APPLICATION OF BIFURCATION THEORY TO CURRENT MODE CONTROLLED PARALLEL-CONNECTED BOOST DC-DC CONVERTERS

By
ISLAM ISGENDEROV

PROJECT DISSERTATION

Submitted to the Electrical \& Electronics Engineering Programme in Partial Fulfillment of the Requirements for the Degree
Bachelor of Engineering (Hons) (Electrical \& Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar 31750 Tronoh

Perak Darul Ridzuan
© Copyright 2006
by
ISLAM ISGENDEROV, 2006

Certification of Approval

APPLICATION OF BIFURCATION THEORY TO CURRENT MODE CONTROLLED PARALLEL-CONNECTED BOOST DC-DC CONVERTERS

by

Islam Isgenderov

A project dissertation submitted to the
Electrical \& Electronics Engineering Programme
Universiti Teknologi PETRONAS in partial
fulfillment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL \& ELECTRONICS ENGINEERING)

Approved by,

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

Certification of Originality

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgments, and that the original work contained herein have not been undertaken or done by unspecified sources or persons

ISLAM ISGENDEROV

Abstract

This project is to design a circuit which will guarantee stable operation at switching frequencies, and any quasi-periodic or chaotic operation is regarded as being undesirable and should be avoided. This project focuses in particular on the application of bifurcation theory to parallel-input / parallel-output two-module current-programmed DC-DC converters. Besides, this project describes the operation of Current Mode Controlled Parallel-Connected Boost DC-DC Converters and basically defines chaos, bifurcation and quasi-periodic distortion of the circuit by varying the reference current and comparing it with inductor output current. Within specific ranges of reference current the circuit operates without any distortion. The design includes the simulation of any bifurcation within the intended operation range by using PSpice, Multisim and EWB software. The inductor current output waveforms obtained and compared at different levels of reference currents. There are few ways to improve the output waveforms such as connecting freewheeling diode with parallel to inductor, using combination of triple input/triple output Current Mode Controlled converter or just using parallel input/series output configuration. Parallel-input / paralleloutput are the most common configuration that can be used in current mode control DC-DC converters. Simulation and calculation results shows that capacitor voltage ripple factor reduced from 30% to 3% (actual) and output current ripple from 20% to 3%. Improvement in this type of converter will open up new applications in datacommunication, telecommunication, power-supply in PC and inside the notebook, industrial automation and so forth. The core of the project work focuses on simulating the entire process and later building the prototype.

TABLE OF CONTENTS

LIST OF FIGURES iv
LIST OF TABLES v
LIST OF EQUATIONS vi
ABBREVIATION AND NOMENCLATURE. vii
CHAPTER 1 INTRODUCTION 1
1.2 Problem Statement 2
1.3 Objectives and Scope of Study 2
CHAPTER 2 LITERATURE REVIEW 4
CHAPTER 3 METHODOLOGY 8
3.1 Basic Operation 8
3.1.1. DC-DC Boost Converter 8
3.1.2 Remote Control for Power Supply 9
3.2 Derivation of the Iterative Map 10
3.3 Circuit Simulation and Results 11
3.4 Printed Circuit Board Design 13
CHAPTER 4 Calculation and RESULTS 15
CHAPTER 5 DISCUSSION 26
CHAPTER 6 CONCLUSION 28
REFERENCES 30
APPENDICES 31
Appendix -A: Chronological list of the activities 31
Appendix -B: Tools and Materials Required 32
Appendix-C: Gantt Chart 33
Appendix -D: Data Sheet 36

LIST OF FIGURES

Figure 1: The difference between the start of these curves in only $.000127[1]$ 5
Figure 2: Bifurcation diagram for the quadratic map.[1] 6
Figure 3: Bifurcation diagram for the quadratic map. 8
Figure 4: Receiver and transmitter schematic diagram. 9
Figure 5: Sketch of current and voltage waveforms appearing 10
Figure 6: Inductor current response at $\mathrm{I}_{\text {ref }}=0.7 \mathrm{~A}$. 11
Figure 7: Inductor current response at $\mathrm{I}_{\text {ref }}=5.5 \mathrm{~A}$ 12
Figure 8: PCB outline for the DC-DC Boost Converter 13
Figure 9: Receiver Printed Circuit Board outline. 14
Figure 10: Close loop with unity feedback system 19
Figure 11: Underdamped system poles location 21
Figure 12: Inductor current ripple in actual design ($\mathrm{I}_{\mathrm{ref}}=700 \mathrm{~mA}$) 23
Figure 13: Capacitor output voltage ripple in actual design. $\left(\mathrm{I}_{\text {ref }}=700 \mathrm{~mA}\right)$ 24

LIST OF TABLES

Table 1: Designed Boost Converter components 17
Table 2: Stability verification 20
Table 3: Difference between theoretical and experimental parameters 25
Table 4: Boost converter load voltage response. 25
Table 5: Circuit components and values 32

LIST OF EQUATIONS

Equation 1: Output and Input Voltage Ratio 15
Equation 2: Finding Critical Inductor of The System 16
Equation 3: Minimum Inductor Current 16
Equation 4: Maximum Inductor Current 16
Equation 5: Capacitor and Voltage Ratio 16
Equation 6: Output Current. 16
Equation 7: Input Current 16
Equation 8: Peak Time Response of the System 21
Equation 9: Settling Time of The System 22
Equation 10: Percentage Overshoot 22

ABBREVIATION AND NOMENCLATURES

FYP1	Final Year Project, Phase 1
FYP2	Final Year Project, Phase 2
PWM	Pulse Width Modulation
PCB	Printed Circuit Board
CMC	Current Mode Controller
VMC	Voltage Mode Controller
CCM	Continuous Conduction Mode
DCM	Discrete Conduction Mode
$\%$ OS	Percentage Overshoot
T_{p}	Peak Time
T_{r}	Rise Time
T_{s}	Settling Time
G(s)	Defined as open loop transfer function at s-plane
$T(s)$	Defined as close loop transfer function at s-plane

ACKNOWLEDGMENT

First and foremost, I would like to thank my supervisor, Mr. Zaihar Yahaya. Without his guidance, feedback and encouragement, this project would not have been possible. It has been valuable experience to work with him.

I would like to express my gratitude to Mr. Noridin Saad, lecturer at Electrical \& Electronics Department of UTP for additional guidance and outstanding motivation to work on this project. His advices and support are greatly appreciated.

Special thanks to laboratory technicians at Electrical \& Electronics Department of UTP, to Mr. Musa for his help with experiments when the project circuits were tested and to Ms. Siti Hawa for the time she invested in teaching the soldering techniques.

CHAPTER 1

INTRODUCTION

Bifurcation theory is introduced into nonlinear dynamics by a French man named Poincare. Bifurcation is used to indicate a qualitative change in features of the system, such as the number and the type of solutions, under the variation of one or more parameters on which the considered system depends.

This project uses reference current as variable parameter. Current Mode Controlled (CMC) converter becomes unstable at certain operating conditions, which causes unusual vibrations in the dc motor driving systems. Instability phenomena in power electronic motor driving systems are investigated from the point of view of bifurcation theory. It is known that CMC converter produces some kinds of bifurcations at the output which effects stable operation of dc motor driving systems. This project proposes method which makes it possible not only to determine instability regions of system parameters but also to investigate qualitative properties of the instability phenomena. These measurements and simulations can be done by using PSpice, EWB and Multisim electronic software packages. These software packages help us to visualize the performance and effect of the auxiliary circuit on converter systems.

The choice of whether to implement Current Mode Control (CMC) or Voltage Mode Control (VMC) as the feedback control method in a boost dc-dc converter is based on a number of considerations. While the perceived advantage of CMC is better feedback loop response, today high-frequency VMC converters closely rival their CMC counterparts. Beside this CMC control to output gain is higher at low frequencies and has a zero gain crossover frequency much higher than the VMC counterpart has. From a signal path standpoint in VMC, a load current change must first have an effect on the output voltage before the voltage amplifier can react and make a correction. CMC on the other hand sense a change in load current directly so the voltage amplifier does not need
to react in order for the loop to make a correction. This cause and then react approach makes VMC slower to response than CMC with very high speed load transients. Because of these significant points I prefer to work on CMC rather than VMC converters.

Applications of boost CMC DC-DC converters:

- To control dc motor
- To control fan drive
- To boost the current inside the notebook or in PC power supply
- In industrial Automation such as PLC
- Single solenoid controllers
- Dual solenoid drivers for proportional and directional valves.

These are just a few applications of dc-dc boost converters but in real life it can be found more than these.

1.2 Problem Statement

In Current Mode Controlled Parallel-Connected Boost DC-DC Converter was observed to behave in a chaotic manner. Beside, this converter was encountered nonlinear behaviors, such as subharmonics and a period-doubling route to chaos. At some reference current levels, the output signal getting distorted and unstable. The design should have been in subharmonics and/or chaotic-free operation mode. From this it will help us to solve/improve stable operation performance of the output device that is connected to dcdc boost converter.

1.3 Objectives and Scope of Study

The final year project (FYP) at University Technology Petronas covers period of 30 weeks starting from July 2005 to May 2006. Final year project can be divided into two phases, such as FYP 1 and FYP 2. The first phase requires working on research and finding out alternative solutions on a purposed topic. Beside this, all output simulation results of the project must be provided on this phase. Design implementation and final simulation on printed circuit board will be conducted on second phase. Moreover, scope
of work includes some improvement on working project by applying suitable theories from Control Systems, Analogue Electronics and Power Electronics subjects.

The main objectives are:

- To demonstrate ability to integrate fundamental knowledge in developing techniques, methods and analysis.
- To be more attentive and initiative such as proposing a title for their project on their own.
- To work independently through exercising self-discipline, self-management and job co-ordination while undertaking the project.
- To enhance skills in the process of applying knowledge, expanding thoughts, solving problems independently and presenting findings through minimum guidance and supervision.

CHAPTER 2

LITERATURE REVIEW

The modern nonlinear theory is used such as, bifurcation theory and chaos theory, to analyze the two-module parallel-input / parallel-output boost DC-DC converter using peak current-control. This topology is known as a boost converter since the output voltage is higher than input. The converter circuits that are used in power electronics systems to change the system voltages from one dc level to another dc level. These devices normally operated at much higher frequencies than the line frequency, reaching as high as a few hundred kilo-hertz. This is why such converter circuits are known as high-frequency dc-to-dc switching converters or regulators.

The name "chaos theory" comes from the fact that the systems that the theory describes are apparently disordered, but chaos theory is really about finding the underlying order in apparently random data. The first true experimenter in chaos was a meteorologist, named Edward Lorenz. In 1960, he was working on the problem of weather prediction. He had a computer set up, with a set of twelve equations to model the weather. It didn't predict the weather itself. However this computer program did theoretically predict what the weather might be. One day in 1961, he wanted to see a particular sequence again. To save time, he started in the middle of the sequence, instead of the beginning. He entered the number off his printout and left to let it run. When he came back an hour later, the sequence had evolved differently. Instead of the same pattern as before, it diverged from the pattern, ending up wildly different from the original. (See Figure 1.) Eventually he figured out what happened. The computer stored the numbers to six decimal places in its memory. To save paper, he only had it printed out three decimal places. In the original sequence, the number was .506127 , and he had only typed the first three digits, .506 . [1]

Figure 1: The difference between the start of these curves in only .000127[1]
From above information it is noticed that as soon as the period passes 3, the line breaks in two. Instead of settling down to a single line value, it would jump between two different values. Raising the reference current a little more causes it to jump between four different values. As the parameter rose further, the line bifurcated (doubled) again. The bifurcations came faster and faster until suddenly, chaos appeared. Past a certain increase in reference current, it becomes impossible to predict the behavior of the equation. However, upon closer inspection, it is possible to see white strips. Looking closer at these strips reveals little windows of order, where the equation goes through the bifurcations again before returning to chaos. This self-similarity, the fact that the graph has an exact copy of itself hidden deep inside, came to be an important aspect of chaos. It will give an ease to visualize the order and difference between chaos and bifurcation by looking at the graph provided in Figure 2.

