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ABSTRACT

System Identification is an art of constructing a mathematical model for a dynamic

response system. The modeling process is based on the observed input and output

data for a system. To start a modeling process, a good understanding of process

behavior is required as it will determine the important parameters and characteristics

to be analyzed.

pH neutralization is a very nonlinear process. It is not easy to get an accurate model

as compared to the actual model. Modeling using conventional methods does not

seem to give a reliable model for this process. Thus, for wide a range of

neutralization pH values, conventional modeling methods are not sufficient.

Therefore, for this project, intelligent approaches are considered.

The conventional methods that are used by the Author are mathematical modeling,

empirical modeling and statistical modeling. Mathematical modeling is done to see

the relation of inputs and output. Empirical modeling is the common method used

for plant modeling. Statistical modeling is more a to computerized modeling where it

requires a good computer configuration basic in order to achieve the desired output.

Neural Network is used for the intelligent method. Neural network is an intelligent

approach that has the capability to predict future plant performance by training

several datasets.

These conventional and intelligent methods are compared between each other in

term of the model accuracy, model reliability and flexibility. Modeling using

mathematical modeling is tedious and requires more effort on the block diagram

configuration in order to get an accurate result. Empirical modeling is basically good

enough for plant identification, unfortunately for a highly nonlinear system, the

method does not seem reliable. Statistical modeling has the ability to predict an

acceptable higher order model. On top of that, neural network could give a more

reliable and accurate result.
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CHAPTER 1

INTRODUCTION

1.1. Background of Study

Modeling refers to a process of deducing a mathematical model of a dynamic

response based on the behavior of input and output from observed dataset. This

requires good estimation methods for system identification of the dynamical

systems. Modeling is primarily important to validate the system performance.

Good modeling is considered as performing well in accuracy, reliability and

flexibility.

This project is conducted on a pH control pilot plant for pH system

identification. Several real-time datasets are taken from the plant experiment and

the modeling part is done using several modeling approaches. The conventional

modeling approaches used to identify the system are the mathematical modeling,

empirical modeling and statistical modeling. Intelligent modeling is a major

consideration for this project where neural network using feedforward

backpropagation network technique is used to model the system based on the

actual datasets from plant experiment.

1.2. Problem Identification

pH neutralization is a highly nonlinear process and needs a reliable method to

achieve model optimization. Thus for wide range of neutralization pH values,

conventional modeling methods are insufficient.

Therefore, modeling of pH neutralization process using several intelligent

approaches is considered.



1.3 Significance of the Project

Generally, the outcome of this investigation serves as base information for

modeling pH neutralization using conventional methods and intelligent

approach. The conventional methods implemented for the pH pilot plant

modeling will be later compared to the intelligent modeling approaches in term

of reliability, feasibility and accuracy.

In summary, this project can be considered as an educational tool to familiarize

oneself with plant activities. Analysis on modeling using several approaches is

also a beneficial step to enhance plant process control.

1.4 Objective of Study

1.4.1 To obtain a model for pH Neutralization process pilot plant based on

several methods.

• Using conventional methods such as mathematical, empirical and

statistical methods

a Using intelligent approach which is Neural Networks

1.4.2 To make comparison between conventional and intelligent approach in

terms of flexibility, reliability and accuracy.

1.5 Scope of Study

The scope of this intelligent plant process control project is narrowed down to a

single loop of pH control, AIC-122, for the product of Control Stirred Tank

Reactor (CSTR) at the UTP pilot plant. The plant controls the pH reaction of

strong acid strong base solutions (SASB). The strong acid solution used is

Sulfuric Acid (H2SO4) and the strong alkaline solution used is Natrium

Hydroxide (NaOH).



The modeling part of the project uses conventional methods such as

mathematical, empirical and statistical methods. Mathematical model needs

more parameters detail compared to empirical model since it involves with more

calculations. On top of that, intelligent approach such as neural networks is also

used for the pH system identification.

Comparison is made between recorded real-time data from plant experiment and

simulation from MATLAB-Simulink. Thus, comparison between conventional

and intelligent approach in terms of flexibility, reliability and accuracy can be

made. The accuracy of the model will be observed based on how resembles the

predicted model to the actual output reaction.

1.5 The Relevancy of the Project

A good model prediction is important especially during systems performance

test. Inaccurate model will give effects during tuning where it is difficult to tune

the output to the desired set point.

Modeling using conventional methods is not compatible for a highly nonlinear

system like pH neutralization process. A lot of research has been done on the

application of intelligent approaches for process control throughout the past few

years. In most cases, the outcomes are very promising for the control

applications. Besides having the intelligent approaches as new and reliable

control techniques, modeling using intelligent approach such as neural network

is believed would give a better model prediction than using conventional

methods.

1.6 Feasibility of the Project within the Scope and Time Frame

The expected achievements by the end of Semester July 2004 involve with the

modeling of pH neutralization for process control. The plant experiment is done

at pH control pilot plant in Instrumentation & Control Laboratory of Universiti

Teknologi PETRONAS (UTP).



Many samples of data have been collected. For a start, proper experimental

design is required so that the shape, duration and base operating condition of the

pH control system can be determined. Therefore, longer duration time is needed

for real-time data gathering. It took about half of the semester to for this purpose.

The datasets are then analyzed using several modeling methods. For modeling

simulation, the datasets are extracted to MATLAB/Simulink software for

complement investigation. Software simulation also required quite a long time

for results accomplishment.



CHAPTER 2

LITERATURE REVIEW AND/ OR THEORY

2.1 The pH Scale

pH is defined as loglO[H+] and is a measure of the acidic and basic of an

aqueous solution. Aqueous solution contains the proportion of water. The pH is

scaled from 1 to 14. A value of pH lower than 7 is designated as acidic solution

whereas the value of pH upper than 7 is designated basic or alkaline. Whereby,

neutralization is the process to neutralize acidic and basic solution into salt and

water which falls into pH 7 inthe pH scale [2l

The chemistry of an aqueous solution often depends critically on the pH of the

solution. It is therefore important to examine how the pH of solutions relates to

the concentration of acids and bases. The case for this pH control pilot plant

involves strong acid and strong base (SASB). Strong acid and base are strong

electrolytes, existing in aqueous solution entirely as ions.

2.2 Titration Curves

Generally, a typical curve titration curve obtained by titrating an acid with a

base. All curves start out with a very slow, or moderate, change in pH while the

base is being added to the acid. As the titration continues and the endpoint is

approached, the pH of the solution will start to change more dramatically. At the

endpoint, the line changes most dramatically. Once the endpoint has been

passed, the rate of pH change diminishes again. It will resemble the first part of

the graph except at a higher pH value.

The midpoint of the most vertical part of the graph will correspond to the exact

endpoint. This will also correspond to the equivalence point, or the point at

which the equivalents of acid equals the equivalents of base. In addition, the



midpoint will also determine the pH of the salt that was formed during the

titration.

i i

pH of sals

mis ofbase

at caidpniitt

„^nJ™^»)™^^

Miffiftt-tt Bitt r

Figure 2.1: A typical titration curve of acid influence to basic solution.

Not all titration curves are exactly the same. The graphs will differ somewhat in

shape, depending upon whether the acid that is being titrated is a strong acid or

weak acid[4l For strong acid with a strong base titration, there will be a single

endpoint and the graph is nearly vertical at the endpoint. An acid with two

protons will have two endpoints, one for each hydrogen. Unfortunately, the

quality of the graph deteriorates at the successive endpoints[4l In other words,

the first endpoint is fairly obvious, the second endpoint is not as well defined.

