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ABSTRACT

System Identification is an art of constructing a mathematical model for a dynamic
response system. The modeling process is based on the observed input and output
data for a system. To start a modeling process, a good understanding of process
behavior is required as it will determine the important parameters and characteristics

to be analyzed.

pH neutralization is a very nonlinear process. It is not easy to get an accurate model
as compared to the actual model. Modeiing using conventional methods does not
seem to give a reliable model for this process. Thus, for wide a range of
neutralization pH values, conventional modeling methods are not sufficient,

Therefore, for this project, intelligent approaches are considered.

The conventional methods that are used by the Author are mathematical modeling,
empirical modeling and statistical modeling. Mathematical modeling is done to see
the relation of inputs and output. Empirical modeling is the common method used
for plant modeling. Statistical modeling is more a to computerized modeling where it
requires a good computer configuration basic in order to achieve the desired output.
Neural Network is used for the intelligent method. Neural network is an intelligent
approach that has the capability to predict future plant performance by training

several datasets.

These conventional and intelligent methods are compared between each other in
term of the model accuracy, model reliability and flexibility. Modeling using
mathematical modeling is tedious and requires more effort on the block diagram
configuration in order to get an accurate result. Empirical modeling is basically good
enough for plant identification, unfortunately for a highly nonlinear system, the
method does not seem reliable. Statistical modeling has the ability to predict an
acceptable higher order model. On top of that, neural network could give a more

reliable and accurate result.
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1.1.

1.2.

CHAPTER 1
INTRODUCTION

Background of Study

Modeling refers to a process of deducing a mathematical model of a dynamic
response based on the behavior of input and output from observed dataset. This
requires good estimation methods for system identification of the dynamical
systems. Modeling is primarily important to validate the system performance.
Good modeling is considered as performing well in accuracy, reliability and

flexibility.

This project is conducted on a pH control pilot plant for pH system
identification. Several real-time datasets are taken from the plant experiment and
the modeling part is done using several modeling approaches. The conventional
modeling approaches used to identify the system are the mathematical modeling,
empirical modeling and statistical modeling. Intelligent modeling is a major
consideration for this project where neural network using feedforward
backpropagation network technique is used to model the system based on the

actual datasets from plant experiment.
Problem Identification

pH neutralization is a highly nonlinear process and needs a reliable method to
achieve model optimization. Thus for wide range of neutralization pH values,

conventional modeling methods are insufficient.

Therefore, modeling of pH neutralization process using several intelligent

approaches is considered.



1.3

1.4

1.5

Significance of the Project

Generally, the outcome of this investigation serves as base information for
modeling pH neutralization using conventional methods and intelligent
approach. The conventional methods implemented for the pH pilot plant
modeling will be later compared to the intelligent modeling approaches in term

of reliability, feasibility and accuracy.

In summary, this project can be considered as an educational tool to familiarize
oneself with plant activities, Analysis on modeling using several approaches is

also a beneficial step to enhance plant process control.
Objective of Study

1.4.1 To obtain a model for pH Neutralization process pilot plant based on

several methods,

o Using conventional methods such as mathematical, empirical and
statistical methods

a Using intelligent approach which is Neural Networks

1.4.2 To make comparison between conventional and intelligent approach in

terms of flexibility, reliability and accuracy.
Secope of Study

The scope of this intelligent plant process control project is narrowed down to a
single loop of pH control, AIC-122, for the product of Control Stirred Tank
Reactor (CSTR) at the UTP pilot plant. The plant controls the pH reaction of
strong acid strong base solutions (SASB). The strong acid solution used is
Sulfuric Acid (H;SO4) and the strong alkaline solution used is Natrium
Hydroxide (NaOH).



1.5

1.6

The modeling part of the project uses conventional methods such as
mathematical, empirical and statistical methods. Mathematical model needs
more parameters detail compared to empirical model since it involves with more
calculations. On top of that, intelligent approach such as neural networks is also

used for the pH system identification.

Comparison is made between recorded real-time data from plant experiment and
simulation from MATLAB-Simulink. Thus, comparison between conventional
and intelligent approach in terms of flexibility, reliability and accuracy can be
made. The accuracy of the model will be observed based on how resembles the

predicted model to the actual output reaction,
The Relevancy of the Project

A good model prediction is important especially during systems performance
test. Inaccurate model will give effects during tuning where it is difficult to tune

the output to the desired set point.

Modeling using conventional methods is not compatible for a highly nonlinear
system like pH neutralization process. A lot of research has been done on the
application of intelligent approaches for process control throughout the past few
years. In most cases, the outcomes are very promising for the control
applications. Besides having the intelligent approaches as new and reliable
control techniques, modeling using intelligent approach such as neural network
is believed would give a better model prediction than using conventional

methods.
Feasibility of the Project within the Scope and Time Frame

The expected achievements by the end of Semester July 2004 involve with the
modeling of pH neutralization for process control. The plant experiment is done
at pH control pilot plant in Instrumentation & Control Laboratory of Universiti

Teknologi PETRONAS (UTP).



Many samples of data have been collected. For a start, proper experimental
design is required so that the shape, duration and base operating condition of the
pH control system can be determined. Therefore, longer duration time is needed

for real-time data gathering. It took about half of the semester to for this purpose.

The datasets are then analyzed using several modeling methods. For modeling
simulation, the datasets are extracted to MATLAB/Simulink software for
complement investigation. Software simulation also required quite a long time

for results accomplishment.



2.1

2.2

CHAPTER 2
LITERATURE REVIEW AND/ OR THEORY

The pH Scale

pH is defined as logl0[H'] and is a measure of the acidic and basic of an
aqueous solution. Aqueous solution contains the proportion of water. The pH is
scaled from 1 to 14. A value of pH lower than 7 is designated as acidfc solution
whereas the value of pH upper than 7 is designated basic or alkaline. Whereby,
neutralization is the process to neutralize acidic and basic solution into salt and

water which falls into pH 7 in the pH scale %,

The chemistry of an aqueous solution often depends critically on the pH of the
solution. It is therefore important to examine how the pH of solutions relates to
the concentration of acids and bases. The case for this pH control pilot plant
involves strong acid and strong base (SASB). Strong acid and base are strong

electrolytes, existing in aqueous solution entirely as ions.
Titration Curves

Generally, a typical curve titration curve obtained by titrating an acid with a
base. All curves start out with a very slow, or moderate, change in pH while the
base is being added to the acid. As the titration continues and the endpoint is
approached, the pH of the solution will start to change more dramatically. At the
endpoint, the line changes most dramatically. Once the endpoint has been
passed, the rate of pH change diminishes again. It will resemble the first part of

the graph except at a higher pH value.

The midpoint of the most vertical part of the graph will correspond to the exact
endpoint. This will also correspond to the equivalence point, or the point at

which the equivalents of acid equals the equivalents of base. In addition, the



midpoint will also determine the pH of the salt that was formed during the

titration.

F Y
pH of salt

‘!ﬂm 1

gH

mls of hase
at endpoint

Miillifiters Bas

Figure 2.1: A typical titration curve of acid influence to basic solution.

Not all titration curves are exactly the same. The graphs will differ somewhat in
shape, depending upon whether the acid that is being titrated is a strong acid or
weak acid™”. For strong acid with a strong base titration, there will be a single
endpoint and the graph is nearly vertical at the endpoint. An acid with two
protons will have two endpoints, one for each hydrogen. Unfortunately, the
quality of the graph deteriorates at the successive endpoints™. In other words,

the first endpoint is fairly obvious, the second endpoint 1s not as well defined.

