 1.7450197841854085E-4

180000000 Hops: 6.0 Delay: 44217 RDP: 14.699800531914894

180000000 Hops: 4.0 Delay: 28541 RDP: 1.5853307013396153E-4

180000000 Hops: 4.0 Delay: 30229 RDP: 1.6789696128661203E-4

180000000 Hops: 5.0 Delay: 31989 RDP: 1.7767220321074538E-4

180000000 Hops: 3.0 Delay: 18860 RDP: 31.019736842105264

180000000 Hops: 4.0 Delay: 26776 RDP: 1.4871433855043553E-4

180000000 Hops: 5.0 Delay: 34021 RDP: 1.8895999100305836E-4

185

180000000 Hops: 5.0 Delay: 38487 RDP: 2.1376222261613423E-4

180000000 Hops: 6.0 Delay: 40696 RDP: 2.2603042737457304E-4

180000000 Hops: 5.0 Delay: 42248 RDP: 2.34650143789307E-4

180000000 Hops: 6.0 Delay: 39242 RDP: 2.179529479452525E-4

180000000 Hops: 6.0 Delay: 52925 RDP: 2.9394097210969756E-4

180000000 Hops: 3.0 Delay: 24238 RDP: 2.7659477347940205

180000000 Hops: 6.0 Delay: 45747 RDP: 2.540853550393368E-4

180000000 Hops: 4.0 Delay: 26058 RDP: 1.44729350G1576623E-4

180000000 Hops: 5.0 Delay: 35133 RDP: 1.9513608004746052E-4

180000000 Hops: 5.0 Delay: 38900 RDP: 2.1604827227085296E-4

180000000 Hops: 4.0 Delay: 27536 RDP: 1.5293671172173529E-4
i

180000000 Hops: 4.0 Delay: 32579 RDP: 6.437265362576566

180000000 Hops: 3.0 Delay: 26935 RDP: 10.272692601067886

180000000 Hops: 3.0 Delay: 17475 RDP: 42.518248175182485

180000000 Hops: 5.0 Delay: 37978 RDP: 2.1093522345245553E-4

180000000 Hops: 5.0 Delay: 40517 RDP: 2.250298358782323E-4

180000000 Hops: 5.0 Delay: 35498 RDP: 1.971652789466573E-4

180000000 Hops: 6.0 Delay: 38817 RDP: 2.15596426683485E-4

180000000 Hops: 6.0 Delay: 40038 RDP: 4.730946472881957

180000000 Hops: 6.0 Delay: 50658 RDP: 6.492118415993849

180000000 Hops: 4.0 Delay: 20673 RDP: 2.2812844846612226

180000000 Hops: 6.0 Delay: 44139 RDP: 2.4515259739729575E-4

180000000 Hops: 5.0 Delay: 47432 RDP: 4.729956122
1

856003

180000000 Hops: 6.0 Delay: 42158 RDP: 2.341515247514291E-4

180000000 Hops: 4.0 Delay: 28451 RDP: 1.5802428794037016E-4

180000000 Hops: 4.0 Delay: 36689 RDP: 2.0377743343075186E-4

180000000 Hops: 6. 0 Delay: 48693 RDP: 32. 35415282j3920266

180000000 Hops: 3.0 Delay: 24761 RDP: 4.88478989938844

180000000 Hops: 6.0 Delay: 56028 RDP: 20.478070175438596

180000000 Hops: 4.0 Delay: 29492 RDP: 1.638086158599644E-4

180000000 Hops: 6.0 Delay: 37333 RDP: 2.0735756840628038E-4

180000000 Hops: 5.0 Delay: 34052 RDP: 1.8912975142956477E-4

180000000 Hops: 4.0 Delay: 19804 RDP: 1.0999237151473059E-4
I

180000000 Hops: 5.0 Delay: 46354 RDP: 6.210342979635584

180000000 Hops: 5.0 Delay: 35350 RDP: 1.96333539191965E-4

180000000 Hops: 3.0 Delay: 13271 RDP: 7.372092132253411E-5

180000000 Hops: 6.0 Delay: 40390 RDP: 2.2433264370994095E-4
I

180000000 Hops: 6.0 Delay: 46102 RDP: 14.185230769230769

180000000 Hops: 6.0 Delay: 39739 RDP: 2.207167230022233E-4

186

180000000 Hops: 4.0 Delay: 26614 RDP: 1.478205713536685E-4

180000000 Hops: 3.0 Delay: 13682 RDP: 4.3065785332074284

180000000 Hops: 3.0 Delay: 22549 RDP: 9.902942468159859

180000000 Hops: 5.0 Delay: 41745 RDP: 20.635195254572416

180000000 Hops: 4.0 Delay: 36815 RDP: 2.0447801464494703E-4

180000000 Hops: 3.0 Delay: 22203 RDP: 11.879614767255216

180000000 Hops: 4.0 Delay: 32151 RDP: 1.7857378911574677E-4

180000000 Hops: 5.0 Delay: 39143 RDP: 2.1741224408571545E-4

180000000 Hops: 6.0 Delay: 33206 RDP: 1.844271248679328E-4

180000000 Hops: 6.0 Delay: 43336 RDP: 53.30381303813038

180000000 Hops: 3.0 Delay: 26860 RDP: 9.230240549828178

180000000 Hops: 6.0 Delay: 33091 RDP: 1.8380276245592817E-4

180000000 Hops: 6.0 Delay: 47518 RDP: 2.639171239580597E-4

180000000 Hops: 5.0 Delay: 33311 RDP: 1.8501390378570517E-4

180000000 Hops: 6.0 Delay: 48584 RDP: 2.698212186731034E-4

180000000 Hops: 6.0 Delay: 36783 RDP: 2.0429699400992084E-4

180000000 Hops: 6.0 Delay: 40894 RDP: 2.2713221687708674E-4

180000000 Hops: 5.0 Delay: 40998 RDP: 2.277104019564588E-4

180000000 Hops: 5.0 Delay: 49119 RDP: 3.962807583703106

180000000 Hops: 3.0 Delay: 21105 RDP: 24.9468085106383

180000000 Hops: 5.0 Delay: 33925 RDP: 1.884322892327496E-4

180000000 Hops: 5.0 Delay: 33476 RDP: 1.859221230231515E-4

180000000 Hops: 3.0 Delay: 23036 RDP: 4.951848667239897

180000000 Hops: 5.0 Delay: 37238 RDP: 2.068254716160061E-4

180000000 Hops: 5.0 Delay: 37352 RDP: 2.0745785322255798E-4

180000000 Hops: 6.0 Delay: 39663 RDP: 2.2029381895689325E-4

180000000 Hops: 6.0 Delay: 36686 RDP: 2.0375822679533654E-4

180000000 Hops: 3.0 Delay: 23390 RDP: 18.373919874312648

180000000 Hops: 4.0 Delay: 28953 RDP: 1.608164027731873E-4

180000000 Hops: 5.0 Delay: 41658 RDP: 2.3136996495609795E-4

180000000 Hops: 5.0 Delay: 33853 RDP: 1.8802769726351023E-4

180000000 Hops: 3.0 Delay: 15201 RDP: 8.444174112859683E-5

180000000 Hops: 5.0 Delay: 33679 RDP: 1.8705127223717858E-4

180000000 Hops: 6.0 Delay: 45319 RDP: 111.34889434889435

180000000 Hops: 5.0 Delay: 36616 RDP: 2.0337127319892427E-4

180000000 Hops: 5.0 Delay: 45683 RDP: 40.4991134751773

180000000 Hops: 4.0 Delay: 25102 RDP: 1.394169231261573E-4

180000000 Hops: 3.0 Delay: 17198 RDP: 9.553392615917432E-5

180000000 Hops: 5.0 Delay: 38180 RDP: 2.1205618266935023E-4

187

180000000 Hops: 3.0 Delay:

180000000 Hops: 6.0 Delay:

6228 RDP: 3.459733331i43108E-5

45096 RDP: 2.50466981F4687564E-4

180000000 Hops: 5.0 Delay: 32194 RDP: 1.7881023411493876E-4

180000000 Hops: 4.0 Delay: 32679 RDP: 15.473011363636363

180000000 Hops: 5.0 Delay: 37653 RDP: 2.0912598866361967E-4

180000000 Hops: 5.0 Delay: 40480 RDP: 2.248295413842815E-4

18ooooooo Hops: 6.o Delay: 47285 RDP: 22.4845458f682834

180000000 Hops: 4.0 Delay: 18017 RDP: 1.0008166290407311E-4

180000000 Hops: 5.0 Delay: 39994 RDP: 2.2213455724434867E-4

180000000 Hops: 5.0 Delay: 41130 RDP: 2.2844498663980069E-4

180000000 Hops: 5.0 Delay: 36471 RDP: 2.0256101865348658E-4

180000000 Hops: 3.0 Delay: 22162 RDP: 3.0797665369649807

180000000 Hops: 6.0 Delay: 46681 RDP: 2.592644353448477E-4
!

180000000 Hops: 3.0 Delay: 14599 RDP: 8.109723813270462E-5

180000000 Hops: 6.0 Delay: 36705 RDP: 2.0386065821594027E-4

180000000 Hops: 6.0 Delay: 43260 RDP: 2.4026575058212375E-4

180000000 Hops: 4.0 Delay: 45558 RDP: 4.0331090651558075

180000000 Hops: 6.0 Delay: 45260 RDP: 11.945104249142254

180000000 Hops: 4.0 Delay: 14114 RDP: 7.83904021J888288E-5
I

180000000 Hops: 4.0 Delay: 30141 RDP: 1.6741646462195328E-4

180000000 Hops: 6.0 Delay: 41996 RDP: 2.3325167858340805E-4

180000000 Hops: 6.0 Delay: 51048 RDP: 6.429219143576826

180000000 Hops: 4.0 Delay: 34371 RDP: 1.9089439034304428E-4

180000000 Hops: 5.0 Delay: 33641 RDP: 1.8684291316899243E-4
i