Figure 2.2: A titration curve of acid with two protons



2.3 pH Neutralization for Strong-Acid-Strong-Base (SASB)

Here is the theory of pH neutralization by Brown LeMay Bursten, where pH is

the measurement of concentration of hydrogen ions, H+(aq) in an aqueous

solution. The concentration of H in aqueous solution is usually quite small,

therefore usually express [H+] in terms of pH, which is defined as the negative

logarithm inbase of 10 of[H+][2].

pH = -log[rr] (2.1)

The ion product of water in equilibriumconstant expression is,

Rearrange equation 2.2,

[H3Q*][OH-]

[H20+]:
K = L " 2 (2-2)

Kc[H20+]2=[H30+][OH-] (2.3)

The product of the two constants, Kc and [H20] 2, defines a new constant

denoted by Kw, called the ion product constant for water [2l At 25°C, Kw equals

l.OxlO"14. Thus,at25°C,

Kw=[H3O+][OH]-1.0xl0-14 (2.4)

Note: [H30+] = [H+]



From the fundamental theory of Bursten LeMay, McAvoy developed the

equation characterizes the pH curve of the SASB reaction, which be noted as,

PH =logJ^+Kw-| .(2.5)

From the SASB equation, we can simulate the dynamic curve of pH

neutralization via Simulink,

X
y
Gain

4

(T}

+

+

-iogiO(u(i))
H+

sqitra

u(iys/4
Fcn1

Wai
Fen

•C-

Figure2.3: SASB Simulink block diagram

PH



2.4 The pH Control Pilot Plant

The schematic of P& ID diagram is shown in Figure 2.4. The acid solution is

pumped from tank VE100 by pump PI00 into Continuous Stirred Tank Reactor

(CSTR) VE120. The alkaline solution from tank VE110 is pumped by pump

PI 10 into the same CSTR. The CSTR is equipped with stirrer and pH transmitter

AT-122. Desired neutralization process can be carried out in the second CSTR

which flows from the downstream of VE120.

EE7130

HV104

ACID

HV102

Figure 2.4: Piping & Instrumentation Diagram (P&ID)



2.5 Mathematical Model:

The mathematical approach is based on fundamental theories or laws, such as

conservation of mass, energy and momentum. This approach is of favor because

small number of principles can be used to explain a wide range of physical

systems. In other words, this particular approach simplifies the view of nature.

Apart from that, this approach has a broad range of applicability, which enables

the task of evaluating potential changes in operating conditions and equipment

and also to design new plants.

For the pH control reaction in a CSTR, the state space representation develop

based on McAvoy etal [3\

Alkaline

dx
V-f =FaCa-(Fa+Ft)xa (2.6)

at

drV^ =FbCb-(Fa+Fb)xb (2.7)
at

•t w

Xh X;

V

>V

pH Transmitter

Figure 2.5: Physical representation of pH neutralization process.

10



McAvoy derived the dynamic model from experimental model which yields the

state space representation of pH neutralization process,

x.

xt

F.+FtIV 0

0 -Fa+FbIV

y -[1 -1]
X.

x,

X,
+

X,

.(2.9)

F C

FbCb
V

V

u(t) (2.8)

Where u(t) represents the inputs to the system which are Fa, Fb, Ca, and Cb

Note: xa= Concentration of non reacting acid, mol/litre

Xb = Concentration of non reacting alkaline, mol/litre

Ca = Concentration of acid, mol/sec

Cb = Concentration of alkaline, mol/sec

Fa= Flow rate of acid, litre/sec

Fb- Flow rate of alkaline, litre/sec

V = Volume of CSTR, litre
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From the state space representation of the pH control system, the systems of

acid-base reaction block diagram represented as diagram below,

XFC
a a

V

+

-H5
a

1

s

*a

u(t)—•

y

+ 1'

®-*>y(t)
i .

V

FC

V +

7\ 1

s

9
xh xh

Figure2.6: pH control block diagram
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2.6 Empirical Modeling

The purpose of plant modeling is to establish the relationships between

parameters in the physical systems and the transient behavior of the systems.

Empirical modeling provides the dynamic relationship between selected input

and output variables. Models are determined by making small changes in the

input variable about nominal operating condition. The resulting dynamic

response is used to determine the model. A linear transfer function developed

using empirical methods are adequate for many process control designs and

implementations.

The process reaction curve (PRC) employs simple graphical procedures for

model fitting. In other words, the model is calculated by interpreting the

graphical reaction curve. The graphical method has two major limitations which

are first-order with dead time model and requires a perfect step input ^ .

2.7 Statistical Model Identification

Statistical model identification methods provide more flexible approaches to

identification that relate the model structure and experimental design. The

statistical method employs desired principles for determining the parameters

besides employing a tedious statistical method.

Statistical methods use all data and not just a few points from the response,

which will provide better parameter estimation. The steps taken are similar to

Empirical Modeling. In addition, Statistical methods involve the following

actions ^ ,

• Introduce a perturbation (or sequence of perturbation) in the input variable.

There is no restriction on the shape of the perturbation, but the effect on the

output must be large enough to enable a model to be identified.

• Collect input and output response data.

• Calculate the model parameters via computer programming, eg. Matlab.

13



The basic idea is to formulate the model so that regression can be used to

evaluate the parameters.

2.7.1 System Identification using ARMAX ( Auto Regressive Moving

Average with External Input)

System Identification using ARMAX can be considered as Statistical Method

modeling. The mathematical models of a dynamic system can be built based on

measured data. Essentially by adjusting parameters within a given model until its

output coincides as well as possible with the measured output. The techniques

can be applied to very general models. Most common models are difference

equations descriptions, such as ARX and ARMAX models. ARMAX is chosen

instead of AR and ARX because it has more parameters which will give

advantages for ARMAX modeling.

Figure 2.7: ARMAX model structure

For the ARMAX case, the model estimation involves an iterative, numerical

search for the best fit ^ . There were different disturbance models are introduced.

14



A general input-output linear model for a single-output system with input u and

output y can be written,

Tilt

1=1 .(2.10)

Therefore, armax estimates the parameters of the ARMAX model structure,

A{q)y(t) = B(q)u{t-nk) +C(q)e(t) (2 n)

using a prediction error method. The data contains the output-input data. Only

time domain data are supported by armax *• . The model orders can be specified

as (...^na^na/nb'mb,...) or by setting the argument orders to

orders = [na nb nc nk] (2.12)

The parameters na, nb, and nc are the orders of the ARMAX model, and nk is

the delay. Specifically,

na: A(q) = 1+a^ +...+anaq na

nb: B{q) = b1 + b%q +... + 6nAg

sv, v h -1 —ncic: C(q) = 1 + ctf +...+cncq

15
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2.8 Neural Networks

Neural networks, inspired by biological nerves system, is a composed of simple

element operating in parallel. Neural Network has the capability to predict future

plant performance [ . Neural network are adjusted or trained, so that a particular

input leads to a specific target output.

Input

Neural network;
connections between

neurons (called weights) Output

Adjust weight

Target

Figure2.8: Adjustment of neural network to obtain specific target output

Neural network performs two major functions which are learning and recall.

Learning is the process of adapting the connection in neural network to produce

a desired output vector in response to a stimulus vector presented in the input

buffer [ \ Recall, on the other hand, is the process of accepting input stimulus

and producing output response in accordance with the network weight structure.

This condition occurs when a neural network globally output buffer.

Learning rules of neural computation indicates how connection weights are

adjusted in response to a learning example. The most used learning rules in

engineering application is supervised learning. In this method, the neural

network is trained to give the desired response to a specific input stimulus. The

16



difference between actual output and desired response constitutes an error which

is used to adjust the connection weights.

