BREAST CANCER DETECTION USING COMPUTATIONAL INTELLIGENCE

By
SITI AISHAH BINTI FADILLULLAH

PROJECT DISSERTATION

Submitted to the Electrical \& Electronics Engineering Program in Partial Fulfillment of the Requirements
for the Degree
Bachelor of Engineering (Hons)
(Electrical \& Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan
© Copyright 2005
by
Siti Aishah Fadillullah, 2005

CERTIFICATION OF APPROVAL

BREAST CANCER DETECTION USING COMPUTATIONAL INTELLIGENCE

by

Siti Aishah Fadillullah

A project dissertation submitted to the Electrical \& Electronics Engineering Program

Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the Bachelor of Engineering (Hons)
(Electrical \& Electronics Engineering)

Approved:

Ms Zazilah May
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2005

CERTIFICATION OF ORIGINALITY

This is to certify that the author is responsible for the work submitted in this project, that the original work is the author's except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Siti Aishah Fadillullah

Abstract

Mammograms are the best tool to detect an early disease of breast cancer. In mammography, medical experts look for clustered microcalcifications and irregular density masses. As microcalcification is a tiny speck of calcium in breast, it appears as white spot in mammogram. Problem occurred when the clinician reads the mammograms using a magnifying glass, as it is difficult to detect calcification because there is a wide range of abnormalities and it also due to the small size and their similarity with other tissue structure. One of the problems is to distinguish between malignant and benign tumors. Thus, the objectives of this project are to enhance mammogram image using image processing technique and to provide a pattern recognition system by signifying whether further investigation is needed, therefore it may assist medical expert in detection of breast cancer. Accordingly, the scope of this project is based on the pattern recognition system, which includes preprocessing, feature extraction, and classification. The task for the project is divided into two parts. The first part is the enhancement of the image and the detection of calcification. The second part of the project is to design, develop, and test the network whether it run as expected. As the result, mammogram images have been processed through image processing by using MATLAB, and opening morphological operation has been used for the detection. A pattern recognition system has been developed by the use of neural network. As a conclusion, a successful implementation of pattern recognition system as one way to detect breast cancer could help medical field in diagnosing breast cancer.

ACKNOWLEDGEMENTS

In the name of God, the Compassionate, the Merciful. The author would like to thank Him for the strength, skill, knowledge, patience and health that have been given through this time.

It is pleasure for the author to acknowledge the effort and assistance that have been shown by many people whose name is not mention on the cover. Without them, accomplishment of this report would have been impossible.

First and foremost, a million of thanks to the most supportive and encouraging supervisor, Ms Zazilah May, who had given all the knowledge and guidance in accomplishing this final year project. Despite her busy schedule, there always be an allocate time for her to discuss any arising matters.

The author also would like to give her greatest gratitude to Ms Kavitha for her assistance and dedication towards the accomplishment of the project. Without her expertise and skills, the project may not be able to complete within the given time frame.

Thank you to Dr. Seelaya, Dr. Shafie and stuff of Hospital Besar Ipoh, Perak for their generous information and source for the project.

Last but not least, the author would like to thank all the colleagues that have contributed in accomplishing this project. Thank you very much for all the supports and constructive comments.

TABLE OF CONTENTS

LIST OF TABLES ix
LIST OF FIGURES x
LIST OF ABBREVIATIONS xii
CHAPTER 1 INTRODUCTION. 1
1.1 Background of study. 1
1.2 Problem statement 1
1.3 Objectives 2
1.4 Scope of study 2
CHAPTER 2 LITERATURE REVIEW 4
2.1 Breast cancer 4
2.2 Mammograms 5
2.3 Image processing 6
2.3.1 Digital image formation 7
2.3.2 Digital image enhancement. 7
2.3.3 Image analysis 10
2.4 Feature extraction 11
2.5 Neural network 14
2.6 Detection of breast cancer 18
CHAPTER 3 METHODOLOGY. 20
3.1 Procedure identification. 20
3.2 Project design 20
3.3 Project development 21
3.3.1 Preprocessing 21
3.3.2 Feature extraction. 26
3.3.3 Neural network development 26
CHAPTER 4 RESULT AND DISCUSSION 33
4.1 Result 33
4.2 Discussion 38
CHAPTER 5 CONCLUSION AND RECOMMENDATION 45
5.1 Conclusion 45
5.2 Recommendation 45
REFERENCES 47
APPENDICES 49
Appendix A stage of breast cancer 50
Appendix B project timeline. 51
Appendix C program coding 53
Appendix D result 58
Appendix E verification 75
Appendix F sample details 83

LIST OF TABLES

Table 1 Sample result of three cases (detection of calcifications) 34
Table 2 Network configuration 36
Table 3 Sample of result predicted by Neural Network 37

LIST OF FIGURES

Figure 1 Normal breast structure 4
Figure 2 Mammogram machine (left) and side-to-side mammogram image of both breast (right) 5
Figure 3 Effect of averaging filter on salt and pepper noise 8
Figure 4 Effect of median filter on salt and pepper noise 8
Figure 5 Effect of adaptive filter on salt and pepper noise 9
Figure 6 Original image (left), and the output of contrast enhancement 10
Figure 7 Mass shape and margins characteristics (Diagram adapted from BB Kopans Breast Imaging (J.B. Lippincott Co., Philadelphia; 1989) 13
Figure 8 Single-input neuron. 15
Figure 9 Transfer function 16
Figure 10 A single-layer networks (left) of S logsig neurons having R inputs and a layer diagram (right) 17
Figure 11 Basic backpropagation network 17
Figure 12 Steps involve in project development 21
Figure 13 Image processing process 22
Figure 14 Effect of Gaussian filter and median filter (from left to right: original, Gaussian filtered image, and median filtered image) 23
Figure 15 Image after applying unsharp masking filter and intensity adjustment 24
Figure 16 Image after applying top-hat filter and stretchlim function 24
Figure 17 From left: segmented image (erosion), dilate gradient mask, and perimeter determination 25
Figure 18 Detected calcification 25
Figure 19 Process of feature extraction 26
Figure 20 Methodology in developing the Neural Network (NN) 27
Figure 21 Pattern recognition process variables. 28
Figure 22 Neural Network/Data Manager 30
Figure 23 Create New Network. 30
Figure 24 (a) and (b): Consideration for construction of network 32
Figure 25 Results of feature extraction 35
Figure 26 Performance curve of the network 36
Figure 27 Graph of actual value vs. predicted value 37
Figure 28 Effect large cropped area (above: cropped image, below: output) 38
Figure 29 Effect on small cropped area 39
Figure 30 Effect on smaller cropped area 39
Figure 31 Cropped area of interest of Mammo20-1 (left: resized image, right: image without resizing) 39
Figure 32 Detected calcification of mammo20-1 40
Figure 33 Circle object cropped from mammo20-1 40
Figure 34 Irregular object cropped from mammo20-1 40
Figure 35 Network generation. 42
Figure 36 Performance curve during training 43
Figure 37 Generated error 44

LIST OF ABBREVIATIONS

ROI	Region of Interest
ROC	Receiver Operating Characteristics
TIFF	Tagged Image File Format
NN	Neural Network
RMSE	Root Means Square Error
No.	Number
R	right
L	left

CHAPTER 1

INTRODUCTION

1.1 Background of study

Cancer begins in cells that behave abnormally and they are called a growth or tumor. However not all tumors are cancer, because they can be benign or malignant. Breast cancer is a malignant tumor that begins in the tissues of the breast [1], and there are several types of breast cancer such as ductal carcinoma and lobular carcinoma.

In Malaysia, breast cancer is one of the most common causes of death in women. The incidence of breast cancer in Malaysia is estimated to be around 27 per 100,000 populations, with close to 3,000 new cases annually [2].

Mammograms are the best tools to detect the early disease of breast cancer. In mammograms, usually doctor or radiologist will looks for clustered microcalcifications and irregular density masses. As microcalcification is a tiny speck of calcium in breast, it appears as white spot in mammogram. It may appear alone or in clusters. The white spot do not always mean cancer is present, it may be microcalcification, or it might also be an artifact.

The project will covered the process of enhancing the image, extracting the features, recognizing the pattern, and classifying them in order to assist medical experts in interpreting the mammograms.

1.2 Problem statement

Mammography is the most efficient way to detect early sign of breast cancer. However reading mammograms is difficult because there is a wide range of abnormalities and it also due to the small size and their similarity with other tissue
structure. One of the problems is to distinguish between malignant and benign tumors.

According to Susan Orel quoted in [3], the biggest misconception about mammography is that it picks up every breast cancer, and in fact, mammography misses at least 10 percent of breast cancer. Usually the abnormality in breast that seems to be a cancer but turn out to be normal is called false positive, and the unidentifiable breast cancer in a mammography is called false negative.

This project can help with the detection of breast cancer so that the suspicious area of abnormality can be recognized. The study on image enhancement using image processing technique, and pattern recognition using computational intelligence, which is neural network may assist medical experts to examine the presence of breast cancer.

1.3 Objectives

- To enhance mammogram image through image processing technique using MATLAB.
- To provide a pattern recognition system using neural network.
- To help medical expert in detecting and determining various stage and locations of breast abnormalities, and to check whether further investigation is needed.

1.4 Scope of study

The scope of this project is based on the pattern recognition system, which includes image processing, feature extraction, and classification. Understanding the terms and technique in medical imaging is desirable.

The project basically focused on mammogram's image, the enhancement of the image, techniques used in processing the image, and other related topics Preprocessing stage will covered image enhancement such as filtering which is the essential process in order to extract the features.

MATLAB is used to process the image, and for the computational intelligence technique, neural network model will be applied. And the output produced can be used to assist doctor in detecting breast cancer.

CHAPTER 2

LITERATURE REVIEW

2.1 Breast cancer

Breast is a gland that can produce milk, and each breast sits on chest muscles that cover the ribs [4]. It is made up mainly of lobules which are milk-producing glands, ducts which are the milk route that connect the lobules to the nipple, and stroma which is the fatty tissue and connective tissue surrounding the ducts and lobules, blood vessels, and lymphatic vessels. Figure 1 shows the normal breast structure. Most breast cancers begin in the ducts (ductal), some in the lobules (lobular), and the rest in other tissues [5].

Figure 1 Normal breast structure

Uncontrolled cells in breast that produce extra cell can form mass of tissue called tumor. There are two types of tumor: benign tumor and malignant tumor. Benign tumor is not cancer and it is rarely life threatening because the cell does not spread to tissues around them. But malignant tumor is cancer. Usually malignant tumor is more serious and may be life-threatening as the cell can invade and damage nearby tissue and organs

Many medical experts categorize a cancer according to an established breast cancer staging system based on the size of the tumor, the extent to which the tumor is involved with the skin, muscles, and other tissues next to it, and lymph node involvement [3].

