sTATUS OF THESIS

Title of thesis | STUDY OF HIGH FREQUENCY RESONANT GATE |
| :---: |
| DRIVER FOR ZERO VOLTAGE SWITCHED |
| SYNCHRONOUS RECTIFIER BUCK CONVERTER |
| (ZVS-SRBC) CIRCUIT |

I,
NOR ZAIHAR YAHAYA
hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP
2. The IRC of UTP may make copies of the thesis for academic purposes only.
3. This thesis is classified as

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for \qquad years.

Remarks on disclosure:
\qquad
\qquad

Endorsed by:

Permanent address:
517 KG MERAWAN INDAH SIMPANG PULAI, 31300 KG KEPAYANG, PERAK.

Date : \qquad

Name of Supervisor:
ASSOC. PROF. DR. MUMTAJ BEGAM

UNIVERSITI TEKNOLOGI PETRONAS

STUDY OF HIGH FREQUENCY RESONANT GATE DRIVER FOR ZERO VOLTAGE SWITCHED SYNCHRONOUS RECTIFIER BUCK CONVERTER (ZVS-SRBC) CIRCUIT

by

NOR ZAIHAR YAHAYA

The undersigned certify that they have read, and recommend to the Postgraduate Studies Programme for acceptance this thesis for the fulfillment of the requirements for the degree stated.

Signature:
Main Supervisor:
ASSOC. PROF. DR. MUMTAJ BEGAM

Signature:
Co-Supervisor:
ASSOC. PROF. DR. MOHAMMAD AWAN

Signature:
Head of Department:
ASSOC. PROF. DR. NOR HISHAM HAMID

Date:

STUDY OF HIGH FREQUENCY RESONANT GATE DRIVER FOR ZERO VOLTAGE SWITCHED SYNCHRONOUS RECTIFIER BUCK CONVERTER (ZVS-SRBC) CIRCUIT

by
NOR ZAIHAR YAHAYA

A Thesis

Submitted to the Postgraduate Studies Programme
as a Requirement for the Degree of DOCTOR OF PHILOSOPHY

ELECTRICAL AND ELECTRONIC ENGINEERING DEPARTMENT UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR, PERAK

Title of thesis | STUDY OF HIGH FREQUENCY RESONANT GATE |
| :---: |
| DRIVER FOR ZERO VOLTAGE SWITCHED |
| SYNCHRONOUS RECTIFIER BUCK CONVERTER |

(ZVS-SRBC) CIRCUIT

I,

NOR ZAIHAR BIN YAHAYA

hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTP or other institutions.

Witnessed by:

Signature of Author

Permanent address:
517 KG MERAWAN INDAH
SIMPANG PULAI
31300 KG KEPAYANG, PERAK

Date : \qquad Date : \qquad

DEDICATION

Above all I want to dedicate this work

To my PARENTS for their loving care

To my wife, NOR ADELA DINYATI for her caring love

To my children:
NAIM ZAFRAN
NAZRIN AQASHAH

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisors, Assoc. Prof. Dr. Mumtaj Begam and Assoc. Prof. Dr. Mohammad Awan, who have never given up guiding me and correcting the mistakes I made, encouraged me to broaden my viewpoint and taught me the direction of my project. Their patience and dedication in directing to success and their goal of providing a reliable research working environment have helped me to complete my work successfully. Under their supervision, I grew professionally and they have showed me new challenges in my career.

Great thanks also go to Assoc. Prof. Dr. Nor Hisham Hamid and all my electrical engineering technicians for their critiques and suggestion in my work and specially to Mr. Isnani Alias for his assistance in preparing the printed circuit board.

I am very grateful to my parents who taught me the meaning of struggle in this life. I would also like to express my deep indebtedness to my wife and my children for their true love and support. Their love is the power in my life and always makes my life more colorful. Finally, I would like to acknowledge the Staff Development Program (SDP) for allowing me to further my studies at Universiti Teknologi PETRONAS.

Abstract

In this work, a new Synchronous Rectifier Buck Converter (SRBC) circuit is proposed that reduces low switching and conduction losses. Moreover, the Miller effect has also been reduced. The limitations of existing single-channel resonant gate driver (S-CRGD) is studied to determine the optimized parameter values in terms of duty cycle, dead time and resonant inductance. The findings result in designing the new SRBC circuit's symmetrical dual-channel resonant gate drive (D-CRGD). The aim is to generate low switching and gate drive losses by operating in Zero Voltage Switching (ZVS) and lower on-state drain voltage conditions. It is found that the SRBC can operate effectively at 1 MHz compared to the conventional SRBC in solving the issues of dead time and effect of switching frequency. Experimental results are presented to validate the analysis of the proposed design procedure and to demonstrate the performance of the proposed approach. In addition, several gate drive control schemes such as Fixed Dead Time (FDT), Adaptive Gate Drive (AGD) and Predictive Gate Drive (PGD) have been simulated and the results show that FDT can operate SRBC correctly with shorter dead time and eventually reduce body diode conduction loss. Even though FDT is prone to cross-conduction effect, the design stage is simple. Apart from this, AGD and PGD control schemes have also shown high level of efficiency. However, AGD generates more losses which makes PGD preferable in achieving a highly efficient converter although there are advantages in FDT scheme. | Keywords: Gate Drive, High Frequency, | Resonant | Snubber Network, | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Synchronous | Rectifier | Buck | Converter. |

Abstract

ABSTRAK

Di dalam hasil kerja ini, litar peronta segerak penerus (SRBC) yang baru telah dicadangkan bagi mengurangkan kehilangan pengaliran. Selain itu, kesan Miller juga telah berkurangan. Tujuan utama hasil kerja ini adalah untuk memahami keterbatasan reka bentuk litar get pemacu yang boleh menjejaskan prestasi litar. Penyelaku Pspice digunakan untuk menentukan nilai optimum pemacu galah tiang elu yang meliputi kitaran suis hidup, waktu mati dan kearuhan salunan. Litar saluran tunggal pemacu get resonans (S-CRGD) dinilai yang memberikan hasil dalam reka bentuk get pemacu salunan saluran simetri (D-CRGD) untuk litar SRBC. Tujuannya adalah untuk menghasilkan pensuisan rendah dan pengurangan get pemacu beroperasi di penguisan voltan sifar (ZVS). Ini menunjukkan bahawa SRBC boleh beroperasi secara efektif pada julat 1 MHz berbanding dengan litar lazim. Keputusan kajian berdasarkan prototaip $15-\mathrm{W}$ diusulkan untuk mengesahkan analisis tatacara rekabentuk yang dicadangkan dan untuk menunjukkan prestasi dari pendekatan yang dicadangkan. Selain itu, beberapa skim kawalan get pemacu telah diselakukan dan hasilnya menunjukkan bahawa waktu mati tetap (FDT) dapat membantu mendorong SRBC mengurangkan kerugian pengaliran tubuh diod. Walaupun FDT terdedah terhadap kesan lintas pengaliran, tahap reka bentuknya adalah mudah. Selain itu, pemacu get suai (AGD) dan pemacu get ramalan (PGD) skim kawalan juga menunjukkan tahap kecekapan yang tinggi. Namun, AGD terdapat beberapa kekurangan. Hal ini menjadikan PGD lebih baik walaupun terdapat kelebihan dalam skim FDT.

Kata kunci: Skim Litar Get Pemacu, Frekuensi Tinggi, Rangkaian Resonan, Litar Peronta Segerak Penerus

COPYRIGHT

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis.
© Nor Zaihar Yahaya, 2011
Institute of Technology PETRONAS Sdn Bhd All rights reserved.

TABLE OF CONTENTS

STATUS OF THESIS i
APPROVAL PAGE ii
TITLE PAGE iii
DECLARATION iv
DEDICATION V
ACKNOWLEDGEMENT vi
ABSTRACT vii
ABSTRAK viii
COPYRIGHT xi
TABLE OF CONTENTS X
LIST OF TABLES xiii
LIST OF FIGURES XV
LIST OF ABBREVIATIONS xix
LIST OF SYMBOLS XX
CHAPTER:

1. INTRODUCTION 1
1.1 Chapter Overview 1
1.2 Research Rationale 1
1.3 Research Objectives 2
1.4 Research Scope 2
1.5 Chapter Summary 3
2. LITERATURE REVIEW 5
2.1 Chapter Overview 5
2.2 Gate Drive Circuit 5
2.3 Review of Gate Drive Techniques 6
2.3.1 Hard Switching Conventional Gate Drive Circuit 7
2.3.2 Switching Requirement and Losses in SRBC 10
2.3.2.1 Switching Characteristics of MOSFET 12
2.3.2.2 Turn-On and Off Characteristics 13
2.4 Resonant Gate Drive Circuit 16
2.4.1 S-CRGD Circuit 18
2.4.2 Alternatives on S-CRGD Circuit Topologies 20
2.5 Resonant Switching 21
2.6 Q-Factor, Inductor Size and Performance of S-CRGD Circuit 23
2.7 Summary of S-CRGD Topology Characteristics 25
2.8 Synchronous Rectifier Buck Converter (SRBC) Power Stage Circuit 28
2.8.1 Switching of SRBC Circuit 31
2.8.2 Dead Time and Cross Conduction 32
2.8.3 $\quad S_{2}$ Body Diode Conduction 33
2.8.4 MOSFET's Switching and Conduction Losses 35
2.8.5 Gate and Reverse Recovery Losses of Driving MOSFET in SRBC 36
2.9 Ideal Operating Waveforms of SRBC 37
2.9.1 Soft-Switching Technique in SRBC 39
2.9.2 Selection of Operating Resonance Condition 40
2.10 Gate Drive Control Scheme for SRBC 42
2.10.1 Fixed Dead Time 43
2.10.2 Adaptive Gate Drive 46
2.10.3 Predictive Gate Drive 47
2.11 Load Variation on SRBC 49
2.11.1 Continuous Conduction Mode 50
2.11.2 Discontinuous Conduction Mode 50
2.12 Improving SRBC Weaknesses 51
2.13 Chapter Summary 51
3. METHODOLOGY 53
3.1 Chapter Overview 53
3.2 Parameter Limitations on S-CRGD Circuit 54
3.2.1 Power Stage Simulation Setup 55
3.2.1.1 Effects of Duty Ratio 56
3.2.1.2 Effects of Dead Time 56
3.2.1.3 Effects of Resonant Inductor. 57
3.2.2 Experimental Setup of S-CRGD Circuit 57
3.3 New D-CRGD Circuit 59
3.3.1 Experimental Setup of D-CRGD Circuit. 60
3.4 New SRBC Circuit. 61
3.5 Chapter Summary 63
4. RESULTS AND DISCUSSIONS 65
4.1 Chapter Overview 65
4.2 Simulation of S-CRGD Circuit 65
4.2.1 Optimization of Duty Ratio 67
4.2.2 Optimization of Resonant Inductor 69
4.2.3 Optimization of Dead Time 71
4.2.4 \quad Q-Factor Vs Inductor 73
4.2.5 Loss Analysis of S-CRGD Circuit 75
4.3 Operation of S-CRGD: Experimental Results 77
4.4 Operation of D-CRGD: Simulation Results 82
4.5 Operation of SRBC: Simulation Results 85
4.5.1 Resonant Configuration of New SRBC Circuit 92
4.6 New SRBC Circuit: Experimental Results 93
4.7 Chapter Summary 100
5. EXTENDED SIMULATION WORK: RESULTS AND DISCUSSIONS 101
5.1 Chapter Overview 101
5.2 Switching Loss Analysis and Loading Effects of Three SRBC 101
5.2.1 Switching Loss Analysis 102
5.2.2 Load Effects Analysis 107
5.3 Dead Time Variation in New SRBC Circuit 110
5.3.1 Circuit Performance for Several Dead Time of New SRBC 111
5.4 Resonant Inductor Current and Gate Voltage Analyses for Different Dead Times 113
5.5 Effects of Switching Frequency on New SRBC Circuit 114
5.5.1 Simulation Data: Effects of Switching Frequency 115
5.6 Effects of Duty Ratio on New SRBC Circuit 119
5.7 Numerical Verification on New SRBC Performance for T_{D} of 15 ns 120
5.8 Comparative Assessments of Gate Drive Control Scheme 121
5.8.1 Delay Controller Circuit 124
5.8.2 Comparison between FDT and AGD Control Schemes 127
5.8.3 Comparison between FDT and PGD Control Schemes 129
5.9 Efficiency Analyses of S-CRGD, SRBC and Gate Drive Control 135
5.10 Chapter Summary 141
6. CONCLUSIONS 143
6.1 Resonant Gate Drive Circuit 143
6.2 Synchronous Rectifier Buck Converter Circuit 144
6.3 Gate Drive Control Schemes. 144
6.4 Contribution of Work 145
6.5 Future Work 146
REFERENCES 147
LIST OF PUBLICATIONS 156
APPENDICES 158

LIST OF TABLES

Table 2.1 Summary of S-CRGD 26
Table 2.2 Issues of Auxiliary Circuits in SRBC 40
Table 2.3 Summary of Resonant Operation in DC/DC Converter 42
Table 2.4 Advantages and Disadvantages of Gate Drive Control Schemes 48
Table 3.1 Simulation Parameters of S-CRGD for $f_{s}=1 \mathrm{MHz}$ 55
Table 3.2 Experimental Parameters of S-CRGD for $f_{s}=1 \mathrm{MHz}$ 58
Table 3.3 Simulation Parameters of D-CRGD for $f_{s}=1 \mathrm{MHz}$ 60
Table 3.4 Experimental Parameters of D-CRGD for $f_{s}=1 \mathrm{MHz}$ 61
Table 3.5 Components Used in New SRBC Circuit 62
Table 4.1 Q-Factor Comparison of S-CRGD Performance 75
Table 4.2 S-CRGD: Comparison of Simulated and Experimental Data 81
Table 4.3 New SRBC: Comparison of Simulated and Experimental Results 100
Table 5.1 Comparison in Switching Losses of SRBC at 10Ω Load 104
Table 5.2 Average Switching Loss and Output Power of SRBC at 10Ω Load 110
Table 5.3 Dead Time Variation Settings for $f_{s}=1 \mathrm{MHz}$ 111
Table 5.4 Parameter Evaluation for Different Dead Time of New SRBC 111
Table 5.5 Comparison in Power Losses for Different Dead Time of New SRBC 112
Table 5.6 Total Switching Loss for Different L_{s} of New SRBC 112
Table $5.7 i_{L l}$, Peak Time, Rise Time, Recovery Time and $\mathrm{di}_{\mathrm{L} 1} / \mathrm{dt}$ of L_{l} for Different Dead Time of New SRBC 113
Table 5.8 Rise time, Fall Time and dv/dt of S_{1} and S_{2} for Different Dead Time of New SRBC 113
Table 5.9 Switching Time Comparison of Conventional and New SRBC 115
Table 5.10 Average Switching Loss Comparison of Conventional and New SRBC 1 117Table 5.11 Average Output Current and Body Diode Conduction Comparison of
Conventional and New SRBC 118
Table 5.12 Switching Loss Analysis for Different S_{2} Duty Ratio of New SRBC at $T_{D}=15 \mathrm{~ns}$ 119
Table 5.13 Comparison in Mathcad and PSpice Calculation at $T_{D}=15 \mathrm{~ns}$ of New SRBC 120
Table 5.14 Delay Line Settings of Adaptive SRBC Gate Drive 122
Table 5.15 PSpice Parameter Settings for $V_{t r i}$ of Predictive SRBC Gate Drive 126
Table 5.16 PSpice Parameter Settings for $V_{\text {pulse }}$ of Predictive SRBC Gate Drive 126
Table 5.17 FTD, AGD- Q_{4} and AGD- S_{2} Analysis for $D=0.20$ 129
Table 5.18 Switching Loss Measurement Adopting PGD-S S_{2} for $D=0.20$ 130
Table 5.19 Comparison of PGD- Q_{4} and PGD- S_{2} for $V_{\text {ref }}=0.27 \mathrm{~V}, D=0.20$ and$T_{D}=0 \mathrm{~ns}$133
Table 5.20 Comparison of FDT and PGD-S 2_{2} at $V_{\text {ref }}=0.3 \mathrm{~V}$ for $D=0.20$ and$T_{D}=15 \mathrm{~ns}$.134

LIST OF FIGURES

Figure 2.1(a) Voltage Driven 7
Figure 2.1(b) Resonant Driven. 7
Figure 2.2(a) Hard Switching Conventional Gate Drive 8
Figure 2.2(b) Conventional Gate Drive Waveforms 9
Figure 2.3(a) Ideal Switch in Chopper Circuit 11
Figure 2.3(b) Turn-On and Off Characteristics of an Ideal Switch 11
Figure 2.4(a) MOSFET in Chopper Circuit 12
Figure 2.4(b) Turn-On and Off Characteristics of MOSFET 13
Figure 2.5 MOSFET Parasitic Capacitances 14
Figure 2.6(a) Conventional S-CRGD 19
Figure 2.6(b) S-CRGD Waveforms 19
Figure 2.7(a) Resonant Switching Turn-On 22
Figure 2.7(b) Resonant Switching Turn-Off 22
Figure 2.8 Center-Tapped D-CRGD 27
Figure 2.9 Buck Converter 28
Figure 2.10 Conventional SRBC Circuit 29
Figure 2.11 Switching in SRBC 31
Figure 2.12 Application of T_{D} on Driving Pulses 32
Figure 2.13 Cross Conduction Waveform 33
Figure 2.14 Body Diode Conduction of S_{2} 34
Figure 2.15 MOSFET Switching Power Dissipation 35
Figure 2.16 MOSFET Turn-Off Model 37
Figure 2.17 Zero Delay SRBC Waveforms 37
Figure 2.18 ZVS-SRBC Auxiliary Components 39
Figure 2.19 SRBC Switch Node Voltage 44
Figure 2.20 Fixed Dead Time SRBC Gate Drive 45
Figure 2.21 Adaptive Delay SRBC Gate Drive 46
Figure 2.22 Predictive Control Timing 47
Figure 2.23 PGD Control Block Diagram 47
Figure 2.24 SRBC Load Effects 49
Figure 3.1 Summary of Methodology 53
Figure 3.2 S-CRGD 54
Figure 3.3 New D-CRGD 59
Figure 3.4 New SRBC 61
Figure 4.1 S-CRGD PSpice Simulated Waveforms 66
Figure 4.2 Charging and Discharging of $i_{L r}$ with Respect to Q_{I} Turn-On 68
Figure 4.3 S-CRGD $i_{L r}$ versus $L_{r}\left(200 \mathrm{~ns}\right.$ pulse, $\left.15 \mathrm{~ns} T_{D}\right)$ PSpice Simulation. 70
Figure 4.4 S-CRGD $I_{p e a k}$ versus T_{D} (200 ns pulse, 9 nH inductor) 71
Figure 4.5 S-CRGD $9 \mathrm{nH} i_{L r}$ Ringing versus T_{D} PSpice Simulation 72
Figure 4.6 S-CRGD $9 \mathrm{nH} v_{g s, S l}$ Ringing versus T_{D} PSpice Simulation 72
Figure 4.7 S-CRGD $9 \mathrm{nH} i_{L r}$ Peak Optimization versus T_{D} PSpice Simulation 73
Figure 4.8 S-CRGD L_{r} Inductance and Q Factor PSpice Simulation 74
Figure 4.9 S-CRGD PSpice Simulation Switching Loss Distribution. 76
Figure 4.10 S-CRGD PWM Experimental Waveforms 77
Figure 4.11 S-CRGD $i_{L r}$ Experimental Waveform 78
Figure 4.12 S-CRGD $v_{g s, S I}$ Experimental Waveform 79
Figure 4.13 S-CRGD $i_{L r}$ Experimental Turn-Off Oscillation 79
Figure 4.14 S-CRGD Experimental $i_{d s}$ versus $v_{d s}$ 80
Figure 4.15 S-CRGD $i_{d s}$ versus $v_{d s}$ PSpice Simulation 81
Figure 4.16 New D-CRGD PSpice Simulation Waveforms 83
Figure 4.17 New SRBC 15 ns Delay Switch Gate Pulse PSpice Simulation 84
Figure 4.18 New SRBC Waveforms 87
Figure 4.19 Sub-interval equivalent Circuit of New SRBC 89
Figure 4.20 Currents of New SRBC Circuit 91
Figure 4.21 Series Resonant of New SRBC Circuit 92
Figure 4.22 Gate Voltage of S_{l} and S_{2} Experimental Waveforms of New SRBC 94
Figure 4.23 Gate and Drain Voltages of S_{1} Experimental Waveforms of New SRBC 94
Figure 4.24 Gate and Drain Voltages of S_{2} Experimental Waveforms of New SRBC 95
Figure 4.25 Gate Voltage of S_{2} and Drain Current Experimental Waveforms of S_{1} of New SRBC 96
Figure 4.26 Gate Voltage and Drain Current Experimental Waveforms of S_{2} of New SRBC 97
Figure 4.27 Body Diode Conduction of New SRBC 98
Figure 4.28 Gate Voltage of S_{I} and Inductor Current Experimental Waveforms of New SRBC 99
Figure 4.29 Output Voltage Experimental Waveform of New SRBC 99
Figure 5.1 SRBC [51] 102
Figure 5.2 Simulated Turn-Off Switching Loss of Three Different SRBC 103
Figure 5.3 Simulated Turn-On Switching Loss of Three Different SRBC 103
Figure 5.4 Simulated Gate and Drain Voltages of Conventional SRBC 105
Figure 5.5 Simulated Gate and Drain Voltages of SRBC [51] 105
Figure 5.6 Simulated Gate and Drain Voltages of New SRBC 106
Figure 5.7 Comparison of $i_{L s}$ and $i_{L o}$ of Three Different SRBC 107
Figure 5.8 Average Turn-Off Power Loss of S_{I} at Different Loads 108
Figure 5.9 Average Turn-On Power Loss of S_{2} at Different Loads 109
Figure 5.10 Average Load Output Power at Different Loads 109
Figure 5.11 Simulated Gate Voltages of S_{1} and S_{2} at $T_{D}=15 \mathrm{~ns}$ of New SRBC 114
Figure 5.12 Turn-On and Turn-Off Switching Times of Conventional and New SRBC 116
Figure 5.13 Average Turn-On and Turn-Off Switching Losses of Conventional and New SRBC 117
Figure 5.14 S_{1} Turn-Off and S_{2} Turn-On Power Losses at Different S_{2} Duty Ratio 120
Figure 5.15 SRBC Adaptive Gate Drive 21
Figure 5.16 SRBC Predictive Gate Drive 123
Figure 5.17 PGD Control Block Diagram 124
Figure $5.18 S_{2}$ Pulse Width Delay Adjustment 125
Figure 5.19 PGD Delay Controller Block Diagram 125
Figure 5.20 D-CRGD Circuit with AGD Control at Switch Q_{4} 128

Figure 5.21 Relationship between Dead time and Body Diode Conduction Time versus Reference Voltage of PGD- $S_{2} . ~ 131 ~$
Figure 5.22 Negative Overshoot of Node Voltage in PGD- S_{2} at $V_{\text {ref }}$ of 0.29 V 131
Figure 5.23 Relationship between Conduction and Body Diode Conduction Losses versus $V_{r e f}$ of PGD-S S_{2}132

Figure 5.24 Efficiency versus Dead time for $L_{r}=9 \mathrm{nH}$ and $D=0.20$ of S-CRGD ... 135
Figure 5.25 Efficiency versus Duty Ratio of Q_{1} for $L_{r}=9 \mathrm{nH}$ and $T_{D}=15 \mathrm{~ns}$ of SCRGD

Figure 5.26 Efficiency versus Resonant Inductor for $D=0.20$ and $T_{D}=15 \mathrm{~ns}$ of New D-CRGD

Figure 5.27 Efficiency versus Inductor Load Current for $D_{S I}=0.20, D_{S 2}=0.75$ and $T_{D}=15 \mathrm{~ns}$ of Three SRBC. .138

Figure 5.28 Efficiency versus Switching Frequency for $D_{S 1}=0.20, D_{S 2}=0.75$ and $T_{D}=15 \mathrm{~ns}$ of Three SRBC. 139
Figure 5.29 Efficiency versus Inductor Load Current for $D_{S I}=0.20, D_{S 2}=0.75$ and $T_{D}=15 \mathrm{~ns}$ on New SRBC of Three Gate Drive Control Schemes .140

LIST OF ABBREVIATIONS

AGD	Adaptive Gate Drive
CCM	Continuous Conduction Mode
DCM	Discontinuous Conduction Mode
D-CRGD	Dual-channel Resonant Gate Drive
EMI	Electromagnetic Interference
ESR	Equivalent Series Resistance
FDT	Metal Oxide Semiconductor Field Effect Transistor
MOSFET	Printed Circuit Board
PCB	Pulse Width Modulation
PGD	Resonant Gate Drive
PWM	Synchronous Rectifier Buck Converter
RGD	Single-channel Resonant Gate Drive
SRBC	Transistor Transistor Logic
S-CRGD	Zurrent Switching
TTL	ZCS

LIST OF SYMBOLS

$C_{i s s}$	Input Capacitance	(F)
D	Duty Ratio	$($ between 0 and 1)
f_{r}	Resonant Frequency	(Hz)
f_{s}	Switching Frequency	(Hz)
$P_{d i s s}$	Power Dissipation	(W)
$R_{d s(o n)}$	On-state Resistance	(Ω)
T_{D}	Dead Time	(s)
T_{s}	Switching Period	(s)
$V_{d s}$	Drain-source Voltage	(V)
$V_{g s}$	Node-source Voltage	(V)
V_{N}	Reference Voltage	(V)
$V_{r e f}$	Threshold Voltage	(V)
$V_{t h}$	Impedance	(Ω)
Z_{0}		

CHAPTER 1

INTRODUCTION

1.1 Chapter Overview

This chapter introduces the importance of the research in high frequency operation. The synchronous rectifier buck converter (SRBC) is adopted as the test circuit. The work is divided into simulation and experimentation. The aim is to investigate the performance of several gate drive and control techniques on the new SRBC.

1.2 Research Rationale

With switching frequency increased more than 1 MHz mark, the new state of the art converters have to be developed. For example, switching mode converters are required to provide power processing for applications ranging from computing and communications to medical electronics, powering microprocessors, cost effective, meet EMC (Electromagnetic Compliance) and the same time
i) reduce size and weight,
ii) improve load transient response,
iii) increase efficiency.

In recent years, there have been many studies focused on how to find better ways in regulating output current and voltage at variable loads, specifically in megahertz switching frequency. To achieve this, different types of resonant topologies have been proposed with an aim to achiev * ter power schemes such as phase-shifted fullbridge, flyback, forward converters and many more. Nevertheless, the study only looks at the fixed load condition.

For instance, the synchronous rectifier buck converter (SRBC) can be adopted with the advancement of soft-switched topology. Switching aid networks such as ZVS and zero-current switching (ZCS) may be used to help improve converter's performance and hence further reduce switching loss. Moreover, low switching losses in the driving switches are required to design a high frequency gate drive circuit for SRBC.

1.3 Research Objectives

The primary objective of the research was to evaluate a "new" "Zero Voltage Switching Synchronous Rectifier Buck Converter (ZVS SRBC)" by comparing PSpice simulations with experimental measurements.

The secondary objective of the research was to demonstrate by PSpice simulations and experimental measurements the improved performance of the proposed system in terms of reduced gate drive loss and two SRBC MOSFET's power loss when compared to the Dual-Channel Resonant Gate Drive SRBC (D-CRGD SRBC)" and the conventional hard switched Synchronous Rectifier Buck Converter (SRBC).

1.4 Research Scope

The research will concentrate on the simulation of conventional and new dualchannel resonant gate driver (D-CRGD) for the new low-loss ZVS SRBC circuit. The PSpice circuit simulator is adopted in this work to observe the switching and circuit
operating waveforms where the switching related losses will be determined for both circuits. The experimentation work is also carried out to verify the simulation. In addition, the simulation study on different gate drivers, effects on switching frequency, dead time and loads are the extension of the work which will be the preliminary results for further validation.

1.5 Chapter Summary

In the design of high frequency converter, the issue in getting the gate drive to operate accurately is important for the development of new low power SRBC. To do this, a comprehensive literature review is required to gather important data and evidences. The details are discussed in Chapter 2.