A

pHofsecond | f

ik sfhase at
boike endpeinis

b

Milkfiters Base

Figure 2.2: A titration curve of acid with two protons
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pH Neutralization for Strong-Acid-Strong-Base (SASB)

Here is the theory of pH neutralization by Brown LeMay Bursten, where pH is
the measurement of concentration of hydrogen ions, H'(aq) in an aqueous
solution. The concentration of H™ in aqueous solution is usually quite small,
therefore usually express [H'] in terms of pH, which is defined as the negative

logarithm in base of 10 of [H'] ¥

The ion product of water in equilibrium constant expression is,

«_ -[H:OIIOH ]
[H,0°T

Rearrange equation 2.2,

K, [H,0%1 =[H, 0" [[OH vt (2.3)

The product of the two constants, K, and [H,0] 2, defines a new constant
denoted by K., called the ion product constant for water 2. At 25°C, K, equals
1.0x 10", Thus, at 25°C,

K, =[H,0"[OH] =1.0X10™ ...\ coveomrversrrnenn (2.4)

Note: [H;0]1=[H']



From the fundamental theory of Bursten LeMay, McAvoy developed the

equation characterizes the pH curve of the SASB reaction, which be noted as,

From the SASB equation, we can simulate the dynamic curve of pH

neutralization via Simulink,

- -log10(u(ty

sam(u(1) + Fos pH

L pf uiyom

Fen

Fent

Figure2.3: SASB Simulink block diagram
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The pH Control Pilot Plant

The schematic of P& ID diagram is shown in Figure 2.4. The acid solution 1s
pumped from tank VE100 by pump P100 into Continuous Stirred Tank Reactor
(CSTR) VE120. The alkaline solution from tank VE110 is pumped by pump
P110 into the same CSTR. The CSTR is equipped with stirrer and pH transmutter
AT-122. Desired neutralization process can be carried out in the second CSTR

which flows from the downstream of VE120.

WATER - -
SUPTLY

Figure 2.4: Piping & Instrumentation Diagram (P&ID)




2.5 Mathematical Model:

The mathematical approach is based on fundamental theories or laws, such as
conservation of mass, energy and momentum. This approach is of favor because
small number of principles can be used to explain a wide range of physical
systems. In other words, this particular approach simplifies the view of nature.
Apart from that, this approach has a broad range of applicability, which enables
the task of evaluating potential changes in operating conditions and equipment

and also to design new plants.

For the pH control reaction in a CSTR, the state space representation develop

based on McAvoy et al &
v e e (F, 4 F)x, o (26)
dt
dx, _
V—O?—Fbe—(Fa+Fb)xb ........... (27)

pH Transmitter

Acid

CSTR

Aligaline

Figure 2.5: Physical representation of pH neutralization process.

10



McAvoy derived the dynamic model from experimental model which yields the

state space representation of pH neutralization process,

n FC

X -F +F/V 0 X N

= y - I+ ... 2.8
LEJ [ 0 —Fa+Fb/V:||:xbj| Fbc% (1) (28)

y=[l - 1][3‘“} ....... (2.9)

Xy

Where u(t) represents the inputs to the system which are Fy, Fy, C,, and Cy
Note: x,=Concentration of non reacting acid, mol/litre

xp = Concentration of non reacting alkaline, mol/litre

C, = Concentration of acid, mol/sec

Cy, = Concentration of alkaline, mol/sec

F,= Flow rate of acid, litre/sec

Fp= Flow rate of alkaline, litre/sec

V = Volume of CSTR, litre

11



From the state space representation of the pH control system, the systems of

acid-base reaction block diagram represented as diagram below,

u(t) —» Fo+ by

L4

G| e

V + X, s Xy

| —

Figure2.6: pH control block diagram
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2.6

2.7

Empirical Modeling

The purpose of plant modeling is to establish the relationships between

parameters in the physical systems and the transient behavior of the systems.

Empirical modeling provides the dynamic relationship between selected input
and output variables. Models are determined by making small changes in the
input variable about nominal operating condition. The resulting dynamic
response is used to determine the model. A linear transfer function developed
using empirical methods are adequate for many process control designs and

implementations.

The process reaction curve (PRC) employs simple graphical procedures for
model fitting. In other words, the model is calculated by interpreting the
graphical reaction curve. The graphical method has two major limitations which

are first-order with dead time model and requires a perfect step input !,
Statistical Model Identification

Statistical model identification methods provide more flexible approaches to
identification that relate the model structure and experimental design. The
statistical method employs desired principles for determining the parameters

besides employing a tedious statistical method.

Statistical methods use all data and not just a few points from the response,
which will provide better parameter estimation. The steps taken are similar to
Empirical Modeling. In addition, Statistical methods involve the following

actions “];

e Introduce a perturbation (or sequence of perturbation) in the input variabie.
There is no restriction on the shape of the perturbation, but the effect on the
output must be large enough to enable a model to be identified.

» Collect input and output response data,

o (Calculate the model parameters via computer programming, eg. Matlab.

13



The basic idea is to formulate the model so that regression can be used to

evaluate the parameters.

2.7.1 System Identification using ARMAX { Auto Regressive Moving
Average with External Input)

System Identification using ARMAX can be considered as Statistical Method
modeling. The mathematical models of a dynamic system can be built based on
measured data. Essentially by adjusting parameters within a given model until its
output coincides as well as possible with the measured output. The techniques
can be applied to very general models. Most common models are difference
equations descriptions, such as ARX and ARMAX models. ARMAX is chosen
instead of AR and ARX because it has more parameters which will give

advantages for ARMAX modeling.

e(t)

| O leg—

u(t
()—l- B y(t)
A

Figure 2.7: ARMAX model structure

For the ARMAX case, the model estimation involves an iterative, numerical

search for the best fit P1. There were different disturbance models are introduced.

14



A general input-output linear model for a single-output system with input u and

output y can be written,

i

Al@)y() = ) [Bi(q)/F (@)]u(t—nk;)+[C(g)/D(g)]e(t)

i=1 (2.10)

Therefore, armax estimates the parameters of the ARMAX model structure,

Alg)y(t) = Blg)u(t-nk)+Cig)e(t) (2.11)

using a prediction error method. The data contains the output-input data. Only
time domain data are supported by armax Pl The model orders can be specified

as (...,na',na,'mb',nb,...) or by setting the argument orders to
orders=[nanbnenk] ... (2.12)

The parameters na, nb, and nc are the orders of the ARMAX model, and nk is
the delay. Specifically,

‘ 1 -na
na: Alg) = 1+a1g "+..tag (2.13)
-1 -nb+1
nb: B(g) = by +b +..+b
q 17999 B, (2.14)
1 —ne
ne: Clg) = 1+ecqq " +...+c,.4 (2.15)

15



2.8

Neural Networks

Neural networks, inspired by biological nerves system, is a composed of simple
element operating in parallel. Neural Network has the capability to predict future
plant performance ). Neural network are adjusted or trained, so that a particular

input leads to a specific target output.

Target

Neural network;
connections between
Input neurons (called weights)

v

F

Adjust weight

Figure2.8: Adjustment of neural network to obtain specific target output

Neural network performs two major functions which are learning and recall.
Learning is the process of adapting the connection in neural network to produce
a desired output vector in response to a stimulus vector presented in the input
buffer [, Recall, on the other hand, is the process of accepting input stimulus
and producing output response in accordance with the network weight structure.

This condition occurs when a neural network globally output buffer.

Learning rules of neural computation indicates how connection weights are
adjusted in response to a learning example. The most used learning rules in
engineering application is supervised learning. In this method, the neural

network is trained to give the desired response to a specific input stimulus. The

16



difference between actual output and desired response constitutes an error which

is used to adjust the connection weights,

2.81 Feedforward Backpropagation Network

A single-layer network of S logsig neurons having R inputs is shown below in

full detail on the left and with a layer diagram on the right.

nput  Layer of Neurons Input Layer of Neurons
F N{ 3 f N A
' fl a _
, " Z ] ’.L ) p W a
| Y Rxl n sul
l 1 SxR L
1 j Sxi
P, " a 1~ b
Z ’L b R Sx1 5
P, +b .. ANV A J
: ) o a=f (Wp+b)
Fr 3 s ’L as’ Where R = numberaof
5 R elements in
l b input vector
1
—/ S S =numberof
a=f (Wp+b) neurcns in layer

Figure 2.9: Layer of neurons

Feedforward networks often have one or more hidden layers of sigmoid neurons
followed by an output layer of linear neurons 1. Multiple layers of neurons
with nonlinear transfer functions allow the network to leamn nonlinear and linear
relationships between input and output vectors. The linear output layer lets the

network produce values outside the range -1 to +1.

Multiple-layer networks we used to determine the superscript on the weight
matrices. The appropriate notation is used in the two-layer tansig/purelin

network shown in Figure 2.10.