Breast cancer can be divided into seven stages; stage 0 , stage I, stage IIA and IIB, stage IIIA and IIIB, stage IV (for more details see APPENDIX I) [1]. The stages reflect the seriousness of the case.

2.2 Mammograms

Mammogram is an x-ray examination of breast (see Figure 2). A screening mammogram is an x-ray examination of the breast in a woman who has no breast complaints (asymptomatic). And a diagnostic mammogram is an x-ray examination of the breast in a woman who either has a breast complaint (for example, a breast mass, nipple discharge, etc.) or has had an abnormality found during a screening mammogram.

Figure 2 Mammogram machine (left) and side-to-side mammogram image of both breast (right)

Conventional mammography creates the image of breast tissue on film. Because mammograms are not perfect, there is a need for new technologies that are better and able to detect breast cancer. With digital mammography it is possible to capture and display the x-ray information on computers, without the use of film [6]. It is then possible to enhance the quality of the image and even magnify the view of specific areas of the breast. But either conventional or digital, both mammographies are to look for abnormalities in breast such as calcifications, which are tiny mineral deposits within the breast tissue that looks like white small spots on the films.

There are two types of calcifications: macrocalcifications and microcalcifications. Macrocalcifications are coarse calcium deposit that are related to non-cancerous conditions and do not require a biopsy. Microcalcifications are tiny specks of calcium in the breast. They may appear alone or in cluster. The presence of microcalcification does not always mean cancer is present. Usually radiologists judge the presence of cancer by looking at the characteristics of the calcifications. Detail list of characteristic for calcification can be obtained in [15]. Another abnormality that may appear in a mammogram is mass. It may occur with or without calcification. Mass is either cyst which is benign collection of fluid in the breast, or maybe cancer (depends on size, shape, and margin).

Apart from digital mammography, which image can be enhance directly, nowadays computer-aided detection and diagnosis can be use to enhance the conventional mammography's image by digitizing the image. The M1000 Image Checker is one such device that has been approved by the US Food and Drug Administration (FDA) for use in reviewing mammograms [5]. This device can detect some cancer that the doctor might miss. In order to clarify the effectiveness of the computer-aided detection and diagnosis more technical refinements and studies that help to clarify their role in breast cancer detection is needed.

2.3 Image processing

Image is a two-dimensional function, $f(x, y)$ where x and y are spatial (plane) coordinates [14]. The amplitude of f at any pair of coordinates (x, y) is called the intensity of grey level of the image at that point. In digital image, the x, y, and
amplitude values of f are all finite and discrete quantities. Processing digital image by means of digital computer is called digital image processing.

Basically, digital image processing involves a computer to process images and two pieces of special input/output equipment: an image digitizer and an image display device. In processing an image there are many steps that can be applied such as image formation (image acquisition), image restoration, image enhancement, image analysis, image reconstruction, and compression.

2.3.1 Digital image formation

Digital image formation is a process of capturing the image. The system basically consists of image acquisition, and digitizer. Image acquisition is done to generate digital image from sensed data, which includes optical system and sensor. An analog signal is transformed to digital by a digitizer.

In order to convert analog signal to digital form, we need to sample the function in both coordinates and amplitude. Digitizing coordinate values is called sampling, and digitizing amplitude values is called quantizing. Each digital image formation subsystem introduces a deformation or degradation to the digital image, such as geometrical distortion, noise, and nonlinear transformation.

2.3.2 Digital image enhancement

Enhancement techniques is done to bring out detail and to highlight certain features of interest in an image. In another words, it is to improve the quality of image (to look better) in terms of contrast, image sharpening, noise reduction, and so on. Image enhancement is not to increase the inherent information content in data, but it is to emphasize certain specified image characteristics by increase dynamic range of chosen features so they can detect easily.

Image enhancement techniques can be classified into two methods: spatial domain and frequency domain. Spatial domain methods are based on direct
manipulation of gray values of pixels in an image. Frequency domain methods are based on modifying the Fourier transform of an image.

Image enhancement includes grey level and contrast manipulation, noise reduction, edge crispening and sharpening, filtering, interpolation and magnification, pseudocoloring and so on.

- Noise reduction

Noise can be introduced into an image. It depends on how the image is created. There is different ways to remove or reduce noise in an image, as different methods are better for different kinds of noise. The methods available include linear filtering, median filtering, and adaptive filtering. As an example, best-suited filter for salt and pepper noise is median filter. Figure 3, Figure 4 and 5 shows the effect of each filter on salt and pepper noise.

Figure 3 Effect of averaging filter on salt and pepper noise

Figure 4 Effect of median filter on salt and pepper noise

Figure 5 Effect of adaptive filter on salt and pepper noise

- Filtering technique

Filter is to remove noise or to enhance edge and small details in an image. Lowpass filter is used to smooth the image and it is used for noise removal. Lowpass filter can blur the image as it suppressed high-frequency coefficient and enhanced the low-frequency coefficient. Gaussian lowpass filter yields a lowpass filter with smooth behavior in both domain [14].

When the low-frequency coefficient is suppressed and highfrequency is boosted, it is called a highpass filter. Highpass filter is possible to sharpen image as the edge and small details correspond to high-frequency coefficient.

During averaging and lowpass filtering, each pixel is replaced by the weighted average of its neighborhood pixels [17], that is

$$
\begin{equation*}
v(m, n)=\sum_{k, l, l \in W} a(k, l) y(m-k, n-1) \tag{1}
\end{equation*}
$$

Where $v(m, n)$ is the input and an output image, W is a suitable chosen window, and $a(k, l)$ is the filters weight.

Median filter is an order-statistics filter [12]. It replaces the value of a pixel by the median of the grey levels in the neighborhood of the pixel, and it is better in reducing random noise without reducing the sharpness of the image. The effect of median filter on salt and pepper noise is as in Figure 4.

- Contrast enhancement

Contrast enhancement or contrast stretching is a point operation that is used to expand the contrast of the features of interest so that they occupy a larger portion of the displayed grey-level range [12]. It is to increase dynamic range of the gray levels in the processed image. Figure 6 shows the effect of contrast enhancement on an intensity image.

Figure 6 Original image (left), and the output of contrast enhancement

2.3.3 Image analysis

Image analysis is related to make quantitative measurement from an image to produce a description of it. It requires extraction of certain features that aid in the identification of the object. Image analysis consists of edge and line detection, texture analysis, segmentation, region-of-interest (ROI) processing, feature measurement, and so on.

Segmentation is one of the most important steps to analyze image data. Its main goal is to divide an image into parts that have strong correlation with objects or areas of the real world contained in the image [21]. Gray-level thresholding is the simplest segmentation process and it is computationally inexpensive and fast.

Features extraction is to reduce data by measuring certain "properties" that distinguish input pattern. There are many techniques and approach for feature extraction. There is Fourier transform domain feature extraction, Walsh-Hadamard transform (WHT) domain feature extraction, invariant feature extraction, and texture features.

Pattern recognition is one of the aspects in analyzing an image. Statistical pattern recognition assumes that the image may contain one or more objects and that each object belongs to one of several predetermined types, categories, or pattern classes [12]. There are three major phases in pattern recognition: image segmentation, feature extraction, and classification. Pattern recognition systems usually consider a feature space onto which the observation vector is first mapped. The feature vector is then used to decide the class to which the observation vector belong base on the measured objects.

Classification can be described as the process of mapping a feature vector from feature space to class membership space. Conventional methods include statistical and syntactic techniques. In the statistical approach, a set of features is extracted from the input pattern, and partitioning the features space carries out the classification. One way of pattern recognition techniques is to group them into supervised and unsupervised methods.

2.4 Feature extraction

Feature extraction is a process where input variables (vectors) are selected for the design of a neural network especially in a pattern recognition decision aid [10]. According to the authors, type of variable to be used in neurons of the input layer must be first verified as these variables are useful in distinguishing between two classes.

Isaac N. Bankman et al [18] has presented a segmentation algorithm and compare it to the multitolerance region growing algorithm of Shen et al and active contours. The segmentation algorithm operates without threshold or window selection or parametric data models, which is called hill climbing.

The author has stated that Shen at al have done automatic thresholding that uses a growth tolerance parameter that changes in a small range with a step size that depends on the seed pixel. Three features are extracted from each region grown with different tolerance level: shape compactness, centre of gravity, and size.

Isaac N . Bankman et al, also stated that the width of the smallest microcalcification consider in his study was about 0.25 mm and the majority of the microcalcifications are in the range of width of 0.3 to 0.5 mm . The author used a circle of 0.2 mm diameter around the local maximum pixel as the initial position of the active contour (24 8-connected pixels). By segmentation algorithm in [18], they had extract four features: contrast, relative contrast, area, and edge sharpness.

According to A. Wróblewska et al [20], the first step in automatic feature selection method is an extraction of a broad feature set, containing promising features found in many publications, and this large set will be reduced in order to find features essential and valuable for classification of microcalcifications. The authors have divided all evaluated features into three groups, which are texture features, shape features, and scalar features.

D Betal et al [21], applied mathematical morphology algorithm to describe microcalcification shape in terms of the presence or absence of infoldings, elongation, narrow irregularities and wide irregularities. An ROC analysis was performed to investigate the effect on sensitivity and specificity of the proportion of the nine neighbors that agreed with the true calcification.

Masses can be distinguished by shape, size, and margin characteristics. And calcifications can be characterized by size, number, morphology, distribution, and heterogeneity. Figure 7 shows mass shape and margin characteristics.

According to "Interactive Mammography Analysis Web Tutorial" [22], masses are three-dimensional lesions that may represent a localizing sign of breast cancer. They are described by their location, size, shape, margin characteristics, x-ray attenuation (radio density), effect on surrounding tissue, and any other associated findings (i.e. architectural distortion, associated calcifications, skin changes). Depending on the morphologic criteria of the mass, the likelihood of malignancy can be established.

Aside from masses, a suspicious single geographic abnormality can also be classified by calcifications. Calcifications are analyzed according to their size, shape, number, and distribution. The general rule is that larger, round or oval shaped calcifications uniform in size has a higher probability of being associated with a benign process. And smaller, irregular, polymorphic, branching calcifications heterogeneous in size and morphology are more often associated with a malignant process.

Number of calcification that made up a cluster has been used as an indicator of benign and malignancy. While the actual number itself is arbitrary, radiologists tend to agree that the minimum number of calcifications be four, five, or six to be of significance. Any number of calcifications less than four will rarely lead to the detection of breast cancer in and of itself. Again, as with all criteria in mammography analysis, no number is absolute and two or three calcifications may merit greater suspicion if they exhibit worrisome morphologies.

