DESIGN HARNESSING HOT SPRING'S ENERGY SYSTEM FOR COCOA BEANS DRYING

By

Muhamad Izdan Zul Izzi b. Mahamad Rezali

Dissertation Report submitted in fulfillment of the requirements for the Bachelor of Engineering (Hons) (Mechanical Engineering)

JANUARY 2009

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

DESIGN HARNESSING HOT SPRING'S ENERGY SYSTEM FOR COCOA BEANS DRYING

by

Muhamad Izdan Zul Izzi b. Mahamad Rezali

A project dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved:

(Tn. Hj. Kamal Ariff b. Zainal Abidin)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK January 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

MUHAMAD IZDAN ZUL IZZI B. MAHAMAD REZALI

ABSTRACT

Geothermal energy is a one type source of alternative energy. Countries like United Stated, Australia, New Zealand, China, Canada and Turkey have used this energy for some applications such as for electricity generation, space and district heating, air conditioning, greenhouse heating and others. The presence of volcanoes, hot springs and other thermal phenomena lead people to explore and study energy produced inside earth. In Malaysia, there are also some places have the hot springs in Tambun, Sungkai, Pengkalan Hulu, Manong and others and currently use for recreation and tourism. For this project, the author wants to study and understanding this one type of alternative energy and design suitable system to harness hot spring's energy and used for cocoa beans drying (industrial application). The problems that are being created from energy price hiking and our equator climate lead the author to find the solutions. The target is to design a suitable system which can harness hot spring's energy and applied it on cocoa beans drying process. Since the energy is free and continuously produced inside the earth, the author wants to find the way how to commercial the energy. The important elements that need to be determine before starts the design is the behaviour of cocoa beans while drying and the unknowns related to the design that must being determine using the experiment and engineering calculations. The design must be in details for future works. This project can solve the problems of inconsistently weather condition and high price for fuel and gas that being used for artificial drying. This project also can make improvement with maximizing the quantity of the dried cocoa beans without affecting the quality.

ACKNOWLEDGEMENTS

Bless to God for giving the author strength and chance to complete the Final Year Project (FYP) and this dissertation report. The author would like to extend his greatest gratitude to many individuals who contributed to this project. The first thank goes to his UTP Supervisor, Tn. HJ. Kamal Ariff b. Zainal Abidin for the supervision, information and advises plus giving freedom to learn throughout the project. This project could not complete without extensive assistance provide by Tn. Hj. Kamal Ariff b. Zainal Abidin The author also indebted with UTP Mechanical Engineering Lecturer, Prof Dr. Vijay R. Raghavan who spending his time with author giving technical expertise advises, explanations, knowledge and experiences as well. Thank you for your help. To all lecturers from Mechanical Engineering Department of University Technology of PETRONAS, thanks for giving the author cooperation and support in undergoing this project.

The author also wants to thank Mr. Dzazali Ayub from Mineral & Geosciences Department Malaysia, Dr. Lee Choon Hoi and Mrs Hajjah Faridah from Malaysia Cocoa Board who are really help him by giving information and advises during his visit. Last but not least, thank you to all friends and family who help author in making this project possible to finish, including the support, advice, encouragement and praying.

Thank you.

The Author,

Muhamad Izdan Zul Izzi b. Mahamad Rezali Mechanical Engineering Student, UTP

TABLE OF CONTENTS

Certification of Approval	ii
Certification of Originality	iii
Abstract	iv
Acknowledgement	v
Table of Contents	vi
List of Illustrations	viii

CHAPTER	INTRODUCTION	1
1	1.1 Background Studies	1
	1.2 Problem Statement	2
	1.3 Objectives	3
	1.4 Scope of Study	3
	1.5 Significance of the Project	4
CHAPTER	LITERATURE REVIEW	5
2	2.1 Theory Energy from Earth	5
	2.2 Direct Use of Geothermal Energy	8
	2.3 Tapping the Resource	9
	2.4 Cocoa Beans Drying Process	10
	2.5 Moisture of Cocoa Beans	13
	2.6 Sungai Klah Hot Springs	15
CHAPTER	METHODOLOGY	16
3	3.1 Start the Project	18
	3.2 Literature Review	18
	3.3 Visit Mineral & Geosciences Department	18
	3.4 Design Standard and Specifications	18
	3.5 Pre-Designing the System	19
	3.6 Visit Malaysia Cocoa Board	19

	3.8 Calculations Related to the Design	19
	3.8.1 Length of Steel Pipe	19
	3.8.2 Heat Transfer in the System	19
	3.8.3 Time of Drying	20
	3.9 Designing the System	20
CHAPTER	RESULTS AND DISCUSSIONS	21
4	4.1 Location selected	21
	4.2 Data Gathering	21
	4.3 Visit Mineral & Geosciences Department	21
	4.4 Design Standard and Specifications	21
	4.4.1 Alternative Solution	23
	4.5 Pre-Designing the System	23
	4.5.1 Drying House Process Flow	24
	4.6 Visit Malaysia Cocoa Board	26
	4.7 Experiment Cocoa Beans Drying	26
	4.8 Engineering Calculations Related to the Design	29
	4.8.1 Length of Steel Pipe	30
	4.8.2 Heat Transfer in the System	31
	4.8.3 Drying Time for the System	32
	4.9 Design of the System	33
	4.10 Discussions Regarding the Design	37
	4.11 Corrosion Prevention	. 37
	CONCLUSIONS AND DECOMMENDATIONS	20
	CONCLUSIONS AND RECOMMENDATIONS	
5		
	5.2 Recommendations	39
REFERENC	CES	40
APPENDIX	A: SUN DRYING METHOD	41
APPENDIX	B: LOCATION OF SUNGAI KLAH, PERAK	42
APPENDIX	C: CONDUCTIVE ZONE AT SUNGAI KLAH	43
	D: PROCEDURE COCOA BEANS DRYING EXPERIMENT	
APPENDIX	E: EXPERIMENT DRYING COCOA BEANS	46

LIST OF ILLUSTRATIONS

Figures

Figure 2.1: How Hot Water Produced Inside Earth	6
Figure 2.2: Natural Conditions of Water Cycle	6
Figure 2.3: Greenhouse	9
Figure 2.4: Cocoa Beans Dying Process Flow	11
Figure 2.5: Moisture Indicator	13
Figure 2.6: Electromagnetic SIROTEM	15
Figure 3.1: Flow Chart of the Project	17
Figure 4.1: Pre-Designing Harnessing System for Cocoa Beans Drying	25
Figure 4.2: Graph of Reduction Water versus Time	27
Figure 4.3: Graph Moisture of Content versus Time	28
Figure 4.4: Wall Thickness of Steel Pipe	29
Figure 4.5: Resistance in the System	29
Figure 4.6: Orthographic View of Rack	32
Figure 4.7: Orthographic View of Meshed Tray	34
Figure 4.8: Positions Trays on Rack	34
Figure 4.9: Orthographic View of Drying House	35
Figure 4.10: Design of the System	36

Tables

Table 4.1: Comparison with All Types of Cocoa Beans Drying System	23
Table 4.2: Result for Cocoa Beans Drying Experiment at 50 °C	26