17



Hidden Layer Output Layer

at HEERY

‘ 2 —Pp
I’Wn-\‘ N j:?L:il-\l . 74 pw
‘ 43l b3 %1
S o

Gt foE )

a! = tansig (TWuip1 +by) az =purelin (LW2a1 +h2)

Figure 2.10: Two-layer feedforward backpropagation network

This network can be used as a general function approximator. It can approximate
any function with a finite number of discontinuities, arbitrarily well, given

sufficient neurons in the hidden layer "],

18



CHAPTER 3
METHODOLOGY

3.1 Procedure Identification

3.1.1 Overall Project Flow

Generally, the identified steps procedure for
SetMV to any initial value

modeling the pH control from pilot plant

experiment to modeling simulation using l

various methods is shown in Figure 3.1. Start Pumps/ Stirrer

This flow chart is for overall steps l‘

configuration of this project.

Observe Trend

' F'{‘e:s:lzjlt
."Optimal?

Yes

Add step to MV

'

Observe Trend

Model simulations using
conventional & intelligent
approaches

Figure 3.1: Overall flow diagram

19



3.1.2 Mathematical Modeling

Generally, according to Marlin, there are six
steps procedure for mathematical modeling.
First step is to define goals, which involves
with functional relationships in this case the
relationship of concentration acid and base
in CSTR, with flow of acid and base, and
volume of mixed solution in CSTR. Next is
to prepare information for example by

stating assumptions and data.

In order to formulate the model, the ordinary
differential equation (ODE) of the system,
which derived by McAvoy, is represented in

state space representation.

During result analysis, result relationship is
analysed between data and assumptions.
Finally, the model is validated by comparing

with experimental results.

The steps involve are shown in the flow

chart in Figure3.2,

20

Define Goals

Y

Prepare Information

2

A

Formulate Model

hJ

Determine Solution

Y

Analyze Result

F{esult' '
Optimal? .~

Yes

Validate Model

“._ Optimal?

Figure 3.2: Mathematical modeling

procedure




3.1.3 Empirical Modeling

An important aspect of empirical modeling is the need for proper experimental
design. To determine model structure, many methods are available but initial

structure is selected based on prior knowledge [,

Generally the whole experiment will touch on several stages. The initial stage is
to understand the P&l Diagram of the entire control loop as well as the process

hook up and piping involved in the experiment.

There are six steps for developing empirical model of one system. The steps are

shown in Figure 3.3 below.

Start
& priori knowledge ¢

] Experimental Design - - - -

v

Flant Experiment

v

— M Determine Model Sbuciure [4----

Y

Parameter Evaluation
Diagnostic Evaluation
Altermative data #

|_P Model Verification @ [--—- -

v

Conipletion

g [ e |

Figure 3.3: Procedure for Empirical Transfer Function Model Identification

21



For parameter estimation, two methods can be used which are the graphical

technique calculation of Method I and Method II.

Kﬂ =A/l5
T=AlN

& = showrn in figure

Figure 3.4a: Method I calculation

Process reaction curve - Method [

K,=A18

1 = 1.5 (t4a00 — tages)

— (.63A

19=IG3%—I'

Figure 3.4b: Method II calculation

Diagnostic is the level of evaluation that determines how well the model fits the
data used for parameter estimation. Finally, the model is compared with

additional data not used in the parameter estimation for model verification.

22



3.1.4 Statistical Modeling (ARMAX)

Sort Data Accordingly; Input,
Output, Noise

'

Export data to MATLAB

-

Run ARMAX simulation

No

" Result ™,
~._ Optimal? .~

Figure 3.5: System Identification Flow Diagram

input  —————

output — ARMAX

noise ——

AutoRegressive Moving
Average with eXternal
input model estimator

Figure 3.6 : ARMAX Simulink block diagram
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3.1.5 Neural Network

Data assemble

'

Prepare data for network
training and testing

"

Create the backpropagation
network

'

Train the neural network

/Resuit-;?’:"

. Optimal? "

Figure 3.7: Neural Network flow diagram.

First of all, data is prepared for the network training. The real-time data that are
obtained during lab experiments is assembled accordingly due to its input and

output in MATLAB workspace.
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Before training, it is necessary to scale the inputs and targets so that they always
fall within a specified range. The function premnmx is used to scale inputs and
targets so that they fall in the range [-1,1] ). The following code illustrates the

use of premnmx function.

o [pnminp,maxp,tn,mint, maxt] = premnmx(input,target);

* nef=frain(net,pn,in);

The original network inputs and targets are in matrices form under the file
named ‘input’ and ‘target’ respectively. The normalized inputs and targets, PN
and TN, that are returned will all fall in the interval [-1,1]. The vectors minp and
maxp contain the minimum and maximum values of the original inputs, and the
vectors mint and maxt contain the minimum and maximum values of the original
targets. After the network has been trained, these vectors will be used to
transform the test data inputs that are applied to the network. They effectively

become a part of the network, just like the network weights and biases P,

Since premnmx is used to preprocess the training set data, then when the trained
network is tested with new inputs they will be preprocessed with the minimum
and maximums that were computed for the training set. This is accomplished

with the routine tramnmx shown in the following code,

o PN Test=tramnmx(test Ip,minp,maxp);
o N Test=sim(net, PN _Tesi);
o [querylnputs predictOutputs]=postmnmx(PN_Test,minp,maxp, TN Test,mint,maxt),
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The function newff creates a feedforward network P!, It requires four inputs and
returns the network. The first input is a matrix of minimum and maximum
elements of the input vector. The second input is an array containing the sizes of
each layer. The third input is a cell array containing the names of the transfer
functions to be used in each layer. The final input contains the name of the

training function to be used. The following code explains the above descriptions.

» net=newff{minmax(normalized_input), [size_of layer], {transfer function}, tr

aining function’);

The Levenberg-Marquardt (trainlm) training function algorithm was designed to
approach second-order training speed ). It also has a very efficient MATLAB

implementation, since the solution of the matrix equation is a built-in function.
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3.2

Tools and Software
3.21 (MATLAB-Simulink)

MATLAB offers array operations that allow one to quickly manipulate sets of
data in a wide variety of ways. MATLAB also offers programming features
similar to those of other computer programming languages. In addition,
MATLARB offers graphical user interface (GUI) tools that allow one to use it as
an application development tool . Therefore, this project will utilize most of

MATLAB programming application and its GUI development feature.

Simulink is an extension to MATLAB that allows engineers to rapidly and
accurately build computer models of dynamic systems, using block diagram
notation. With Simulink, it is easy to model complex nonlinear systems.
Additionally, a Simulink model can produce graphical animations that show the
progress of a simulation visually, significantly enhancing understanding of

system behavior *1

3.2.2 Honeywell Plantscape

Honeywell Plantscape is special software that is used for the server of the
Distributive Control System (DCS) of the pH neutralization pilot plant. This
software is slightly similar to the real plant DCS which is good enough to expose
the users to the real plant applications. The server also provides a good database

which really helpful for the data storage and configuration.
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4.1

CHAPTER 4
RESULTS & DISCUSSION

Plant Experiment for System Identification

Several experiments have been done for model datasets validation. The process
reaction curve (PRC) obtained are observed in terms of delay time (Ty), time
constant (1) and the change of ultimate value (A) of the graph for the output, also
known as process variable (PV). Besides, the other important element under
consideration during plant identification is the input perturbation step. This small
perturbation step refers to the manually applied manipulative variable (MV),

This is necessary to get the dynamic response in nominal operating conditions.
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Figure 4.1: Comparison of 3 data sets from plant experiments

Figure 4.1 shows three validated data of pH neutralization model obtained from
plant experiment. These datasets are approximately identical to each other. The
curves start out with a very slow, or moderate, change in pH and fuifill the
requirements of an SASB reaction where it has the steep rise at the endpoint. At

the endpoint, the line changes most dramatically. Once the endpoint has been
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reached, the rate of pIl change diminishes again. The reaction change slows

down at an alkaline pH value which yields from values of 10 to 14.

The midpoint of the most vertical part of the graph corresponds to the
equivalence point, or the point at which the equivalents of acid equals the
equivalents of base. In addition, the midpoint will also determine the pH of the

salt that was formed during the titration.

Data 2 has slightly a different curve shape than the other two datasets. This is
because of H;S04 has two protons that results for two endpoints; one for each
hydrogen. Thus the quality of the graph deteriorates at the successive endpoints.
Unlike Data 2, for Data 1 and Data 3, the graphs rise very steeply but

nonetheless still can be considered as an SASB reaction,
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4.2

Mathematical Modelling

The plant model using mathematical simulation is modelled based on the
McAvoy derivation for strong acid and strong base pH neutralization. In general,
the basic block diagram of pH control developed using mathematical model
method and MATLAB Simulink software is as shown in Figure 4.2 below. The
configuration of inputs and outputs are made by referring to the actual pilot

plant. It has five inputs and one output. The inputs are:
C, = Concentration of acid, mol/sec
C}, = Concentration of alkaline, mol/sec
F.= Flow rate of acid, litre/sec
Fy= Flow rate of alkaline, litre/sec
V = Volume of CSTR, litre

The output is the summation of non-reacting concentration of acid and alkaline

which yields the pH value of the solution inside CSTR.

