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ABSTRACT 

Fault detection and diagnosis have gained an importance in the automation process 

industries over the past decade. This is due to several reasons; one of them being that 

sufficient amount of data is available from the process plants. The goal of this project 

is to develop such fault diagnosis systems, which use the input-output data of the 

realm process plant to detect, isolate, and reconstruct faults.  The first part of this 

project focused on developing a different prediction models to the real system. 

Moreover, a linearized model using Taylor Series Expansion approach and ARX 

(Autoregressive with external input) model of the real system have been designed. In 

addition, the most accurate identification model which describes the dynamic 

behavior of the monitored system has been selected.  

Furthermore, a technique Statistical Process Control (SPC) used in fault diagnosis. 

This method depends on central limit theorem and used to detect faults by the 

analysis of the mismatch between the ARX model estimation and the process plant 

output. 

Finally the proposed methodology for fault diagnosis has been applied in numerical 

simulations to a non-isothermal CSTR (continuous stirred tank reactor) and the 

results and conclusion have been reported and showed excellent estimation of ARX 

model and good fault diagnosis performance of SPC. 
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Chapter 1 

INTRODUCTION  

1.1    Problem Statement 

Fault diagnosis becomes one of the critical issues of process plants and 

industrial automation due to the growing complexity of automation systems. 

Therefore, the growing demand for performance efficiency, reliability, dependability 

and safety of process plants creates the need of fault detection and isolation of the 

design system.  

1.2    Background study 

Since the early 70’s, the model based fault diagnosis technique has developed 

remarkably since then. Its efficiency in detecting faults in a system has been 

demonstrated by a great number of successful applications   industrial process and 

automatic control system.[1] 

1.3    Project Objectives 

The purpose of this project to develop a fault diagnosis approach that can 

detect, isolate and identify the system fault using system identification technique. 
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Chapter 2 

LITERATURE REVIEW  

2.1    Model Based Fault Diagnosis 

The concept of fault diagnosis is based on the following three important tasks 
[1] 

 Fault detection: to detect of the existence of fault in the process system. 

 Fault isolation: to determine the fault location. 

 Fault analysis/ estimation: to determine the type, size and cause of fault.[1] 

The concept of model based fault diagnosis is to run a process model in 

parallel to the process which is driven by the same process inputs. Moreover, the 

process model is implemented in a software form and describes the process 

dynamic and steady state of the system , which can be obtained using system 

identification technique.[1] 

In addition, a comparison of the measured process variables with the model 

process’s output will be made to detect any fault in the process. The difference 

between the measured and the estimated output signals is referred as residual 

which carries the most critical message for fault diagnosis.[2]
 

 

Input    System response  

 

                                                                                        Residual  

 

 

 

System 

System 

model 
Residual 

generation 

Figure 1: model based fault diagnosis block diagram 
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2.2    System Identification 

System identification is a general approach to determine a mathematical model of 

process from measured data and describe the dynamic behavior of the process. In 

addition, the system identification models can be built using one of the following 

approaches: 

 White box model: that based on the first principles such as physical laws, 

energy and material balances. This model valid over wide range of operating 

points. 

 Gray box model: this model developed from the first principles and part of it 

developed from experimental data. 

 Black box model: which is built from experimental data of the input and the 

output and the internal system parameters are hidden. 

 

                         Input                                                                   output                 

    

Furthermore, two common approaches of system identification are Auto Regressive 

with Exogenous input (ARX) and Auto Regressive Moving Average with Exogenous 

input (ARMAX). 