Area is computed as the number of pixels in the grown region. It is measured by counting the number of pixels inside and including the boundaries. It is relates to the size of calcification. Most radiologists place calcifications 0.5 mm or less to have a high probability of association with cancer, and calcifications of 2.0 mm or larger are typical of a benign process. The smallest visible calcification on a mammogram is approximately $0.2-0.3 \mathrm{~mm}$.

Figure 7 Mass shape and margins characteristics (Diagram adapted from BB Kopans Breast Imaging (J.B. Lippincott Co., Philadelphia; 1989)

Perimeter measurement is to measure an object's perimeter to establish that the boundary of an object is polygon having a vertex at the center of each boundary pixel. Perimeter can also be measured by summing center-to-center distance between adjacent pixels on the boundary. The perimeter is measured after the bwperim process, which is after perimeter determination by applying sum([data2.Area]) to the bwperim image. Thus to calculate the total perimeter, total area of bwperim is divided with the number of calcifications;

Mean Perimeter $=\operatorname{sum}([$ data 2. Area] $) /$ number of objects

Eccentricity and orientation is a scalar vector. The eccentricity is the ratio of the distance between the foci of the ellipse and its major axis length. The value is between 0 and 1 , which is when approaching 0 represents a circle and approaching 1 represents a line segment. Orientation is the angle (in degrees) between the x -axis and the major axis of the ellipse that has the same secondmoments as the region. Solidity is also a scalar vector. It is the proportion of the pixels in the convex hull that are also in the region. Solidity is computed as Area/ConvexArea.

Mathematically, area of a circle is calculated as $p i^{*} r^{2}$ while the perimeter is calculated as $2^{*} i^{*} r$. By computing the 'equivDiameter' the diameter of an object can be obtain. Thus circularity can be calculated as below:

$$
\begin{equation*}
\text { Circularity }=\left(4^{*} p i^{*} \text { area }\right) / \text { perimeter }{ }^{2} \tag{3}
\end{equation*}
$$

2.5 Neural network

Neural network operates in parallel and it is inspired by biological nervous systems. The network can be train to perform particular function by adjusting the values of the connection (weight) between elements. This is to get a specific target output.

According to A . Wróblewska et al, the number of input layers neurons was the same as a size of feature vector, and hidden layer neurons was experimentally set according to the number of recognized classes. In a single-input neuron (as in Figure 8), a scalar input p is multiplied by the scalar weight w to form $w p$. The bias b has a constant input of 1 . Transfer function net input n is the sum of the
weighted input $w p$ and the bias b. The net input n goes to transfer function f, which produces the scalar neuron output a. [19]

Thus the neuron output is calculated as

$$
\begin{equation*}
a=f(w p+b) \tag{4}
\end{equation*}
$$

In order to satisfy some of the problem that the neuron attempt to solve, a transfer function needs to be chosen. Hard limit transfer function take argument value between 0 and 1 and mostly used for decision making. Linear transfer function used as linear approximators. The sigmoid transfer function logsig takes the input of any finite value and gives the output into the range of 0 and 1 .

Figure 8 Single-input neuron

According to MATLAB Neural Network Toolbox [23], backpropagation was created by generalizing Widrow-Hoff learning rule to multiple-layer networks and nonlinear differentiable transfer function. Input vector and corresponding target vector are used to train until an approximation of the function, which relate the input and the output is generated. Once the network is trained, the network is able to approximate a set of inputs to certain accuracy without providing output. Multilayer feedfoward network is most commonly used network architecture for the backpropagation algorithm. Multilayer network often use the log-sigmoid transfer function logsig (as in Figure 9). And occasionally, the linear transfer function purelin (Figure 9) is use in backpropagation networks.

Figure 9 Transfer function

Basic backpropagation network architecture is shown in Figure 10. The number of hidden layers in a Feed Forward network is often one or more layers. According to Neural Network Toolbox, there are no rules leading the amount of layers and number of neurons. Normally trial and error approach is used to determine the best construction of network that can be specified before the network is trained. There are generally four steps in training process:

1. assemble the training data
2. create network object
3. train network
4. simulate the network response to the new input

Neural network is trained to classify the pattern of calcifications. The training process requires a set of inputs and its targets. Weights and biases are iteratively adjusted to minimize the network performance function (adjust to get the minimum error). In backpropagation, weights are moved in the direction of negative gradient.

According to MATLAB Neural Network Toolbox, gradient descent algorithm can be implemented by incremental mode and batch mode. Examples of batch mode are such as batch training (train), batch gradient descent (traingd) and batch gradient descent with momentum (traingdm).

The training algorithm traingd and traingdm are often too slow for practical problems. Fast algorithm can be generalized as those that use heuristic techniques and those that use standard numerical optimization techniques.

Heuristic is based on the analysis of the performance of the standard steepest descent algorithm. Examples of heuristic training algorithm are variable learning rate backpropagation (traingda) and resilient backpropagation (trainrp).

And example of algorithm that uses the standard numerical optimization techniques is conjugate gradient (traincgf, traincgp, traincgb, trainscg), QuasiNewton (trainbfg, trainoss), and Levenberg-Marquardt (trainlm). The suitable training algorithm for pattern recognition network is resilient backpropagation (trainrp), conjugate gradient algorithms (trainscg), and Levenberg-Marquardt (trainlm).

Figure 10 A single-layer networks (left) of S logsig neurons having R inputs and a layer diagram (right)

Figure 11 Basic backpropagation network

2.6 Detection of breast cancer

Mammography has a low specificity. The likelihood that a lesion found by mammography and sent to biopsy will be malignant is only 20 to 35% [16]. Numerous researches have been done to improve the detection of breast cancer by various methods and techniques. Strickland and Hahn used multiscale matched filters with wavelet transforms for enhancing and detecting calcification, Nishikawa et al use a difference technique to enhance microcalcification, and Moti Melloul and Leo Joskowicz use entropy tresholding in segmentation of microcalcification in X-ray mammograms [8].

Moti Melloul and Leo Joskowicz describe an algorithm that detects microcalcifications in two steps which removes background tissue with a multiscale morphological operation, and applies entropy tresholding based on a 3 -dimensional co-occurrence matrix. They use top-hat morphology to eliminate background tissue. They obtained mean detection rates of 93.75% of true positives, 6.25% of false positives, and 2.0% of false negatives. [8]

Armando Bazzani et al investigate the performance of a Computer Aided Diagnosis (CAD) system for detection of clustered microcalcifications in mammograms. They combined a multiresolution analysis based on wavelet transform with a difference-image method and gaussianity statistical test and they perform a logical $O R$ operation on the detected microcalcification before clustering. [9]

Classification of clustered microcalcifications using fractal analysis and probabilistic neural networks by Wan Mimi and Diyana W Zaki and Rosii Besar proved that the probabilistic neural network are efficient for classification of clustered microcalcifications and manage to give reliable results for every mammogram tested.

They used standard deviations, first and second order entropy of the fractal thresholded images as input vectors. Clustered microcalcification is separated from breast background by their texture properties by fractal analysis. According to them, to extract feature, input layer must be verify first then select the design of neural network. To find the most suitable features, the thresholded fractal images
are analyzed and features are obtained mathematically. Then features are evaluated on a region of interest, and they identify the best variable values which are standard deviation, first order entropy, and second order entropy. [10]

Khairul Nisak Md Hasan [15] in her work titled Detection of Microcalcification using Mammograms enhanced the mammograms image by applying image processing technique using MATLAB and Borland $\mathrm{C}++$. Top-hat algorithm method is developed using MATLAB. The method consists of digitization of mammograms, image enhancement, image segmentation, and feature extraction.

CHAPTER 3

METHODOLOGY

3.1 Procedure identification

Methodology used in the progress of this project includes information gathering through research on internet, books and journal, and also by interviewing experienced people in the medical field. As this is a two semester project, the tasks have been divided into two parts. This project is to design, develop, and test whether it run as expected. And the final process is to evaluate the output in order to analyze all tasks carried out from each phase. Project timeline can be view in APPENDIX II.

3.2 Project design

Figure 12 illustrate the steps involve in the project:

Figure 12 Steps involve in project development

3.3 Project development

3.3.1 Preprocessing

Basically, preprocessing technique consist of gray scale manipulation, isolation of regions, noise filtering, contrast enhancement, image thresholding, and edge detection. All the sample of mammograms obtained from the hospital need to go through the process mentioned above before applying the higher level process.

In image acquisition, the mammograms sample is digitized using high resolution scanner, and stored in computer as '.tif' because the image should be in TIFF format in order to process it using MATLAB.

Figure 13 Image processing process

As indicated in Figure 13, to enhance the image, the first step is to remove noises. Gaussian low-pass filter operates as a smoothing mechanism to reduce noise. This filtering process results in an image with reduced "sharp" transitions in grey levels. Median filter is an order-statistics filter [12], [14]. It replaces the value of a pixel by the median of the grey levels in the neighborhood of the pixel, and it is better in reducing random noise without reducing the sharpness of the image.

Figure 14 Effect of Gaussian filter and median filter (from left to right: original, Gaussian filtered image, and median filtered image)

However the sharp transitions in grey levels also consist of edges which are the advantageous features in an image, but averaging filters have the undesirable side effect that they can blur edges [14]. So to overcome the problem, unsharp masking filter is performed. This filter has the effect of making edges and fine detail in the image crisper and this approach is called high-boost filtering. Then intensity adjustment is performed to enhance the contrast of the image. The effect of each filter can be seen in Figure 14 and 15.

Top-hat masking filter with a disk-shape structuring element have been apply to the image to remove the uneven background illumination, and as the output of the operation is dark, we apply the stretchlim which calculates the histogram of the image and determines the adjustment limits automatically. Figure 16 showing the effect of stretchlim to top-hat filtered image.

Figure 15 Image after applying unsharp masking filter and intensity adjustment

Figure 16 Image after applying top-hat filter and stretchlim function

After filtering and enhancing the contrast, image is threshold and erosion and dilation is performed. Erosion process is done to eliminate the boundary points from an object, leaving the object smaller in area by one pixel all around its parameter [12] (remove the unwanted small spot, artifacts).

Dilation is the process of incorporating into the object all the background points that touch it, leaving it larger in area by that amount [12] (in order to restore back the shape and size of the remainder). Figure 17 illustrate the effect of the erosion and dilation operation and the output of the preprocessing stage can be seen in Figure 18.

Figure 17 From left: segmented image (erosion), dilate gradient mask, and perimeter determination

Figure 18 Detected calcification

3.3.2 Feature extraction

After completing the processing stage, the next step is features extraction. The process of it is as Figure 19. It is performed on the binary image. Process of extracting the features have been divided into 5 steps which each steps presenting a feature. As the number of data is not enough for 5 process variables, the selection of appropriate features is needed. From the rough estimation, the features have been narrowed down into 4 features. The selected features are shape (circularity), eccentricity and orientation, and area.