2.81 Feedforward Backpropagation Network

A single-layer network of S logsig neurons having R inputs is shown below in

full detail on the left and with a layer diagram on the right.

Input Layer of Neurons

r^\ t \
n _ a

S, R

y^j \.

2

T
L

s^+X

T

J
a=f(Wp+b)

Layer o1 NeuronsInput

r^\ r ^

W

SxR

y§\£/ sxi
n

L

Sx1

a=f(Wp +b)

Where... i? = numberof
elements in
input vector

s = numberof
neurons in layer

Sx~\

J

Figure 2.9: Layer of neurons

Feedforward networks often have one or more hidden layers of sigmoid neurons

followed by an output layer of linear neurons *13l Multiple layers of neurons

with nonlinear transfer functions allow the network to learn nonlinear and linear

relationships between input and output vectors. The linear output layer lets the

network produce values outside the range -1 to +1.

Multiple-layer networks we used to determine the superscript on the weight

matrices. The appropriate notation is used in the two-layer tansig/purelin

network shown in Figure 2.10.

17



Input

r^ r

K^J K

Hidden Layer Output Layer

IWu

4x2
N

bi is&
ni

4x1
> /

ai

^

4X1
LWi-i

3x4

!"• b

a3=y,
3 x1

4x1 4 3x1

J V J
ai = tansig (IWupi +bg ai =purelin fLWuai +b2j

Figure 2.10: Two-layer feedforward backpropagation network

This networkcan be used as a general function approximator. It can approximate

any function with a finite number of discontinuities, arbitrarily well, given

sufficient neurons in the hidden layer [13l



CHAPTER 3

METHODOLOGY

3.1 Procedure Identification

3.1.1 Overall Project Flow

Generally, the identified steps procedure for

modeling the pH control from pilot plant

experiment to modeling simulation using

various methods is shown in Figure 3.1.

This flow chart is for overall steps

configuration of this project.

19

Start

i
Set MV to any initial value

Yes

Add step to MV

Yes

Model simulations using
conventional & intelligent

approaches

End

Figure 3.1: Overall flow diagram



3.1.2 Mathematical Modeling

Generally, according to Marlin, there are six

steps procedure for mathematical modeling.

First step is to define goals, which involves

with functional relationships in this case the

relationship of concentration acid and base

in CSTR, with flow of acid and base, and

volume of mixed solution in CSTR. Next is

to prepare information for example by

stating assumptions and data.

In order to formulate the model, the ordinary

differential equation (ODE) of the system,

which derived by McAvoy, is represented in

state space representation.

During result analysis, result relationship is

analysed between data and assumptions.

Finally, the model is validated by comparing

with experimental results.

The steps involve are shown in the flow

chart in Figure3.2.

20

Define Goals

Prepare Information

Formulate Model

Determine Solution

Analyze Result

No

Yes

Validate Model

No

Figure 3.2: Mathematical modeling

procedure



3.1.3 Empirical Modeling

An important aspect of empirical modeling is the need for proper experimental

design. To determine model structure, many methods are available but initial

structure is selected based on prior knowledge [1l

Generally the whole experiment will touch on several stages. The initial stage is

to understand the P&I Diagram of the entire control loop as well as the process

hook up and piping involved in the experiment.

There are six steps for developing empirical model of one system. The steps are

shown in Figure 3.3 below.

A priori tnowled
Start

;e i

Experimental Designw

i
Plant Experiment

I
Determine Model Structurew

Alternative data

1
Parameter Evaluation

I
Diagnostic Evaluation

I
fc

Model VerificationF w

Completion

Figure 3.3: Procedure for Empirical Transfer Function Model Identification
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For parameter estimation, two methods can be used which are the graphical

technique calculation of Method I and Method II.

45

-f 25

5 1B

45

Process reaction curve - Method I

S = maximum Hlitpv
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Figure 3.4a: Method I calculation

Process reaction curve - Method II
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Figure 3.4b: Method II calculation

Diagnostic is the level of evaluation that determines how well the model fits the

data used for parameter estimation. Finally, the model is compared with

additional data not used in the parameter estimation for model verification.
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3.1.4 Statistical Modeling (ARMAX)

Start

I
Sort Data Accordingly; Input,

Output, Noise

Export data to MATLAB

Run ARMAX simulation

Result

Optimal?

Yes

End

No

Figure 3.5: System Identification Flow Diagram

input

ARMAXoutput

noise

AutoRegressive Moving
Average with external
input model estimator

Figure 3.6 : ARMAX Simulink block diagram
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3.1.5 Neural Network

Prepare data for network
training and testing

Create the backpropagation
network

Train the neural network

Result

^ Optimal?

Yes

End

No

Figure 3.7: Neural Network flow diagram.

First of all, data is prepared for the network training. The real-time data that are

obtained during lab experiments is assembled accordingly due to its input and

output in MATLAB workspace.
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Before training, it is necessary to scale the inputs and targets so that they always

fall within a specified range. The function premnmx is used to scale inputs and

targets so that they fall in the range [-1,1] [9]. The following code illustrates the

use of premnmx function.

• [pn,minp, maxp, tn, mint, rnaxt] = premnmx(input, target);

• net=train(net,pn, tn);

The original network inputs and targets are in matrices form under the file

named 'input' and 'target' respectively. The normalized inputs and targets, PN

and TN, that are returned will all fall in the interval [-1,1]. The vectors minp and

maxp contain the minimum and maximum values of the original inputs, and the

vectors mint and maxt contain the minimum and maximum values of the original

targets. After the network has been trained, these vectors will be used to

transform the test data inputs that are applied to the network. They effectively

become a part ofthe network, just like the network weights and biases [5l

Since premnmx is used to preprocess the training set data, then when the trained

network is tested with new inputs they will be preprocessed with the minimum

and maximums that were computed for the training set. This is accomplished

with the routine tramnmx shown in the following code,

• PN_Test^tramnmx(test_Ip, minp, maxp);
• TN_Test=sim(net,PNJ'est);
• [queryInputspredictOutputs]=postmnmx(PN_Test,minp,maxp,TN_Test,mint,maxt);
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The function newff creates a feedforward network [5]. It requires four inputs and

returns the network. The first input is a matrix of minimum and maximum

elements of the input vector. The second input is an array containing the sizes of

each layer. The third input is a cell array containing the names of the transfer

functions to be used in each layer. The final input contains the name of the

training function to be used. The following codeexplains the above descriptions.

• net=newff(minmax(normalized_input), [size ofJayer], (transferJunction}, 'tr

ainingjunction');

The Levenberg-Marquardt (trainlm) training function algorithm was designed to

approach second-order training speed [5\ It also has a very efficient MATLAB

implementation, since the solution of the matrixequation is a built-in function.
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3.2 Tools and Software

3.2.1 (MATLAB-Simulink)

MATLAB offers array operations that allow one to quickly manipulate sets of

data in a wide variety of ways. MATLAB also offers programming features

similar to those of other computer programming languages. In addition,

MATLAB offers graphical user interface (GUI) tools that allow one to use it as

an application development tool ^ . Therefore, this project will utilize most of

MATLAB programming application and its GUI development feature.

Simulink is an extension to MATLAB that allows engineers to rapidly and

accurately build computer models of dynamic systems, using block diagram

notation. With Simulink, it is easy to model complex nonlinear systems.

Additionally, a Simulink model can produce graphical animations that show the

progress of a simulation visually, significantly enhancing understanding of

system behavior[8].