 

2.2.1    Linearization of process mode  

 

A non-linear system can be linearized via several methods such as[3]: 

1. Taylor series expansion method (local linearization method). 

2. Feedback linearization method. 

In this section, we will focus in Taylor series method only 

Considering a nonlinear system dynamics as follows:   

 

And Y=G(X) 

A linear model of the nonlinear system can be obtained using local 

linearization technique around a steady state operation point (X
o
, U

o,
 D

o
) as following: 

Black Box 
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Where  

;  

  ;  

And 

 

 

Computed at the steady state operating point (Xo
, U

o,
 D

o
) 

2.2.2    ARX Model 

A brief description of system identification using ARX (Autoregressive with 

exogeneous input[4]) model with parameters which are functions of input output. The 

ARX model that is the most widely applied linear dynamic model represented as 

follow: 

 

 

 

 

Where y[k] and u[k] are autoregressive variable or system output and 

exogeneous variable or system input at time k respectively, ai and bi are coefficients 

where i = 1,2,3,…,n and n is the system order .the coefficients of the ARX model 

depend only on y[j] and input u[j] :  = k-n, k-n+1,…,k at time k[5],[6]. 

Now, rewrite the ARX model in equation (2.5) as follow: 

 

 

 

Where 
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In addition, the operator q
-1

 can be considered as a unit delay operator (Z
-1

) in the 

conventional z-transformation[4, 7].by taking the z-transform of equation (2.5), we 

can obtain the following [8] 

 

 

 

2.2.3    ARX parameters estimation 

The identification of the ARX model depends only on the information of the input 

and output as stated previously. In this technique, the system is identified by 

estimating the parameters of the ARX model using input-output data[5]. 

Parameter estimation using least square approach is the most popular used technique 

in system identification[9] .moreover, for N available data samples, we can identify 

the following: 

 

 

 

In addition, ARX model parameters are defined by the least square method as 

follows: 

 

 

 

Where  
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The parameters is identified by repeating  the identification of the ARX over 

the given range of input-output data[5, 6]. Further, In order to estimate the ARX 

model parameters, (  ) has to be non-singular[4, 8]. 

 

Moreover, it is possible to estimate the ARX model parameters via least square 

criterion function as follow 

 

 

 

 

Where 

 is a defined scalar valued function of the ARX model parameter for given 

Z
N
.=[ u(1), y(1) u(1), y(1),…, u(2), y(2), u(N), y(N)] 

2.2.4    Statistic Process Control 

The rapidly growing demand for quality and productivity improvement of chemical 

process plants results in implementation of statistical process control (SPC) approach 

in process industry[10]. 

In addition, SPC technique has been proposed to monitor batch process with 

empirical models that built using Multi-way Principle Component Analysis 

(MPCA)[11], Principle Component Analysis (PCA), or Partial Least Squares 

(PLS)[10, 12]. 

The MPCA or the ordinary PCA are models that can be expressed as linear 

combination of the original variable values weighted by the corresponding 

eigenvectors[10].   

In addition, many obstacles have been faced I the application of SPC approach in the 

process industries such as: 

1. The dynamic behavior of most of the process plants is usually represented by 
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more than one output variable that very difficult to monitor all of them[13]. 

2. Most alarms will not go off until the fault is actually happened in the outputs, 

and it may be too late to prevent product quality from being fatally 

affected[13]. 

3. Measured noise on the outputs will often be large enough to cover any 

incipient faults until they become fatal[13]. 

 

In [14], an approach of multivariate control charts have been presented to monitor 

electrostatic separation process. Moreover, two output variables considered were the 

masses of product recovered in the middling and conductive compartments of the 

collector. The results shows that multivariate control charts can consider the existing 

correlations between the output variables of complex electrostatic separation 

processes. And it has been found that they can be implemented to monitor the global 

performances of process and detect any out-of-control states. 

 

A multivariate monitoring model has been built based on Principal Component 

Analysis (PCA) in [15].in addition, a monitoring strategy using multiple PCA models 

has been presented based on the soft-partition algorithms. The application was 

implemented to a three-tank plant to show the effectiveness of the method. Finally, 

the results demonstrate the feasibility of method. 