CHAPTER 2

LITERATURE REVIEW

2.1 Chapter Overview

This chapter looks into the history in the development of high frequency converter. It starts with techniques in gate drive design and its application in the converter. The importance, advantages and issues in resonant topologies are reviewed along with the implication on the performance of the converter, for example in terms of switching loss, body diode conduction loss and etc. There are also design constraints which include the role of limiting parameters in the gate driver as well as its control schemes and the switching MOSFET consideration. In addition, the effects of dead time, switching frequency, soft-switching technique on the converter are also explored in detail.

2.2 Gate Drive Circuit

The selection of gate drive circuit is crucial in high frequency converter design since it requires fast switching response and precise timing sequence that corresponds to power delivery capability. Fundamentally, a good gate driver must have high energy savings properties. Even though conventional gate driver is easy to implement, it generates high power dissipation.

On the other hand, resonant gate drive (RGD) circuit is preferred due to its low
power loss. However, it normally involves complex circuit topologies which may eventually add to additional power loss in the circuit. With the attention in reducing the losses, the state-of-the-art RGD circuit is significant for the application of SRBC circuit. At high frequency, the effect of gate drive on overall performance and efficiency of converter becomes more critical since this can degrade power density of the converter [1].

Most of high frequency applications use silicon based devices such as Metal Oxide Semiconductor Field Effect Transistor (MOSFET). In discrete and surface mount device implementation, MOSFET is commonly chosen because of its superior operation in high switching frequency. Nevertheless, there exists constraint and issues pertaining circuit development where comprehensive design and analyses have to be carried out.

2.3 Review of Gate Drive Techniques

Most of the time, the design of gate drive circuit has trade-offs between the level of voltage applied to the gate and level of switching frequency required for the switch. The other parameters include determination of dead time delay T_{D}, in the switching transition, duty ratio, D, resonant inductor, L_{r}, size of the transistor and isolation technique used to control the signal between input source and power MOSFET.

There are three basic types of driving sources in gate drive circuits. They are voltage driven and resonant topologies as shown in Figure 2.1(a, b) respectively [2]. First, in voltage driven topology, large energy will be dissipated and since there is no energy recovery, this topology is not suitable for high frequency operation. Power dissipation, P_{v} is given by Eq. (1).

$$
\begin{equation*}
P_{v}=f_{s} \times C_{i s s} \times V_{s}^{2} \tag{1}
\end{equation*}
$$

where $C_{i s s}$ is the gate capacitance of power MOSFET and V_{s} is the input voltage source. From Figure 2.1(a), the maximum value of R_{v} given by Eq. (2) [2].
$R_{v}=\frac{\Delta t}{1.6 \times f_{s} \times C_{i s s}}$
where it is determined by required f_{s} whereas the minimum value, by $C_{i s s} . \Delta \mathrm{t}$ is the time taken for $C_{i s s}$ to charge to maximum. Hence, there exists a maximum operating frequency which limits the charging capability of the gate [3]. Thus the voltage driven has limited capability in operating at high switching frequency.

Figure 2.1(a) Voltage Driven

Figure 2.1(b) Resonant Driven

The resonant circuit shown in Figure 2.1(b) implies that all energy from resonant inductor L_{r} will be transferred to gate capacitance. As series resistance increases, only half of energy will be dissipated when the gate voltage reaches supply voltage. At this time, the resonant drive circuit operates in full resonance mode and this is comparable to voltage driven topology. Even though careful measures are taken to determine the suitability of topology, obviously there are tradeoffs between component counts, input voltage supply range, switching related losses and switching frequency.

2.3.1 Hard Switching Conventional Gate Drive Circuit

The conventional gate drive circuit was developed in 1970s. The issues related to the power dissipation loss and efficiency degradation had been discussed intensively by scholars especially in high frequency region. The circuit has limitations due to high switching frequency. As frequency increases, the driving loss is high causing
high power dissipation in the external resistor R_{G} as indicated in Figure 2.2 (a). In hard switching, the dissipation of power loss in the switch is caused by rapid change in drain voltage and drain current which produce high stress in the switch. Even though switching loss can be reduced by minimizing these rapid changes in voltage and current, the effects of stray parameters such as inductance and capacitance in the circuit become obvious compared to low switching operation. Therefore, some energy is lost every time switches commutate [4].

The charging and discharging activities of input gate capacitance, $C_{i s s}$ of S_{I} becomes very fast indicating longer turn-off transient. In addition, the discharging current in R_{G} becomes smaller which results in slower switching speed [5]. The conventional gate driver which consists of a resistor in the DC link has proven to have significant power losses [6]. Using PSpice circuit simulator, Figure 2.2(a) shows the conventional gate drive circuit driven by a totem-poled MOSFET configuration and its operating waveforms as indicated in Figure 2.2(b).

Figure 2.2(a) Hard Switching Conventional Gate Drive

Figure 2.2(b) Conventional Gate Drive Waveforms

The two totem-poled driving MOSFETs Q_{1} and Q_{2} are used to drive signal to the power MOSFET, S_{l} supplied by input V_{s}. Resistor, R_{G} is used as the RC-link for the pulses to flow. When PWM is applied, gate will draw current for a very short time to fully charge the gate of MOSFET. This draws the peak current to turn on gate with maximum voltage across it. During charging, the current will flow through R_{G} and $R_{d s(o n), Q I}$ to charge $C_{i s s}$ of S_{I} until gate level reaches V_{s}. During discharging of $C_{i s s}$, the current is then drawn out from the gate through the reverse path until gate voltage reaches zero. Thus, double resistive power loss appears in the gate driver. The loss is much greater at a higher switching frequency.

Normally, the gate voltage takes a longer time to turn off as shown in Figure 2.2(b) than turn-on because it relies on resistive charging through gate and driver's resistance. This results in lower switching power loss during turn-on. The reason is that, the parasitic inductances provide a current snubbing effect which decreases the switching loss [7]. On the other hand, these inductances increase turnoff time by prolonging the recovery time. This can be observed when the load current
is increased as the turn-off loss is proportional to $\mathrm{i}^{2} \mathrm{R}$ [8]. In summary, some of the issues in conventional hard switching gate driver are listed below:
a) A longer turn-off time is not desirable to reduce switching loss as it is based on RC charge and discharge.
b) Higher / faster driving speed requires higher driving current that may increase loss.
c) Discharged current during switching transition becomes smaller than its peak. This will influence the charging and discharging of $C_{i s s}$ and hence the gate drive loss.
d) Charging and discharging of gate capacitance of the switch becomes fast causing malfunction of driver.
e) Induced turn-on dv/dt of the switch is dominant where it will not reduce with a shorter gate charging time.
f) Gate driving loss is high comparable to conduction loss at frequency higher than 200 kHz.
g) Cannot meet requirement of switching speed in high frequency application.

2.3.2 Switching Requirement and Losses in SRBC

In SRBC circuit operation, MOSFETs have to fulfill the system requirement in reducing loss and cost. The selection of MOSFET is based upon the following criteria:
a) Low power dissipation of switching device in megahertz range.
b) Figure of Merit of $R_{d s(o n)}$ and gate charge.
c) Turn-on delay time $\left(t_{d(o n)}\right)$, rise time $\left(t_{\text {rise }}\right)$, turn-off delay time $\left(t_{d(o f f)}\right)$ and fall time $\left(t_{f}\right)$ which have to be small for possible good switching performance.

On the other hand, the ideal switch in circle cannot satisfy the above criteria. When looking with the switching intervals during turn-on and off, it is obvious that significant differences compared to the MOSFET. Figure 2.3(a) shows the chopper circuit using ideal switch and its switching waveforms are indicated in Figure 2.3(b).

Figure 2.3(b) Turn-On and Off Characteristics of an Ideal Switch

Figure 2.3(b) clearly shows that there is no power loss (instant turn-on and off)
during both switching transitions. This can be seen from the zero product of drain current and voltage of the ideal switch. Due to this, there are no turn-on and turn-off losses which are not realistic for real application. Even though the simulation result of Figure 2.3(a) successfully represents the suitability in high current and frequency, the actual operation will yet to require better switching device: the MOSFET.

2.3.2.1 Switching Characteristics of MOSFET

In MOSFET switching, the most important operational conditions are gate-source voltage $\left(v_{g s}\right)$, drain-source voltage $\left(v_{d s}\right)$ and drain current $\left(i_{d s}\right)$. Figure 2.4(a) shows the inductive load test circuit for MOSFET and Figure 2.4(b) shows general switching characteristics of the MOSFET which explains the operation of turn-on and turn-off. The waveforms are generated using PSpice circuit simulator. The circuit is chosen because it is normally used for switching characterization and measurement.

Figure 2.4(a) MOSFET in Chopper Circuit

Figure 2.4(b) Turn-On and Off Characteristics of MOSFET

2.3.2.2 Turn-On and Off Characteristics

Turn-on time $\left(t_{o n}\right)$ and current turn-on delay time $\left(t_{d(o n) i}\right)$ indicate how fast MOSFET reacts during turn-on switching transient which gives total turn-on time. Increased delay time will eventually limit the maximum switching frequency. A longer turn-on delay can prolong the PWM signal received at the gate terminal of the MOSFET. In addition, the Miller effect [9] may affect the signal. It is a capacitive feedback where $C_{g d}$ appears to be larger capacitance as seen from gate within small variation in $V_{g s}$ value. Current rise time ($t_{r i s e}$) on the other hand contributes to how fast drain current reaches the load indicating the speed of the circuit. Other parameters such as voltage fall time ($t_{f_{v}}$), di/dt of turn-on current, dv/dt turn-off voltage, current overshoot and turn-on energy loss $\left(E_{o n}\right)$ are included in the total turn-on duration.

The turn-off characteristics exhibit the same characteristics as the turn-on except for the behavior of voltage, current and their related switching times and losses which
depend on turn-off duration. Among the parameters are turn-off time ($t_{\text {off }}$, current turn-off delay time $\left(t_{f(o f f)}\right)$, current fall time $\left(t_{f i}\right)$, voltage rise time $\left(t_{r v}\right)$, di/dt of turn-off current, $\mathrm{dv} / \mathrm{dt}$ of turn-on voltage, voltage overshoot and its respective turn-off energy loss as indicated in Figure 2.4(b). Since the switching loss in MOSFET is critical in high frequency operation, these turn-on and turn-off characteristics must be understood as they contribute to considerable switching losses in the MOSFET.

Figure 2.5 MOSFET Parasitic Capacitances

Figure 2.5 shows the parasitic capacitances of the power MOSFET. During switching cycle of the driving MOSFETs, the $C_{i s s}$ of S_{I} will be charged by the energy from V_{s} and discharged to the ground leading to generation of pulses [10]. The total power supplied by the V_{s} is derived as

$$
\begin{equation*}
P=\frac{1}{T_{s}} \times \int_{0}^{T_{s}}\left(V_{s} \times i_{D D}\right) d t=f_{s} \times V_{s} \times \int_{0}^{T_{s}} i_{D D} d t \tag{3}
\end{equation*}
$$

where T_{s} is the switching period, f_{s} is he switching Grequency of the circuit and $i_{D D}$ is the instantaneous current flowing out from Kec supply thacyia 2 Rytarye power MOSFET's $v_{g s}$ of S_{l} is charged by the same current $i_{D D}$ FMMitał@ and gat farge of S_{l} from 0 to Q_{G} following the typical Q_{G} versus $v_{g s}$ characteristic in the datasheet.

The equation is given by
$Q_{G}(t)=\int_{0}^{T_{S}} i_{D D} d t$
When combining Eq. (3) and Eq. (4), this gives the well known MOSFET gate driver loss equation given in Eq. (1).

In order to reduce this loss, RGD techniques have been introduced. For example, the techniques utilize LC resonance to charge and discharge the gate capacitance of main power MOSFET, S_{l}. The idea is to recover the energy stored in the gate capacitance, $C_{i s s}$ of main power MOSFET. From Figure 2.2(b), the switching power loss can be calculated using Eq. (1) and gate drive loss by replacing $C_{\text {iss }}$ with $C_{\text {oss }}$. Since there are two driving MOSFETs of same type in the driver, the losses are approximately doubled.

From Figure 2.4(a), R_{G} limits the maximum gate current flow and allows root mean square (RMS) losses between R_{G} and internal drain-source on-resistance of power MOSFET, $R_{d s(o n)}$. Reducing R_{G} brings no reduction in gate drive loss since it just shortens the charging and discharging times [11]. However, increasing effective gate resistance will reduce the switching speed.

On contrary, the impact of parasitic inductance is also important in the driver. For example, the parasitic common-source inductance creates a serious propagation effect during switching transitions and therefore increases switching loss, especially turn-off loss [12]. Consequently, the actual charged and discharged currents are much smaller resulting in higher switching loss [13, 14]. Thus, several methods have been introduced to solve the issues related to power dissipation and switching speed. Hence, the development of RGD circuit is pursued to help further improve the capability, reliability and performance of the driver.

2.4 Resonant Gate Drive Circuit

Generally, RGD circuit has evolved to overcome the issues when operating at high switching frequency. It is practically suitable to recover part or all of the energy stored in $C_{i s s}$ of S_{l}. The RGD circuit is designed only for specific applications and sometimes may not be suitable for others. If the application circuit uses only one switch, single-channel RGD can be applied. On the other hand, if the circuit has two switching devices, the applicable RGD circuits have to be designed to tailor the need for that circuit.

Until now, many studies have been conducted for the improvement of RGD circuits however they still require further development. The MOSFET's $C_{i s s}$ charges and discharges during the switching stage and thus significant energy losses are dissipated. Due to this, some of the dissipated energy must be recovered. Moreover, any RGD circuit which is incapable of fast cycle dynamics will not be suitable for high frequency applications. Below are the main requirements in designing a good RGD circuit:
a) Ability to have fast duty cycle dynamics.
b) Gate impedance of the switching device should be low after turning on and off to prevent false triggering.
c) Gate voltage must be well controlled after turning on and off.
d) Ability to have fast gate drive speed and at the same time produce low driving power losses.

In addition, there are also several other considerations to accommodate for high performance RGD, such as:
a) Propagation delay of input signal through switches' gate terminals.
b) Pulse width distortion of input gate signal.
c) PCB layout parasitic of power converter.
d) Device switching voltage swings and related EMI.
e) Determination of minimum pulse width for power MOSFET.
f) Protection features such as trip out and trip trigger input.
g) Drain voltage overdrive control to optimize efficiency.
h) Selection of gate capacitance value and Miller effect and start-up consideration There are many RGD techniques have been introduced to solve technical issues in the design [1, 15, 16-20]. Unlike the conventional gate driver, only portion of energy in RGD circuit becomes thermal loss with the rest is stored in inductor [16]. Besides reducing the gate driving loss, some of the topologies suffer from at least one of the problems:
a) Suitable only for low-side (single-channel) and ground-referenced drives [1, 2128].
b) Has bulky transformer or coupled inductance [1, 19, 22, 29-31].
c) Slower turn-on and/or off transition times leading to high conduction and switching losses [1, 21-23, 28-29].
d) Can only recover gate drive energy but limits total power savings.
e) Difficult to achieve high side driver [32].
f) Unable to effectively clamp the gate voltage of power MOSFET to driving voltage level during on-time and to ground during off-time which gives result in false triggering of gate conduction [1, 19, 21-23, 27-28].

Therefore, some designs such as ZCS-ZVS mixed-mode snubber, automatic energy recovery system, power efficient gate control, universal gate drive, hybrid gate drive, self-powered RGD, using leakage inductance of transformer and many more have been introduced. There are three important characteristics of RGD [10]:
a) Zero circulating current in order to minimize conduction loss in driver during turn-on of MOSFET.
b) Fast turn-on and off transition times to minimize conduction and switching losses in MOSFET.
c) Ability to clamp MOSFET gate to input voltage during turn-on and to ground during turn off in order to avoid false triggering and reduce induced dv/dt.

2.4.1 S-CRGD Circuit

As switching frequency increases, the S-CRGD circuit should be fast but also requires precise timing that corresponds to power delivery periods. In addition, good driver should have excellent loss saving properties. However, fast turn-on after $C_{i s s}$ is charged to V_{s} may block peak inductor current, $i_{L r, p e a k}$ from flowing through reverse body diode of MOSFETs, which may result in higher power loss [33]. Any over voltage or under voltage of $v_{g s, Q 1}$ and $v_{g s, Q 2}$ is caused by voltage drop across parasitic reverse body diodes of the transistors. Figure 2.6(a) shows the conventional S-CRGD circuit. Unlike in Figure 2.2(a), the inductor, L_{r} is used as the link instead of resistor, R_{G}. The operating waveforms are shown in Figure 2.6(b).

Figure 2.6(a) Conventional S-CRGD

Figure 2.6(b) S-CRGD Waveforms

The operating condition of this circuit is similar to the conventional R_{G} gate driver, except the charging and discharging of gate capacitance of MOSFET is through inductor, L_{r}. One important remark is that Q_{2} pulse width plays an important role in power energy savings in addition to the controlled Q_{I} pulse. The turn-on speed
depends on reverse recovery of body diode of the switch and for turn-off, it depends on gate drive circuit. A higher turn-off current may discharge $C_{i s s}$ of S_{l} faster, providing shorter switching times and hence lower switching loss. On the other hand, oscillation during turn-off may reduce the turn-off speed due to higher di/dt and dv/dt of S_{I}.

2.4.2 Alternatives on S-CRGD Circuit Topologies

The S-CRGD circuit introduced in [34] is claimed to have full capability in recovering full energy with low dissipation. It has managed to recover some energy during both charging and discharging transitions. In addition, the circuit is independent on duty cycle of switch and hence driving frequency. Nevertheless, this S-CRGD circuit experiences an additional stress due to the additional switches used as auxiliary. Therefore, there are limitations in the parameter values which require optimization of duty cycle, D, dead time, T_{D} and L_{r} which are essential in achieving high frequency gate drive operation.

Another type of S-CRGD circuit uses the role of continuous inductor current in complete cycle to charge and discharge the gate of power MOSFET [16]. The resonant inductor is connected in series with an external capacitor. Here, the capacitor is used as a DC component of voltage across inductor. With the requirement of large capacitance value, this leads to the disadvantage on overall space limitation in circuit board despite of the advantages in operating independently with varying D and frequency. However, a constant circulating current during switching transitions results in higher power dissipation.

In designing a good S-CRGD circuit, the f_{s} and D have become the primary parameters. The switching speed of power device has to be as high as possible in order to reduce switching loss in power stage. However, the increase in switching speed will increase the power losses in RGD system. As a result, there must be an optimized switching speed that minimizes overall power losses especially in ZVS resonant network.

2.5 Resonant Switching

ZVS and ZCS are generated based on turn-on or turn-off, overvoltage snubber or even any combination of them. In high frequency operation, ZVS is preferred in high frequency power converter circuits because it can reduce the switching loss by maintaining low or zero voltage across the switch during switching transitions [35-36]. Fundamentally, it shapes the switch voltage waveform during the off time to create a zero-voltage condition for the switch to turn on [37]. This eventually leads to the benefits of reduction in EMI. Nevertheless, ZVS normally incurs losses that do not scale back with the output load, leading to difficulty in achieving light-load operation effectively. Having an improved ZVS design may solve this issue.

On the other hand, operating in ZCS can also minimize the switching loss. However, there is a greater concern in choosing this mode as it inhibits greater limitations in designing high frequency circuits. The upper limit of 2 MHz switching frequency is one of the limitations in ZCS mode [38] when operating off-line where slower transient response is reported especially in half-mode condition [39]. Even though full-mode operation can solve this limitation, it is difficult to implement at high frequency due to high body diode conduction loss experienced by the switch [40]. Thus, this leads to ZVS preference in high frequency converter design. In order to realize megahertz switching operation, the converter requires the following:
a) To have zero-voltage or zero-current in the switches at the instant of turn-on and turn-off, respectively.
b) To have diode's stored charge removed in the event of turn-off condition before next subsequent turn-on executes.
c) To ensure that the switching surge due to drain-source capacitance of the switch removed.

More importantly, the condition of ZVS is a function of duty ratio, D. In general, soft-switched DC-DC converters can have an advantage in lowering most of the related losses. However, drawbacks such as load dependent soft-switching range [41],
complex control scheme [42] and high component stress make the design practically require accurate consideration.

Generally, there are two switching sub interval circuits of resonant transitions: one is during turn-on and the other during turn-off. The circuits are shown in Figure 2.7(a) and Figure 2.7(b) respectively. $R_{e q}$ is the sum of all resistance in the path that includes resistance in wire and ESR of L_{r} and V_{s} is the voltage source. The initial inductor current and gate capacitor voltage are denoted as $I_{L r 0}$ and $V_{g s 0}$. In Figure 2.7(a), $i_{L r}$ (turn-on stage) can be expressed as Eq. (5) [19]:
$i_{L_{r}}(t)=\left(I_{L_{r 0}}-\frac{V_{s}}{R_{e q}}\right) e^{-\frac{R_{e q}}{L_{r}} t}+\frac{V_{s}}{R_{e q}}$

Figure 2.7(a) Resonant Switching Turn-On

Figure 2.7(b) Resonant Switching Turn-Off

By solving turn-off system in Figure 2.7(b), $i_{L r}$ and $V_{g s}$ can be expressed as:
$i_{L_{r}}(t)=\frac{V_{s}-V_{g s 0}-0.5 R_{e q} I_{L_{r 0}}}{\omega L_{r}} e^{-\alpha t} \sin (\omega t)+I_{L_{r o}} e^{-\alpha t} \cos (\omega t)$
where $\alpha=\frac{R_{e q}}{2 L_{r}} \quad, \quad \omega=\frac{\sqrt{4 L_{r} C_{i s s}-R_{e q}{ }^{2}}}{2 L_{r} C_{i s s}}$

$$
\begin{equation*}
V_{g s}(t)=\frac{1}{C_{i s s}} \int_{0}^{t} i_{L r}(t) d t+V_{g s 0} \tag{7}
\end{equation*}
$$

Then the resistive power, $P_{r}(t)$ can be given as:

$$
\begin{equation*}
P_{r}(t)=\frac{R_{e q}}{T_{s}} \int_{0}^{T_{s}} i_{L r}{ }^{2}(t) d t \tag{8}
\end{equation*}
$$

2.6 Q-Factor, Inductance and Performance of S-CRGD Circuit

Q-factor is a quality indicator which characterizes the rate of energy dissipation in resonant system. A high Q does not always represent better performance and high quality converter because it depends on the type of circuit topology used [43]. Generally, a high performance S-CRGD circuit should have a high value of Q so that more energy will be stored in the resonant components rather than being dissipated as power loss.

It can be determined from the resonant inductor value directly where size of inductor is important in high frequency operation. Here, the inductor value is proportional to Q-factor. In S-CRGD circuit [1], increasing inductance too high will increase switching loss. Therefore, the optimization between Q-factor and resonant inductance is required to ensure high performance of the gate driver.

The switching time in S-CRGD is determined from the value of $L_{r}, t_{\text {rise }}$ and $t_{\text {fall }}$ during the charging and discharging phases. This eventually determines the switching capability of the driver. From Figure 2.6(b), theoretically, the $t_{\text {rise }}$ and $t_{\text {rec }}$ will increase
when L_{r} increases. For high switching application, $t_{\text {rise }}$ should be small enough so that the power MOSFET can turn on faster.

The $t_{\text {rec }}$ of the inductor current should not exceed the on-time of switching MOSFETs' Q_{1} and Q_{2}. This is because, if $t_{\text {rec }}$ is too long, the inductor current, $i_{L r}$ and $v_{g s, S l}$ will start to oscillate heavily and this is not favorable for the S-CRGD circuit. Besides, the relationship between the Q-factor and the switching response can be seen in the Q-factor Eq. (9) where it is proportional to L_{r}. This indicates that a higher L_{r} will eventually increase the $t_{r i s e}$ and $t_{\text {rec }}$ and hence reduce the switching speed as shown in Figure 2.6(b).
$Q=\frac{1}{R_{e q}} \times \sqrt{\frac{L_{r}}{C_{i s s}}}$
$P_{\text {diss }}=\frac{\pi}{2} \times \frac{V_{s}^{2} \times R_{e q} \times C_{i s s}^{\frac{3}{2}}}{\sqrt{L_{r}}}$
A high value of Q -factor is required to improve the performance of S-CRGD in terms of power losses. It can be derived from a higher L_{r} but it will add to the board layout size and consequently, reduce the ability of S-CRGD to operate in high frequency switching application. From Eq. (10), a lower L_{r} will increase the power dissipation. It indicates that there will be a tradeoff in selecting this value. The selections for maximum value of inductor and the driving time of MOSFET have to be determined [12]. Usually $1-5 \%$ of overall switching period time is taken for driving and by taking 5% as the maximum value of driving time, an inequality of maximum value of inductor is given by Eq. (11).
$L_{r, \text { max }} \leq \frac{1}{C_{i s s}} \times\left(\frac{5 \%}{\pi \times f_{s}}\right)^{2}$

2.7 Summary of S-CRGD Topology Characteristics

Most of S-CRGD designs are at best for a single MOSFET but for dual MOSFETs, circuit complexity and cost constraint [44-46] are becoming the issues. For example, in D-CRGD developed by K. Yao et al. [19], issues of floating gate remain open during off and on states leading to massive noise generation. Complete understanding of S-CRGD circuit is required prior to designing a D-CRGD. Some issues and advantages of S-CRGDs are presented in Table 2.1.

Table 2.1 Summary of S-CRGD

Description of Gate Driver (GD)	Magnetic Used for Resonance	Issues	Advantages
Conventional GD [Lopez et al., 2003]: Gate capacitance is charged through push-pull totempoled circuit	None. It is a RC configuration	GD loss is independent on load current so efficiency is affected in light load conditions	Simple and can easily be embedded in IC, offering high power density
Voltage clamped SCRGD [Jacobson, 1993]	Coupled inductors	- Using leakage inductance may result in manufacturing variation - Cannot use a standard push-pull driver configuration	Fast turn-on can be achieved
Linear turn-off current S-CRGD [Strydom, 2004]	Large inductor	- Poor transient response - High switching loss due to constant circulating current - Large capacitor required	- Simple with less component count - Using push-pull driver
S-CRGD using gate capacitance as main energy storage [De Vries, 2002]	Small inductor	- Increases turn-on time due to large bidirectional voltage swing at MOSFET gate - Switching loss is high in driving switches - $R_{d s(o n)}$ dependent	- Simple in circuit construction - Energy in gate capacitance is effectively recycled
Complete energy recovery S-CRGD [Chen et al., 2004]	Small inductor	- Inductor current depends on switch's conduction time	- Fast turn-on to allow for low driver's conduction loss

One of the examples of D-CRGD circuit is shown in Figure 2.8. The centertapped transformer is used to boost the switch gate voltage as high as input source value. By controlling the timing of both MOSFETs, each of them can be turned on right after the other is turned off. Here, the charging and discharging of $C_{i s s}$ is by constant current source which may speed up the switching transition especially during turn-off. Ultimately, both S_{I} and S_{2} switches can turn on and turn off in complementary mode [47].

Figure 2.8 Center-Tapped D-CRGD [47]

Nevertheless, this D-CRGD does not have much of power saving property due to core loss of transformer. So, there are many other D-CRGD circuits proposed which have better driving capability to drive two MOSFETs in one switching cycle. However, there are lots of drawbacks in ensuring that S_{1} and S_{2} can properly conduct without incurring cross conduction. One of the solutions is by integrating the soft switching technique with gate drive control scheme for power loss reduction within low T_{D}.

2.8 Synchronous Rectifier Buck Converter (SRBC) Power Stage Circuit

In most low-voltage power module, switching power losses are dominant in the converter in addition to body diode conduction loss produced by two switches in SRBC, namely control switch and synchronous switch. Therefore, the switching waveforms for these switches must be operating in ZVS and the ideal finite on-state drain-voltage of S_{2} has to be close to zero in ensuring minimum losses throughout the switching interval.

In SRBC circuit, a high current may be required to turn off control switch with low switching loss. Besides, incorrect choice of drain-source on-resistance ($R_{d s(o n)}$) of the device will impose a constraint on the converter's performance. Even though resonant topology is employed, the turn-off issue remains unsolved. In contrast, synchronous switch needs a lower current in order to switch the device rapidly leading to difficulty in clamping the gate voltages. In addition, an independent bias supply can be allowed to optimally drive the switches using a simple voltage feed. This may help reduce the effect of stray capacitance in the converter which eventually lowers the switching loss. More importantly, issues related to dead time will greatly result in lower efficiency and affect the performance of the converter.