3.2.2 Honeywell Plantscape

Honeywell Plantscape is special software that is used for the server of the

Distributive Control System (DCS) of the pH neutralization pilot plant. This

software is slightly similar to the real plant DCS which is good enough to expose

the users to the real plant applications. The server also provides a good database

which really helpful for the data storage and configuration.
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CHAPTER 4

RESULTS & DISCUSSION

4.1 Plant Experiment for System Identification

Several experiments have been done for model datasets validation. The process

reaction curve (PRC) obtained are observed in terms of delay time (Td), time

constant (x) and the change of ultimate value (A) of the graph for the output, also

known as process variable (PV). Besides, the other important element under

consideration during plant identification is the input perturbation step. This small

perturbation step refers to the manually applied manipulative variable (MV).

This is necessary to get the dynamic response in nominal operating conditions.
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Figure 4.1: Comparison of 3 data sets from plant experiments

Figure 4.1 shows three validated data of pH neutralization model obtained from

plant experiment. These datasets are approximately identical to each other. The

curves start out with a very slow, or moderate, change in pH and fulfill the

requirements of an SASB reaction where it has the steep rise at the endpoint. At

the endpoint, the line changes most dramatically. Once the endpoint has been
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reached, the rate of pH change diminishes again. The reaction change slows

down at an alkaline pH value which yields from values of 10 to 14.

The midpoint of the most vertical part of the graph corresponds to the

equivalence point, or the point at which the equivalents of acid equals the

equivalents of base. In addition, the midpoint will also determine the pH of the

salt that was formed during the titration.

Data 2 has slightly a different curve shape than the other two datasets. This is

because of H2SO4 has two protons that results for two endpoints; one for each

hydrogen. Thus the quality of the graph deteriorates at the successive endpoints.

Unlike Data 2, for Data 1 and Data 3, the graphs rise very steeply but

nonetheless still can be considered as an SASB reaction.
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4.2 Mathematical Modelling

The plant model using mathematical simulation is modelled based on the

McAvoy derivation for strong acid and strong base pH neutralization. In general,

the basic block diagram of pH control developed using mathematical model

method and MATLAB Simulink software is as shown in Figure 4.2 below. The

configuration of inputs and outputs are made by referring to the actual pilot

plant. It has five inputs and one output. The inputs are:

Ca = Concentration of acid, mol/sec

Cb - Concentration of alkaline, mol/sec

Fa^ Flow rate of acid, litre/sec

Fb = Flow rate of alkaline, litre/sec

V = Volume of CSTR, litre

The output is the summation of non-reacting concentration of acid and alkaline

which yields the pH value of the solution inside CSTR.

The plant transfer function which is represented in a matrix form or state space

representation as shown in equation (2.8) and (2.9), is simulated via MATLAB

Simulink shown in Figure 4.2. Figure 4.3 shows the components masked inside

the pH control plant model block.
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Figure 4.2: Mathematicalmodel simulation block diagram

Ca

d>
Fa

d>
Fb

V

Cb

•*X

FaCa/V

J*1
X

(Fa+FbyV

xb

FbCbA/

Figure 4.3: pH control plant model.
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As an example, the result that obtained from the mathematical model using a

sample ofthe inputs data;

Acid concentration, Ca= 1mol/sec,

Base concentration, Q,= 11 mol/sec,

Acid flow, Fa= 3.1 litre/sec,

Base flow, Fb= 3.2 litre/sec,

Volume of CSTR, V=10 litre,

is very promising, as shown in Figure 4.4. This mathematical modelling is able

to achieve an SASB reaction curve. With this input sample, the acidic value

ranges around the lowest pH values (about < pH2) and rises up to higher pH

value (>pH12).
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Figure 4.4: Mathematical model simulation for a sample of inputs data

In order to study the relationship between all inputs and output of pH value, a

randomized step inputs are used and the result is analysed. Figure 4,5 shows the
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mathematical model with random inputs and Figure 4.6 shows the output for the

model.

Figure 4.5: Mathematical model simulation block diagram for random step
changes

Figure 4.6: Output of SASB reaction curve for random inputs
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The random step changes shows that this mathematical modelling fulfilled the

strong acid strong base (SASB) reaction curve characteristic since it alternates

within the range of the highest pH value to the lowest pH value.

The amount of flow and concentration of acid and base are primary elements that

will produce the desired strong acid and strong base reaction curve. In order to

obtain the positive gradient reaction curve of titrating acid with base, the amount

of flow of alkaline is important. The flow of acid is kept constant at 3.1mol/sec,

which in this case, the flow of the acid is set to AUTO mode during the

experiment. Looking at Figure 4.7, as flow and concentration of alkaline

decreases, pH value at the output of the system also decreases and vice versa.

Therefore, this mathematical model can be accepted for a pH control of an

SASB plant model.

However, the mathematical approach has its limitations, generally resulting from

the complexity of mathematical models. Thus, modeling processes to be as

realistic as possible, requires a large engineering effort to formulate the

equations, determine all the parameter values and solve the equations, usually

obtained through numerical methods. Thus, an alternative and simpler modeling

method, termed as empirical modeling, has been specifically designed for plant

process control.
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4.3 Empirical Modelling

The empirical model pH neutralization is developed based on the process

reaction curve where the pH control transfer function is estimated to be a first-

order-plus-dead-time model.

The Empirical modelling for all datasets in this project is evaluated by using

Method II (refer to Figure 3.4b, pg.21). A step change of 1% valve opening is

appliedto the system and the process reactioncurve is observed.

4.3.1 Is* Data Set:

1st Data Set

6

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Time (s)

•Process Variable, pH Manipulative Variable,%opening

Figure 4.8: Process Reaction Curve 1st Data Set
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• Method II calculation:

8 - \%opening

A = 8.42

Kp=% =SA2
fA63%= 872.61s

tA2m= 857.86s

T = \.5(tM3%-tA2iO/0) = 22.\3s

"A 63% -T 850.485

ThereforeTransferFunction,

G(j)= "
8.42 e

-850.4B.V

TS + l 22.13^ + 1
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4.3.2 2na Data Set:

2nd Data Set
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ndFigure 4.9: Process Reaction Curve for 2 data set

• Method II calculation:

8= \%opening

A = 8.43

*,=% =***

W, = 859.07s

r = l.5(tMm-t&2SO/o) = 22A4s

0 = t&€3%-T~S5l.59s

ThereforeTransferFunction,

KBe-* 8.43 e-***'
G(s)= -Z =

ts + 1 22.44s + 1
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rdFigure 4.10: Process Reaction Curve for 3 data set

• Method II calculation:

5 = \%opening

A-8.43

Kp=%^A3
tM3%=870.34s

tA2S% = 856.29s

r-1.5(r,63%-/A280/> 21.08s

6 = tMWo -t = 849.29s

ThereforeTransferFunction,

KBe-* 8.43 e~S49-29s
G(*) = — = ~ —-

7S + 1 21.08s+1
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4.3.4 Comparison

The results developed using empirical modelling of reaction lst-order-with-dead-

time is shown in Table 4.1. Method II is more reliable since it considers the time

at which the output reaches 28% and 63% of its final value. Therefore, this

method is taking more consideration on the rise time of the output which is

important for model estimation. Compared to method I, for a highly nonlinear

reaction like pH control, it is difficult to estimate for the maximum slope, AS, of

the curve during the rising transient. Human error on estimating the steepest

slope anticipates to failure on developing the most accurate model.

From analysis, the change in ultimate values, time constant, dead time and

process gain are approximately the same, for all the three datasets.