180000000 Hops: 5.0 Delay: 45752 RDP: 2.541088648653422E-4

180000000 Hops: 5.0 Delay: 38795 RDP: 25.7090788601723

180000000 Hops: 3.0 Delay: 20341 RDP: 18.441523118766998

180000000 Hops: 5.0 Delay: 44528 RDP: 2.4731190350436936E-4

180000000 Hops: 3.0 Delay: 28902 RDP: 3.9146688338073954

180000000 Hops: 3.0 Delay: 17700 RDP: 3.392104251503641

180000000 Hops: 6.0 Delay: 51130 RDP: 12.197041984732824

180000000 Hops: 6.0 Delay: 41946 RDP: 2.3297848631468007E-4

180000000 Hops: 3.0 Delay: 19608 RDP: 1.08920650l2874056E-4

180000000 Hops: 4.0 Delay: 37675 RDP: 2.0925486821383893E-4

180000000 Hops: 6.0 Delay: 36433 RDP: 2.023574057350687E-4

180000000 Hops: 4.0 Delay: 13340 RDP: 7.409222047i62538E-5
!

180000000 Hops: 5.0 Delay: 35060 RDP: 1.9473550070057567E-4

180000000 Hops: 3.0 Delay: 21429 RDP: 1.190357520.8178555E-4

180000000 Hops: 6.0 Delay: 36960 RDP: 2.0528533420077495E-4

188

180000000 Hops: 6.0 Delay: 36939 RDP: 2.0516846575511193E-4

180000000 Hops: 5.0 Delay: 45832 RDP: 12.709927897947864

180000000 Hops: 6.0 Delay: 39235 RDP: 2.1791955469784434E-4

180000000 Hops: 6.0 Delay: 49817 RDP: 112.7081447963801

180000000 Hops: 4.0 Delay: 28847 RDP: 1.6021301516395888E-4

180000000 Hops: 3.0 Delay: 12469 RDP: 6.9266241467084E-5

180000000 Hops: 6.0 Delay: 46007 RDP: 2.5552779711656093E-4

180000000 Hops: 6.0 Delay: 42490 RDP: 2.3599541736778198E-4

180000000 Hops: 5.0 Delay: 33640 RDP: 11.845070422535212

180000000 Hops: 3.0 Delay: 24415 RDP: 33.172554347826086

180000000 Hops: 5.0 Delay: 32050 RDP: 1.7801095985431293E-4

180000000 Hops: 5.0 Delay: 41160 RDP: 2.2860197103885172E-4

180000000 Hops: 4.0 Delay: 27888 RDP: 1.548976449159447E-4

180000000 Hops: 6.0 Delay: 34779 RDP: 1.9316685966505126E-4

180000000 Hops: 4.0 Delay: 25174 RDP: 1.3981989293830726E-4

180000000 Hops: 6.0 Delay: 47402 RDP: 43.3290676416819

180000000 Hops: 6.0 Delay: 54238 RDP: 53.174509803921566

180000000 Hops: 3.0 Delay: 20317 RDP: 1.1285941267888317E-4

180000000 Hops: 5.0 Delay: 35868 RDP: 1.992187280000856E-4

180000000 Hops: 4.0 Delay: 34587 RDP: 4.347831552482715

180000000 Hops: 5.0 Delay: 34353 RDP: 1.9080470508306557E-4

180000000 Hops: 6.0 Delay: 31742 RDP: 1.7631279629750905E-4

180000000 Hops: 4.0 Delay: 36219 RDP: 11.63849614395887

180000000 Hops: 4.0 Delay: 32747 RDP: 1.818823577112271E-4

180000000 Hops: 6.0 Delay: 39272 RDP: 2.18125811726754E-4

180000000 Hops: 5.0 Delay: 36088 RDP: 2.0043270871415137E-4

180000000 Hops: 6.0 Delay: 36099 RDP: 2.0050056547169092E-4

180000000 Hops: 3.0 Delay: 15045 RDP: 8.357478502573829E-5

180000000 Hops: 6.0 Delay: 40909 RDP: 2.2721868318883285E-4

180000000 Hops: 5.0 Delay: 29750 RDP: 1.652326509048973E-4

180000000 Hops: 6.0 Delay: 40009 RDP: 2.2222014493125758E-4

180000000 Hops: 4.0 Delay: 32080 RDP: 1.7817841507911485E-4

180000000 Hops: 3.0 Delay: 16014 RDP: 8.89571566524141E-5

180000000 Hops: 5.0 Delay: 37433 RDP: 2.079132159916606E-4

180000000 Hops: 3.0 Delay: 18156 RDP: 1.0085523080410716E-4

180000000 Hops: 6.0 Delay: 38929 RDP: 2.1621578509751656E-4

180000000 Hops: 3.0 Delay: 10140 RDP: 5.632924163980866E-5

180000000 Hops: 3.0 Delay: 17055 RDP: 9.474057804951298E-5

180000000 Hops: 3.0 Delay: 19540 RDP: 6.284979092955934

189

180000000 Hops: 5.0 Delay: 42118 RDP: 2.33922219]5669034E-4

180000000 Hops: 6.0 Delay: 52594 RDP: 9.508949557042126
I
I

180000000 Hops: 5.0 Delay: 32900 RDP: 1.8272314457267914E-4

180000000 Hops: 5.0 Delay: 41000 RDP: 2.27720566':1807169E-4

180000000 Hops: 4.0 Delay: 28555 RDP: 1.5861231603887517E-4

180000000 Hops: 3.0 Delay: 21345 RDP: 3.542738589211618

180000000 Hops: 5.0 Delay: 33778 RDP: 1.876050574853321E-4

180000000 Hops: 3.0 Delay: 14867 RDP: 8.258534629
1

212793E-5
I

180000000 Hops: 3.0 Delay: 20534 RDP: 1.1406337220755336E-4

180000000 Hops: 4.0 Delay: 28827 RDP: 1.601169874353461E-4

180000000 Hops: 4.0 Delay: 23397 RDP: 1.2994625389170896E-4

180000000 Hops: 4.0 Delay: 32653 RDP: 1.8136669874794159E-4

180000000 Hops: 5.0 Delay: 29882 RDP: 1.659769217b9427E-4

180000000 Hops: 6.0 Delay: 42448 RDP: 2.3576422029462606E-4
I

180000000 Hops: 5.0 Delay: 43925 RDP: 2.4395952332447433E-4

180000000 Hops: 3.0 Delay: 22395 RDP: 1.2440052846255485E-4

180000000 Hops: 5. 0 Delay: 34092 RDP: 1. 893631204i8026914E-4

180000000 Hops: 5.0 Delay: 34952 RDP: 1.9413830945946468E-4

180000000 Hops: 6.0 Delay: 32375 RDP: 1.7982758825153456E-4

180000000 Hops: 3.0 Delay: 27755 RDP: 3.140771755120516

180000000 Hops: 5.0 Delay: 37094 RDP: 2.0601849595556655E-4
I

180000000 Hops: 6.0 Delay: 46300 RDP: 2.5715601026415723E-4

180000000 Hops: 5.0 Delay: 33121 RDP: 1.8396042699680613E-4

180000000 Hops: 6.0 Delay: 36866 RDP: 2.047608696190689E-4

180000000 Hops: 6.0 Delay: 44846 RDP: 2.490776030858919E-4

180000000 Hops: 5.0 Delay: 44748 RDP: 2.485367901k045484E-4

180000000 Hops: 4.0 Delay: 28003 RDP: 1.555444152014624E-4

180000000 Hops: 6.0 Delay: 39342 RDP: 2.1850922301981502E-4

180000000 Hops: 3.0 Delay: 15713 RDP: 8.728510251388928E-5

180000000 Hops: 5.0 Delay: 36851 RDP: 2.046764665247115E-4
'

180000000 Hops: 5.0 Delay: 39932 RDP: 2.2178365477680155E-4

180000000 Hops: 5.0 Delay: 29399 RDP: 1.6328519299944351E-4

180000000 Hops: 4.0 Delay: 26122 RDP: 2.435163605854386

180000000 Hops: 5.0 Delay: 37667 RDP: 2.092133453797682E-4
I

180000000 Hops: 4.0 Delay: 31826 RDP: 1.7676926000675307E-4

180000000 Hops: 6.0 Delay: 42086 RDP: 2.337543490G19825E-4

180000000 Hops: 5.0 Delay: 47261 RDP: 4.28243928959768

180000000 Hops: 4.0 Delay: 27718 RDP: 1.5395559342588398E-4

' 180000000 Hops: 4.0 Delay: 28336 RDP: 1.573782201461928E-4

190

180000000 Hops: 5.0 Delay: 43268 RDP: 2.403089799869073E-4

180000000 Hops: 5.0 Delay: 33449 RDP: 1.85788072802308E-4

180000000 Hops: 5.0 Delay: 32208 RDP: 1.7889201424726482E-4

180000000 Hops: 5.0 Delay: 33367 RDP: 1.8533620419022902E-4

180000000 Hops: 6.0 Delay: 35864 RDP: 4.59853827413771

180000000 Hops: 5.0 Delay: 34421 RDP: 1.911739877900799E-4

180000000 Hops: 5.0 Delay: 31516 RDP: 1.7505397631835637E-4

180000000 Hops: 5.0 Delay: 40174 RDP: 2.2313067285672573E-4

180000000 Hops: 6.0 Delay: 46995 RDP: 2.6101278302815184E-4

180000000 Hops: 4.0 Delay: 34415 RDP: 1.9114318302847593E-4

180000000 Hops: 5.0 Delay: 33974 RDP: 1.887016940756516E-4

180000000 Hops: 5.0 Delay: 33278 RDP: 1.8484060941190185E-4

180000000 Hops: 3.0 Delay: 24570 RDP: 4.8044583496284705

180000000 Hops: 6.0 Delay: 39665 RDP: 2.2030353845306204E-4

180000000 Hops: 6.0 Delay: 39867 RDP: 2.2142802307348095E-4

180000000 Hops: 5.0 Delay: 33979 RDP: 1.8873533494953598E-4

