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ABSTRACT 

The research explores the potential applicability of the Lorentz force actuation of a MEMS 

based U-shaped cantilever which is made entirely of aluminum. The main objective of the 

study is to design, simulate and derive mathematical models for the behavior of the cantilever. 

The design is based on CMOS fabrication technology and bulk micromachining implemented 

in CoventorWare simulation environment using a Si substrate and SiO2 insulating layer 

supporting the Al U-shaped cantilever. Analytical models describing 3-D vibration modes 

(mode 1, 2 and 3) of the cantilever and their verification by simulation are discussed based on 

the direction of the current through the cantilever and the direction of the orthogonal external 

magnetic field. The response of the cantilever is discussed in two situations: static and 

dynamic. The static motion is obtained w hen a constant force, representing the Lorentz force 

due to a direct current through the cantilever placed in a static magnetic field, is applied. On 

the other hand, the dynamic vibration is realized when a periodic force is applied representing 

the Lorentz force due to a static external magnetic field acting on an alternating current 

through the cantilever. Results show that the displacement of the cantilever is significantly 

large indicating that high sensitivity can be achieved when it is driven at its resonant 

frequency. Three resonant frequencies were obtained for the three modes of vibration of 3, 8 

and 86.6 kHz for mode 1, 2 and 3 respectively when the thickness is 5 µm, width is 20 µm, 

length of the base is 760 µm and length of the arm is 1000 µm. Results show the resonant 

frequency and sensitivity of mode 1 depend on the thickness and length of the arms only, 

mode 2 depends on the length of the base, length of the arms and thickness. While the resonant 

frequency and sensitivity of mode 3 are depend on the length of the base, length of the arms 

and width. The displacement as a function of the applied force is shown to be perfectly linear. 

The quality factors (Q-factor) of the system for the three modes were determined to be the 

same at the same damping coefficient. The systems response is found to decrease 

exponentially with increasing damping. Finally polysilicon piezoresistors in Wheatstone’s 

bridge configuration is used to convert the response of the cantilever to electrical 

measurements at various voltages for different dimensions of the cantilever. The highest 

sensitivity of about 64 V/T without amplification is obtained for a thin beam of 0.6 m 

polysilicon embedded in 2 µm thick silicon cantilever beam.  
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ABSTRAK 

Tesis ini mengkaji potensi aplikasi ‘Lorentz force actuation’ pada tiang penyangga 

berbentuk U yang berdasarkan kepada ‘MEMS’ dan diperbuat sepenuhnya daripada 

aluminium. Objektif utama kajian ini adalah untuk merekabentuk, menjalankan simulasi 

dan seterusnya menghasilkan model-model matematik bagi kelakuan tiang penyangga. 

Rekabentuk adalah berdasarkan kepada teknologi fabrikasi CMOS dan ‘bulk 

micromachining’ yang dijalankan di persekitaran simulasi ‘ConventorWare’ 

menggunakan produk Silikon (‘Si’) dan lapisan penebat Silikon oksida (‘SiO2’) yang 

menyokong tiang penyangga berbentuk U tersebut. Model-model analitikal yang 

menggambarkan tiga keadaan getaran 3 dimensi (3-D) (mod 1, mod 2 dan mod 3) bagi 

tiang penyangga tersebut dan pengesahannya melalui simulasi dibincangkan didalam 

kajian ini berdasarkan kepada arah arus elektrik yang melalui tiang penyangga dan arah 

medan magnet luaran yang bersudut tepat. Tindak balas tiang penyangga bagi tiga 

keadaan tersebut di bincangkan dalam dua situasi, iaitu statik dan dinamik. Situasi statik 

adalah apabila daya yang tetap di kenakan. Daya yang tetap ini mewakili daya ‘Lorentz’ 

yang disebabkan oleh medan magnet luaran yang statik. Situasi getaran dinamik pula 

adalah apabila daya dikenakan secara berkala. Daya ini mewakili daya ‘Lorentz’ yang 

disebabkan oleh medan magnet luaran yang statik yang bertindak ke atas arus ulang-alik 

di dalam tiang penyangga. Hasil kajian menunjukkan pergerakan tiang penyangga dari 

tempat asal adalah sangat ketara apabila ia digerakkan pada frekuensi resonan dan ini 

menunjukkan bahawa tahap sensitiviti yang tinggi boleh dicapai pada frekuensi ini. Bagi 

tiga mod getaran yang dijalankan, tiga frekuensi resonan yang berbeza diperolehi, iaitu  

3 kHz bagi mod 1, 8 kHz bagi mod 2 dan 86.6 kHz bagi mod 3. Spesifikasi tiang 

penyangga yang digunakan dalam ujian ini ialah ketebalan 5 µm, lebar ialah 20 µm, 

panjang dasar ialah 760 µm dan panjang lengan ialah 1000 µm. Keputusan menunjukkan 

bahawa bagi mod 1, frekuensi resonan dan sensitiviti hanya bergantung kepada ketebalan 

dan panjang lengan sahaja dan bagi mod 2, ia bergantung kepada panjang dasar, panjang 

lengan dan ketebalan. Manakala bagi mod 3, frekuensi resonan dan sensitiviti bergantung 

kepada panjang dasar, panjang lengan dan lebar tiang penyangga. Pergerakan tiang 

penyangga adalah berkadar terus dengan daya yang dikenakan ke atasnya. Faktor kualiti 

(‘Q-factor’) sistem bagi ketiga-tiga mod pula adalah sama pada ‘damping coefficient’ 
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yang sama. Tindakbalas sistem didapati berkurangan secara eksponen apabila ‘damping’ 

bertambah. Seterusnya, ‘Polysilicon piezoresistors’ di dalam konfigurasi jambatan 

‘Wheatstone’ digunakan untuk menukar tindakbalas tiang penyangga kepada sukatan 

elektrik bagi nilai voltan yang berlainan pada dimensi tiang penyangga yang berlainan. 

Tiang penyangga yang berukuran 2 µm dengan 0.6 µm ‘polysilicon’ terpancang di 

dalamnya memberikan kadar sensitiviti paling tinggi iaitu 64 V/T tanpa sebarang 

amplifikasi. 
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Chapter 1 

 

INTRODUCTION 
1.1    Background  

In the last few years, microfabricated cantilevers have been proposed as mechanical 

transducers for different sensing applications and many researchers have explored this 

area. Use of cantilevers for these applications has the advantages of reasonably good 

sensitivity, smaller sizes and lower costs. These cantilevers consist of microscopic bars 

free to move at one end and fixed at the opposite end. They are produced using standard 

silicon microfabrication techniques. The shape of the cantilever beam differs based on 

the type of the application: Single rectangular-shape for chemical application [1, 2] and 

biomolecular analysis [3], U-shape, V-shaped and cantilever-inside-cantilever structure 

for magnetic field sensing [4, 5, 6] and measurement of liquid viscosity [7]. Cantilever 

systems have also been designed and used to measure a variety of other quantities such 

as surface stress, temperature, heat generation and electric field [8, 9]. 
 

The design and fabrication techniques for these micro electromechanical system 

(MEMS) devices are based on Complementary Metal Oxide Semiconductor (CMOS) and 

bulk micromachining technology using a CMOS wafer with electronic parts on it. 

Important reasons for the successful application of cantilever sensors to measure these 

quantities are the reduced dimensions of the transducer. Therefore, improved sensitivity 

and resolution can be achieved for the measurement of extensive quantities, whereas for 

intensive quantities the advantage of cantilever sensors is mainly due to reduced sensor 

dimensions and potential compatibility with IC fabrication [10].  
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Two modes of operation for cantilever sensors can be distinguished: static and dynamic, 

First, in static operation the deflection of the cantilever by bending induced in one 

direction is employed to measure physical quantities. As an example, using static 

cantilever deflections, the surface stress due to DNA hybridization and receptor-ligand 

binding on cantilever have been measured [10, 11]. Second, for the dynamic mode the 

cantilever is excited harmonically [12] and a basic understanding of the mechanical 

behavior of cantilever beam is critical in order to successfully develop cantilever-based 

microsensors. The knowledge of spring constant, resonance frequency, damping 

coefficient and corresponding quality factor of a cantilever sensor have to be taken into 

account to determine sensitivity and resolution. This way the resonator cantilever 

combines the advantage of high sensitivity of the sensor. Resonance beam gas sensor is 

an example of the resonator sensors [13]. Microcantilevers can be operated either as 

microbalances or as surface stress sensors. By monitoring the shifts in its resonant 

frequency it is possible to follow the absorption processes which change its mass.  
 

One of such devices, a micromachined U-shaped cantilever, offers measurement 

possibilities for a variety of physical parameters. They can be used for magnetic field 

measurement [4, 10, 14], chemical gas sensing [13], measuring the viscosity of liquids 

[7], and for moving and buckling at micrometer distance in the micro scaling industry 

[15]. In terms of stress sensing applications, the smaller dimensions of the cantilever 

causes a reduction in the magnitude of forces detected. The surface stress can be 

determined with the deflection of the cantilever either optically or electrically. The 

optical method commonly used is the optical lever technique, which involves alignment 

of the system consisting of lasers, photodetectors and focusing optics [16, 17]. On the 

other hand, the piezoresistive method is simple and directly measures the change in 

deflection of the cantilever [4, 10].  
 

Numerous types of the micro magnetometers are designed and used for multiple 

applications such as magnetic flux detection and new applications like hydrocarbon 

exploration and metal detection. The sensitivity and the range of the measurement of 
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these devices are however limited and non directional like hall magnetometer, while 

others are expensive, bulky and have complicated design. These include the highly 

sensitivity vector magnetometers such as fluxgate or superconducting quantum 

interference device (SQUID) [18]. U-shaped cantilever device is a simple vector 

magnetic flux detector. The elastic properties of thin-films of some metals such as 

aluminium or gold are important in applications involving the deflection of these films 

under various applied forces that can simultaneously measure three orthogonal 

components of an external magnetic field. In actual application, the movements of the 

cantilever, made up of aluminium thin film, are accomplished by the Lorentz force acting 

on direct current (static mode) or alternating electric current (dynamic mode) through the 

aluminium thin film when the cantilever is placed in an external magnetic field. The 

orthogonal magnetic field components are able to excite different modes of vibrations of 

the cantilever. Consequently, the response of the cantilever can be used to detect the 

magnitude and direction of the external magnetic field.  