Figure 19 Process of feature extraction

3.3.3 Neural network development

Figure 20 shows the steps involve in the second part of the project. The steps consist of identification of process variable, data processing, neural
network construction and training, neural network validation and testing, interference of error, and the implementation of neural network.

Figure 20 Methodology in developing the Neural Network (NN)

Identification of process variable

The neural network needs to be trained with sufficient amount of inputs and targets for it to be able predict. Process variable related to this study are the detection of microcalcification and the classification of it.

Sixty seven sets of data have been extracted, and 45 sets of the data are used to train the network. Thus the input variables can be set to 4 , with estimation of 2 hidden layers and 1 output. Three sets of data that is training, validation and testing are generated using Microsoft® Excel's 'Random Number Generation'. Figure 21 illustrates the inlet and outlet process variables.

Figure 21 Pattern recognition process variables

Preliminary Processing of Data

Processing of data is done on set of inputs with its corresponding output. These work needed to be done before attempting to train the network. The sets of 45 inputs and output data needed to be divided to three sets that are training, validation and testing. Each set consist of right and left view of breast thus made up 90 input data. These sets are needed for different stages of work in neural network. The ratio between each set is according to the journal by Radhakrishnan and Mohamed (2000) that is 43% for the training, 43% for the validation and 14% for the testing. From that ratio, the training set has 39 sets of data, validation 38 sets of data and testing 13 sets of data.

Segmentation is conducted randomly using Microsoft $®$ Excel's 'Sampling'. The software required user to specify the set of data for sampling and amount of sample size required. Sampling is done in all data sets. The random numbers generated is used in segmentation. The specified size for sampling must be larger than the desired size because the software replaces the number after selection. If sampling has repetition, the following sampled number is selected (the sets should not have repeated values).

After the segmentation, an ANOVA test is required to verify the original set and the three segmented sets are from the same population by comparing their means and standard deviations. The Microsoft® Excel's 'ANOVA: Single Factor' is used for this purpose. Test is conducted on the random number of the all data, training data, testing data and validation data. The means and standard deviation are compared.

There are three sets of inputs and output that arranged in a matrix form that are training set, validation set, and testing set. For the training sets the matrix arrangement is 4 X 39 for the inputs and 1X39 for the output. For the validation sets the matrix arrangement is 4×38 for the inputs and 1×38, and for the testing sets the matrix arrangement is 4 X 13 for the inputs and 1X13 for the output. MATLAB Neural Network Toolbox's 'Network/ Data Manager' (Figure 22) is used for constructing and training the network.

Figure 22 illustrate the network manager that is used to manage the neural network with the input and output. The data sets need to be load into the workspace before importing the data in the network/data manager: In order to create network, 'New Network...' button is used, and the window for creating a network is shown in Figure 23.

The proposed network used is 'Feed-forward Backpropagation'. The input range should be specified and it can be obtain from training inputs. To find the suitable neural network configuration, it can be determined by changing the training function, adaptation learning function, performance function number of layers, number of neurons and transfer function (trial and error). The desired output in the study must be positive in value, therefore the last layer utilized the transfer function of logsig. The performance curve of the network needs to be analyzed to identify the suitable configuration that produced the minimal error.

Figure 22 Neural Network/Data Manager

Figure 23 Create New Network

In determining a suitable network, the validation and testing set must be used with the training set so that a reasonable configuration network can be identified. It is used by supplying these sets of data before training shown in figure, so that an approximation performance curve for all sets can be generated as shown in Figure 24.

Thus additional information provided as Figure 24(a) will generate the curve as in Figure 24(b). This is useful for classifying a suitable network. The testing set is not simulated to obtain the output. The reason it is useful is that the curves of the validation and testing set must be below the training set as one of the criteria for the optimum configuration. If the curves of the validation and training are higher than the training set, the error generated is much higher than the training set. Hence it is required to determine a configuration that produces validation and testing curve below the training curve. Otherwise the network is not able to generated is robust and accurate prediction.

(a)

(b)

Figure 24 (a) and (b): Consideration for construction of network

After a suitable configuration is identified, the validation set is used for validating the network in its performance by simulating it using the trained network created. If the results are satisfactory, testing can be conducted using the testing set. If not the network must be retrained with different configuration until it is successful.

Testing of Error

Error testing is conducted only on validation and testing set. Error is calculated on the Root Means Square Error (RMSE). RMSE determined the error between the predicted and actual plant values, square them, sum them, divide by the number of the data point and determined the square root of them.

$$
\begin{equation*}
R M S E=\operatorname{sqrt}\left(\text { sum }\left((\text { predicted value-actual value })^{\wedge} 2\right) / \text { number of data }\right) \tag{5}
\end{equation*}
$$

Potential improvement is done after suitable neural network is constructed. The purpose this is to further minimize the error in prediction value. The error for the best modeling is must be less then 5%.

CHAPTER 4

RESULT AND DISCUSSION

4.1 Result

The preprocessing process, which is filtering, and contrast enhancement, and image segmentation have been done to the 88 cases by the method discussed in the previous chapter. Which 23 cases were taken from the previous project [15], 20 from Hospital Ipoh, and another 45 cases was downloaded from the "Interactive Mammography Analysis Web Tutorial" [23]. The cases that was obtained from the internet and hospital have their details, but not to the remaining 23 cases. The mammogram samples were processed using the program in APPENDIX C. Sample of three results that have been processed by using MATLAB with opening morphological operation is as in Table 1.

Features have been extracted from 67 cases and the 45 cases downloaded from the internet is used for neural network construction and training. The result of feature extraction is as in APPENDIX D. The extracted features are number of calcification, area, perimeter, eccentricity and orientation, solidity, and convex area. Circularity formula (3) is computed by using average area and average perimeter. Area and perimeter units are in pixels. Figure 25 illustrates the result of feature extraction of 45 cases.

Result of preliminary data processing is attached in APPENDIX D. The output of segmentation is three sets of data that are 39 data for training, 38 data for validation and 13 data for testing. The segmentation was done using random number of inputs data. ANOVA test was performed to verify the original and the segmented sets are from the same population. The test was performed on the random numbers of the input and output variable. From the result of ANOVA test, it can be seen that the average value of segmented sets is near to the average
value of the original set. Thus it concludes that the segmented sets are from the original set.

Table 1 Sample result of three cases (detection of calcifications)

Description/ samples	Image 1	Image 2	Image 3	
Original				

Numerous trail and errors have been performed to obtain the optimum configuration and the most suitable configurations that can be obtained for the neural network are as in Table 2, and the curves in Figure 26 indicate the performance of the neural network in predicting all the three sets. Desired error is 0 and the performance is 0.141394 . Amount of iteration (epoch), for predicting the value of performance is 7 . The performance is with regards to the termination due to validation and testing set. The actual performance based on training set is 0.0992984 with termination at 100 epochs. This is the result that produces the minimal error.

Table 3 shows sample of result of testing. The input of testing set is simulated and the predicted result by neural network and the error of the prediction is tabulated. The graph in Figure 27 illustrates the performance of the prediction value. The actual output or result of the test is 0 or 1 which 0 indicates no further investigation needed, and 1 indicates further investigation needed.

Figure 25 Results of feature extraction

Table 2 Network configuration

Parameters	Variable
Network	Feed-forward backprop
Training function	TRAINRP
Adaptation learning function	LEARNGDM
Performance function	100
Epochs	2
Number of layer	24
Layer 1: Number of neuron Transfer function	LOGSIG
Tayer 2: Number of neuron	1

Figure 26 Performance curve of the network

Table 3 Sample of result predicted by Neural Network

Actual value	Predicted value	Error
0	0.1582	0.1582
1	0.49987	0.5001
1	0.98054	0.0195
1	0.70959	0.2904
1	0.66996	0.33
0	0.89372	0.8937
1	0.50595	0.494
1	0.15339	0.8466
0	0.19851	0.1985
1	0.9687	0.0313
1	0.64472	0.3553
0	0.089263	0.0893
0	0.15175	0.1517

Figure 27 Graph of actual value vs. predicted value

4.2 Discussion

The steps taken in each stage of preprocessing and feature extraction have been discussed in the previous chapter. Since this project is a continuation from the prior project [15], some of the preprocessing steps have been used. The existing program coding has been modified to enhance the output.

There was few problems occur during developing the coding in MATLAB. One of the problems was on the output produced from the preprocessing stage. The output is not constant. By observation, the output is proportional to the cropped area as most of the operation involving the averaging of grey-level values. The effect of cropping can be seen in Figure 28 and 29.

Figure 28 Effect large cropped area (above: cropped image, below: output)

Figure 29 Effect on small cropped area

Figure 30 Effect on smaller cropped area

Figure 31 Cropped area of interest of Mammo20-1 (left: resized image, right: image without resizing)

As in Figure 28, the image of breast is wholly cropped, and the image in Figure 29 is only focused on the interested area, and the difference can be seen clearly when the image is cropped to focus on the suspected area (as in Figure 30). In order to have a convenience experimental value each of the images can be processed three times and the results will be taken from the average value of it.

The processes of image enhancement have been completed and the resizing effect has been tested. Figure 31 shows the resizing effects on the detected area. Both of the images have same masking size, thus affecting the detected area. To put it
briefly, resize to smaller image size will not reduce any detail or data in the image, unlike image enlargement.

To obtain the results as in APPENDIX D (Result of feature extraction), each of the images have been processed through image processing technique and feature extraction method. The extraction stage has been verified by testing a nearly circular object, and an irregular object that is taken from one part of the mammograms (see APPENDIX E). The MATLAB coding can be view in APPENDIX C. The circularity is calculated by using equation (3). Figure 32 shows the sample of mammogram used for the verification of circularity, and circle objects and irregular object taken from the sample are as in Figure 33 and 34.

Figure 32 Detected calcification of mammo20-1

Figure 33 Circle object cropped from mammo20-1

Figure 34 Irregular object cropped from mammo20-1

The average area of Figure 33 is 442 pixels. The results of feature extraction for the object are:

- meanArea $=442$
- meanEccentricity $=0.1412$
- meanOrientation $=17.6378$
- meanSolidity $=0.9736$
- meanPerimeter $=68$
- meanCircularity $=1.2012$

And the average are of figure 34 is 1387 pixels. And the results are:

- meanArea $=1387$
- meanEccentricity $=0.7906$
- \quad meanOrientation $=-75.7992$
- meanSolidity $=0.7642$
- \quad meanPerimeter $=173$
- meanCircularity $=0.5824$

The result of computed feature extraction is compared with the result of manually extracted which is the data base of the mammogram. Features that have been extracted and are used as the input data are circularity, eccentricity, orientation, and area. Forty five sets of data are taken from the internet and twenty two sets of data are taken from Hospital Ipoh. Altogether are 67 sets of data that consists of 4 inputs and 1 output. Details about the output were attached in APPENDIX D (Result of preliminary data processing).