In [12],  multivariate statistical process control (SPC) charts have developed using  

principal component analysis (PCA)for a batch process. Measured data from a sulfite 

batch digester was used to develop a reference model. The result showed that an 

outlier could be detected quickly and easily using control charts and the contribution 

plot .statistical Process control for the batch digesters can be simplified via PCA/PLS 

and that leads to, reducing the number of bad batches by acting as an early  stage of 

detection for operators. 
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2.2.5    Output error 

Together with ARX and ARMAX the output error model is widely used. It is the 

simplest representative of the output error model class. Output error models are often 

more realistic models of reality and thus they often perform better than equation error 

models. However, because the noise model do not include the process denominator 

1/A(q) all output models are nonlinear in their parameters and consequently they are 

harder to estimate. 

The OE model is generally described by 

u(k)+v(k)  
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Chapter 3 

METHODOLOGY 

3.1    CSTR System description   

In order illustrate the idea of fault detection a non-isothermal continuous 

Stirred Tank Reactor (CSTR) is considered. CSTR is a mixer that used as an 

industrial chemical reactor where chemical components of a flow steam reside for 

some time in the tank before the final product. Hence, in this case the residence time 

distribution is a measure of extent of a chemical reaction. In addition, the process 

involves liquid phase reaction A (1)             B (1) where this reaction is highly 

exothermic and occurs in the reactor. CSTR has many variables that should be 

considered such as the flow rate through the tank F, the concentration (C), the tank 

volume (V), reactor temperature (T) and etc[16, 17] 

In addition, CSTR includes a proportional temperature controller to control the 

temperature of the reactor by manipulating the flow rate of the coolant flowing 

through the jacket. The level in the CSTR is controlled by level controller which 

manipulates the output flow rate of the reactor. [16, 17] 
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Figure 2: schematic of CSTR[16] 

 

 

 

Table 1: CSTR parameters 

Process parameters value 

Process flow rate (q) 100 l/min 

Reactor volume (V) 100 l 

Activation energy (E/R) 1X10
4
 K 

Feed temperature (To) 350 K 

Inlet coolant temperature (Tco) 350 K 

Inlet coolant concentration (Cao) 1.0 mol/l 

Reactive rate constant (K0) 7.2x10
10

 min
-1 

K1 1.44x10
13

 

K2 0.01 

K3 700 

 

3.2    Actual CSTR plant simulation 

A non-linear CSTR plant SIMULINK diagram is shown in Figure 3.and the 

non-linear plant has multiple steady states, as shown in Figure 4.    
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Figure 3:non-linear CSTR Plant simulation 

 

 

As illustrated in Figure 4, the output of the system shows a first order 

response for the coolant flow rate (input) at qc=85 l/min to qc=95 l/min. moreover, as 

the coolant flow rate increased beyond 100 l/min the system starts showing  a second 

order behavior (oscillations ) before settling down to its steady state. 

3.3    Linear CSTR model simulation 

The equations of CSTR non-linear plant are 

 

 

The developing of the linearized system matrices A, B and C as following:    
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As a result the linearized model is  

 

 

As mentioned in section 3.1, the non-linear CSTR plant is linearized around the 

following operation points 

qc
o
= 100 l/min                      , T

o
= 438.54 K                  , C

o
=0.103 mol/l 

As a result CSTR system matrices are obtained by linearizeing the actual CSTR plant 

around the chosen steady state. 

 

 

 

 

In addition, Figure 5 shows the linear CSTR model SIMULINK diagram. And Figure 

6 shows an acceptable estimation to the response of non-linear CSTR at the operation 

point. Moreover, Figure 6 illustrates an internal system parameter (reactor 

temperature T) that shows a non-linear behavior. 
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Figure 4: linear model CST simulation 
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3.4    Identification of linear ARX model 

 

Figure 5: ARX (3, 3) model Identification scheme 

 
 

 

Figure 6: ARX (3,3) model simulation 

 

 

 



 

 24 

3.5    Practical consideration on parameter estimation  

The accuracy of the least-square estimated parameters depends on the sampled 

data of the input u(k).therefore, the input must have the following criteria: 

1. The input should be rich enough in order to ensure that the matrix R is non-

singular. In addition, that requires the following: 

 Single sinusoids input must be avoided. In order to be able to 

distinguish between different transfer functions with exactly the same 

value at Z = e
jΩ

 [8]. 