Figure 2.9 Buck Converter

A buck converter is shown in Figure 2.9. In this circuit, the freewheeling diode
turns on shortly after the switch turns off which results in a voltage rise across the diode. Since the diode only conducts during S_{I} turn-off, during continuous conduction mode (CCM), some energy will dissipate which gives power dissipation, P_{d} in diode given by Eq. (12). At this time, the diode will experience reverse recovery and it is related to voltage drop, V_{d} as defined by Eq. (13). $D_{S I}$ is the duty ratio of S_{l} switch and $C_{\text {diode }}$ is capacitance of the diode during its reverse bias in CCM.

$$
\begin{align*}
& P_{d(o n)}=\frac{1}{2} \times C_{\text {diode }} \times V_{D C}^{2} \times f_{s} \tag{12}\\
& P_{d(o n)}=V_{d} \times\left(1-D_{S 1}\right) \times I_{L o} \tag{13}
\end{align*}
$$

Figure 2.10 shows the SRBC as a modified version of the buck converter circuit topology where the diode is replaced with a second switch, S_{2}. This modification is a tradeoff between the increased cost and improved efficiency.

Figure 2.10 Conventional SRBC Circuit

In this circuit, a control switch, S_{1} and synchronous switch, S_{2} are conducting in complementary manner. Here, the charging and discharging of inductor current, $i_{L o}$ will produce output voltage based on duty cycle set by S_{1}. Replacing the diode (in circle) with switch S_{2}, may lower conduction loss, reduce the voltage spike of gate voltage of S_{2} and improve the performance of converter.

Some of the advantages when utilizing S_{2} are as follows [48]:
a) Allows bidirectional power flow.
b) Efficiency can be increased because on-state drain voltage drop of S_{2} is less than forward voltage of the diode in buck converter.

However, using S_{2} may also introduce some drawbacks such as:
a) Both S_{1} and S_{2} could accidently conduct if cross conduction occurs.
b) Higher losses are present in S_{1} and S_{2} and also in L_{o}.
c) May cause additional ripple overshoot in drain voltage of S_{2}.
d) Will introduce an induced dv/dt switching, which may degrade the performance of SRBC [49].
e) Feedback control circuit is complex

The power loss in S_{2} is strongly dependent on the duty ratio, D and therefore proportional to its on-time. When power is transferred in the "reverse" direction, it acts much like a boost converter instead. Nevertheless, the advantage of this converter does not come without cost. Firstly, S_{2} typically costs more than the freewheeling diode in buck converter circuit. Secondly, the complexity of the converter is vastly increased due to the need for a complementary-output switch driver. Other losses such as reverse recovery and body diode conduction losses during T_{D} also reduce the performance of the SRBC.

Moreover, when S_{2} is used, it may degrade the efficiency of the converter at light load by disallowing $i_{L o}$ from entering the discontinuous conduction mode (DCM) and maintaining operation in CCM. This is due to the MOSFET bidirectional flow of $i_{L o}$. In order to block any negative $i_{L o}$, a good gate drive control scheme must be able to detect the current through the MOSFET and then switch it off when it is zero. Hence, this enables the SRBC to operate in DCM operation at light load and thus reduce the switching loss.

Generally, the faster S_{l} turns on and off, the lower switching losses become.

However, as S_{1} turns on faster, this will cause S_{2} to experience high dv/dt induced turn-on. An induced dv/dt turn-on is the situation where S_{2} can momentarily conduct even though gate drive signal instructs it to turn off. It is caused by a fast changing voltage of $v_{d s, S 2}$. When S_{I} conducts, full input voltage of $V_{i n}$ will not immediately appear at $v_{d s, S 2}$. This is due to Miller's effect and turn-on delay at S_{l}. Then, $v_{d s, S 2}$ induces a current to generate a voltage drop across internal gate resistance of S_{2}. If this induced gate voltage is bigger than $V_{t h, S 2}, S_{2}$ will be turned on while S_{1} is still conducting. Thus, S_{I} will have to carry load and shoot through current while S_{2} conducts excessively with high power loss.

2.8.1 Switching of SRBC Circuit

There are two PWM pulses applied to the circuit as shown in Figure 2.11. The $v_{g s l}$ pulse is used to drive S_{l} whereas the complemented $v_{g s 2}$ pulse to drive S_{2}. It is crucial that both MOSFETs do not turn on at the same time [50]. A sufficient delay is added to avoid resultant peak rise of current significantly above $V_{t h, S 2}$, turning on both S_{l} and S_{2} switches accidentally [51]. Ideally, the pulses must be complementing each other without any T_{D} delay, but practically it has to be provided.

Figure 2.11 Switching in SRBC

When S_{1} turns on, the drain voltage of S_{2} increases, producing a fast change in voltage, dv within a very short time, dt . This $\mathrm{dv} / \mathrm{dt}$ induced voltage results in an instantaneous current flow through $C_{i s s}$ of S_{2}. Consequently, possible shoot through is expected. So, higher $V_{t h}$ and low $R_{d s(o n)}$ of MOSFET must be used to allow S_{l} to carry high load current at low duty ratio.

The gate driver must also be able to slow down the rising edge of S_{l} pulse and reduce the induced turn-on $\mathrm{dv} / \mathrm{dt}$. However, the switching power loss eventually will increase dramatically [52]. When S_{I} is turned off, $i_{L o}$ continues to flow through either S_{2} or its body diode. The details on S_{1} and S_{2} switching of SRBC are comprehensively explained in [53].

2.8.2 Dead Time and Cross Conduction

A T_{D} can be described as the duration where neither one of the switches is turned on as shown in Figure 2.12. The application of T_{D} has advantages and disadvantages depending on its applied duration. The T_{D} is one of the important parameters in designing gate driver since it relates to the total losses. Too long of T_{D} will introduce losses due to body diode conduction [54]. In fact, it may also add a subinterval of negative voltage to node switch which tends to reduce average of drain voltage of S_{2} switch [55].

Figure 2.12 Application of T_{D} on Driving Pulses

Figure 2.13 shows the cross conduction waveform. It occurs when both MOSFETs are either fully or partially turned on where this provides a path for current to "shoot through" from supplied voltage to ground. An induced $v_{g s}$ may occur resulting from this phenomenon. According to A. Elbanhawy [56], the cross conduction will lead to excessive power dissipation in both MOSFETs since the current will short the power supply to the ground through them and can damage one or both switches practically. In addition, having too short of T_{D} will cause a part of positive portion of node voltage, v_{N} is lost due to overlapping between two gate drive signals.

Figure 2.13 Cross Conduction Waveform

2.8.3 $\quad S_{2}$ Body Diode Conduction

When S_{1} and S_{2} are off, parasitic body diode of S_{2} is forward biased due to the continuity of $i_{L o}$, and thus producing an undershoot of approximately -0.7 V at v_{N} [51]. This whole negative duration indicates the duration of body diode conduction. Theoretically, S_{2} body diode is turned on with ZVS by a circulating current that flows into L_{o} as soon as S_{1} is turned off. However, S_{2} can concurrently conduct with its body diode, creating stored charge that must be removed before S_{2} can support voltage.

This leads to high switching loss in S_{l} and an increase in reverse recovery loss in
S_{2} body diode. So, S_{2} needs to be turned off completely before S_{1} starts to conduct during T_{D}. After T_{D} delay ends, S_{2} will start to conduct. Since the forward voltage drop across S_{2} is much lower than its body diode voltage drop, this will allow $i_{L o}$ to flow through S_{2} instead [58]. Figure 2.14 shows the body diode conduction of S_{2}.

Figure 2.14 Body Diode Conduction of S_{2}

The body diode conduction time, $t_{b d}$ is circled in Figure 2.14. The period of the body diode conduction is related to T_{D}. The longer T_{D} is, the longer $t_{b d}$ will be. Allowing the $i_{L o}$ to flow through the body diode of S_{2} switch has a degrading effect on the overall efficiency since it contributes to the losses. Note that the $t_{b d}$ increases with T_{D} and so does the body diode conduction loss [59-60]. This shows that as T_{D} value increases, the power losses will increase thus affect the performance of the circuit. The body diode conduction loss is given by Eq. (14),
$P_{b d}=2 \times V_{F} \times I_{o} \times f_{s} \times t_{b d}$
where $V_{F}=$ body diode forward voltage drop and $t_{b d}=$ body diode conduction time.

Thus, in order to have a low body diode loss, a shorter T_{D} delay is required. In high frequency low output voltage power stage, the additional loss due to body diode conduction can be as high as 6% of the overall loss [51].

2.8.4 MOSFET's Switching and Conduction Losses

Figure 2.15 MOSFET Switching Power Dissipation

It is seen from Figure 2.15 that there is overlap between voltage across and current through the switch during the turn-on and off switching transitions. The product of these two waveforms gives the instantaneous power dissipation given by Eq. (15)

$$
\begin{equation*}
P(t)=V_{d s}(t) \times I_{d s}(t) \tag{15}
\end{equation*}
$$

where $V_{d s}=$ drain-to-source voltage and $I_{d s}=$ drain-to-source current.

This instantaneous power dissipation occurs during switching transition and occurs twice per cycle. The switching loss can be calculated by using the fundamental formulas given in Eq. (16) and Eq. (17).

$$
\begin{align*}
& P_{s w, o n}=\frac{1}{2} \times I_{d s, \text { max }} \times V_{d s, \text { max }} \times t_{s w, o n} \times f_{s} \tag{16}\\
& P_{s w, o f f}=\frac{1}{2} \times I_{d s, \text { max }} \times V_{d s, \text { max }} \times t_{s w, o f f} \times f_{s} \tag{17}
\end{align*}
$$

Therefore, the switching loss is proportional to the $f_{s}, t_{o n}$ and $t_{\text {off }}$ times [61]. In addition, it is important to note that since there exists a non-zero $V_{d s, o n}$ value, then the total switching loss is much more higher. Therefore, the total on-time switching loss can be modeled as Eq. (18).

$$
\begin{equation*}
P_{s w, o n-t o t a l}=\left[V_{d s, \max }\left(\frac{I_{d s} \times t_{s w, o n}}{2}\right)+V_{d s, o n}\left\{\left(t_{o n}-t_{s w, o n}\right) \times I_{d s}\right\}\right] \times f_{s} \tag{18}
\end{equation*}
$$

In addition, equations Eq. (19) and Eq. (20) also show that during CCM, the conduction losses of S_{l} and S_{2} depend on their $R_{d s(o n)}$ and duty ratio where the $I_{R M S}$ is the current of MOSFET. Note that the equations assume rectangular waveforms for current and without dead time.
$P_{C O N D, S_{1}}=\left(I_{d s 1, \text { max }}\right)^{2} \times R_{d s(o n) S_{1}} \times D_{S w 1}$
$P_{C O N D, S_{2}}=\left(I_{d s 2, \max }\right)^{2} \times R_{d s(o n) S_{2}} \times D_{S w 2}$
Looking at the equations, the conduction loss can be reduced by minimizing $\mathrm{R}_{d s(o n)}$ by selecting better MOSFET for both S_{1} and S_{2} [62].

2.8.5 Gate and Reverse Recovery Losses of Driving MOSFET in SRBC

Among other losses are gate drive losses, which contribute to dissipative driving losses of Q switch and its body diode loss, defined in Eq. (21) [63]. The gate drive losses are dissipated in the gate resistor and the driver.

$$
\begin{equation*}
P_{g a t e, Q_{1}}=Q_{o s s, Q_{1}} \times V_{g s, Q_{1}} \times f_{s} \tag{21}
\end{equation*}
$$

$P_{R R}=\frac{1}{2} \times Q_{R R} \times V_{d s} \times f_{s}$

Figure 2.16 MOSFET Turn-off Model [64]

The output charge, $Q_{\text {oss }}$ and reverse recovery charge $Q_{R R}$ produce losses during turn-off. They are shown in Figure 2.16 as the shaded triangular areas [64]. In addition, during T_{D}, there also exists the reverse recovery current loss in diode which is given in Eq. (22) and this adds to total power loss in SRBC circuit as given in Eq. (23):
$P_{\text {total }}=P_{s w}+P_{\text {COND }}+P_{\text {gate }}+P_{b d}+P_{R R . .}$

2.9 Ideal Operating Waveforms of SRBC

Figure 2.17 Zero Delay SRBC Waveforms [64]

Figure 2.17 shows the ideal operating waveforms for SRBC circuit. Depending on the applicable L_{o} value, the load current operates in CCM mode where heavy load current is expected to drive the output. Ideally, there will be no cross conduction. The drain current of S_{1} and S_{2} are conducting during turn-on of S_{l} and S_{2} respectively. Clearly by referring to the node switch, V_{N} waveform in Figure 2.17, there is no negative region indicating zero body diode conduction. Details in calculating the parameter values are described in details in [64]. By using the operation of CCM as reference, the design of SRBC in DCM (at boundary) can be formulated.

In order to design a converter, the switching frequency, f_{s} influences the efficiency of the system. At higher switching frequency, more power will be dissipated in the SRBC. Output capacitor, C_{o} is used to reduce the voltage ripple at the load. The charge of the capacitor used also depends on load current ripple and the switching frequency. The C_{o} must be large in order to sustain output voltage level. Using high level of equivalent series resistance (ESR) of electrolytic capacitor will result in large transient spike. On the other hand, ceramic capacitor has low ESR but limited capability to store energy for supplying energy to the load.

The function of the inductor is to limit the current through the load when the switch is conducting. One advantage in using inductor is that it can control the percentage of ripple. Smaller L_{o} can help increase faster transient response and high power density [65]. In addition, it can determine the circuit operation either in CCM or DCM. With a smaller L_{o}, the gate drive speed improves as this will increase transient time [21] but with the cost of high power loss.

Peak current will increase and this eventually adds to the RMS loss of the gate driver. The possible solution may suggest having shorter $t_{\text {rise }}$ and $t_{\text {rec }}$ of current and optimized L_{o} value given by Eq. (24) [1]. Nevertheless, this L_{o} is subject to manufacturing variation.

$$
\begin{equation*}
L_{o, \text { opt }}<\frac{1}{C_{i s s}} \times\left(\frac{2 \times t_{\text {rise, max }}}{\pi}\right)^{2} \tag{24}
\end{equation*}
$$

A higher L_{o} produces larger voltage swing at the load. In addition, this will lead to the reduction of switching time due to smaller gate voltage value, increase in $t_{\text {rise }}$ and
$t_{\text {rec }}$ and also switching loss. A low DCR value can be used to solve these issues. Even though, large L_{o} will reduce ripple, it limits the energy transfer speed. A small value can produce a faster slew rate. So, this is one of the reasons why L_{o} has to be selected properly.

2.9.1 Soft-Switching Technique in SRBC

The voltage mode soft-switching circuits have been widely used in recent years in DC-DC converter applications. This is due to the significant advantage in lowering conduction losses. Figure 2.18 shows an example of a ZVS auxiliary circuit block.

Figure 2.18 ZVS-SRBC Auxiliary Components

It is seen from Figure 2.18 that the switches S_{I} and S_{2} are supplied by independent PWM signals. As opposed to center-tapped D-CRGD shown in Figure 2.8, the additional components are not used to drive the gates. They are mainly the auxiliary parts which are used to achieve soft-switching operation. The circuit in Figure 2.18
employs a resonant network in parallel to S_{l}. The purpose is to generate ZVS for S_{l} and ZCS for auxiliary switch, $S_{\text {aux }}$ without increasing the switches' voltage and current stresses. A complete operation and advantages of this circuit is explained by A.K. Panda et al. [66].

The auxiliary components having lower rating values are commonly added to the existing circuit. Normally, they only operate partially within one complete cycle of switching frequency. This will add to the improvement in efficiency of the converter. However, modifications are still required in the circuit block to further solve issues in high switching related loss in ZVS-SRBC converters. Reducing switching losses in main switches in SRBC has not been given a great concern and being left unsolved in most literatures. Table 2.2 tabulates some of the issues.

Table 2.2 Issues of Auxiliary Circuits in SRBC

	Descriptions	Issues / Drawbacks
[Wang, 2006], [Chuang et al, 2008], [Lin et al, 2008]	Auxiliary switch is turned off while current stays on.	Produces switching losses and harmonics.
[Yang et al., 1993], [Filho et al., 1994], [Moschopoulos et al., 1995],	Auxiliary circuit causes high peak current stress in main circuit.	Requires higher current rated switch [Tseng et al., 1998]

2.9.2 Selection of Operating Resonance Condition

When considering the soft-switching technique, the choice for LC combination in the SRBC gives significant impact to the performance of the converter. The difference in resonant and switching frequency results in variation of operating conditions, which include below resonance, at resonance and above resonance.

When varying the switching frequency to be greater, smaller or equal to the
resonant frequency, the switching current waveform and resonant inductor current change due to the changes in impedance of the resonant tank [76-77].

Resonant frequency $\left(f_{r}\right)$ exists in the resonant converter whose voltage and current waveforms vary sinusoidally during one or more subintervals of each switching period [78]. Resonance occurs when the inductive reactance $\left(X_{L}\right)$ and capacitive reactance $\left(X_{C}\right)$ are equal in absolute values and the two impedances cancel each other out having the total impedance drops to zero. Resonant frequency formula can be represented as in Eq. (25).

$$
\begin{equation*}
f_{r}=\frac{1}{2 \pi \sqrt{L_{r} C_{r}}} \tag{25}
\end{equation*}
$$

where L_{r} is the resonant inductive value and C_{r} is the resonant capacitive value.
By changing the resonant tank impedance, the output is therefore changed. For $f_{s}>f_{r}$, the resonant tank impedance is large thus small $I_{L r}$ value is produced causing the converter to work in ZVS mode. For $f_{s}<f_{r}$, the resonant tank impedance value is small causing the $I_{L r}$ to be large. While for $f_{s}=f_{r}$, the resonant is unity where the resonant tank impedance is zero and $I_{L r}$ at its maximum value [79]. This eventually may affect the performance of the converter. The resonant tank impedance formula can be represented by Eq. (26).

$$
\begin{equation*}
Z=\sqrt{\left(X_{L}-X_{C}\right)^{2}} \tag{26}
\end{equation*}
$$

where $X_{L}=2 \pi f_{s} L$ and $X_{C}=\frac{1}{2 \pi f_{S} C}$. The summary of each condition, its requirement and implication for series resonant LC configuration in SRBC is listed in Table 2.3 [79].

Table 2.3 Summary of Resonant Operation in DC/DC Converter

Below resonance	At resonance	Above resonance
- Requires lossy RC snubber, fast recovery diodes, di/dt limiting inductors - Power control is based on correct transformer and filtering circuit design - Converter operates in ZCS - High FET turn-on and off switching losses	- Not easy to achieve ZVS. - Suitable mostly for LLC converter.	- When drive current lags its voltage, S_{1} and S_{2} can transition with no voltage across them - ZVS is easily achieved - Ability to regulate against input voltage variation - Allows operation at high frequency without significant loss of converter efficiency - Ability to regulate output voltage down to zero load without turning off the resonance

2.10 Gate Drive Control Scheme for SRBC

Many gate driver control schemes for DC-DC converters have been introduced since 1990s. They include digital and also analog controls. In 1997, pulse based T_{D} compensator (PBDTC) was introduced [80] where the switching times were modified to compensate T_{D} so that v_{o} can be properly controlled in magnitude. In addition, it can adjust symmetric PWM pulses to correct voltage distortion. This replicates the fixed delay implementation. Some other literatures have discussed different methods in details and can be referred to [81-82].

Several analog techniques have been introduced to ensure "break before make" operation. They are the Fixed Dead Time (FDT), Adaptive Gate Drive (AGD) and Predictive Gate Drive (PGD). Each of them has its own characteristics, advantages and drawbacks which provide information for the suitability and cost effective gate driver design.

In order to obtain a higher efficiency with minimum switching loss, a gate drive control method needs to be implemented in new SRBC circuit. The control scheme provides the T_{D} between the state transitions of switches S_{I} and S_{2} to avoid cross conduction. A proper setting of T_{D} can decrease total power loss in switching converter without overloading and having instability issues. In order to avoid shoot through current, many drivers work with fixed T_{D}. Since this control scheme produces a lengthy T_{D}, it would easily generate high dissipation and hence reduce efficiency of the circuit. However, with accurate PWM settings, these results have shown otherwise.

The AGD control scheme is another way which can be applied where it holds a dynamic compensation of T_{D} and avoid short circuit of both MOSFETs. At the same time this will keep T_{D} value small enough to reduce body diode conduction losses [83]. A predictive control is claimed to be best in solving this problem where it uses predictive concept to predict and reduce T_{D} on the switching cycle of gate driver. Here, the problem related to T_{D} could be minimized.

2.10.1 Fixed Dead Time

FDT is the first operational mode used for synchronous rectifier converter circuit. The advantage of this technique is that it has a simple control circuit with lower voltage stress [84-85]. However, this scheme requires the T_{D} to be provided long enough to prevent cross conduction. A lengthy T_{D} would reduce the converter efficiency by allowing the body diode to conduct.

Figure 2.19 SRBC Switch Node Voltage
Channel Conduction
$t(\mu \mathrm{~s})$

0 V

Figure 2.19 shows typical switch-node voltage waveform of SRBC. It shows the relative effects of FDT and AGD control schemes on $t_{b d}$. Theoretically, FDT scheme produces a longer $t_{b d}$ and eventually reduces the channel conduction time. However, a precise timing control could solve this issue. During $t_{b d}$, the inductor current, $i_{L o}$ will flow from ground through the body diode of switch S_{2} and L_{o} resulting the voltage drop across body diode which leads to the reductipeeita thelafificiency of power conversion [83].
Adaptive Delay

Figure 2.20 Fixed Dead Time SRBC Gate Drive

Figure 2.20 shows the block diagram FDT control circuit integrated with SRBC circuit. The input signals produc@@ytreolrive circuit provide T_{D} to S_{1} and S_{2}. In addition, the efficiency of FDCifabidithe also varies with different type of MOSFETs' junction temperature and with lot-to-lot variation of the T_{D} delay during manufacturing [60].

$$
t_{D} \quad t_{D}
$$

2.10.2 Adaptive Gate Drive

Figure 2.21 Adaptive Delay SRBC Gate Drive [93]

Figure 2.21 shows the Adaptive Gate Delay (AGD) control scheme. This second generation gate drive control scheme was introduced to overcome the limitation in the FDT. It uses a control loop that includes a digital delay line where it senses the drain to source voltage, $v_{d s}$ of the S_{2} and adjusts the digital delay line according to the amount of delay that should be applied to turn on S_{2}. Consequently, S_{2} is turned on only when the v_{N} equals to zero [86].

The advantage of using this control scheme is that the adjustment of the delay can be made adaptively according to the type of MOSFET used. However, there is a disadvantage that comes from this control scheme. The variation of body diode conduction time interval is not easy to predict. This is due to the logic components used as the feedback circuit. Each of the components has its own propagation delay which may indirectly increase the T_{D} between the pulses.

2.10.3 Predictive Gate Delay

Figure 2.22 Predictive Control Timing

Since both FDT and AGD schemes have limitations, the PGD scheme was then introduced. It is a combination of a predictive circuit integrated with PWM where it has the ability to vary the T_{D} from time to time according to the feedback signal. The predictive time is shown in Figure 2.22. Here, the next $T_{D}, T_{D[n+l]}$ can be predicted and minimized based on the feedback.

Sensed Signal (V or I)

Figure 2.23 PGD Control Block Diagram

PGD uses feedback loop as shown in Figure 2.23 in order to reduce the T_{D} until it
reaches near zero [87]. The predictive circuit will sense a signal from the node voltage of SRBC Circuit.

Table 2.4 Advantages and Disadvantages of Gate Drive Control Schemes

Fixed Dead Time	Adaptive Gate Drive	Predictive Gate Drive
- constant, pre-set delays for turn-off to turn-on intervals - simple in design - efficiency varies with MOSFET types and ambient temperature - Need to make delay long enough to cover entire application.	- variable delays based on volatage sensed on current switching cycle - uses state information from power stage to control turnon of two gate drivers and set T_{D} - increases body diode conduction time caused by delay in cross coupling loops - unable to compensate for delay to charge MOSFET gate to threshold level - difficult to determine whether S_{2} is off	- uses information from current switching cycle to adjust delays to be used in next cycle - can prevent body diode from being forward biased and hence cross conduction - increases power savings when MOSFET is turned on - minimizes reverse recovery loss in S_{l} body diode. - tight layout regulation requirement

Table 2.4 shows the summary of all three gate drive control schemes for SRBC circuits. Even though FDT is not flexible, it has the simplest configuration and easy to drive the SRBC. The only issue is that a longer T_{D} has to be provided. However, this is not true since simulation results shown otherwise, the details of which are presented in Results and Discussion. The data in the table gives the advantages and disadvantages of different control schemes so that the choice of the design can easily be made based on cost, component count and simplicity.

2.11 Load Variation on SRBC

In any load conditions, switch S_{I} will experience switching loss whereas reverse recovery loss is in S_{2} body diode. However, these losses can be minimized by allowing $i_{L o}$ to operate in DCM. A high output inductance, L_{o} value can be used so that $i_{L o}$ flow will allow S_{l} body diode to turn on prior to S_{l} during T_{D} [88]. This ensures that the current is mostly DC. On the other hand, in CCM, switch S_{l} will experience hard switching since $i_{L o}$ never touches zero. This is in contrast to the operation of S_{2} where in CCM, current can easily reverse and reduce the body diode recovery loss. As the converter load current varies, contribution of power dissipation will vary as well. During T_{D} interval, different inductor currents give different operational waveforms [89] as shown in Figure 2.24.

Figure 2.24 SRBC Load Effects [89]

2.11.1 Continuous Conduction Mode

From Figure 2.24, when switch S_{2} is turned off, the $i_{L o}$ is positive indicating CCM operation. In SRBC circuit, the switch node, V_{N} is clamped to the ground by body diode of S_{I}. The S_{I} switch starts to turn on after T_{D}. V_{N} level will rapidly increase from the ground to the input voltage. Here, switching loss of S_{I} dominates power dissipation and it can cause considerable voltage drop in rectifying stage where current can reverse in S_{2}.

Due to constant turn-on time during PWM rising edge, the V_{N} for heavy load condition is given by Eq. (27) [89]:

$$
\begin{equation*}
V_{N, \text { heavy }}=\frac{\left(t_{D, S_{1}}-t_{o n}\right)}{t_{s w}} \times V_{i n} \tag{27}
\end{equation*}
$$

2.11.2 Discontinuous Conduction Mode

PWM converter can suffer from lower conversion efficiencies during light loads [90]. Here, the conduction loss is insignificant as the switching loss is very high [90, 91]. In order to reduce the switching loss, S_{I} has to operate in ZVS. A high $i_{L o}$ ripple must be allowed so that it can have negative polarity.

In this condition, the negative $i_{L o}$ will start to charge $C_{d s}$ of S_{2} to the input voltage. In DCM, the negative polarity $i_{L o}$ can turn on the body diode of S_{l} before the switch itself. The delay time of switch node is much shorter than the heavy load current condition. Consequently, switching power loss in S_{l} can be reduced and moreover S_{l} can effectively operate in ZVS condition [88]. However, gate drive loss is dominant under this load condition [92].

Assuming $i_{L o}$ is constant during T_{D}, the node voltage is given by Eq. (28) [89].

$$
\begin{equation*}
V_{N, \text { light }}=D \times V_{i n}+\frac{C_{d s, s_{2}} 2 V_{i n}{ }^{2}}{2 \times t_{o n} \times\left(i_{L o, a v g}+\left\{\frac{\left(V_{i n}-V_{o}\right) \times D \times t_{o n}}{2 \times L_{o}}\right\}\right)} \tag{28}
\end{equation*}
$$

2.12 Improving SRBC Weaknesses

The SRBC may require improvement in the gate drive capability in driving both switches and the reduction in power dissipation in the converter. The gate drive circuit must be able to synchronize the switching without incurring too much of body diode conduction loss. In addition, the switches in SRBC should operate in ZVS mode with minimal turn-off drain voltage. This will in turn minimize the entire switching loss during each cycle. The detail of methodology is described in Chapter 3.