The sets of 45 data have been divided into three sets that are training, validation and testing. Each set consist of right and left view of breast thus made up 90 input data. The ratio between each set is 43:43:14; training set has 39 of data, validation 38 of data and testing 13 sets of data. ANOVA test have been done to the segmented data. Test is conducted on the random number of the all data, training
data, testing data and validation data. The meañs and standard deviation are compared.

The neural network was developed with configuration of Table 2. The network that was generated by using the configuration is shown in Figure 35. There are two layers as indicated by the block with the numeric at the bottom. The first layer has 24 neurons. The inputs are connected to the nodes in the input layer. The output layer has 1 neurons and the output is taken from this layer. The performance curve during training configuration is shown in Figure 36. The performance obtained is 0.0992984 , which is the closest to the desired error of 0 with the iteration of 100 times. The performance is quite poor as the desired performance is approximately 0.001 or less. This is due to small number of training set. Thus the performance can be enhanced by increase the number of data set.

Figure 35 Network generation

Figure 36 Performance curve during training

Testing was conducted to ensure that the configurations are suitable for prediction. The graph of the performance is shown in Figure 27. As can be seen, the predicted output is lack in accuracy. This is due to the poor performance of training.

The neural network simply predicts the performance using the input of the testing set. This able the network to measure the error generated. The error is high (as can be seen in Figure 37) due to the lower number of iteration, which are 7. This is because the iteration terminates at $7^{\text {th }}$ iteration compared to the training set (100 iteration). The effect is due to failing of other sets input to converge which cause early termination.

Figure 37 Generated error

From this project, it had been determined that there is inconsistency between number of neuron and performance. Error is smaller when neuron number is increased. However, higher number of neuron may decrease the number of iteration to achieve the performance thus increasing the error. Generally when the curve is of decreasing nature due to the higher number of iteration, the convergence is higher, error is smaller and the offset to the desired error is smaller.

From the result obtained by prediction of test set, the network is capable of classifying the result with RMSE of 0.3816 , which is 38.16%. And a good modeling of neural network required the RMSE to be less than 5%. The problem in achieving the good modeling must be because of the performance of the input data and not enough data set in training the network.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

According to all the information that has been stated earlier, mammogram images have been enhanced through image processing technique using MATLAB. Opening morphological operation has been used to detect the calcification. From that, features have been extracted from binary image and the most significant features are used for the classification stage.

As the result, a pattern recognition system has been provided by using neural network. But due to the large error and poor performance, this system has not met the objective. The problem and recommendation to this error will be discussed further in the next section.

The accomplishment of this project could help medical field in detecting breast cancer.

5.2 Recommendation

As the project has not met the target, some possibilities of error might involve throughout project. These potential errors are due to human and system errors. However, the occurrence of these errors can be reduced by taking the pre-cautions steps, and the project can be enhanced by some of these recommendations below:
i. Further study on the detection of breast cancer should be done for the minimization of false positive and false negative. This can be done through research on various methods in detecting the abnormalities. For example, region growing algorithm (automated region of interest), image
tresholding, and various segmentation algorithm such as watershed algorithm.
ii. Since the system error is because of lack in source, increasing the number of case study (mammogram image) is necessary. But need to put into constraint that each case study must have their details record of the case for further use in neural network construction and development.
iii. In order to enhance the performance of input data in neural network, significant features that emphasize the difference between benign and malignant case are needed. As an example, D Betal et al [24] suggested to use numerical analysis of segmented microcalcification to distinguish between benign and malignant clusters by using shape analysis, cluster features analysis, and receiver operating characteristic (ROC) analysis. Some of the essential and valuable features for classification are texture feature, shape feature, and scalar area features [20].
iv. Finally, the project can be enhanced in many ways to provide a good pattern recognition system through a various stages and methods. The proper procedure must be consistent for all analysis performed. The strategy of training the network and research to improve the performance and error of neural network is needed.
REFERENCES
8. Moti Melloul and Leo Joskowicz; Segmentation of microcalcification in X-ray mammograms using entropy tresholding; The Hebrew
University of Jerusalem, Israel.
9. Armando Bazzani et al; Automatic detection of clustered microcalcifications in digital mammograms using an SMV classifier; University of
Bologna, Italy.
10. Wan Mimi Diyana W Zaki and Rosli Besar; Classification of Clustered Microcalcification using Fractal Analysis and Probabilistic Neural
Network; Multimedia University, Malaysia.
11. Abhijit S. Pandya, Robert B. Macy; Pattern Recognition with Neural Network in C++; CRC Book Published in Cooperation with IEEE Press.
12. Kenneth R.Castleman; Digital Image Processing; Prentice Hall; Upper Saddle River, NJ; 1996.
13. Nick Efford; Digital Image Processing-a practical introduction using Java; Addison-Wsley.
14. Rafael C. Gonzalez and Richard E. Woods; Digital Image Processing; Prentice Hall; Upper Saddle River, New Jersey; second edition, 2002 .
15. Khairul Nisak Md Hasan; Detection of Microcalcification using Mammograms; Final Year Project JUNE 2004, University Technology

Petronas.
 16. Fred S. A

 17. Piotr Wasilewski; Image Processing.18. Isaac N. Bankman et al, Segmentation Algorithms for Detecting Microcalcifications in Mammograms, IEEE Trans. on Info. Tech. in Biomedicine, Vol. 1, no. 2, JUNE 1997.
19. Hagan, Demuth, Beale, Neural Network Design, PWS Publishing Company, 1996.
paper, Opto-Electronics Review II (3), 227-235 (2003).
20. Milan Sonka, Vaclav Hlavac, and Roger Boyle, Image Processing, Analysis, and Machine Vision, second edition, PWS Publishing, 1999.
21. http://sprojects.mmi.mcgill.ca/mammography/masses.htm
22. V.R. Radhakrishnan and A.R Mohamed, 'Neural Network for the Identification and Control of Blast Furnace Hot Metal Quality', Journal of
23. D Betal et al, Segmentation and numerical analysis of microcalcifications on mammograms using mathematical morphology, The British

APPENDICES
APPENDIX A
STAGE OF BREAST CANCER

Stage	Description
STAGE 0	In Situ ("in place") disease in which the cancerous cells are in their original location within normal breast tissue. Known as either DCIS (ductoral carcinoma in situ) or LCIS (lobular carcinoma in situ) depending on the type of cells involved and the location, this is a pre-cancerous condition, and only a small percentage of DCIS tumors pregress to become invasive cancers. There is some controversy within the medical community on how to best treat DCIS.
STAGE I	Tumor less than 2 cm in diameter with no spread beyond the breast
STAGE IIA	Tumor 2 to 5 cm in size without spread to axillary (armpit) lymph nodes or tumor less than 2 cm in size with spread to axillary lymph nodes
STAGE IIB	Tumor greater than 5 cm in size without spread to axillary lymph nodes or tumor 2 to 5 cm in size with spread to axillary lymph nodes
STAGE IIIA	Tumor smaller than 5 cm in size with spread to axillary lymph nodes which are attached to each other or to other structures, or tumor larger than 5 cm in size with spread to axillary lymph nodes
STAGE IIIB	The tumor has penetrated outside the breast to the skin of the breast or of the chest wall or has spread to lymph nodes inside the chest wall along the sternum
STAGE IV	A tumor of any size with spread beyond the region of the breast and chest wall, such as to liver, bone, or lungs

APPENDIX B
PROJECT TIMELINE
Milestone for the First Semester of Final Year Project

Milestone
Milestone for the Second Semester of Final Year Project

No.	Detail/ Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Project Work Continue														
1	- Finalize preprocessing - Finalize extracting feature - selection of neural network method														
2	Submission of Progress Report 1				\bullet										
	Project Work Continue														
3	- design network - train network														
4	Submission of Progress Report 2								-						
	Project Work Continue														
5	- test network - finalize pattern recognition														
6	Exhibition (Pre-EDX)												-		
7	Submission of Draft Report													\bullet	
8	Submission of Final Report (soft cover) - study week														
9	Submission of Technical Report-13/5														
10	Oral Presentation-6/6-8/6														
11	Submission of Project Dissertation - 24/6														

APPENDIX C PROGRAM CODING

Preprocessing:
\% Read image file
\% Select region of interest (crop)
$B=$ imresize(A, 0.5 , 'bicubic', 3); $\%$ Resize the image to 75% of the

\% cropped image using

\% bicubic interpolation method by
\% 3-by-3 lowpass filter
figure,imshow(B),title('original')
figure,imhist(B),title('original')
\% Create Gaussian lowpass filter
\% Perform Gaussian lowpass filter $\%$ to image B
figure, imshow(A2),title('Gaussian lowpass filter')
$\mathrm{L}=$ medfilt2(A2,[3 3]);
\% Apply median filter using
$\%$ filtering size of 3-by-3

\% neighborhood

figure,imshow(L),title('Median filter')
$\mathrm{p}=$ fspecial('unsharp') $\quad \%$
> \% Returns 3-by-3 unsharp contrast
$\%$ high_in map to values between low_out $\%$ and high_out
\% Create a morphological structuring $\%$ element of disk-shape with radius 12
$\%$ Perform top-hat filter to the image
figure,imshow(J),title('top-hat filtering')
$\mathrm{K}=$ imadjust $(\mathrm{J}$, stretchlim(J), $[\mathrm{I}) ; \quad \%$ Increase the contrast of the image

figure,imhist(K)

Morphological operation:

\% threshold the image (convert the

$\%$ intensity image to binary image)

figure,imshow(BW), title('threshold image')

BWerode=imerode(BW,seD); \% Perform erosion to the binary image figure,imshow(BWerode), title('segmented image')
\% Create a flat, linear structuring
$\%$ element, where 3 is the length,
$\%$ with 90 and 0 degree angle (in
$\%$ degrees) of the line respectively,
$\%$ as measured in a counterclockwise
$\%$ direction from the horizontal axis se $90=$ strel('line' 3,90),
se0=strel('line', 3,0);
BWsdil=imdilate(BWerode,[se90 se0]);\% perform dilation to the eroded image
figure,imshow(BWsdil),title('dilate gradient mask')
BW2 $=$ bwperim(BWsdil); $\quad \%$ find perimeter pixels in the dilated
$\%$ image (edge detection)
figure,imshow(BW2),title('perimeter determination')
Segout=B;
Segout(BW2)=255;
figure, imshow(Segout),title('outlined image')
Feature extraction:
[labeled,numObjects]=bwlabel(BWsdil,4);
numObjects $\quad \%$ determine number of object
data=regionprops(labeled,'all')
data $2=$ regionprops(labeled,'all')
sumArea $=$ sum([data2.Area])
$\%$ total perimeter
averagePerimeter=sum([data2.Area] $) /$ numObjects $\%$ average perimeter

$$
\text { for } \mathrm{a}=1 \text { :numObjects }
$$

circularity $=\left(4^{*} \mathrm{pi}^{*}\left([\right.\right.$ data(a).Area]) $) /\left(\right.$ averagePerimeter^$\left.{ }^{\wedge}\right)$