Figure 2: Bifurcation diagram for the quadratic map.[1]

Poincare used the term bifurcation to describe the "splitting" of asymptotic states of a dynamical system. As we examine Figure 2, several different types of changes can be occurred. These bifurcations should be analyzed and classified. At a bifurcation value, the qualitative nature of the solution changes. It can change to, or from, an equilibrium, periodic, or chaotic state. It can change from one type of periodic state to another or from one type of chaotic state to another. [1]

According to authors (Professor Al-Mothafar, and Professor A. Natsheh), initial studies on DC-DC converters' chaos and subharmonics instability were observed by Deane and Hamill [2] and Chan and Tse [3]. Their works illustrate how chaos can occur in currentprogrammed boost DC-DC converters operating in the continuous conduction mode. Chaos was also studied for a voltage-mode PWM buck DC-DC switching converter operating in the continuous conduction mode by Brockett and Wood [2], Deane and Hamill [5] and Al-Fayyoumi [6].

In the aforementioned studies, the analyses were limited to a single boost converter. The first the small signal and transient behavior of two-module parallel-input/series-output

DC-DC converters with mutually coupled inductor was investigated by Professor AlMothafar but in his studies bifurcation analysis were not addressed.

The last study on parallel input/parallel output dc-to-dc converter was done by authors in 2002 (Professor Al-Mothafar, and Professor A. Natsheh). They could manage to find out chaos, bifurcation and steady state regions of the system. Except the authors nobody studied on parallel input/parallel output dc-dc converters. But on their work they did not mention how to reduce or cancel the distortion on boost converter. This project paper will further investigate on chaos and bifurcation distortions by designing auxiliary circuit which will reduce or even cancel the output distortion in dc-dc converter.

CHAPTER 3

METHODOLOGY

3.1 Basic Operation

3.1.1. DC-DC Boost Converter.

Parallel-input / parallel-output two-module current-programmed boost DC-DC converter circuit (Figure 3) consists of two controlled switches S_{1} and S_{2}, two uncontrolled switches D_{1} and D_{2}, two inductors L_{1} and L_{2}, two capacitors C_{1} and C_{2}, and a load resistor R. The switching of each converter is controlled by a feedback path consisting of a comparator and a flip-flop.
Each comparator compares the respective current through the inductor with a reference current. It is assumed that the converter is operating in continuous conduction mode, so that the inductor currents never fall to zero.

Figure 3: Bifurcation diagram for the quadratic map.

There are two states of the circuit depending on whether the controlled switches S_{1} and S_{2} are open or closed. When switches S_{1} and S_{2} are closed, the currents through the inductors rise and any clock pulses arriving during that period are ignored. The switches S_{1} and S_{2} become open when i_{1} and i_{2} reach the reference current. When switches S_{1} and S_{2} are open, the currents i_{1} and i_{2} fall. The switches S_{1} and S_{2} close again upon the arrival of the next clock pulses. The significance of reference current is to determine the allowed operation range of the dual input - dual output boost converter. In this circuit the reference current range is from 500 mA to 1.5 mA . Increase in reference current raise the conduction time of the inductor. As result output voltage and output current level increases.

3.1.2 Remote Control for Power Supply

Connect this circuit to any of your home appliances (lamp, fan, radio, etc) to make the appliance turn on/off from a TV, VCD or DVD remote control. The circuit can be activated from up to 10 meters. The 38 kHz infrared (IR) rays generated by the remote control are received by IR receiver module TSOP1738 of the circuit. Pin 1 of TSOP1738 is connected to ground, pin 2 is connected to the power supply through resistor R5 and the output is taken from pin 3. The output signal is amplified by transistor T 1 (BC558). (see figure 4).

Figure 4: Receiver and transmitter schematic diagram

The amplified signal is fed to clock pin 14 of decade counter IC CD4017 (IC1). Pin 8 of ICl is grounded, pin 16 is connected to V_{cc} and pin 3 is connected to LED_{1} (red), which glows to indicate that the appliance is "off". The output of ICl is taken from its pin 2. LED_{2} (green) connected to pin 2 is used to indicate the 'on' state of the appliance. Transistor T_{2} (BC548) connected to pin 2 of IC_{1} drives relay RL_{1}. Diode $1 \mathrm{~N} 4007\left(\mathrm{D}_{1}\right)$ acts as a freewheeling diode. The appliance to be controlled is connected between the pole of the relay and neutral terminal of mains. It gets connected to live terminal of AC Mains via normally opened (N/O) contact when the relay energizes. This circuit configuration can be applied to turn on / off dc-dc boost converter. At the output of the converter dc motor can be used as example of digital tape which controlled by remote control.

3.2 Derivation of the Iterative Map

Figure 5: Sketch of current and voltage waveforms appearing in the circuit of Figure 3 [7]

Where:
i_{1}, i_{2} are the currents through inductors L_{1} and L_{2}, respectively. $v_{c 1}, v_{c 2}$ are voltages across capacitors C_{1} and C_{2}, respectively.

There are two circuit configurations, according to whether S_{1} and S_{2} are closed or open. It is assumed that they are closed initially. The currents i_{1} and i_{2} through inductors L_{1} and L_{2} then rise linearly until $i_{1}=I_{r e f}$ and $i_{2}=I_{r e f}$. Any clock pulses arriving during this time are ignored. When $i_{1}=I_{\text {ref }}$ and $i_{2}=I_{\text {ref }}, S_{1}$ and S_{2} open, and remain open until the arrival of the next clock pulse, whereupon they close again. The waveforms appearing in the circuit are sketched in Figure 4.

3.3 Circuit Simulation and Results

The circuit was simulated by using PSpice software. The most important parameters are inductor current and capacitor voltage behaviors. Slight change in reference current influences the output operation of DC-DC converter circuit. Figure 5 shows the inductor current waveform at $\mathrm{I}_{\mathrm{ref}}=0.7 \mathrm{~A}$.

Figure 6: Inductor current response at $\mathrm{I}_{\mathrm{ref}}=0.7 \mathrm{~A}$.

Continuous conduction waveform in Figure 5 represents the output waveform of the inductor current in DC-DC boost converter. At this level of reference current neither vibration nor distortion can be found in the given circuit design. The output waveform operates in periodical mode, because the current repeats itself at each period.

Now, let's consider that the reference current changed to 5.5 A . At this magnitude of reference current the chaos operation can be observed. Because output waveform of the inductor current is totally distorted, this represents instable operation mode of the system. Figure 6 shows the output waveform of the inductor current.

Figure 7: Inductor current response at $I_{\text {ref }}=5.5 \mathrm{~A}$

From inductor output waveform response (Figure 6), we can see that the system is in unstable operation mode. Because it is non-periodic and the current peak levels are vary with the time. At this reference current level we can find vibration and distortion in dc motor driving systems. This is undesirable condition in power electronics circuitry. This
project focuses on cancellation of this distortion by using auxiliary circuit which will improve the operation mode of DC-DC boost converter. If we are going to compare these to output graphs; first we have to mention the current level of the waveforms, the second why this current level changes when reference current varies. These questions can be easily answered by looking and understanding the operation concept of the boost converter. When I reference current increases, it raises the conduction period of the inductor, as result inductor having more current charged. The output current and voltage levels vary according proportionally to reference current.

3.4 Printed Circuit Board Design

Short for Printed Circuit Board, PCB is a board made of plastic or fiberglass designed to hold electronic circuits, ICs, switches and other components. A good example of a PCB found in all computers today is the computer motherboard. It is required to examine every step of the design process; including schematic packaging, component placement, interconnect routing and manufacturing data generation. PSpice simulation software was used for this design.

Figure 8: PCB outline for the DC-DC Boost Converter

DC-DC Boost converter PCB (Printed Circuit Board) outline is given in the Figure 7. This is initial design of this project if any changes or modifications occurred during soldering process this circuit might change. Besides, this project also includes receiver and transmitter circuit boards. Transmitter can be used as remote control because it has fixed 38 Mhz frequency. Receiver circuit board designed by using PSpice software program. The main problem in this design is a lack of components in the electronics store. Therefore it was required to buy all the components from the Ipoh electronics shops.

Figure 9: Receiver Printed Circuit Board outline.

As it can be seen form Figure 9, receiver printed circuit board pin layout was obtained by using PSpice software. Receiver and Transmitter circuit combination can be bought as a ready kit from electronics shops, but it will not be beneficial for personal skill performances.

CHAPTER 4

CALCULATION AND RESULTS

This section shows the steps and mathematical expressions to design a single input and single output Boost Converter which is in Continuous Conduction Mode. Since the input here is dc, which comes from voltage generator, these devices are normally operated at much higher frequency than the line frequency, reaching as high as a few hundred kilohertz. This calculation section consists of two parts. The first part is to design boost converter and the second part to investigate whether system is stable or not.

The main steps for the first part; to get right L and C components to control the capacitor voltage ripple.

Given:

$V_{t h}=5 \mathrm{Volts} ;$
$V_{\text {sul }}=8 \mathrm{Volts}$
$\frac{\Delta V_{c}}{V_{0}}=3 \%$
$R=20 \mathrm{ohm}$
$f_{s}=40 \mathrm{kHz}$
Design CCM (Continuous Conduction Mode) Boost Converter.
$\frac{V_{0}}{V_{\text {in }}}=\frac{1}{1-D}$
......... (Equation 1)
$\frac{8}{5}=\frac{1}{1-D}$
$1-D=\frac{5}{8}$
$D=0.375=37.5 \%$
$L_{c r i t}=\frac{R T}{2}(1-D)^{2} D$
$L_{\text {crit }}=\frac{20 \times 25 \mu}{2}(1-0.375)^{2} 0.375$
$L_{\text {crii }}=36.62 \mu \mathrm{H}$

To satisfy Continuous Conduction Mode DC-DC boot converter property, $\mathrm{L}_{\text {used }}$ must be larger than $\mathrm{L}_{\text {crit }}$ value. Therefore, $\mathrm{L}_{\text {used }}$ equals to hundred times $\mathrm{L}_{\text {crit }}$ value. Otherwise, it will operate as Discrete Conduction Mode which is out of project objectives.
$L_{\text {used }}=L_{\text {criu }} \times 100=3.662 \mathrm{mH}$
$I_{l \text {.min }}=V_{i n}\left[\frac{1}{R(1-D)^{2}}-\frac{D T}{2 L}\right]=5[0.128-1.28 \mathrm{~m}]$
$I_{l, \text { min }}=0.633 \mathrm{~A}$
$I_{l, \text { max }}=V_{i n}\left[\frac{1}{R(1-D)^{2}}+\frac{D T}{2 L}\right]=5[0.128+1.28 \mathrm{~m}]$
(Equation 4)
$I_{l, \text { max }}=0.646 \mathrm{~A}$
For the positive values of $\mathrm{I}_{\mathrm{Lmax}}$ and $\mathrm{I}_{\mathrm{Lmin}}$, the converter will operate in the Continuous Conduction Mode and the given system is stable.