The plant transfer function which is represented in a matrix form or state space
representation as shown in equation (2.8) and (2.9), is simulated via MATLAB
Simulink shown in Figure 4.2. Figure 4.3 shows the components masked inside

the pH control plant model block.
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As an example, the result that obtained from the mathematical model using a

sample of the inputs data;
Acid concentration, C,= 1mol/sec,
Base concentration, Cy= 1.1 mol/sec,
Actd flow, F,= 3.1 litre/sec,
Base flow, F= 3.2 litre/sec,
Volume of CSTR, V=10 Iitre,

is very promising, as shown in Figure 4.4. This mathematical modelling 1s able
to achieve an SASB reaction curve. With this input sample, the acidic value
ranges around the lowest pH values (about < pH2) and rises up to higher pH
value (2pH12). |

14 : T : T T T : - )

“g 1 ) 3 4 5 B 7 B .9 13

Figure 4.4: Mathematical model simulation for a sample of inputs data

In order to study the relationship between all inputs and output of pH value, a

randomized step inputs are used and the result is analysed. Figure 4.5 shows the
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mathematical model with random inputs and Figure 4.6 shows the output for the

model.
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Figure 4.5: Mathematical model simulation block diagram for random step
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Figure 4.6: Output of SASB reaction curve for random inputs
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The random step changes shows that this mathematical modelling fulfilled the
strong acid strong base (SASB) reaction curve characteristic since it alternates

within the range of the highest pH value to the lowest pH value.

The amount of flow and concentration of acid and base are primary elements that
will produce the desired strong acid and strong base reaction curve. In order to
obtain the positive gradient reaction curve of titrating acid with base, the amount
of flow of alkaline is important. The flow of acid is kept constant at 3.1mol/sec,
which in this case, the flow of the acid is set to AUTO mode during the
experiment. Looking at Figure 4.7, as flow and concentration of alkaline
decreases, pH value at the output of the system also decreases and vice versa.
Therefore, this mathematical model can be accepted for a pH control of an
SASB plant model.

However, the mathematical approach has its limitations, generally resulting from
the complexity of mathematical models. Thus, modeling processes to be as
realistic as possible, requires a large engineering effort to formulate the
equations, determine all the parameter values and solve the equations, usually
obtained through numerical methods. Thus, an alternative and simpler modeling
method, termed as empirical modeling, has been specifically designed for plant

process control.
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4.3

Empirical Modelling

The empirical model pH neutralization is developed based on the process
reaction curve where the pH control transfer function is estimated to be a first-

order-plus-dead-time model.

The Empirical modelling for all datasets in this project is evaluated by using
Method II (refer to Figure 3.4b, pg.21). A step change of 1% valve opening is

applied to the system and the process reaction curve is observed.

43.1 1* Data Set:

14

12

10

1st Data Set

100

-+ 80

+ 806

+ 20

T T T T T T T
o 100 200 300 460 500 600 Yoo 800 00 1000 1100 1200 1300

Time (s}
i Process Variable, pH — — Manipulative Variabie,%opening ‘

% Opening

Figure 4.8: Process Reaction Curve 1* Data Set

36




e Method II calculation:

& = 1%opening
A=842

K,= % =842
o = 872.61s

farsy, = 857.86s
T =1.5(F pgym — Langes) = 22.138
O =15, — T = 850.485

Therefore Transfer Function,

_ er—ﬂ\‘ ~ 8.42 8—350.43.!'
G(s) =

m+1 22.13s+1
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4.3.2 2™ Data Set:

pH
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Figure 4.9: Process Reaction Curve for 2™ data set

Method 1 calculation:

0 =1%opening
A=843

K,=8/<843
lasave =874.035

s, =859.07s
=15t g5 — Eppges ) = 2244
O=t,, ~7=851.59s

ThereforelransferFunction,

-6 —835.503
K,e™ 843 ¢

G{s) =

s+ 2244541
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433 3" Data Set:

3rd Data Set
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Figure 4.10: Process Reaction Curve for 3 data set
e Method IT calculation:

6 =1%opening
A=843

K,=8/=843
Lo, = 870.34s

Lz, = 856.295
T =15 30, — agges) = 21.085
0 =1y, — 7 =849.295

ThereforeTransferFunction,

G(s) =

—& —849,20%
K € _8.43 e

s+l 21.08s +1
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4.3.4 Comparison

The results developed using empirical modelling of reaction 1*-order-with-dead-
time is shown in Table 4.1. Method II is more reliable since it considers the time
at which the output reaches 28% and 63% of its final value. Therefore, this
method is taking more consideration on the rise time of the output which is
important for model estimation. Compared to method I, for a highly nonlinear
reaction like pH control, it is difficult to estimate for the maximum slope, AS, of
the curve during the rising transient. Human error on estimating the steepest

slope anticipates to failure on developing the most accurate model.

From analysis, the change in ultimate values, time constant, dead time and

process gain are approximately the same, for all the three datasets.

1% 1%

Change in Manipulated Variable, dM

Change in Ultimate Value, dB, pH 8.42 pH 8.43 pH 8.43
Apparent Time Constant, T 22.13s 22,445 21.08s
Apparent Dead Time, Ty 850.48s 851.59s 849.29s
Steady State Process Gain, Ky= dB,/ dM 8.42 8.43 8.43

Table 4.1: Parameters comparison table for three datasets

The pH value that can be measured by the transmitter, AT-122, ranges from pH1
to pH14. From plant observation, the process variable for alkaline pH value can
goes up to pH13.24. The lowest acidic pH value that can be reached in the
CSTR is approximately pH 3.57. The pH output range that can be displayed by
the Honeywell Plantscape Software faceplate is from pH2 to pHI12, which
purposely been set up for an SASB reaction. Nonetheless, for an SASB reaction,

the pH values of 12 to 14 are considered as strong alkaline.

Figure 4.11 shows the Simulink block diagram for the three datasets based on
results developed for empirical modeling. The simulation output results as
expectation where the three outputs is found approximately overlap with each

other. The result is shown in Figure 4.12.
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Figure 4.12: Output of empirical modeling using MATLAB-Simulink

The graphical method of empirical modeling has two major limitations; the
model obtained is a first-order with dead time transfer function and it requires a

sufficiently large step input perturbation to ensure an accurate model. The output
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responses from empirical model are somewhat inaccurate as compared to the
actual output of the plant. Since the pH neutralization model is very nonlinear
and 1s a higher order system, thus this empirical modeling for first order with
dead time might not be compatible to the plant. On the other hand, there is
another method of empirical modeling which might be relevant for this project
which is the Second-Order-Plus-Deadtime (SODT). This method is used to find
the second order model parameter of the system proposed by Sudaresan et al.
(1978)P,

In terms of flexibility, modeling a pH neutralization process using the first-
order-with-deadtime method is not reliable because the PRC is highly nonlinear

and has the tendency to generate large errors during parameters estimation.
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4.4

System Identification Toolbox

Statistical Method is implemented by using the System Identification (ARMAX)
toolbox. ARMAX stands for Auto Regressive Moving Average with external
input model estimator. There are three inputs for the ARMAX blockset; input
data, output data and the error data. Data are extracted from Microsoft Excel to
the MATLAB workspace.

input —————

TS 1T, S — ARMAX,

noise R ———— 1

AutoRegressive Moving
Average with eXternal
input moedel estim ator

Figure 4.13: ARMAX model simulation

ARMAX system identification computes for the transfer function of the model
by learning the data sets of input and output with respect to time. ARMAX will
take the mean average value of the data sets and configures the prediction of the
transfer function of the model. In this case, the ARMAX blockset is set to a 2%
order system to obtain the most reliable model prediction. Prediction for higher

order than 2 resulted in larger error deviations.

Data extracted from the pilot plant will be first validated to identify any outliers
or any kind of error that might occur. Any outliers or errors that exist in the
dataset will affect the overall results of system identification. The reliability of
the dataset is taken into consideration so that the error in the models can be

minimized.
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Figure 4.14 to 4.16 show the results obtain from the ARMAX simulations. It
was found that with a 2™ order function set in the ARMAX blockset, the oufput
will produce an acceptable model prediction. The deviations of error in the

predicted models for all three datasets are small.