1.2    Problem statement 

The actuation of U-shaped cantilever device based on Lorentz force [14, 16, 19] is still 

not widely and systematically explored and few studies have been carried out in this 

field. There is need for more characterization and optimization of the device to extend 

the range of measurement of magnetic fields. The effect of the different parameters of the 

U-shaped cantilever such as the effect of its dimensions on the value of the natural 

frequency (resonant frequency) requires systematic investigation.  
 

The use of industrial CMOS processes for the fabrication of MEMs devices leads to 

systems that rely on standard IC processes combined with a few additional post 

processing steps [4, 14, 20, 21]. In the application of CMOS and IC technology for the 

fabrication of CMOS-integrated sensor systems, three approaches can be distinguished: 

pre-processing, intermediate processing, and post-processing. These processes lead to 

high development and overall production costs for a sensor system. The number of 
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samples of these devices that can be produced by trial and error and simulate is therefore 

limited. For example F. Keplinger, et al [14] designed and characterized one sample of a 

U-shaped cantilever with a given dimensions while V. Beroulle, et al [22] investigated 

two sample devices. This method does not therefore allow systematic characterization of 

more parameters such as the effect of varying dimensions of the device and effect of 

damping factor on the performance of the device in terms of its response and sensitivity. 

However versatile Computer-Aided Design (CAD) programs of MEMS fabrication and 

FEM simulation software such as ANSYS software [17, 23, 24] and more recently 

CoventorWare [25] allow for designing and simulating MEMS devices with full control 

and manipulation of the device dimensions and layers and comprehensively investigate 

the electrical and physical properties of these layers. Furthermore, different models of the 

device could be designed, characterized and optimized by trial and error before the actual 

factory fabrication. This results in considerable reduction in the cost and time for the 

designer and researchers. 
 

 FEM simulation study is therefore very useful for optimizing a device by varying its 

materials and dimensions before the actual industrial fabrication of the device and 

selected samples that are suitable for certain application and range of the measurement. 

In this research, CoventorWare finite element models (FEM) simulation software 

developed by Coventor Inc 2006 is used to perform finite element simulation 

(fabrication, design, analysis) of the micromachined U-shaped cantilever. There are very 

few researches on MEMS using this software, however the results obtained from its 

application in the last few years has revealed its efficiency [26]. 
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1.3    Objectives of the study 

The main aim of this study is to design and simulate a U-shaped cantilever for possible 

application in 3-D magnetic field detection. The specific objectives of the study are: 

 To design and simulate the U-shaped cantilever device. 

 To validate the simulation results with mathematical modeling. 

 To investigate the effect of cantilever deflection on piezoresistive transducer for 
application in magnetic field measurement. 

1.4    Scope of the project 

This study undertakes FEM simulation of a U-shaped cantilever based on CMOS-

compatible and bulk micromachining technology. Different samples of the U-shaped 

cantilever device are simulated and optimized. The effect of the cantilever dimensions 

such as thickness, width, length of arms, and length of the base on the resonant frequency 

and sensitivity of the device is investigated. Other important parameters such as the 

effect of the damping coefficient on the system response are also studied. Furthermore 

this research identifies the parameters required to achieve a high response and sensitivity 

of the piezoresistor transducer element implanted in the U-shaped cantilever. 

1.5    Thesis outline 

 Chapter-1 presents an introductory part of this thesis and discusses the background of 

the microcantilever sensors in general. It also outlines U-shaped microcantilever 

device and its application to magnetic field sensing. The problem statement of this 

research project is described in this chapter as well. The objectives for the 

characterization and optimization of this system are dealt with in this chapter.   

 

 Chapter-2 presents literature review and is divided into two sections, the first section 

deals with the theoretical background of the system and its basic principle of 

operation. Other quantities related to the system modeling are also mentioned. And 

the second part explains the previous work done related to this work. 
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 Chapter-3 explained in detail our methodology for investigating the design and 

characterization the system using CoventorWare (software) to fabricate and simulate 

different samples of two types (front side block micromachining) and (back side block 

micromachining) of U-shaped cantilever device. And how to mechanical 

characterization of the cantilever by applying force (static and dynamic) is also 

presented in this chapter. Similarly the conversion of the response of the cantilever 

into an electrical signal for measurement is treated as well. Derivation of the 

theoretical beam equations to U-shaped cantilever structure is also dealt with in this 

chapter. 

 

 Chapter-4 presents and explains the results of the research. First, the comparison 

between the static mode and dynamic mode for the three different modes of cantilever 

motion in addressed. Second, the effect of the cantilever dimensions on the resonant 

frequency and the sensitivity of the cantilever for certain motion of vibration is 

discussed in detail. These simulation results are validated by the theoretical results 

obtained by solving the equation of the modes of vibration analytically. The third part 

of the results concerns with the effect of damping coefficient on cantilever response 

and the quality factor of vibration. The linear relationship between the force produced 

by the Lorentz force and the deflection of the cantilever also realized in this section. 

The last part of the results explains the response of the piezoresistor transducer to 

convert the deflection of the cantilever to an electrical signal (voltage output). It also 

compares the sensitivity of the system for the different thicknesses of polysilicon 

piezoresistor embedded inside the silicon lead. 

 

 Chapter-5 concludes and summarizes the results of our research work. It also includes 

the conclusion drawn from our research work as well as comments and 

recommendations for future work. 
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Chapter 2 

 

LITERATURE REVIEW 

2.1    Force and Pressure Transduction 

There are several techniques to measure force and pressures. Very often, the force to be 

measured is converted into change in length or height of a piece of material, the spring 

element. The change in dimensions is subsequently measured by a sensor element. Figure 

2.1 shows the overall transduction process [27]. Three categories of transduction process 

are distinguished based on the read out mechanism:  peizoresisitve (strain gauge or a 

changing resistivity), capacitive (strain gauge or a changing capacitance) and resonant 

sensors. Sometimes it is not easy to distinguish the sensor element and the spring 

element; the sensor itself may also be the spring element and dimensions of the element. 

For example in piezoelectric and peizoresistive force transducers, the deformed crystal 

both supports the load and supplies the output signal. 

                        

 

 

Fig 2-1 Transduction of a force via spring and sensor element into electrical output [27] 

The applied force to the sensor either directly produced by some object or due to a 
physical phenomenon such as Lorentz force. 

electrical 
output signal force 

mechanical  

deformation 
sensor 

element 
spring 

element 
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2.1.1    Principle of Lorentz Force Actuation 

Lorentz force is a well known physical phenomenon [19]. This force is generated when a 

conductor carrying an electrical current is placed in a magnetic field as shown in Figure 

2.2.  

 

 

 

                                       

Fig 2-2 A straight wire in a magnetic field that is constant along its length [19] 
 

Each of the moving charges in the wire, which comprise the current, experiences the 

Lorentz force, and together they can create a macroscopic force on the wire given by the 

Equation 2.1 for a straight and stationary ware. 

                                                              
sin LiBF extL                                                                (2.1) 

  
Where FL is the magnitude of the Lorentz force, i the current in the conductor measured 

in amperes (A), Bext is the static external magnetic flux density, L is length of the 

conductor, and sin is sine of the angle between the magnetic field and the current 

through the conductor. And when the magnetic field perpendiculars to the current 

equation 2.1 are becomes: 

                                            LiBF extL                                                                         (2.2) 

Measurement of magnetic flux densities is an important task in many research areas and 

is commonly associated with physical phenomena such as Lorentz force. The mechanical 

excitation of a micro machined structure by the Lorentz force can be used as an 

alternative transducer mechanism. Besides that, such actuators have a fundamental linear 

dependence between force and electrical current, as well as between force and magnetic 

L 

Bext Fl 
    

i 
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flux density [15]. By adapting the electrical current, the sensor offers a high sensitivity 

and a large dynamic range enabling measurement of both strong and weak magnetic 

fields. 

2.1.2    Static and Dynamic Response Characteristics in Lorentz Force Actuation 

There are two situations that may be considered in the response of a current carrying wire 

exposed to a static external magnetic field: static and dynamic response characteristics.  

In the static behavior, a constant Lorentz force acts on a wire carrying a direct current 

placed in an orthogonal static external magnetic field that results in a fixed displacement 

in a given direction.  For small deflections, the behavior of the wire is governed by the 

well-known Hook’s law that relates the applied force F to the resultant bending by the 

following relation  

           ukF .                                                     (2.3) 

Where u is static displacement in the x-, y- or z-directions and k is the wire stiffness 

constant that depends on the wire material and dimensions. 
 

On the other hand, the dynamic behavior results from an application of an alternating 

current in the wire that induces it to vibrate periodically as a result of the Lorentz force 

induced by a static orthogonal external magnetic field. The response of a vibrating 

system will depend on the relationship between the frequency of the externally applied 

periodic force and the natural frequency of the vibration system. For instance if a mass 

on a spring is moved and then released, it will oscillate at its natural frequency. When a 

periodic force is applied at this frequency, the amplitude of the response (maximum 

displacement) will increase dramatically and the highest response (displacement) can be 

achieved when the cantilever driven at this frequency. This phenomenon is known as 

resonance and is the fundamental principle applied in all resonating sensors. Figure 2.3 

shows frequency response of the cantilever to a periodic force [19, 28]. 
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Fig 2-3 Frequency response of a vibrating system [19, 28] 

 
In order to determine the resonant frequency, the resonator has to be brought into 

vibration and the vibration has to be detected. Usually an oscillator circuit is realized 

where the resonator is the frequency determining element. The value of this frequency is 

dependent on physical properties of the material such as density, stiffness and 

dimensions (thickness, width, and length) of the beam for a certain mode of vibration 

[19, 28, 29, 30]. A description of the behaviour of a general simple dynamic problem can 

be done by modeling it as a mass oscillating on a spring of stiffness k and damping factor 

D [21, 22] as shown in Figure 2.4. 