The voltage ripple is given by

$$
\left.\begin{array}{l}
\frac{\Delta V_{c}}{V_{o}}=3 \%=\frac{D}{R C f} \\
0.03=\frac{0.375}{20 \times C \times 40 \mathrm{kHz}} \\
C=15.62 \mu \mathrm{~F} \\
I_{0}=\left[\frac{I_{l \text { max }}+I_{l, \text { min }}}{2}\right](1-D)=\frac{0.6464+0.633}{2}(1-0.375)=0.3998 \mathrm{~A} \\
\left.I_{i n}=\left[\frac{[\ldots \ldots .(\text { Equation } 5)}{2}\right]=\frac{I_{l, \max }+I_{l \text { min }}}{2}\right]=0.6464+0.633 \\
2
\end{array}=0.6397 \mathrm{~A} \quad \ldots \ldots . . \text { (Equation } 7\right)
$$

Inductor ripple is given by
$\Delta I=\frac{1}{L} V_{i n} D T=\frac{1}{2.92 m}(5)(0.375)(25 \mu)=0.016 A$

Table 1: Designed Boost Converter components.

Circuit Components	Values
Switching period T	$25 \mu \mathrm{~S}$
Input voltage V_{1}	5 V
Inductance L_{1}	3.662 mH
Inductance L_{2}	3.662 mH
Capacitance $\mathrm{C}_{1} \quad$	$15.62 \mu F$
Capacitance C_{2}	$15.62 \mu F$
Load Resistance R	20Ω

Boost Converter Configuration

As it was mentioned before, this is a stable system. This calculation conducted to prove the stability of this system. Stability is the most important system specification. If a system is unstable, transient response and steady state errors are moot points. An unstable system can not be designed for a specific transient response or steady state error requirement. This is very important to achieve stable operation of the system.

Two loops were obtained by using the Mesh's loop method;
$V(s)=L s I_{1}(s)+\frac{1}{C s} I_{1}(s)-\frac{1}{C s} I_{2}(s)-\cdots$-loop 1
$0=\frac{1}{C s} I_{2}(s)+R I_{2}(s)-\frac{1}{C s} I_{1}(s)---$-loop 2
$V(s)=\left(L s+\frac{1}{C s}\right) I_{1}(s)-\frac{1}{C s} I_{2}(s)---$-loop 1
$0=\left(\frac{1}{C s}+R\right) I_{2}(s)-\frac{1}{C s} I_{1}(s)-\cdots-$ loop 2

Both loops in the matrix form;

$$
\left[\begin{array}{c}
\left(L s+\frac{1}{C s}\right)-\frac{1}{C s} \\
-\frac{1}{C s}\left(\frac{1}{C s}+R\right)
\end{array}\right]\left[\begin{array}{l}
I_{1}(s) \\
I_{2}(s)
\end{array}\right]=\left[\begin{array}{c}
V(s) \\
0
\end{array}\right]
$$

$\Delta=\left(L s+\frac{1}{C s}\right)\left(\frac{1}{C s}+R\right)-\left(\frac{1}{C s}\right)\left(\frac{1}{C s}\right)=\frac{L}{C}+L s R+\frac{1}{C^{2} s^{2}}+\frac{R}{C s}-\frac{1}{C^{2} s^{2}}$
$\Delta=\frac{L s+L s^{2} C R+R}{C s}$

$$
\begin{aligned}
& \Delta_{1}=\left[\begin{array}{cc}
V(s) & -\frac{1}{C s} \\
0 & \frac{1}{C s}+R
\end{array}\right]=V(s)\left(\frac{1}{C s}+R\right) \\
& \Delta_{2}=\left[\begin{array}{cc}
\left(L s+\frac{1}{C s}\right) & V(s) \\
-\frac{1}{C s} & 0
\end{array}\right]=\frac{V(s)}{C s}
\end{aligned}
$$

$I_{1}=\frac{\Delta_{1}}{\Delta}=\frac{V(s)\left(-\frac{1}{C s}+R\right)(C s)}{L s^{2} C R+L s+R}$
$I_{2}=\frac{\Delta_{2}}{\Delta}=\frac{V(s)}{\frac{C s\left(L s^{2} C R+L s+R\right)}{C s}}=\frac{V(s)}{L s^{2} C R+L s+R}$
$\mathrm{V}(\mathrm{s})$ is the input voltage
I_{2} is the output of the system
Open loop Transfer function $G(s)$ is given by
$G(s)=\frac{I_{2}(s)}{V(s)}=\frac{1}{L s^{2} C R+L s+R}$

Figure 10: Close loop with unity feedback system

The close loop with unity feedback system is shown in figure $7 . \mathrm{K}$ is the gain factor of the system and $\mathrm{H}(\mathrm{s})$ is the feedback loop of the system. Furthermore, it is required to calculate the value for gain (K) and show the poles locations by indicating the stability of the system.
$G(s)=\frac{1}{s^{2}(3.662 m)(15.62 u)(20)+(3.662 m) s+20}$
$G(s)=\frac{1}{s^{2}(1.444 u)+(3.662 m) s+20}$
Thus, Close Loop Transfer Function T(s) of the system is

$$
T(s)=\frac{G(s)}{1+G(s) H(s)}=\frac{1}{(1.144 \mu) s^{2}+(3.662 m) s+21}
$$

Table 2: Stability verification

S^{2}	1.144 u	21
$\mathrm{~S}^{1}$	3.662 m	0
$\mathrm{~S}^{0}$	21	0

Closed loop transfer function has all poles in the left half of the s-plane, the system is stable. Thus, a system is stable if there are no sign changes in the first column of the Routh table. The system can not have jw poles since a row of zeros did not appear in the Routh table.

From second order general equation
$G(s)=\frac{W_{n}{ }^{2}}{s^{2}+2\left(\zeta W_{n}\right) s+W_{n}{ }^{2}}$
$\mathrm{K}=4181^{2}=\mathrm{W}_{\mathrm{n}}{ }^{2}$
$W_{n}=4181$

Damping Ratio:
$\zeta=\frac{\frac{2536}{2}}{41810}=0.3032$

$0<\zeta<1 \quad$ System is Underdamped

$\sigma=-\zeta W_{n}=-1267.6$ Real axis
$j W n \sqrt{1-\zeta^{2}}=3984 j$ Imaginary axis

Figure 11: Underdamped system poles location

Location of the poles clearly indicated in the figure 8 . It can be concluded that the system is stable and having overshoot at the output waveform which satisfy to underdamped system operation.

Peak Time

$$
T_{p}=\frac{\pi}{W_{n} \sqrt{1-\zeta^{2}}}=788 \mu \mathrm{sec}
$$

Settling Time

$T_{s}=\frac{-\ln \left(0.02 \sqrt{1-\zeta^{2}}\right)}{(\zeta)\left(W_{n}\right)}=3.123 \mathrm{~m} \mathrm{sec}$
(Equation 9)

System Percentage Overshoot

$\% O S=e^{-\left(\pi \zeta^{\prime} / \sqrt{1-\zeta^{2}}\right)} \times 100=36.82 \%$
(Equation 10)

Calculation results show that our designed boost converter satisfies stability aspect of the system. For this reason we can confidently use these parameters in designing boost converter. After proving the stability of the system, now we can proceed with simulation of the system.

Simulation Results

As it was mentioned before, this project operates in CCM (Continuous Conduction Mode). This can be seen from Figure 7., which provides output current ripple waveform of the inductor. Neither minimum nor maximum points are distorted which clearly correspond CCM mode operation of the designed circuit. Besides, maximum and minimum points are 693.734 mA and 684.015 mA respectively.

Figure 12: Inductor current ripple in actual design $\left(I_{\text {ref }}=700 \mathrm{~mA}\right)$

This type configuration and parameter values reduces output current ripple from 64% (authors) [7] to 5% (actual). It is important to mention that author uses high voltage boost converter system where input voltage 10 V boosted up to 60 V . Whereas, this project uses low voltage system, input 5 V boosted up to 8 V .

Figure 13: Capacitor output voltage ripple in actual design. $\left(I_{r e f}=700 \mathrm{~mA}\right)$

Capacitor output voltage ripple waveform is shown in Figure 8. above. The maximum and minimum points are 6.4319 V . and 6.0629 V . respectively. Shaded area indicates distortion less minimum and maximum output waveform ripple. The capacitor voltage ripple factor reduced from 30% (authors) [7] to 3% (actual). Reduction in output ripple gives good efficiency and better performance of the converter circuit. According to the theory of dual input-dual output boost converter the output voltage raises as reference current increases. Figure 13 shows that nominal voltage is at 6.25 V for $\mathrm{I}_{\mathrm{ref}}=700 \mathrm{~mA}$. According to our calculation output voltage should be 8 Volts but because of the wide
range of reference current ($500 \mathrm{~mA}-1.5 \mathrm{~A}$) and considering voltage drop on components we could not achieve in the simulation.

Experimentation Results

This section focuses on difference between theoretical and experimental results. The project implementation uses different parameters than calculated ones. The lack of components in the market gave us no choice but use close parameters for the inductor, transistor, mol capacitor in the boost convertor cient. Altomater soletion of he probect components are shown in the Table 3 .

Toble 3. Diforone betwen hooretod and expemment prametors

Circuit Components	Theoretical	Experimental
Inductance L_{1}	3.662 mH	4.2 mH
Inductance L_{2}	3.662 mH	4.2 mH
Capacitance C_{1}	$15.62 \mu F$	$32 \mu F$
Capacitance C_{2}	$15.62 \mu \mathrm{~F}$	$32 \mu F$

Regardless to components changes the system stability and continuous conduction mode of boost converter still maintained as before. Table 4. shows the load voltage response to differcnt values of reference curent. The load voltage must show increasing response. This venfes the corce operation of Cumon Controlled Boos convers.

Thble 4: Boow whyeter lond voltage remponse.

Applied Voltage Level (V)	$\mathrm{R}_{\text {reference }}$ (ohms)	$\mathrm{I}_{\text {reference }}$ (mA)	$\mathrm{I}_{2 \text { reference }}$ (mA)	Load Voltage (V)
3	1000	3	3	9.780
3.5	1000	3.5	3.5	9.784
4	1000	4	4	9.786
4.5	1000	4.5	4.5	9.903
5	1000	5	5	9.955

The experimentation results shows that slight increase in reference current will affect the output of the system at the load. The voltage at the load should increasingly rise (see Table 4). Theoretically maximum output should be 8 V . but due to some components parameter changes the output of the system reaches around 10 V .

Figure 14: Project Printed Circuit Board Implementation

As it was mentioned before the project consists of two parts.

- Receiver and Transmitter
- Current Controlled Boost Converter.

Receiver and Transmitter

The main objective of this circuit is to activate the boost converter circuit. Infrared Remote controller used as transmitter circuit which can initiate process within 7 meter radius. IR controller uses 38 MHz frequency (see Figure 14).

Current Controlled Boost Converter.

This is the main and significant part of the project. Where input 5 V . increase or boosted until 8 V . it is also important to note that this circuit controlled and varied by reference current level.