믈

averageArea $=$ sum([data.Area])/numObjects $\%$ calculating average area
stdConvexArea $=$ std2([data.ConvexArea]) \% measure convex area
averageEccentricity=sum([data.Eccentricity])/numObjects \% measure average eccentricity
stdEccentricity=std2([data.Eccentricity])
averageOrientation=mean2([data.Orientation]) \%measure average orientation
stdOrientation=std2([data.Orientation])
averageSolidity=mean2([data.Solidity]) \% measure average solidity
averageCircularity $=\left(4^{*} \mathrm{pi}^{*}(\right.$ averageArea) $) /($ averagePerimeter^ 2$) \%$ measure average circularity
Result of feature extraction

Samples/features	numObjects	meanPerimeter	meanArea	meanEccentricity	meanOrientation	meanSolidity	meanCircularity
Mammo1	37	19.514	37.1892	0.6158	36.4627	0.9356	1.2273
	75	16.667	29.9467	0.4903	48.7045	0.9559	1.3548
Mammo2	(L)71	18.085	34.9718	0.5516	49.7319	0.9527	1.3437
	(R)67	22.761	46.4925	0.6219	48.5913	0.9313	1.1277
Mammo3	(L)49	23.918	47.2857	0.5425	43.3759	0.9401	1.0387
	(R)68	16.971	30.25	0.5544	43.9824	0.9556	1.3199
Mamm04	(L)77	24.429	63.7403	0.5702	41.8898	0.9416	1.3422
	(R)88	22.171	47.25	0.5653	50.5949	0.9368	1.208
Mamm05	(L)108	20.361	46.9722	0.5354	41.6824	0.9494	1.4238
	(R)106	18.585	40.717	0.4626	39.4174	0.9594	1.4814
Mamm06	(L)86	21	47.2093	0.5398	42.5276	0.9484	1.3452
	(R)174	17.012	32.5977	0.5249	42.7168	0.961	1.4155
Mamm07	(L)77	20.286	40.6753	0.548	42.3019	0.9397	1.2421
	(R)108	15.444	27.3333	0.491	32.4537	0.9636	1.44
Mamm08	(L)139	12.273	18.1223	0.3683	40.34	0.9771	1.5118

	(R)153	11.294	15.6667	0.3493	37.8013	0.9855	1.5434
Mammo9	(L)135	21.378	42.6148	0.6308	34.5104	0.9419	1.1718
	(R)133	20.459	41.2256	0.5755	35.2239	0.9424	1.2377
Mammo10	(L)80	30.9	93.425	0.5802	50.1844	0.935	1.2296
	(R)112	23.098	58.0625	0.5392	45.4232	0.9496	1.3676
Mammo11	(L)69	22.71	51.9275	0.5168	42.1078	0.9425	1.2652
	(R)72	21.792	50.75	0.47	43.607	0.952	1.343
Mammo12	(L)49	23.143	51.6939	0.5857	36.9675	0.9218	1.2129
	(R)41	17.537	30.9756	0.5051	36.4809	0.945	1.2657
Mammo13	78	17.769	36.1154	0.509	43.4528	0.9587	1.4374
	85	19.106	40.1882	0.5372	46.5265	0.954	1.3835
Mammo14	178	15.865	28.3483	0.5015	40.4568	0.9615	1.4153
	127	18.016	37.6063	0.5242	42.501	0.9622	1.456
Mammo15	52	23.596	51.4038	0.5823	45.9819	0.9205	1.1602
	70	18.043	35.6286	0.5112	45.5309	0.9456	1.3753
Mammo16	94	18.128	40.7979	0.4825	38.6445	0.9577	1.5601
	47	21.596	55.1915	0.5011	48.1825	0.9562	1.4871
Mammo17	72	19.139	40.3056	0.5768	36.4275	0.9558	1.3827
	63	19.333	41.7302	0.5012	43.0206	0.9592	1.403
Mammo18	216	11.546	16.9676	0.3349	40.5839	0.9894	1.5994
	213	11.77	16.6432	0.3523	41.559	0.9819	1.5097
Mammo19	74	19.919	39.9459	0.4885	38.6698	0.9421	1.2652
	100	15.02	25.13	0.511	31.5662	0.9619	1.3998

	53	16.83	38.175	0.5895	51.4452	0.937	1.2267
Mammo21	73	31.548	110.658	0.6632	53.4332	0.9432	1.3972
	110	25.082	57.3455	0.6553	37.9914	0.9393	1.1455
Mammo22	60	21.583	61.1167	0.5413	50.3464	0.9634	1.6487
	73	20	40.0548	0.5534	43.7164	0.9531	1.2584
Mammo23	148	16.595	29.3919	0.5285	38.5567	0.9569	1.3412
	103	27.767	57.9903	0.6037	35.7579	0.9151	0.9452
Mammo24	134	20.522		0.5543	41.3987	0.953	1.3562
	139	18.086	40.8705	0.5495	37.143	0.9591	1.5701
Mammo25	157	16.045	28.7134	0.4877	40.5464	0.9592	1.4016
	90	20.478	40.6333	0.5481	37.502	0.9426	1.2177
Mammo26	144	17.542	34.7361	0.4437	37.934	0.9565	1.4186
	105	18.381	36.2952	0.5024	34.9052	0.9549	1.35
Mammo27	134	18.993	37.7388	0.521	40.6209	0.9503	1.3147
	96	21.125	50.0729	0.5158	35.1135	0.9524	1.41
Mammo28	70	18.1	34.7429	0.5398	49.1623	0.9593	1.3327
	68	20.941	53.6765	0.5491	37.2929	0.9524	1.5381
Mammo29	65	32.615	93.2769	0.6127	49.4793	0.915	1.1019
	49	33.898	124.816	0.5555	49.8664	0.9352	1.1365
Mammo30	35	37.257	100.514	0.6233	49.597	0.9203	0.91
	63	23.016	50.3651	0.5009	41.9259	0.9407	1.1948
Mammo31	88	18.909	43.3523	0.5112	43.4307	0.9614	1.5236
	77	20.338	45.2078	0.5025	38.0579	0.9444	1.3735
Mammo32	98	18.245	35.7449	0.5131	40.199	0.9524	1.3493

	174	13.851	21.7816	0.4575	38.4752	0.9698	1.4268
Mammo33	57	24.316	61.8947	0.5916	50.8033	0.9451	1.3155
	50	26.88	94.68	0.4349	39.2997	0.9385	1.6467
Mammo34	49	19.082	37.2245	0.5427	48.0256	0.9491	1.2847
	49	17.918	37.6939	0.4941	40.8166	0.9612	1.4753
Mammo35	38	18.921	37.8421	0.498	34.6626	0.9466	1.3283
	60	18.617	39.6	0.4706	35.1979	0.9526	1.4358
Mammo36	77	14.883	27.6753	0.4996	43.3572	0.9735	1.5701
	60	18.15	39.2167	0.5132	52.1013	0.9606	1.496
Mammo37	129	19.574	41.6202	0.5264	35.9957	0.9558	1.3651
	129	19.147	38.9535	0.5629	36.2134	0.9526	1.3352
Mammo38	60	20.2	43.2	0.5256	40.9849	0.9396	1.3304
	72	18.75	39.625	0.482	40.311	0.9547	1.4164
Mammo39	82	16.915	30.4634	0.5364	42.2533	0.956	1.338
	68	21.588	46.9853	0.5546	46.3599	0.942	1.2669
Mammo40	94	19.628	44.1277	0.524	43.7941	0.9623	1.4394
	91	21.429	47.2198	0.6102	44.1867	0.9485	1.2923
Mammo41	21	36.429	117.286	0.531	59.1507	0.9472	1.1106
	40	24.35	61.875	0.5807	559068	0.9474	1.3114
Mammo42	137	15.569	28.562	0.4942	39.7061	0.973	1.4807
	133	16.361	30.0451	0.5196	44.3736	0.9622	1.4105
Mammo43	62	23.855	59.7581	0.5725	40.661	0.9427	1.3196
	82	23.146	48.9024	0.5764	45.5499	0.9524	1.147

	59	20.102	54.0169	0.3529	43.3191	0.9706	1.6799
Mammo45	44	30.296	82.7955	0.6855	43.1782	0.8974	1.1336
	49	22.531	50.5306	0.5885	35.4547	0.9347	1.2509
Mammo46	57	17.404	33.2632	0.4315	45.2226	0.9356	1.3801
	61	16.393	30.9016	0.4472	43.9282	0.9559	1.4449
Mammo47	39	21.718	42.5641	0.3653	49.3794	0.9527	1.134
	62	18.048	34.9839	0.4787	41.9559	0.9313	1.3496
Mammo48	110	19.327	40.1364	0.5537	50.6007	0.9401	1.3502
	92	20.196	40.163	0.5821	52.5643	0.9556	1.2374
Mammo49	63	16.333	30.8889	0.4565	46.2244	0.9416	1.455
	87	16.345	31.023	0.4753	49.4027	0.9368	1.4592
Mammo50	45	17.467	32.8889	0.513	47.9979	0.9494	1.3547
	55	19.146	38.5091	0.5455	50.9736	0.9594	0.3202
Mammo51	59	16.119	27.4746	0.4664	35.8841	0.9484	1.3289
	91	18.868	40.3077	0.5157	36.3498	0.961	1.4228
Mammo52	81	23	52.7284	0.5527	43.0157	0.9397	1.2526
	116	18.328	36.069	0.5221	39.6452	0.9636	1.3494
Mammo53	100	20.93	45.71	0.5476	47.6376	0.9771	1.3112
	33	36.182	181.939	0.5383	48.4154	0.9855	1.7465
Mammo54	41	15.146	25.5122	0.5612	35.8244	0.9419	1.3975
	164	14.305	24.9268	0.4289	34.3457	0.9424	1.5308
Mammo55	133	16.188	29.9398	0.474	47.4555	0.935	1.4357
	150	16.447	27.6467	0.5171	50.0849	0.9496	1.2844
Mammo56	103	19.252	38.1748	0.5174	48.6881	0.9425	1.2942