 
Fig 2-4 Mass-Spring System [21, 22] 
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The internal force in the spring is given by kψ and so its dynamic equation of motion is 

given by [31, 32]: 

                                     Fckm                                                             (2.4) 

 

where ψ is the displacement, m the mass, k the spring constant measured in (N/m) and c 

the damping factor. If the periodic force is considered sinusoidal, that is F = F0 sin (t), 

the solution of equation 2.5 gives the maximum displacement amplitude ψmax at the 

resonant frequency as  

                                
2
1

2

0
max

2 



















m
c

m
kc

F
                                                    (2.5)

 

where F0 is the amplitude of the applied force. For low-damped systems with forced 

oscillation, the resonance angular frequency is given by 

                                  m
kw 0                                                                (2.6)  

and the actual frequency calculated from      

                                  m
kf

2
1

0                                                                  (2.7) 

2.1.3    Linearity property of a vibrating system  

Generally, linearity is a desirable characteristic of all systems where an output responds 

to an input. The system is said to be a linear system when the response of system to 

inputs is given simply by the sum of the responses due to individual input. In addition, if 

input is multiplied by a common constant factor, the resulting response is multiplied by 

the same factor. The motion produced by the Lorentz force as the input of a vibrating 

system and the deflection in the system as the output response is called Linear 

Electromagnetic Actuation [33]. This is because for measurement over a given range for 
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small deflections, the displacement of the wire is a linear function of the Lorentz force 

[6, 34]. The sensitivity for this given combination of magnetic field strength B and spring 

constant k is measured in µm/mN. The direct proportionality is an advantage for 

designing a simple signal conditioning circuit. 

2.1.4    Q-factor 

Mechanical quality factor (Q) is an important parameter in the study of vibrating 

systems. It is a measure of the energy losses of the resonator or, in other words, a 

measure of mechanical damping. Q-factor is defined as the ratio between the total energy 

stored on the vibration, Ustored, and the energy loss (dissipated) per cycle, Udiss   

 

                                dissU
storedU

Q                                                                                (2.8)                        

 

Low energy losses imply a high Q-factor. The Q-factor cannot be determined directly, 

but instead can be deduced from the response characteristics of the resonator. One 

common method of determining Q is from the steady-state frequency plot of a resonator 

excited by a periodic force with constant amplitude [4] and Q is given by the equation: 

                                     Q = fres /Δf-3dB                                                                   (2.9)  

where fres is the resonant frequency of a given mode, Δf-3dB  is 3dB band width of the 

frequency that is at 
2

1 of maximum amplitude [35]. Figure 2.5 shows the frequency 

response of a U-shaped cantilever and how to determination the band wide at 3dB of the 

amplitude. 
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       Fig 2-5 Frequency response of the mass and band wide at -3dB of the amplitude [35]  

 

In the two methods of actuation of a mechanical structure discussed in section 2.1.2, the 

static method uses a calibrated dc current. The displacement value can be converted in a 

measurement circuit to indicate the voltage level at the output that is directly proportional 

to the magnetic induction. The ratio between this output voltage and the magnetic 

induction is defined as the static sensitivity S(stat) [36]. The other actuation method is 

realized when an alternating current is used.  The amplitude of the output signal is then 

modulated by the value of the static (or low frequency) magnetic induction. The ratio 

between the output amplitude and the magnetic induction then represents the sensitivity. 

The best sensitivity is obtained with an actuation current frequency equal to the 

resonance frequency (fres) of the mechanical structure. The ratio between the resonant 

sensitivity, S(res), and S(stat) is a measure of the Q value that is: 

 

                                Q = fres /Δf-3dB = S(res)/S(stat)                                                      (2.10) 
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A high Q-factor means a sharp resonance peak and has the advantages of low energy 

required to maintain the vibration, minimal effect of the electrical circuitry on oscillation 

and low sensitivity to mechanical disturbances.  

2.1.5    Damping coefficient  

If an undamped structure is allowed to vibrate freely, the magnitude of the oscillation is 

constant. In reality, however, energy is dissipated by the structure's motion, and the 

magnitude of the oscillation decreases under the effect of the damping and the motion 

environment. This energy dissipation is known as damping. Damping is usually assumed 

to be viscous or proportional to velocity. And the Q-factor of the vibration is strongly 

inversely proportional to the damping. Therefore the damping factor is an important 

parameter to consider when performing a harmonic analysis. The dynamic equilibrium 

equation of the natural oscillation of a vibrating damped mechanical structure is [37] 

     0  kcm                                                                  (2.11) 

where m is the mass, c the damping, k the stiffness, and ψ the modal amplitude. The 

solution is of the form:            

                                        tA  exp                                                               (2.12)  

where A is constant and β is function of c.  

Damping coefficient also can be expressed mathematically as a fraction of the critical 

damping for each eigenmode and the dimensional damping c correlated with the non-

dimensional damping ratio d as [34] 

                                              
 

c
c

crit

d                                                              (2.13)  

where the critical damping is  given by  

                                           mk2 ccrit                                                                        (2.14) 
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2.1.6    Peizoresistive transducers 

This section discusses the principles of the transformation of a deformation in a micro 

cantilever into an electrical output and the electronic interface circuits needed for such 

purposes. The transfer of a deformation in a mechanical construction by an external load 

to an electrical signal is called transduction. The most important mechanisms for 

transduction of mechanical microsensors use the following effects: piezoresistivity, the 

dependency of the capacitance on the geometric arrangement of conductor, optical 

resonance and optical interferometry [17].  
 

Since Smith documented the piezoresistive effect in silicon in 1945. Piezoresistive 

MEMS devices have been implemented in a variety of sensing application, including 

pressure, acceleration, force and displacement sensing [38]. Piezoresistivity is a material 

property where the bulk resistivity of a material is influenced by the mechanical stress 

applied to it. Silicon, especially in the monocrystalline form, exhibits a high 

piezoresistivity [39, 40, 41]. Combined with excellent mechanical properties, this makes 

it a preferable material for mechanical sensors. Whereas metals show a change in 

resistance due to mechanical stress or strain mainly because of geometric effects, the 

piezoresistive effect in silicon results from a change in resistivity and exhibits 

significantly higher sensitivities. Because of this and the easy fabrication of resistors in 

standard IC fabrication, piezoresistive detection is a widely applied sensing principle for 

mechanical microstructures for measurements using an electrical signal. The 

piezoresistive effect in silicon depends strongly on the crystal orientation, doping type, 

and concentration. Piezoresistive property of polysilicon is used as piezoresistor 

transducer in this research. The general relation between the relative changes of a 

resistance R, which for polysilicon is equal to the change in resistivity ρ, is given by [17]: 
 

                                          

d

R
dR

                                                                            (2.15)                
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 The electrical resistance of a piece of any material depends on its dimensions, shape and 

the specific resistance ρ. For a rod with cross-section A and length l the resistance R (Ω) 

is given by
  

                                
      

A
lR 

                                                                                  (2.16) 

Therefore the change of the resistance of a material (∆R) is directly proportional to the 

change in its resistivity (∆ρ).The simulation software will realize the results in percentage 

values of the unstressed resistance value of the piezoresistor   

                                 
%)(%

unstressed
unstressedstressedR 

                                               (2.17) 

where ∆R% is percent change in resistance.  

Using equation 2.17, the value of the change of the resistance (in Ω) can be obtained by   

                                    RRRp 



100

%                                                                      (2.18)  

where R is the original (unstressed) value of the resistance of the piezoresistive material.   

Many solid state sensors for mechanical signals are based on the piezoresistive effect. 

The change in resistivity of a piezoresistive material subject to a mechanical deformation 

is used to measure many physical quantities such as pressure, force, and acceleration. 

The advantages of piezoresistor technology implementation in circuits include low cost 

fabrication opportunity, mature processing technology, readout circuitry can either be on-

chip or discrete, various sensitivities can be obtained, and different pressure levels can be 

achieved according to the application [26]. Piezoresistive pressure sensors are one of the 

very-first products of MEMS technology. Those products are widely used in automotive 

applications such as air pressure detection, in biomedical applications such as blood 

pressure measurement and in household appliance such as washing machines, 

dishwashers and vacuum cleaners.  
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The sensitivity, S, of all magnetic field sensors is a ratio between the voltage output Vout 

of the measurement circuit and the magnetic flux density Bext detected and is given by 

                                           ext

out

B
VS                        (2.19) 

There are two sensitivities of the system: static sensitivity Sstat for the static mode of the 

cantilever and resonant sensitivity Sres for the dynamic mode at the resonant frequency of 

vibration. The maximum deflection in the static mode is too small if the output voltage 

and sensitivity compared to that in dynamic resonance response. 

2.2    MEMS and CMOS-compatible micromachining of cantilever structures  

Microelectromechanical Systems (MEMS) is a logical expansion of the silicon processes 

used to fabricate integrated circuits. These processes were originally developed to build 

microelectronic and micromechanical devices having structures capable of motion in a 

microscopic scale. MEMS devices are built in much the same way as a silicon integrated 

circuit. Various films including polysilicon, silicon nitride, silicon dioxide, aluminum 

and gold are deposited and patterned to produce complicated, multilayer three-

dimensional structures. However, the major difference is the release step at the end. In a 

MEMS device, some of the layers materials are removed using a selective etch, leaving a 

device with moveable elements. Complementary metal–oxide–semiconductor (CMOS) 

based MEMS manufacturing technology employs standard CMOS processes to fabricate 

microstructures within the metal-dielectric layers that are deposited during the standard 

CMOS processing flow, resulting in mechanical structures that are just microns away 

from the analog and digital electronics.  
 

 CMOS is a well-known and the dominant semiconductor technology. CMOS-chips 

generally consist of a substrate, the transistor components, the metal layers and a 

passivation layer [20]. The substrate is a silicon wafer, the thickness of which depends on 

the wafer size. Some metal such as aluminum or copper are used to wire the electric 
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component. Intermetal oxide (Si-oxide) layers are used as electrical insulator between the 

different metal layers. Finally, silicon nitride, silicon oxinitride, or silicon oxide layers 

passivate the device and protect the electronics. The overall CMOS device is fabricated 

in a defined sequence of material deposition, doping, lithography and etching steps.  