CHAPTER 5 DISCUSSION

For the proposed system shown in Figure 3, the switching is controlled by a feedback path consisting of a comparator and a flip-flop. Each comparator compares the corresponding current through the inductor with a reference current $I_{r e f}$. The mapping is a function that relates the voltage and current vector $\left(v_{n+1}, i_{n+1}\right)$ sampled at one instant, to the vector $\left(v_{n}, i_{n}\right)$ at a previous instant; the instants in question are the arrival of a triggering clock pulse. For the proposed converter, calculated values for inductor (L) and capacitor (C) are different from the author's circuit design parameters (refer to table 1). These two component parameters deeply effect the boost converter operation. For example, CCM (Continuous Conduction Mode) and DCM (Discrete Conduction Mode) and output ripple of the inductor current depends on inductor parameter. This design concentrates on CCM operation rather than DCM. This can be seen from figure 7., which is indicated with circle. In CCM operation minimum current value can not be zero whereas in DCM operation the minimum current level at zero. Beside this, the capacitor voltage factor can be manipulated by varying the capacitor parameter. According to AlMothofar M.R.[7] circuit configuration, the large voltage ripple at the capacitor and inductor were achieved. The author's component parameters (see Appendix-B) give large ripple at the output waveforms for the inductor current and capacitor voltage. The capacitor voltage ripple factor reduced from 30% (authors) to 3% (actual) and output current ripple from 20\%(Al Mothofar M.R.[7]) to 3\%(according to my calculation).

To check the validity of the theoretical modeling, PSpice circuit analysis program has been employed. In the inductor current and capacitor voltage output waveforms for different values of control parameter $I_{r e f}=0.7,1.3,1.5$, and 5.5 A . To compare different regulator systems with different compensation networks, the control (design) parameter should be independent from the compensator design. A good choice would be either the
input voltage V_{l} or the load resistance R. Hence we repeated the calculations for the same feedback system with the input voltage as the control parameter.

CHAPTER 6 CONCLUSION

This project is to design a circuit which will guarantee stable operation at switching frequencies, and any quasi-periodic or chaotic operation is regarded as being undesirable and should be avoided. This project has focused in particular on the application of bifurcation theory to parallel-input / parallel-output two-module current-programmed DC-DC converters. The nonlinear mapping that describes the boost converter under current-mode control in continuous conduction mode has been derived. Beside this project paper describes the operation of Current Mode Controlled Parallel-Connected Boost DC-DC Converters and basically defines chaos, bifurcation and quasi-periodic distortion of the circuit by varying the reference current and comparing it with inductor output current. Within specific ranges of reference current the circuit operates without any distortion.

The design includes the simulation of any bifurcation within the intended operation range by using PSpice, Multisim and EWB software. The inductor current output waveforms obtained and compared at different levels of reference currents. From output waveforms I observe that at fundamental frequency designed circuit operates in stable mode which is periodic. But changing reference current magnitude to 5.5 amp causes chaos in output waveform of the inductor current. In chaos operation peak of the inductor current are changing with the time which shows the unstable behavior and non-periodic output waveform. There are a few ways to improve the output waveforms such as connecting freewheeling diode with parallel to inductor, using combination of triple input/triple output Current Mode Controlled converter or just using parallel input/series output configuration. Each of these configurations must be investigated in this project paper to come out with the final DC-DC boost converter.

Much of the work in the study of nonlinear phenomena of power electronics circuits and systems has been focused on basic research into the bifurcation and chaotic behavior of
power converters under variation of some selected parameters. Parallel-input / paralleloutput are the most common configuration that can be used in current mode control DCDC converters. Simulation results shows that capacitor voltage ripple factor reduced from 30% to 3% (actual) and output current ripple from 20% to 3%. Improvement in this type of converter will open up new applications in datacommunication, telecommunication, power-supply in pc and inside the notebook, industrial automation and so forth. The core of the project work focuses on simulating the entire process and later building the prototype. The design performance will also be evaluated based on output results.

REFERENCES

[1] Deane, Jonathan H.B., and David C. Hamill, Instability, Subharmonics, and Chaos in Power Electronic Systems, PESC'89, IEEE Power Electronics Specialists Conference, 1989, pp. 34-42.
[2] Deane, J. H. B. and Hamill, D. C., "Chaotic Behavior In Current Mode Controlled DC-DC Converter, "Electronics Letters", Vol. 27, No. 13, $20^{\text {th }}$ June 1991, pp. 1172-1173.
[3] Iu, H. H. C., and Tse, C. K., "Bifurcation Behavior in Parallel-Connected Buck Converters," IEEE Transactions on Circuits and systems-1: Fundamental Theory and Applications, Vol. 48. No. 2, February 2001, pp. 2
[4] Brocket, R. W. and wood, J. R., "Understanding power converter chaotic behavior mechanisms in protective and abnormal modes," Proceedings of the Powercon, Vol. 11, No. 4, 1984, pp. 1-15.
[5] Deane, J. H. B. and Hamill, D. C., "Instability, Subharmonics and Chaos in PE circuits," IEEE Transactions on Power Electronics, Vol. 5, 1990, pp. 260 268.
[6] Al-Fayyoumi, M., "Nonlinear Dynamics and Interactions in Power Electronic systems," M. E. dissertation Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Virginia, 1998.
[7] Al-Mothafar, M. R., "Small-Signal and Transient Behavior of Two-Module DC-DC Converter Using Mutually Coupled Output Filter Inductors," Int. J. Electronics, Vol. 79, No. 6, 1995, pp. 917-932.
[8] http://www.ibiblio.org/e-notes/MSet/Orbit2.htm Internet web page. Theory of period doubling bifurcation.

APPENDICES

Appendix -A: Chronological list of the activities

FYPI

a. Assess and select the software best suited for the project.
b. Study the software manuals/documentation, focusing on simulation exercises.
c. Prepare and write the progress report.
d. Simulate the current controlled $\mathrm{dc} / \mathrm{dc}$ converter of the project.
e. Run and troubleshoot the simulation.
f. Research/Decide component parameters based on simulation output.
g. Research on how to select the right component for a particular process.
h. Perform design calculations for subharmonics, quasi-periodic or chaotic operation.
i. Specify and order parts for the prototype.
j. Prepare and write the interim report.
k. Prepare for an oral presentation.

FYP2

1. Prepare and write the progress report 1 .
m . Test the validity of the design and the accuracy of the operation
n. Finalize the project PCB Gerber files
o. Build the prototype.
p. Prepare and write the progress report 2.
q. Interface the with the prototype
r. Test and troubleshoot the prototype
s. Exhibition.
t. Prepare and write the dissertation.
u. Prepare for an oral presentation.

Appendix -B: Tools and Materials Required

The following is list of initial materials and tools necessary to complete the project. Note that the materials are mentioned without detailed purchasing data. This data will be provided at a later stage, after design calculations.
a. Simulation software for design simulation.
b. A personal computer that can support the software in (a).
c. Two flip-flops
d. Two inductors
e. Two capacitors
f. Two comparators
g. Diodes

Circuit Components	Values
Switching period T	$100 \mu \mathrm{~s}$
Input voltage V_{1}	10 V
Inductance L_{1}	1 mH
Inductance L_{2}	1 mH
Capacitance C_{1}	$10 \mu \mathrm{~F}$
Capacitance C_{2}	$10 \mu \mathrm{~F}$
Load Resistance R	20Ω

Table 5: Circuit components and values

Appendix C: Gantt Charts

ssəooxd
suolss!puqns frodəy

\bigcirc																		8
	\bigcirc																	L
		-																9
																		5
							\bigcirc											t
																		ε
														\bigcirc			I \downarrow roday ssarôold jo uolss!uquns	z
																		I
tI	£I	ZI	II	0I	6	8	8	L	9	S		t	ε		z	I		${ }^{\circ} \mathrm{ON}$

Appendix D: Data sheets

otimized for $10-25 \mathrm{KHz}$ hard vitching and up to 150 KHz sonant switching

IXGH 40N60B2 IXGT 40N60B2

TO-247 AD
(IXGH)

$G=$ Gate,$\quad C=$ Collector, $E=$ Emitter, $\quad T A B=$ Collector

Features

- Medium frequency IGBT
- Square RBSOA
- High current handling capability
- MOS Gate turn-on
- drive simplicity

Applications

- PFC circuits
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- AC motor speed control
- DC servo and robot drives
- DC choppers

ves the right to change limits, test conditions, and dimensions.
s andIGBTs arecovered by one or more
$\begin{array}{llllllllllll}4,835,592 & 4,881,106 & 5,017,508 & 5,049,961 & 5,187.117 & 5,486,715 & 6,306.728 e 1 & 6,259,12381 & 6.306 .728 \mathrm{B1}\end{array}$ us palents:

Fig. 1. Output Characteristics @ 25 Deg. C

Fig. 3. Output Characteristics
@ 125 Deg. C

Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter voltage

Fig. 2. Extended Output Characteristics @ 25 deg. C

Fig. 4. Dependence of $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ on Temperature

Fig. 6. Input Admittance

(c) 2003 IXYS All rights reserved

Fig. 7. Trans conductance

Fig. 9. Dependence of Turn-Off
Energy on I_{0}

Fig. 11. Dependence of Turn-Off Switching Time on R_{G}

Fig. 8. Dependence of Turn-Off
Energy on R_{G}

Fig. 10. Dependence of Turn-Off Energy on Temperature

Fig. 12. Dependence of Turn-Off Switching Time on I_{c}

ves the right to change limits, test conditions, and dimensions.
s and GBTh are covered by one or more
$4.835,5924,381,106 \quad 5,017.508 \quad 5,049,961 \quad 5,187.117 \quad 5,486.715 \quad 6,306.729816,259,123816.306 .728 \mathrm{Bl} 1$ $\begin{array}{llllllllll}4,850,072 & 4,931,844 & 5,034.796 & 5.063,307 & 5,237,481 & 5,381,025 & 6,404,065 \mathrm{~B} 1 & 6,162,665 & 6,534,343\end{array}$

Fig. 13. Dependence of Turn-Off Switching Time on Temperature

Fig. 15. Capacitance

Fig. 16. Maximum Transient Thermal Resistance

This datasheet has been download from: www.datasheetcatalog.com

Datasheets for electronics components.

1N4001 Thru 1N4007

AMP PLASTIC SILICON RECTIFIER

I FEATURES

- Rating to 1000 V PRV
- Low cost
- Diffused junction
- Low leakage
- Low forward voltage drop
- High current capability
- Easily cleaned with freon, alcohol, chlorothene and similar solvents
- UL recognized 94V-O plastic material

【Mechanical Data

- Case: JEDEC DO-41
- Terminals: Axial leads, solderable per MIL-STD-202, Method 208
- Polarity: Color band denotes cathode
- Weight: 0.012 ounce, 0.3 grams

Outline Drawing

- Mounting Position: Any

Maximum Ratings \& Characteristics

- Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified
- Single phase, half wave, 60 Hz , resistive or inductive load
- For capacitive load, derate current by 20%

		1N4001	1 N 4002	1N4003	1N4004	1N4005	1N4006	1N4007	Units
Waximum Recurrent Peak Reverse Voltage	$V_{\text {RRM }}$	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	VRmS	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	$V D C$	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current $375(9.5 \mathrm{~mm})$ Lead Lengths (1) $T_{A}=75^{\prime \prime} \mathrm{C}$	1 (Av)	1.0							A
Peak Foward Surge Current 8.3 ms Single Half-Sine-Wave	IFSM	40							A
Superimposed On Rated Load									
Maximum Forward Voltage Al 1.0A DC	V_{F}	1.0							V
Maximum DC Reverse Current $T_{A}=25^{\circ} \mathrm{C}$ At Rated DC Blocking Voltage	1 R	5							$1 . \mathrm{A}$
Typical Junction Capactance (Note 1) $T_{A}=25^{\circ} \mathrm{C}$	CJ_{3}	15							PF
Thice Treamal Resistance (Note 2)	RirJa	26							CW
Operatmg Temperature Range .-....	IJ	-65 to +175							${ }^{\circ} \mathrm{C}$
Sorage Tomperature Range	Tsti	$-65 \text { to }+175$							C

[^0]This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

LM124
LM224-LM324

LOW POWER QUAD OPERATIONAL AMPLIFIERS

WIDE GAIN BANDWIDTH: 1.3 MHz
INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND

LARGE VOLTAGE GAIN : 100 dB
VERY LOW SUPPLY CURRENT/AMPLI:
$375 \mu \mathrm{~A}$
LOW INPUT BIAS CURRENT : 20nA
LOW INPUT OFFSET VOLTAGE : 5 mV max. (for more accurate applications, use the equivalent parts LM124A-L.M224A-LM324A which feature 3 mV max.)
LOW INPUT OFFSET CURRENT : 2nA
WIDE POWER SUPPLY RANGE :
SINGLE SUPPLY : +3V TO +30V
DUAL SUPPLIES : $\pm 1.5 \mathrm{~V}$ TO $\pm 15 \mathrm{~V}$

DESCRIPTION

These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the fow power supply current drain is independent of the magnitude of the power supply voltage.