2.13 Chapter Summary

There are lots of reviews discussing about the advantages and issues in the design of gate driver for better SRBC circuit. In addition, from the requirement of high frequency application, the loss reduction aspects have been debated for the intention to increase the level of converter's performance. Several types of gate drive control schemes have contributed to various views in terms of choice, effectiveness and simplicity in the design. All information gathered will be used as guidelines in the development of chronological methodology for this project.

CHAPTER 3

METHODOLOGY

3.1 Chapter Overview

The simulation and experimental analyses are carried out for both S-CRGD and new SRBC circuits. However, the other investigations concentrating on the Q-factor of S-CRGD, switching frequency, effects on variation in load, effects on T_{D} and also comparison of gate drive control schemes of new SRBC are done through simulation only. Methodology is explained in details with all relevant reasoning. Figure 3.1 shows the summary of methodology involved in this work.

Figure 3.1 Summary of Methodology

3.2 Parameter Limitations on S-CRGD Circuit

The first step in this research work is to determine the optimized parameters in the S-CRGD circuit. The idea of better S-CRGD circuit for SRBC is to achieve precise timings of PWM signals for S_{1} and S_{2} MOSFETs. Based upon the S-CRGD circuit, the design must look into a tradeoff between switching and gate drive loss in order to produce better switching operation of S_{1} and S_{2}.

Figure 3.2 S-CRGD

In this work, a S-CRGD circuit is used as shown in Figure 3.2. Due to the fact that this S-CRGD uses a small inductor, produces faster turn-on speed and low body diode conduction loss, it has been chosen as the basis in the design methodology for the development of a dual-channel topology. Simplicity and full energy recovery are the main reasons why this type of S-CRGD circuit is referred to this work. By using push-pull type configuration and clamped diodes, the circuit is able to generate better switching response at the gate of S_{l}.

3.2.1 Power Stage Simulation Setup

PSpice simulator is used to study the behavior of voltage and current in the inductor and the power MOSFET's $C_{i s s}$. There are three important parameters which will influence the operating waveforms of S-CRGD circuit: D, T_{D} and L_{r}. The significant impact of not using optimized parameter values have not been explained extensively. The S-CRGD circuit as shown in Figure 3.2 is utilized to investigate the effects of these parameters with respect to driver's switching losses using simulation. The details of each limitation are explained and the parameters used in the simulation are given in Table 3.1.

Table 3.1 Simulation Parameters of S-CRGD for $f_{s}=1 \mathrm{MHz}$

Components	Parameter Settings in PSpice Simulator and Components'				
Ratings		$	$	$P W M_{l}$	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{~V}_{2}=5 \mathrm{~V}, t_{r}=t_{f}=5 \mathrm{~ns}, \mathrm{PW}=200 \mathrm{~ns}, \mathrm{PER}=1000 \mathrm{is}$, $t_{d}=0 \mathrm{~ns}$
:---:	:---				
$P W M_{2}$	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{~V}_{2}=5 \mathrm{~V}, t_{r}=t_{f}=5 \mathrm{~ns}, \mathrm{PW}=200 \mathrm{~ns}, \mathrm{PER}=1000 \mathrm{is}$, $t_{d}=232 \mathrm{~ns}$				
Q_{1}, Q_{2}	PSMN130-200D/PLP, $200 \mathrm{~V} / 20 \mathrm{~A}, R_{d s(o n)}=0.130 \Omega$				
D_{1}, D_{2}, D_{3}	$1 \mathrm{~N} 6392,45 \mathrm{~V} / 60 \mathrm{~A}$				
S_{l}	IRFP250, $200 \mathrm{~V} / 33 \mathrm{~A}, R_{d s(o n)}=0.085 \Omega$				
L_{r}	9 nH				
V_{s}	12 V				
$V_{D C}$	48 V				

The D determines the length of conduction time of power MOSFET, S_{l} and it must provide sufficient on-time for $i_{L r}$ to completely charge and discharge. Otherwise, this eventually results in oscillation during turn-off and hence generates power loss.

On the other hand, by varying T_{D}, the consequences may both add to further switching loss and speed reduction. This in turn necessitates optimizing D, T_{D} and L_{r} in the tradeoff between size of L_{r}, switching loss and speed of the driver circuit.

3.2.1.1 Effects of Duty Ratio

In 1 MHz switching frequency, pulse width duration of 200 ns is chosen as a benchmark in the design, resulting in a duty ratio of 0.20 because from this, the inductor value can be determined. The reason is to evaluate the impact of charging and discharging of inductor current during the conduction of Q_{1} and Q_{2}. From here, the gate charging response of S_{l} is observed so that the oscillation count and hence switching loss can be calculated. The significance impact of D in S-CRGD circuit is based on the following factors:
a) Relationship between the duration of charging / discharging time with respect to D.
b) Consequence of i_{L} for shorter and longer duration of applied D.
c) Power dissipation in S-CRGD.
d) The selection of diode for current recovery time.

3.2.1.2 Effects of Dead Time

Two separate PWM settings $\left(P W M_{1}\right.$ and $\left.P W M_{2}\right)$ are given in PSpice simulator in accordance to Table 3.1. The generated signals will produce two sets of sequential pulses with different time delay. Consequently, in between them, there will be a delay time, indicating that both PWMs are off. It is important to include this interval to ensure low conduction loss of body diode in Q_{1} and Q_{2} in addition to avoid shoot through current.

Here, the FDT technique is employed due to its simplicity. The T_{D} is set fixed at 15 ns generated by the dual-channel PWM generator. For a constant L_{r} value of 9 nH
and 0.20 of D, the $i_{L r}$ of different T_{D} values are observed via simulation during its turn-off phase. The oscillation count is measured and the implications on applied T_{D} duration are investigated. It is expected that there will be some variations in oscillation count leading to power dissipation. Therefore, in this case, an optimized T_{D} value can be obtained using iterative method.

3.2.1.3 Effects of Resonant Inductor

In the resonant network, $i_{L r}$ charges and discharges with respect to the applied pulse width of $P W M_{1}$ and $P W M_{2}$. Thus the gate terminals of Q_{1} and Q_{2} will draw current for a short time which is used to fully charge the capacitance of $v_{g s, S l}$. By changing the value of L_{r}, the flow of current can be observed through simulation within a specific duty ratio of 0.20 .

The L_{r} value is varied from 1 nH to 50 nH and the investigation is focused on the ringing count during turn-off of Q_{1} and Q_{2} switch. For a fixed T_{D} of 15 ns being the predetermined value, the simulation to determine the optimized L_{r} is carried out. The expected result gives the best value of L_{r} indicating optimized turn-on speed hence low inductive oscillation effect.

3.2.2 Experimental Setup of S-CRGD Circuit

The experimentation took place in power electronics research lab. All of the PWM settings, D, T_{D} and L_{r} values follow the simulation setup. The experimental components used are shown in Table 3.2. The $V_{D C}$ is reduced to 25 V for safety reason due to expected high overshoot current.

Table 3.2 Experimental Parameters of S-CRGD for $f_{s}=1 \mathrm{MHz}$

Components	Parameter Settings \& Ratings
$P W M_{1}, P W M_{2}$	A dual-channel Function Generator Tektronik AFG3102
Q_{1}, Q_{2}	STP22NF03L, $30 \mathrm{~V} / 22 \mathrm{~A}, R_{d s(o n)}=0.038 \Omega$
D_{1}, D_{2}, D_{3}	SDP06S60, $600 \mathrm{~V} / 6 \mathrm{~A}$
S_{l}	IRFI540NPBF, $100 \mathrm{~V} / 20 \mathrm{~A}, R_{d s(o n)}=0.052 \Omega$
L_{r}	10 nH
V_{s}	12 V
$V_{D C}$	25 V

A 12-V input voltage, V_{s} is used and the PWM outputs are first fed into MOS driver EL7104 before connecting to the gate of MOSFET switches, Q_{1} and Q_{2}. The driver is not used in the simulation because the PWM settings are sufficient to generate precise signals to the gate of MOSFETs. All of the parameter limitations are investigated using the optimized values as defined in the simulations: $D=0.20$, $L_{r}=10 \mathrm{nH}, T_{D}=15 \mathrm{~ns}$. The picture of the experimental S-CRGD circuit board is shown in Appendix A.

The experimental results are used in the design of the D-CRGD for driving SRBC circuit. The D-CRGD is simulated and measured through experiment. The methodology process is discussed in the next section. The components used in the simulation have different rating values such as for diodes and switches since the library files for the ones used in the experiment are not available. Therefore, the closest ratings available are selected in the simulation.

3.3 New D-CRGD Circuit

Using the optimized parameters as determined in the single-channel topology, the new D-CRGD circuit is shown in Figure 3.3. This is the second step in the work whereby simulation and experimental analyses are conducted. The D-CRGD circuit has the ability to drive S_{1} and S_{2} switches of SRBC circuit effectively due to its features in fast switching speed and low switching loss. The body diode conduction loss is also expected to be reduced to minimum value. The details on the circuit operation and its loss analysis are discussed in the next chapter.

Figure 3.3 New D-CRGD

The circuit contains two symmetrical S-CRGDs as shown in Figure 3.2, having the advantage of the bootstrap components, D_{a} and C_{a} compared to work done in [12]. In the simulation, both left and right circuits generate two different pulse widths at the gate of S_{1} and S_{2}. Using four driving FATs, Q_{1} to Q_{4}, the EFFTGIRACDfficiple is similar to Figure 3.2. Here, there are some changes to the simulation setup especially at the right circuit where the PWM of S_{2} operates in 1-D. The T_{D} separation maintains at 15 ns . Table 3.3 shows the parameters assigned in simulation setup.

Table 3.3 Simulation Parameters of D-CRGD for $f_{s}=1 \mathrm{MHz} \quad V_{p 1}$

Components	Parameter Settings \& Ratings
$V_{p 1}$	200 ns, delay $t_{d 1}=15 \mathrm{~ns}$
$V_{p 2}$	765 ns, delay $t_{d 2}=232 \mathrm{~ns}$
$V_{p 3}$	312 ns, delay $t_{d 3}=284 \mathrm{~ns}$
$V_{p 4}$	670 ns, delay $t_{d 4}=955 \mathrm{~ns}$
D_{I} to D_{4}, D_{a}	$1 \mathrm{~N} 6392,45 \mathrm{~V} / 60 \mathrm{~A}$
L_{l}, L_{2}	9 nH
Q_{l} to Q_{4}	PSMN130-200D/PLP, $200 \mathrm{~V} / 20 \mathrm{~A}, R_{d s(o n)}=0.130 \Omega$
C_{a}	$100 \mu \mathrm{~F}$
S_{l}, S_{2}	IRFP250, $200 \mathrm{~V} / 33 \mathrm{~A}, R_{d s(o n)}=0.085 \Omega$
V_{s}	12 V

3.3.1 Experimental Setup of D-CRGD Circuit

There are two function generators used to provide four different synchronized pulses and thus drive Q_{1} to Q_{4} switches. The parameters used are tabulated in Table 3.4. The gate voltages of S_{l} and S_{2} in Figure 3.3 are measured and verified with the simulation. It is noticed that the diodes and switches used in the simulation and experiment are different in ratings. The reason is that the unavailability of the library files of the experimental components. Nevertheless, the ratings are comparable.

Table 3.4 Experimental Parameters of D-CRGD for $f_{s}=1 \mathrm{MHz}$

Components	Parameter Settings \& Ratings
$V_{p 1}$ to $V_{p 4}$	2 dual-channel Function Generators Tektronik AFG3102
D_{1} to D_{4}, D_{a}	SDP06S60, 600 V/6 A
L_{1}, L_{2}	10 nH
Q_{l} to Q_{4}	STP22NF03L, $30 \mathrm{~V} / 22 \mathrm{~A}, R_{d s(o n)}=0.038 \Omega$
S_{l}, S_{2}	IRFI540NPBF, $100 \mathrm{~V} / 20 \mathrm{~A}, R_{d s(o n)}=0.052 \Omega$

3.4 New SRBC Circuit

By having correct driving pulses in S_{1} and S_{2} generated by the new D-CRGD circuit in Figure 3.3, the new SRBC circuit can be operated effectively. Figure 3.4 shows the new SRBC circuit. In this subsequent step, the circuit is also simulated and measured experimentally. Table 3.5 shows the additional passive components for ZVS used in the circuit. The operation of new SRBC and analysis of circuit performance are presented in the results and discussion chapter.

Figure 3.4 New SRBC

Table 3.5 Components Used in New SRBC Circuit

Components	Parameter Settings \& Ratings
$L_{s,} L_{o}, L_{r}$	$0.9 \mathrm{iH}, 18 \mathrm{iH}, 15 \mathrm{iH}$
$C_{s}, C_{x}, C_{r}, C_{o}$	$100 \mathrm{iF}, 1 \mathrm{mF}, 95 \mathrm{iF}, 100 \mathrm{iF}$
$V_{i n}$	48 V
R_{o}	10Ω

Since the new ZVS is operated in DCM, the critical value of L_{o} has been calculated using Eq. (29) where it is found to be $4 \mu \mathrm{H}$. Therefore, $18 \mu \mathrm{H}$ is chosen. Hence C_{o} is determined using Eq. (30) and Eq. (31) respectively. By multiplying the calculated C_{o} value of $30 \mu \mathrm{~F}$ by a higher factor to guarantee good output regulation, this gives $100 \mu \mathrm{~F}$.

$$
\begin{equation*}
L_{\text {crit }}=\left[1-\frac{V_{o}}{V_{i n}}\right] \cdot\left(\frac{R_{o}}{2 f_{s}}\right) \tag{29}
\end{equation*}
$$

$C_{o}=\frac{\Delta I_{o}}{8 f_{s} \Delta V_{o}}$
where $\Delta V_{o}=\frac{\pi^{2}\left(1-D_{S 1}\right) V_{o}}{2} \cdot\left(\frac{f_{r}}{f_{s}}\right)^{2}$

To ensure ZVS operation for S_{l} and S_{2}, the L_{r}, L_{s}, C_{r} and C_{s} values are carefully selected based on $X_{L}=2 \pi \times f_{s} \times L_{r, s}$ and $X_{C}=\frac{1}{2 \pi \times f_{s} \times C_{r, s}}$ respectively. This may help establish ZVS drain-gate voltage behavior. Also C_{x} of 1 mH is used to minimize the drain voltage of the switch. Appendix B shows the experimental new ZVS-SRBC test circuit board.

In the simulation, the results are expected to indicate better performance of new

SRBC with lower losses. Among the results to be observed in the simulation are:
a) Gate voltages of $S_{l}\left(v_{g s, S l}\right)$ and $S_{2}\left(v_{g s, S 2}\right)$.
b) Drain voltages of $S_{l}\left(v_{d s, S_{l}}\right)$ and $S_{2}\left(v_{d s, S_{2}}\right)$.
c) Drain currents of $S_{l}\left(i_{d, S I}\right)$ and $S_{2}\left(i_{d, S 2}\right)$.
d) Currents in L_{s}, L_{r} and L_{o}.
e) Body diode conduction of S_{2}

3.5 Chapter Summary

The methodology starts with the simulation and experimentation of S-CRGD circuit to determine the best limiting parameters which are based on specific requirements. Then those values will be applied in the design of D-CRGD network. Using two-pulse generators, the new SRBC is simulated and verified experimentally. All of the results are compared, analyzed and discussed in Chapter 4. In addition, some additional simulation work are presented in Chapter 5 which include the analyses of Q-factor in S-CRGD, implication on switching, dead time and variation in loads of new SRBC.

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Chapter Overview

The simulation and experimental results are discussed thoroughly in this chapter. The new D-CRGD and SRBC topologies are derived and evaluated in terms of switching, conduction and body diode conduction losses. When the simulation and experimental results are compared, they present similarities in operating waveforms within acceptable range of output values.

4.2 Simulation of S-CRGD Circuit

In Figure 3.2, two pulses which provide square-waved periodic signals fed into both switches Q_{1} and Q_{2} respectively. The pulsating waves oscillate at 1 MHz switching frequency. By getting the signals from $P W M_{1}$ and $P W M_{2}, Q_{1}$ and Q_{2} produce waveforms as shown in Figure 4.1. It can be seen that the turn-off time of $v_{g s, S l}$ is faster than the conventional gate drive circuit as shown in Figure 2.2(b). Based on second-order RLC system, the $i_{L r}$ and $v_{g s, S l}$ are given by Eq. (32) and Eq. (33) respectively.

Figure 4.1 S-CRGD PSpice Simulated Waveforms

$$
\begin{equation*}
i_{L_{r}}(t)=I_{L_{0}} e^{\frac{R_{e q}}{2 L_{r}} t} \cos \left(\frac{\sqrt{\frac{4 L_{r}}{C_{i s s}}-R_{e q}{ }^{2}}}{2 L_{r}} t\right)+\frac{2 V_{i n}-2 V_{C_{i s}}-R_{e q} I_{L_{r}}}{\sqrt{\frac{4 L_{r}}{C_{i s s}}-R_{e q}{ }^{2}}} e^{\frac{R_{e q}}{2 L_{r}} t} \sin \left(\frac{\sqrt{\frac{4 L_{r}}{C_{i s s}}-R_{e q}{ }^{2}}}{2 L_{r}} t\right) \tag{32}
\end{equation*}
$$

Given $V_{g s, S_{1}}=V_{C_{i s s}}$

$$
\begin{equation*}
V_{g s, S_{1}}(t)=V_{g_{0}}+\frac{1}{C_{i s s}} \int_{0}^{t} i_{L_{r}}(t) d t \tag{33}
\end{equation*}
$$

When Q_{1} is turned on, the inductor current, $i_{L r}$ starts to develop. Switch Q_{2} at this time is not conducting. Here, assuming that $i_{L 0}=0, V_{s}=V_{g}$ and $V_{C i s s}=0, i_{L r}$ is given by Eq. (34), charged to maximum value and so is $v_{g s, S l}$.

This $v_{g s, S l}$ increases exponentially as given by Eq. (35) which is then clamped to input source, V_{s} of $12 \mathrm{~V} . R_{e q}$ is the total gate resistance in the RGD and this value is calculated in the range $1.3-1.7 \Omega$ which includes resistance in the wire and the MOSFET from datasheet.
$i_{L_{r}}(t)=\frac{2 V_{g}}{\sqrt{\frac{4 L_{r}}{C_{i s s}}-R_{e q}{ }^{2}}} e^{-\frac{R_{e q}}{2 L_{r}} t} \sin \left(\frac{\sqrt{\frac{4 L_{r}}{C_{i s s}}-R_{e q}{ }^{2}}}{2 L_{r}} t\right)$
$v_{g s, S_{1}}=V_{C_{i s s}}+\frac{1}{C_{i s s}} \int_{0}^{t} i_{L_{r}}(t) d t$
$i_{L_{r}}(t)=-\frac{2 V_{g}}{\sqrt{\frac{4 L_{r}}{C_{i s s}}-R_{e q}{ }^{2}}} e^{-\frac{R_{e q}}{2 L_{r}} t} \sin \left(\frac{\sqrt{\frac{4 L_{r}}{C_{i s s}}-R_{e q}{ }^{2}}}{2 L_{r}} t\right)$

The duration of the charging current depends on L_{r} and $Z_{0}=\sqrt{\frac{L_{r}}{C_{i s s}}}$ being the impedance of S-CRGD. Once it is fully charged, $i_{L r}$ in Eq. (34) starts to discharge to zero through body diode of Q_{2}, L_{r}, D_{l} and back to V_{s}. For a specified time given after Q_{1} is turned off, Q_{2} takes its turn to conduct. Then the previously clamped 12- $V_{g s, S I}$ is discharged to zero and the discharging voltage equation is the same as given by Eq. (33). The $i_{L r}$ is charged again to maximum but now in the negative direction which gives Eq. (36). Once charged, it is charged back up to zero [93] and this process repeats for the subsequent cycles.

4.2.1 Optimization of Duty Ratio

The summation of charging and discharging time of $i_{L r}$ is used as a benchmark to determine the minimum operating range of D. As shown in Figure 4.2, the 200 ns pulse width of 1 MHz switching frequency indicates a portion of 20% turn-on time
from one cycle. Here, during the conduction of $Q_{1}, i_{L r}$ is charged to maximum. Then the discharging phase will commence only when $i_{L r}$ is fully discharged until it reaches zero.

Figure 4.2 Charging \& Discharging of $i_{L r}$ with Respect to Q_{I} Turn-On

The discharged current, $i_{L r}$ requires a considerable amount of time before the turn-on sequence ends. This is known as the recovery time, $t_{\text {rec }}$ which is given by Eq. (37).
$t_{\text {rec }}=\pi \sqrt{L_{r} C_{i s s}}$

Here, the duration of charging is shorter due to on resistive charging effects through gate and driver resistance. Looking at Figure 4.2, the duration of charging and discharging of current must be within the given pulse width. To do this, $P W M_{1}$ has to provide sufficient on-time duration which will allow $i_{L r}$ to flow without disruption. Faster recovery free-wheeling diodes can be used to increase the charging time and hence speed of the converter. At the end of Q_{l} turn-on time, there exist some oscillations which are clearly seen in the diagram.

The $i_{L r}$ charging and discharging behavior of Q_{2} are identical to Q_{1}. When Q_{2} conducts, Q_{l} is off at this time. The negative peak $i_{L r}$ of both switches are found to be slightly reduced which are shown in Figure 4.3. It is due to higher parasitic resistance gained in $C_{i s s}$ of S_{l} during the switching transition. Increasing pulse width in $P W M_{l}$ will eventually increase D of $v_{g s, S l}$ as well. On the other hand, reducing the width too short may force discharged $i_{L r}$ to oscillate at the end of $v_{g s, S l}$ turn-off sequence which will be discussed in the next section. This consequently increases dissipation and gives rise to stress in the S-CRGD circuit.

4.2.2 Optimization of Resonant Inductor

In the resonant network, $i_{L r}$ charges and discharges with respect to the applied pulse width of $P W M_{1}$ and $P W M_{2}$. Thus the gate terminals of Q_{1} and Q_{2} will draw current for a short duration of time which is used to fully charge the $v_{g s, S l}$. Here $i_{L r}$ is at maximum, $I_{p e a k}$ given by Eq. (38) and the time taken for $i_{L r}$ to reach maximum from zero is given by Eq. (39). The shorter the time, the faster the turn-on speed will be. In addition, the rise time, $t_{\text {rise }}$ Eq. (40) and recovery time, $t_{\text {rec }}$ Eq. (37) of $i_{L r}$ also depend on the value of L_{r}.
$i_{L_{r}(\text { peak })}=\frac{V_{C_{\text {iss }}}}{Z_{O}}$
$t_{\text {peak }}=\frac{\tan ^{-1}\left(\frac{2 L_{r} \sqrt{\frac{4 L_{r}}{C_{i s s}}-R_{e q}{ }^{2}}}{R_{e q}}\right)}{2 \sqrt{\frac{4 L_{r}}{C_{i s s}}-R_{e q}{ }^{2}}}$
$t_{r i s e}=\frac{\pi}{2} \sqrt{L_{r} C_{i s s}}$

Figure 4.3 S-CRGD $i_{L r}$ versus $L_{r}\left(200 \mathrm{~ns}\right.$ pulse, $\left.15 \mathrm{~ns} T_{D}\right)$ PSpice Simulation

As L_{r} value increases, the charging and discharging time of $i_{L r}$ also increase. As shown in Figure 4.3, it shows a limit in L_{r} value for the generation of $v_{g s, S l}$ before $i_{L r}$ starts to oscillate at turn-off. Using 200 ns pulse width, L_{r} of 40 nH or below are chosen for T_{D} of 15 ns . It is seen that when higher L_{r} is used, $i_{L r}$ will produce more ringing and thus increase diode conduction loss.

During turn-on, the charging time of $i_{L r}$ will represent the turn-on speed of the driver. Increasing L_{r} will result in increasing turn-on time and hence leading to a slower speed. However, introducing a very small L_{r} will reduce the transient response at the cost of limiting the operating current flow within the resonant tank. This eventually increases peak current, $I_{\text {peak }}$ of $i_{L r}$ and consequently produces higher power loss.

Figure 4.4 S-CRGD $I_{\text {peak }}$ versus T_{D} (200 ns pulse, 9 nH inductor)

In another important aspect, switching loss is directly proportional to speed. In order to reduce this loss, one option is to reduce the speed. However, this is not desirable in high frequency application. T_{D} is also important in the optimization of switching losses. Fig 4.4 shows the relationship between L_{r} and peak current of $i_{L r}$ for different T_{D} values ranging from $1 \mathrm{~ns}-30 \mathrm{~ns}$. It is found that the optimized L_{r} value is around $9 \mathrm{nH}-10 \mathrm{nH}$.

4.2.3 Optimization of Dead Time

A FDT control scheme is chosen due to its simplicity whilst the PWMs are generated by the dual function generator. T_{D} can be easily set up to avoid shootthrough current between switches. Using the L_{r} of 9 nH , the $i_{L r}$ of different T_{D} values during turn-off phase of $v_{g s, S l}$ are studied via simulation.

Figure 4.5 S-CRGD $9 \mathrm{nH} i_{L r}$ Ringing versus T_{D} PSpice Simulation

As shown in Figure 4.5, it is found that there are presence of ringing in $i_{L r}$ which can cause variation in power losses at $v_{g s, S l}$ during turn-off. It is also observed that when T_{D} is set to a smaller value, there are more ringing counts. One way to solve this is by increasing T_{D}. However, if T_{D} is applied too long, $v_{g s, S l}$ will appear to be floating and hence this may give rise to higher dissipation in the circuit.

Figure 4.6 S-CRGD $9 \mathrm{nH} v_{g s, S l}$ Ringing versus T_{D} PSpice Simulation
In addition, the T_{D} can be determined from the tradeoffs between speed and power
dissipation at turn-off. Referring to Figure 4.6, a longer duration of T_{D} introduces higher ringing overshoot voltage hence higher EMI. Even though the difference is small, the values are quite distinct and comparable. This pattern comes from the energy stored in the inductance when it is released across parasitic capacitance of S_{l}.

At lower T_{D}, this gives result in the lowest ringing peak of $v_{g s, S I}$. However, T_{D} of 1 ns does not guarantee protection against cross conduction. Therefore, based on the design parameters, Figure 4.7 shows that the optimized T_{D} value is found to be 15 ns with respect to peak current of $i_{L \text { r }}$. The smaller peak current allows for lower power dissipation.

Figure 4.7 S-CRGD $9 \mathrm{nH} i_{L r}$ Peak Optimization versus T_{D} PSpice Simulation

4.2.4 Q-Factor Vs Inductor

In this part of work, a graph of Q-factor versus inductor value and gate resistance power losses is plotted as shown in Figure 4.8. Q is optimized for optimum gain in SCRGD with respect to L_{r}. There are two curves plotted: one is the Q-factor and the other is the gate resistance power loss which is calculated using Eq. (41).

It is clearly shown that there is an intersection point between these two curves, indicating L_{r} of 12 nH , which results in the Q-factor of 0.68 .

$$
\begin{equation*}
P_{R_{e q}, \text { loss }}=\frac{R_{e q}}{\left(R_{e q}+Z_{o}\right)} \times Q_{G} \times V_{s} \times f_{s} \tag{41}
\end{equation*}
$$

Figure 4.8 S-CRGD L_{r} Inductance and Q Factor PSpice Simulation

A higher Q-factor indicates more energy storage in the resonant system and reduction in gate power losses. Even though it is desired to get a higher Q for better performance of gate driver circuit, the Q is only for this S-CRGD circuit topology ($\mathrm{Q}=0.5$ as reported in [94]).

However, there is a limitation in selecting a higher L_{r} value. As previously shown in Figure 4.3, as inductor value increases, the time taken for the inductor current, $i_{L r}$ to completely discharge increases, which will cause oscillation during turn-off and increases gate voltage, $V_{g s, S l}$ power loss. This eventually adds up to total gate drive losses in S-CRGD circuit. It is observed that $i_{L r}$ takes a longer time to charge and discharge as L_{r} increases. In Figure 4.3, the maximum L_{r} value is within the range $20 \mathrm{~ns}-30 \mathrm{nH}$. Thus, the $L_{r, \text { max }}$ is determined to be 22 nH , being the upper boundary limit using Eq. (12).