Micromachining structures such as membranes and cantilevers are widely used in 

microsensers fabrication. The micromachining techniques are categorized into surface 

micromachining and bulk micromachining processes. 

2.2.1    Surface Micromachining 

Surface micromachining encompasses a number of techniques to create microstructures 

from thin films previously deposited onto a substrate and is based on a sacrificial-layer 

method [20]. In surface micromachining the features are built up layer by layer on the 

surface of substrate and in contrast to bulk micromachining, surface micromachining 

leaves the substrate intact [42]. A sacrificial layer is deposited and patterned on a 

substrate. After that, a structural thin film, in most cases polysilicon, is deposited and 

patterned, which will perform the mechanical or electrical functions in the device. A 

selective etchant then removes exclusively the sacrificial-layer material. The thickness of 

the sacrificial layer determines the distance of the structural parts from substrate surface 

as shown in Figure 2.6 (a). Clamped beams and microbridges can be fabricated this way. 

2.2.2    Bulk Micromachining 

Unlike surface micromachining, bulk micromachining defines structures by selectively 

etching inside a substrate. It is one approach to develop the functionality of IC-based 

devices by micromachining the bulk substrate, which consists of silicon. Bulk 

micromachining techniques can be classified into two structure geometries isotropic and 

anisotropic etching techniques as shown Figure 2.6 (b). The two etching techniques that 

can be used are wet etching which typically uses liquid solvents such as potassium 

hydroxide (KOH) or tetramethylammonium hydroxide (TMAH)) and dry (gaseous) 
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etching that is used to dissolve silicon which has been left exposed by the 

photolithography masking step. The etching can be implemented by two methods: Back-

side or Front-side etching. More details on CMOS and micromachining techniques can 

be found in dedicated references on micro systems technology [42, 43, 44]. 

 

 

                                                                                     
 

 

                                                                                      
 
                                   (a)                                                                    (b) 

Fig 2-6 Micromachining techniques: (a) Surface micromachining steps and (b) Bulk 

micromachining. 

2.3    Finite Element Method (FEM) simulators 

Finite element method (FEM) is a powerful technique originally developed for numerical 

solution of complex problems in structural mechanics, on the other word FEM is 

numerical technique for finding approximate solutions of partial differential equations as 

well as of integral equations. And it remains the method of choice for complex systems. 

In the FEM, the structural system is modeled by a set of appropriate finite elements 

interconnected at points called nodes. Elements may have physical properties such as 

thickness, coefficient of thermal expansion, density, Young's modulus, shear modulus 

and Poisson's ratio.  
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Most commonly used modeling approach for MEMS devices is based on the use of finite 

elements method (FEM). Numerous finite element programmes have been developed 

which are able to solve linear, non linear, static, dynamic, elastic, plastic, steady state, 

transient, and other problems, during the last years. A given technical problem must be 

expressed in physical terms so that it can be formulated mathematically by means 

modelling. The model should reflect the reality as exactly as possible. However, it should 

also be as simple as possible. Furthermore, the model must be described in such a way 

that it can be implemented in computers.These are used whenever analytical solutions are 

difficult to achieve such as for MEMS with complex geometry or multiple actuation 

modes. Such modes, coupled with an FEM simulator, provide accurate simulation results 

for various physical domains such as mechanical, thermal, or magnetic [5].  
 

FEM simulators are still not able to easily prepare the system parts and couple it with 

mixed signal electrical simulators. Moreover, a long simulation time is consumed for the 

high accuracy that is unwanted particularly during the optimization process. FEM 

simulators are efficient and accurate at the device level, whereas other solutions are 

necessary at the circuit or system level. It then becomes necessary to deal with analytical 

models that may be integrated in a microelectronic design flow in order to simulate 

electromechanical behaviors. Such asset of equations may result from finite-element 

parametric analysis and interpolation [13, 23]. This is often the only solution to handle 

complex systems. For simple structures, the modeling can be conducted analytically by 

using well-established results from the concerned scientific fields. In this case physical 

parameters such as technological constants or device dimensions are directly part of 

equations, leading to a faster, intuitive optimization method [45]. An example being 

successfully applied with significant contribution of widely used simulation software 

such as ANSYS 6.0 and CoventorWare are already contributing to the comprehensive 

understanding of device behavior and performance. 
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2.4    Review of Related Studies 

In this section studies that are directly related to U-shaped cantilever structure is 

reviewed. The review is subdivided into studies in which actual devices where fabricated 

and simulation based research.   

 

2.4.1     Review of fabrication and Characterization MEMS based Cantilevers   

The principle of the Lorentz force is used for actuation a MEMS based U-shaped 

cantilever of flexible thin-film aluminum reported by Raphael H, et al [15] and [34]. 

Conventional semiconductor fabrication technology (surface micromachining) is used to 

produce the actuators. To fabricate one sample on 2-inch-diameter silicon wafer, 3 thin-

film layers are deposited by sputtering. The 1 µm SiO2 layer provides insulation and the 

2 µm polysilicon layer serves as a sacrificial layer for releasing the Aluminum structure 

from the Si wafer. The displacement amplitude as a function of frequency was 

investigated. Maximum displacement of about 50 µm at the resonant frequency is 

obtained as compared 20 µm for the static mode. The relation between the current and 

the displacement has been measured with a laser displacement meter. A natural 

frequency of 2.65 kHz and a quality factor Q of 2.5 are reported. Equations (2.5), (2.6), 

and (2.7) are used for the dynamic modeling and a theoretical resonant frequency of 2.6 

kHz is obtained that is close to the experimental results. The paper also demonstrated the 

linearity relationship between the displacement of the cantilever and the applied force. 

However, the paper considers only testing and characterization of the structure for 

vibrations   due to Lorentz force in one direction.  

 
N. Dumas et al have also published three papers on the application of the U-shaped 

cantilever [10, 22, 46]. Figure 2.7 shows SEM micrograph of a fabricated U-shaped 

cantilever device in the first paper [22]. Front-Side Bulk Micromachining (FSBM) was 

used to fabrication the device. FSBM is preferable over the Back-Side Bulk 

Micromachining (BSBM) due to its self alignment capability and thus lowering the cost 

of the post process [47, 48]. Figure 2.7 shows two samples of the device that have been 
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designed and tested. Piezoresistive technique using Wheatstone bridge circuit was used 

for the measurement of the output voltage. The graph of the frequency response indicates 

a value of the resonant frequency of about 22.5 kHz and a maximum output voltage of 

0.9 Volt.  

 

 
Fig 2-7 SEM photograph of two U-shape cantilevers [22] 

 

A second paper published by the same author [46], compared between the static and 

resonant sensitivity of the cantilever sensor. The output voltage of the static measurement 

is found to be about 14 mV/T while it is 350 mVrms/T at the resonant frequency. Another 

paper written by these authors [10] focuses on the modeling equations of the motion and 

Q-factor of the system and optimized the circuit for measurement. The testing and 

characterization in these three papers considered only Lorentz force actuation of the 

cantilever for one mode of vibration.  
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Figure 2.8 shows typically schematic representation of the behavior of the U-shaped 

cantilever beam in these papers when the Lorentz force is acting on the base of the 

cantilever. 

 

Fig 2-8 Principle of Lorentz force actuation of the U-shaped cantilever [15, 46] 

 

An electrical current (i) pass through the beam by means of aluminum planar coils. 

Lorentz force (F) results from the interaction between an external magnetic field (B) and 

current (i). This force depends on the width (Wc) of the cantilever: F = iWcB. The author 

showed how the Lorentz force law can be used to calculate the applied force that 

generates the vibration. A resonant frequency of 22.5 kHz and a quality factor of 114 

were measured, while the resonant sensitivity obtained is about 0.85 Vrms/T at damping 

factor of 7.83×10-7 N s m-1. The paper also focuses on the optimization of the electrical 

measurement circuit.  
 

F. Keplinger, et al [14] carried out simultaneous measurement of two magnetic field 

components using a U-Shaped cantilever device. The U-shaped cantilever was used to 

detect the external magnetic field from two directions. Vibration in one direction was 

called the symmetric mode and in the other antisymetric mode as shown in Figure 2.9 (a) 

and (b). The paper described the shape of the two modes of vibration and presents the 

value of the resonant frequency for each mode. 

W 
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                                        (a)                                                        (b) 

Fig 2-9 Visualization of (a) symmetric and (b) antisymmetric vibration modes [14] 

 

The U-shaped cantilever device was fabricated using Back Side Bulk Micromachining 

(BSBM) with a length of 1500 μm, base of 1100 μm, a beam width of 100 μm, and a 

thickness of 15 μm. It carries a 0.5 μm thick and 60 μm wide gold (Au) lead. Optical 

readout is used for measurements. The resonant frequency value is about 5.8 kHz for 

symmetric (mode-1), while it is 16 kHz for the antisymmetric. In another paper [45] the 

authors focused on the mathematical equations of the different modes of vibration of the 

U-shaped cantilever. Making some assumptions, the classical Euler-Bernoulli beam 

dynamics theory is adopted to analyze the problem of the flexural deflections of the 

cantilever. 
 

Z. Djuri, et al [6] designed and fabricated cantilevers with “U” and “V” shapes. A 

homogenous composition of the microcantilever made of a conductive material (gold) is 

chosen in order to avoid the adverse bimaterial effect. Preliminary experimental results 

obtained by measuring interaction between a permanent magnet and current carrying 

cantilever are given (Lorentz force actuator). This work realized the linearity relationship 

between the Lorentz forces generated (in nN) and the current through the cantilever (in 

mA), and also linearity relationship between the cantilever displacement (in nm) and the 

force obtained by using permanent magnet and changing the current through the 

cantilever.  
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In another experimental work [31], a piezoresistor transducer and the conditioning circuit 

(typically a Wheatstone bridge) was designed and optimized to reject power supply 

noise. Figure 2.10 shows the bulk device with piezoresistor embedded inside the 

cantilever. FSBM wet anisotropic etching of silicon is used to release the U-shaped 

structure. This paper discussed the electrical measurement circuit in detail, rather than the 

characterization of the cantilever and vibration modes.  
 