ORDER CODE

Part Number	Temperature Range	Package		
		\mathbf{N}	\mathbf{D}	\mathbf{P}
LM124	$-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	\bullet	\bullet	\bullet
LM224	$-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$	\bullet	\bullet	\bullet
LM324	$0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$	\bullet	\bullet	\bullet
Example: LM224N				

$\mathrm{N}=$ Dual in Line Package (DIP)

$D=$ Small Outline Package (SO) - also available in Tape \& Reel (DT) $P=$ Thin Shrink Small Outline Package (TSSOP) - only available in Tape \&Reel (PT)

PIN CONNECTIONS (top view)

SCHEMATIC DIAGRAM (1/4 LM124)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	LM124	LM224	LM324	Unit
V_{CC}	Supply voltage	± 16 or 32			V
V_{i}	Input Voltage	-0.3 to +32			V
$V_{\text {id }}$	Differential Input Voltage ${ }^{1)}$	+32			\checkmark
Ptot	$\begin{array}{ll}\text { Power Dissipation } & \text { N Suffix } \\ & \text { D Suffix }\end{array}$	500	$\begin{aligned} & 500 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
	Output Short-circuit Duration ${ }^{2)}$	Infinite			
$I_{\text {in }}$	Input Current ${ }^{3)}$	50	50	50	mA
Toper	Opearting Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150			${ }^{\circ} \mathrm{C}$

1. Either or both input voltages must not exceed the magnitude of $\mathrm{V}_{\mathrm{Cc}}{ }^{+}$or $\mathrm{V}_{\mathrm{CC}}{ }^{-}$.
2. Short-circuits from the output to VCC can cause excessive heating if $\mathrm{V}_{C C}>15 \mathrm{~V}$. The maximum output current is approximately 40 mA independent of the magnitude of $V_{C c}$. Destructive dissipation can resulf from simultaneous short-circuit on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the 1 C chip, this transistor action can cause the output voltages of the Op -amps to go to the $V_{C C}$ voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3V.

ELECTRICAL CHARACTERISTICS

$V_{C C}{ }^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ Ground, $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{10}	$\begin{aligned} & \text { Input Offset Voltage }- \text { note }{ }^{1} \\ & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\min } \cdot T_{\text {amb }} \cdot T_{\max } \end{aligned}$ LM324 LM324		2	$\begin{aligned} & 5 \\ & 7 \\ & 7 \\ & 9 \end{aligned}$	mV
I_{10}	$\begin{gathered} \text { Input Offset Current } \\ T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ T_{\min } \cdot T_{\text {amb }} \cdot T_{\max } \end{gathered}$		2	$\begin{gathered} 30 \\ 100 \end{gathered}$	nA
$\mathrm{l}_{\text {ib }}$	$\begin{aligned} & \text { Input Bias Current - note }{ }^{2)} \\ & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min }} \cdot \mathrm{T}_{\text {amb }} \cdot \mathrm{T}_{\text {max }} \end{aligned}$		20	$\begin{aligned} & 150 \\ & 300 \end{aligned}$	nA
Avd	$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & V_{\mathrm{CC}}{ }^{+}=+15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{kX}-!\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V} \text { to } 11.4 \mathrm{~V} \\ & \mathrm{~T}_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min }} \cdot \mathrm{T}_{\text {amb }} \cdot \mathrm{T}_{\text {max }} \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100		V/mV
SVR	$\begin{aligned} & \text { Supply Voltage Rejection Ratio }\left(R_{s} \cdot 10 \mathrm{kX}\right) \\ & V_{C C}=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\min } \cdot T_{\text {amb }} \cdot T_{\text {max }} \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	110		dB
$I_{\text {cc }}$	Supply Current, all Amp, no load $\begin{aligned} & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\min } \cdot T_{\text {amb }} \cdot T_{\max } \end{aligned}$ $\begin{gathered} V_{C C}=+5 \mathrm{~V} \\ V_{C C}=+30 \mathrm{~V} \\ V_{C C}=+5 \mathrm{~V} \\ V_{C C}=+30 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 0.7 \\ & 1.5 \\ & 0.8 \\ & 1.5 \end{aligned}$	$\begin{gathered} 1.2 \\ 3 \\ 1.2 \\ 3 \end{gathered}$	mA
$V_{i c m}$	Input Common Mode Voltage Range $\begin{aligned} & V_{C C}=+30 \mathrm{~V} \cdot \text { note }^{3)} \\ & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\text {min }} \cdot T_{\text {amb }} \cdot T_{\text {max }} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & v_{C C}-1.5 \\ & V_{C C}-2 \end{aligned}$	V
CMR	$\begin{aligned} & \text { Common Mode Rejection Ratio }\left(\mathrm{R}_{\mathrm{s}} \cdot 10 \mathrm{kX}\right) \\ & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\min } \cdot T_{\text {amb }} \cdot T_{\text {max }} \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	80		dB
$\mathrm{I}_{\text {source }}$	$\begin{aligned} & \text { Output Current Source }\left(V_{\text {id }}=+1 \mathrm{~V}\right) \\ & V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{0}=+2 \mathrm{~V} \end{aligned}$	20	40	70	mA
$\mathrm{I}_{\text {sink }}$	$\begin{gathered} \text { Output Sink Current }\left(V_{\text {id }}=-1 \mathrm{~V}\right) \\ V_{C C}=+15 \mathrm{~V}, V_{0}=+2 \mathrm{~V} \\ V_{C C}=+15 \mathrm{~V}, V_{0}=+0.2 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \end{aligned}$		$\begin{gathered} \mathrm{mA} \\ \mathrm{nA} \end{gathered}$
V_{OH}	High Level Output Voltage $\begin{array}{ll} V_{C C}=+30 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{kX} \\ \mathrm{~T}_{\text {amb }}=+25^{\circ} \mathrm{C} & \\ T_{\min } \cdot T_{\text {amb }} \cdot T_{\text {max }} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{kX} \\ T_{\text {amb }}=+25^{\circ} \mathrm{C} & \\ T_{\min } \cdot T_{\text {amb }} \cdot T_{\text {max }} & \\ V_{C C}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{kX} & \\ T_{\text {amb }}=+25^{\circ} \mathrm{C} & \\ T_{\text {min }} \cdot T_{\text {amb }} \cdot T_{\max } & \\ \hline \end{array}$	$\begin{aligned} & 26 \\ & 26 \\ & 27 \\ & 27 \\ & \\ & 3.5 \\ & 3 \end{aligned}$	27 28		V

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vol	$\begin{aligned} & \text { Low Level Output Voltage }\left(R_{L}=10 \mathrm{kX}\right) \\ & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\min } \cdot T_{\text {amb }} \cdot T_{\text {max }} \end{aligned}$		5	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	mV
SR	Slew Rate $V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{i}}=0.5$ to $3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{kX}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, unity Gain		0.4		V/ns
GBP	Gain Bandwidth Product $V_{C C}=30 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}, \mathrm{~V}_{\text {in }}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{kX}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		1.3		MHz
THD	Total Harmonic Distortion $\mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=20 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{kX}-\mathrm{V}_{0}=2 \mathrm{~V}_{\mathrm{pp}}-!\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}$		0.015		\%
e_{n}	Equivalent Input Noise Voltage $f=1 \mathrm{kHz}, R_{S}=100 \mathrm{X}-\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$		40		$\frac{n V}{\sqrt{H z}}$
DV ${ }_{\text {io }}$	Input Offset Voltage Drift		7	30	$\mathrm{nV} /{ }^{\circ} \mathrm{C}$
$\mathrm{Dl}_{\text {lio }}$	Input Offset Current Drift		10	200	$\mathrm{pA}{ }^{\circ} \mathrm{C}$
V_{01} / V_{02}	$\begin{gathered} \text { Channel Separation - note }{ }^{4)} \\ 1 \mathrm{kHz} \cdot!f \cdot!20 \mathrm{kHZ} \end{gathered}$		120		dB

1. $V_{0}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \mathrm{X}, 5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}{ }^{+}<30 \mathrm{~V}, 0<\mathrm{V}_{\mathrm{ic}}<\mathrm{V}_{\mathrm{CC}}{ }^{+}-1.5 \mathrm{~V}$
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than $0: 3 \mathrm{~V}$. The upper end of the common-mode voltage range is $\mathrm{V}_{\mathrm{CC}}^{+}-1.5 \mathrm{~V}$. but either or both inputs can go to +32 V without damage.
4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences.