Due to the high oscillation in $i_{L r}$ at higher L_{r} value, total S-CRGD loss is expected to increase. However, from Eq. (39), the gate resistance power loss is reduced. More importantly, in order to operate the gate driver efficiently with high performance, there is a tradeoff between L_{r} value and switching loss. Table 4.1 summarizes the results.

Table 4.1 Q-Factor Comparison of S-CRGD Performance

Inductor value	$\mathbf{5} \mathbf{~ n H}$	$\mathbf{1 2} \mathbf{~ n H}$	$\mathbf{4 3} \mathbf{~ n H}$
Q factor	0.54	0.68	1.29
Gate resistance power loss	798.98 mW	680.27 mW	502.38 mW
Level of Total RGD Loss	LOW but high gate loss	Best	HIGH due to oscillation

Table 4.1 clearly shows that 12 nH inductance value gives best indicator in terms of power losses and switching capability. The Q-factor does not only depend on L_{r} alone, but other parameter such as input capacitance of power MOSFET, $C_{i s s}$.

4.2.5 Loss Analysis of S-CRGD Circuit

In S-CRGD circuit, the charging and discharging of $i_{L r}$ generates a resonant link between S_{l} and V_{s}. Comparing to the conventional totem-poled gate drive circuit, more energy could be saved. The switching loss in S-CRGD circuit is normally high especially in the driving transistors, Q_{1} and Q_{2}. This loss is usually caused by rapid turn-on and turn-off switching transitions. Where switching loss is a variable parameter that consistently changes with respect to variation in L_{r}, T_{D} and D, this can be reduced by adopting snubber network [95].

By lowering the peak current of $i_{L r}$ this will lead to a faster turn-on speed. In this case, when different L_{r} and fixed $t_{r i s e}$ are applied, this will generate different peak current values. Here, the performance of the S-CRGD can be evaluated.

The average power loss equations for driving switches $Q_{1}-Q_{2}$, diodes $D_{1}-D_{2}$ and gate voltage of S_{l} are given in Eq. (15), Eq. (42) and Eq. (43) respectively.

$$
\begin{equation*}
P_{D}=\frac{2 V_{F}}{2 V_{F}+V_{i n}} \times \frac{\sqrt{\frac{L_{r}}{C_{i s s}}}}{R_{e q}+\frac{L_{r}}{C_{i s s}}} \times f_{s} \times V_{i n} \times Q_{G} \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
P_{\text {gate }, S_{1}}=i_{L_{r}} \times V_{g s, S_{l}} \tag{43}
\end{equation*}
$$

where V_{F} is forward voltage drop of D_{l} and D_{2}, Q_{G} is the gate charge of S_{l} and f_{s} is the switching frequency. From simulation, the switching loss of Q_{l} and Q_{2} are dominant as shown in Figure 4.9. By applying higher L_{r} value, this results in lower peak current and thus reduces switching loss but with the cost of reducing speed.

Figure 4.9 S-CRGD PSpice Simulation Switching Loss Distribution

Figure 4.9 shows the distribution of switching loss in the S-CRGD circuit. It is noticeable that the switching losses in transistors are high and dominant. Both
switching losses in diodes behave linearly to L_{r} because more time is required for $i_{L r}$ to charge and discharge within the circuit and along the diode path. This adds to the oscillation of $i_{L r}$ which contributes to the loss.

Nevertheless, there will be an upper limit of L_{r} where too high, will force $i_{L r}$ to generate high oscillation in the circuit. The switching losses in D_{1} and D_{2} are found to be minimal. The $v_{g s, S l}$ power loss on the other hand is about one half $(222 \mathrm{~mW})$ of turn-off switching loss in $Q_{1}(418.02 \mathrm{~mW})$ and Q_{2} turn-on switching loss of 453.47 mW which makes up of 19.4% out of total switching loss of 1.15 W at 9 nH with $T_{D}=15 \mathrm{~ns}, D=0.20$ and $f_{s}=1 \mathrm{MHz}$. If the switching losses of Q_{1} and Q_{2} can be further reduced, this will eventually increase power loss savings in S-CRGD.

4.3 Operation of S-CRGD: Experimental Results

Figure 4.10 S-CRGD PWM Experimental Waveforms

Using function generator, two PWM signals of 200 ns each are generated with T_{D} of 15 ns . This is shown in Figure 4.10. The experimental work is based on the optimized values of $L_{r}=10 \mathrm{nH}, T_{D}=15 \mathrm{~ns}$ and $D=0.20$ according to the setup values in Table 3.2. As seen in Figure 4.10, there is a voltage spike during the initial turn-on
time. These pulses are then fed to the gates of N-channel MOSFETs Q_{1} and Q_{2} respectively.

Figure 4.11 S-CRGD $i_{L r}$ Experimental Waveform

The experimental behavior of charging and discharging $i_{L r}$ is shown in Figure 4.11. The positive peak current is about 3.2 A and $t_{\text {rise }}$ and $t_{\text {rec }}$ taken by this current are about 25 ns and 50 ns respectively. These results show resemblance of $i_{L r}$ behavior found by the simulation as shown in Figure 4.3.

$t(\mathrm{~ns})$
Figure 4.12 S-CRGD $v_{g s, S l}$ Experimental Waveform

The charging of $i_{L r}$ yields the charging of $v_{g s, S l}$ to maximum peak of 5 V as shown in Figure 4.12. This result is compared with the simulation illustrated in Figure 4.1. However, due to stray inductance experienced by the switch caused by the parasitic capacitance, some oscillations are seen in the experiment.

$t(\mathrm{~ns})$
Figure 4.13 S-CRGD $i_{L r}$ Experimental Turn-Off Oscillation

The noise also leads to the oscillation of $i_{L r}$ during turn-off of $v_{g s, S l}$. From simulation result referred to Figure 4.5, the ringing current amplitude of 200 mA is observed. The experimental result shown in Figure 4.13 has proven this. In order to justify that switch, S_{I} conducts correctly, the drain current and voltage at the load are measured as shown in Figure 4.14. Both of them correspond to the inductive load circuit where peak current and voltage measure 2.25 A and 22 V respectively based on given load parameters.

Figure 4.14 S-CRGD Experimental $i_{d s}$ versus v_{d}

Figure 4.15 S-CRGD $i_{d s}$ versus $v_{d s}$ PSpice Simulation

The simulated waveforms obtained are also given in Figure 4.15 for comparison and they are in agreement with the experiment. Therefore, all of the experimental results validate the simulation. The outcomes show a promising proof of the work. The comparative data is tabulated in Table 4.2. All three sets of data are analyzed based on different results taken from experiment, simulation and MathCAD. The peak of $i_{L r}, t_{r i s e}, t_{r e c}$, switching loss in $Q_{1}, P_{s w, Q 1}$ and $P_{s w, Q 2}$ are compared to validate the simulation results.

Table 4.2 S-CRGD: Comparison of Simulated and Experimental Data

Parameters	Experiment	Simulation	\% Diff	MathCAD	\% Diff to Experiment
$i_{L r \text { (peak })}$ A Eq. (38)	3.20	2.40	25.00	3.60	11.11
$t_{r \text { ise }}(\mathrm{ns})(40)$	25	30	16.67	25.81	3.14
$t_{\text {rec }}(\mathrm{ns})(37)$	50	58	13.79	51.62	3.14
$P_{s w, Q 1(o f f)}(\mathrm{mW})(17)$	425.20	418.02	1.69	420.34	1.14
$P_{s v, Q 2(o n)}(\mathrm{mW})(16)$	438.50	453.47	3.30	447.80	2.08

The numerical analysis using MathCAD is carried out to compare the experimental results with the simulation data. From Table 4.2, the experimental data validates the simulation. The MathCAD calculation has also proven that in most cases, the analysis is acceptable. However, the simulated peak $i_{L r}$ value is slightly lower compared to the experiment. This is due to the convergence settings done in the simulation setup.

4.4 Operation of D-CRGD: Simulation Results

The new D-CRGD circuit in Figure 3.3 is simulated using the parameter setup given in Table 3.3. The circuit is used to generate the fixed T_{D} for SRBC circuit and it consists of four switches Q_{1} to Q_{4}. Both sets of switches $Q_{1}-Q_{2}$ and $Q_{3}-Q_{4}$ behave symmetrically. The inductor L_{1} and L_{2} connect the driving switches to the power MOSFETs, S_{l} and S_{2}. The D-CRGD circuit provides two driving signals with duty cycle D and 1-D powered by a single input voltage source, V_{s} of 12 V . Duty ratio of 0.20 is produced to allow for inductor current requirement. The optimized L_{I} and L_{2} values used for the circuit are 9 nH with T_{D} of 15 ns .

The bootstrap diode, D_{a} and capacitor, C_{a} have the advantages in reducing the losses in D-CRGD circuit. When Q_{2} is turned on, C_{a} will charge up V_{s} via D_{a} to generate an output voltage of $V_{s}-V_{D a}$. Consequently, this causes Q_{1} to "float" at the gate of S_{l}. D_{a} will generate some forward voltage drop, $V_{F, D a}$ while charging C_{a} and reverse bias power loss during reverse recovery. More importantly, C_{a} can prevent voltage transient at $v_{d s, S l}$, avoid significant heat loss and support high peak current drawn from V_{s} during turn-on. In addition, C_{a} voltage will rise slightly above V_{s} to provide needed gate drive voltage for S_{l}.

Time (s)

Figure 4.16 New D-CRGD PSpice Simulation Waveforms

Figure 4.16 shows the operating waveforms of D-CRGD circuit. This circuit generates two output gate voltages which complement each other. $V_{p 1}$ and $V_{p 2}$ generate pulses for Q_{l} and Q_{2}. At t_{l}, when switch Q_{l} turns on, inductor current, $i_{L l}$ develops. Q_{2} is off at this time. Then, $i_{L 1}$ is charged exponentially to maximum value and so is the gate voltage of $S_{l}, v_{g s, S l}$ which is clamped to input source, V_{s} of 12 V . The time taken for $i_{L r}$ to reach maximum and its peak value are calculated using Eq. (38) and Eq. (39) respectively where $i_{L r}(\mathrm{t})$ is given in Eq. (32). When $v_{g s, S I}$ reaches its maximum value, $i_{L l}$ starts to discharge through free-wheeling low impedance path, $Q_{2, \text { bodydiode }}-L_{1}-D_{l^{-}}-V_{c a}$. This discharged current depends on the time given for Q_{1} conduction. In this case D is 0.20 and this value must be at least the sum of $t_{\text {rise }}$ and
$t_{\text {rec }}$. If the time is insufficient, oscillation of the current will occur at the end of Q_{1} turn-off, as shown in Figure 4.3. This result is not desirable as it leads to higher switching loss.

At t_{2}, Q_{1} stops to conduct. After T_{D} of 15 ns ends, the switch Q_{2} is turned on. At $t_{3}, i_{L l}$ charges to maximum with negative value and $v_{g s, S l}$ is discharged to zero. Due to symmetrical behavior of the left and right circuits, at t_{4}, Q_{3} starts to conduct. At this time, Q_{2} is still conducting while Q_{4} is off. With similar fashion as in Q_{1} conduction, $i_{L 2}$ charges to maximum positive value and same goes to the gate voltage of $S_{2}, v_{g s, S 2}$. The previously negative $i_{L I}$ increases back to zero value at t_{5} through $D_{2^{-}} L_{l^{-}}$
 duration of $v_{g s, S 2}$ conduction is complement to $v_{g s, S l}$ which is $D_{S 2}$ as illustrated in Figure 4.17.

Figure 4.17 New SRBC 15ns Delay Switch Gate Pulse PSpice Simulation

The maximum of $v_{g s, S l}$ is clamped only about at 10 V with duty ratio, $D_{S I}$. On the other hand, $v_{g s, S 2}$ goes to a maximum value of 12 V with $D_{S 2}$. The value of $v_{g s, S l}$ should be equal to $v_{g s, S 2}$ at 12 V in order to have balanced voltages. But because of the addition of C_{x} in the new SRBC circuit, there is a voltage drop of 1.7 V . Therefore,
the simulation shows a result of $v_{g s, S l}=12-1.7=10.3 \mathrm{~V} \approx 10 \mathrm{~V}$. The purpose of adding C_{x} to the circuit is to eliminate floating voltages at $v_{d s, S l}$ and $v_{d s, S 2}$ during turnoff so that there will be less switching losses in the circuit. Since both $v_{g s, S l}$ and $v_{g s, S 2}$ are not of the same amplitude, the internal capacitance, $C_{i s s}$ for both switches is not the same. $C_{i s s}$ can be obtained from the basic formula defined by the $Q=C V$. A lower gate voltage will draw less gate charge from the switch and vice versa.

The circuit operation can also be explained in terms of energy processing. When Q_{1} is turned on, energy is transferred from the power source, V_{s} to the resonant inductor and the gate capacitor. When $v_{g s, Q l}$ reaches its peak, freewheeling of energy at inductor occurs. Then, the energy is returned back to V_{s}. Therefore, the D-CRGD demonstrates less power consumption compared to the conventional RG gate driver because of the energy recovery process.

The circuit operation during the discharging transition is as follows. When Q_{2} is turned on, resonance takes place and the capacitive energy is transferred to the inductor. When $i_{L 1}$ starts to increase to the negative peak value, energy is merely freewheeling and finally, when the inductor current returns to zero, the inductor energy is also returned to the power source, V_{s}. The circuit shows resemblance of symmetry of a conventional gate driver. The $Q_{3}-Q_{4}$ operating conditions are identical to $Q_{1}-Q_{2}$ with the only difference in the switching intervals.

4.5 Operation of SRBC: Simulation Results

The new SRBC circuit shown in Figure 3.4 operates in ZVS condition. The S_{2} switch has a longer conduction time compared to S_{l}. This is due to lower natural operation value of $D_{S l}$ which results in high S_{2} on-state loss hence the need to reduce the losses. Since the switches are conducting in complementarily manner configured by the D-CRGD circuit, they will not cross-conduct each other. During T_{D}, once S_{l} is turned off, the circulating discharged inductor current, $i_{L o}$ at the load will flow into body diode of S_{2} while it is yet in off condition. ZVS can be achieved here for this switch. However, S_{2} has to be completely turned off before S_{1} turns on. When S_{2}
conducts, it is expected that $S_{2, \text { bodydiode }}$ remains on. In the case of DCM operation, the negative load inductor current, $i_{L o}$ can be applied where it firstly turns on $S_{l, \text { bodydiode }}$ before the main body of the switch itself. Here, S_{l} experiences ZVS condition leading to reduction of switching losses at S_{l} [96].

In all conditions, S_{l} has to turn on with a minimal stress. Here, S_{l} must operate in ZVS due to the fact that the $i_{L o}$ variation in either DCM or CCM operation can alter the state of switching loss levels. In other words, S_{I} is dominant in generating the most loss in the SRBC circuit. One way to solve this is by employing additional L_{s} and C_{s} components which are connected in parallel to S_{I} [51]. The capacitor C_{x} is used to prevent floating drain voltage of S_{l} while L_{r} and C_{r} are for ZVS operation of S_{2} switch. Using this mode, both switches can now be operated in ZVS condition, leading to commutation of discharged $i_{L o}$ through $S_{2, \text { bodydiode }}$ and $S_{l, \text { bodydiode }}$ safely with an effectively lower switching loss. The operating gate and drain voltage as well as drain current waveforms of the new SRBC circuit are shown in Figure 4.18.

Figure 4.18 New SRBC Waveforms

There are seven modes of operation in the new SRBC circuit, shown in Figure 4.19. Mode 1 starts from the initial condition at $t<t_{0}$. The components used in the simulation are not ideal and they are based on actual specifications provided by the manufacturers. The figure shown is for steady-state condition. It is assumed that drain-source capacitances of S_{l} and S_{2} are the same. Initially, in Mode 1, S_{l} is off and S_{2} is conducting. All charging and discharging of capacitances and the flow of currents are shown in the figure. The diode seen in Figure 4.19 represents the body diode of the switch.

The mode of operation continues to Mode 2, $t_{0}<t<t_{a}$ where S_{1} and S_{2} are off. Here, the T_{D} is set to be 15 ns . The output inductor current, $i_{L o}$ is operating in DCM, specifically in critical load condition. When S_{2} in the previous mode is turned off
during T_{D}, all $i_{L o}, i_{L r}$ and $i_{L s}$ are constant. This can be clearly seen in Figure 4.20. However, the $i_{d s, S 1}$ and $i_{d s, S 2}$ are non-zero during this interval indicating the conduction of body diodes leading to a small portion of power loss. It is expected that in 1 MHz switching frequency, this loss is unavoidable but can be reduced with precise gate drive control scheme. The C_{x} continues to charge with the amount of $V_{i n}-2 v_{d s, S / / S 2}$. At the end of $t_{a}, i_{L s}$ starts to freewheel along the body diode of S_{l} and the same time charges C_{s}. This leads to ZVS in S_{l} where $v_{g s, S l}$ will only turn on once $v_{d s, S l}$ turns off. Thus, Miller's effect has been reduced significantly [97].

When S_{I} starts to conduct, the negative current of $i_{d s, S 2}$ which is at peak value will reduce to zero. During this Mode $3\left(t_{a}<t<t_{b}\right), S_{2}$ is still off. Here $i_{L r}$ and $i_{L s}$ increase in a linear fashion and hence charge C_{r} and C_{s} respectively. $i_{L o}$ is also charging up L_{o}. On the other hand, C_{x} is charged to its maximum value. In the complementarily operated mode of SRBC circuit, obviously $v_{d s, S 2}$ must swing at maximum $V_{i n}$ value and $v_{d s, S l}$ at this interval should be zero. This is due to the freewheeling phase of $i_{d s, S l}$ which makes $v_{g s, S I}$ first reach zero before $\mathrm{v}_{d s, S I}$ becomes high.

When $v_{g s, S l}$ reaches its threshold value at $t_{v t h, S l}, i_{d s, S l}$ starts to develop exponentially until maximum. This current will circulate through L_{s} and C_{s} which brings theoretically an additional forward voltage drop of 0.7 V in S_{l} leading to $V_{g s, S l}$ of 12.7 V . However, this value is not seen in the simulation. $v_{g s, S l}$ continues to increase to 12 V and remains constant in Mode $4\left(t_{b}<t<t_{c}\right)$.

Mode 3: $t_{a}<t<t_{b}$

Mode 2: $t_{0}<t<t_{a}$

Mode 4: $t_{b}<t<t_{d}$

Figure 4.19 Sub-interval equivalent circuits of New SRBC

At $t_{d}, i_{d s, S l}$ will reach the peak value and this occurs when S_{I} stops conducting. On the other hand, S_{2} is not yet turned on which indicates the T_{D} interval. During Mode 5 ($t_{d}<t<t_{e}$), both drain voltages of S_{l} and S_{2} are conducting. Here, $v_{d s, S l}$ increases and $v_{d s, S 2}$ decreases. This reflects the decreasing pattern of conducting $i_{d s, S I}$ and $i_{d s, S 2} . C_{x}$ is now discharged to zero giving the momentarily rise of $i_{d S, S 2}$ before reducing back to zero. As a result, $V_{C x}$ will be withdrawn from the gate voltage of S_{I} which gives result in lower peak $v_{g s, S l}$ value of only 10 V during turn-on.

In Mode $6\left(t_{e}<t<t_{f}\right), i_{d s, S l}$ is now turned zero. However, due to the decrease of $v_{d s, S 2}$ and an increase of $v_{d s, S l}$ at the same time, this makes $i_{d s, S 2}$ decrease to maximum negative value. This clearly shows the similar pattern for $i_{d s, S l}$ and $i_{d s, S 2}$ for both T_{D} intervals. The next sequence shows switch S_{2} where it starts to conduct causing $i_{d s, S 2}$ back to zero at $t_{v t h, S 2}$. This current will again get back to its previous state before increasing to maximum when S_{l} is off, leading to zero $i_{d s, S l}$.

In Mode $7\left(t_{f}<t<t_{g}\right), S_{2}$ is fully turned on and S_{l} is off. $i_{d s, S 2}$ increases linearly as C_{x} is charged again. However, C_{s} is discharged back through $L_{s^{-}} V_{\text {in }}$ path. Here, $v_{d s, S 2}$ is kept constant at $V_{\text {in }}$ until t_{g} where S_{2} then starts reducing the value back to zero at t_{0}, signaling the decreasing $i_{d s, S 2}$ and $v_{d s, S l}$ from the peak and $V_{i n}$, respectively. Then the circuit continues the next switching cycle with the same operating condition.

Figure 4.20 shows the inductor currents of the new SRBC circuit. The $L_{s} C_{s}$ and $L_{r} C_{r}$ pairs are used to commutate $i_{L o}$ from $S_{2, \text { bodydiode }}$ to $S_{l, \text { bodydiode }}$ effectively during T_{D}. Basically the roles of both LC pairs are the same. It can be seen that during T_{D}, drain voltage signals for both switches operate in exact complementarily fashion. This will minimize the diode conduction losses. Furthermore, L_{s} and L_{r} help charged and discharged $i_{d s, S l}$ and $i_{d s, S 2}$ to freewheel completely in each of the switch's conduction cycle, and hence reduce the switching losses.

There are four ZVS points as indicated at t_{0}, t_{a}, t_{d} and t_{e} which indicate a minimal or zero cross conduction seen at the intersection points between the drain and gate voltages. More importantly, the $v_{d s, S l}$ is not floating. A non-zero value makes the whole turn-on duration of S_{l} experiencing a higher switching loss and eventually increasing the body diode conduction loss.

Using this new SRBC circuit, switching loss during entire S_{l} turn-on interval can be fully diminished where $v_{d s, S l(o n)}$ is reducing to zero.

Time

Figure 4.20 Currents of New SRBC Circuit

The output inductor peak current, $i_{L o, \max }$ is much larger than $i_{L s, \max }$ and $i_{L r, \max }$, indicating the criterion to achieve ZVS condition [95]. The drain voltage floating issue has been resolved by maintaining zero voltage during S_{l} turn-on. A capacitor C_{x} is added in series with S_{2} to lower S_{l} gate voltage of new SRBC circuit. This does not affect the operation of new SRBC circuit where the only difference is the amount of
gate charge used in the calculation of S_{2} switching loss is higher. The output voltage at the load is only fluctuating with fewer ripples. Interestingly, even though extra components are added, the switching losses and body diode conduction losses are reduced. However, the peak $i_{L o}$ value is slightly reduced at the output of new SRBC circuit.

4.5.1 Resonant Configuration of New SRBC Circuit

The configuration of inductor and capacitor forms a resonant circuit which acts as a filter to decrease the switching losses in the circuit. From the new SRBC circuit, two LC resonant filters can be identified as shown in Figure 4.21.

Figure 4.21 Series Resonant of New SRBC Circuit

There are two series connected resonant circuits: one is connected in parallel to S_{l} and the other parallel to S_{2}. The study is only concentrated in the case of un-damped condition.

In summary, during turn-on of switches, the resonant current and voltage for the series and parallel network are given in Eq. (44) and Eq. (45) respectively.

LC series network:
$i_{L}(t)=I_{L 0} \cos \omega_{0}\left(t-t_{0}\right)+\frac{V-V_{c 0}}{Z_{o}} \sin \omega_{0}\left(t-t_{0}\right)$
$v_{c}(t)=V-\left(V-V_{c 0}\right) \cos \omega_{0}\left(t-t_{0}\right)+Z_{o} I_{L 0} \sin \omega_{0}\left(t-t_{0}\right)$

For network A, $V=V_{i n}$ and for $\mathrm{B}, V=v_{N}$

In the resonant switching circuit, inductor smoothens the current passing through it while the capacitor reduces the voltage ripple content. The combined LC switching aid network therefore reduces the ripple in the output to a lower level. The chief advantage of the resonant converters is reduced switching loss. Because turn-on or turn-off transitions of the switches occur at zero crossing of the voltage waveform, it reduces or eliminates some of the switching loss [48]. Therefore, resonant converters can operate at higher switching frequencies. ZVS also reduces the switching stress and converter-generated EMI, consequently lowers the switching power losses.

4.6 New SRBC Circuit: Experimental Results

The circuit was constructed on PCB and the experiment was done in the lab following the component selection based on Table 3.5. The S_{1} and S_{2} switches are of the same type of high power MOSFETs as used in the RGD experimentation: IRFI540NPBF. Both gates of S_{1} and S_{2} are driven by the D-CRGD circuit as shown in Figure 3.3. With the load fixed at 10Ω, the measurements were taken, compared with the simulation results and analyzed.
$v_{g s, S l}(\mathrm{~V}), v_{g s, S 2}(\mathrm{~V})$

Figure 4.22 Gate Voltages of S_{l} and S_{2} Experimental Waveforms of New SRBC
The two complementary pulses for S_{1} and S_{2} are shown in Figure 4.22. It clearly shows that the duty ratio, D of S_{1} is 0.20 and S_{2} is supposed to be 0.80 . However, due to the insertion of T_{D} of 15 ns , this makes up the squeeze in S_{2} pulse width of only 0.75 . There are some ripples seen during the forward turn-on voltage and during turnoff in S_{l}. In addition, S_{2} gate voltage pulses contain more ringing due to the recovery transient process during T_{D}. Nevertheless, the results indicate low rippled voltage swings in both pulses.

$t(\mathrm{~ns})$
Figure 4.23 Gate and Drain Voltages of S_{l} Experimental Waveforms of New SRBC

In the new SRBC circuit, the turn-off drain voltages of S_{1} and S_{2} are minimized to
zero. This eventually leads to a significant reduction in switching loss. Equation (18) shows how the loss can be reduced. For example, if we look at the entire turn-on switching interval, there will exist non-zero power dissipation in between turn-on and turn-off intersection of $i_{d s}$ and $v_{d s}$ waveforms. Adding all these will definitely increase the total switching loss in the device. Clearly, if $V_{d s(o n)}$ is further reduced, thus the switching loss will decrease.

The gate voltage peak value of S_{I} is only approximately 10 V due to the difference in charged capacitance, C_{x} of 1.3-2 V to solve floating drain voltage issue. On the other hand, $V_{g s, S 2}$ remains at 12 V -peak. It is also interesting to observe that the turn-on/turn-off transition and vice versa shown in Figure 4.23 are operating successfully in ZVS mode. This proves that the new SRBC circuit can reduce power losses in the switches.
$v_{g s, S l}(\mathrm{~V}), v_{d s, S l}(\mathrm{~V})$

Figure 4.24 Gate and Drain Voltages of S_{2} Experimental Waveforms of New SRBC

The same operating conditions of $v_{d s}$ and $v_{g s}$ of S_{2} are seen in Figure 4.24. Remarkably, the $V_{d s(o f f)}$ has also been reduced close to zero. The ZVS mode shown does not perform as good as in S_{l} since the free-wheeling load current during T_{D} takes a longer time to charge through C_{x} as indicated in Mode 5. Nevertheless, the ZVS operation is working properly in spite of a little forward voltage drop during turn-on
of $v_{d s, S 2}$. This is due to loop parasitic inductor to form a resonant circuit with $C_{o s s}$ of S_{2}. Apparently, before the turn-on of $v_{d s, S 2}$, there is a small negative voltage drop of 0.6 V which is common in the operation of the switch. However, its turn-off is positive, indicating a reduction in body diode conduction loss in S_{2}.

Figure 4.25 Gate Voltage of S_{2} and Drain Current Experimental Waveforms of S_{l} of SRBC

The drain current of S_{l} in Figure 4.25 shows the charging operation during its turn-on. The $i_{d s}$ charges rapidly to maximum as S_{l} turn on. This increases the switching speed with the cost of slightly higher overshoot to 9 A from the simulated value of 8 A . Once it is at peak, the L_{s} increases the discharging of $i_{L s}$ and bringing $i_{d s, S l}$ to a new value of about one-third of its peak during resonant indicated as signal loss (dotted line). The loss portion of this current will flow to the body diode of both switches leading to a small loss in body diode conduction during T_{D}. This is an unsatisfactory result in which more work has to be done to rectify this issue.

$$
v_{g s, S 2}(\mathrm{~V}), i_{d s, S 2}(\mathrm{~A})
$$

Figure 4.26 Gate Voltage and Drain Current Experimental Waveforms of S_{2} of New SRBC

Figure 4.26 shows the $i_{d s, S 2}$ waveform with respect to S_{2} switch. Comparing with the simulated waveform in Figure 4.18, it is clearly proven that $i_{d s, S 2}$ will continue to discharge even though S_{2} is already turned off. Despite to the impact of loss portion in $i_{d s, S 1}$ signal, the $i_{d s, S 2}$ will continue flowing in S_{2} body diode producing a small amount of body diode conduction loss. Apparently, this loss is inevitable in high frequency operation and not easy to reduce entirely.