For a nonlinear process such as pH neutralization, this method can produce a
better estimation model than the first-order-with-dead time using empirical

modelling technique.

 Actual Output (Red Line) vs. The Predicted Model output (Blue Line)
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Figure 4.14: ARMAX model prediction for 1* data

From the ARMAX model prediction for 1** data,
Transfer function (continuous):

0.000582 s° - 0.03365 s + 0.4401

§% 1+ 0.6266 s + 0.1826
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Figure 4.15: ARMAX model prediction for 2™ data

From the ARMAX model prediction for 2™ data,
Transfer function (continuous):

0.0004318 s + 0.2402 s + 4.631

s+ 21038 +0.7716
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Figure 4.16: ARMAX mode] prediction for 3* data

From the ARMAX model prediction for 3™ data,
Transfer function (continuous):

0.0006461 s° + 0.04426 5 + 1.144

s+ 0.64795 + 0.2355
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4.5 Neural Network Model

Using neural network, the prediction output is excellent. Referring to Figure 4.18,
predicted model indicates by the red line overlapped with actual model indicates by the
blue line. So far, the result gives the most accurate of model prediction by the

implementation of feedforward BP network method.

For this case, in order to get an accurate model prediction, training process has been run
for two times. Looking at Figure 4,17, for the first training iteration, there is small error
deviation between the predicted and actual model. Nonetheless, the predicted model
curve obtained from the first iteration can still be considered as good model prediction.
Further more, the model prediction can be improved by running second training
iteration. The second training iteration works by computing the parameters obtained
during the first iteration to the same command functions and develops a new network.
The new network is a new model prediction which best fits the actual value. Figure 4.18
shows how the predicted model fits the actual model. The predicted reaction curve

overlaps with the actual reaction curve.

Besides, the method can be employed for any systems since it has various training
function methods that can be used according to the systems dynamic. In terms of
reliability, it has the ability to construct the model by using the neuron layers. This can
be best described by an analogy of a human brain and nerves system where it carries

impulses of sensation between the brain and all parts of the human body.

As for this network, there are two layers; the hidden layer and the output layer. The
hidden layer has a tangent-sigmoid transfer function which is suitable for learning the
nonlinearity of a model, and the output layer utilizes a linear function. These will allow
the network to learn both nonlinear and linear relationships between the input and output

vectors.
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However, there are some drawbacks of the application of feedforward BP neural
network. Normally, the transfer function of a system is expressed in numerical form, but
for neural network, transfer function not able to be analysed. Eventually, neural network
represents the system’s model in such a way called as ‘black box” model, where in this
case there are only layers of neuron networks inside the box which yields the model of
the system. In addition, since neural network learns from datasets training, thus the

datasets must be large enough for a better model prediction.

Note: Refer to Appendix 1 for the m-file function of feedforward backpropagation

neural network,
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CHAPTER 5
CONCLUSION AND RECOMMENDATION

5.1  Relevancies to Objectives

For the first objective, the plant experiment had been done on the pH control pilot plant
in Instrumentation & Control Laboratory UTP. Many samples of data have been
obtained. It was found that the smallest ideal perturbation that can be applied to the pH
neutralization control during open loop test is 1% of valve opening. This perturbation is

sufficient enough to get the dynamic characteristics of the system.

Then, four modeling approaches are used. Three of the methods are the conventional
methods which are mathematical modeling, empirical modeling and statistical modeling.
One more method is by using the intefligent approaches which is the neural network.
The empirical modeling that is used for this project is based on the methods for first-
order-with-dead-time. Whereas, the feedforward backpropagation network method is

used for neural modeling.

For the second objective, all modeling is done via MATLAB-Simulink simulation for
modeling justification and analysis. A comparative study is conducted to make
comparison between conventional and intelligent approach in terms of flexibility,
reliability and accuracy. Eventually, from the comparison, it was found that neural

network has the ability to model for the best prediction.

5.2 Conclusion

A good model prediction will give good system performance. This is important
especially during tuning where systems performance takes place. Inaccurate model will

give effects during tuning where it is difficult to tune the output to the desired set point.

Mathematical modelling requires in-depth knowledge of the model and exact values of
the parameters in order to get the most accurate and reliable model. This method is also

tedious and needs more effort on the mathematical simulation block diagram to get the
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accurate model simulation. Iowever, the mathematical modelling for the pH
neutralization model has the capability to give an accurate result to the actual model

provided that knowledge and parameter values are available at hand.

The result obtain from empirical modelling is quite acceptable to the actual reaction
curve that is obtain from plant experiment. This model needs further model diagnosis in
order to get an optimized model. Different methods can be used during parameters
calculation. Method I typically has the tendency to anticipate for larger errors in the
parameter estimation; thus, Method II is preferable. However, for a highly nonlinear
model like pH neutralization, empirical modeling which utilizes the first-order-with-
dead-time is not compatible. The model developed by such calculation is rather a first
order reaction curve than a higher reaction order for the real-time data collected from

plant experiment.

The system identification toolbox method provided in MATLAB has the ability to
estimate the process transfer function based on input and output data fed into its system.
It also can give higher order transfer function that closely resembles the actual plant
transfer function. Eventhough ARMAX blockset is automatic system identification, it is
somewhat difficult to control the simulation range in order to make it compatible to the
real-time data range. Since statistical model considered as a computerized modeling,
thus it requires good computer configuration basic in order to achieve the desired

output.

The result obtained form Neural Network is excellent. The predicted reaction curve is
very much similar to the actual reaction curve from plant experiment real-time data. On
top of that, in term of accuracy, the model developed by neural network is much more
accurate than those obtained from existing conventional methods. Therefore, the
MATLAB simulation proves that neural network method for system identification can
be trusted for further implementation; for example the hardware implementation. The
transfer function not able to be analysed, but nevertheless, this model still working well

with the layers of neurons network represented the systems.
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Project Recommendations
5.3.1 Data Gathering

A good selection of data is important so that it is reliable to be used for system
identification. This will produce a reliable model that can be trusted. The
experiments on the pilot plant should be conducted several times to ensure that
data acquired is much more reliable. This is because, the process might yields

different result for each experiment.
5.3.2 Second-Order-plus-Deadtime (SODT)

Empirical modeling can also be improved by conventional methods. The other
conventional method that can be used for modeling a nonlinear process is the
second-order-plus-deadtime (SODT). This method proposed by Sudaresan et al
(1978) and is used to find the second order model parameter of the system which

might be compatible.
5.3.3 Fuzzy Implementation

For next project recommendation, it would be beneficial if the intelligent method
is broader for more methods and approaches such as modeling using the fuzzy
techniques. Thus, comparison can also be made between the two intelligent

methods.
5.3.4 Physical Implementation

Since, the intelligent methods do not need a lot of time to focus on analyzing the
data, and perhaps give a better production, thus, it would be good if this can be
implemented on a real plant operation. The project will be more interesting if
hardware implementation can be constructed for the intelligent approaches

instead of solely software simulations.
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5.3.4 Control Implementation

The steps should go further on controlling part where performance test is
implemented to the model using intelligent approaches such as fuzzy and neural
network. By this means, the reliability of how modeling production helps to
improve systems performance can be observed., Perhaps, it would be more
interesting to consider for a system that applies intelligent method for both

modeling and controlling.
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Appendix 1

The steps taken and the syntax for neural network is illustrated below as in
MATLAB m-file,

“oPrepare data for network training
[PN,minp,maxp, TN, mint,maxt]=premnmx(input,target);

YoCreate backpropagation network
net=newff{minmax(PN),[1 267],{'tansig', purelin'},trainlm'");
net.trainParam.epochs=6;

net.trainParam.show=1;

Yo Traw the newral network
[net,tr]=train(net, PN, TN);

YoPrepare data for testing the network
PN_Test=tramnmx(test_Ip,minp,maxp);

Yo Testing the network
TN_Test=sim(net,PN_Test);

YoClonvert the testing output into prediciion values for comparison

[queryInputs
predictOutputs]=postmnmx(PN_Test,minp,maxp,TN_Test,mint,maxt);

YaPlot the test data and Predict Ouiput for Comparison
plot(test_tgt,'-*"),hold on
plot(predictOutputs,'r:";




EXPERIMENT 4;:
PH CONTROL IN A CSTR

4.1 OBJECTIVE OF THE EXPERIMENT

(i T2 study the pH control pilot plant and prepare 3 P & | diagram.