         
Fig 2-10 The piezoresistive magnetic field sensor [31] 

 

Jeng-Nan Hung et al [32] investigated the effect of cantilever dimensions by varying one 

and keep the others constant for single rectangular polysilicon cantilever beam. Just the 

effect of the Length and width of the cantilever is characterized in this work. Figure 2.11 

shows the samples of the cantilever of different lengths fabricated. 

 
 

Fig 2-11 SEM photograph of the polysilicon specimens [32] 

Piezoresistor for 
strain gauges 
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2.4.2    Simulation Studies on a MEMS Devices base Cantilever 

A few simulation studies in this area have been carried out. In one instance, ANSYS 6.0 

software was used by Franz K, et al [24] to simulate a U-shaped cantilever with the 

geometrical dimensions of the cantilever of length of arms of 1100 μm, overall base of 

1000 μm, beam width of 100 μm and beam thickness of 10 μm. Estimation of the sensor 

behaviour and the model optimization was performed on the device. Static analysis was 

used to determine the displacement due to the loads. Deflections of 13 μm in z-direction 

was obtained under load by the Lorentz force of 80 µN calculated by taking the external 

magnetic field in the x-direction to be 40 T and the current through the cantilever to be 2 

mA. Figure 2.12 shows the mode for the estimation and optimization was conducted. The 

conclusion it is suggested that utilizing the Lorentz force on a micro machined Si 

cantilever with thin film conductors provides a promising sensor principle for measuring 

high quasistationary magnetic fields.  

 
 

 
 

Fig 2-12 Simulation result of the cantilever under load by the Lorentz force [24] 

 

Displacement (µm) 
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In another recent research [26], the researchers used CoventorWare to design and 

characterize a MEMS piezoresistive pressure sensor for ocean depth measurements. The 

designer used BSBM of Si of dimensions 1500µm×1500µm, and applied pressure (in 

psi) to realize the output response of the Wheatstone bridge (in mV). They also compared 

experimental work with the simulation results. Very small error ratio between them was 

observed, indicating the effectiveness of the software in modeling the behavior 

accurately.  
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Chapter 3 

METHODOLOGY 

 

3.1    U-shape cantilever device structure 

Figure 3.1 shows the metal line of a U-shape cantilever consisting of two parallel 

cantilever beams (arms) that are connected at their free extremity by a linking arm that 

will be called the base in this thesis. The cantilever is anchored at the contact pads. 

Figure 3.2 shows schematic 3-D structure of the device layers, that consist of the Al 

metal line, the silicon oxide (SiO2) insulating layer to which it is anchored and silicon 

(Si) substrate, while Figure 3.3 shows the cross sectional view of the structure.  

 

Fig 3-1 Schematic diagram of the metal U-shaped cantilever 
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Fig 3-2 Schematic drawing of the layers of micro machined U-shaped cantilever device 
 
 
 
 

 
 

                           Fig 3-3 Cross sectional view of a U-shaped cantilever device  
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3.2    Lorentz force for actuation of the U-shaped cantilever 
 

Three modes of motion generated by the Lorentz force will be considered in our work 

based on the direction (x, y, or z) of the external magnetic field and direction of the 

current through the parts of the cantilever. Figure 3.4 shows the cantilever motion when 

the external magnetic field and the current are perpendicular to each other. Mode 1 is 

characterized by the up and down vibrations of the cantilever base in the z-direction. The 

external magnetic field is perpendicular to the base of the cantilever and parallel or 

antiparallel with the current in the arms and therefore no force acts on the arms. On the 

other hand, when the external magnetic field is parallel to the base and perpendicular to 

the arms, the Lorentz force will act on the arms of the U-shaped cantilever making one of 

the arms to move up and the other down and vice versa while no Lorentz force acts on 

the base and this is called mode 2 and represents the antisymmetric up and down 

vibrations of the arms moving in opposite directions in the z-direction. In the third mode 

(mode 3) the external magnetic field is perpendicular to the current in all parts of the 

cantilever and the direction of the force on the base and arms will be either inwards or 

outwards with the arms vibrating in the y-direction while the base vibrates in the x-

direction but are all in phase with each other. These three modes of vibrations provide a 

possibility for the measurement of the magnitude and direction of magnetic fields in all 

three directions (3-D). 
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(a)  Mode-1 

 

 
(b) Mode-2 

 

 
(c) Mode-3 

 
Fig 3-4 The three modes of vibration of a U-shaped cantilever  
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3.3    Simulation and modeling of the device 

The methodology of this research consists of two sections: first simulation of the device 

and second justification of the results by mathematical modeling. 

3.3.1    Device simulation software 

CoventorWare simulation software from Coventore Inc [25] is used in this study to 

perform finite element simulation that offers new possibilities regarding the fabrication, 

design and analysis of the micromachined U-shaped cantilever. The software is a 

versatile tool which can be used to quickly build models for microelectromechanical 

system (MEMS) devices with full control on device parameters.  

 

The major components of CoventorWare are accessed from the Function Manager 

window as shown in Figure 3.5. From the upper portion of the Function Manager 

window, you can access the Material Properties Database and the Process Editor. It has 

navigation tabs for accessing the Architect, Designer, and Analyzer functions. It also 

contains menu options for file management, help options, and several tools.  

CoventorWare ANALYZER is composed of numerous numerical approaches to solving 

the partial differential equations of mathematical physics. Chief among these are the 3-D 

finite-element method (FEM) of MemMech and the 3-D boundary-element method 

(BEM) of MemElectro. CoventorWare supports both system-level and physical design 

approaches. 

 

The system-level approach involves use of behavioral model libraries with a high-speed 

system simulator. The system-level MEMS design can be used to generate a 2-D layout 

for physical level verification. The physical approach starts with a 2-D layout and 

involves building a 3-D model, generating a mesh, and simulating using FEM or BEM 

solvers. Custom reduced-order macromodels can be extracted for use in system 

simulations. Finally, the verified 2-D layout can be transferred to a foundry for 
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fabrication. CoventorWare has numerous options, including design libraries and a variety 

of 3-D physics solvers. Various entry and exit points allow import and export of files 

from and to other third-party software.  

 

   

Fig 3-5 The main window of the Coventor soft ware 

 

Figure 3.6 shows the flow chart of the methodology followed in CoventorWare to design 

and characterize the U-shaped cantilever. The simulation work of the research 

methodology is presented and summarized in this flowchart as detailed in the following 

sections. 
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Fig 3-6 Flow chart of the methodology in CoventorWare 
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3.3.2    Materials selection  

In CoventorWare environment, the designer tab is used to fabricate the U-shaped 

cantilever. Conventional CMOS fabrication steps and bulk micromachining is used. The 

first steps is material selection and determination of the physical and mechanical 

properties of interest such as Young’s modulus of elasticity, density and electrical 

conductivity of the materials used in the design as shown in Material Properties Database 

(MPD) in figure 3.7.  

 
Fig 3-7 Material Properties Database (MPD) window in CoventorWare 

 

The Materials field specifies a database file that stores all the material properties used by 

the solvers during the computation phase. This database file has a .mpd extension. A 

generic MPD file is included with the installation and is placed in each user’s 

Shared\mpd directory. This step is repeated for all materials used in fabrication which is 

shown in table 3.1. 
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Table 3-1 Properties of materials used in the software 

Material Silicon(Si) Silicon oxide (SiO2) Aluminum (Al) 

Thickness (µm) 300 2 5 

Function of layer Substrate Insulation Conductor 

Young’s  modulus (Gpa) 140 70 69 

Density(g/cm-3) 2.33 2.2 2.3 

Poisson’s ratio 0.496 0.18 0.33 

Electrical Conductivity (S/m) 1.2  103 7.0  1010 3.8  107 

 

3.3.3    Device design 

To build the device layers, the Process Editor icon from the function manager is clicked 

to open it. This process field specifies the file that contains the deposit and etches 

sequence needed to build a device. Using this Process Editor, SiO2 insulating layer, 

followed by aluminum layer, is deposited on the silicon substrate. These layers are 

patterned by using straight cut photoresist photolithography to leave a U-shaped structure 

anchored at the arms ends to the SiO2 insulating layer on the silicon substrate. As a post 

processing step, the front side or back side of the silicon substrate is then anisotropically 

etched to release the cantilever from the substrate. The thickness of the layers is 

determined in this step as shown in figure 3.8.  

 

Fig 3-8 Process Editor for layer deposition and patterning 
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Under designer navigation tab, the “Layout” function manager provides access to 2-D 

Layout Editor as shown in figure 3.9. The device is created by drawing its dimensions 

along the two axes (x, y) for the length and width while the thicknesses has already been 

determined in the Process Editor shown in figure 3.8. 

 

 
Fig 3-9 2-D Layout Editor showing layout of the U-shaped cantilever 

 

The Model/Mesh function manager in figure 3.5 is accessed to create the 3-D structure of 

the device after drawing the 2-D device layout in the previous step. Two types of bulk 

micromachining techniques are used to release the vibrating U-shaped cantilever; Front-

side bulk micromachining (FSBM) or back-side bulk micromachining (BSBM). As the 

cost of the post-process is strongly affected by the need for alignment, FSBM is the 
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preferred method for actual industrial fabrication. Figures 3.10 (a) and (b) show typical 

results of the 3-D structure of the U-shaped cantilever device generated after BSBM and 

FSBM etching, respectively. 

 

   
(a) 

 

   
(b) 

Fig 3-10 3-D solid model of the (a) front side and (b) back side etched U-shaped 
cantilever 
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3.3.4    Mesh creation  

The model must now be meshed so the geometry of the structure can be reduced to a 

group of simpler finite element bricks and presented to the solver for finite element 

analysis.  The meshing method is first selected, after which mesh is created for the beam, 

insulator layer, and the substrate. The mesh, part, and face information are stored in the 

project database. This database information is used in solver simulation. The software is 

capable of handling a wide variety of designs. It has some finite capability limits, but the 

resource limits of the platform on which it is run often dominate a decision on how 

complex of a mesh to create.  Design complexity increases solver computation times. 