180000000 Hops: 4.0 Delay: 30690 RDP: 1.7046931647008714E-4

180000000 Hops: 6.0 Delay: 48548 RDP: 15.034995354598948

180000000 Hops: 3.0 Delay: 19554 RDP: 4.603107344632768

180000000 Hops: 3.0 Delay: 28069 RDP: 3.2604251364850736

180000000 Hops: 3.0 Delay: 23896 RDP: 11.145522388059701

180000000 Hops: 5.0 Delay: 34487 RDP: 1.915371673827294E-4

180000000 Hops: 5.0 Delay: 32117 RDP: 1.783824676399835E-4

180000000 Hops: 3.0 Delay: 18439 RDP: 1.024283473048121E-4

180000000 Hops: 3.0 Delay: 6551 RDP: 3.639231973951032E-5

180000000 Hops: 5.0 Delay: 35372 RDP: 1.9645126987151635E-4

180000000 Hops: 6.0 Delay: 29929 RDP: 1.6624023113685362E-4

180000000 Hops: 4.0 Delay: 33660 RDP: 1.869544900839333E-4

180000000 Hops: 4.0 Delay: 27620 RDP: 1.5341732878390037E-4

180000000 Hops: 3.0 Delay: 22543 RDP: 18.25344129554656

180000000 Hops: 6.0 Delay: 39870 RDP: 2.2144188503773723E-4

180000000 Hops: 4.0 Delay: 27881 RDP: 1.5486891086295733E-4

180000000 Hops: 6.0 Delay: 39695 RDP: 2.2047607001502397E-4

180000000 Hops: 6.0 Delay: 40463 RDP: 2.2473487097572997E-4

180000000 Hops: 3.0 Delay: 6599 RDP: 3.6658553362379566E-5

180000000 Hops: 6.0 Delay: 34052 RDP: 34.43073811931244

180000000 Hops: 5.0 Delay: 44359 RDP: 2.463725736044937E-4

180000000 Hops: 6.0 Delay: 48142 RDP: 10.373195432018962

180000000 Hops: 3.0 Delay: 16217 RDP: 9.00842328961777E-5

191

180000000 Hops: 5.0 Delay: 40915 RDP: 2.2724316089588358E-4

180000000 Hops: 5.0 Delay: 43782 RDP: 7.85045723507262

180000000 Hops: 6.0 Delay: 44254 RDP: 2.457867666669757E-4

180000000 Hops: 6.0 Delay: 49078 RDP: 52.04453870625663

180000000 Hops: 4.0 Delay: 26448 RDP: 1.4689013376105052E-4

180000000 Hops: 6.0 Delay: 37951 RDP: 2.107879262235482E-4

180000000 Hops: 5.0 Delay: 34304 RDP: 48.24753867791843

180000000 Hops: 5.0 Delay: 30285 RDP: 1.682027256894854E-4

180000000 Hops: 5.0 Delay: 43093 RDP: 2.393404709035012E-4

180000000 Hops: 5.0 Delay: 38077 RDP: 2.1147896867288176E-4

180000000 Hops: 4.0 Delay: 30417 RDP: 21.270629370629372

180000000 Hops: 3.0 Delay: 12839 RDP: 7.132104824064823E-5

180000000 Hops: 3.0 Delay: 27530 RDP: 3.0153340635268346

180000000 Hops: 5.0 Delay: 36814 RDP: 2.044694384366898E-4

180000000 Hops: 5.0 Delay: 36453 RDP: 2.0246166233215906E-4

180000000 Hops: 3.0 Delay: 26859 RDP: 2.572208389197472

180000000 Hops: 6.0 Delay: 51517 RDP: 2.8612165355977864E-4

180000000 Hops: 4.0 Delay: 36029 RDP: 2.0011228149095753E-4

180000000 Hops: 5.0 Delay: 38913 RDP: 2.161353236741863E-4

180000000 Hops: 6.0 Delay: 48966 RDP: 74.87155963302752

180000000 Hops: 5.0 Delay: 34348 RDP: 1.9077819697363395E-4

180000000 Hops: 6.0 Delay: 46996 RDP: 2.610178035902789E-4

180000000 Hops: 5.0 Delay: 41317 RDP: 2.2948399376775748E-4

180000000 Hops: 5.0 Delay: 36369 RDP: 2.019995999775856E-4

180000000 Hops: 6.0 Delay: 38071 RDP: 2.114528603280237E-4

180000000 Hops: 4.0 Delay: 29165 RDP: 1.6199890867225845E-4

180000000 Hops: 6.0 Delay: 39361 RDP: 2.1862157853355492E-4

180000000 Hops: 4.0 Delay: 26916 RDP: 1.4949843790628537E-4

180000000 Hops: 4.0 Delay: 30883 RDP: 1.715295904484006E-4

180000000 Hops: 3.0 Delay: 16894 RDP: 9.384651448662382E-5

180000000 Hops: 6.0 Delay: 46430 RDP: 2.5787237054950013E-4

180000000 Hops: 3.0 Delay: 22830 RDP: 4.216845216106391

180000000 Hops: 5.0 Delay: 29527 RDP: 1.6400192376639375E-4

180000000 Hops: 3.0 Delay: 27729 RDP: 6.789666993143976

180000000 Hops: 3.0 Delay: 14002 RDP: 7.778211147424243E-5

180000000 Hops: 6.0 Delay: 36335 RDP: 2.0181000721145164E-4

180000000 Hops: 4.0 Delay: 28598 RDP: 1.5885056226394635E-4

180000000 Hops: 5.0 Delay: 35223 RDP: 1.9563178653126886E-4

180000000 Hops: 5.0 Delay: 37947 RDP: 44.022041763341065

192

180000000 Hops: 6.0 Delay: 42240 RDP: 2.3460989758839187E-4

180000000 Hops: 4.0 Delay: 28851 RDP: 1.6024614554449064E-4

180000000 Hops: 5.0 Delay: 40416 RDP: 2.2447810049670613E-4

180000000 Hops: 6.0 Delay: 43817 RDP: 2.433682972138926E-4

180000000 Hops: 5.0 Delay: 30183 RDP: 1.6763698729424604E-4

180000000 Hops: 5.0 Delay: 31146 RDP: 1.7298952565806628E-4

180000000 Hops: 5.0 Delay: 32624 RDP: 18.55745164960182

180000000 Hops: 3.0 Delay: 14687 RDP: 8.158564905822236E-5

180000000 Hops: 6.0 Delay: 38534 RDP: 2.140287913436346E-4

180000000 Hops: 5.0 Delay: 44732 RDP: 2.48448615242217E-4

180000000 Hops: 4.0 Delay: 28969 RDP: 1.609059389282839E-4

180000000 Hops: 5.0 Delay: 29958 RDP: 1.663934673073828E-4

180000000 Hops: 5.0 Delay: 45466 RDP: 2.525244937400713E-4

180000000 Hops: 4.0 Delay: 29661 RDP: 1.6474756023115758E-4

180000000 Hops: 5.0 Delay: 43097 RDP: 9.288146551724138

180000000 Hops: 5.0 Delay: 37281 RDP: 2.0705147075966823E-4

180000000 Hops: 5.0 Delay: 41738 RDP: 13.174873737373737

180000000 Hops: 5.0 Delay: 36784 RDP: 11.919637070641608

180000000 Hops: 3.0 Delay: 15498 RDP: 8.609081171897815E-5

180000000 Hops: 5.0 Delay: 42629 RDP: 2.3675765147673065E-4

180000000 Hops: 6.0 Delay: 44769 RDP: 678.3181818181819

180000000 Hops: 3.0 Delay: 12129 RDP: 6.737659717087396E-5

180000000 Hops: 6.0 Delay: 35821 RDP: 1.9895120871704102E-4

180000000 Hops: 3.0 Delay: 19402 RDP: 1.0777726690694076E-4

180000000 Hops: 3.0 Delay: 20155 RDP: 1.1195880271573004E-4

180000000 Hops: 6.0 Delay: 44485 RDP: 2.470726761569308E-4

180000000 Hops: 5.0 Delay: 39069 RDP: 13.556210964607912

180000000 Hops: 5.0 Delay: 32116 RDP: 1.7837552152873576E-4

180000000 Hops: 6.0 Delay: 43467 RDP: 2.4142308486126685E-4

180000000 Hops: 6.0 Delay: 41843 RDP: 2.323987856301182E-4

180000000 Hops: 6.0 Delay: 35569 RDP: 1.9755712223196127E-4

180000000 Hops: 3.0 Delay: 28542 RDP: 3.943354517822603

180000000 Hops: 6.0 Delay: 37361 RDP: 2.0751223852040224E-4

180000000 Hops: 4.0 Delay: 26585 RDP: 1.4766623609151108E-4

180000000 Hops: 5.0 Delay: 35558 RDP: 1.97484167887868E-4

180000000 Hops: 4.0 Delay: 24896 RDP: 3.3194666666666666

180000000 Hops: 6.0 Delay: 39041 RDP: 2.168432826812656E-4

180000000 Hops: 5.0 Delay: 39386 RDP: 2.1875764917229394E-4

180000000 Hops: 5.0 Delay: 44788 RDP: 2.4875603515115834E-4

193

180000000 Hops: 3.0 Delay: 14544 RDP: 8.0792814B2566817E-5

180000000 Hops: 4.0 Delay: 36078 RDP: 6.485349631493798

180000000 Hops: 6.0 Delay: 38678 RDP: 2.148276107567192E-4

180000000 Hops: 3.0 Delay: 20046 RDP: l.l13537725184411E-4

180000000 Hops: 3.0 Delay: 26002 RDP: 18.221443~8794674

180000000 Hops: 5.0 Delay: 31532 RDP: l.7513602826757258E-4
I

180000000 Hops: 4.0 Delay: 30854 RDP: l.7136480262928058E-4

180000000 Hops: 6.0 Delay: 37065 RDP: 2.0586468011647393E-4

180000000 Hops: 3.0 Delay: 8894 RDP: 4.94073748l563339E-5