Figure 4.27 Body Diode Conduction of New SRBC

The waveform of body diode conduction loss is redrawn based on simulation work as shown in Figure 4.27. Interestingly, even though the body diode conducts, it only takes about 24 ns and the total shaded areas in Figure 4.27 indicate the amount of losses of approximately 25.7 mW . This result explains why $i_{d s, S 1}$ and $i_{d s, S 2}$ behave in such manner as shown in the waveforms obtained in the experimental setup.

Figure 4.28 Gate Voltage of S_{l} and Inductor Current Experimental Waveforms of New SRBC
$V_{o}(\mathrm{~V})$

Figure 4.29 Output Voltage Experimental Waveform of New SRBC

Figure 4.28 and Figure 4.29 show the experimental results where $i_{L o}$ operates in accordance to S_{l} switching. The output voltage is also about the value as found in the simulation that is 9.6 V .

Table 4.3 New SRBC: Comparison of Simulated and Experimental Results

Parameters	Simulation	Experiment	\% Diff
$i_{d s, S 1(\text { peak }, \text { max })}(\mathrm{A})$	8.05	9.0	10.56
$i_{d s, S 2(\text { peak }, \text { max })}(\mathrm{A})$	5.61	5.80	3.28
$i_{d s, S 2(\text { peak }, \text { min })}(\mathrm{A})$	-3.32	-3.20	3.75
$i_{\text {Lo (peak, max })}(\mathrm{A})$	3.97	3.90	1.79
$i_{\text {Lo (peak }, \text { min })}(\mathrm{mA})$	-930.58	-220	BIG Δ
$V_{o}(\mathrm{~V})$	10.6	11.80	10.17

In summary, the differences in simulation and experimental results are tabulated in Table 4.3. The experimentally measured of $i_{L o}$ minimum peak is lower than the simulated result. This is obviously caused by higher output load total resistance generated within the wire resistance in circuit board and measurement tools. The rest of the data differ within only 5% of each other.

4.7 Chapter Summary

The optimization of S-CRGD reveals the limiting parameter values which are later applied in D-CRGD circuit. In addition, the Q-factor of S-CRGD has been determined in the simulation and this value is verified. The new SRBC employ D-CRGD as the gate drive in order to generate low switching loss operating in ZVS-boundary DCM condition. In fact, the on-state drain voltages of S_{1} and S_{2} have also been reduced leading to the reduction in entire turn-on switching losses.

CHAPTER 5

EXTENDED SIMULATION WORK: RESULTS AND DISCUSSIONS

5.1 Chapter Overview

Upon completing the experimental work, the study continues on the investigations of different SRBC topologies in terms of their switching losses and effect on load variations. In addition, the new SRBC circuit has undergone further analyses in varying T_{D} and f_{s}. Also since the driving switches have to operate effectively in megahertz environment, their gate drive control schemes have to be evaluated for optimum SRBC circuit performance.

5.2 Switching Loss Analysis and Loading Effects of Three SRBC

Three different SRBC circuit configurations are investigated in the simulation. All of them use the same D-CRGD circuit shown in Figure 3.3 for consistency in the analyses. The new SRBC circuit (Figure 3.4), the conventional SRBC (Figure 2.11) and the SRBC proposed by [51] (Figure 5.1) are compared and their switching losses are calculated. In addition, the ZVS capability of S_{1} and S_{2} switches are studied during their switching transitions. Using a fixed load of 10Ω, the work will also look at the output load currents, $i_{L o}$, voltages, v_{o} and output power of the converter.

Figure 5.1 SRBC [51]

$$
S_{1}
$$

5.2.1 Switching Loss Analysis

DC

Figure 5.2 shows the turn-off switching losses of all three SRBC circuits for S_{l} switch. All of them are studied in terms of their switching losses. In this work, tliey are simulated using the same D-CRGD circuit topology in Figure 3.3 for the purpose of consistency in the analyses. Conventional SRBC circuit shown in Figure 2.10 presents a mismatch in drain voltage switching transitions during turn-off or turn-on for S_{l} and S_{2}. The new SRBC is referred to Figure 3.4 and the other developed by [51] is shown in Figure 5.1. The switching losses are tabulated in Table 5.1

Figure 5.2 Simulated Turn-Off Switching Loss of Three Different SRBC

Figure 5.3 Simulated Turn-On Switching Loss of Three Different SRBC

Table 5.1 Comparison of Simulated Switching Losses of SRBC at 10Ω-Load

Parameters Analyzed	SRBC [51]	New SRBC	Loss savings
S_{I} Turn-off Peak $V_{d s} * I_{d s}$ (Figure 5.2)	164 W	65 W	60%
S_{I} Turn-off Switching Losses	2.87 W	1.138 W	60%
S_{2} Turn-on Peak $V_{d s} * I_{d s}$ (Figure 5.3)	-	95 W	-
S_{2} Turn-on Switching Losses	-	1.10 W	-

The SRBC [51] is re-simulated using 1-MHz switching frequency and the results are compared. Comparing the turn-off switching loss of S_{l}, the new SRBC circuit shows an improvement of 60% in loss savings with the expected reduction in turn-on switching loss. Turn-on switching losses for Figure 5.1 are not able to be measured due to the transient mismatch. In addition, looking from Figure 5.3, high peak power with respect to thermal management of S_{l} for Figure 2.10 and Figure 5.1 during turnon interval is observed in the simulation.

The ZVS behavior during turn-on and off is also important in determining the performance and reliability of the SRBC circuit. Figure 5.4 to Figure 5.6 show the $v_{g s}$ and $v_{d s}$ waveforms for all three SRBC circuits. Based on the parameter settings used, it is determined that the circuit introduced in [51] does not comply entirely with the ZVS condition and in addition, there exists a floating drain voltage of S_{l}, leading to high switching losses during its turn-on switching cycle. These losses also occur in the conventional and not in the new SRBC circuit.

Figure 5.4 Simulated Gate and Drain Voltages of Conventional SRBC

Figure 5.5 Simulated Gate and Drain Voltages of SRBC [51]

Figure 5.6 Simulated Gate and Drain Voltages of New SRBC

The next analysis discusses the $i_{L o}$ performance in the SRBC circuit. Figure 5.7 shows $i_{L s}, i_{L r}$, and the three $i_{L o}$ currents which correspond to $V_{g s}$ of S_{l} and S_{2}. The additional LC configuration which is connected in parallel with S_{2} in the D-CRGD circuit slightly influences the $i_{L o}$ of the SRBC. This is true since an additional current is branched out from the source to the node leading to a drop in $i_{L o}$ at the load. Comparing with Figure 5.1, $i_{L s}$ peak in the new SRBC circuit drops 11% from 5.41 A to 4.81 A and only $3.4 \%(4.11 \mathrm{~A}$ to 3.97 A$)$ in the $i_{L o}$. Nevertheless, the new SRBC circuit operating in DCM has shown an improvement of switching losses in S_{l} and S_{2} despite the drop in $i_{L o}$.

Figure 5.7 Comparison of $i_{L s}$ and $i_{L o}$ of Three Different SRBC

Therefore, design compromise has to be made between switching losses and peak $i_{L o}$ current at the load. With D-CRGD circuit, $i_{L o}$ is charged and discharged with constant peak value. As a result, the switching time can be reduced leading to lower switching losses. In addition, more power savings in the body diode conduction losses are achieved in S_{l} and S_{2} during T_{D}.

5.2.2 Loading Effects Analysis

All SRBC circuits should have the ability to operate in variable load resistance efficiently. In the design where fixed load resistance is used, the level of certain efficiency can be achieved. However, varying load resistances in the SRBC circuit will cause switching loss to vary in S_{l} and S_{2} as well. This is due to the variation in $i_{L o}$ that commutates along the S_{2} body diode during T_{D}. In this case, more $i_{L o}$ has to
commutate and a longer time is required to freewheel along the S_{2}-load path and vice versa. Therefore, this will eventually give impact on the design of D and T_{D} intervals between switches of the resonant gate drive circuit. The three SRBC topologies are further investigated in terms of their abilities in handling varying load resistances.

Figure 5.8 Average Turn-Off Power Loss of S_{l} at Different Load Resistances

Figure 5.9 Average Turn-On Power Loss of S_{2} at Different Load Resistances

Figure 5.10 Average Load Output Power at Different Load Resistances
Figure 5.8 and Figure 5.9 show the average switching loss of S_{1} and S_{2}
respectively for different load resistance values. Both graphs clearly show that the new SRBC circuit has reduced switching loss significantly. At the same time, the average output power at the load has also been improved significantly, as shown in Figure 5.10.

Taking the load resistance of 10Ω, the numerical data is tabulated in Table 5.2. This is load resistance value chosen for the experimental validation purposes. However, if the inductive load is used, the average output voltage is normally half of resistive load.

Therefore, in order to evaluate the significant of output load, the suitable application has to be given. In this case, the output power is only 15.9 W at 10Ω due to the nature the application which is the battery charger, $(9.5 \mathrm{~V} / 1.5 \mathrm{~A})$.

Table 5.2 Average Switching Loss and Output Power of SRBC at 10Ω Load

Parameter Analyzed	New SRBC	SRBC [51]	\% Diff.	Conventional SRBC	\% Diff.
S_{l} Turn-off Loss (W)	6.15	15.48	60.28	14.54	57.71
S_{2} Turn-on Loss (W)	2.57	4.05	36.48	3.56	27.81
Output Power (W)	19.79	15.92	19.57	14.07	28.10

There shows a pattern of decreasing and increasing values for S_{I} turn-off and S_{2} turn-on switching losses for different load resistances. The decreasing pattern is also seen in Figure 5.8 where the new SRBC has shown a significant improvement in S_{l} turn-off switching losses by more than 60% as compared to SRBC [51] and almost 58% to the conventional at $10-\Omega$ load. The switching losses in S_{2} and output power have also improved and they are also observed at different load resistances.

5.3 Dead Time Variation in New SRBC Circuit

The pulse settings of the four MOSFETs, $Q_{1}-Q_{4}$ in the D-CRGD circuit shown in Figure 3.3 are adjusted carefully resulting in different values of T_{D}. The T_{D} is
varied to evaluate the switching losses in the switches and hence the performance of the circuit. The results are then measured, compared and analyzed. Table 5.3 shows the T_{D} and pulse width settings in the generator.

Table 5.3 Dead Time Variation Settings for $f_{s}=1 \mathrm{MHz}$

Dead time		Initial delay time, $t_{d, \text { initial }}$ (ns)	Delay time for each voltage pulse				Pulse Width					
$\begin{gathered} T_{D}=T_{D I}= \\ T_{D 2} \\ (\mathrm{~ns}) \\ \hline \hline \end{gathered}$	$\begin{gathered} T_{D 3} \\ (\mathrm{~ns}) \end{gathered}$		$\begin{aligned} & t_{d l} \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & t_{d 2} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{aligned} & t_{d 3} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{aligned} & t_{d 4} \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & V_{p l} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{aligned} & V_{p 2} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{aligned} & V_{p 3} \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & V_{p 4} \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & P W_{S I} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{aligned} & P W_{S 2} \\ & (\mathrm{~ns}) \end{aligned}$
5	23	15	15	222	284	947	200	786	654	331	201	769
15	15	15	15	232	284	955	200	765	654	312	211	759
30	5	15	15	247	284	969	200	740	654	286	229	741

For different T_{D}, the initial delay time, $t_{d, i n i t i a l}$ is set to be constant at 15 ns . Therefore, the first delay time for voltage pulse one, $t_{d l}$ is equal to $t_{d, \text { initial. }}$. For example, by taking $T_{D}=15 \mathrm{~ns}$ as reference, it can be observed that only delay time for voltage pulse 1 and $3, t_{d l}$ and $t_{d 3}$, and pulse width of voltage pulse of 1 and $3, V_{p l}$ and $V_{p 3}$, are changed in order to obtain the dead times of 5 ns and 30 ns . Table 5.3 also shows that when $T_{D I}=T_{D 2}$ increases, $T_{D 3}$ decreases instead.

5.3.1 Circuit Performance for Several Dead Times of New SRBC

With circuit parameter values remain unchanged except for T_{D}, the overall performance of the circuit is analyzed for theoretically output voltage of 9.6 V . The circuit performances at T_{D} of $5 \mathrm{~ns}, 15 \mathrm{~ns}$, and 30 ns are shown in Table 5.4 and Table 5.5.

Table 5.4 Parameter Evaluation for Different Dead Time Values of New SRBC for

$$
V_{i n}=48 \mathrm{~V} \text { and } D=0.20
$$

$\boldsymbol{T}_{\boldsymbol{D}}(\mathbf{n s})$	$\boldsymbol{V}_{\boldsymbol{o}}(\mathbf{V})$	$\boldsymbol{I}_{\boldsymbol{o}}(\mathbf{A})$	$\boldsymbol{t}_{\boldsymbol{b} \boldsymbol{d}}(\mathbf{n s})$	$\boldsymbol{P}_{\text {CoND }}(\mathbf{W})$	$\boldsymbol{P}_{\boldsymbol{B D}}(\mathbf{W})$
5	14.061	1.406	30	0.102	0.135
15	10.128	1.520	24	0.068	0.026
30	14.155	1.41	18	0.103	0.082

Table 5.5 Comparison in Power Losses for Different Dead Time Values of New SRBC for $V_{\text {in }}=48 \mathrm{~V}$ and $D=0.20$

$\boldsymbol{T}_{\boldsymbol{D}} \mathbf{(n s)}$	$\boldsymbol{P}_{\boldsymbol{S} 1}(\mathbf{W})$	$\boldsymbol{P}_{\mathbf{S}_{2}} \mathbf{(W)}$	$\boldsymbol{P}_{\text {loss,total }}(\mathbf{W})$
5	1.538	1.145	2.920
15	1.138	1.100	2.238
30	1.707	1.823	3.715

$P_{\text {loss, total }}$ is the total of all losses consisting conduction loss, $P_{\text {COND }}$, body diode loss, $P_{B D}$, and also switching losses, $P_{S I}$ and $P_{S 2}$. From Table 5.5, it indicates that T_{D} at 15 ns gives the lowest total power loss, $P_{\text {loss, total }}$ of 2.238 W . When compared to $T_{D}=5 \mathrm{~ns}$ and $T_{D}=30 \mathrm{~ns}$, it shows using $T_{D}=15 \mathrm{~ns}$ is the most energy saving setting to be used. The switching losses, $P_{s w}$ of the circuit are the major contributors of losses. They come from the two switches, S_{l} and S_{2}, in the SRBC circuit. This means that the faster the MOSFETs can turn off, the more switching power loss can be reduced.

Therefore, the shorter the time taken for a switch to turn off, the more energy can be saved. This is because a switch which has a smaller conduction time will produce less switching loss. In addition, an increase in L_{s} also gives an impact on decreasing $P_{\text {ave }}$. Therefore, in this work, several values of L_{s} are used in the simulation to get an optimum power loss in the two switches. As shown in Table 5.6, it can be concluded that $L_{s}=0.9 \mu \mathrm{H}$ verifies the lowest total switching loss. If L_{s} is reduced further, the inductance will not be able to withstand the maximum current flow to the load.

Table 5.6 Total Switching Loss for Different L_{s} of New SRBC at $T_{D}=15 \mathrm{~ns}$

$\begin{gathered} L_{s} \\ (\mu \mathrm{H}) \end{gathered}$	Positive peak		Switching Time		S_{l} turn-off switching losses (W)	$\begin{gathered} S_{2} \text { turn- } \\ \text { on } \\ \text { switching } \\ \text { losses } \\ \text { (W) } \end{gathered}$	Total switching loss (W)
	Switching loss of S_{I} (W)	Switching loss of S_{2} (W)	$\begin{gathered} S_{1} \\ \text { (ns) } \end{gathered}$	$\begin{gathered} S_{2} \\ (\mathrm{~ns}) \end{gathered}$			
0.9	65.000	95.000	35	40	1.138	1.100	2.238
1.1	61.694	71.383	35	40	1.080	1.428	2.508
1.2	57.118	64.790	35	40	1.000	1.296	2.296
1.4	55.601	55.306	40	45	1.112	1.244	2.356
2.0	47.294	44.399	52	61	1.230	1.354	2.584

5.4 Resonant Inductor Current and Gate Voltage Analyses for Different Dead Times

Table 5.7 records the $i_{L l, \text { avg }}, t_{\text {rise }}, t_{\text {rec }}$ and $\mathrm{di}_{\mathrm{L} 1} / \mathrm{dt}$ at several T_{D} of inductor current for D-CRGD circuit. The measurements are taken during steady state of the $i_{L I}$ which can be referred back to Figure 4.2. From the tabulated results, T_{D} at 15 ns shows the steepest slope compared to others. It also shows the fastest $t_{\text {rise }}$ as well as $t_{\text {rec }}$. The importance of $t_{\text {rise }}$ is that, the faster the inductor current rises, the faster the circuit performance will be.

Table $5.7 i_{L l, \text { avg }}$, Rise Time, Recovery Time and di ${ }_{\mathrm{L} 1} / \mathrm{dt}$ of L_{I} for Different T_{D} of New SRBC

$\boldsymbol{T}_{\boldsymbol{D}}(\mathbf{n s})$	$\boldsymbol{I}_{\boldsymbol{L} \boldsymbol{L}}(\mathbf{A})$ average	Rise time, $\boldsymbol{t}_{\text {rise }}(\mathbf{n s})$	Recovery time, $\boldsymbol{t}_{\text {rec }}(\mathbf{n s})$	$\boldsymbol{d i} \boldsymbol{L}_{\boldsymbol{L}} / \boldsymbol{d} \boldsymbol{t}$ $(\mathbf{A} / \mathbf{n s})$
5	3.202	35.399	61.972	0.124
15	3.570	25.760	56.645	0.173
30	3.068	33.502	71.685	0.122

On the other hand, $t_{\text {rec }}$ means the time taken for the energy to recover back in the gate driver of the circuit. If the time taken for the circuit to recover the energy is shorter, the efficiency of the circuit would be higher. With the D-CRGD circuit, the rate of charged and discharged current are the fastest at T_{D} of 15 ns leading to the reduction in the switching time and hence switching loss.

Table 5.8 Rise Time, Fall Time and dv/dt of S_{1} and S_{2} for Different T_{D} of New SRBC

$T_{D}(\mathrm{~ns})$	$t_{\text {rise, }, \text { l }}(\mathrm{ns})$	$t_{\text {fall, }, \text { l }}(\mathrm{ns})$	$t_{\text {rise, }, 2}(\mathrm{~ns})$	$t_{\text {fall, }, \text { 2 }}(\mathrm{ns})$	$\begin{aligned} & d v_{S /} / d t \\ & (\mathrm{~V} / \mathrm{ns}) \end{aligned}$	$\begin{aligned} & d v_{S /} / d t \\ & (\mathrm{~V} / \mathrm{ns}) \end{aligned}$
5	46.05	47.29	58.10	60.60	0.35	0.75
15	41.56	40.26	49.35	50.70	0.40	0.78
30	44.23	45.64	54.87	55.97	0.38	0.67

Figure 5.11 Simulated Gate Voltages of S_{1} and S_{2} at $T_{D}=15 \mathrm{~ns}$ of New SRBC

Table 5.8 shows the $t_{\text {rise }}$ and $t_{\text {fall }}$ of both switches at new SRBC circuit while Figure 5.11 indicates where they are measure as well as $\mathrm{dv}_{\mathrm{S} 1} / d t$ and $\mathrm{dv}_{\mathrm{S} 2} / \mathrm{dt}$. From the results obtained, again $T_{D}=15 \mathrm{~ns}$ shows the fastest $t_{\text {rise }}$ and $t_{\text {fall }}$ for both switches. It indicates that the circuit gives better performance at this T_{D}. In terms of the gradient of the slope, the rising edge of $v_{g s}$ is equal to the falling edge for both switches shown in the simulation. The conventional SRBC does not pose this trait showing higher switching losses compared to the new SRBC circuit as shown in Figure 5.4.

5.5 Effects of Switching Frequency on New SRBC Circuit

By utilizing the FDT scheme and maintaining T_{D} to be 15 ns , the settings for Figure 3.4 are referred to Table 5.3 for 1 MHz switching frequency. Where all parameter values remain unchanged, the f_{s} is then varied from 250 kHz to 1.25 MHz .

Here, as frequency is set differently, all settings for $V_{p 1}$ to $V_{p 4}$ are also changed accordingly.

Switching loss, body diode conduction loss analyses, the T_{D} delay and effects on cross conduction are measured. Switching losses are measured during the overlapping of turn-on and turn-off in each switching cycle of S_{1} and S_{2}. On the other hand, the switch v_{N} is tapped to observe the conduction of S_{2} body diode. In high switching frequency, cross conduction between switches is inevitable and has to be monitored closely to avoid high power dissipation.

5.5.1 Simulation Data: Effect of Switching Frequency

The results are presented in accordance to variation of f_{s}. The overlapping switching time may vary as well as body diode conduction loss. The effects on switching and body diode related losses are discussed in relation to the application of T_{D}.

Table 5.9 Switching Time Comparison of Conventional and New SRBC

Frequency $\boldsymbol{f}_{\boldsymbol{s}}$	$\boldsymbol{S}_{\boldsymbol{I}}$ Turn-Off (ns)			$\boldsymbol{S}_{\boldsymbol{I}}$ Turn-On (ns)		
	Conv. SRBC	New SRBC	\% Diff	Conv. SRBC	New SRBC	\% Diff
250 kHz	29.56	24.10	18.5	83.91	29.78	64.5
500 kHz	45.19	28.44	37.1	80.51	28.20	65.0
750 kHz	56.15	28.44	49.3	91.63	30.71	66.5
1 MHz	62.70	35.00	44.2	88.58	40.00	54.8
1.25 MHz	63.71	33.87	46.8	88.89	43.08	51.5

Figure 5.12 Turn-On and Turn-Off Switching Times of Conventional and New SRBC

As shown in Table 5.9, the turn-off and turn-on time are much faster in the new SRBC compared to the conventional by 44.2% and 54.8% respectively at 1 MHz switching frequency. The graphical representation of Table 5.9 is shown in Figure 5.12. The switching time increases slightly against frequency and this applies to both switches in SRBC circuit. By increasing the frequency, the device's electrical charges will travel with high velocity and hence prolong the relaxation time upon turn-off due to vibration and heat dissipation and vice versa. The switching speed in the new SRBC circuit has therefore increased by at least 40% resulting from the new ZVS topology design.

Table 5.10 Average Switching Loss Comparison of Conventional and New SRBC

Frequency $\boldsymbol{f}_{\boldsymbol{s}}$	Average $\boldsymbol{S}_{\boldsymbol{I}}$ Switching Turn-Off Loss (W)			Average $\boldsymbol{S}_{\mathbf{2}}$ Switching Turn-On Loss (W)		
	Conv. SRBC	New SRBC	\% Diff	Conv. SRBC	New SRBC	\% Diff
250 kHz	11.03	11.79	6.4	5.19	2.08	59.9
500 kHz	12.06	10.47	13.2	4.46	1.42	68.2
750 kHz	12.64	10.32	18.4	4.38	1.21	72.4
1 MHz	14.56	6.19	57.5	3.57	1.23	65.5
1.25 MHz	16.39	12.34	24.7	5.43	1.23	77.3

Figure 5.13 Average Turn-On and Turn-Off Switching Losses of Conventional and New SRBC

As for the switching loss, the similar pattern is observed. The loss increases with respect to frequency during turn-off. Looking at Table 5.10, the turn-off switching loss is minimal at f_{s} of 1 MHz showing the suitability of new SRBC operating at high frequency based on the conditions set in the simulation.

Another distinguishing feature is that the average turn-on S_{2} loss of the new SRBC is consistent as frequency increases particularly where more than 65% of
power loss is recovered compared to the conventional at 1 MHz . Figure 5.13 shows the graphical waveforms of Table 5.10.

When both MOSFETs are off, the $i_{L o}$ flows in the body diode of S_{2}. Here the body diode conducts and therefore produces additional loss to the circuit. The switching loss in the new SRBC circuit is minimized within the S_{2} turn-on duration. Table 5.11 illustrates that the $t_{b d}$ reduces when f_{s} increases. However, when f_{s} increases beyond 1 MHz , so does the $t_{b d}$. This is significant in high switching frequency operation. Unlike the new SRBC circuit, switching loss in conventional SRBC is dominant for the entire switching cycle where $t_{b d}$ does not give any impact to the operation.

Table 5.11 Average Output Current and Body Diode Conduction Comparison of Conventional and New SRBC

$\begin{gathered} \text { Frequency } \\ f_{s} \end{gathered}$	Average $I_{L o}(\mathrm{~A})$			New SRBC		
	Conv. SRBC	$\begin{gathered} \text { New } \\ \text { SRBC } \end{gathered}$	$\begin{gathered} \% \\ \text { Diff } \end{gathered}$	$\begin{gathered} t_{b d} \\ (\mathrm{~ns}) \end{gathered}$	$\begin{gathered} \text { Peak } \\ V_{B D}(V) \end{gathered}$	$\begin{aligned} & P_{B D} \\ & (\mathbf{W}) \end{aligned}$
250 kHz	1.68	1.99	15.6	101	-1.42	0.081
500 kHz	1.53	1.81	21.0	38	-0.59	0.055
750 kHz	1.51	1.86	18.8	33	-0.39	0.074
1 MHz	1.21	1.51	19.9	24	-0.24	0.026
1.25 MHz	1.65	1.92	14.1	27	-0.20	0.104

Table 5.11 also indicates that $i_{L o}$ is inversely proportional to f_{s} which is due to the vibration produced as heat dissipation at the load. This is similar to $t_{b d}$ where $i_{L o}$ is also increasing beyond 1 MHz . Nevertheless, $i_{L o}$ improves by at least 19% for 1 MHz in the new SRBC circuit. Also it is shown that body diode conduction time, $t_{b d}$ is also inversely proportional to frequency. Having a low peak reverse voltage, $V_{B D}$, this gives result in low body diode conduction loss. Therefore, from the evaluation of $t_{b d}$, $i_{L o}$ and $V_{B D}$, they have shown that the new SRBC circuit has improved switching loss and hence the entire system operation compared to the conventional SRBC.

5.6 Effects of Duty Ratio on New SRBC Circuit

Referring to new SRBC circuit as shown in Figure 3.4, S_{l} has the primary function of a buck converter, used to convert high input voltage to low output voltage at the load. On the other hand, S_{2} has a longer conduction time compared to S_{l}. The switching losses are recorded in Table 5.12.

Table 5.12 Switching Loss Analysis for Different S_{2} Duty Ratio of New SRBC at

$$
T_{D}=15 \mathrm{~ns} \text { in DCM Operation }
$$

$\begin{aligned} & V_{g s, S I} \text { duty } \\ & \text { ratio, } D \end{aligned}$	$\begin{gathered} V_{g s, S 2} \text { duty } \\ \text { ratio, } D \end{gathered}$	$\begin{gathered} S_{I} \text { Turn- } \\ \text { off Peak } \\ \text { (W) } \end{gathered}$	$\begin{aligned} & S_{2} \text { Turn-on } \\ & \text { Peak (W) } \end{aligned}$	$\begin{aligned} & S_{I} \text { Turn-off } \\ & \text { Switching } \\ & \text { Loss (W) } \end{aligned}$	$\begin{gathered} S_{2} \text { Turn-on } \\ \text { Switching } \\ \text { Loss (W) } \end{gathered}$
0.20	0.20	91.617	109.726	1.603	2.195
0.20	0.55	87.060	98.760	1.524	1.975
0.20	0.70	66.132	79.336	1.389	1.483
0.20	0.75	57.118	64.790	1.000	1.296

From the results, the D of S_{2} at 0.75 gives the lowest switching losses compared to others. Therefore, it can be concluded that in order to reduce the conduction loss in the circuit, the conduction time of S_{2} has to be at 0.75 for low switching loss. From the variation of S_{2} duty ratio and constant S_{l} conduction time, the results are plotted in line chart as shown in Figure 5.14.