TYPICAL SINGLE - SUPPLY APPLICATIONS

AC COUPLED INVERTING AMPLIFIER

AC COUPLED NON INVERTING AMPLIFIER

TYPICAL SINGLE - SUPPLY APPLICATIONS

NON-INVERTING DC GAIN

HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER

DC SUMMING AMPLIFIER

LOW DRIFT PEAK DETECTOR

TYPICAL SINGLE - SUPPLY APPLICATIONS

ACTIVER BANDPASS FILTER

$$
\begin{aligned}
& F_{0}=1 \mathrm{kHz} \\
& Q=50 \\
& A_{V}=100(40 \mathrm{~dB})
\end{aligned}
$$

HIGHINPUTZ, DC DIFFERENTIAL AMPLIFIER

USING SYMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT (GENERAL CONCEPT)

MACROMODEL

** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :

* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPL.Y
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM124 13245 (analog)
.MODEL MDTH D IS=1E-8 KF=3.104131E-15
CJO $=10 \mathrm{~F}$
*INPUT STAGE
CIP 25 1.000000E-12
CIN 15 1.000000E-12
EIP 105251
EIN 165151
RIP $10112.600000 \mathrm{E}+01$
RIN $15162.600000 \mathrm{E}+01$
RIS 1115 2.003862E+02
DIP 1112 MDTH 400E-12
DIN 1514 MDTH 400E-12
VOFP 1213 DC 0
VOFN 1314 DC 0
IPOL 135 1.000000E-05
CPS 1115 3.783376E-09
DINN 1713 MDTH 400E-12

VIN $1750.000000 \mathrm{e}+00$
DINR 1518 MDTH 400E-12
VIP 418 2.000000E+00
FCP 45 VOFP $3.400000 \mathrm{E}+01$
FCN 54 VOFN $3.400000 \mathrm{E}+01$
FIBP 25 VOFN 2.000000E-03
FIBN 51 VOFP $2.000000 \mathrm{E}-03$

* AMPLIFYING STAGE FIP 519 VOFP $3.600000 \mathrm{E}+02$
FIN 519 VOFN 3.600000E+02
RG1 195 3.652997E+06
RG2 194 3.652997E+06
CC 195 6.000000E-09
DOPM 1922 MDTH 400E-12
DONM 2119 MDTH 400E-12
HOPM 2228 VOUT 7.500000E+03
VIPM 284 1.500000E+02
HONM 2127 VOUT 7.500000E+03
VINM $5271.500000 \mathrm{E}+02$
EOUT 26231951
VOUT 2350
ROUT 26320
COUT 35 1.000000E-12
DOP 1925 MDTH 400E-12
VOP 425 2.242230E+00
DON 2419 MDTH 400E-12
VON 245 7.922301E-01
.ENDS

ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{cc}}{ }^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}{ }^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Conditions	Value	Unit
$V_{\text {io }}$		0	mV
A_{vd}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{kX}$	100	V / mV
l_{cc}	No load, per amplifier	350	nA
$V_{\text {icm }}$		-15 to +13.5	V
V_{OH}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{kX}!\left(\mathrm{V}_{\mathrm{CC}}{ }^{+}=15 \mathrm{~V}\right)$	+13.5	V
$\mathrm{V}_{\text {OL }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{kX}$	5	mV
los	$\mathrm{V}_{0}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}$	+40	mA
GBP	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{kX}-\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	1.3	MHz
SR	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{kX}+\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	0.4	V / ns

PACKAGE MECHANICAL DATA
14 PINS - PLASTIC DIP

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
a1	0.51			0.020		
B	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		2.54			0.335	
e		15.24			0.100	
e3			7.1		0.600	
F			5.1			0.280
i					0.130	0.201
L		3.3				0.100
Z	1.27					

PACKAGE MECHANICAL DATA

14 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
a1	0.1		0.2	0.004		0.008
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.020	
c1	45° (typ.)					
D (1)	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		7.62			0.300	
F (1)	3.8		4.0	0.150		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.020		0.050
M			0.68			0.027
S	8° (max.)					

Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrisions shall not exceed 0.15 mm (.066 inc) ONLY FOR DATA BOOK.

PACKAGE MECHANICAL DATA
14 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.20			0.05
A1	0.05		0.15	0.01		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.15
C	0.09		0.20	0.003		0.012
D	4.90	5.00	5.10	0.192	0.196	0.20
E		6.40			0.252	
E1	4.30	4.40	4.50	0.169	0.173	0.177
e		0.65			0.025	
K	0°		8°	$0{ }^{\circ}$		8°
L	0.450	0.600	0.750	0.018	0.024	0.030
L1		1.00			0.039	
aaa			0.100			0.004

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use, No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israet - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com

This datasheet has been download from: www.datasheetcatalog.com

Datasheets for electronics components.

TO-220 TO-220FP Fual Pak

TYPE NO.		${ }^{\prime} \mathrm{C}$	P_{D}		$\mathrm{BV}_{\text {CEO }}$	$\mathrm{h}_{\text {FE }}$		@ ${ }^{\text {c }}$	$V_{C E(S A}$	@ ${ }^{1} \mathrm{C}$	
NPN	PNP	(A) MAX	(W)	(V) MIN	(V) MIN	MIN	MAX	(A)	$\begin{gathered} \text { (V) } \\ \text { MAX } \end{gathered}$	(A)	$\begin{aligned} & \text { (MHz) } \\ & \text { MIIN } \end{aligned}$
2N5294		4.0	36	80	70	30	120	0.5	1.0	0.5	0.8
2N5296		4.0	36	60	40	30	120	1.0	1.0	1.0	0.8
2N5298		4.0	36	80	60	20	80	1.5	1.0	1.5	0.8
2N5490		7.0	50	60	40	20	100	2.0	1.0	2.0	0.8
2N5492		7.0	50	75	55	20	100	2.5	1.0	2.5	0.8
2N5494		7.0	50	60	40	20	100	3.0	1.0	3.0	0.8
2N5496		7.0	50	90	70	20	100	3.5	1.0	35	0.8
2N6043	2N6040	10	75	60	60	1,000	20,000	4.0	2.0	4.0	4.0
2N6044	2N6041	10	75	80	80	1,000	20,000	4.0	2.0	4.0	4.0
2N6045	2N6042	10	75	100	100	1,000	20,000	3.0	2.0	3.0	4.0
2N6099		10	75	70	60	20	80	4.0	2.5	10	5.0
2N6101		10	75	80	70	20	80	5.0	2.5	10	5.0
2N6103		16	75	45	40	15	80	8.0	2.5	16	5.0
2N6121	2N6124	4.0	40	45	45	25	100	1.5	0.6	1.5	2.5
2N6122	2N6125	4.0	40	60	60	25	100	1.5	0.6	1.5	2.5
2N6123	2N6126	4.0	40	80	80	20	80	1.5	0.6	1.5	2.5
2N6129	2N6132	7.0	50	40	40	20	100	2.5	1.4	7.0	2.5
2N6130	2N6133	7.0	50	60	60	20	100	2.5	1.4	7.0	2.5
2N6131	2N6134	7.0	50	80	80	20	100	2.5	1.8	7.0	2.5
2N6288	2N6111	7.0	40	40	30	30	150	2.0	3.5	7.0	4.0
2N6290	2N6109	7.0	40	60	50	30	150	2.5	3.5	7.0	4.0
2N6292	2N6107	7.0	40	80	70	30	150	3.0	3.5	7.0	4.0
2N6386	2N6666	8.0	65	40	40	1,000	20,000	3.0	2.0	3.0	20
$2 N 6387$	2N6667	10	65	60	60	1,000	20,000	5.0	2.0	5.0	20
2N6388	2N6668	10	65	80	80	1,000	20,000	5.0	2.0	5.0	20
2N6473	2N6475	4.0	40	110	100	15	150	1.5	1.2	1.5	4.0
2N6474	2N6476	4.0	40	130	120	15	150	1.5	1.2	1.5	4.0
2N6486	2N6489	15	75	50	40	20	150	5.0	1.3	5.0	5.0
2N6487	2N6490	15	75	70	60	20	150	5.0	1.3	5.0	5.0
2N6488	2N6491	15	75	90	80	20	150	5.0	1.3	5.0	5.0

92
Shaded areas indicate Darlington.
Available in TO-220FP Full Pak upon request.
www.centralsemi.com

es the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25 Deg. C

Fig. 3. Output Characteristics
@ 125 Deg. C

Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Em itter voltage

Fig. 2. Extended Output Characteristics @ 25 deg. C

Fig. 4. Dependence of $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ on Temperature

Fig. 6. Input Admittance

Fig. 7. Trans conductance

Fig. 9. Dependence of Turn-Off Energy on I_{c}

Fig. 11. Dependence of Turn-Off Switching Time on R_{G}

Fig. 8. Dependence of Turn-Off Energy on R_{G}

Fig. 10. Dependence of Turn-Off Energy on Tem perature

Fig. 12. Dependence of Turn-Off Switching Time on I_{c}

s the right to change limits, test conditions, and dimensions

Fig. 13. Dependence of Turn-Off Switching Time on Temperature

Fig. 15. Capacitance

Fig. 14. Gate Charge

DECADE COUNTER WITH 10 DECODED OUTPUTS

- MEDIUM SPEED OPERATION : 10 MHz (Typ.) at $V_{D D}=10 \mathrm{~V}$
- FULLY STATIC OPERATION
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED UP TO 20 V
- 5V, 10V AND 15 V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT $I_{1}=100 \mathrm{nA}(\mathrm{MAX}) A T V_{D D}=18 \mathrm{~V} T_{A}=25^{\circ} \mathrm{C}$
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

The HCF4017B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4017B is 5 -stage Johnson counter having 10 decoded outputs. Inputs include a CLOCK, a RESET, and a CLOCK INHIBIT signal. Schmitt trigger action in the clock input circuit provides pulse shaping that allows unlimited clock input pulse rise and fall times. This counter is advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advanced via the clock line is inhibited

ORDER CODES

PACKAGE	TUBE	T \& R
DIP	HCF4017BEY	
SOP	HCF4017BM1	HCF4017M013TR

when the CLOCK INHIBIT signal is high. A high RESET signal clears the counter to its zero count. Use of the Johnson decade-counter configuration permits high speed operation, 2 -input decimal decode gating and spike-free decoded outputs. Anti-lock gating is provided, thus assuring proper counting sequence. The decoded outputs are normally low and go high only at their respective decoded time slot. Each decoded output remains high for one full clock cycle. A CARRY - OUT signal completes one cycle every 10 clock input cycles and is used to ripple-clock the succeeding device in a multi-device counting chain.

PIN CONNECTION

INPUT EQUIVALENT CIRCUIT

FUNCTIONAL DIAGRAM

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$3,2,4,7,10$, $1,5,6,9,11$	0 to 9	Decoded Decimal Output
14	CLOCK	Clock Input
13	CLOCK INHIBIT	Clock Inhibit Input
15	RESET	Reset Input
12	CARRY OUT	Carry Output
8	$V_{S S}$	Negative Supply Voltage
16	$V_{\text {DD }}$	Positive Supply Voltage

TRUTH TABLE

CLOCK	CLOCK INHIBIT	RESET	DECODED OUTPUT
X	X	H	Q_{0}
L	X	L	Q_{n}
X	H	L	Q_{n}
Γ	L	L	Q_{n+1}
L	L	L	Q_{n}
H	-	L	Q_{n}
H	L	L	$\mathrm{Q}_{\mathrm{n}+1}$

X : Don't Care
Qn: No Change

LOGIC DIAGRAM

This logic diagram has not be used to eslimate propagation delays

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	-0.5 to +22	V
$\mathrm{~V}_{I}$	DC Input Voltage	-0.5 to $\mathrm{V}_{D D}+0.5$	V
I_{1}	DC Input Current	≥ 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
$\mathrm{~T}_{\text {Op }}$	Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
All voltage values are referred to $\mathrm{V}_{S S}$ pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply Voltage	3 to 20	V
V_{1}	Input Voltage	0 to $V_{D D}$	V
$\mathrm{~T}_{\mathrm{Op}}$	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$

HCF4017B

DC SPECIFICATIONS

Symbol	Parameter	Test Condition				Value							Unit
		$\begin{gathered} V_{1} \\ (V) \end{gathered}$	$\begin{aligned} & V_{0} \\ & \text { (V) } \end{aligned}$	$\begin{array}{\|c\|} \|l\| l \mid \\ (\mathrm{nA}) \end{array}$	$V_{D D}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
						Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
I_{L}	Quiescent Current	$0 / 5$			5		0.04	5		150		150	
		$0 / 10$			10		0.04	10		300		300	
		0/15			15		0.04	20		600		600	nA
		0/20			20		0.08	100		3000		3000	
V_{OH}	High Level Output Voltage	$0 / 5$		<1	5	4.95			4.95		4.95		
		$0 / 10$		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output Voltage	5/0		<1	5		0.05			0.05		0.05	
		$10 / 0$		<1	10		0.05			0.05		0.05	V
		$15 / 0$		<1	15		0.05			0.05		0.05	
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage		$0.5 / 4.5$	<1	5	3.5			3.5		3.5		
			1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		4.5/0.5	<1	5			1.5		1.5		1.5	
			9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
$\mathrm{IOH}^{\mathrm{OH}}$	Output Drive Current	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		
		$0 / 5$	4.6	<1	5	-0.44	-1		-0.36		-0.36		mA
		$0 / 10$	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		mA
		$0 / 15$	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I_{OL}	Output Sink Current	$0 / 5$	0.4	<1	5	0.44	1		0.36		0.36		
		0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mA
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
1	Input Leakage Current	0/18	Any Input		18		$\geq 10^{-5}$	≥ 0.1		≥ 1		≥ 1	nA
C_{1}	Input Capacitance		Any Inp				5	7.5					pF