Computation time is influenced by the structure of the design and the number of 

computational nodes created during the meshing process. A tradeoff between solution 

accuracy and computation time is considered when deciding on the type of mesh 

structure and meshing components to use. The target solver can also be configured to 

accommodate large designs with adjustment of tool control parameters and alternate 

solution methods. Some adjustments may reduce accuracy, but will allow the software to 

run complex problems. The Mesh tool partitions and meshes the solid model for finite 

element method FEM of the simulation to generate a mesh and name parts and surfaces 

of the device. The resulting mesh can then be used by the Analyzer solvers for a variety 

of FEM simulations. The meshing functions take place from within the Preprocessor. 

Different types and accuracy of meshing can be created and saved for solid model. These 

may be different types of meshes corresponding to different types of simulations or they 

may be different mesh densities of a single type for a mesh convergence study, or a 

combination of both. Meshing Guidelines for Solvers for CoventorWare suggests the 

type of meshing that is recommended for each solver. Tetrahedra mesh is suitable 

selection for mechanical simulation (MemMech).  
 

Figure 3.11 shows that the accuracy of the results obtained from simulation studies 

depends on the mesh size selected. It indicates the accuracy level of the different 

tetrahedral meshing for one simulated result of the natural frequency by calculating the 
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error ratio between the theoretical value and the simulation value for one sample of the 

cantilever. This is done to decide on how fine a mesh to use to obtain reasonably accurate 

results. The smaller the error ratio obtained the higher the accuracy or the simulation. It 

is observed that the error ratios for the mesh of 10 and 5 have a value of 0.07 and 0.071, 

respectively. These values are not significantly different and therefore the mesh value of 

10 is used for the simulation work to shorten the simulation time and obtain reasonably 

good accuracy especially for the cantilever part where the characterization focuses. 

Figure 3.12 shows the mesh of the 3D solid model of the U-shaped cantilever. 
 

 

Fig 3-11 Compared accuracy of the diffrent values of mesh 
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Fig 3-12 The mesh results of the 3D solid model of the device 

 

3.3.5    Simulation and characterization of the U-shaped cantilever 

Clicking on the Analyzer tab opens a window that allows access to the solvers. From this 

tab you can run a MEMS or microfluidics solver, view the results from a previous run, or 

view the model in the Preprocessor. Selection of the analyser enables the core 

electrostatic, mechanical, and electromechanical solvers, as well as special domain 

solvers for modeling piezoresistance, inductance and resistance, optics, and package 

thermomechanical interaction. Solvers for creating reduced-order models for MEMS 

mixed-mode system-level simulation are also enabled. MeMech option in the MEMS 

analyzer tab Performs analysis of mechanical deformation and stresses used for 

simulating the effect of applied force on the modal vibration of the cantilever. Figure 

3.13 shows the MemMech window Settings dialog. A force in μN is applied to the 

cantilever faces in a certain direction to generate the required displacement. The force is 



42 
 

 

 

selected close to the actual Lorentz force expected to act on the cantilever for a given 

mode based on the direction of the magnetic field under detection to produce minimum 

and detectable vibration within the elastic limit of the U -shaped cantilever. Two options, 

Linear or Nonlinear option (see fig 3.13), can be selected for the solution. If the Linear 

analysis is selected, the software calculates displacement with the assumption that there 

is a linear relationship between the applied loads and the model deflection while the 

stiffness of the model is considered constant. Linear analysis is less compute-intensive 

than nonlinear analysis and is often adequate for design purposes. If Nonlinear analysis is 

selected, the software calculates displacement with the assumption that the stiffness of 

the model is dependent on displacement; the initial flexibility can no longer be multiplied 

by the applied load to calculate the displacement for any load. In a nonlinear analysis the 

stiffness of the structure has to be assembled and inverted many times during the course 

of the analysis, making it much more expensive to solve than a linear analysis. Non-

linear analysis may be more appropriate for simulations modeling contact, for models in 

which the magnitude of the displacements affects the response of the structure, for 

models in which the material elasticity varies as loads are increased, and for frequency 

extraction.  
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Fig 3-13 MemMech Settings dialog box of the CoventorWare 
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The appropriate Lorentz force is calculated using equation 2.2 when such cantilever, 

through which a current is passing, is placed in the magnetic field and it deflects due to 

the action of the Lorentz force. If the direction of the magnetic induction vector is 

parallel to the cantilever arms, than the Lorentz force acts on the cantilever base in the 

direction of z-axis as shown in Figure 3.4 (a).  
 

The magnitude of the Lorentz force (in the case of homogenous magnetic field) is given 

by the approximate expressions  Fb=iB (b-w) where i is the applied electric current, b and 

w are the length of base and the width of one of the legs, respectively, of the U-shaped 

cantilever and B is the magnetic induction. The length of the section of the base for 

which the Lorentz force is calculated is taken to be b-0.5w-0.5w = b-w based on the 

current behavior through the cantilever [6]. The same procedure is followed for mode 2, 

but in this case the length is taken to be l-0.5w and thus the force is Fl=iB (l-0.5w) for 

both arms, one in +ve z-direction while the other in –ve z-direction as show Figure 3.4 

(b). However, for mode 3 the force of Fb=iBb acts on the base in y-direction while 

simultaneously a force of Fl = iBl acts on both arms in the x-direction (refer to Figure 3.4 

(c)).  Table 3.2 shows the calculated values of the Lorentz forces induced on the base and 

arms of the U-shaped cantilever by an external magnetic field in the range of from 2 to 

12 mT when a current of 100 mA flows through the cantilever.  
 

Table 3-2 Calculated values of forces applied to the base and both arms of the cantilever 

Magnetic flux (mT) Force at the base (N) Force at the arm (N) 

2 0.15 0.2 

4 0.3 0.4 

6 0.45 0.6 

8 0.6 0.8 

10 0.75 1 

12 0.9 1.2 
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In order to simulate the behavior of the cantilever under the forces considered, as 

explained in chapter 2, two methods of characterization are used; static and dynamic 

characterization. Static characterization is realized by applying a constant force to the 

base or arms of the cantilever corresponding to the macroscopic force on the wire which 

is created by the Lorentz force for the three modes considered.  On the other hand the 

dynamic characteristics is realized when a periodic force of the same magnitude as the 

static case, representing the force due to an alternating current in the device placed in an 

external static magnetic field, is applied to the base and/or the arms. This force is applied 

in such a way as to excite one of the three modes of vibration based on the direction of 

the external magnetic field under detection. From MemMech setting in Figure 3.13, the 

Model+Harmonic analysis is selected. The periodic Lorentz force is applied at different 

frequencies centered on the resonant frequency for a given mode.  This range of 

frequencies of vibration is selected after estimating the value of the natural frequency in 

order to obtain the output values of the cantilever deflection as functional of vibration 

frequency.  

The appropriate Lorentz force is applied to the cantilever is calculated using equation 2.2 

to estimate the range of the force that is to be applied. The values of the force are 

selected based on the value of the current and external magnetic field.  Different forces 

are applied, corresponding to the Lorentz force (external magnetic field), for the three 

modes of vibration of the cantilever to investigate the linearity of the system (relationship 

between the displacements and the forces applied). The software calculates displacement 

with the assumption that there is a linear relationship between the applied loads and the 

model. The stiffness of the model is considered constant and the flexibility of the 

structure need only be calculated once. The linear response of the structure to other load 

cases can be found by multiplying the new vector of loads.  
 

Also in the software the Modal_Damping Coefficient is an important parameter used 

when performing a harmonic analysis. It introduces damping in the MemMech setting 

(see Figure 3.13) and is a convenient way of including the important absorption of 
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energy without modeling the effects in details for the simulation. This setting is 

expressed as a fraction of the critical damping for each eigenmode. For an analysis based 

on modal superposition, one of the ways of introducing damping is to use a fraction of 

critical damping for each eigenmode which by default is given the value of 0.1 or 10% of 

critical damping. This damping is a mathematical concept introduced in association with 

the eigenmodes of the system. Thus, it cannot be extended to nonlinear applications in 

which the equations of motion of the system are integrated directly and in which the 

natural frequencies of the system are constantly changing because of nonlinearities. 

Different value of the damping_coefficient is used to determine the effect of the damping 

for the response of the cantilever. 
 

The characterization procedure is repeated for the different modes of the cantilever  

vibration by varying the dimensions to investigate the effect of the thickness, width, 

length of the arms and length of base for the vibration response, resonant frequency and 

sensitivity of the cantilever. The effect of the dimensions can be realized by varying one 

dimension of cantilever and keeping others constant. The results can be viewed after the 

simulation processing is finish from mechanical solver drop-down menu of the software 

results window. Table 3.3shows the selected values of the various dimensions of the U-

shaped cantilever used in the study. 
 

Table 3-3 Dimensions of the Aluminium cantilever determined in the software 

Dimension Values selected (µm) 

Thickness 1, 2, 5, 10, 15, and 20 

Width 5, 10, 15, 20, and 25 

Length of arm 640,700, 760, 820, 880, 940, 1000, 1060, 1120, and 1180 

Length of base     260, 360, 460, 560, 660, 760, 860, 960,1060, 1120, 1180, 1240 
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3.3.6    Piezoresistor for output signal measurement  

In this last step the procedure of conversion of the mechanical deflection to electrical 

measurement is explained. This part performs a piezoresistive analysis using a 

piezoresistor model and a cantilevered beam, and demonstrates how to use Analyzer’s 

MemPZR module and Architect components to simulate the piezoresistive effect. The 

MemPZR solver uses the finite element method to model piezoresistive behavior. 

Architect has several components that can be used to model piezoresistive behavior, and 

it also has components that allow the user to input Analyzer MemPZR solver results. The 

CoventorWare design environment facilitates the design of multiple piezoresistive 

sensors of arbitrary shape and size in MEMS devices. To match process parameters, such 

as diffusion depth, the user may independently control the process-dependent geometry 

of each resistor. In a two-step solution, the software solves the beam mechanical problem 

and then applies the beam stress results to solve for the resultant piezoresistive change. 

Figure 3.14 illustrates the set up of all boundary conditions for the separate beam and 

piezoresistor. Figure 3.14 (a) shows the cantilevered beam part and (b) shows the 

piezoresistor witch grown in the cantilever while (c) illustrates the combined model 

showing geometry placement of them. 