Change in Manipulated Variable, dM
Change in Ultimate Value, dBu pH 8.42 pH 8.43 pH 8.43
Apparent Time Constant, T 22.13s 22.44s 21.08s

Apparent Dead Time, Td 850.48s 851.59s 849.29s

Steady State Process Gain, Kp^ dBu/dM 8.42 8.43 8.43

Table 4.1: Parameters comparison table for three datasets

The pH value that can be measured by the transmitter, AT-122, ranges from pHl

to pH14. From plant observation, the process variable for alkaline pH value can

goes up to pH13.24. The lowest acidic pH value that can be reached in the

CSTR is approximately pH 3.57. The pH output range that can be displayed by

the Honeywell Plantscape Software faceplate is from pH2 to pH12, which

purposely been set up for an SASB reaction. Nonetheless, for an SASB reaction,

the pH values of 12 to 14 are considered as strong alkaline.

Figure 4.11 shows the Simulink block diagram for the three datasets based on

results developed for empirical modeling. The simulation output results as

expectation where the three outputs is found approximately overlap with each

other. The result is shown in Figure 4.12.
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Figure 4.12: Output of empirical modeling using MATLAB-Simulink

The graphical method of empirical modeling has two major limitations; the

model obtained is a first-order with dead time transfer function and it requires a

sufficiently large step input perturbation to ensure an accurate model. The output
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responses from empirical model are somewhat inaccurate as compared to the

actual output of the plant. Since the pH neutralization model is very nonlinear

and is a higher order system, thus this empirical modeling for first order with

dead time might not be compatible to the plant. On the other hand, there is

another method of empirical modeling which might be relevant for this project

which is the Second-Order-Plus-Deadtime (SODT). This method is used to find

the second order model parameter of the system proposed by Sudaresan et al.

(1978)[91.

In terms of flexibility, modeling a pH neutralization process using the first-

order-with-deadtime method is not reliable because the PRC is highly nonlinear

and has the tendency to generate large errors during parameters estimation.
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4.4 System Identification Toolbox

Statistical Method is implemented by using the System Identification (ARMAX)

toolbox. ARMAX stands for Auto Regressive Moving Average with external

input model estimator. There are three inputs for the ARMAX blockset; input

data, output data and the error data. Data are extracted from Microsoft Excel to

the MATLAB workspace.

input

ARMAXoutput

noise

AutoRegressive Moving
Average with external

input model estimator

Figure 4.13: ARMAX model simulation

ARMAX system identification computes for the transfer function of the model

by learning the data sets of input and output with respect to time. ARMAX will

take the mean average value of the data sets and configures the prediction of the

transfer function of the model. In this case, the ARMAX blockset is set to a 2nd

order system to obtain the most reliable model prediction. Prediction for higher

order than 2 resulted in larger error deviations.

Data extracted from the pilot plant will be first validated to identify any outliers

or any kind of error that might occur. Any outliers or errors that exist in the

dataset will affect the overall results of system identification. The reliability of

the dataset is taken into consideration so that the error in the models can be

minimized.
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Figure 4.14 to 4.16 show the results obtain from the ARMAX simulations. It

was found that with a 2nd order function set in the ARMAX blockset, the output

will produce an acceptable model prediction. The deviations of error in the

predicted models for all three datasets are small.

For a nonlinear process such as pH neutralization, this method can produce a

better estimation model than the first-order-with-dead time using empirical

modelling technique.
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Figure 4.14: ARMAX model prediction for 1st data

Fromthe ARMAX model prediction for 1st data,

Transferfunction (continuous):

0.000582 s2 - 0.03365 s + 0.4401

tf +0.6266 s+ 0.1826
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Actua Output (Red Line) vs. The Predicted Model output (Blue Line)
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ndFromthe ARMAX model prediction for 2nd data,

Transferfunction (continuous):

0.0004318 s2 + 0.2402 s + 4.631

sJ + 2.103 s + 0.7716
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4.5 Neural Network Model

Using neural network, the prediction output is excellent. Referring to Figure 4.18,

predicted model indicates by the red line overlapped with actual model indicates by the

blue line. So far, the result gives the most accurate of model prediction by the

implementation of feedforward BP network method.

For this case, in orderto get an accurate model prediction, training process has been run

for two times. Looking at Figure 4.17, for the first training iteration, there is small error

deviation between the predicted and actual model. Nonetheless, the predicted model

curve obtained from the first iteration can still be considered as good model prediction.

Further more, the model prediction can be improved by running second training

iteration. The second training iteration works by computing the parameters obtained

during the first iteration to the same command functions and develops a new network.

The newnetwork is a new model prediction which best fits the actual value. Figure 4.18

shows how the predicted model fits the actual model. The predicted reaction curve

overlaps with the actual reaction curve.

Besides, the method can be employed for any systems since it has various training

function methods that can be used according to the systems dynamic. In terms of

reliability, it has the ability to construct the model by using the neuron layers. This can

be best described by an analogy of a human brain and nerves system where it carries

impulses of sensation between the brainandall partsof the human body.

As for this network, there are two layers; the hidden layer and the output layer. The

hidden layer has a tangent-sigmoid transfer function which is suitable for learning the

nonlinearity of a model, and the output layer utilizes a linear function. These will allow

thenetwork to learn bothnonlinear and linear relationships between the input and output

vectors.
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Figure 4.17: Neural network prediction (1st time training)

ndFigure 4.18: Neural network prediction (2 time training)
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However, there are some drawbacks of the application of feedforward BP neural

network. Normally, the transfer function of a system is expressed in numerical form, but

for neural network, transfer function not able to be analysed. Eventually, neural network

represents the system's model in such a way called as 'black box' model, where in this

case there are only layers of neuron networks inside the box which yields the model of

the system. In addition, since neural network learns from datasets training, thus the

datasets must be large enough for a better model prediction.

Note: Refer to Appendix 1 for the m-file function of feedforward backpropagation

neural network.

49



CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Relevancies to Objectives

For the first objective, the plant experiment had been done on the pHcontrol pilot plant

in Instrumentation & Control Laboratory UTP. Many samples of data have been

obtained. It was found that the smallest ideal perturbation that can be applied to the pH

neutralization control during open loop test is 1% of valve opening. This perturbation is

sufficient enough to get the dynamic characteristics of the system.

Then, four modeling approaches are used. Three of the methods are the conventional

methods which are mathematical modeling, empirical modeling and statistical modeling.

One more method is by using the intelligent approaches which is the neural network.

The empirical modeling that is used for this project is based on the methods for first-

order-with-dead-time. Whereas, the feedforward backpropagation network method is

used for neural modeling.

For the second objective, all modeling is done via MATLAB-Simulink simulation for

modeling justification and analysis. A comparative study is conducted to make

comparison between conventional and intelligent approach in terms of flexibility,

reliability and accuracy. Eventually, from the comparison, it was found that neural

network has the ability to model for the best prediction.

5.2 Conclusion

A good model prediction will give good system performance. This is important

especially during tuning where systems performance takes place. Inaccurate model will

give effects during tuning where it is difficult to tune the output to the desired setpoint.

Mathematical modelling requires in-depth knowledge of the model and exact values of

the parameters in order to get the most accurate and reliable model. This method is also

tedious and needs more effort on the mathematical simulation block diagram to get the
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accurate model simulation. However, the mathematical modelling for the pH

neutralization model has the capability to give an accurate result to the actual model

provided that knowledge and parameter values are available at hand.