180000000 Hops: 5.0 Delay: 44193 RDP: 47.21474358974359

180000000 Hops: 5.0 Delay: 34594 RDP: l.921309582028081E-4

180000000 Hops: 3.0 Delay: 20830 RDP: 152.04379~62043795

180000000 Hops: 5.0 Delay: 40245 RDP: 2.2352165625764996E-4

180000000 Hops: 5.0 Delay: 28508 RDP: l.5833369591757105E-4

180000000 Hops: 5.0 Delay: 46426 RDP: 2.5785244591784327E-4

180000000 Hops: 5. o Delay: 31564 RDP: 1. 7530704·hoo71314E-4

180000000 Hops: 5.0 Delay: 32638 RDP: l.8128ll5197012587E-4

180000000 Hops: 3.0 Delay: 21714 RDP: 9.838695061169007

180000000 Hops: 4.0 Delay: 35693 RDP: l.98245700i23221734E-4

180000000 Hops: 6.0 Delay: 40219 RDP: 2.2338560149468345E-4

180000000 Hops: 5.0 Delay: 43463 RDP: 249.78735632183907

180000000 Hops: 6.0 Delay: 57196 RDP: 5.197746274082152

180000000 Hops: 5.0 Delay: 38038 RDP: 2.ll27483210363232E-4

180000000 Hops: 4.0 Delay: 25189 RDP: 2.781470848056537

180000000 Hops: 4.0 Delay: 33192 RDP: 3.2785460292374555

180000000 Hops: 4.0 Delay: 32990 RDP: 7.782495871667846

180000000 Hops: 6.0 Delay: 35505 RDP: 1.9720511721090677E-4
i

180000000 Hops: 5.0 Delay: 38219 RDP: 2.1227335324859766E-4

180000000 Hops: 5.0 Delay: 40972 RDP: 2.2755998330256685E-4
I

180000000 Hops: 5.0 Delay: 33941 RDP: 1.8851423390494674E-4

180000000 Hops: 5.0 Delay: 38197 RDP: 2.1216026287543602E-4

180000000 Hops: 5.0 Delay: 39341 RDP: 2.1850183520491726E-4

180000000 Hops: 4.0 Delay: 37126 RDP: 10.9516224+8879056

180000000 Hops: 5.0 Delay: 31363 RDP: 1.7419912019752068E-4

180000000 Hops: 6.0 Delay: 49063 RDP: 2.724957811001618E-4

180000000 Hops: 5.0 Delay: 34577 RDP: 1.92045602~7992658E-4

180000000 Hops: 5.0 Delay: 34066 RDP: 1.8920176444280355E-4

180000000 Hops: 4.0 Delay: 23057 RDP: 1.2805780070477277E-4

180000000 Hops: 5.0 Delay: 34105 RDP: 1.8943425433559074E-4

194

180000000 Hops: 5.0 Delay: 43348 RDP: 2.4075349646161841E-4

180000000 Hops: 5.0 Delay: 40513 RDP: 2.2501558204996054E-4

180000000 Hops: 3.0 Delay: 10806 RDP: 6.0028523381151524E-5

180000000 Hops: 5.0 Delay: 37153 RDP: 2.0635133101135091E-4

180000000 Hops: 6.0 Delay: 40473 RDP: 2.2479336705772592E-4

180000000 Hops: 5.0 Delay: 33446 RDP: 1.8576608450832771E-4

180000000 Hops: 3.0 Delay: 14230 RDP: 592.9166666666666

180000000 Hops: 5.0 Delay: 33356 RDP: 1.8527305705448688E-4

180000000 Hops: 3.0 Delay: 22251 RDP: 6.388458225667528

180000000 Hops: 5.0 Delay: 38032 RDP: 2.1123278194145888E-4

180000000 Hops: 5.0 Delay: 37170 RDP: 2.0644781802013076E-4

180000000 Hops: 3.0 Delay: 11475 RDP: 6.374451478450279E-5

180000000 Hops: 3.0 Delay: 20484 RDP: 8.761334473909324

180000000 Hops: 6.0 Delay: 34790 RDP: 1.932261316532224E-4

180000000 Hops: 6.0 Delay: 45707 RDP: 2.538624279474368E-4

180000000 Hops: 5.0 Delay: 39793 RDP: 2.2101469087032927E-4

180000000 Hops: 3.0 Delay: 15595 RDP: 5.528181495923431

180000000 Hops: 6.0 Delay: 40417 RDP: 2.2448379682375171E-4

180000000 Hops: 4.0 Delay: 28902 RDP: 1.605186065041093E-4

180000000 Hops: 3.0 Delay: 24525 RDP: 3.644672313865359

180000000 Hops: 5.0 Delay: 40543 RDP: 2.2518524475947065E-4

180000000 Hops: 5.0 Delay: 32671 RDP: 1.8145834110330238E-4

180000000 Hops: 6.0 Delay: 40473 RDP: 2.2478850785485126E-4

180000000 Hops: 4.0 Delay: 30349 RDP: 1.6856190644988037E-4

180000000 Hops: 3.0 Delay: 21056 RDP: 11.678313921242374

180000000 Hops: 4.0 Delay: 25293 RDP: 1.4047617050840178E-4

180000000 Hops: 3.0 Delay: 15193 RDP: 8.439791191799951E-5

180000000 Hops: 3.0 Delay: 12129 RDP: 6.737704443486917E-5

180000000 Hops: 4.0 Delay: 24913 RDP: 1.3838060860694835E-4

180000000 Hops: 5.0 Delay: 37898 RDP: 2.1048626136433086E-4

180000000 Hops: 5.0 Delay: 36521 RDP: 2.028419264158962E-4

180000000 Hops: 4.0 Delay: 32578 RDP: 1.8093305395362242E-4

180000000 Hops: 4.0 Delay: 33415 RDP: 14.904103479036575

180000000 Hops: 4.0 Delay: 36179 RDP: 2.00945128044575E-4

180000000 Hops: 4.0 Delay: 32175 RDP: 1.7870739814192073E-4

180000000 Hops: 6.0 Delay: 37451 RDP: 2.0801477813055784E-4

180000000 Hops: 3.0 Delay: 19071 RDP: 7.047671840354767

180000000 Hops: 3.0 Delay: 17482 RDP: 9.711210475944137E-5

180000000 Hops: 3.0 Delay: 27739 RDP: 2.7711288711288713

195

180000000 Hops: 4.0 Delay: 36360 RDP: 2.0195310761037457E-4

180000000 Hops: 5.0 Delay: 46676 RDP: 2.5924307~5261092E-4

180000000 Hops: 5.0 Delay: 43268 RDP: 2.4030841675842075E-4

180000000 Hops: 5.0 Delay: 39968 RDP: 2.2198294037109896E-4

180000000 Hops: 5.0 Delay: 35824 RDP: 1.989755602425058E-4

180000000 Hops: 6.0 Delay: 36469 RDP: 2.0256047V9718549E-4

180000000 Hops: 5.0 Delay: 42685 RDP: 2.3707361857046948E-4
I

180000000 Hops: 6.0 Delay: 46749 RDP: 8.797327813323298

180000000 Hops: 4.0 Delay: 30331 RDP: 1.6845870f51097885E-4

180000000 Hops: 4.0 Delay: 28300 RDP: 1.5718001427610153E-4

180000000 Hops: 4.0 Delay: 28561 RDP: 1.5863232002470134E-4

180000000 Hops: 4.0 Delay: 28535 RDP: 19.885017421602786

180000000 Hops: 5.0 Delay: 37730 RDP: 5.4460161S6281755

180000000 Hops: 5.0 Delay: 32164 RDP: 1.7864251626904072E-4

180000000 Hops: 4.0 Delay: 25016 RDP: 1.3894078325045087E-4

180000000 Hops: 5.0 Delay: 38988 RDP: 2.1654668019215114E-4

180000000 Hops: 3. 0 Delay: 26532 RDP: 15.1007398.97552646

180000000 Hops: 3.0 Delay: 18679 RDP: 1.03760543:97299806E-4

180000000 Hops: 5.0 Delay: 43018 RDP: 100.04186046511627

180000000 Hops: 3.0 Delay: 21960 RDP: 12.441926345609065

180000000 Hops: 6.0 Delay: 36868 RDP: 2.04775631Q155511E-4

180000000 Hops: 3.0 Delay: 19889 RDP: 12.83989670755326
I

180000000 Hops: 5.0 Delay: 42227 RDP: 2.3453165510855733E-4

180000000 Hops: 5.0 Delay: 31326 RDP: 1.739911085911301E-4

180000000 Hops: 4.0 Delay: 35316 RDP: 28.16267942583732

180000000 Hops: 3.0 Delay: 23258 RDP: 5.746973069468989

180000000 Hops: 4.0 Delay: 36450 RDP: 3.460224036453389

180000000 Hops: 5.0 Delay: 31896 RDP: 1.771639756740353E-4

180000000 Hops: 3.0 Delay: 22653 RDP: 4.000883080183681

180000000 Hops: 6.0 Delay: 33417 RDP: 1.856146847438421E-4

180000000 Hops: 6.0 Delay: 36805 RDP: 2.0442039256735563E-4

180000000 Hops: 6.0 Delay: 44992 RDP: 2.498881690459695E-4

180000000 Hops: 5. 0 Delay: 36464 RDP: 2. 025201045.52448E-4

180000000 Hops: 3. 0 Delay: 17590 RDP: 9. 771135726i213555E-5

180000000 Hops: 5.0 Delay: 36036 RDP: 2.0015032046656774E-4

180000000 Hops: 3.0 Delay: 19954 RDP: 36.21415607985481

180000000 Hops: 4.0 Delay: 28387 RDP: 5.8566123371528368

180000000 Hops: 5.0 Delay: 31762 RDP: 1.7640875921197993E-4

180000000 Hops: 3.0 Delay: 11361 RDP: 6.311126749773223E-5

196

180000000 Hops: 5.0 Delay: 36719 RDP: 2.039350359025412E-4