 

 
Fig 3-14 Preprocessor view of (a) meshed cantilevered beam, (b) meshed piezoresistor 

and (c) combined geometry of beam and piezoresistor 

(a) 

(b) 

(c) 
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In piezoresistive tab (MemPZR) some of the previous results from the mechanical 

simulation is applied on the piezoresistor transducer of polysilicon which is grown on the 

silicon beam with three different dimensions based on dimensions of the cantilever as 

shown in Table 3.4. The length of the cantilever beam used is 1000 μm, the thickness of 

the SiO2 insulator layer is 0.5 μm and the same thickness 0.5 μm of the aluminum layer.    
 

Table 3-4 The thickness of the silicon beam and piezoresistor grown inside 

    Si beam thickness (μm)   Piezoresistor thickness (μm) 

2 0.6 

5 3 

9 6 
 

After the piezoresistor segment is designed, the original value of the resistance in (Ω) is 

determined by appling a voltage of 5 volt to this resistor as shown in Figure 3.15 and the 

software will calculate from the value of the current through it. 

 

 

 
Fig 3-15 Applied voltage to the Piezoresistor Model 

 

A stress of the deflection result of the cantilever beam from a previous MemMech run is 

specified and applied to the piezoresistor. Figure 3.16 shows the Settings dialog box of 

the MemPZR. 

V0 = 0 Volt 

V1= 5 Volt 
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Fig 3-16 Settings Window of MemPZR 

 

This step results in a change of the current (% Change in Current) through the 

piezoresistor after applied the deflection of the cantilever, from which the value of the 

change in the resistance of the piezoresistor ∆RP is calculated. MemPZR first calculates 

an unstressed current through the piezoresistor device and then compares the value with 

the stress solution number, computing the percentage difference. Figure 3.17 shows the 

piezoresistive material embedded in a U-shaped beam, while figure 3.18 shows the cross 

sectional view of the arm width and arm Length of the beam and a polysilicon 

piezoresistor embedded inside the Si beam of the U-shaped cantilever device. 

 

The value of the piezoresistor at (Ω) is depending on its dimensions to convert this result 

to electrical signals when from the Wheatstone bridge depend on the value of the change 

of the resistor of the piezoresistor ∆RP already explained at the theory (Chapter-2). 

 

Previous result of 
the beam deflection 
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Fig 3-17 U-shaped cantilever with incorporation of piezoresistors 

 

                           

                        (a)                                              (b) 

Fig 3-18 Cross sectional view of the (a) arm width (b) arm Length of the U-shaped 

cantilever device with polysilicon piezoresistor 
 

The resistance of the piezoresistor is dependent on its dimensions. In order to convert the 

change in resistance to electrical signal, a well-know electrical circuit called Wheatstone 

bridge configuration is used to measure the output voltage given by: as indicated in 

figure 3.19. Normally all resistors are chosen equal to each other, resulting in zero output 

voltage. For the U-shaped cantilever, the mechanical strain generated by the bending 

translates into a change of gauge resistances placed closely to the anchor of the 

suspended “U-shape” as shown in figure 3.17. The bridge configuration with voltage 

supply is the most popular interconnection of piezoresistors. Both gauges (namely R1 and 

R4) are arranged in a Wheatstone Bridge together with two reference resistors (namely R2 

and R3) deposited over the bulk. Figure 3.19 illustrates this arrangement of gauges and 

reference resistors [28]. For sensor applications at least one of the resistors has to be 

dependent on the measured parameter.  

Al 
SiO2 

Polysilicon 
Si 
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Fig 3-19 Wheatstone’s bridge circuit diagram for strain gauges [28] 
 

The change of the resistance is then used to transform the response of the cantilever into 

electrical signal. The differential output voltage (Vout) of the Wheatstone bridge may be 

written: 

                      ))
4

R4(R+2)(R3R+)
1

R1((R   

)4ΔR4).(R1ΔR1(R- 3.R2R
 ccV  outV




                                        (3.2)      

                    

Thus when the bridge is balanced (R2.R3=R1.R4) there is no change in the piezoresistors 

R1 and R4 (∆RP = zero) and the output voltage is null. Otherwise the output voltage can 

be measured. As previously mentioned, measurement of low magnetic flux of the order 

of the earth’s magnetic field is achieved by using piezoresistive gauges. Due to low 

signal level available across the gauges, amplification and very high gain with low noise 

must be used after the Wheatstone bridge circuit [27, 31, 46]. 
 

The electronic workbench program (multisim) is used to design a simple circuit of the 

Wheatstone bridge to achieve the voltage output of the measurement. The sensitivity of 

the system can then be calculated as the ratio between the voltage output and the external 

magnetic field. 
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3.4    Mathematical modeling  
 

As mentioned in chapter 2 the Lorentz force due to a static external magnetic field acting 

on direct current (DC) for the static mode or an alternating current (AC) for the dynamic 

mode through the a cantilever excites it to vibrate in various modes depending on the 

direction of the current in a conductor wire in the cantilever. Theoretical equations and 

modeling is conducted to justify the simulation results obtained for the three vibration 

modes of the U-shaped cantilever. Firstly, for static motion as given in equation 2.3 in 

chapter 2 the value of stiffness k of the cantilever rectangular beam is given by [28, 30] 

 

                                 3

3
l
EIk                                                                        (3.3) 

 

Where E denotes Young’s modulus, and I moment of inertia I is given by: 
 

                        
whI 3

12
1


           

                                       (3.4) 

 

where geometrical values selected for the width (w) and thickness (h) depends on the 

wire flexural vibration mode. The k is now: 

 

                                               3

3

3 4
3

l
wEh

l
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                           (3.5)  

 

Secondly, using equation 2.5 of a general simple dynamic problem is applied to the 

dynamic behavior of the cantilever beam (see Figure 3.20) and classical Euler-Bernoulli 

beam dynamics equation [14, 45] which given by: 

                                                pEI 



4

4


                                                                      (3.6) 
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where, the curve ψ describes the deflection of the beam at some position x, y, or z and  p 

is a distributed load, in other words, a force per unit length F/l.  
 

 

 

 

 
                                          Fig 3-20 Cantilever beam motion 
 

Assuming that the flexural vibrations of the cantilever are small compared to its 

dimensions (and therefore the effect of sheer deformation and rotary inertia are 

negligible) the oscillations of the cantilever can be described by the classical Euler-

Bernoulli beam dynamics theory leading to a set of three (one for each cantilever arm 

and one for the cantilever base) to give anther combine equation [45]: 
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Where  is the spatial coordinate along the cantilever  is (x, y, or z direction), m the 

effective mass of the beam, t is the time, and ψ(, t) is the time dependant transverse 

deflection. This equation can be adopted to analyze the problem of the cantilever beam 

motion.  If ρlhw is substituted for m, where ρ is the density, h is the thickness and w is the 

width of the cantilever beam, equation 3.6 becomes:  
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In order to determine the effect of the dimensions (thickness, width, length of the arm, 

and length of the base) on the resonant frequency of the three modes of vibration, here is 

need to justify the mechanical equations in chapter 2 by the U-shaped cantilever based on 
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some assumption for various modes of vibration. Assuming that the two arms of the 

cantilever are identical, the U-shaped cantilever in mode 1 is equivalent to two regular 

cantilevers with half the mass of the base placed at their tips as shown in Figure 3.21 (a). 

To analyze the U-shaped structure, the stiffness (k) for a single cantilever in equation 

(3.5) is multiplied by 2 for mode 1 vibration to take care of the two arms with half mass 

of base to give 
 

                                                  3

3

3 2
6

l
wEh

l
EIk 

                                                              (3.9) 

 

 
Fig 3-21 Model for mechanical vibration of a U-shaped cantilever in (a) mode 1, (b) 

mode 2 and (c) mode 3 

  

While the resonant frequency ( 0f ) is determined from  

 

                                 lbl
Eh

m
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
222

1
2
1

3

2

0 
                                            (3.10)        

 

Where meff is the effective mass of the cantilever given by the sum of mass of half base,

2/bm  = ρbhw/2 and mass of arm, marm = ρhwl to give meff = ρwh (b/2+l). 
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To analyze the antisymmetrical flexural vibration mode (mode 2) of the U-shaped 

structure we considered the model in Figure 3.21 (b) where half of the base of the 

cantilever is replaced by a uniform cantilever anchored at the midpoint of the base and 

the arms are replaced by a lumped mass m = ρlhw, where l is length of the arm of the 

cantilever. The total effective mass, meff, will then be ρwh (b/2 + l). k is calculated using 

equation (3.3)  but replacing the length l by half of the length of the base b/2. The base 

then moves with a stiffness constant given by k/2 since there are two forces acting in 

opposite directions on the base. The modified equation becomes 
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And the resonant frequency is now 
 

                               )2/(2
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                                                   (3.12) 

 

 Figure 3.21 (c) shows the one-dimensional model for mode 3. Unlike mode 1 and mode 

2, the width of the cantilever in mode 3 becomes its thickness and the thickness becomes 

its width. The base now moves slightly since the mechanical force on the base is assumed 

to be a bit more than the Lorentz force in the opposite direction.  

 

The theoretical value of k for mode 3 can be determined using equation (3.13) assuming 

the stiffness for a clamped-clamped beam with a force at midspan [28]. 

                                     3

192
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The motion is assumed moving by four times of the stiffness. That is when the base is 

considered rigid and no displacement on it and the displacement just on the both arms see 

Figure 3.21 (c). So the resonant frequency using the effective mass of one arm meff = 

ρhwl to give by: 

                                         
4

2

40 12
192

2
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2
1

l
Ew

hwl
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             (3.14) 

 

Theoretically, it is expected that the vibration characteristics of the U-shaped cantilever 

in mode 3 depends on the ratio between the length of the base and arm (b/l) due to two 

forces acting on the base in opposite directions, one of the forces is the Lorentz force and 

the other is the mechanical force due to the pressure produced by the motion of both arms 

as shown in Figure 3.22. Theoretically three submodes for mode 3 are expected to be 

observed. First is when the motion of the base is the same as that of the arms, that is, 

inwards or outward as shown in Figure 3.23 (a). Second, is when the base is considered 

fixed or rigid, because the Lorentz force equal to and in opposite direction to the 

mechanical force produced by the motion of both arms as shown in Figure 3.23 (b). 