The result obtain from empirical modelling is quite acceptable to the actual reaction

curve that is obtain from plant experiment. This model needs further model diagnosis in

order to get an optimized model. Different methods can be used during parameters

calculation. Method I typically has the tendency to anticipate for larger errors in the

parameter estimation; thus, Method II is preferable. However, for a highly nonlinear

model like pH neutralization, empirical modeling which utilizes the first-order-with-

dead-time is not compatible. The model developed by such calculation is rather a first

order reaction curve than a higher reaction order for the real-time data collected from

plant experiment.

The system identification toolbox method provided in MATLAB has the ability to

estimate the process transfer function based oninput and output data fed into its system.

It also can give higher order transfer function that closely resembles the actual plant

transfer function. Eventhough ARMAX blockset is automatic system identification, it is

somewhat difficult to control the simulation range in order to make it compatible to the

real-time data range. Since statistical model considered as a computerized modeling,

thus it requires good computer configuration basic in order to achieve the desired

output.

The result obtained form Neural Network is excellent. The predicted reaction curve is

very much similar to the actual reaction curve from plant experiment real-time data. On

top of that, in term of accuracy, the model developed by neural network is much more

accurate than those obtained from existing conventional methods. Therefore, the

MATLAB simulation proves that neural network method for system identification can

be trusted for further implementation; for example the hardware implementation. The

transfer function not able to be analysed, but nevertheless, this model still working well

with the layersof neurons network represented the systems.
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5.3 Project Recommendations

5.3.1 Data Gathering

A good selection of data is important so that it is reliable to be used for system

identification. This will produce a reliable model that can be trusted. The

experiments on the pilot plant should be conducted several times to ensure that

data acquired is much more reliable. This is because, the process might yields

different result for each experiment.

5.3.2 Second-Order-phis-Deadtime(SODT)

Empirical modeling can also be improved by conventional methods. The other

conventional method that can be used for modeling a nonlinear process is the

second-order-plus-deadtime (SODT). This method proposed by Sudaresan et al

(1978) and is used to find the second order model parameter of the system which

might be compatible.

5.3.3 Fuzzy Implementation

Fornext project recommendation, it would be beneficial if the intelligent method

is broader for more methods and approaches such as modeling using the fuzzy

techniques. Thus, comparison can also be made between the two intelligent

methods.

5.3.4 Physical Implementation

Since, the intelligent methods do notneed a lot of time to focus on analyzing the

data, and perhaps give a better production, thus, it would be good if this can be

implemented on a real plant operation. The project will be more interesting if

hardware implementation can be constructed for the intelligent approaches

instead of solely software simulations.
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5.3.4 Control Implementation

The steps should go further on controlling part where performance test is

implemented to the model using intelligent approaches such as fuzzy and neural

network. By this means, the reliability of how modeling production helps to

improve systems performance can be observed. Perhaps, it would be more

interesting to consider for a system that applies intelligent method for both

modeling and controlling.
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Appendix 1

The steps taken and the syntax for neural network is illustrated below as in

MATLAB m-file.

%Prcpare data for network training
[PN,minp,maxp,TN,mint,maxt]=premnmx(input,target);

/bCreate backpropagation network

net=newff(minmax(PN),[1267],{,tansigVpurelin,},,trainlm,);
net.trainParam.epochs^6;
net.trainParam.show=T;

%Train the neural network
[net,tr]=train(net, PN, TN);

%Prepare data for testing the network
PN_Test=tramnmx(test_Ip,minp,maxp);

%Tes£ing the network.
TO_Test=sim(net,PN_Test);

%('onvert the testing output into prediction values for comparison
[querylnputs

predictOutputs]=postmnmx(PN_Test,minp,maxp,TN_Test,mint,maxt);

%Plot the test data and Predset Output for Comparison
plot(test_tgt,'-*'),hold on
plot(predictOutputs,'r:');



EXPERIMENT 4:

PH CONTROL IN A CSTR

4.1 OBJECTIVE OF THE EXPERIMENT

(') To study the pH control pilot plant and prepare aP&Idiagram.
(iii To tune a liquid flow control loop by ultimate gain method.
;iii) To tune a pH control loop by the process reaction curve method.

To study the closed loop characteristic oi the pH control loop cf [he CSTR.'IVj

4.2 INTRODUCTION AND THEORY

pH is defined as !og,0Ff and is a measure of the acidity or alkalinity of a liqu.d. The oH scale is
from 1to 14. with 7as the pH of neutral water. Avalue of the PH lower than 7designate as acidic
solution. pH control is important for many chemical processing applications and in pollution
control.

In the present experiment the acid flow is under PID flow control while the CSTR pH is controlled
by a PID loop controlling the alkaline flow. The loop will be tuned by the ultimate gain method
(refer Experiment 3, Table 3.1). The pH control loop will be tuned by the process reaction curve
method, (refer to Experiment 2, Table 2.1)

4.3 EXPERIMENTAL EQUIPMENT

The schematic diagram of the experiment set-up is shown in the figure 4.1. Acid solution pumped
from tank VE100 by pump P100 into CSTR VE120. The alkaline solution from tank VE110 is
pumped by pump P110 into the same CSTR, VE120. The CSTR is equipped with a stirrer and
pH transmitter ATI 22. If desired further neutralisation may be carried out in a second CSTR
VE130, or the final neutralisation tank VE140. Besides pH dissolve oxygen can also be
measured in a tank VE140.

The major control hardware includes the following:

Flow transmitter m2a m21_ m3£)
Conductivity transminer CT1 10 CT100
pH transminer at122t ATl3a AT14Q
Dissolved oxygen transmitter AT141
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Flow controller
FIC120, FIC121

pH controller
AIC122, AIC 130

Control valves
FCV120, FCV121.FCV130

zi:::d ^ f°r *• *»—- Ph _, are shown ,n Figures ,2 and 43

4.4 PROCEDURE

The experiment has the following three part:
(') Tuning flow loop in the acid flow path.
(ii) Tuning pH control loop.
(i«) Operating closed loop pH control.

4.4.1 Start-up

1 Switch on power to the Local Control Panel.
2 Turn the selector to DCS tn ,,,* ^or. 10 UOb to run the expenment under DCS control Set it to local if rh.
, ~"°- *—,c0nIro,byus,nglhemultnoopcomrolterone;" <-
- Swtch on the main air supply compressor a. the compressor room Wait for the ,

correct user name and password, supervisor for the

4.4.2 Preparation of Acidic process stream

1 Fill the acid storage tank with water {up to '/-> tank)

2s"aiz;7! pt for acw ,o pump *•*,o% *,he •*—<•- -
3 S,r h , ^ ^ aC'd '° Wa,6r °° "° add water <° »» -d.3 Stir the final solution to ensure homogeneity.

4.4.3 Preparation of Alkaline process stream

1 Fill the alkaline storage tank with water, (up to Vi tank)
2 Use the manual pump provided for aikaline to pump about 30% of me aod «, , •

storage acd tank. Caution, ^ways add alkaiine to water '"^ "'° *'
3 Stir the final solution to ensure homogeneity.
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10

4.4.4 Start Up

Table 4.4: Preparation and Start-Uo

STEP
ACTION

jEnsure that all Utility Services are ready (i.e. Switch on
j Power Supply to Control Panel and Switch on Air Supply
I Systems to the Pilot Plant.

REMARKS

At the Local Control Panel, turn the selector switch to 'DCS'.

Fill the vessel VE100 with water until it is about half full.

4 Ensure that the DCS is ready (i.e. It is communicating
j properly with the control panei).

.. . i Display for 'Experiment
A. the computer and the Chemical Processing Over-View' j , - SimP,e PIO tlow
d.splay, click on the button ;PID FIC ,20,. jContro( (RC )2Qy ,„.„

I appear.