(i To tune a liquid flow control locp by ultimate gain methad.

{i)  To tune a pH control ioop 2y the process reaction curve method.

iivi 7o study the closed loop characteristic of the £H control ioop ¢i the CSTR,

4.2 INTRODUCTION AND THEQRY

fH is defined as log,oH" and is a measure of the acidity or alkalinity of a liquid. The aH scale is
from 1 to 14. with 7 as the pH of neutral water. A value of the pH lower than 7 designate as acidic
solution. pH controf is imponant for many chemical processing applications and in nollution

control.

In the present experiment the acid flow is under PID flow controf while the CSTR pH is controlled
oy a PID loop contraliing the alkaline flow. The loop will be tuned by the ultimate gain method
{refer Experimant 3, Table 3.1 ). The pH control loop will be tuned by the process reaction curve

method. {refer to Experiment 2, Table 2. 1)

4.3 EXPERIMENTAL EQUIPMENT

The schematic diagram of the experiment set-up is shown in the figure 4.1. Acid solution pumped
from tank VE100 by pump P100 into CSTR VE120. The alkafine solution from tank VE!10 is
pumped by pump P113 into the same CSTR, VE120. The CSTR is equipped with a stirrer and
PH transmitter AT122. If desired further neutralisation may be carried out in a second CSTR

VE130, or the final neutralisation tank VE140. Besides pH dissolve oxygen can also be

measured in a tank VE140.

The major control hardware includes the following:

Flow transmitter FT120, FT121, FT130
Conductvity fransminar CT110, CT100

pH transmitter AT122, AT130, AT140
Dissolved oxygen transmiter AT141

<
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The simplified diagram for the flow centrel and pH control are shown in Figures 4.2 and 4.3

Flow controller FIC120, FIC121
pH controiler AIC122, AIC 130
Controf vaives FCv12g0, FCV121, FCvi3n

respectively.

4.4 PROCEDURE

The experiment has the folowing three part;

(i) Tuning flow foop in the acid flow path.
(i) Tuning pH conirof loop.
(iif) Operating closed loop pH control.

4.4.1 Start-up

[+]

Swilch on power to the Local Control Panet.
Turn the selector to DCS to run the experiment under DCS controi. Set it to local if the

experiment (o be run under local controf by using the muiti foop controller only,

to the system is sufficiant before running any experiment.
Switeh on the DCS server and clients. The entire system to start-up automaticatly. When
prompted, key in your user name and password to tog in. Consuit the superviser for the

correct user name and password,

4.4.2 Preparation of Acidic process stream

1

Fill the acid storage tank with water {up to 4 tank).

2  Use the manual pump provided for acid to pump about 10% of the acid solution into the

Storage acid tank. Caution: Always add acid o water. Do No add water o the acid.

3 Stir the final sofution to ensure homogeneity,

4.4.3 Preparation of Alkaline process stream

1
2

3

Fill the alkaline sterage tank with water, {up 10 ¥ tank).
Use the manual pumg provided for atkaline to pump about 30% of the acid solution into the

Storage acid tank. Caution- Always add aikaline to water.
Stir the final solution to énsure homogeneity.
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4.4.4 Start Up

Table 4.4: Preparation and Start-Up

| sTeEP ACTION | REMARKS !
1

| |
] ! ;» — ]
i l: [

|
f Ensure that afl Utility Services are ready {i.e, Switch on
]

!! 1 l Power Supply to Control Panel and Swiich on Air Supply
IJ r Systems to the Pilot Plant.

f

l

S ——— |
il 2 At the Local Control Panel, turn the selector switeh to ‘OCS. ’ ,
|
; 3 Fill the vessel VE100 with water unti it is about half full. : ;
. ! i
: . Ensure that the DCS is ready (i.e. ltis communicating ’ |
L properly with the control pane). i‘ f

; Disptay for ‘Experiment

|
|
|
|
|
|
;
|
|
A
P
|
L

.'

| | ,f

‘ _ At the computer and the "Chemical Processing Over-View' 11 — Simple PID tlow
i 2 i

' display, click on the buttan : {PID FIC 120). Controf (FIC 120)' will !

!

—

From the WS/PNL select combo- box, choose DCS. This will
teansfer control of the pilot plant to the DCS.

I Click on drop down box
| and seiect 'OCS’.

93]

f
|

|
i
i
|
| appear.
|
|
f
i
]
i
|

7 From the Control selact combo box, chaose FIC120.

| |
|

{ At the Controfler Facepiate (FIC 120} set the controfier to i Click on drop down boxﬁ;
{
r

8
MANUAL mode. and select ‘MANUAL'

l

) Close the control valve FCV120 manually (0%) i.e.
a) Setting Control Mode to ‘MANUAL’, then

b) Atthe MV data eniry field, key in 0 and press [Enter], control valve manually.

Same operation to

Open/Ciose other

Adjust the Hand Valves at the Pilot Plant as follows:
Hand valves to be
10 Open Hand Valve Hv103 i

‘ Open/Closed Fully.
Close Hand Valve HV102

L |
|
|
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rﬁ_'*‘__‘_'_"—-—‘_ MF | :

Gain, K.

!

| i

| ! !
;' Integral Time, T, (minute/repeat { "
r i

j ! 5
| (minute/repeat) f

; 'I !
" " T "’_—L_‘_‘*m%
| Derivative Time, T, T —————— | ; f

4.4.6 pH Control

fable 4.7: Preparation for PH Control
— - I D e

H
] STEP } ACTION ; REMARKS i
! J
|
Ensure that all Utility Services are ready (i.e. Switch on i :
[

1 Power Supply tc Control Panel and Switch on Air Supply

—_l |

Systems 10 the Pilot Plant.

{
i |
[ Do
! { Adjust the Hand Valves at the Pilot Plant ag follows: !
1
I
!
i

|
Open Hand Valve Hv103 !
[1 and vaives to be

H
Open/Closed Fully.

f 2 Close Hand Valve HV102
! ! - Close Hand Vaive HY112 j
i ! Open Hand Vaive HV113 ’# !
| f
j ,' At the Loecal Cantrof Panel, turn the selector switch to J f
L7 s | f
- | . | |
) | !
j . ! Ensure that the DCS is ready (i.e. Itis communicating If "
1
f !‘
|

proper y with the controf panel).
j ' Display for ‘Experiment

[

i

!

I s f At the computer and the ‘Chemicaf Processing Over-View' { 4~ Simple PID pH

i !

fl ,! display, click on the button [PID AIC 122]. Centrot (AIC 122)" will
; appear.

i
'}' From the WS/BNL select combo-box, choose DCS. This ! Click on drop down box
| !

will fransfer controf of the pilot pant to the DCS, li and select ‘DCS".

J + | Atthe FIC120 Controller Facepiats; ‘
J - Setthe controller to AUTO mode. j Set MV = 100, K,, 1 and
- Set its output to 100% {fully open). J' D accordingly.
1
|
|

!

| - Setits P, L and D valyes obtained from Experimen 1,

56




Open HV100 and HV110 1o fill vessels VE100 and VE110 |

with water until each of them is about % full. i
I

f When the water level at VE100 is about 4 full, start pump |
o P100 via DCS 1o fill the reaction vessel VE120. Continue to i
filt VE100,

|
]

{

|

) ’ Close HV110 when the water level at VE110 is % full |
|

i

l

|

|

[

!