The Noise Margin for both " 1 " and " 0 " level is: 1 V min. with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, 2 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, 2.5 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{\text {amb }}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{KX}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$)

Symbol	Parameter	Test Condition		Value (*)			Unit
		$V_{D D}(\mathrm{~V})$		Min.	Typ.	Max.	
CLOCKED OPERATION							
$\mathrm{t}_{\mathrm{PLH}} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time (decode out)	5			325	650	ns
		10			135	270	
		15			85	170	
	Propagation Delay Time (carry out)	5			300	600	ns
		10			125	250	
		15			80	160	
$\mathrm{t}_{\text {THL }} \mathrm{t}_{\text {TLH }}$	Transition Time (carry out or decoded out lines)	5			100	200	ns
		10			50	100	
		15			40	80	
$\mathrm{f}_{\mathrm{CL}}{ }^{(1)}$	Maximum Clock Input Frequency	5		2.5	5	5	MHz
		10		5	10		
		15		5.5	11		
tw	Minimum Clock Pulse Width	5			100	200	ns
		10			45	90	
		15			30	60	
$t_{\text {r }}, \mathrm{t}_{\mathrm{f}}$	Clock Input Rise or Fall Time	5		unlimited			ns
		10					
		15					
$\mathrm{t}_{\text {setup }}$	Data Setup Time Minimum Clock Inhibit	5			115	230	ns
		10			50	100	
		15			35	75	
RESET OPERATION							
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time (carry out or decoded out lines)	5			265	530	ns
		10			115	230	
		15			85	170	
$t_{\text {W }}$	Minimum Reset Pulse Width	5			130	260	ns
		10			55	110	
		15			30	60	
$t_{\text {REM }}$	Minimum Reset Removal Time	5			200	400	ns
		10			140	280	
		15			75	150	

[^1](1) Measured with respect to carry out line.

TYPICAL APPLICATIONS
DIVIDE BY N COUNTER($N \leq 10$) WITH DECODED OUTPUTS

When the $\mathrm{N}^{\text {th }}$ decoded output is reached ($\mathrm{N}^{\text {th }}$ clock pulse) the S-R flip-flop (constructed from two NOR gates of the HCF4001B) generates a reset pulse which clears the HCF4017B to its zero count. At this time, if the $\mathrm{N}^{\text {th }}$ decoded output is greater than or equal to 6 , the $\mathrm{C}_{\text {OUT }}$ line goes high to clock the next HCF4017B counter section. The " 0 " decoded output also goes high at this time. Coincidence of the clock low and decoded "0" output high resets the S-R flip-flop to enable the HCF4017B. If the $\mathrm{N}^{\text {th }}$ decoded output is less than 6 , the COUT line will not go high and, therefore, cannot be used. In this case " 0 " decoded output may be used to perform the clocking function for the next counter.

TEST CIRCUIT

$C_{L}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=200 \mathrm{KX}$
$R_{T}=Z_{\text {OUT }}$ of pulse generator (typically 50 X)

WAVEFORM 1 : PROPAGATION DELAY TIMES ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2 : MINIMUM SETUP TIME (CLOCK INHIBIT TO CLOCK) ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 3 : PROPAGATION DELAY TIMES, MINIMUM RESET PULSE WIDTH ($\mathrm{f}=1 \mathrm{MHz}$; 50% duty cycle)

WAVEFORM 4 : MINIMUM SETUP TIME (CLOCK TO CLOCK INHIBIT) ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
0			20			0.787
E		8.5			0.335	
e		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
(c) The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com

IS1U60/IS1U60L

Features

1. 1-package design owing to adoption of OPIC
2. Compact
(Volume : About $1 / 8$ compared with GP1U58X)
3. B.P.F. (Band Pass Frequency) : (TYP. 38 kHz)
4. Aspherical lens

- Applications

1. Audio equipment
2. Cameras

Absolute Maximum Ratings			
Parameter	Symbol	Rating	Unit
Supply volage	V_{CC}	0 to 6.0	V
$\left.{ }^{\circ} \mathrm{C}\right)$			
Operating temperature	$\mathrm{T}_{\text {npr }}$	-10 to +60	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {sig }}$	-20 to +70	${ }^{\circ} \mathrm{C}$
${ }^{\circ}$ Soldering temperature	$\mathrm{T}_{\text {sul }}$	260	${ }^{\circ} \mathrm{C}$

[^2]*2 For 5 seconds

Sensors with 1-Package Design of Remote Control Detecting Functions owing to OPIC

- Outline Dimensions
(Unit : mm)

* Tolerance : ± 0.2

IS1U60L

(1) Vout
(2) GND
(3) V_{Cc}

* Tolerance : ± 0.2
* "OPIC" (Optical IC) is a trademark of the SitARP Corporation.

An OPIC consists of a lighr-detecting efoment and signal-processing circuit integrated unte a single chip.

E. Recommended Operating Conditions

Parameter	Symbol	$\begin{gathered} \text { Recynmenderdin } \\ \text { operatiny conditions } \end{gathered}$	Unit
Operating sugply voltage	Vcc	4.7 to 5.3	V

[^3]data books. etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any sharP's device.

- Electrical Characteristics
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Dissipation current	Icc	No input light	-	2.8	4.5	mA
High level output voltage	V Oif.	*3, Output terminal OPEN	$\mathrm{Vcc} \cdot 0.2$	-	-	V
Low level output voltage	$\mathrm{V}_{\text {OL }}$	*3, *4	.	0.45	0.6	V
High level pulse width	T1	*3	400	-	800	n s
Low level pulse width	T_{2}		400	-	800	ns
B.P.F. center frequency	f_{0}		-	38	-	kHz
Linear ultimate distance	L	$\mathrm{g}, \mathrm{r}=0^{\circ}, \mathrm{E}_{0}<101 \mathrm{x}$	5.0	-	-	m
Linear ultimate distance	L_{1}	$\begin{aligned} & g= \pm 30^{\circ}\left(r=0^{\circ}\right) \\ & r= \pm 15^{\circ}\left(g=0^{\circ}\right) E_{c}<101 x \end{aligned}$	3.0	-	-	m

3 The burst wave as shown in the following figure shall be transmitted.
4 Pull-up resistance : 2.2 kX
${ }_{5}$ By SIIARP' Transmituer

I Internal Block Diagram

I Performance

sing the transmitter shown in Fig. I, the output signal of the light delecting unit is good enough to meet the following items in the standard optical system in Fig. 2.
) Lincar reception distance characteristics
When $\mathrm{L}=0.2$ to 5 m . $\mathrm{Ee}<10 \mathrm{~lx}\left({ }^{*} 4\right)$ and $\mathrm{g}=0^{\circ}$ in Fig. 2, the output signal shall meet the elcetrical characteristics in the atached list.
!) Sensitivity angle reception distance characteristics
When $L=0.2$ to $3 \mathrm{~m}, \mathrm{Ee}<101 \mathrm{x}\left({ }^{*} 4\right)$ and $\mathrm{g}<=30^{\circ}$ in the direction X and $\mathrm{r}=0^{\circ}$ in the direction Y in Fig. 2,
the output signal shall meet the electrical characteristics in the attached list Further, the electrical characteristics shall be met when $\mathrm{L}=0.2$ to $5 \mathrm{~m} . \mathrm{Ee}<101 \times\left({ }^{*} 4\right)$ and $\mathrm{g}=0^{\circ}$ in the direction X and $\mathrm{r}<=15^{\circ}$ in the direction Y .
*4 It refers to detector face illuminance.

Fig. 1 Transmitter
a the above figure, the transmitter should be set so that the output Vout can be 40 mV p. p .
lowever, the PD49PI to be used here should be of the short-circuit current $\mathrm{I}_{\mathrm{sc}}=2.6 \mathrm{n} \mathrm{A}$ at $\mathrm{Ev}=100 \mathrm{Ix}$.
$E v$ is an illuminance by CIE standard light source A (tungsten lamp).)

Fig. 2 Standard optical system

IS1U60/IS1U60L

■ Features

1. 1-package design owing to adoption of OPIC
2. Compact
(Volume : About 1/8 compared with GP1U58X)
3. B.P.F. (Band Pass Frequency) : (TYP. 38 kHz)
4. Aspherical lens

E Applications

1. Audio equipment
2. Cameras

E Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	$\mathrm{Vcc}_{\mathrm{cc}}$	0 to 6.0	V
${ }^{*}$ Operating temperature	$\mathrm{T}_{\text {opr }}$	-10 to +60	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-20 to +70	${ }^{\circ} \mathrm{C}$
${ }^{*}$ Soldering temperature	$\mathrm{T}_{\text {sol }}$	260	${ }^{\circ} \mathrm{C}$

*1 No dew condensation is allowed
*2 For 5 scconds

Sensors with 1-Package Design of Remote Control Detecting Functions owing to OPIC

* "OPIC" (Optical IC) is a trademark of the SHARP Corporation,

An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

Recommended Operating Conditions

Parameter	Symbol	Recommendedc operating conditions	Unit
Operating supply voltage	V_{cc}	4.7 to 5.3	V

[^4]| E Electrical Characteristics | | | | $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}\right)$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| Dissipation current | Icc | No input light | - | 2.8 | 4.5 | mA |
| High level output voltage | V_{OH} | *3, Output terminal OPEN | Vcc- 0.2 | - | - | V |
| Low level output voltage | V_{OL} | *3, *4 | - | 0.45 | 0.6 | V |
| High level pulse width | T_{1} | *3 | 400 | - | 800 | $\mu \mathrm{s}$ |
| Low level pulse width | T_{2} | | 400 | - | 800 | $\mu \mathrm{s}$ |
| B.P.F. center frequency | fo | | - | 38 | - | kHz |
| Linear ultimate distance | L | $\phi, \theta=0^{\circ}, \mathrm{E}_{\mathrm{e}}<10 \mathrm{~lx}$ | 5.0 | - | - | m |
| Linear ultimate distance | L, | $\begin{aligned} & \phi= \pm 30^{\circ}\left(\theta=0^{\circ}\right) \\ & \theta= \pm 15^{\circ}\left(\phi=0^{\circ}\right) \mathrm{E}_{\mathrm{e}}<10 \mathrm{~lx} \end{aligned}$ | 3.0 | - | - | m |

* 3 The burst wave as shown in the following figure shall be transmitted.
*4 Pull-up resistance : $2.2 \mathrm{k} \Omega$
*5 By SHARP transmitter

■ Internal Block Diagram

Performance

Using the transmitter shown in Fig. 1, the output signal of the light detecting unit is good enough to meet the following items in the standard optical system in Fig. 2.
(1) Linear reception distance characteristics

When $\mathrm{L}=0.2$ to $5 \mathrm{~m}, \mathrm{Ee}<10 \mathrm{ix}\left({ }^{*} 4\right)$ and $\phi=0^{\circ}$ in Fig. 2, the output signal shall meet the electrical characteristics in the attached list.
(2) Sensitivity angle reception distance characteristics

When $\mathrm{L}=0.2$ to $3 \mathrm{~m}, \mathrm{Ee}<10 \mathrm{Ix}\left({ }^{*} 4\right)$ and $\phi<=30^{\circ}$ in the direction X and $\theta=0^{*}$ in the direction Y in Fig. 2,
the output signal shall meet the electrical characteristics in the attached list Further, the electrical characteristics shall be met when $\mathrm{L}=0.2$ to $5 \mathrm{~m}, \mathrm{Ee}<101 \mathrm{x}\left({ }^{*} 4\right)$ and $\phi=0^{\circ}$ in the direction X and $\theta<=15^{\circ}$ in the direction Y .
*4 It refers to detector face illuminance.