$\stackrel{m}{\underset{\sim}{c}}$	$\left\lvert\, \begin{array}{ll} \mathbf{~} & 0 \\ \underset{\sim}{c} & 0 \\ \underset{\sim}{c} \\ \hline \end{array}\right.$		$$	$\left\|\begin{array}{cc} \overrightarrow{7} & 8 \\ \underset{\sim}{n} & \underset{\sim}{7} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{array}{cc} \underset{\sim}{\sim} \\ \underset{\sim}{\sim} \\ \underset{\sim}{c} \end{array}$	$\left\|\begin{array}{cc} \stackrel{\sim}{0} & \infty \\ \underset{\sim}{c} \\ \stackrel{\circ}{\circ} \end{array}\right\|$	$\left\|\begin{array}{cc} \underset{\sim}{2} \\ \underset{\sim}{m} & \stackrel{o}{c} \end{array}\right\|$	$\left.\begin{array}{ll} \underset{\sim}{n} & 9 \\ \sim & 9 \end{array} \right\rvert\,$	$$	$\begin{array}{cc} \stackrel{n}{\infty} & \underset{\sim}{7} \\ \underset{\sim}{7} \end{array}$	－
$\begin{aligned} & \mathrm{N} \\ & \widehat{\alpha} \end{aligned}$	$\begin{array}{cc} \infty \\ \underset{N}{1} & \stackrel{3}{8} \\ - & 0 \end{array}$		$\left.\begin{array}{cc} n & I_{1} \\ 0 & 0 \\ \vdots & 0 \\ 0 & 0 \end{array} \right\rvert\,$	$\left.\begin{array}{cc} n & 0 \\ 0 & \stackrel{0}{6} \\ 0 & \underset{0}{0} \\ 0 & 0 \end{array} \right\rvert\,$	$\begin{array}{ll} \hat{N} & \hat{0} \\ \hat{0} \\ 0 & 0 \\ \hline \end{array}$	$\left\|\begin{array}{ll} \infty & 2 \\ \hat{n} & 2 \\ \delta & 0 \\ 0 & 0 \end{array}\right\|$	$\left\|\begin{array}{ll} \hline & 9 \\ 0 & 9 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$	$\left\|\begin{array}{ll} \vec{y} & 9 \\ \frac{y}{0} & 0 \\ 0 & 0 \end{array}\right\|$	$\begin{array}{ll} \overrightarrow{7} & \hat{o} \\ \hat{O} \\ 0 & 0 \end{array}$	$$	
$\begin{aligned} & \underset{\Delta}{\Delta} \\ & \stackrel{\infty}{\infty} \\ & \underset{子}{2} \end{aligned}$		$\left.\begin{array}{cc} \mathbf{O}_{1} & \underset{N}{N} \\ 0 & \underset{\infty}{\infty} \\ \underset{m}{\infty} & \infty \\ \infty \end{array} \right\rvert\,$	$\begin{array}{ll} \vec{N} & \vec{N} \\ \text { N } \\ \text { הे } & 6 \end{array}$			$\left\|\begin{array}{cc} n & \infty \\ \underset{\sim}{c} & 0 \\ \underset{\sim}{c} & \underset{\sim}{c} \\ \hline \end{array}\right\|$		$\left\|\begin{array}{cc} \overbrace{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ m & 0 \\ 0 \end{array}\right\|$			$\begin{array}{ll} \kappa & \hat{0} \\ \infty & 0 \\ \underset{\sim}{\infty} & \underset{\sim}{2} \end{array}$
$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{array}{ll} \infty_{0} & + \\ 0 \\ 0 \\ 0 \\ 0 & j \end{array} \right\rvert\,$	$\begin{array}{ll} i & 0 \\ \hat{n} \\ 0 & 0 \\ 0 & 0 \end{array}$	$\left\|\begin{array}{cc} \infty & \overrightarrow{0} \\ \infty \\ \underset{\sim}{6} & \hat{i n} \\ 0 & 0 \end{array}\right\|$	$\begin{array}{ll} 0 & \overline{0} \\ 0 \\ & 0 \\ 0 & 0 \\ \hline \end{array}$		$\left\|\begin{array}{ll} \pm & 7 \\ n & \tilde{f} \\ 0 & f \end{array}\right\|$		$\begin{array}{cc} \infty \\ \alpha_{j}^{\infty} \\ \underset{0}{2} & 0 \\ \hline \end{array}$	$\left\|\begin{array}{ll} \infty & \infty \\ 0 & \infty \\ 0 & 6 \\ 0 & 0 \end{array}\right\|$	$\begin{array}{ll} 0 & 0 \\ \stackrel{0}{j} & \stackrel{0}{亏} \\ 0 & 0 \\ 0 \end{array}$	$\begin{array}{ll} \overrightarrow{8} & \tilde{y} \\ \dot{y} & \tilde{y} \\ 0 \end{array}$
$\begin{gathered} \tilde{\sim} \\ \underset{\sim}{\tilde{m}} \end{gathered}$						$$		$\begin{array}{ll} \bar{\infty} & \infty \\ \stackrel{0}{n} \\ \underset{\sim}{n} & \stackrel{n}{n} \end{array}$		$\begin{array}{ll} \pm & N \\ \infty & \hat{3} \\ \infty & + \\ & \underset{\sim}{n} \end{array}$	
$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{array}{ll} \overline{\tilde{y}} & 0 \\ \infty & 0 \\ \underset{\sim}{\infty} & \infty \end{array}$	$\left.\begin{array}{cc} \pm & \dot{\theta} \\ \underset{\sim}{\infty} & \underset{\sim}{\infty} \\ \end{array} \right\rvert\,$	$\begin{array}{ll} n & \boxed{a} \\ \alpha & 0 \\ - & 0 \end{array}$	$\begin{array}{ll} \infty & \underset{\sim}{c} \\ \underset{\sim}{\sim} & \underset{\sim}{n} \end{array}$	$\left\|\begin{array}{cc} \hat{0} & \mathfrak{z} \\ \underset{\sim}{\infty} & \underset{\sim}{2} \end{array}\right\|$		$\begin{array}{ll} \tilde{n}_{1} & \infty \\ & \ldots \\ & = \end{array}$			$\begin{array}{ll} \stackrel{N}{N} & 0 \\ \hat{0} & 0 \\ 0 & 0 \end{array}$	$$
\bigcirc	ก તู	in	－${ }_{\sim}$	\cdots	令	$\stackrel{\sim}{0} \stackrel{\infty}{\sim}$	$\equiv \underset{\sim}{3}$	ह⿵⿰丿⿺⿻⿻一㇂㇒丶𠃌灬丶	烒	아	\cdots
			$\begin{aligned} & \text { î } \\ & \text { on } \\ & \text { E } \\ & \text { 范 } \end{aligned}$								墍

Result of preliminary data processing
Random number generation and actual output:
orientation
 43.9824
43.3759

	N 气 E E				

0.3493	37.8013	1.5434	15.6667	6.640828
0.3683	40.34	1.5118	18.1223	30.76012
0.5755	35.2239	1.2377	41.2256	55.65893
0.6308	34.5104	1.1718	42.6148	18.43611
0.5392	45.4232	1.3676	58.0625	69.44527
0.5802	50.1844	1.2296	93.425	91.57048
0.47	43.607	1.343	50.75	64.70479
0.5168	42.1078	1.2652	51.9275	64.43892
0.5051	36.4809	1.2657	30.9756	46.35624
0.5857	36.9675	1.2129	51.6939	1.151067
0.509	43.4528	1.4374	36.1154	61.901
0.5372	46.5265	1.3835	40.1882	85.42811
0.5015	40.4568	1.4153	28.3483	97.44395
0.5242	42.501	1.456	37.6063	40.39213
0.5823	45.9819	1.1602	51.4038	39.75161
0.5112	45.5309	1.3753	35.6286	23.89868
0.4825	38.6445	1.5601	40.7979	90.70336
0.5011	43.0206	1.4871	55.1915	83.28599
0.5768	36.4275	1.3827	40.3056	11.84658

mammo8
mammo9
mammo10
mammo11
mammo12
mammo13
mammo14
mammo15
mammo16
mammo17

$$
\begin{aligned}
& \begin{array}{cc}
41.7302 & 90.8786 \\
16.9676 & 73.1887 \\
16.6432 & 76.89889 \\
39.9459 & 20.82598 \\
25.13 & 61.43873 \\
35.5778 & 70.21268 \\
38.175 & 62.12458 \\
110.658 & 38.98419 \\
57.3455 & 80.2284 \\
61.1167 & 7.728507 \\
40.0548 & 22.93487 \\
29.3919 & 86.43422 \\
57.9903 & 22.36686 \\
45.4552 & 8.477798 \\
40.8705 & 99.31114 \\
\hline 28.7134 & 48.7431 \\
40.6333 & 74.97732 \\
34.7361 & 65.62328 \\
36.2952 & 23.64791
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1.5994 \\
& \text { 会 } \\
& \stackrel{N}{N} \\
& \stackrel{\infty}{\infty} \\
& \stackrel{\stackrel{\circ}{0}}{\stackrel{\rightharpoonup}{c}} \\
& \begin{array}{c}
\stackrel{N}{N} \\
\stackrel{N}{N}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\stackrel{2}{8}}{\stackrel{i}{5}} \\
& \stackrel{+}{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& 1.4016
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
41.559 \\
40.5839
\end{array} \\
& \begin{array}{l}
09 \\
0 \\
0 \\
0 \\
\text { O }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\infty \\
\hline \\
\infty \\
\infty \\
\infty
\end{array} \\
& \text { N }
\end{aligned}
$$

$\begin{aligned} & \stackrel{7}{8} \\ & \stackrel{8}{8} \\ & \stackrel{N}{8}\end{aligned}$
$\stackrel{n}{\stackrel{n}{n}}$
41.3987
37.502
40.5464
mammo18
mammo19
mammo20
mammo21
mammo22
mammo23
mammo24
mammo25
mammo26