Figure 5.14 S_{1} Turn-Off and S_{2} Turn-On Power Losses at Different S_{2} Duty Ratio in DCM Operation

5.7 Numerical Verifications on New SRBC Performance for $\boldsymbol{T}_{\boldsymbol{D}}$ of 15 ns

Utilizing MathCAD, which is the tool to numerically calculate based on formulas, the results are compared with PSpice measurements as shown in Table 5.13.

Table 5.13 Comparison of MathCAD Calculations and PSpice Measurements at $T_{D}=15 \mathrm{~ns}$ of New SRBC

Parameters	Method		
	MathCAD	PSpice	
Rise time, $t_{\text {rise }}(\mathrm{ns})(40)$	25.81	25.76	0.19
Recovery time, $t_{\text {rec }}(\mathrm{ns})(37)$	51.62	56.64	8.87
Peak current, $i_{L I}\left(t_{\text {peak }}\right)(\mathrm{A})(38)$	3.572	3.24	9.29
Total switching loss, $P_{\text {sw,total }}(\mathrm{W})(16)+(17)$	2.52	2.24	11.01
Conduction loss of $S_{2}, P_{\text {CoND }}(\mathrm{mW})(20)$	100	68	32.00
Body diode loss, $P_{B D}(\mathrm{~mW})(14)$	49	25.7	47.55

The difference in the results obtained from PSpice and MathCAD show significant big margin in the conduction and body diode losses. Other than these, the simulation results are acceptable. Nevertheless this extended work has successfully verified that T_{D} of 15 ns is the best value to be used for the lowest switching loss in the converter.

5.8 Comparative Assessment of Gate Drive Control Schemes

In this part of work, dual-channel function generators are again used to fix the pulse widths and T_{D} of Q_{I} to Q_{4} switches for FDT scheme in Figure 3.3. On the other hand, a set of combinational discrete components and transistor-transistor logic (TTL) gates are employed for the generation of ADG and PGD schemes. All three schemes are compared to determine the effectiveness in terms of switching loss, output power distribution, body diode conduction loss and efficiency of the converter. Figure 5.15 and Figure 5.16 show the proposed AGD and PGD schemes respectively.

Figure 5.15 SRBC AGD Circuit

The digital control block is included in the AGD scheme for the SRBC circuit shown in Figure 5.15. In this scheme, S_{I} is applied with a fixed PWM signal. S_{2} switch is actually controlled by the scheme. Here, the v_{N} is first captured and compared with $V_{\text {ref. }}$. The digital clock will then be fed to the AND gate so that when the clock triggers with input $1, S_{2}$ switch will not turn on until node voltage is zero. The T_{D} is measured along side with the body diode conduction time of S_{2}. As a result, the conduction loss, body diode conduction loss and total switching losses can be calculated. The digital delay line settings are shown in Table 5.14.

Table 5.14 Digital Delay Line Settings of Adaptive SRBC Gate Drive

Parameters	Value
Delay (ns)	340
On Time (ns)	645
Off Time (ns)	355
Start value	0
Opposite Value	1

Figure 5.16 SRBC PGD Circuit

On the other hand, in PGD control scheme as shown in Figure 5.16, the PWM technique using comparator is used where an equal pulse width will be generated from the comparison between the triangular waveform, $V_{t r i}$ and $V_{r e f}$. The comparator will produce an output voltage each time $V_{t r i}$ goes above $V_{\text {ref. }}$. In this work, the pulse width will be varied by adjusting $V_{\text {ref }}$ in between 0.2 V and 0.8 V , to find out the capability of T_{D} reduction in SRBC circuit.

Figure 5.17 PGD Control Block Diagram

The Block Diagram of the PGD is shown in Figure 5.17. Note that it is constructed from several circuits constituting PWM circuit (A), Delay Controller Circuit (B), Circuit to sense the body diode conduction (C) of S_{2}, and SRBC Circuit (D). The PWM circuit (A) will generate the pulse that is used to turn on and off the MOSFET. The S_{1} pulse will directly use to drive S_{l}. The S_{2} pulse will be the input of the delay controller (B) before it drives the S_{2}. Circuit (C) will perform the feedback operation and generate output signal to the delay controller. Block A and D have already been explained in previous section 3.3 and 3.4 respectively. The operating details of block B and C are described below.

5.8.1 Delay Controller Circuit

The delay controller circuit will adjust the S_{2} pulse before the output drives the switch S_{2}. The adjustment is based on the prediction concept where the width of the
pulse will be adjusted by the controller according to the feedback signal it receives. In Figure 5.18 , the $D[n]$ pulse is currently turned on the S_{2}. During this turn-on period, the feedback circuit will sense the conduction at S_{2} due to the inductive load and it will generate a signal to the Delay Controller. Based on this signal, the controller will make an adjustment for the next pulse, $D[n+1]$ so that the dead time, $T_{D[n+1]}$ for next switching cycle can be minimized while preventing the cross conduction.

Figure $5.18 S_{2}$ Pulse Width Delay Adjustment

The adjustment made by the controller can be either to maximize or minimize the pulse width. Note that the T_{D} for $T_{D[n+l]}$ is adjusted by the delay controller. It has the ability to vary the reference voltage according to the received input from the feedback circuit. Figure 5.19 illustrates how the pulse width can be adjusted based on the feedback circuit.

Figure 5.19 PGD Delay Controller Block Diagram

This is a circuit where the feedback operation is performed. The output generated from this circuit will be used as the input for the Delay Controller. During S_{I} pulse transition from HIGH to LOW, the comparator will sense the $v_{d s}$ of S_{2}. If body diode conduction is detected, the comparator will generate HIGH output and the delay controller will reduce the delay of low side pulse for the next switching cycle. If the comparator output generates a LOW output, the delay controller will increase the delay for the next switching cycle of S_{2}. As long as the SRBC operates, this shifting process will continue to avoid the cross conduction while ensuring the T_{D} delay introduced is small.

The feedback circuit is connected to the delay controller. Based on the signal received, the delay controller will adjust the $V_{\text {ref }}$. Since the width of the pulse generated depends on the comparison between the $V_{t r i}$ and $V_{r e f}$, the variation in $V_{r e f}$ will change the T_{D} between the pulses accordingly. The parameter setting for $V_{t r i}$ and $V_{\text {ref }}$ are given in Table 5.15 and Table 5.16 respectively. Using the required frequency of 1 MHz , the frequency of the $V_{t r i}$ must also be same. As previously mentioned, the duty ratio of S_{l} is determined to be 0.20 .

Table 5.15 PSpice Parameter Settings for $V_{t r i}$ of Predictive Gate Drive

Parameter	Value
Max Voltage, V_{l}	0
Min Voltage, V_{0}	1
Rise Time, t_{r}	0.5 is
Fall Time, t_{f}	0.5 is

Table 5.16 PSpice Parameter Settings for $V_{\text {pulse }}$ of Predictive Gate Drive

Parameter	Value
Max Voltage, V_{l}	5 V
Min Voltage, V_{0}	0 V
Rise Time, t_{r}	5 ns
Fall Time, t_{f}	5 ns
Time Delay, t_{d}	893 ns
Pulse Width, $P W$	200 ns
Time Taken for a Complete Cycle, $P E R$	$1 \mu \mathrm{~s}$

The steady-state simulation analysis is repeated with different $V_{\text {ref }}$ values in order to investigate the effect in T_{D} on SRBC circuit's performance. The study on the $P_{C O N D}-P_{B D}$ and $T_{D}-t_{b d}$ relationships with respect to $V_{r e f}$ are also carried out in addition to switching related losses in the converter.

5.8.2 Comparison between FDT and AGD Control Schemes

Table 5.17 shows the comparison and the analysis of FDR and AGD circuit operations. The initial study concentrated on the AGD scheme which was applied directly to the gate terminal of $Q_{4}\left(\mathrm{AGD}-Q_{4}\right)$ in the D-CRGD circuit as shown in Figure 5.20. It is found that this implementation does not show significant improvement in new SRBC except only for the V_{o} compared to FDT. In addition, this also adds up the $t_{b d}$ of S_{2} caused by the delay in cross coupling loops during T_{D} detections in $Q_{3}-Q_{4}$ and $S_{1}-S_{2}$. As a result, S_{2} will take a longer time to conduct. Moreover, the AGD- Q_{4} scheme requires a precise control on gate charge compensation delay of the switch or else this leads to switching loss of 2.52 W , which is 7.54 \% higher than FDT scheme.

Figure 5.20 D-CRGD Circuit with AGD Control Scheme at Switch Q_{4}

Table 5.17 FDT, AGD- Q_{4} and AGD- S_{2} Analysis for $D=0.20$ in D-CRGD Circuit

Parameters	FDT	AGD-Q $_{4}$	\% $\boldsymbol{\Delta}$ to FDT	${\text { AGD- } \boldsymbol{S}_{2}}^{\text {\% } \boldsymbol{\Delta} \text { to }}$							
FDT					$	$	$V_{o}(\mathrm{~V})$	10.18	10.41	2.21	10.27
:---:	:---:	:---:	:---:	:---:							
$I_{L o}(\mathrm{~A})$	1.51	1.27	15.89	1.28							
$t_{b d}(\mathrm{~ns})$	24	27	11.11	28							
$P_{\text {COND }}(\mathrm{mW})$	68.30	86.90	21.40	87.40							
$P_{B D}(\mathrm{~mW})$	25.73	26.11	1.46	28.62							
$P_{s w}(\mathrm{~W})$	2.33	2.52	7.54	3.09							

In the other implementation, the AGD scheme is fed to the gate of $S_{2}\left(\mathrm{AGD}-S_{2}\right)$ of SRBC shown in Figure 5.15. It is found that the $P_{s w}$ is higher in AGD- S_{2} compared to AGD- Q_{4}. This is due to the impact of C_{x} in the converter which prolongs the detection of T_{D} by the controller and hence reduces the efficiency. When comparing with FDT, the $P_{s w}$ in AGD- S_{2} has increased by 24.6%.

Therefore, this clearly indicates that using the D-CRGD helps solve issues related to T_{D}, reduce $P_{\text {COND }}$ to 68.30 mW and hence $P_{s w}$. In other words, by applying the digital delay control directly to S_{2} will not give much advantage in SRBC performance. It is found that the new D-CRGD network can generate better loss savings to the converter.

5.8.3 Comparison between FDT and PGD Control Schemes

The simulation of PGD control scheme is carried out based on the variation of reference voltage, $V_{\text {ref }}$ as shown in Figure 5.16 and it is applied directly to the gate of $S_{2}\left(\right.$ PGD- S_{2}) in the new SRBC circuit through delay controller. The simulation data are presented in Table 5.18. From the variation of $V_{\text {ref }}$ in the PGD- S_{2} control block, the SRBC's $P_{s w}$ in both S_{I} and S_{2} are measured. As $V_{\text {ref }}$ is decreased from 0.8 V to 0.27 V , all parameter values except $i_{L o}$ have reduced with respect to T_{D}. Then once $V_{\text {ref }}$ is below 0.27 V , the results are no longer valid since T_{D} is negative. It is also found
that low $P_{s w}$ lies between 0.27 V and 0.3 V . If $V_{\text {ref }}$ is applied with less than 0.27 V , the pulses will overlap and eventually leads to cross-conduction. A high $V_{\text {ref }}$ yields a greater V_{o} which is favorable in the design but the $P_{\text {COND }}$ will increase resulting in high total switching loss, $P_{s w, T o t a l}$ in the circuit.

Table 5.18 Switching Loss Measurement Adopting PGD-S S_{2} for $D=0.20$ in New SRBC

$V_{\text {ref }}$ (V)	$\begin{gathered} V_{o} \\ (\mathrm{~V}) \end{gathered}$	$I_{L o}$ (A)	$\begin{gathered} T_{D} \\ (\mathrm{~ns}) \end{gathered}$	$\begin{gathered} t_{b d} \\ (\mathrm{~ns}) \end{gathered}$	$\begin{aligned} & P_{\text {COND }} \\ & (\mathbf{m W}) \end{aligned}$	$\begin{gathered} P_{B D} \\ (\mathrm{~mW}) \end{gathered}$	$P_{s w, S I}$ (W)	$\overline{P_{s w, S 2}}$ (W)	$\boldsymbol{P}_{s w, \text { Total }}$ (W)
0.8	11.60	1.12	260	350	103.90	109.0	1.64	1.03	2.88
0.6	11.23	1.25	170	220	115.65	77.0	1.96	1.42	3.34
0.4	10.23	1.31	66	82.5	92.51	54.9	1.42	1.25	2.82
0.35	10.41	1.48	40	48	81.15	48.8	1.61	1.20	2.94
0.33	10.35	1.50	27	33	71.24	36.8	1.56	1.15	2.82
0.3	10.24	1.52	15	24	68.27	24.6	1.16	1.10	2.35
0.29	10.22	1.53	10	25	67.27	24.0	1.17	1.09	2.35
0.285	10.11	1.54	4	24	62.43	23.5	1.15	1.10	2.33
0.28	10.07	1.56	0	24	61.89	23.7	1.18	1.11	2.38
0.27	10.02	1.58	0	27	60.25	23.2	1.20	1.15	2.43
0.26	10.95	1.29	-7.5	28	59.57	28.5	1.28	1.90	3.26
0.25	11.89	0.98	-11	32	66.93	30.7	1.32	2.35	3.76
0.20	12.38	0.64	-34	46	71.68	33.1	1.56	3.10	4.76

Figure 5.21 Relationship between T_{D} and $t_{b d}$ versus $V_{\text {ref }}$ of PGD- S_{2}

Figure 5.22 Negative Overshoot of v_{N} in PGD- S_{2} at $V_{\text {ref }}$ of 0.29 V

Figure 5.21 explains that the $t_{b d}$ increases linearly with T_{D} starting from $V_{r e f}$ at 0.27 V . The faster free-wheeling $i_{L o}$ flows into the body diodes during T_{D}, the lower
$P_{s w}$ in the converter will be. For instance, at $V_{r e f}=0.29 \mathrm{~V}$, the $t_{b d}$ is measured at 25 ns with -0.75 V overshoot which indicates the duration of on-state conduction of body diode as shown in Figure 5.22. Here, $t_{b d}$ has to be minimized and this can be realized by reducing T_{D}. However, due to the fact that T_{D} cannot be negative, the best applicable $V_{\text {ref }}$ is 0.28 V to achieve the lowest $t_{b d}$.

Figure 5.23 Relationship between $P_{C O N D}$ and $P_{B D}$ versus $V_{\text {ref }}$ of PGD- S_{2}

In Figure 5.23, the $P_{C O N D}$ and $P_{B D}$ losses are minimum at $V_{\text {ref }}=0.27 \mathrm{~V}$. Here, when $V_{\text {ref }}$ is less than 0.27 V or greater than 0.3 V , these losses will increase. It is also seen that $P_{\text {COND }}$ is slightly higher at $V_{\text {ref }}=0.3 \mathrm{~V}$ due to the presence of $T_{D}=15 \mathrm{~ns}$. The role of the controller is to minimize the T_{D} for the lowest possible $P_{\text {COND }}$ by detecting it before S_{2} can be turned on. However, this is valid only if T_{D} is positive. The $t_{b d}$ is slightly higher at $V_{\text {ref }}=0.27 \mathrm{~V}$ compared to 0.3 V because of the existence of crossconduction. Other related graphs extracted from Table 5.18 are compiled in Appendix C.

Next, the application of PGD control scheme is applied to the Q_{4}-switch (PGD- Q_{4}) of the D-CRGD circuit. The process in determining the new

SRBC's $P_{s w}$ is similar to the PGD- S_{2} implementation. Table 5.19 gives the simulated assessments between PGD- Q_{4} and PGD- S_{2} for $V_{\text {ref }}=0.27 \mathrm{~V}$ at $T_{D}=0 \mathrm{~ns}$.

Table 5.19 Comparison of PGD- Q_{4} and PGD- S_{2} for $V_{\text {ref }}=0.27 \mathrm{~V}, D=0.20$ at

$$
T_{D}=0 \mathrm{~ns}
$$

Parameters	PGD- \boldsymbol{Q}_{4}	PGD- $_{\mathbf{2}}$	\% Diff
$V_{o}(\mathrm{~V})$	10.20	10.02	1.76
$I_{L o, a v g}(\mathrm{~A})$	1.56	1.58	1.27
$t_{b d}(n s)$	26	27	3.70
$P_{\text {COND }}(\mathrm{mW})$	62.30	60.25	3.29
$P_{B D}(\mathrm{~mW})$	23.65	23.20	1.90
$P_{s w, S l}(\mathrm{~W})$	1.25	1.20	4.00
$P_{s w, S 2}(\mathrm{~W})$	1.18	1.15	2.54
$P_{s w, T o t a l}(\mathrm{~W})$	2.52	2.43	3.57

Table 5.19 reveals the impact on D-CRGD network with PGD control block. The $P_{\text {COND }}$ is seen slightly higher in PGD- Q_{4} scheme of 62.30 mW which gives a reduction in 3.29% compared to PGD- S_{2}. Also, since the T_{D} is assumed to be zero at $V_{\text {ref }}=0.27 \mathrm{~V}$, ideally, $P_{B D}$ can be minimized. However, this slightly increases $t_{b d}$ compared to $V_{r e f}$ at 0.3 V and hence shoots up $P_{s w, S I}$. In spite of this drawback, the PGD controller is still able to control and adjust S_{2} gate signal and maintain $P_{\text {COND }}$ and $P_{B D}$ losses at acceptable levels.

By introducing a small T_{D} interval of 15 ns for $V_{\text {ref }}=0.3 \mathrm{~V}$ as given in Table 5.20, the issue in signal overlapping can be avoided. In fact, the PGD controller can have a longer safe time margin to detect the T_{D} before $V_{g s, S 2}$ can turn on. The application of non-zero T_{D} produces higher $P_{C O N D}$ and $P_{B D}$ compared to $T_{D}=0 \mathrm{~ns}$. Remarkably, $P_{s v, S l}$ is reduced compared to $V_{r e f}$ at 0.27 V leading to lower $P_{s w, T o t a l}$ for a shorter duration in $t_{b d}$.

Table 5.20 Comparison of FDT and PGD- S_{2} at $V_{\text {ref }}=0.3 \mathrm{~V}$ for $D=0.20$ at $T_{D}=15 \mathrm{~ns}$

Parameters	FDT	PGD- \boldsymbol{S}_{2}	\% Diff
$V_{o}(\mathrm{~V})$	10.18	10.24	0.59
$I_{L o}(\mathrm{~A})$	1.51	1.52	0.65
$t_{b d}(n s)$	24	24	-
$P_{\text {COND }}(\mathrm{mW})$	68.30	68.27	0.04
$P_{B D}(\mathrm{~mW})$	25.73	24.60	4.39
$P_{s w, S l}(\mathrm{~W})$	1.14	1.16	1.72
$P_{s w, S 2}(\mathrm{~W})$	1.10	1.10	-
$P_{s w, T o t a l}(\mathrm{~W})$	2.33	2.35	0.85

In addition, the use of the D-CRGD in FDT circuit can also be considered as an independent gate drive control option to bias S_{1} and S_{2} gates. The $P_{s w, \text { Total }}$ in FDT is only 0.85% lower than PGD- S_{2}. However, PWM signals have to be generated with precise control to avoid cross conduction even though it is known for its simplicity. From the simulation, PGD- S_{2} is found to be the best option for the gate drive control scheme. Apparently, all simulation results have indicated positive remarks and brought to successful analyses in the comparison of different PGD driving techniques with FDT control scheme.

5.9 Efficiency Analyses of S-CRGD, SRBC and Gate Drive Control

Figure 5.24 Efficiency versus T_{D} for $L_{r}=9 \mathrm{nH}$ and $D=0.20$ of S-CRGD

Figure 5.24 shows that the efficiency of S-CRGD circuit is better than the conventional gate driver by at least 12%. It is also observed that the efficiency is at maximum when T_{D} is around 20 ns . When T_{D} is increased or decreased beyond this value, the efficiency drops significantly. This is true since when T_{D} is applied too small, this will lead to cross conduction and consequently increase the switching loss. On the other hand, when T_{D} is too big, there will be a possibility in overshoot voltage at the gate voltage of S_{I} and S_{2} and this leads to the increase in the conduction losses. So the T_{D} of around 18 ns produces the least loss and eventually improves the efficiency of the driver.

Figure 5.25 Efficiency versus Duty Ratio of Q_{I} for $L_{r}=9 \mathrm{nH}$ and $T_{D}=15 \mathrm{~ns}$ of S-CRGD

Based on the design benchmark of S-CRGD circuit, L_{r} and T_{D} have been optimized to round 9 nH to 10 nH and 15 ns respectively. By varying D of Q_{l} and 1-D on Q_{2}, the efficiency of S-CRGD and conventional gate driver are compared. As shown in Figure 5.25, S-CRGD circuit performs better having a higher efficiency of around 85% at $D=0.20$ compared to conventional of only around 75%. Since D is important in determining the rate of inductor current flow in the driver, the variation in D will influence the efficiency significantly. When D is reduced below 0.20 , the figure clearly shows the steep drop in efficiency in both converters. This is caused by the increase in oscillation during discharging of current. Therefore, gate drive loss increases. Interestingly, an increase in D will not cause significant reduction in efficiency. This is the remarkable feature of the gate driver where the operating condition is not dependent on duty ratio.

Figure 5.26 Efficiency versus Resonant Inductor for $D=0.20$ and $T_{D}=15 \mathrm{~ns}$ of New D-CRGD

In Figure 5.26, it is observed that the efficiency of the D-CRGD varies with respect to L_{r}. The efficiency is about 83% when L_{r} is around $9 \mathrm{nH}-25 \mathrm{nH}$. When L_{r} is reduced, the efficiency drops tremendously. This is because L_{r} cannot sustain high level of peak current during charging phase. This results in high power dissipation and possible circuit malfunction. Besides, as L_{r} increases, more time is needed for the current to flow. Here, the efficiency will drop to around 68% in case of $L_{r}=100 \mathrm{nH}$ since a high L_{r} will lead to high oscillation in current and gate voltage of the switch during turn-off.

Figure 5.27 Efficiency versus Inductor Load Current for $D_{S I}=0.20, D_{S 2}=0.75$ and

$$
T_{D}=15 \mathrm{~ns} \text { of Three SRBC }
$$

Three different SRBC circuits are studied and their efficiencies are measured with respect to various load resistances. In Figure 5.27, the range of $I_{L o}$ is small since the converter is designed for the application of low power applications. It is obvious to understand that the conventional SRBC does not perform with a high efficiency ($\eta=77 \%$ at $I_{L o}$ of 1.5 A) because of unavailability of ZVS mechanisms to reduce the switching losses.

The efficiency of the SRBC introduced by [51] is slightly lower compared to the new SRBC since the floating turn-on voltage of S_{l} has not been reduced. This adds to the additional switching loss during the entire turn-off of S_{l}. In comparison, the efficiency of the new SRBC circuit has indicated a small improvement of approximately 3% to [51] and 8% to the conventional.

Figure 5.28 Efficiency versus Switching Frequency for $D_{S 1}=0.20, D_{S 2}=0.75$ and

$$
T_{D}=15 \mathrm{~ns} \text { of Three SRBC }
$$

When switching frequency increases, the SRBC circuit experiences high power dissipation and energy loss. However, with the aid of soft-switching operation, these losses can be reduced. This is shown in Figure 5.28 where the efficiency of new SRBC is higher compared to [51] and conventional. At a lower switching frequency below 500 kHz , the conventional SRBC operates efficiently at 80%. As f_{s} increases, its efficiency drops drastically due to high switching loss in S_{I} and S_{2}.

For new SRBC circuit, the efficiency is 86% within 1 MHz range compared to [51] of only 84%. Due to the fact that the high power switch used in the simulation inhibits a maximum f_{s} rating of only 1 MHz , a higher applicable f_{s} will impair the efficiency.

Figure 5.29 Efficiency versus Inductor Load Current for $D_{S 1}=0.20, D_{S 2}=0.75$ and $T_{D}=15 \mathrm{~ns}$ on New SRBC of Three Gate Drive Control Schemes

It is observed in Figure 5.29 that the use of PGD control scheme produces higher efficiency of more than 82% at $I_{L o}$ of 1.5 A compared to AGD and FDT. In addition, the application of AGD- Q_{4} produces better efficiency compared to AGD- S_{2} by only 2% because D-CRGD helps control $V_{g s, Q 4}$ turn-on for S_{2} pulses. This indicates the necessity of gate drive circuit in SRBC. However, PGD control scheme does not require any intermediate D-CRGD circuit to achieve high efficiency. The application of PGD- S_{2} can reduce the switching loss effectively as S_{2} gate can intelligently be adjusted and controlled with respect to the detection of T_{D} in the circuit.

In FDT scheme, the driving pulses given to $Q_{l}-Q_{4}$ switches can be precisely controlled by independent PWM generators. It is found that FDT scheme can also manage to cap the efficiency as high as 83% which is comparable to PGD- S_{2} implementation. Due to its simplicity, the complemented signals generated at the gates of S_{I} and S_{2} are easy to control and monitor on new SRBC circuit.

5.10 Chapter Summary

The extension simulation work looks into several factors which influence the performance of new SRBC circuit. It is found that the new SRBC can operate effectively at 1 MHz compared to conventional. The S_{2}-duty ratio of 0.75 has shown the least switching loss in the switch.

Several gate drive control schemes have been simulated and the results indicate superior performance of FDT and PGD- S_{2}. FDT is simple and can be driven correctly with small dead time. Therefore, the duration of body diode conduction has been minimized. Nevertheless, PGD- S_{2} is the best option whilst AGD can also maintain high level of efficiency of new SRBC. However, AGD scheme generates more switching loss due to longer adaptation time between the controller and the detection of dead time.

CHAPTER 6

CONCLUSIONS

6.1 Resonant Gate Drive Circuit

Switching losses are the major contributor in RGD circuit design especially when operating in megahertz frequency. Based on the design parameters used in the SCRGD, several limiting parameters have been identified which affect the performance of the circuit. Using PSpice simulator, the D, T_{D} and L_{r} have been thoroughly studied to identify the best operating values for the driver. The simulated results have shown close proximity with the experimental except for the $i_{L r}$.

The L_{r} can be used to verify the performance of the S-CRGD circuit by optimizing the Q-factor. Q-factor is a quality indicator which characterizes the rate of energy dissipation in resonant system. It depends on circuit topology, f_{s} and type of power switch used. For example, a higher L_{r} will result in more energy to dissipate and more area consumption on electronic board respectively. By interpolating the gate resistance power loss and L_{r}, this leads to the selection of optimized Q-factor value. Hence, the optimization of power losses and switching capability are then justified.

Well defined pulses contribute to a high accuracy of T_{D} between switches for the application of D-CRGD circuit. Utilizing the optimized parameter values, each of the resulting gate voltages of S_{1} and S_{2} switch has generated well defined pulses for the new SRBC operation.

6.2 Synchronous Buck Converter Circuit

A new SRBC circuit has been proposed having the capability in ZVS operation with respect to new configuration of series L-C connected in parallel to the switch. From this, the traditional turn-off drain voltage of the switch has been reduced. Consequently, this has improved loss savings of the converter significantly. Using a constant load value of 10Ω and switching frequency of 1 MHz , both simulation and experimentation results in terms of drain current of switches and load current have presented small difference in margin.

The study is extended to evaluate the impact of varying load, f_{s} and T_{D} of switching MOSFETs on the performance of the new SRBC circuit. Three different SRBC circuits are chosen in the investigation. In the experiment, the switching losses in the new SRBC circuit are the lowest compared to others. Similarly, this justifies for the different load resistances using simulation.

6.3 Gate Drive Control Schemes

The FDT, AGD and PGD schemes are used to evaluate the performance of the new SRBC circuit. A direct square-waved pulse generated by the function generator is used as FDT scheme whereas the AGD and PGD are derived from the combinational logic and analog circuits. It is found that the D-CRGD has managed to solve issues pertaining T_{D} and body diode conduction loss and hence reduce switching loss.