 Sufficient input should include: sum of sinusoids with different 

amplitudes, frequencies, and phases and square wave[8]. 

2. The amplitude of the measured output y(k) should be greater than the 

measurement noise[8].  

3.5.1    Input-output Signal Scaling 

In order to have accurate and well-conditioned least-square estimated parameters, it 

is required that both input and output have the same level of amplitude. In addition, it 

is leads to scale the input, the output, or both of them. 

Furthermore, after the ARX model has been identified the system gain should be 

adjusted or rescaled to cancel the effect of the scaling process in the estimated output.   

3.5.2    Choice of sampling frequency 

The accuracy of the prediction or the estimation of the ARX model depends on the 

sampling frequency of the measured input-output data of the real system (CSTR 

plant). Moreover, the sampling frequency should be sufficiently large enough. 

However, having a large sample frequency to obtain an accurate identification of the 

real system will result in difficulties an problems in the CSTR plant identification due 

to[8]: 

 Very large sampling frequency leads to that the values of the observed output 

to the neighbor output y(k) and y(k+1) respectively, are very close and near 

equal  to each other which leads to a  poor prediction  of the ARX model.  

 In addition, it is also results in that the matrix R will have a singular value. 
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3.6    Statistical process control (SPC) approach 

The proposed technique used in fault diagnosis is the Statistical Process Control 

(SPC). This method depends on central limit theorem and used to detect faults by the 

analysis of the mismatch between the ARX or OE model estimation and the real 

CSTR process plant output. 

Upper Limit=    

Lower Limit=   

Where  is the mean and sigma (σ) is the standard deviation. 
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3.7    Procedure 

 

Start 

Data colllection

Good sampling 

rate ?

ARX model 

development 

Implement SPC

Check for 

mismatch? 

Accurate model 

parameters? 

Fault occur Fault free

End

YES

NO

YES

YES

NO

NO

 

Figure 7: Proposed fault diagnosis scheme 

3.8    Tools and equipment  

MATLAB SIMULINK has been used as the main tool and software for this project. 
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Chapter 4 

RESULTS AND DISCUSSION  

In order to develop an appropriate model for the CSTR plant, several models 

several model has been designed. Firstly, a linearized model was built as mentioned 

previously in the methodology chapter. 

Figure 7, 8 represent the estimated concentration and temperature respectively around 

the steady state point. 

 

Figure 8: estimated system response to unit step at qc=100 l/min 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: reactor temperature (T): internal system parameter 
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As shown in figure 9, a comparison of the actual CSTR plant and its linearized model 

is made. Moreover, for large step change the linear system is not able to estimate the 

actual response accurately. Meanwhile, after short time the linear system will 

estimate the actual response accurately. Furthermore, as the input increased to           

qc =110 l/min, the linear model cannot be able to estimate the actual plant response 

accurately. In other words, the linear model can only estimate an accurate response at 

the operating points of the actual system. Otherwise there will be a mismatch between 

the two responses. 

 

 

Output comparison at qc=85 l/min 

 

Figure 10: actual CSTR response vs. linearized model response 

 

The estimating of the parameters for different orders of ARX model is achieved and 

the estimated output is compared with the real output for different orders of ARX 

model as shown in Figure 10, 11 and 12. Figure 10 shows comparison between the 

plant output (CSTR) and the predicted output in a first order of ARX model.  