When the water level at the reaction vessel VE120 is above |

i
[
. |
| f
[z
l{ j‘ its agitator blades stop pump P100, i
i )
I ' i
J 13 : Close HV 100 when the water level at VE100 is 4 fuil, ‘
[ : ! —
I At the vessel VE100 use the hand pumg provided to add | . I‘
I L ! The students are advised |
| ; toncentrated sulphuric acid into it [Note: do not add water | _ i
: P . . i to wear eye protection ;
| 1Mo concentrated acid instead add acid 1o water]. Observe | i
14 ] ) . ) . | goggle and rubber i
i the reading of the conductivity meter, Stop adding acid ; i
, | o o : gloves when dealing with |
i I when the conductivity of the solution is approximately 100 | ) . :
| I . 1 acid sclution. !
| { micron-Siemen, | |
L ! 1
i ; i
f ; At the vessel VE110 use the hand pump provided fo add ! The students are advised |
I H i
i i concentrated caustic soda (Sodium hydroxide) solution intg ﬁ to wear eye protection f
! 15 Il it. Cbserve the reading of the conductivity meter. Stop l goggle and rubter |
{ i 1
i f adding acid when the conductivity of the solution is f gloves when dealing with [
| ’ approximately 100 micron-Siemen. 1 acid solution. ]
L f i
j ; } 4
( 6 i Atthe AIC122 Controlier Faceplate, set the controller to ' Click on drop down box |
!
i !,' MANUAL mode. ‘ and select ‘MANUAL'.
L
5 i iﬁ
[ : ( PHCV12 is the same '
{ | .
l! 17 ' Clcse the Controf Vatve PHCV12 manually (0% open). | Controf Valve as I
( ’ FCV121. J
|
18 ’ Ensure that alf tanks are properly covered. ! f
|
Table 4.8; Start-Up
J STEP ’ ACTION | REMARKS I
- i : : —
|1 | Stan agitator AG120 via OGS, ?
i ; !
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At the FIC120 Controller Faceplate:

Open Control Valve pHCV122 to 10%.

: _ . | Set SP = 50 |
| f, - Adjust the Controller Set Point to 0.05 m¥h : |
- ] B
f 3 i Start pump P100 via DCS, ! |
L | |

4.4.7 Identification of pH Process
Table 4.9: Pracess Identification ior pH Control Loog
W [ i ;
rl STEP |, ACTION ! REMARKS i
i i
E :
f | SetMV = 10
|
|

|

I

| Atthe AIC 122 Controiler Faceplate, manually
i

|

Click on drop down box and

S

FIC120 and FIC121 to MANUAL made.

2 Start pump P110 via the computer. ,!
| ‘ select 'ON', |
| | —
5 Observe the pH curve from the Trend Window and . ;
1 wait until it has stabilised, | j
| E ]
] i |
" { Adjust the output of controlier AlC122 to obtain a } i
4 I | SetSP =7 |
L I stable pH value (AT122) between 6.5 and 7.5, I’ '
| !
| | ]
i | At the Controller Faceplate (AIC122) make a Step !
| | | SetSP=7.7 |
4 5 [ change of betwean 10 to 20% to the controt valve | !
I | Adjust controtier MV, !
J FCV121 manually. ! i
L] | ]
!' ’ Observe the pH curve (AT122) from the Trend { o ) i
! | This is the process Reacticn i
! 8 ’ Window and wait until it has stabifised to anew ' |
i o curve. -
] constant value and freeze the trend window. ‘ 5
i l i |
' !
7 Print out the pH trend curve, I Print in colour. 5
| I
| Stop both the pumps P160 and P101, and the ;
!" 8 agitator AG120 via DCS. Then set the controllers |
i | ,
L. i
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Table 4.10: Result Analysis for pH Controf Locp

STEP lj ACTION ; REMARKS

iL_ ' ! T
{
, Compare the process value curve with a set of |.i |
I 9 expected process Reaction Curve provided in Figure | |
! 1 ;
! ’ 2.5 ] J
I < |
" 0 i! Identify the process response with the corresponding | ;
' | Reaction Curve. |
i i
= - ]
| | Make sevaral Measurements as per the Reaction f . f
i 11 ’ i Refer o Table 4.11. f
i | Curve chart. ﬁ
i I i i
| 5 ,
i 12 Skelcn a Block Diagram to represent the process ! Dead time, Capacity/Rate of |
| . . ,
! i and describe the characteristic of this process. I‘ Rise, Time Constant, Moise. f
f i |
1 . ‘l
i 11 Using the printed graph obtained from section above | Note: 6B, and dM are
e
i 13 | (process anaiysis) above, measure and tabuiate the | changes from the 1* stable

|
i ! retevant values as required. Refer table 4.9, ; output to the 2™,

———

} Based an the gquations for Open Loop Tuning,

caleulate the required controfler tuning parameters.
Hefer table 2.1.

| At the AIC122 controliar faceplate. Key in the

|
s
!! calculated controffer tuning parameters. | |

Table 4.11: CSTR Modal ‘

= I

| Type of modef j Time constant, 7, ’ Time constant, T, Decay time, t
g !
_

14

First Order with decay time

|

| |
|

Second order

o

Second order with decay time
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t Dataset Appendix 4

1st Real-time Data

Time (s) PV mv Time(s) PV mv
0 3.61 1.5 265 3.64 25
5 3.61 1.5 270 365 25
10 3.61 1.5 275 3.64 2.5
15 3.57 1.5 280 3.65 25
20 3.66 1.5 285 3.64 25
25 3.6 1.5 290 3.64 25
30 3.61 1.5 295 3.66 25
35 3.63 1.5 300 3.84 25
40 386 1.5 305 3.66 2.5
45 3.53 1.5 310 3.65 25
50 36 1.5 315 3.66 2.5
55 3.6 1.5 320 3.65 25
60 3.61 1.5 325 3.67 25
65 3.62 1.5 330 3.66 25
70 3.63 1.5 335 3.67 2.5
75 3.61 1.5 340 3.66 25
80 3.57 1.5 345 3.87 25
85 3.6 1.5 350 3.66 25
20 3.61 15 355 3.68 2.5
95 3.6 1.5 360 3.87 2.5
100 3.56 1.5 365 367 2.5
105 3.61 1.5 370 3.69 25
110 3.58 1.5 375 3.69 25
115 3.61 1.5 380 3.68 25
120 3.57 1.5 385 3 2.5
125 3.57 25 390 3.71 2.5
130 3.57 2.5 395 3.72 25
135 3.58 25 400 372 2.5
140 3.6 25 405 3.72 2.5
145 3.6 25 410 3.71 25
150 3.59 25 415 373 2.5
155 3.6 25 420 3.74 25
160 3.59 25 425 3.74 25
165 3.59 25 430 372 25
170 3.61 25 435 3.74 25
175 3.6 25 440 3.75 25
180 3.6 25 445 3.74 25
185 3.61 25 450 3.75 25
180 3.61 25 455 3.76 25
195 38 25 460 3.75 25
200 3.6 25 465 3.74 25
205 3.62 25 470 3.76 2.5
210 3.6 25 475 3.77 25
215 3.61 25 480 37 25
220 3.62 25 485 3.79 25
225 3.61 2.5 490 3.77 25
230 3.62 25 495 3.78 25
235 3.61 25 500 3.81 25
240 3.61 25 508 3.79 25
245 3.62 25 510 3.8 25
250 3.63 25 515 3.78 25
255 3.62 25 520 382 25

260 3.62 25 525 3.81 25



t Dataset

Time (s)
530
535
540
545
550
555
560
565
570
575
580
585
590
595
500
605
610
815
620
825
630
835
840
645
650
655
860
865
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795

PV
3.83
3.81
3.82
3.83
3.83
3.82
3.85
3.85
3.84
3.86
3.87
3.87
3.88
3.89
3.92
3.9
3.92
3.92
3.91
3.92
3.96
3.96
3.97
3.97
4
3.96
3.97
4.01
3.97
4,04
4.03
4.02
4.03
4.04
4.02
4
4.05
4.04
405
4.07
4.09
4.08
4,42
4.1
4.05
4.12
4.13
4.14
4.13
4.14
417
417
4.19
417

Mv
25
2.5
25
2.5
25
25
25
2.5
25
25
2.5
25
25
25
25
25
25
2.5
2.5
25
25
25
2.5
2.5
25
25
25
25
25
25
25
25
2.5
25
25
2.5
2.5
2.5
25
25
25
25
25
25
25
25
25
25
2.5
25
25
25
25
2.5

Time {s)
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
M5
920
925
930
935
940
845
950
955
960
965
avo
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
10865

PV
4.21
4.24
4.25
424
4.28
4.26
4.31
4.36
433
4.34
4.32
4.36
4.4
4.4
442
4.46
4.48
4.52
4.52
4.53
4.56
4.57
4.63
4.71
4.71
4.85
4.77
4.82
4.86
4.91
4.98
5.01
5.08
517
532
5.46
5.72
6.53
7.67
8.81
9.84
10.37
10.74
10.97
11.23
11.45
11.54
11.71
11.77
11.87
11.94
12
12
12