180000000 Hops: 4.0 Delay: 28661 RDP: 7.976899526857779

180000000 Hops: 4.0 Delay: 28211 RDP: 1.5669625049217876E-4

180000000 Hops: 5.0 Delay: 46619 RDP: 2.589249029693936E-4

180000000 Hops: 5.0 Delay: 30700 RDP: 1.7052000024083867E-4

180000000 Hops: 5.0 Delay: 33974 RDP: 1.8868797327884165E-4

180000000 Hops: 5.0 Delay: 40834 RDP: 89.15720524017468

180000000 Hops: 5.0 Delay: 39140 RDP: 2.1738416260846333E-4

180000000 Hops: 3.0 Delay: 23347 RDP: 8.468262604280014

180000000 Hops: 6.0 Delay: 50861 RDP: 9.767812560015363

180000000 Hops: 5.0 Delay: 41936 RDP: 2.3291174471024416E-4

180000000 Hops: 4.0 Delay: 39419 RDP: 4.594289044289044

180000000 Hops: 5.0 Delay: 33347 RDP: 1.8521570650963643E-4

180000000 Hops: 5.0 Delay: 31465 RDP: 1.7476687576224102E-4

180000000 Hops: 6.0 Delay: 53086 RDP: 2.94834644866905E-4

180000000 Hops: 3.0 Delay: 20683 RDP: 1.1489100333341668E-4

180000000 Hops: 5.0 Delay: 39622 RDP: 2.2006344205427486E-4

180000000 Hops: 6.0 Delay: 38760 RDP: 2.152859596579106E-4

180000000 Hops: 5.0 Delay: 37042 RDP: 2.0573634725473916E-4

180000000 Hops: 5.0 Delay: 30215 RDP: 1.6782794551194552E-4

180000000 Hops: 6.0 Delay: 44509 RDP: 2.4720929784222644E-4

180000000 Hops: 3.0 Delay: 17776 RDP: 18.751054852320674

180000000 Hops: 6.0 Delay: 43273 RDP: 2.4034485379223196E-4

180000000 Hops: 6.0 Delay: 40471 RDP: 2.2478794569628452E-4

180000000 Hops: 5.0 Delay: 46179 RDP: 2.5648216616665264E-4

180000000 Hops: 3.0 Delay: 26952 RDP: 5.123954372623574

180000000 Hops: 4.0 Delay: 27499 RDP: 1.5273055732618364E-4

180000000 Hops: 5.0 Delay: 32628 RDP: 1.8121528810548235E-4

180000000 Hops: 6.0 Delay: 30941 RDP: 1.7186241501903206E-4

180000000 Hops: 3.0 Delay: 10045 RDP: 5.580115346456002E-5

180000000 Hops: 4.0 Delay: 26764 RDP: 1.486662651870222E-4

180000000 Hops: 5.0 Delay: 34992 RDP: 1.9434343310473765E-4

180000000 Hops: 5.0 Delay: 39276 RDP: 2.181514516063975E-4

180000000 Hops: 5.0 Delay: 32671 RDP: 1.814519979822178E-4

180000000 Hops: 5.0 Delay: 31684 RDP: 1.7597170270161773E-4

180000000 Hops: 3.0 Delay: 19771 RDP: 6.6145868183338905

180000000 Hops: 4.0 Delay: 40536 RDP: 7.487255264130034

180000000 Hops: 6.0 Delay: 47773 RDP: 146.0948012232416

180000000 Hops: 3.0 Delay: 16290 RDP: 6.516

197

180000000 Hops: 5.0 Delay: 36732 RDP: 2.0401967980096584E-4

180000000 Hops: 6.0 Delay: 46242 RDP: 63.958506~2406639

180000000 Hops: 4.0 Delay: 31588 RDP: 4.323569668765399

180000000 Hops: 3.0 Delay: 20424 RDP: 1.1345300S03397715E-4

180000000 Hops: 4.0 Delay: 38762 RDP: 2.1529334098174008E-4

180000000 Hops: 3.0 Delay: 25603 RDP: 7.043466299862448

180000000 Hops: 4.0 Delay: 25878 RDP: 1.4372797110440171E-4

180000000 Hops: 5.0 Delay: 37083 RDP: 2.0595895811082045E-4

180000000 Hops: 5.0 Delay: 39962 RDP: 2.2194588984531462E-4

180000000 Hops: 6.0 Delay: 36266 RDP: 2.0143203~91962104E-4
180000000 Hops: 4.0 Delay: 27525 RDP: 1.528742950079003E-4

180000000 Hops: 6.0 Delay: 42750 RDP: 2.3743852189027102E-4

180000000 Hops: 5.0 Delay: 39454 RDP: 2.1913688892257472E-4

180000000 Hops: 5.0 Delay: 33463 RDP: 1.85849859450176E-4

180000000 Hops: 5.0 Delay: 39422 RDP: 2.1894847360195483E-4
!

180000000 Hops: 4.0 Delay: 23660 RDP: 1.31411675483033E-4

180000000 Hops: 5.0 Delay: 42662 RDP: 2.36949434.48969918E-4

180000000 Hops: 5.0 Delay: 31894 RDP: 1.7714233686688436E-4

180000000 Hops: 5.0 Delay: 40855 RDP: 2.269113620736767E-4

180000000 Hops: 4.0 Delay: 28625 RDP: 1.589843494362365E-4

180000000 Hops: 6.0 Delay: 39567 RDP: 2.19768121;10964755E-4

180000000 Hops: 6.0 Delay: 33826 RDP: 1.8787905805240724E-4

180000000 Hops: 4.0 Delay: 34271 RDP: 1.903503476714025E-4

180000000 Hops: 4.0 Delay: 32757 RDP: 1.819368302795139E-4

180000000 Hops: 5.0 Delay: 35075 RDP: 1.94809213~3651843E-4

180000000 Hops: 3.0 Delay: 30094 RDP: 3.0184553660982947

180000000 Hops: 3.0 Delay: 21770 RDP: 20.046040515653775

180000000 Hops: 5.0 Delay: 29309 RDP: 1.627837185556427E-4

180000000 Hops: 5.0 Delay: 35198 RDP: 1.9550230935228325E-4

180000000 Hops: 4.0 Delay: 23322 RDP: 1.2952892985216457E-4

180000000 Hops: 3.0 Delay: 24397 RDP: 1.355106334161479E-4

180000000 Hops: 5.0 Delay: 44602 RDP: 2.4771936369702994E-4

180000000 Hops: 5.0 Delay: 31726 RDP: 1.7621639048379057E-4

180000000 Hops: 3.0 Delay: 12033 RDP: 6.684410657793671E-5

180000000 Hops: 5.0 Delay: 34231 RDP: 1.9013344873054138E-4

180000000 Hops: 4.0 Delay: 32494 RDP: 1.8047170317939945E-4

180000000 Hops: 5.0 Delay: 34461 RDP: 1.9139611880262175E-4

180000000 Hops: 5.0 Delay: 35244 RDP: 1.9575029682463292E-4
I

180000000 Hops: 5.0 Delay: 43726 RDP: 31.299928418038654

198

180000000 Hops: 6.0 Delay: 37260 RDP: 2.0694886753369615E-4

180000000 Hops: 5.0 Delay: 33475 RDP: 1.859313421178019E-4

180000000 Hops: 4.0 Delay: 26789 RDP: 7.563241106719367

180000000 Hops: 5.0 Delay: 31811 RDP: 1.7668378155301796E-4

180000000 Hops: 5.0 Delay: 36023 RDP: 2.000741701269386E-4

180000000 Hops: 6.0 Delay: 54085 RDP: 3.003792615158778E-4

180000000 Hops: 5.0 Delay: 33205 RDP: 1.8442947351947678E-4

180000000 Hops: 5.0 Delay: 29744 RDP: 1.65199799198711E-4

180000000 Hops: 5.0 Delay: 29701 RDP: 1.6497396762336588E-4

180000000 Hops: 3.0 Delay: 23506 RDP: 4.115196078431373

180000000 Hops: 5.0 Delay: 32315 RDP: 1.7948677900885706E-4

180000000 Hops: 6.0 Delay: 50943 RDP: 8.366398423386434

180000000 Hops: 4.0 Delay: 28737 RDP: 1.5961709848219454E-4

180000000 Hops: 5.0 Delay: 30013 RDP: 53.49910873440285

180000000 Hops: 6.0 Delay: 43798 RDP: 2.4326085696815358E-4

180000000 Hops: 3.0 Delay: 27500 RDP: 3.2126168224299065

180000000 Hops: 3.0 Delay: 20670 RDP: 21.98936170212766

180000000 Hops: 5.0 Delay: 40428 RDP: 2.2454775023349568E-4

180000000 Hops: 5.0 Delay: 36481 RDP: 2.0262403935135357E-4

180000000 Hops: 4.0 Delay: 26544 RDP: 1.474253417053273E-4

180000000 Hops: 6.0 Delay: 51780 RDP: 11.846259437199725

180000000 Hops: 3.0 Delay: 19071 RDP: 7.047671840354767

180000000 Hops: 4.0 Delay: 25291 RDP: 632.275

180000000 Hops: 5.0 Delay: 36713 RDP: 2.0390631468747742E-4

180000000 Hops: 5.0 Delay: 46650 RDP: 4.890962465925771

180000000 Hops: 5.0 Delay: 29091 RDP: 1.615812274151271E-4

180000000 Hops: 3.0 Delay: 12419 RDP: 18.42581602373887

180000000 Hops: 4.0 Delay: 31469 RDP: 1.7478554376421955E-4

180000000 Hops: 6.0 Delay: 45643 RDP: 2.5350489695503313E-4

180000000 Hops: 4.0 Delay: 26220 RDP: 1.4562472270139747E-4

180000000 Hops: 6.0 Delay: 41081 RDP: 2.2817025478893296E-4

180000000 Hops: 3.0 Delay: 18872 RDP: 1.04831798235184E-4

180000000 Hops: 5.0 Delay: 43208 RDP: 8.97548815953469

Failed Requests:

180000000 data available: true

180000000 data available: true

180000000 data available: true

199

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

200

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

201

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

202

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

180000000 data available: true

203

180000000 data available:

180000000 data available:

180000000 data available:

180000000 data available:

180000000 data available:

180000000 data available:

180000000 data available:

180000000 data available:

180000000 data available:

180000000 data available:

180000000 data available:

second success

180 82.82828282828282

second hops

180 4.65

second delay

180 33

second rdp

180 7.295063211660706

second

180 990

queries

Loadbalance Heads

Peer Messages

1 6.027892122229336

2 5.902841123313996

3 5.655199235762595

4 5.599653262659064

5 5.546360087170829

6 5.513051852490682

7 5.2021657815798

8 4.758917485137064

9 4.514025945594523

true

true

true

true

true

true

true

true

true

true

true

10 4.292616020459272

11 0.4825271358456311

204

Average Head load: 351874.63636363635

Loadbalance Member

Peer Messages

1 0.12299169311976259

2 0.12289494720990324

3 0.12282584298857514

4 0.1228120221443095

5 0.1228120221443095

6 0.12279820130004389

7 0.1225494261032627

8 0.1225356052589971

9 0.12243885934913774

10 0.12241121766060652

11 0.12239739681634088

12 0.12235593428354401

13 0.12232829259501278

14 0.12232829259501278

15 0.12225918837368469

16 0.12191366726704415

17 0.12189984642277851

18 0.1218860255785129

19 0.1218860255785129

20 0.12187220473424729

21 0.12178927966865355

22 0.12144375856201302

23 0.1214299377177474

24 0.12137465434068492

25 0.1213608334964193

26 0.1213608334964193

27 0.1213608334964193

28 0.12131937096362244

29 0.12131937096362244

30 0.12131937096362244

31 0.12130555011935681

32 0.12130555011935681

33 0.12127790843082557

34 0.12127790843082557

205

35 0.12127790843082557

36 0.12126408758655995

37 0.12126408758655995

38 0.12126408758655995

39 0.12026898679943522

40 0.11978525725013847

41 0.1195917654304198

42 0.11956412374188854

43 0.11948119867629481

44 0.1192738860123105

45 0.11926006516804488

46 0.11924624432377927

47 0.11923242347951366

48 0.11921860263524801

49 0.1192047817909824

50 0.1192047817909824

51 0.1192047817909824

52 0.11919096094671679

53 0.11919096094671679

54 0.11919096094671679

55 0.11917714010245115

56 0.11917714010245115

57 0.11909421503685744

58 0.11869341055315441

59 0.11869341055315441

60 0.1186795897088888

61 0.1186795897088888

62 0.1186795897088888

63 0.1186795897088888

64 0.1186243063318263

65 0.11861048548756069

66 0.11858284379902945

67 0.1185552021104982

68 0.11818203931532643

69 0.1181682184710608

70 0.11815439762679518

71 0.11814057678252957

72 0.11814057678252957

73 0.11812675593826395

206

74 0.11808529340546708

75 0.11807147256120147

76 0.11807147256120147

77 0.11804383087267022

78 0.1180300100284046

79 0.1180300100284046

80 0.11562518312618651

81 0.11518291610968663

82 0.11514145357688976

83 0.11500324513423357

84 0.1149617826014367

85 0.11487885753584297

86 0.1148373950030461

87 0.1148373950030461

88 0.11478211162598362

89 0.114768290781718

90 0.11475446993745239

91 0.11474064909318678

92 0.11469918656038991

93 0.11469918656038991

94 0.11468536571612427

95 0.11465772402759304

96 0.11463008233906179

97 0.11458861980626495

98 0.11456097811773369

99 0.11451951558493682

100 0.11450569474067121

101 0.11447805305213996

102 0.11396668181431198

103 0.11377318999459328

104 0.11375936915032767

105 0.1136488023962027

106 0.1135796981748746

107 0.11344148973221838

108 0.11344148973221838

109 0.11340002719942152

110 0.11337238551089027

111 0.11335856466662465

112 0.11331710213382779

207

113 0.11331710213382779

114 0.11330328128956217

115 0.11320653537970282

116 0.11320653537970282

117 0.11312361031410909

118 0.11309596862557784

119 0.11304068524851536

120 0.1129992227157185

121 0.11295776018292164

122 0.11295776018292164

123 0.11294393933865601

124 0.11290247680585914

125 0.11290247680585914

126 0.11288865596159353

127 0.11287483511732792

128 0.11287483511732792

129 0.11286101427306228

130 0.11286101427306228

131 0.11286101427306228

132 0.11286101427306228

133 0.11286101427306228

134 0.11286101427306228

135 0.11284719342879666

136 0.11284719342879666

137 0.11284719342879666

138 0.11283337258453105

139 0.11283337258453105

140 0.11283337258453105

141 0.11279191005173418

142 0.11277808920746857

143 0.11276426836320294

144 0.11276426836320294

145 0.11276426836320294

146 0.11276426836320294

147 0.11276426836320294

148 0.11275044751893731

149 0.11275044751893731

150 0.11275044751893731

151 0.1127366266746717

208

152 0.11272280583040609

153 0.11272280583040609

154 0.11270898498614045

155 0.11269516414187483

156 0.11268134329760922

157 0.11266752245334358

158 0.11266752245334358

159 0.11265370160907796

160 0.11265370160907796

161 0.11265370160907796

162 0.11265370160907796

163 0.11265370160907796

164 0.11265370160907796

165 0.11263988076481235

166 0.11262605992054674

167 0.1126122390762811

168 0.1126122390762811

169 0.11259841823201548

170 0.11257077654348425

171 0.11252931401068739

172 0.11252931401068739

173 0.11252931401068739

174 0.11252931401068739

175 0.11246020978935926

176 0.1123496430352343

177 0.1123496430352343

178 0.1122805388139062

179 0.11210086783845312

180 0.11203176361712502

181 0.11201794277285941

182 0.11197648024006254

183 0.1118935551744688

184 0.11187973433020319

185 0.11187973433020319

186 0.11185209264167194

187 0.11183827179740632

188 0.11183827179740632

189 0.11183827179740632

190 0.11183827179740632

209

191 0.11182445095314071

192 0.11179680926460946

193 0.11176916757607823

194 0.11175534673181259

195 0.11174152588754697

196 0.11172770504328136

197 0.1117000633547501

198 0.1117000633547501

199 0.11165860082195324

200 0.11164477997768762

201 0.11157567575635953

202 0.11154803406782828

203 0.11152039237929705

204 0.1114927506907658

205 0.11131307971531273

206 0.1112992588710471

207 0.1112992588710471

208 0.11128543802678148

209 0.11128543802678148

210 0.111230154649719

211 0.111230154649719

212 0.111230154649719

213 0.11121633380545339

214 0.11121633380545339

215 0.11121633380545339

216 0.11118869211692213

217 0.11117487127265652

218 0.1111610504283909

219 0.11114722958412526

220 0.11113340873985965

221 0.11109194620706278

222 0.11107812536279717

223 0.11102284198573469

224 0.11102284198573469

225 0.11102284198573469

226 0.11102284198573469

227 0.11099520029720343

228 0.11098137945293782

229 0.11098137945293782

210

230 0.1109675586086722

231 0.11093991692014095

232 0.11093991692014095

233 0.11093991692014095

234 0.11092609607587534

235 0.11092609607587534

236 0.11091227523160971

237 0.11091227523160971

238 0.11089845438734408

239 0.11087081269881285

240 0.11087081269881285

241 0.11087081269881285

242 0.11087081269881285

243 0.11087081269881285

244 0.11087081269881285

245 0.11087081269881285

246 0.11087081269881285

247 0.11087081269881285

248 0.11085699185454723

249 0.11085699185454723

250 0.11085699185454723

251 0.11080170847748473

252 0.11076024594468788

253 0.11073260425615664

254 0.11073260425615664

255 0.1107049625676254

256 0.1107049625676254

257 0.11067732087909415

258 0.11066350003482853

259 0.11066350003482853

260 0.11059439581350042

261 0.11059439581350042

262 0.1105805749692348

263 0.11056675412496918

264 0.11056675412496918

265 0.11056675412496918

266 0.11045618737084421

267 0.11033179977245361

268 0.110317978928188

211

269 0.110317978928188

270 0.11029033723965675

271 0.11026269555112551

272 0.11023505386259427

273 0.11015212879700055

274 0.11013830795273491

275 0.1101244871084693

276 0.11009684541993807

277 0.11009684541993807

278 0.11008302457567243

279 0.11008302457567243

280 0.11008302457567243

281 0.11006920373140681

282 0.1100553828871412

283 0.11004156204287557

284 0.11004156204287557

285 0.11004156204287557

286 0.11004156204287557

287 0.11004156204287557

288 0.11004156204287557

289 0.11002774119860995

290 0.11002774119860995

291 0.11001392035434433

292 0.11001392035434433

293 0.10995863697728185

294 0.10995863697728185

295 0.10994481613301624

296 0.10988953275595373

297 0.10987571191168811

298 0.1098618910674225

299 0.10984807022315689

300 0.10980660769036002

301 0.10976514515756315

302 0.10972368262476628

303 0.10962693671490693

304 0.10961311587064132

305 0.1094749074279851

306 0.10933669898532888

307 0.10930905729679766

212

308 0.10921231138693831

309 0.10918466969840705

310 0.10910174463281334

311 0.10906028210001648

312 0.10896353619015713

313 0.10896353619015713

314 0.10888061112456339

315 0.10886679028029778

316 0.10886679028029778

317 0.10885296943603216

318 0.1088115069032353

319 0.10875622352617281

320 0.10868711930484472

321 0.10868711930484472

322 0.10867329846057908

323 0.10864565677204785

324 0.10864565677204785