 

 

 

Actual plant concentration  

Linearized plant concentration  
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Figure 11: Comparison of the real output and the prediction by ARX (1, 1) model 

 

In addition an ARX(2,2) has been implemented also for the prediction of the CSTR 

output as shown in figure 11. Figure 12 uses ARX(3,3) for the prediction. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Comparison of the real output and the prediction by ARX (2, 2) model  
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Figure 13: Comparison of the real output and the prediction by ARX (3, 3) model 

 

Output Error (OE) model also has been implemented in the prediction using first 

order, second order and third order illustrated in figures 13,14 and 15. 

 

 

Figure 14: Comparison of the real output and the prediction by OE (1, 1) model 
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Figure 15: Comparison of the real output and the prediction by OE (2, 2) model 

 

 

 

Figure 16: Comparison of the real output and the prediction by OE (3, 3) model 

 

We notice in both cases using ARX and OE the third order model has better 

prediction. However, theoretically the probability of the noise is higher because we 

are depending on three past measurements for the delayed input and output. 

 

OE model has been utilized in the fault diagnosis of the plant. Figure 16 illustrate the 

plant when there is no fault detected. 
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Figure 17: fault free plant concentration  

 

Figure 17 shows fault detection as result in a variation in the CSRT plant. These 

variations are accrued due to input leakage. 

 

 

 

Figure 18: fault occurred in the concentration due to input leakage 

 

Figure 18 shows fault detection due to an internal changed in the plant which was 

simulated by changing some of the internal parameters in the SIMULINK block 

diagram. Figure 19 shows another possible fault due to a different variation in the 

internal parameter of the plant. 
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Figure 19: Possible Fault Pattern 

 

 

 

Figure 20: Another Possible Fault Pattern 
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Chapter 5 

CONCLUSION AND RECOMMENDAITON 

5.1    Conclusion 

 

The main aim of this project was to develop an efficient fault diagnosis 

approach that is able to detect, isolate, and identify fault in CSTR plant.  

The proposed model-based fault diagnosis scheme consists of two stages. The first 

part of this project focused on developing a different prediction models to the real 

system. Moreover, a linearized model using Taylor Series Expansion approach and 

ARX (Autoregressive with external input) model of the real system have been 

designed. In addition, the most accurate identification model which describes the 

dynamic behavior of the monitored system has been selected.  

Furthermore, a technique Statistical Process Control (SPC) used in fault diagnosis. 

This method depends on central limit theorem and used to detect faults by the 

analysis of the mismatch between the ARX model estimation and the process plant 

output. 

Finally, the proposed aproach for fault diagnosis has been applied in numerical 

simulations to a non-isothermal CSTR (continuous stirred tank reactor) and the 

results have been reported and showed excellent estimation of ARX model and good 

fault diagnosis performance of SPC. 

5.2    Recommendation  

This work can be extended where multiple statistical process control can be 

implemented for the purpose of fault diagnosis. Neural network architecture can be 

also implemented as a prediction methodology for the diagnosis scheme. A piratical 

test of the model will enhance the performance and will give a chance to correct any 

errors. 
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APPENDICES 

 

Appendix A: SIMULINK blocks Diagram. 

Appendix B: M-files codes used for the project 
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APPENDIX A: 

SIMULINK BLOCKS DIAGRAM 

 

 

Figure 21: ARX (1, 1) model Identification scheme 

 

Figure 22: ARX (1, 1) model simulation 
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Figure 23: ARX (2, 2) model Identification scheme 

 

Figure 24: ARX (2, 2) model simulation 
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Figure 25: OE (1, 1) model Identification scheme 
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Figure 26: OE (2, 2) model Identification scheme 

 

Figure 27: OE (3, 3) model Identification scheme 
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APPENDIX B: 

M-FILES CODES USED FOR THE PROJECT 

function pa1= paramest1(DInp,DCmag) 

n_inp=size(DInp); 

n_outp=size(DCmag); 

Yt=DCmag(100:6:n_outp); 

Yt_1=DCmag(99:6:n_outp-1); 

Xt_1=DInp(99:6:n_inp-1); 