0.521	40.6209	1.3147	37.7388	94.15674
0.5158	37.2929	1.41	50.0729	3.979034
0.5398	49.1623	1.3327	34.7429	94.67641
0.5491	49.8664	1.5381	53.6765	56.90976
0.6127	49.4793	1.1019	93.2769	36.27103
0.5555	41.9259	1.365	124.816	30.4731
0.6233	49.597	0.91	100.514	26.068
0.5009	38.0579	1.1948	50.3651	36.97198
0.5112	43.4307	1.5236	43.3523	65.87707
0.5025	38.4752	1.3735	45.2078	75.79913
0.5131	40.199	1.3493	35.7449	50.17823
0.4575	38.4752	1.4268	21.7816	73.95007
0.5916	50.8033	1.3155	61.8947	36.36772
0.4349	39.2997	1.6467	94.68	78.02887
0.5427	48.0256	1.2847	37.2245	26.43962
0.4941	40.8166	1.4753	37.6939	34.06244
0.498	34.6626	1.3283	37.8421	84.99908
0.4706	35.1979	1.4358	39.6	71.1644
0.4996	43.3572	1.5701	27.6753	50.14197

mammo27
mammo28
mammo29
mammo30
mammo31
mammo32
mammo33
mammo34
mammo35
mammo36

0.5132	52.1013	1.496	39.2167	79.1377
0.5264	35.9957	1.3651	41.6202	16.7774
0.5629	36.2134	1.3352	38.9535	16.23054
0.5256	40.9849	1.3304	43.2	80.455
0.482	40.311	1.4164	39.625	62.34513
0.5364	42.2533	1.338	30.4634	40.57945
0.5546	46.3599	1.2669	46.9853	30.9263
0.524	43.7941	1.4394	44.1277	55.93689
0.6102	44.1867	1.2923	47.2198	35.61843
0.531	59.1507	1.1106	117.286	51.32633
0.5807	55.4068	1.3114	61.875	30.83868
0.4942	39.7061	1.4807	28.562	92.20194
0.5196	44.3736	1.4105	30.0451	15.48125
0.5725	40.661	1.3196	59.7581	47.82461
0.5764	45.5499	1.147	48.9024	22.88049
0.5752	43.7492	1.4149	77.2609	9.988464
0.3529	43.3191	1.6799	54.0169	74.72958
0.6855	43.1782	1.1336	82.7955	68.14307
0.5885	35.4547	1.2509	50.5306	64.03406

			$\begin{aligned} & \text { O } \\ & \text { O } \\ & \text { E } \\ & \text { E } \\ & \underline{\text { In }} \end{aligned}$	耳 昂 E 要	$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { E } \\ & E \\ & \text { E } \end{aligned}$		$\begin{aligned} & \text { U } \\ & \text { O } \\ & \text { E } \\ & \text { E } \\ & \text { E } \end{aligned}$	\％ O E E E

Segmentation of data：

$\begin{array}{lll}55.65893 & 8.477798 & 46.35624\end{array}$

 $6 \angle \forall 0 L \forall 9$ | \circ |
| :--- |
| |
| |
| |
| 0 |

 \bar{c}
$\stackrel{0}{n}$
$\underset{m}{0}$ 91.14145 85.52177 F
0
0
0
\dot{G}
 ∞
N
N
0

0 ع9Z6 0 。 48.7431 92.20194 | \pm |
| :--- |
| 0 |
| ∞ |
| ∞ |
| ∞ |
| ∞ |

 3.979034 $\stackrel{\rightharpoonup}{-}$
$\stackrel{y}{+}$
$\dot{\phi}$
0
 69.44527 91.57048

64.43892 46.35624 1.151067 61.901 85.42811 97.44395 40.39213 39.75161 23.89868 23.89868
90.70336 83.28599 11.84658 90.8786
73.1887

\qquad 62.12458
38.98419
80.2284
7.728507 22.93487
86.43422

99.31114
48.7431 74.97732 \qquad
65.62328
23.64791 94.15674 3.979034
ANOVA test:
Anova: Single Factor

SUMMARY				
Groups	Count	Sum	Average	Variance
all data	90	4615.968	51.28853	768.9651
training	39	1805.331	46.29055	827.0245
validation	38	2124.874	55.91773	680.459
testing	13	676.2973	52.02287	989.4755

ANOVA

Source of Variation	SS	df	MS	F	P-value	Fcrit	
Between							
Groups	1795.045	3	598.3484	0.769155	0.51272	2.655939	
Within Groups	136915.5	176	777.9291				
Total	138710.6	179					

Cropped area from mammo20-1

numObjects $=1$
sumArea $=442$
meanEccentricity
meanEccentricity $=0.1412$ meanOrientation $=17.6378$
meanSondity $=0.9736$
meanEquivDiameter $=23.7228$
meanEquivDiameter $=23.7228$
Perimeter:
\gg circularity $=\left(4^{*} \mathrm{pi}^{*}([\right.$ meanArea $\left.])\right) /\left(\right.$ meanperimeter $\left.{ }^{\wedge} 2\right)=1.2012$
\gg circularity $=\left(\right.$ meanperimeter $\left.{ }^{\wedge} 2\right) /\left(4^{*} \mathrm{pi}^{*}([\right.$ meanArea $\left.])\right)=0.8325$
meanEccentricity $=0.7906$
meanOrientation $=-75.7992$
meanEquivDiameter $=42.0236$
Perimeter:
sumArea $=173$

meanperimeter $=173$

\gg circularity $=\left(4^{*} \mathrm{pi}^{*}([\right.$ meanArea $\left.])\right) /($ meanperimeter $\wedge 2)=0.5824$
\gg circularity $=\left(\right.$ meanperimeter $\left.{ }^{\wedge}\right) /\left(4^{*} \mathrm{pi}^{*}([\right.$ meanArea $\left.])\right)=1.7171$

sumArea $=1269$
\gg circularity $=\left(4^{*} \mathrm{pi}^{*}([\right.$ meanArea $\left.])\right) /\left(\right.$ meanperimeter $\left.{ }^{\wedge} 2\right)=1.0640$
\gg circularity $=($ meanperimeter 2$) /\left(4^{*} \mathrm{pi}^{*}([\right.$ meanArea $])=0.9398$
meanArea $=84.8000$
meanEccentricity $=0.6332$ meanOrientation $=35.6147$
meanSolidity $=0.9578$
meanEquivDiameter $=9.8129$

Perimeter:

 =ame

\gg circularity $=\left(4^{*} \mathrm{pi}^{*}([\right.$ meanArea $\left.])\right) /\left(\right.$ meanperimeter $\left.{ }^{\wedge} 2\right)=1.2162$
\gg circularity $=($ meanperimeter $\wedge 2) /\left(4^{*} \mathrm{pi}^{*}([\right.$ meanArea $\left.])\right)=0.8222$
APPENDIX F
SAMPLE DETAILS

Samples	Description	Further evaluation needed?
Mammo1	- asyminetrical density lesion (R)	yes
Mammo2	- rim/egg-shelled calcification (L)	no
Mammo3	- vascular calcification (R) - vascular calcification (L)	no
Mamimo4	- asymmetrical density lesion (R)	yes
Mammo5	- architectural distortion lesions (L)	yes
Mammo6	-round/oval lesions with obscured margins (L)	yes
Mammo 7	- spherical/lucent calcification (R) - round and spherical/lucent calcification (L)	no
Mammo8	- round/oval lesions with speculated margins (L)	yes
Mammo9	- round calcification (R) - round calcification (L)	no
Mammot0	- round/oval lesions with circumscribed (R)	yes
Mammol1	- spherical//ucent calcification (R) - spherical/lucent and rim/egg-shelled calcification (L)	no
Mammo12	No suspicious lesion (normal)	no
Mammo13	- Pleomorphic/heterogeneous calcifications (R)	yes
Mammo14	- Asymmetrical density lesions (L)	yes
Mammo15	- irregular lesions with speculated margins and pleomorphic/heterogeneous calcifications (R)	yes
Mammo16	- round/oval lesions with circumscribed margins (R)	yes
Mamino17	- spherical/lucent calcifications (R) - round/oval lesions with speculated margins and spherical/lucent calcifications (L)	yes
Mammo18	- round and punctuate calcifications (R) - round and punctuate calcifications (L)	no
Mammo19	- round/oval lesions with ill-defined margins (L)	yes

Mammo20	- vascular calcifications (R) - vascular calcifications and pleomorphic/heterogeneous calcifications (L)	yes
Mammo21	- Rod-shaped calcifications (R) - Rod-shaped calcifications (L)	no
Mammo22	- round calcifications (R) - round/oval lesion with obscured margins and spherical/lucent calcification (L)	yes
Mammo23	- pleomorphic/heterogeneous and fine linear branching calcifications (R)	yes
Mammo24	- irregular lesions with obscured margins (R)	yes
Mammo25	no suspicious lesion (normal)	no
Mammo26	- round/oval lesions with circumscribed margins (R) - irregular lesions with speculated margins	yes
Mammo27	- vascular calcifications (R) - asymmetrical density lesions and vascular calcifications (L)	yes
Mammo28	no suspicious lesion (normal)	no
Mammo29	- Round/oval lesions with circumscribed margins and coarse/popcorn calcifications (R) - Round/oval lesions with circumscribed margins (L)	yes
Mammo30	- vascular calcifications (R) - vascular calcifications (L)	no
Mammo31	no suspicious lesion (normal)	no
Mammo32	- punctuate and indistinct/amorphous calcifications (L)	yes
Mammo33	- rim/egg-shelled calcification (R) - rim/egg-shelled calcification (L)	no
Mammo34	- Round/oval lesions with circumscribed margins (R) - Round/oval lesions with circumscribed margins (L)	yes
Mammo35	- pleomorphic/heterogeneous calcifications (L)	yes
Mamme36	- round/oval lesions with circumscribed margins (L)	no
Mammo37	- irregular lesions with obscured margins (L)	yes
Mammo38	- round/oval lesions with circumscribed margins and round calcifications (R) - round/oval and irregular lesions with circumscribed and speculated margins (L)	yes
Mammo39	No suspicious lesion (normal)	no
Mammo40	- asymmetric density and pleomorphic/heterogeneous calcification (R)	yes
Mammo41	- rod-shaped and round calcification (R) - rod-shaped and round calcification (L)	no

Mammo42	- spherical/lucent calcification (R) - spherical/lucent calcification (L)	no
Mammo43	- asymmetrical density lesions (L)	yes
Mammo44	-round/oval and irregular lesions with circumscribed (R)	no
Mammo45	- dystrophic calcifications (R) - dystrophic calcifications (L)	no
Mamm046	Bilateral calcification	benign
Mammo47	Large dense calcification (R)	benign
Mammo48	Calcification (R \& L)	benign
Mammo49	Scattered small calcifications	benign
Mammo50	Microcalcification (R)	
Mammo51	- auxiliary lymph nodes (R) - small round calcification (L)	benign
Mammo52	Bilateral dense breast	
Mammo53	Popcorn calcified lesion (L)	
Mammo54	normal	no
Mammos5	Mass (R)	no
Mammo56	Dense breast	no
Mammos7	Normal	no
Mammo58	Normal	no
Mammo59	- Coarse calcification (R) - irregular density (L)	
Mammo60	Irregular shape density and small breast cyst	
Mammo61	Heterogeneous dense breast and small cyst (R \& L)	
Mammo62	- large density lesion/lesion/calcification (R) - suspicious lesion (L)	
Mammo63	Macrocalcification and thickening	
Mammo64	Coarse and small calcification (R)	benign
Mammo65	Calcification	benign
Mamm066	Dense breast cyst	
Mammo67	Coarse calcification	benign