My
25
25
25
2.5
25
25
2.5
25
2.5
25
25
25
25
25
25
25
25
25
25
25
25
2.5
2.5
25

25

25
25
25
25
25
2.5
25
25
2.5
25
2.5
25
25
25
25
25
25
2.5
25
2.5
2.5
2.5
25
25
25
25
25
25
25
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t Dataset

Time (s)
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330

PV

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

Mv
25
25
2.5
25
25
2.5
25
25
25
25
2.5
2.5
2.5
2.5
25
2.5
2.5
2.5
25
2.5
25
25
2.5
25
25
25
2.5
25
25
2.5
2.5
25
25
25
25
2.5
25
25
25
2.5
2.5
25
2.5
25
25
2.5
25
25
25
25
25
25
25
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1d Dataset

Time (s}

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
80
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
100
195
200
205
210
215
220
225
230
235
240
245
250
255
260

PV
3.57
3.58
3.57
3.57
3.57
3.58
3.59
3.59

3.6
3.58

3.6

3.6
3.58
3.67
3.57
3.57
3.81
3.58
3.61
3.56

3.6
3.61

3.6
3.57
3.58
3.57
3.57
3.57
3.58
3.89
3.58
3.59
3.59
3.58

3.6
3.59
3.59

3.6

3.6

3.8

3.6

3.6

386
3.59

3.6
3.61
3.61
3.61
3.61
3.62
3.61
3.62
3.62

2nd Real-time Data

=

MMNMRNNMRRRNNNMNNDNMNMNMNNNMNDROONRONMMRPODNMNNMNMNMMNDRNOMMODN-S 22 O o S e S = = w3 o8 23 3 28 3 % 3 3 3 - ca o

Time (s)
285
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525

PV
3.63
3.83
3.63
3.63
3.65
3.64
385
3.64
3.64
3.65
3.85
3.66
3.68
3.67
3.65
3.66
3.68
3.68
3.66
3.68
3.69
3.69
3.69
3.69
3.69

3.7
3.71
3.71
3.71
3.72
3.71
3.73
3.73
3.73
3.74
375
3.74
3.75
3.76
3.76
3.75
3.76
3.77
3.78
3.79
3.79

3.8
3.78
3.79
3.79

3.8

3.8

3.8

=

RN NMNMRNONMPMOOMNNMNNOMNNNRODMNONMNNDMNONDNNMNNNNMNRRRNDNRNDODNDMNMMDRDNONMODRODMDROONNNDROODNMNNNMNODMNNDNRNRDDRNNRDDND NN DS
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id Dataset

Time (s)
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
870
875
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795

PV
3.79
3.79

3.8
3.81
3.82
3.81
3.81

3.8
3.81
3.82
3.84
3.83
3.83
3.84
3.83
3.82
3.82
3.83
3.83
3.83
3.84
3.85
3.856
3.85
3.86
3.86
3.86
3.86
3.88
3.86
3.87
3.88
3.88
3.89
3.89
3.91
3.92
3.91
3.91
3.92
3.93
3.92
3.91
3.92
3.82

3.9
3.82
3.02
3.82
3.83
3.93
3.83
3.84
3.95

MV

NN NMNMNONNNNRBODMNNNNNRONNDNONNNNMRODNDNMRORNODNMRRNDNOMNNNMNROOMNRODNDMNDRNMNRONRODMNMRODNNNMNDNNMNMNNMNNODNRRDNDNDNDN

Time (s)
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
840
245
950
955
960
965
970
975
980
985
990
995

1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065

PV
3.94
3.85
3.96
3.96
3.96
3.96
3.97
3.97
3.97
3.97

3.99

4.02
4.03
4,05
4.07
4.1
4.12
4.14
4.18
4.2
4.21
4.28
4.27
4.31
4.35
4.38
4.45
4.48
4.52
4.59
467
4.73
4.86
4.95
523
6.09
7.59
8.59
8.95
9.18
9.37
9.85
10.29
10.68
11.01
11.21
11.44
11.62
11.77
11.91
12
12

RMNMMNMNMNMNMNMNRONNMRNNNNMRRNMNNNNMRPDDRNDONNMNMRONONMMOMNMNMNOMNMNMNNNMNNOONODNNRDNRODNRRNDNNNRPDNDRNDRNDRDNDRNNBDDNDNDND DS
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d Dataset

Time (s)
1070
1075
1080
1085
1090
1005
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1180
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1280
1295
1300
1305
1310
1315
1320
1325
1330

PV
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

RN MNNPRPRONROPNNMMMNNNMNNMNNNMNMNNMNMNNMRNMNDRONRORRNNOONPDNOMDRODNDNDONODMNMNRNNRODNNRODRODNODMODNNDPDRD DD NDRD S
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d Dataset

Time (s)

10
15
20
25
30
35
40
45
50
55
80
85
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
1560
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260

=

NT\JI\JI\JMMMI\JI’\JI\JI\)I\JNNNNI\JI\JI\JMI\JI\)NI\JI\JI\)I\JI\JN!\)i\)l\)—\—t—k-\—'k—\-—\—\-ha—\—h—\—\—\—-\.—k—\—x—x—x<

3rd Real-time Data

PV
3.59
3.59

3.8
3.58
3.57
3.58
3.63

3.6
3.58
3.58
3.58
3.58
3.59
3.59
3.58
3.69
3.59

3.8

3.6
3.58
3.57
3.58
3.58
3.68
3.58
3.58
3.58
3.58
3.58
3.58
3.69
3.68
3.59
3.59
3.59

3.6

3.6
3.61
3.61
3.61
3.62
3.62
3.63
3.63
3.64
3.65
3.66
3.86
3.67
3.67
3.68
3.68
3.68

Time (s)
265
270
275
280
285
290
295
300
305
310
316
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525

MMNMNMNNMNMMNNRRNRNNNNNNRODNMNRDRONNNMNOMNNMNRONNMNRODRODNRONNNNNRDNONRNMOMOOMONNNMNNOMNNRNNNNNNROMNNMNNNDNN NN <

PV
3.68
3.66
3.68
3.69
3.69
3.69
3.69
3.69

3.7
3.7
3.71
3.71
3.72
3.71
3.71
3.71
3.71
3.72
3.71
3.73
373
3.73
3.74
3.75
3.74
3.75
3.76
3.76
3.77
3.78
3.79
3.79

3.8
3.81
3.81
3.83
3.83
3.84
3.85
3.86
3.86
3.88
3.89
3.89
3.91
3.92
3.93
3.95
3.95
3.95
3.85
3.85
3.96
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d Dataset

Time (s)
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795

RNMNMNMNMROMNMMONMMMNNNNRMNMNONMNNMRNMNMNNMNMOMRNNNONRPRDNMNNNNMNRODNMNMNNDROODNNDRODNOMNOMNRODDDNNNODNROODNDRNONBNDNDRNDND S

PV
3.96
3.96
3.96
3.96
3.96
3.96
3.96
3.97
3.97
3.97
3.97
3.97

3.99

4.02
4.03
4.05
4.07

4.1
4.12
4.14
4.16
4.18
419

4.2

4.2
4.21
4.19
4.24
4.22
4.24
4.24
4.26
4.25
427
4.28
4.28
4.29

43
4.31
4.31
4.33
4.34
4.33
4.35
4.36
4.37
4.38
4.39
4.41
4.42
442
4.44

Time (s)
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015

1020
1025
1030
1035
1040
1045
1050
1055
1060
1065

NNMNMNNNRNRNMNNRNNNNRONNONRDNRONDNMNODROONRNNNOMNNNNMNNMNROONOMNMNNONRODROPRODNNRODNNONNRONNNRODNRODDDRODNOONNNNODNDN DS

PV
4.45
447
449
4.51
4.51
4.52
4.54
4,55
4.57
4.58

48
4.62
4.64
4.66
4.68

4.7
4.72
4.74
4.79

4.8
4.85
4.87

4.9
4.95
4.98
5.03
5.09
5.13
5.21
5.34
5.41
5.55
5.74
6.09

6.7
7.72
g.94

10.29
10.87
11.18
11.41
11.58
11.73
11.86
11.85
12
12
12
12
12
12
12
12
12
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‘d Dataset

Time (s)
1070
1075
1080
1085
1080
1085
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330

NI\)MMMMI\JI\JI\JI\JMI\J[’\JNMMI\)I\)!\JMI\JMI\JI\JI\JI\JNI\)ME\JI\JNNI\)NNI\JMMMI\JMMNI\JMI\JMMMNI\JNE

PV
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
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