325 0.10863183592778221

326 0.1086180150835166

327 0.1086180150835166

328 0.10859037339498537

329 0.10859037339498537

330 0.10859037339498537

331 0.10859037339498537

332 0.10850744832939163

333 0.10850744832939163

334 0.10839688157526667

335 0.10836923988673541

336 0.10830013566540732

337 0.1082863148211417

338 0.10827249397687606

339 0.10820338975554797

340 0.1081619272227511

341 0.10806518131289175

342 0.10792697287023555

343 0.10784404780464181

344 0.1078302269603762

345 0.10781640611611057

346 0.10780258527184494

213

347 0.10778876442757933

348 0.10778876442757933

349 0.10777494358331371

350 0.10742942247667318

351 0.10741560163240754

352 0.10740178078814193

353 0.10740178078814193

354 0.10740178078814193

355 0.10740178078814193

356 0.10738795994387632

357 0.10734649741107945

358 0.1073188557225482

359 0.1073188557225482

360 0.10729121403401697

361 0.10729121403401697

362 0.10729121403401697

363 0.10729121403401697

364 0.10726357234548571

365 0.1072497515012201

366 0.10711154305856388

367 0.1070562596815014

368 0.10702861799297017

369 0.10700097630443892

370 0.10700097630443892

371 0.10694569292737643

372 0.1067936636404546

373 0.10658635097647029

374 0.10650342591087655

375 0.10621318818129853

376 0.10619936733703289

377 0.10614408395997041

378 0.10611644227143918

379 0.10611644227143918

380 0.10607497973864231

381 0.10604733805011106

382 0.10604733805011106

383 0.10603351720584545

384 0.10603351720584545

385 0.10603351720584545

214

386 0.10601969636157983

387 0.10601969636157983

388 0.10599205467304858

389 0.10592295045172048

390 0.10588148791892361

391 0.10588148791892361

392 0.10585384623039236

393 0.10585384623039236

394 0.10581238369759552

395 0.10579856285332988

396 0.10578474200906426

397 0.1057432794762674

398 0.1057432794762674

399 0.1057432794762674

400 0.1057432794762674

401 0.1057432794762674

402 0.1057432794762674

403 0.1057432794762674

404 0.1057432794762674

405 0.1057432794762674

406 0.1057432794762674

407 0.1057432794762674

408 0.1057432794762674

409 0.1057432794762674

410 0.1057432794762674

411 0.1057432794762674

412 0.1057432794762674

413 0.1057432794762674

414 0.1057432794762674

415 0.1057432794762674

416 0.1057432794762674

417 0.10571563778773617

418 0.10561889187787682

419 0.10545304174668936

420 0.10545304174668936

421 0.10541157921389249

422 0.10541157921389249

423 0.10537011668109564

424 0.10530101245976752

215

425 0.10530101245976752

426 0.1052871916155019

427 0.1052871916155019

428 0.1052871916155019

429 0.10517662486137694

430 0.10490020797606452

431 0.10469289531208018

432 0.10465143277928333

433 0.1046376119350177

434 0.10438883673823651

435 0.1043059116726428

436 0.1043059116726428

437 0.1043059116726428

438 0.10427826998411155

439 0.10426444913984594

440 0.10425062829558032

441 0.10423680745131468

442 0.10423680745131468

443 0.10419534491851784

444 0.10419534491851784

445 0.1041815240742522

446 0.10416770322998659

447 0.10415388238572097

448 0.10414006154145533

449 0.10414006154145533

450 0.10412624069718972

451 0.1041124198529241

452 0.10409859900865849

453 0.1039880322545335

454 0.10389128634467418

455 0.10382218212334605

456 0.10382218212334605

457 0.10373925705775235

458 0.10371161536922109

459 0.10369779452495548

460 0.10365633199215861

461 0.10365633199215861

462 0.10329699004125246

463 0.1031864232871275

216

464 0.10315878159859625

465 0.1030620356887369

466 0.1029929314674088

467 0.10295146893461193

468 0.10288236471328382

469 0.10288236471328382

470 0.1028685438690182

471 0.10277179795915885

472 0.10275797711489323

473 0.1027441562706276

474 0.1027441562706276

475 0.102730335426362

476 0.10268887289356513

477 0.1026750520492995

478 0.10263358951650264

479 0.10263358951650264

480 0.10263358951650264

481 0.10259212698370578

482 0.10259212698370578

483 0.10256448529517453

484 0.10256448529517453

485 0.10255066445090891

486 0.1025368436066433

487 0.10242627685251833

488 0.10239863516398708

489 0.10237099347545583

490 0.10235717263119021

491 0.10213603912294028

492 0.10210839743440903

493 0.10202547236881532

494 0.10202547236881532

495 0.10201165152454968

496 0.10197018899175281

497 0.1019563681474872

498 0.10192872645895597

499 0.10192872645895597

500 0.10165230957364353

501 0.1016246678851123

502 0.10159702619658105

217

503 0.10158320535231544

504 0.10158320535231544

505 0.10152792197525295

506 0.10151410113098731

507 0.10148645944245609

508 0.10148645944245609

509 0.10148645944245609

510 0.10144499690965922

511 0.10144499690965922

512 0.1014311760653936

513 0.10141735522112799

514 0.10140353437686235

515 0.10138971353259674

516 0.10136207184406548

517 0.10133443015553426

518 0.10132060931126864

519 0.10132060931126864

520 0.10125150508994052

521 0.10125150508994052

522 0.1012376842456749

523 0.10118240086861242

524 0.10107183411448746

525 0.10103037158169059

526 0.10100272989315934

527 0.10100272989315934

528 0.10100272989315934

529 0.10097508820462811

530 0.1009612673603625

531 0.10093362567183124

532 0.10093362567183124

533 0.10093362567183124

534 0.10090598398329999

535 0.10087834229476876

536 0.10082305891770628

537 0.10082305891770628

538 0.10082305891770628

539 0.10082305891770628

540 0.10080923807344064

541 0.10080923807344064

218

542 0.10080923807344064

543 0.10079541722917502

544 0.1007677755406438

545 0.10075395469637816

546 0.10074013385211254

547 0.10072631300784693

548 0.10072631300784693

549 0.10072631300784693

550 0.10071249216358132

551 0.10067102963078445

552 0.1006572087865188

553 0.10064338794225319

554 0.10062956709798758

555 0.10062956709798758

556 0.10060192540945632

557 0.10058810456519071

558 0.10058810456519071

559 0.1005742837209251

560 0.10056046287665948

561 0.10054664203239384

562 0.10054664203239384

563 0.10053282118812823

564 0.10051900034386262

565 0.10050517949959697

566 0.10050517949959697

567 0.10039461274547201

568 0.1003807919012064

569 0.10035315021267514

570 0.10033932936840953

571 0.10028404599134705

572 0.10027022514708143

573 0.10025640430281581

574 0.10025640430281581

575 0.10025640430281581

576 0.10022876261428457

577 0.10020112092575331

578 0.10020112092575331

579 0.10020112092575331

580 0.1001873000814877

219

581 0.10014583754869083

582 0.1001181958601596

583 0.10007673332736274

584 0.10007673332736274

585 0.10007673332736274

586 0.10004909163883148

587 0.10003527079456587

588 0.10002144995030024

589 0.10000762910603463

590 0.099993808261769

591 0.099993808261769

592 0.099993808261769

593 0.09997998741750339

594 0.09996616657323776

595 0.09995234572897214

596 0.09993852488470652

597 0.09993852488470652

598 0.0999247040404409

599 0.09989706235190965

600 0.09989706235190965

601 0.09988324150764404

602 0.09988324150764404

603 0.09988324150764404

604 0.0998555998191128

605 0.09984177897484717

606 0.09978649559778469

607 0.09978649559778469

608 0.09977267475351906

609 0.09977267475351906

610 0.09977267475351906

611 0.09974503306498782

612 0.09974503306498782

613 0 .. 0997312122207222

614 0.09970357053219096

615 0.09967592884365971

616 0.0996621079993941

617 0.09963446631086284

618 0.09963446631086284

619 0.09962064546659723

220

620 0.09941333280261291

621 0.09941333280261291

622 0.09926130351569108

623 0.09923366182715983

624 0.09917837845009735

625 0.09916455760583173

626 0.09915073676156612

627 0.09913691591730048

628 0.09913691591730048

629 0.09910927422876925

630 0.09899870747464429

631 0.09892960325331616

632 0.09884667818772246

633 0.09877757396639433

634 0.09851497792534754

635 0.09840441117122257

636 0.09826620272856636

637 0.09825238188430074

638 0.09821091935150388

639 0.09821091935150388

640 0.0980865317531133

641 0.0978930399333946

642 0.09783775655633212

643 0.09782393571206648

644 0.09782393571206648

645 0.09774101064647277

646 0.09738166869556661

647 0.09736784785130098

648 0.09728492278570726

649 0.09720199772011354

650 0.09716053518731667

651 0.09713289349878543

652 0.09713289349878543

653 0.09704996843319169

654 0.09700850590039484

655 0.09684265576920738

656 0.09681501408067614

657 0.09677355154787927

658 0.09671826817081679

221

659 0.09664916394948868

660 0.0965938805724262

661 0.0965938805724262

662 0.09651095550683247

663 0.09649713466256685

664 0.09649713466256685

665 0.0964694929740356

666 0.09638656790844188

667 0.09635892621991064

668 0.09611015102312946

669 0.0960686884903326

670 0.09597194258047324

671 0.09595812173620763

672 0.09593048004767639

673 0.09588901751487952

674 0.09588901751487952

675 0.0958751966706139

676 0.09583373413781704

677 0.09583373413781704

678 0.09581991329355141

679 0.0958060924492858

680 0.0958060924492858

681 0.09577845076075456

682 0.09577845076075456

683 0.09577845076075456

684 0.09577845076075456

685 0.09504594601467664

686 0.09501830432614539

687 0.09493537926055166

688 0.0948248125064267

689 0.0947695291293642

690 0.09475570828509859

691 0.09470042490803611

692 0.09470042490803611

693 0.09452075393258302