From the WS/PNL select combo-box, choose DCS. This will jClick on drop down box
transfer control of the pilot plant to the DCS.

From the Control select combo box, choose FIC120.

At the Controller Faceplate (F1C120) set the controller to
MANUAL mode.

Close the control valve FCV120 manually (0%) i.e.
a) Setting Control Mode to 'MANUAL', then
b) At the MV data entry field, key in 0and press [Enter].

Adjust the Hand Valves at the Pilot Plant as follows:
Open Hand Valve HV103

Close Hand Valve HV102

53

and select 'DCS'.

Click on drop down box

and select 'MANUAL'.

Same operation to

Open/Close other

control valve manually.

Hand valves to be

Open/Closed Fully.



integral Time, T, (minute/repeat)

Derivative Time, T0

(minute/repeat)

4.4.6 pH Control

'able 4.7: Preparation (or pH Control

STEP |
ACTION

Ensure that all Utility Services are ready (i.e. Switch on
Power Supply ,0 Control Panel and Switch on Air Supply
Systems to the Pilot Plant.

Adjust the Hand Valves at the Pilot Plant as follows:
Open Hand Valve HV103
Close Hand Valve HV102
Close Hand Valve HV112
Open Hand Valve HV113

'DCS'.

| Ensure that the DCS is ready (i.e. It is communicating
| properly with the control panel).

At the computer and the 'Chemical Processing Over-View'
display, click on the button [PID AIC 122J.

From the WS/PNL select combo-box, choose DCS This
will transfer control of the pilot plant to the DCS.

From the Control select combo box, choose pH A1C122

Set the controller to AUTO mode.
Set its output to 100% (fully open).
Set its P, Iand Dvalues obtained from Experiment 1.

REMARKS

j Hand valves to be
I Open/Closed Fully.

' Display for 'Experiment
4- Simple PID pH

Control (AIC 122)'wiil
appear.

Click on drop down box

and select 'DCS'.

| Set MV= 100, Kp, land
! D accordingly.
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Open HVIOOand HV110 to fill vessels VElO^nTvEMO
with water until each of them is about'/« full.

10 | Close HV110 when the water level at VE110 is %full.

i When the water level at VE100 is about wfull, start pump
i1 | P100 via DCS to fill the reaction vessel VE120. Continue to

f fill VE100.

i2 | When the water level at the reaction vessel VE120 is above
j its agitator blades stop pump P1Q0.

13 . Close HV 100 when the water level at VE 100 is %full.

14

15

| At the vessel VE100 use the hand pump provided to add
' concentrated sulphuric acid into it [Note: do not add water

into concentrated acid instead add acid to water]. Observe
the reading of the conductivity meter. Stop adding acid
when the conductivity of the solution is approximately WO
micron- Siemen.

!At the vessel VE110 use the hand pump provided to add
concentrated caustic soda (Sodium hydroxide) solution into
it. Observe the reading of the conductivity meter. Stop
adding acid when the conductivity of the solution is
approximately 100 micron-Siemen.

,6 j At the AIC122 Controller Faceplate, set the controller to
! MANUAL mode.

Close the Control Valve PHCV12 manually (0% open).

Ensure that all tanks are properly covered.

Table 4.8: Start-Up

STEP

| The students are advised

j So wear eye protection
i
j goggle and rubber

j gloves when dealing with
I acid solution.

The students are advised

to wear eye protection

goggle and rubber

gloves when dealing with

acid solution.

Click on drop down box

and select 'MANUAL'.

pHCV12isthesame

Control Valve as

FCV121.

ACTION
REMARKS

Start agitatorAG 120 viaDCS.
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At the FIC120 Controller Faceplate:
- Adjust the Controller Set Point to 0.05 rrr/h

Start pump PIOOviaDCS.

4.4.7 Identification of pH Process

Jable 4.9: Process Identification tor pH Control Loop
STEP

ACTION

At the AIC 122 Controller Faceplate, manually
Open Control Valve pHCVl22 to 10%.

Start pump Pno via the computer.

Observe the pH curve from the Trend Window and
wait until it has stabilised.

Adjust the output of controller A1C122 to obtain a
j stable pH value (AT122) between 6.5 and 7.5.

| At the Controller Faceplate (AIC 122) make aStep
jchange of between 10 to 20% to the control valve
' FCV121 manually.

Observe the pH curve (AT122) from the Trend
Window and wait until it has stabilised to a new
constant value and freeze the trend window.

Print out the pH trend curve.

Stop both the pumps P100 and P101, and the
agitator AG 120 via DCS. Tnen set the controllers
FICl20andF(Cl21 to MANUAL mode.
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Set SP = 50

REMARKS

SetMV= 10.

Click on drop down box and

select 'ON'.

Set 3P = 7.

Set SP = 7.7.

Adjust controller MV.

This is the process Reaction
curve.

Print in colour.



J^^R^tAnalysis for pH Control Loop
STEP

ACTION

Compare the process value curve with a set of
expected process Reaction Curve provided in Figure
2.6.

10 j Identify the process response with the corresponding j
I Reaction Curve. i

REMARKS

,, | Make several measurements as per the Reac^ I "
| Curve chart. j Refer toTable 4.11,

12 Sketcn aSlock Diagram ,0 represent the process !Dead time, Capacity/Rate of
; ana descnoe the characteristic of this process. !

Rise, Time Constant, Noise. !

Using the printed graph obtained from
13 : ,nrn„0 SeCt,on above j Note: dB0 and dM are•3 , process analysis) above, measure and tabulate the changes from the ,- stable

!ou(put to me

IBased on the equations for Open Loop Tuning,
14 calculate the required controller tuning parameters.

Refer table 2.1.

1S At the AIC122 controller faceplate. Key in the
calculated controller tuning parameters.

Table 4.11; CSTR Model

Type of model
Time constant, T,' | Time constant, T2

First Order

First Order with decay time

Second order

Second order with decay time
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Appendix 3

Figure i: Variable Fiowrate ofAcid & Base for random step changes.