Fig. 1 Transmitter

In the above figure, the transmitter should be set so that the output Vout can be $40 \mathrm{mV} \mathrm{P}-\mathrm{p}$.
However, the PD49PI to be used here should be of the short-circuit current $\mathrm{I}_{\mathrm{sc}}=2.6 \mu \mathrm{~A}$ at $\mathrm{Ev}=100 \mathrm{~lx}$.
(Ev is an illuminance by CIE standard light source A (tungsten lamp).)

Fig. 2 Standard optical system

Fig. 1 B.P.F. Frequency Characteristics (TYP.)

Fig. 3 Sensitivity Angle (Direction Y)

Fig. 5 AEHA (Japan Association of Electrical Home Appliances)

Fig. 2 Sensitivity Angle (Direction X) Characteristics (TYP.) for Reference

Fig. 4 Relative Reception Distance vs. Ambient Temperature (TYP.) for Reference

(Conditions)

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=\mathrm{RT}, \phi=0^{\circ} . \mathrm{Ee}<10 \mathrm{~lx}$

$\mathrm{T}=430 \mu \mathrm{~s}$

Fig. 6 Spectral Sensitivity for Reference

■ Precautions for Operation

(1) Use the light emitting unit (remote control transmitter), in consideration of performance, characteristics, operating conditions of light emitting device and the characteristics of the light detecting unit.
(2) Pay attention to a malfunction of the light detecting unit when the surface is stained with dust and refuse. Care must be taken not to touch the light detector surface.

- Conduct cleaning as follows.
(3) Cleaning

Solvent dip cleaning : Solvent temperature of $45^{\circ} \mathrm{C}$ max., dipping time : Within 3 minutes
Ultrasonic cleaning : Elements are affected differently depending on the size of cleaning bath, ultrasonic output, time, size of PWB and mounting method of elements.
Conduct trial cleaning on actual operating conditions in advance to make sure that no problem results.

- Use the following solvents only.

Solvents : Ethyl alcohol, methyl alcohol or isopropyl alcohol
(4) To avoid the electrostatic breakdown of IC, handle the unit under the condition of grounding with human body, soldering iron, etc.
(5) Do not apply unnecessary force to the terminal.
(6) Example of recommended external circuit (mount outer mounting parts near the sensor as much as possible.)

PerFAST ${ }^{\text {TM }}$ IGBT

:imized for 10-25 KHz hard tching and up to 150 KHz onant switching

	Mounting torque $(\mathrm{M} 3)$	$1.13 / 10 \mathrm{Nm} / \mathrm{lb} . \mathrm{in}$.	
ght	TO-247 AD	6	g
	TO-268 SMD	4	g

ıbol	Test Conditions	Characteristic Values ($T_{J}=25^{\circ} \mathrm{C}$, unless otherwise specified)min. typ. max.				
n)	$\mathrm{I}_{\mathrm{c}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$		3.0		5.0	V
	$V_{\text {CE }}=V_{\text {cEs }}$ $V_{\text {GE }}=0 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{j}=150^{\circ} \mathrm{C} \end{aligned}$			50	$\stackrel{\mu}{\mu}$
	$\mathrm{V}_{\text {CE }}=0 \mathrm{~V}, \mathrm{~V}_{\text {GE }}= \pm 20 \mathrm{~V}$				± 100	nA
;at)	$\mathrm{I}_{\mathrm{c}}=30 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1.7	V

Test Conditions $\quad\left(T_{J}=\right.$	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)min. typ. max.	
$=30 \mathrm{~A}_{;} \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$ ilse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$	$20 \quad 36$	S
$\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{~V}_{\text {GE }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{r} 2560 \\ 180 \\ 54 \end{array}$	pF pF pF
$\mathrm{I}_{\mathrm{c}}=30 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=300 \mathrm{~V}$	$\begin{array}{r} 100 \\ 15 \\ 36 \end{array}$	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$
$\rangle \begin{aligned} & \text { Inductive load, } \mathrm{T}_{J}=\mathbf{2 5}{ }^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{C}}=30 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=400 \mathrm{~V}_{\mathrm{G}}=3.3 \Omega \end{aligned}$	$\begin{array}{r} 18 \\ 20 \\ 130 \\ 82 \\ 0.4 \end{array}$	
Inductive load, $\mathrm{T}_{3}=125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=30 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=400 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=3.3 \Omega \end{aligned}$	$\begin{array}{r} 18 \\ 20 \\ 0.3 \\ 240 \\ 150 \\ 1.10 \end{array}$	ns ns mJ ns ns mJ
(TO-247)	0.25	$\begin{array}{r} 0.42 \mathrm{KNW} \\ \mathrm{KW} \end{array}$

nmended Footprint
s in inches and mm)

Is the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25 Deg. C

Fig. 3. Output Characteristics
@ 125 Deg. C

Fig. 5. Colle ctor-to-Emitter Voltage vs. Gate-to-Emitter voltage

Fig. 2. Extended Output Characteristics @ 25 deg. C

Fig. 4. Dependence of $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ on Temperature

Fig. 6. Input Admittance

Fig. 7. Trans conductance

Fig. 9. Dependence of Turn-Off Energy on $I_{\text {c }}$

Fig. 11. Dependence of Turn-Off Switching Time on \mathbf{R}_{G}

Fig. 8. Dependence of Turn-Off Energy on R_{G}

Fig. 10. Dependence of Turn-Off Energy on Tem perature

Fig. 12. Dependence of Turn-Off Switching Time on I_{c}

is the right to change limits, test conditions, and dimensions.

Fig. 13. Dependence of Turn-Off Switching Time on Temperature

Fig. 14. Gate Charge

Fig. 15. Capacitance

Fig. 16. Maximum Transient Thermal Resistance

PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Electrical Characteristics $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise noted
$\mathbf{h}_{\text {FE }}$ Classification

Typical Characteristics

Figure 1. Static Characteristic

Figure 3. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

Figure 5. Collector Output Capacitance

Figure 2. DC current Gain

Figure 4. Base-Emitter On Voltage

Figure 6. Current Gain Bandwidth Product

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {tm }}$	SuperSOT ${ }^{\text {TM }}$ - 8
Bottomless ${ }^{\text {m }}$	ISOPLANAR $^{\text {TM }}$	SyncFET ${ }^{\text {TM }}$
Coolfet ${ }^{\text {m }}$	MICROWIRE ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {m }}$	POP ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	PowerTrench ${ }^{(1)}$	VCX ${ }^{\text {TM }}$
FACT ${ }^{\text {TM }}$	QFET ${ }^{\text {™ }}$	
FACT Quiet Series ${ }^{\text {¹ }}$	QS ${ }^{\text {™ }}$	
$\mathrm{FAST}^{\text {® }}$	Quiet Series ${ }^{\text {™ }}$	
FASTr ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	
GTO $^{\text {™ }}$	SuperSOT ${ }^{\text {m-6 }}$	

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Discrete POWER \& Signal
Technologies

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA . Sourced from Process 10. See PN100A for characteristics.

Absolute Maximum Ratings*		$T A=25^{\circ} \mathrm{C}$ unless otherwise noted	
Symbol	Parameter	Value	Units
$\mathrm{V}_{\text {Geo }}$	Collector-Emitter Voilage	30	V
$\mathrm{V}_{\text {cES }}$	Collector-Base Voltage	30	V
$\mathrm{V}_{\text {Ebo }}$	Emitter-Base Voltage	5.0	V
Ic_{c}	Collector Current - Continuous	500	mA
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

*These ratings are limiling values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consutted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

$T A=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristic	Max	Units
		$\mathrm{BC548/A/B/C}$	
P_{D}	Total Device Dissipation Derate above $25^{\circ} \mathrm{C}$	625	mW
$\mathrm{R}_{\text {OJC }}$	Thermal Resistance, Junction to Case	8.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {OJA }}$	Thermal Resistance, Junction to Ambient	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics TA $=25^{\circ} \mathrm{C}$ uniess otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units

OFF CHARACTERISTICS

$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{l}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{l}_{\mathrm{B}}=0$	30		V
$V_{\text {(BR)CBO }}$	Collector-Base Breakdown Voltage	$I_{C}=10 \mu A I_{E}=0$	30		V
$V_{\text {(BR)CES }}$	Collector-Base Breakdown Voltage	$I_{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	30		V
$\mathrm{V}_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{l}_{\mathrm{C}}=0$	5.0		V
$\mathrm{I}_{\text {cBo }}$	Collector Cutoff Current	$\begin{aligned} & V_{C B}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{A}}=+150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 15 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & n A \\ & \mu \mathrm{~A} \end{aligned}$

ON CHARACTERISTICS

h_{FE}	DC Current Gain	$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}$	548 548A 548 B 548C	$\begin{aligned} & 110 \\ & 110 \\ & 200 \\ & 420 \end{aligned}$	$\begin{aligned} & 800 \\ & 220 \\ & 450 \\ & 800 \end{aligned}$	
$\mathrm{V}_{\text {CE(sat) }}$	Collector-Emitter Saturation Voltage	$\begin{aligned} & I_{C}=10 \mathrm{~mA}, I_{\mathrm{B}}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5.0 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.25 \\ & 0.60 \\ & \hline \end{aligned}$	V
$\mathrm{V}_{\text {BE(O) }}$	Base-Emitter On Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \end{aligned}$		0.58	$\begin{aligned} & 0.70 \\ & 0.77 \end{aligned}$	V

SMALL SIGNAL CHARACTERISTICS

h_{fe}	Small-Signal Current Gain	$\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$, $\mathrm{f}=1.0 \mathrm{kHz}$ NF	Noise Figure	$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mu \mathrm{~A}$, $\mathrm{R}_{\mathrm{S}}=2.0 \mathrm{kS}, \mathrm{f}=1.0 \mathrm{kHz}$, $\mathrm{B}_{\mathrm{w}}=200 \mathrm{~Hz}$	

[^0]: Woles. 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 V DC

[^1]: (*) Typical temperature coefficient for all $V_{D D}$ value is $0.3 \% /^{\circ} \mathrm{C}$.

[^2]: * 1 No dew combersation is allowed.

[^3]: - In the absence of confirmation by device specificalion sheets, SHARP takes no responsibility for any defects thal occur in equipment using any of SHARP's devices, shown in catalogs.

[^4]: " In the absences of confimmation by device specificalion sheets, SHARP takes no responsibitity for any defects shat occur in equipment using any of SHARP's devices, shown in calalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specificalion sheets before using any SHARP's device."