694 0.09447929139978617

695 0.09445164971125491

696 0.09442400802272367

697 0.09439636633419243

222

698 0.0943825454899268

699 0.0943825454899268

700 0.09435490380139556

701 0.09435490380139556

702 0.09434108295712995

703 0.09432726211286432

704 0.09429962042433308

705 0.09428579958006747

706 0.0942443370472706

707 0.0942443370472706

708 0.09417523282594249

709 0.09414759113741125

710 0.09411994944888001

711 0.09409230776034877

712 0.09407848691608314

713 0.09407848691608314

714 0.0940508452275519

715 0.09403702438328629

716 0.09403702438328629

717 0.0939126367848957

718 0.09377442834223948

719 0.09376060749797387

720 0.09373296580944263

721 0.09373296580944263

722 0.093719144965177

723 0.093719144965177

724 0.09370532412091137

725 0.09369150327664576

726 0.09365004074384889

727 0.09363621989958328

728 0.09360857821105203

729 0.0935809365225208

730 0.09351183230119268

731 0.09347036976839582

732 0.09344272807986458

733 0.09344272807986458

734 0.09342890723559896

735 0.09340126554706771

736 0.09337362385853647

223

737 0.09335980301427085

738 0.09334598217000523

739 0.09333216132573961

740 0.09333216132573961

741 0.09331834048147399

742 0.09331834048147399

743 0.09331834048147399

744 0.09330451963720837

745 0.09330451963720837

746 0.09327687794867712

747 0.09327687794867712

748 0.09327687794867712

749 0.0932630571044115

750 0.0932630571044115

751 0.09324923626014588

752 0.09323541541588026

753 0.09323541541588026

754 0.09323541541588026

755 0.09323541541588026

756 0.09323541541588026

757 0.09320777372734902

758 0.0931939528830834

759 0.0931939528830834

760 0.09315249035028654

761 0.09315249035028654

762 0.09315249035028654

763 0.09312484866175529

764 0.09309720697322404

765 0.09300046106336471

766 0.09297281937483345

767 0.09294517768630221

768 0.09287607346497412

769 0.09284843177644288

770 0.09284843177644288

771 0.09280696924364601

772 0.09279314839938038

773 0.09276550671084914

774 0.09275168586658353

775 0.0927378650223179

224

776 0.09271022333378666

777 0.09268258164525542

778 0.09268258164525542

779 0.09264111911245855

780 0.09257201489113046

781 0.09248908982553672

782 0.09244762729273986

783 0.09241998560420862

784 0.09239234391567737

785 0.09230941885008365

786 0.09230941885008365

787 0.09230941885008365

788 0.09229559800581803

789 0.09226795631728678

790 0.09225413547302116

791 0.09224031462875554

792 0.09224031462875554

793 0.09222649378448992

794 0.0922126729402243

795 0.0922126729402243

796 0.0922126729402243

797 0.0922126729402243

798 0.09218503125169306

799 0.09218503125169306

800 0.09210210618609933

801 0.09206064365330247

802 0.09204682280903684

803 0.0920191811205056

804 0.09200536027623998

805 0.09183951014505252

806 0.09161837663680258

807 0.0915630932597401

808 0.09153545157120885

809 0.09153545157120885

810 0.09153545157120885

811 0.09146634734988075

812 0.09145252650561513

813 0.09143870566134951

814 0.09142488481708388

225

815 0.09138342228428702

816 0.0913696014400214

817 0.0913696014400214

818 0.09134195975149016

819 0.09127285553016205

820 0.09125903468589644

821 0.09124521384163081

822 0.09123139299736518

823 0.09120375130883394

824 0.09116228877603709

825 0.09114846793177146

826 0.09114846793177146

827 0.09114846793177146

828 0.09112082624324022

829 0.09106554286617774

830 0.09106554286617774

831 0.09105172202191211

832 0.09105172202191211

833 0.0910379011776465

834 0.09102408033338087

835 0.09102408033338087

836 0.09101025948911526

837 0.09096879695631839

838 0.09095497611205276

839 0.09094115526778715

840 0.09091351357925591

841 0.09089969273499028

842 0.09089969273499028

843 0.09089969273499028

844 0.09087205104645904

845 0.09087205104645904

846 0.09083058851366219

847 0.09076148429233408

848 0.09073384260380284

849 0.09069238007100597

850 0.09063709669394349

851 0.09056799247261538

852 0.09055417162834976

853 0.09054035078408414

226

854 0.09047124656275603

855 0.09047124656275603

856 0.09045742571849041

857 0.09045742571849041

858 0.09045742571849041

859 0.0903883214971623

860 0.09036067980863106

861 0.09030539643156858

862 0.09023629221024047

863 0.09007044207905301

864 0.0900566212347874

865 0.09000133785772492

866 0.08990459194786557

867 0.08982166688227185

868 0.08980784603800622

869 0.08980784603800622

870 0.08973874181667811

871 0.08973874181667811

872 0.08973874181667811

873 0.08973874181667811

874 0.08971110012814687

875 0.08968345843961563

876 0.08966963759535002

877 0.08964199590681876

878 0.08962817506255315

879 0.08962817506255315

880 0.08962817506255315

881 0.08961435421828752

882 0.0896005333740219

883 0.0896005333740219

884 0.0896005333740219

885 0.0896005333740219

886 0.08958671252975628

887 0.08954524999695943

888 0.08951760830842817

889 0.08951760830842817

890 0.08950378746416256

891 0.08950378746416256

892 0.08843958245570972

227

893 0.0877070777096318

894 0.08754122757844435

895 0.08752740673417873

896 0.08752740673417873

897 0.08733391491446003

898 0.0873200940701944

899 0.08723716900460068

900 0.08720952731606944

901 0.08716806478327258

902 0.08714042309474133

903 0.08712660225047572

904 0.08694693127502265

905 0.08691928958649141

906 0.08690546874222578

907 0.08689164789796015

908 0.0868501853651633

909 0.08683636452089767

910 0.08678108114383519

911 0.08675343945530395

912 0.08668433523397584

913 0.08668433523397584

914 0.08650466425852277

915 0.08644938088146027

916 0.08622824737321033

917 0.08617296399614785

918 0.08615914315188222

919 0.08603475555349163

920 0.08600711386496039

921 0.08599329302069478

922 0.08597947217642915

923 0.08597947217642915

924 0.08596565133216354

925 0.08596565133216354

926 0.08595183048789791

927 0.0859380096436323

928 0.08592418879936667

929 0.08592418879936667

930 0.08592418879936667

931 0.08591036795510106

228

932 0.08589654711083543

933 0.08589654711083543

934 0.0858827262665698

935 0.0858827262665698

936 0.08586890542230419

937 0.08578598035671046

938 0.08571687613538236

939 0.08570305529111673

940 0.08564777191405425

941 0.085620130225523

942 0.08559248853699176

943 0.08559248853699176

944 0.08557866769272614

945 0.08556484684846052

946 0.0855510260041949

947 0.08552338431566366

948 0.08550956347139804

949 0.08550956347139804

950 0.08549574262713242

951 0.08546810093860117

952 0.08544045925006993

953 0.0854266384058043

954 0.0854266384058043

955 0.08541281756153869

956 0.08532989249594497

957 0.08530225080741372

958 0.08473559619252326

959 0.08473559619252326

960 0.08473559619252326

961 0.08472177534825763

962 0.08468031281546078

963 0.08440389593014835

964 0.08437625424161711

965 0.08436243339735149

966 0.08434861255308587

967 0.08429332917602338

968 0.08421040411042965

969 0.08419658326616404

970 0.08415512073336717

229

971 0.023481614407290328

972 0.023440151874493467

973 0.023398689341696602

974 0.02337104765316536

975 0.02326048089904039

976 0.02326048089904039

977 0.023149914144915424

978 0.0231360933006498

979 0.02309463076785294

980 0.02308080992358732

981 0.02290113894813424

982 0.022859676415337378

983 0.022845855571071754

984 0.022832034726806134

985 0.022818213882540513

986 0.02277675134974365

987 0.022762930505478028

988 0.022735288816946787

989 0.022721467972681167

Average Member load: 7315.923154701719

Diameter: 0

230

APPENDIXC

Publication Records

Chapter 3 is partially derived from the following publications:

• Hassan, M.I. and A. Abdullah (2010). Semantic-Based Grid Resource Discovery

Systems: A literature review and taxonomy. Proceedings The 4thinternational

International Symposium on Information Technology (ITSim 2010), IEEE

Computer Society, vol3, pp 1286-1297, Kuala Lumpur- Malaysia.

Chapter 4 is partially derived from the following publications:

• Hassan, M.I. and A. Abdullah (2009). "A Semantic Description and Registration

Framework for Large Grid Resource Discovery Systems." Journal Computer

Science Letters, vol 1, issue 1.

• Hassan, M.I. and A. Abdullah (2009). Semantic-Based Scalable Decentralized

Grid Resource Discovery. Proceedings The 2009 International Conference on e

Technology (e-Tech 2009), pp 3316-3324, Singapore.

Chapter 5 is partially derived from the following publications:

• Hassan, M.I. and A. Abdullah (2011). "A New Resource Discovery Framwork."

The International Arab Journal oflnformation Technology (IAJIT), vol8, issue1,

pp 20-28.

• Hassan, M.I. and A. Abdullah (2009). Semantic-Based Scalable Decentralized

Resource Discovery. Proceedings National Postgraduate Conference 2009, NO.

194, ID CIS042, Tronoh - Malaysia.

231

• Hassan, M.I. and A. Abdullah (2008). Self-organizing Grid resource discovery.

Proceedings The International Symposium on Information Technology (lTSim

2008). IEEE Xplore, vol 1, pp 1-4, Kuala Lumpur-Malaysia,

• Hassan, M.I. and A. Abdullah (2008). Scalable Self-Organizing Model for Grid

Resource Discovery. International Conference on! Network Applications,

Protocols and Services 2008, No.23, Kedah Darul Aman-Malaysia.

232