When using PGD as control scheme, the switching loss has improved slightly compared to the FDT. However, this scheme is not easy to implement. It is determined that FDT can manage a low body diode conduction time before the shootthrough current can occur.

On the other hand, the AGD and PGD schemes are beneficial to improve the gate driving loss but their implementations are more complex. Comparatively, FDT scheme is easy to apply and eventually gives better advantages in converter's
performance. Therefore, the stand-alone FDT control or a direct implementation of PGD- S_{2} schemes can be chosen in the design of high frequency SRBC circuit.

6.4 Contribution of Work

This work has introduced several contributions, which are as follow:
a) If incorrect value of L_{r} is chosen in S-CRGD circuit, the oscillation of $i_{L r}$ will be generated and consequently induces additional loss. Here, the L_{r} has been optimized of which is then applied to the D-CRGD network.
b) The new SRBC employing paralleled LC-switch has reduced losses. Having this similarity in the previous design for the controlled switch, S_{l}, the LC parallel link is also applied in the new design to S_{2} as well as reducing the turn-on drain voltage. This can be seen from the non-intersected gate and drain voltages of S_{l} and S_{2}. In addition, the on-state drain voltages of both switches have also been reduced to minimum compared to the conventional SRBC. This eventually reduces the entire turn-on switching losses.
c) Using simulation, the new SRBC has proven the capability in sustaining variable load conditions and switching frequencies when using precise T_{D} and D conditions. The different in gate drive control schemes have also been introduced to evaluate the performance of new SRBC. The finding has suggested that the FDT scheme is the easiest solution.

6.5 Future Work

This work has yet to require further improvement in terms of following:
a) Even though the work has been experimentally verified as explained in Chapter 5, the simulation results discussed in Chapter 6 have yet to be verified experimentally.
b) In addition, the implications of the new SRBC operating in three different regions such as in below, at and above resonant are the other important parameters to be studied.
c) At such, the frequency has to be pushed higher than 1 MHz . To do this, the selections of components have to be correct and the implementation of chipbased low-loss devices, thermal management and programmable gate drive and feedback control systems are necessary.
d) Moreover, in order to have a high power density module, the new SRBC has to come in a small board size having higher efficiency, especially when the components in terms of chip-based surface-mount are used.
e) In fact, the components' and pcb/wiring parasitic effects will be considered to allow for lesser EMI and harmonic effects. This will require further detailed analysis and complex on-board measurement.

REFERENCES

[1] Y. Chen, F. C. Lee, L. Amoroso and H. Wu. "A Resonant MOSFET Gate Driver with Efficient Energy Recovery", IEEE Trans. Power Electron., Vol. 19, No. 2, pp. 470-477, Mar. 2004.
[2] J. T. Strydom, M. A. de Rooki and J.D. van Wyk "A Comparison of Fundamental Gate Driver Topologies for High Frequency Applications" in IEEE App. Power Electron. Conf. and Expo., 2004, Vol. 2, pp. 1045-1052.
[3] J. Christoph, D. M. Berneo, D. J. Shortt and B. J. Lamb "High Frequency Power MOSFET Gate Drive Considerations" in Proc. of $3^{\text {rd }}$ Int. High Freq. Power Conv. Conf., May 1988, pp. 173-180.
[4] J. M. Rivas, D. Jackson, O. Leitermann, A. D. Sagneri, Y. Han and D. J. Perreault, "Design Considerations for Very High Frequency DC-DC Converters", in IEEE Power Electron. Specialists Conf., 2006, pp. 1-11
[5] K. Xu, Y-F, Yan and P. C. Sen, "A New Resonant Gate Driver Circuit Utilizing Leakage Inductance of Transformer", in IEEE Ind. Electron., 2000, pp. 19331937.
[6] C. Abbate, G. Busatto, F. Iannuzzo and L. Fratelli "Experimental Characterization of High Efficiency Resonant Gate Driver Circuit" Dept. of Automation, Electromagnetism, Info. Eng. and Ind. Math. Univ. of Cassino DAEIMI, 2007.
[7] W. Eberle, Z. Zhang, Y-F, Liu \& P. Sen "A Simple Switching Loss Model for Buck Voltage Regulators with Current Source Drive", Power Elec. Specialists Conf.. 2008, pp. 3780-3786.
[8] W. Eberle, Z. Zhang, L. Yan-Fei and P.C. Sen "A Simple Analytical Switching Loss Model for Buck Voltage Regulators" in IEEE App. Power Electron. Conf. and Expo., Feb. 2008, pp. 36-42.
[9] R. J. Leedham and R. A. McMahon, "Design of a High Speed Power MOSFET Driver and its Use in a Half-Bridge Converter" in $5^{\text {th }}$ Euro. Conf. Power Electron. And App., 1993, Vol. 2, pp. 407-412.
[10] Y. Ren, M. Xu, J. Zhou and F. C. Lee "Analytical Loss Model of Power MOSFET", IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 310-319, Mar. 2004.
[11] W. Eberle, P. C. Sen and L. Yan-Fei "A New Resonant Gate Drive Circuit with Efficient Energy Recovery and Low Conduction Loss" in IEEE Ind. Electron. Soc., 2005, pp. 650-655.
[12] Y. Chen, "Resonant gate drive techniques for power MOSFETs," M.S. thesis, Virginia Polytech. Inst. State Univ., Blacksburg, VA, May 2000.
[13] Y. Ren, M. Xu, F. C. Lee, and P. Xu, "The optimal bus voltage study for 12 V two-stage VR based on an accurate analytical loss model" in Proc. IEEE PESC'04, Jun. 2004, Vol. 6, pp. 4319-4324.
[14] Y. Xiao, H. Shah, T. P. Chow, and R. J. Gutmann, "Analytical modeling and experimental evaluation of interconnect parasitic inductance on MOSFET switching characteristics" in Proc. IEEE APEC'04, 2004, Vol. 1, pp. 516-521.
[15] B. Jacobson, "High frequency resonant gate driver with partial energy recovery," in Proc. High Freq. Power Conv. Conf., 1993, pp. 133-141.
[16] T. Lopez, G. Sauerleander, T. Duerbaum and T. Tolle "A Detailed Analysis of Resonant Gate Driver for PWM Applications" in IEEE App. Power Electron. Conf. and Expo., Feb. 2003, Vol. 2, pp. 873-878.
[17] D. Sobczynski "Active Gate Drivers" in $28^{\text {th }}$ Int. Spring Sem., 2005, pp. 236239.
[18] L. Balogh "Design and Application Guide for High Speed MOSFET Gate Drive Circuits" App. Notes, Texas Instrument SLUP169, Sep 2007.
[19] K. Yao and F. C. Lee "Novel Resonant Gate Driver for High Frequency Synchronous Buck Converter" IEEE Trans. Power Electron., Vol. 17, No. 2, pp. 180-186, Mar. 2002.
[20] I. Omura and Y. Shi "Gate Driving Circuit and Gate Driving Method of Power MOSFET" U. S. Patent 20060034114, Feb. 2006.
[21] H. L. N. Wiegman, "A resonant pulse gate drive for high frequency applications," in Proc. Appl. Power Electron. Conf., 1992, pp. 738-743.
[22] S. H. Weinberg, "A novel lossless resonant MOSFET driver," in Proc. Power Electron. Spec. Conf., 1992, pp. 1003-1010.
[23] W. A. Tabisz, P. M. Gradzki, and F. C. Lee, "Zero-voltage-switched quasiresonant buck and flyback converters-experimental results at 10 MHz ," IEEE Trans. Power Electron., Vol. 4, No. 2, pp. 194-204, Apr. 1989.
[24] J. M. Rivas, R. S. Wahby, J. S. Shafran, and D. J. Perreault, "New architectures for radio-frequency dc-dc power conversion," IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 380-393, Mar. 2006
[25] Y. Han, O. Leitermann, D. A. Jackson, J. M. Rivas, and D. J. Perreault, "Resistance compression networks for radio-frequency power conversion," IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 41-53, Mar. 2007.
[26] J. R. Warren, K. A. Rosowski, and D. J. Perreault, "Transistor selection and design of a VHF dc-dc power converter," IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 27-37, Jan. 2008.
[27] J. Diaz, M. A. Perez, F. M. Linera, and F. Aldana, "A new losless power MOSFET driver based on simple dc/dc converters," in Proc. IEEE Power Electron. Spec. Conf., 1995, pp. 37-43.
[28] Q. Li and P. Wolfs, "The power loss optimization of a current fed ZVS twoinductor boost converter with a resonant transition gate drive," IEEE Trans. Power Electron., Vol. 21, No. 5, pp. 1253-1263, Sep. 2006.
[29] Y. Ren, M. Xu, Y. Meng, and F. C. Lee, " 12 V VR efficiency improvement based on two-stage approach and a novel gate driver," in Proc. IEEE Power Electron. Spec. Conf., 2005, pp. 2635-2641.
[30] B. Arntzen and D. Maksimovic, "Switched-capacitor dc/dc converters with resonant gate drive," IEEE Trans. Power Electron., Vol. 13, No. 5,pp. 892-902, Sep. 1998.
[31] Y. Ren, M. Xu, J. Sun, and F. C. Lee, "A family of high power density unregulated bus converters," IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1045-1054, Sep. 2005.
[32] D. Maksimovic and S. Cuk, "Constant-frequency control of quasi-resonant converters," IEEE Trans. Power Electron., Vol. 6, No. 1, pp. 141-150, Jan. 1991.
[33] D. M. Van de Sype, A. P. Van den Bossche, J. Maes and J. A. Melkebeek, "Gate-Drive Circuit for Zero-Voltage-Switching Half and Full-Bridge Converters" IEEE Trans. Ind. App., Vol. 38, Iss. 5, pp. 1380-1388, 2002.
[34] S. Pan and P. K. Jain "A New Pulse Resonant MOSFET Gate Driver with Efficient Energy Recovery" in IEEE Power Electron. Spec. Conf., Jun. 2006, pp. 1-5.
[35] F. C. Lee, "High-frequency Quasi Resonant Converter Technologies", in Proc. IEEE, Vol. 76, Iss. 4, Apr. 1988, pp. 377-390.
[36] K. Smith and K. Smedley, "Properties and Synthesis of Passive Lossless Softswitching PWM Converters", IEEE Trans. Power Electron., Vol. 14, No. 5, pp. 890-899, Sep. 1999.
[37] M. H. Rashid, Power Electronics, Circuits, Devices and Applications, Pearson Prentice Hall, New Jersey, 2004.
[38] M. M. Jovanovic, W. A. Tabisz and F. C. Lee, "High-Frequency Off-Line power Conversion Using Zero-Voltage-Switching Quasi-Resonant and MultiResonant Techniques" IEEE Trans. Power Electron., Vol. 4, No. 4, pp. 459469, Oct. 1989.
[39] K. Liu, R. Orugati and F. C. Lee, "Quasi-Resonant Converters - Topologies and Characteristics", IEEE Trans. Power Electron., Vol. PE-2, No. 1, pp. 62-74, Jan. 1987.
[40] M. M. Javonovic, D. C. Hopkins and F. C. Lee, "Evaluation and design of Megahertz-Frequency Off-Line Zero-Current Quasi-Resonant Converters", IEEE Trans. Power Electron., Vol. 4, No. 1, pp. 136-146, Jan. 1989
[41] W. A. Tabisz and F. C. Lee, "Zero-Voltage-Switching Multi-Resonant Technique - A Novel Approach to Improve Quasi-Resonant Converters", in IEEE Power Electron. Spec. Conf., 1988, Vol. 1, pp. 9-7.
[42] N. Mohan, T. M. Underland and W. P. Robbins, Power Electronics Converters, Applications and Design, $3^{\text {rd }}$ ed. John Wiley \& Sons Inc, New Jersey, Oct. 2002.
[43] A. D. Helfrick. Q-Factor Measurement, Embry-Riddle Aeronautical University Florida: CRC Press LLC, 2004.
[44] J. Diaz, M. A. Perez, F. M. Linera, and F. Aldana, "A new lossless power MOSFET driver based on simple dc/dc converters," in Proc. IEEE Power Electron. Spec. Conf., 1995, pp. 37-43.
[45] J. Diaz, M. A. Perez, F. J. Linera, and F. Nuno, "A new family of lossless power MOSFET drivers," in $3^{\text {rd }}$ Int. Tech. Proc. Power Electron. Congr., 1994, pp. 4348.
[46] I. D. De Vries, "A Resonant Power MOSFET/lGBT Gate Driver" in IEEE App. Power Electron. Conf. and Expo., 2002, Vol. 1, pp. 179-185.
[47] K. Xu, L. Yan-Fei and P. C. Sen, "A new resonant gate drive circuit with centretapped transformer" in IEEE Annu. Conf. Ind. Electron. Soc., 2005, pp. 639-644.
[48] D. Hirschmann, S. Richter, C. Dick and R.W. De Doncker "Unified Control Strategy Covering CCM and DCM for a Synchronous Buck Converter" in IEEE $22^{\text {nd }}$ Annu. Appl. Power Electron. Conf., 2007, pp. 489-494.
[49] Q. Zhao and G. Stojcic, "Characterization of Cdv/dt Induced Power Loss in Synchronous Buck DC-DC Converters" in IEEE $19^{\text {th }}$ Annu. App. Power Electron. Conf. and Expo., 2004, Vol. 1, pp. 292-297.
[50] S. Y. Liang, H. S. Chu \& K. C. Hung, "Circuit and Method for Predicting Dead Time", U. S. Patent 7053632B1, May 2006.
[51] I. Oh "A Soft-Switching Synchronous Buck Converter for Zero Voltage Switching (ZVS) in Light and Full Load Conditions" in IEEE App. Power Electron. and Expo., Feb. 2008, pp. 1460-1464.
[52] S. Mappus, (2005, Jul. 1). DV/DT Immunity Improved in Synchronous Buck Converters. Power Electronics Technology.
[53] J. Klein, "Synchronous buck MOSFET loss calculations with Excel model", Fairchild semiconductor AN6005, 2006.
[54] B. Ramachandran \& D. Maksimovic, "Dynamic Operation of Sensorless Dead Time Optimization in Digitally Controlled DC - DC Converters", in CoPEC Ann. Meeting, Nov. 9, 2006, pp. 1 - 15.
[55] W. Qiu, S. Mercer, Z. Liang and G. Miller, "Driver Deadtime Control and Its Impact on System Stability of Synchronous Buck Voltage Regulator" IEEE Trans. Power Electron., Vol. 23, Iss. 1, pp. 163-171, 2008.
[56] A. Elbanhawy, (2005, April) MOSFET Susceptibility to Cross Conduction. Power Electronics Technology, pp 26-33.
[57] W. Eberle, Z. Zhang, L. Yan-Fei and P. C. Sen, "A High Efficiency Synchronous Buck VRM with current source gate driver" in IEEE Power Electron. Spec. Conf., 2007, pp. 21-27.
[58] A. Elbanhawy, "Cross Conduction in Modern Power MOSFETs", Appl. Demo., Maplesoft Inc., pp 1-10, Mar. 9, 2008.
[59] V. Mihov and E. Dinkov, "Dynamic Non-Overlap Commutation Control is Switching Regulators," in Electron. Conf., Sep. 19, 2007, pp. 116-120.
[60] S. Mappus, "Predictive Gate Drive Boost Synchronous DC/DC Power Converter Efficiency" App. Rep. Texas Instruments SLUA281, Apr. 2003.
[61] A. Elbanhawy, (2001, Nov. 11). A simple guide to selecting power MOSFETs. EDN
[62] J. Qian and L. Zhao, "Analyzing Power Dissipation and Circuit Design for the bq241xx Synchronous Switching Battery Charger", App. Rep. Texas Instrument SLUA345, Aug. 2005.
[63] S. Deuty, "Optimizing Transistor Performance in Synchronous Rectifier, Buck Converters" in IEEE $15^{\text {th }}$ Annu. App. Power Electron. Conf. and Expo., 2000, Vol. 2, pp. 675-678.
[64] A. Sattar, "DC to DC Synchronous Converter Design" App. Notes IXYS Corporation IXAN0068, 2007.
[65] X. Zhou, M. Donati, L. Amoroso and F. C. Lee, "Improve Light Load Efficiency for Synchronous Rectifier Buck Converters", in IEEE $14^{\text {th }}$ Annu. App. Power Electron. Conf. and Expo., 1999, Vol. 1, pp. 295-302.
[66] A. K. Panda and K. Aroul, "A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter" in IEEE Int. Conf. Power Electron., Drives and Energy Sys., 2006, pp. 1-5.
[67] C. M. Wang, "Novel zero-Voltage-transition PWM DC-DC converters," IEEE Trans. on Ind. Electron., Vol. 53, No. 1, pp. 254- 262, Feb. 2006.
[68] Y. C. Chuang, and Y. L. Ke, "High-Efficiency and Low-Stress ZVT- PWM DC-to-DC Converter for Battery Charger," IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 3030-3037, Aug. 2008.
[69] B. R. Lin, and C. L. Huang, "Interleaved ZVS Converter with Ripple-Current Cancellation," IEEE Trans. Ind. Electron., Vol. 55, No. 4, pp. 1576-1585, Apr. 2008.
[70] B. R. Lin, C. L. Huang, and J. F. Wan, "Analysis, Design, and Implementation of a Parallel ZVS Converter," IEEE Trans. Ind. Electron., Vol. 55, No. 4, pp. 1586-1594, Apr. 2008.
[71] L. Yang, and C. Q. Lee, "Analysis and design of boost zero voltage transition PWM converter," in Proc. of the 8th Annu. App. Power Electron. Conf. and Expo., Mar. 1993, pp. 707-713.
[72] N. P. Filho, V. J. Farias, and L. C. de Freitas, "A novel family of DC-DC PWM converters uses the self resonance principle," in Proc. of 25th Annu. IEEE Power Electron. Spec. Conf., Jun. 1994, Vol. 2, pp.1385-1391.
[73] G. Moschopoulos, P. Jain, and G. Joos, "A novel zero-voltage switched PWMboost converter," in Proc. of 26th Annu. IEEE Power Electron. Spec. Conf., Jun. 1995, Vol. 2, pp. 694-700.
[74] C. J. Tseng, and C. L. Chen, "Nova ZVT-PWM converters with active snubbers," IEEE Trans. Power Electron., Vol. 13, No. 5, pp. 861-869, 1998.
[75] W. Huang, and G. Moschopoulos, "A new family of zero voltage transition PWM converters with dual active auxiliary circuits," IEEE Trans. Power Electron, Vol. 21, No. 2, pp. 370-379, 2006.
[76] E. Persson, "Optimizing Synchronous Buck Converter Efficiency", Int. Rectifier, Appl. Notes, 2008.
[77] B. Yang, "Topology Investigation for Front End DC/DC Power Conversion for Distributed Power System, PhD Diss. Virginia Polytech. Inst. State Univ., Blacksburg, VA, pp. 169-180, Sep. 2003.
[78] R. W. Erickson, Fundamental of Power Electronics, $2^{\text {nd }}$ ed. Kluwer Academic Publisher, 2001
[79] B. Yang, "Topology Investigation for Front End DC/DC Power Conversion for Distributed Power System, PhD Diss. Virginia Polytech. Inst. State Univ., Blacksburg, VA, pp. 95-109, Sep. 2003.
[80] D. Leggate and R. J. Kerkman, "Pulse-Based Dead-Time Compensator for PWM Voltage Inverters" in IEEE $21^{\text {st }}$ Int. Conf. Ind. Electron., Contr. and Instr., 1995, Vol. 1, pp. 474-481.
[81] K. Yamamoto, K. Shinohara and H. Ohga, "Effect of Parasitic Capacitance of Power Device on Output Voltage Deviation during Switching Dead-Time in Voltage-Fed PWM Inverter" in Proc. Power Conv. Conf., 1997, Vol. 2, pp. 777782.
[82] C. Jung-Soo, Y. Ji-Yong, L. Seung-Won and K. Young-Seok "A Novel Dead Time Minimization Algorithm of the PWM Inverter" in IEEE $34^{\text {th }}$ Annu. Meet. Ind. App. Conf., 1999, Vol. 4, pp. 2188-2193
[83] A. Chapuis and M. Hill, "Adaptive Delay Control Circuit for Switched Mode Power Supply", U. S. Patent 6958592 B2, Oct. 2005.
[84] T. Y. Ahn, H. J. Kim and K. Harada, "Fixed Frequency, Fixed Duty Ratio Controlled Forward ZVS-MRC Using A Saturable Core" in IEEE of $24^{\text {th }}$ Annu. Power Electron. Spec. Conf., Jun. 1993, pp. 551-557.
[85] T. Y. Ahn, H. J. Kim and K. Harada, "Fixed Frequency Forward ZVS-MRC Using A Saturable Core" in $15^{\text {th }}$ Int. Telecom. Energy Conf., Sep. 1993, Vol. 1, pp. 334-340.
[86] M. L. Chiang, L. C. Fu, "Adaptive Control of Switched Systems with Application to HVAC System," in IEEE Int. Conf. Contr. Applications, Oct. 2007, pp 367-372.
[87] J. S. Brown, "Method and Apparatus for Intelligently Setting Dead Time", U. S. Patent: 7098640 B2, 2006.
[88] O. Trescases, W. T. Ng and S. Chen. "Precision Gate Drive Timing in Zero-Voltage-Switching DC-DC Converter", in Int. Symp. Power Semiconductor Devices and ICs, 2004, pp. 55-58.
[89] W. Qiu, S. Mercer, Z. Liang and G. Miller, "Driver Deadtime Control and Its Impact on System Stability of Synchronous Buck Voltage Regulator", IEEE Trans. Power Electron., Vol. 23, pp. 163-171, Jan. 2008.
[90] W. R. Liou, M. L. Yeh and Y. L. Kuo, "A High Efficiency Dual-Mode Buck Converter IC For Portable Applications", IEEE Trans. Power Electron., Vol. 23, pp. 667-677, Mar. 2008.
[91] J. Cheng, (2007, Sep.) Determine Buck Converter Efficiency in PFM mode. Power Electronics Technology, pp. 28-33.
[92] M. D. Mulligan, B. Broach, and T. H. Lee "A Constant-Frequency Method for Improving Light-Load Efficiency in Synchronous Buck Converters" IEEE Power Electron. Lett., Vol. 3, Iss. 1, pp. 24-29, 2005.
[93] P. O. Dwane, D. Sullivan and M. G. Egan "A Self-Powered Resonant Gate Driver for High Power MOSFET Module" in IEEE App. Power Electron. Conf. and Expo., Mar. 2005, Vol. 3, pp. 1572-1580
[94] T. Lopez and R. Elferich "Quality Factor in Resonant Gate Drivers" in IEEE Power Electron. Spec. Conf., Jun. 2007, pp. 2819-2825.
[95] H. Yoshihiro, Y. Daichi and K. Hiroyasu "Novel Multi Resonant ZVS High Frequency Power Converter with High Efficiency Power Conversion" in Euro. Conf. Power Electron. and App., Sep. 2005, pp. 1-10.
[96] S. Zhou and G. A. Rincon-Mora "A High Efficiency, Soft-Switching DC-DC Converter with Adaptive Current-Ripple Control for Portable Applications" IEEE Trans. Circuit and Sys., Vol. 53, No. 4, Apr. 2006.
[97] A. Dasgupta and A. Ghosh "Study and Design of Buck Converter", Proj. Rep., Elec. Eng. Dept., Nat. Inst. of Tech., Rourkela, India, May 26, 2010.

LIST OF PUBLICATION

PROCEEDINGS

1. N. Z. Yahaya, K. M. Begam and M. Awan "Simulation of an Inductive Coupled High Frequency Resonant Gate Driver" in IEEE Ind. Informatics, Jul. 2008, pp. 1523-1527.
2. N. Z. Yahaya, K. M. Begam and M. Awan "Switching Loss Analysis of a DiodeClamped Resonant Gate Driver Network" in UMS Science and Tech. Sem., Oct. 2008, pp. 471-475
3. N. Z. Yahaya and T. M. Dung "Design and Improvement of Soft-Switched QuasiResonant Boost Converter" in $2^{\text {nd }}$ UMS Eng. Conf., Dec. 2008, pp. 582-587.
4. N. Z. Yahaya, K. M. Begam \& M. Awan "Design \& Simulation of An Effective Gate Drive Scheme for Soft-Switched Synchronous Buck Converter" in IEEE 3rd Asia Int. Conf. Modeling \& Simulation, May 2009, pp. 751-756.
5. N. Z. Yahaya, K. M. Begam \& M. Awan "The Load Analysis of the New Zero-Voltage-Switching Synchronous Buck Converter", in $3^{\text {rd }}$ UITM Int. Power Eng. and Opt. Conf., Jun. 2009, pp. 13-17
6. N. Rupadi and N. Z. Yahaya "The Study of Q-Factor in High Frequency DiodeClamped Resonant Gate Driver Circuit", in $2^{\text {nd }}$ UMS Sem. Eng. \& Info. Tech., Jul. 2009, pp. 3-7.
7. N. Z. Yahaya, M. K. Lee, K. M. Begam \& M. Awan "The Analysis of Dead Time on Switching Loss in High and Low Side MOSFETs of ZVS Synchronous Buck Converter" in Int. Conf. Contr., Comm. and Power Eng., Jul. 2010, pp. 11-17.
8. N. Z. Yahaya, K. M. Begam and M. Awan "Investigation of High Frequency Effects on Soft-Switched Synchronous Rectifier Buck Converter", in IEEE Symp. Ind. Electron. and App., Oct. 2009, pp. 524-528.
9. N. Z. Yahaya, K. M. Begam and N. H. Rahman "Performance Analysis of Fixed Duty Ratio and Adaptive Gate Drive in High Frequency Gate Driver Design", in IEEE Int. Conf. on Intelligent and Adv. Sys., Jun 2010, pp. 1-5
10. N. Z. Yahaya, K. M. Begam, M. Awan and H. Hassan "Load Effects Analysis of Synchronous Rectifier Buck Converter Using Fixed PWM Technique', in IEEE Int. Conf. on Intelligent and Adv. Sys., Jun 2010, pp. 1-6
11. N. Z. Yahaya, K. M. Begam, M. Awan \& F. Z. Hamidon "Resonant Gate Driver Design for High Frequency Switching" Int. Conf. on Elect. and Electron. Tech., Aug 2010, pp. 269-274.

JOURNALS

1. N. Z. Yahaya, K. M. Begam \& M. Awan. "A Review on VHF Power Electronics Converter and Design Issues", IAENG Eng. Lett., Vol. 16, Iss. 3, pp. 288-293, Aug 2008.
2. N. Z. Yahaya, K. M. Begam \& M. Awan. "A Review on Design Considerations \& Limitations of Resonant Gate Drive Circuit in VHF Operations", IAENG Eng. Lett., Vol. 17, Iss. 2, pp. 54-62, Jun 2009.
3. N. Z. Yahaya, K. M. Begam \& M. Awan. "Simulation Analysis of an Effective Gate Drive Scheme for Soft-Switched Synchronous Buck Converter" Int. J. Eng. and Tech., Vol. 9, No. 10, pp. 29-35, Dec 2009
4. N. Z. Yahaya, K. M. Begam and M. Awan "The Analysis of Parameter Limitation in Diode-Clamped Resonant Gate Drive Circuit" IACSIT Int. J. Eng. and Tech., Vol. 1, No. 1, pp. 17-22, Feb. 2010.
5. N. Z. Yahaya, K. M. Begam \& M. Awan "Experimental Analysis of Parameter Limitations in High-Frequency Resonant Gate Driver", IACSIT Int. J. Eng. and Tech., Vol. 2, No. 5, pp. 418-422, Oct 2010.
6. N. Z. Yahaya, K. M. Begam and M. Awan "Experimental Analysis of a New ZVS Synchronous Rectifier Buck Converter", IET J. Power Electron., Dec 2010, in press

APPENDIX A

App. A1 Measurement Setup

App. A2 S-CRGD Circuit on PCB

APPENDIX B

App. B1 New ZVS-SRBC Circuits on PCB

App. B2 D-CRGD Circuit with Bootstrap Units

APPENDIX C

App. C1 Relationship between $P_{S l}$ and $P_{S 2}$ Versus $V_{\text {ref }}$

App. C2 Relationship between Output Voltage and Load Current Versus $V_{\text {ref }}$

App. C3 Total Switching Loss Versus $V_{\text {ref }}$