Figure ii: Variable Concentration of Acid & Base for random step changes



Appendix 3

Figure iii: Volume ofCSTR for random step inputs



tDataset Appendix 4

1st Real-time Data

Time(s) PV MV

0 3.61 1.5

5 3.61 1.5

10 3.61 1.5

15 3.57 1.5

20 3.66 1.5

25 3.6 1.5

30 3.61 1.5

35 3.63 1.5

40 3.6 1.5

45 3.53 1.5

50 3.6 1.5

55 3.6 1.5

60 3.61 1.5

65 3.62 1.5

70 3.63 1.5

75 3.61 1.5

80 3.57 1.5

85 3.6 1.5

90 3.61 1.5

95 3.6 1.5

100 3.56 1.5

105 3.61 1.5

110 3.58 1.5

115 3.61 1.5

120 3.57 1.5

125 3.57 2.5

130 3.57 2.5

135 3.58 2.5

140 3.6 2.5

145 3.6 2.5

150 3.59 2.5

155 3.6 2.5

160 3.59 2.5

165 3.59 2.5

170 3.61 2.5

175 3.6 2.5

180 3.6 2.5

185 3.61 2.5

190 3.61 2.5

195 3.6 2.5

200 3.6 2.5

205 3.62 2.5

210 3.6 2.5

215 3.61 2.5

220 3.62 2.5

225 3.61 2.5

230 3.62 2.5

235 3.61 2.5

240 3.61 2.5

245 3.62 2.5

250 3.63 2.5

255 3.62 2.5

260 3.62 2.5

Time (s) PV MV

265 3.64 2.5

270 3.65 2.5

275 3.64 2.5

280 3.65 2.5

285 3.64 2.5

290 3.64 2.5

295 3.66 2.5

300 3.64 2.5

305 3.66 2.5

310 3.65 2.5

315 3.66 2.5

320 3.65 2.5

325 3.67 2.5

330 3.66 2.5

335 3.67 2.5

340 3.66 2.5

345 3.67 2.5

350 3.66 2.5

355 3.68 2.5

360 3.67 2.5

365 3.67 2.5

370 3.69 2.5

375 3.69 2.5

380 3.68 2.5

385 3.71 2.5

390 3.71 2.5

395 3.72 2.5

400 3.72 2.5

405 3.72 2.5

410 3.71 2.5

415 3.73 2.5

420 3.74 2.5

425 3.74 2.5

430 3.72 2.5

435 3.74 2.5

440 3.75 2.5

445 3.74 2.5

450 3.75 2.5

455 3.76 2.5

460 3.75 2.5

465 3.74 2.5

470 3.76 2.5

475 3.77 2.5

480 3.77 2.5

485 3.79 2.5

490 3.77 2.5

495 3.78 2.5

500 3.81 2.5

505 3.79 2.5

510 3.8 2.5

515 3.78 2.5

520 3.82 2.5

525 3.81 2.5



t Dataset

Time (s) PV MV

530 3.83 2.5

535 3.81 2.5

540 3.82 2.5

545 3.83 2.5

550 3.83 2.5

555 3.82 2.5

560 3.85 2.5

565 3.85 2.5

570 3.84 2.5

575 3.86 2.5

580 3.87 2.5

585 3.87 2.5

590 3.88 2.5

595 3.89 2.5

600 3.92 2.5

605 3.9 2.5

610 3.92 2.5

615 3.92 2.5

620 3.91 2.5

625 3.92 2.5

630 3.96 2.5

635 3.96 2.5

640 3.97 2.5

645 3.97 2.5

650 4 2.5

655 3.96 2.5

660 3.97 2.5

665 4.01 2.5

670 3.97 2.5

675 4.04 2.5

680 4.03 2.5

685 4.02 2.5

690 4.03 2.5

695 4.04 2.5

700 4.02 2.5

705 4 2.5

710 4.05 2.5

715 4.04 2.5

720 4.05 2.5

725 4.07 2.5

730 4.09 2.5

735 4.08 2.5

740 4.12 2.5

745 4.1 2.5

750 4.05 2.5

755 4.12 2.5

760 4.13 2.5

765 4.14 2.5

770 4.13 2.5

775 4.14 2.5

780 4.17 2.5

785 4.17 2.5

790 4.19 2.5

795 4.17 2.5

Time (s)
800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

PV

4.21

4.24

4.25

4.24

4.28

4.26

4.31

4.36

4.33

4.34

4.32

4.36

4.4

4.4

4.42

4.46

4.48

4.52

4.52

4.53

4.56

4.57

4.63

4.71

4.71

4.65

4.77

4.82

4.86

4.91

4.98

5.01

5.09

5.17

5.32

5.46

5.72

6.53

7.67

8.81

9.84

10.37

10.74

10.97

11.23

11.45

11.54

11.71

11.77

11.87

11.94

12

12

12

MV

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5
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id Dataset

Time (s) PV

0 3.57

5 3.58

10 3.57

15 3.57

20 3.57

25 3.58

30 3.59

35 3.59

40 3.6

45 3.59

50 3.6

55 3.6

60 3.58

65 3.57

70 3.57

75 3.57

80 3.61

85 3.58

90 3.61

95 3.56

100 3.6

105 3.61

110 3.6

115 3.57

120 3.58

125 3.57

130 3.57

135 3.57

140 3.58

145 3.59

150 3.58

155 3.59

160 3.59

165 3.58

170 3.6

175 3.59

180 3.59

185 3.6

190 3.6

195 3.6

200 3.6

205 3.6

210 3.6

215 3.59

220 3.6

225 3.61

230 3.61

235 3.61

240 3.61

245 3.62

250 3.61

255 3.62

260 3.62

2nd Real-time Data
MV

Appendix 4

Time(s) PV MV

265 3.63 2

270 3.63 2

275 3.63 2

280 3.63 2

285 3.65 2

290 3.64 2

295 3.65 2

300 3.64 2

305 3,64 2

310 3.65 2

315 3.65 2

320 3.66 2

325 3.66 2

330 3.67 2

335 3.65 2

340 3.66 2

345 3.68 2

350 3.68 2

355 3.66 2

360 3.68 2

365 3.69 2

370 3.69 2

375 3.69 2

380 3.69 2

385 3.69 2

390 3.7 2

395 3.71 2

400 3.71 2

405 3.71 2

410 3.72 2

415 3.71 2

420 3.73 2

425 3.73 2

430 3.73 2

435 3.74 2

440 3.75 2

445 3.74 2

450 3.75 2

455 3.76 2

460 3.76 2

465 3.75 2

470 3.76 2

475 3.77 2

480 3.78 2

485 3.79 2

490 3.79 2

495 3.8 2

500 3.78 2

505 3.79 2

510 3.79 2

515 3.8 2

520 3.8 2

525 3.8 2



id Dataset

Time <s) PV MV

530 3.79 2

535 3.79 2

540 3.8 2

545 3.81 2

550 3.82 2

555 3.81 2

560 3.81 2

565 3.8 2

570 3.81 2

575 3.82 2

580 3.84 2

585 3.83 2

590 3.83 2

595 3.84 2

600 3.83 2

605 3.82 2

610 3.82 2

615 3.83 2

620 3.83 2

625 3.83 2

630 3.84 2

635 3.85 2

640 3.85 2

645 3.85 2

650 3.86 2

655 3.86 2

660 3.86 2

665 3.86 2

670 3.86 2

675 3.86 2

680 3.87 2

685 3.88 2

690 3.88 2

695 3.89 2

700 3.89 2

705 3.91 2

710 3.92 2

715 3.91 2

720 3.91 2

725 3.92 2

730 3.93 2

735 3.92 2

740 3.91 2

745 3.92 2

750 3.92 2

755 3.9 2

760 3.92 2

765 3.92 2

770 3.92 2

775 3.93 2

780 3.93 2

785 3.93 2

790 3.94 2

795 3.95 2

Appendix 4

Time(s) PV MV

800 3.94 2

805 3.95 2

810 3.96 2

815 3.96 2

820 3.96 2

825 3.96 2

830 3.97 2

835 3.97 2

840 3.97 2

845 3.97 2

850 4 2

855 3.99 2

860 4 2

865 4.02 2

870 4.03 2

875 4,05 2

880 4.07 2

885 4.1 2

890 4.12 2

895 4.14 2

900 4.16 2

905 4.2 2

910 4.21 2

915 4.26 2

920 4.27 2

925 4.31 2

930 4.35 2

935 4.38 2

940 4.45 2

945 4.48 2

950 4.52 2

955 4.59 2

960 4,67 2

965 4.73 2

970 4.86 2

975 4.95 2

980 5.23 2

985 6.09 2

990 7.59 2

995 8.59 2

1000 8.95 2

1005 9.18 2

1010 9.37 2

1015 9.65 2

1020 10.29 2

1025 10.68 2

1030 11.01 2

1035 11.21 2

1040 11.44 2

1045 11.62 2

1050 11.77 2

1055 11.91 2

1060 12 2

1065 12 2
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