U1=[Yt_1 Xt_1]; 

pa1=pinv(U1)*Yt; 

return 

 

 

function pa2= paramest2(DInp,DCmag) 

n_inp=size(DInp); 

n_outp=size(DCmag); 

Yt=DCmag(100:6:n_outp); 

Yt_1=DCmag(99:6:n_outp-1); 

Yt_2=DCmag(98:6:n_outp-2); 

Xt_1=DInp(99:6:n_inp-1); 

Xt_2=DInp(98:6:n_inp-2); 

U2=[Yt_1 Yt_2 Xt_1 Xt_2]; 

pa2=pinv(U2)*Yt; 

return 

 

 

 

 

function pa3= paramest3(DInp,DCmag) 

n_inp=size(DInp); 

n_outp=size(DCmag); 

Yt=DCmag(100:6:n_outp); 

Yt_1=DCmag(99:6:n_outp-1); 

Yt_2=DCmag(98:6:n_outp-2); 

Yt_3=DCmag(97:6:n_outp-3); 

Xt_1=DInp(99:6:n_inp-1); 

Xt_2=DInp(98:6:n_inp-2); 

Xt_3=DInp(97:6:n_inp-3); 

U3=[Yt_1 Yt_2 Yt_3 Xt_1 Xt_2 Xt_3]; 

pa3=pinv(U3)*Yt; 

return 
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function pa_1= paramest_1(DInp,Chat1_mag) 

m_inp=size(DInp); 

m_outp=size(Chat1_mag); 

Yt=Chat1_mag(100:6:m_outp); 

Yt_1=Chat1_mag(99:6:m_outp-1); 

Xt_1=DInp(99:6:m_inp-1); 

Q1=[Yt_1 Xt_1]; 

pa_1=pinv(Q1)*Yt; 

return 

 

 

 

function pa_2= paramest_2(DInp,Chat2_mag) 

m_inp=size(DInp); 

m_outp=size(Chat2_mag); 

Yt=Chat2_mag(100:6:m_outp); 

Yt_1=Chat2_mag(99:6:m_outp-1); 

Yt_2=Chat2_mag(98:6:m_outp-2); 

Xt_1=DInp(99:6:m_inp-1); 

Xt_2=DInp(98:6:m_inp-2); 

Q2=[Yt_1 Yt_2 Xt_1 Xt_2]; 

pa_2=pinv(Q2)*Yt; 

return 

 

 

 

 

function pa_3= paramest_3(DInp,Chat3_mag) 

m_inp=size(DInp); 

m_outp=size(Chat3_mag); 

Yt=Chat3_mag(100:6:m_outp); 

Yt_1=Chat3_mag(99:6:m_outp-1); 

Yt_2=Chat3_mag(98:6:m_outp-2); 

Yt_3=Chat3_mag(97:6:m_outp-3); 

Xt_1=DInp(99:6:m_inp-1); 

Xt_2=DInp(98:6:m_inp-2); 

Xt_3=DInp(97:6:m_inp-3); 

Q3=[Yt_1 Yt_2 Yt_3 Xt_1 Xt_2 Xt_3]; 

pa_3=pinv(Q3)*Yt; 

return 
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function pa_3= paramest_3(DInp,Chat3_mag) 

m_inp=size(DInp); 

m_outp=size(Chat3_mag); 

Yt=Chat3_mag(100:6:m_outp); 

Yt_1=Chat3_mag(99:6:m_outp-1); 

Yt_2=Chat3_mag(98:6:m_outp-2); 

Yt_3=Chat3_mag(97:6:m_outp-3); 

Xt_1=DInp(99:6:m_inp-1); 

Xt_2=DInp(98:6:m_inp-2); 

Xt_3=DInp(97:6:m_inp-3); 

Q3=[Yt_1 Yt_2 Yt_3 Xt_1 Xt_2 Xt_3]; 

pa_3=pinv(Q3)*Yt; 

return 

 

 