Third is when the base moves out when the arms move in or vice versa as shown in 

Figure 3.23 (c), where the mechanical force on the base greater than the Lorentz force.  

 

Fig 3-22 Mode 3 of the cantilever-two forces acting on the base  
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Fig 3-23 Three different submodes for mode 3 

 

The value of the resonant frequency of these submodes of mode 3 is depend on the ratio 

between the length of the of the base and length arm (b/l). To obtain the value of resonant 

frequency, we have to multiply equation (3.14) by a new factor. The value of this new 

factor depends on the b/l value.  
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Chapter 4 

 

RESULTS AND DISCUSSION 
 

4.1    Static and Dynamic Characterization and Modeling 

An Al U-shaped cantilever with a thickness of 5 µm, width of 20 µm, arms length of 

1000 µm and a base length of 760 µm is initially considered for the characterization. The 

U-shaped cantilever is subjected to various forces in order to excite the three modes of 

vibration expected when the Lorentz force acts on the current through the arms and base. 

The forces were applied in both the static and dynamic modes. Mathematical modeling 

was also carried out to verify the simulation results. 
 

4.1.1    Static Characterization 

When the dc current carrying U-shaped cantilever is placed in an orthogonal static 

external magnetic field the Lorentz force acts on it whose magnitude is calculated using 

equation 2.2. This produces various deflections on the arms and/or base of the current-

carrying U-shaped cantilever as described in section 3.3.5. By assuming a current of 100 

mA, an external static magnetic field of 12 mT for the cantilever of length of the base (b) 

and arms (l) of 760 μm and 1000 μm, respectively, a value of 0.9 μN and 1.2 μN is 

calculated for the forces acting on the base and both arms of the cantilever, respectively. 

These forces represent the Lorentz forces due to the constant dc current in a static 

magnetic field that is perpendicular to the arms or base. Figures 4.1 (a), (b) and (c) show 

the results of the cantilever deflection for mode 1, mode 2 and mode 3 respectively.  
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Figure 4.1 (a) for mode 1 shows a maximum displacement of 9.1 μm on the base when 

the constant force of 0.9 is applied on the base in the –ve z-direction. Fig. 4.2 shows a 

maximum displacement of 2.0 μm at the extremity of both arms in the z-direction when 

the force of 1.2 μN is applied in opposite directions on each arm corresponding to yhe 

Lorentz force for mode 2. Figure 4.1 (c) shows the maximum displacement of 15 nm 

when a force of 1.2 μN is applied to the arms in opposite direction (+ve x-direction and –

ve x-direction) and a force of 0.9 μN is applied to the base in the –ve y-direction 

corresponding to the Lorentz force for mode 3.  
 

It is observed that in mode 3 there is a small displacement in the x-direction at the base. 

The base experiences a very small net displacement because the inward Lorentz force is 

balanced by the outward mechanical force that is induced on the base when an inward 

force is applied to both the arms simultaneously. From the displacement for the three 

modes it can be deduced that the sensitivity of the system highest for mode 1, followed 

by mode 2 and lowest for mode 3. 
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                                                                   (a) Mode1 

 

 

 

 

 

 

 

 

 

(b) Mode 2 

 

 

 

 

 

 

 

 

 

(c) Mode 3 

Displacement 
9.1 µm 

 
Displacement 

2 µm 

Displacement 
0.015 µm 

Fig 4-1  3D simulation of constant applied force (a) 0.9 μN downward on the base   
(mode 1), (b) 1.2 μN applied to the arms in opposite direction (mode 2)   and (c) 1.2 
μN and 0.9 μN inwards on the arms and base respectively (mode 3) 
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4.1.2 Dynamic Characterization 

As explained in chapter 3, section 3.3.5, on the other hand, the dynamic mode is realized 

when a periodic force, representing the force due to an alternating current in the device 

placed in an external static magnetic field, is applied to the cantilever. In this situation, if 

the cantilever is driven by a periodic Lorentz force near its natural frequency, resonance 

occurs and a considerably large displacement results which increases the sensitivity of 

the device. Similar situations are observed for the two other modes. So the displacement 

of the cantilever is significantly large when a periodic force is applied at its natural 

frequency for the three modes of vibration as compared to a constant force (static case). 

Figure 4.2 show the graph for the simulation results of the maximum displacement as a 

function of the frequency for mode 1 when a periodic force with amplitude of 0.9 µN is 

applied at various frequencies around the resonant frequency 1 from 0 Hz to 7000 Hz. 

Figures 4.3 and 4.4 show the freguency response of mode 2 and mode 3, respactivly. The 

actual data for these results are included in Appendx-A. A maximum amplitude of  of the 

displacement of  about 45, 2, 0.06 m at resonant frequency of 3.019, 8.244 and 86.893 

kHz is observed for mode 1, mode 2 and mode 3, respectivly. 

 

Fig 4-2 Maximum displacement versus frequency for a periodic force of 0.9 μN 

amplitude applied to the base of the cantilever (mode 1) 
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Fig 4-3 Maximum displacement versus frequency for a periodic force of 1.2 μN 

amplitude applied to the arms of the cantilever (mode2) 

 

 

 
Fig 4-4 Displacement versus frequency for a periodic force of 0.9 μN amplitude applied 

to the base and 1.2 μN to both arms of the cantilever (mode3) 
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4.1.3 Comparison between the static and dynamic modes 

Table 4.1 compares the maximum displacement  and sensitivty (in µm per µN) of the 

cantilever for the static and dynamic cases for the same applied Lorentz force on the 

arms and base produced by assuming the current of 100 mA and external static magnetic 

field of 12 mT. 
 

Table 4-1 Maximum displacement and senstivty of the cantilever in the three modes of 

vibration for static and dynamic cases 

Type of 
the mode 

Static displacement 
(μm) 

Resonant displacement 
amplitude (μm) 

Static senstivty 
(m/N) 

Resonant  
senstivty (µm/µN) 

Mode 1 9.10 45.20 10.1 50.2 

Mode 2 2.00 10.00 1.67 8.33 

Mode 3 15×10-3 0.06 12×10-3 50×10-3 

 

It can be deduced from table 4.1 that the  displacement of the cantilever is significantly 

large when a periodic force is applied at its natural frequency (resonant frequency) for all 

modes of vibration indicating higher sensitivity of about five times as compared to the 

static modes. Therefore a high sensitivity of the system is achieved when the system is 

operated at the resonant frequency because the output measurement of the piezorsistor 

transducer or optical read out technology is dependent on the deflection of the cantilever. 

It is also observed that the value of the resonant frequency is smallest for mode 1 and 

largest for mode 3 and depends on some physical and mechanical parameters like the 

mass (m) and stiffness coefficient (k) as already explained in the mathematical 

expressions in chapter 2.  
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4.2    Effect of the cantilever dimensions on its dynamic characteristics 

The frequency response of the cantilever is obtained by a frequency sweep in the 

resonance neighborhoods for various thicknesses, widths, lengths of arms and lengths of 

the base to obtain the dynamic characteristics of the mechanical system when a periodic 

force of a given amplitude equivalent to the Lorentz force is applied. Furthermore the 

simulation results were justified with results of mathematical modeling obtained from 

mathematical equations 3.10, 3.12 and 3.13 for mode 1, mode 2 and mode 3, 

respectively. The same parameters of the U-shaped cantilever such as thickness, width, 

length of base length of the arms were also varied in the mathematical modeling. 

 

4.2.1    Variation of the cantilever thickness  

 

Cantilever thicknesses (h) of 5, 10 and 15 μm are used to investigate its effect on the 

resonant frequency and response of the cantilever for the three modes of vibration. The 

other dimensions of the cantilever were kept constant at 20 μm, 1000 μm and 760 μm for 

the width, length of the arms and length of base, respectively.  

Figure 4.5 (a), (b) and (c) show vector representation of the displacement of a 5 μm thick 

U-shaped cantilever for the three modes of vibration. The value of the resonant frequency 

is 3.019 kHz, 8.244 kHz and 86.893 kHz for mode 1, mode 2 and mode 3, respectively. 

 Similar figures for the vector displacement of a 10 μm thickness U-shaped cantilever for 

the three modes are included in Appendix (B). The values of the resonant frequencies for 

the 10 μm thickness cantilever are found to be 6.009 kHz for mode 1, 15.646 kHz for 

mode 2 and 86.775 kHz for mode 3. And 8.999 kHz for mode 1, 22.064 kHz for mode 2 

and 86.717 kHz for mode 3 for 15 μm thick U-shaped cantilever.  
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                                                      (a) Mode-1 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 

 

 
The value of resonant 
frequency 8244.09 Hz 

 
The value of resonant 
frequency 86893.7 Hz (c) Mode-3 

(b) Mode-2 

The value of resonant 
frequency 3019.2 Hz 

Fig 4-5 Vector representation for the three modes for a 5 μm thick U-shaped cantilever  
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Figure 4.6 (a), (b) and (c) show the effect of cantilever thickness on its maximum 

displacement profile as a function of frequency for mode 1, 2 and 3, respectively. These 

figures also show that the sensitivity decreases when the thickness increases for mode 1 

and mode 2. The smallest thickness has the highest sensitivity for mode 1 and mode 2 

while there is no change in the sensitivity of mode 3. 
 

Theoretical calculations for the resonant frequencies using equations (3.10), (3.12) and 

(3.14) for mode 1, 2 and 3 for six values of the thickness of the U-shaped cantilever were 

also obtained in order to confirm that the results obtained by simulation are justifiable for 

the three modes of vibration. The calculations procedures presented in Appendix (C). 
 

It is observed that the resonant frequencies for modes 1 and 2 are significantly influenced 

by the thickness of the cantilever with the resonant frequency increasing with increasing 

thickness. While for mode 3 the resonant frequency is independent of thickness. Table 

4.2 and Figure 4.7 show the simulation and theoretical results for the six values of the 

thickness of the U-shaped cantilever. 
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Fig 4-6 Maximum displacement of U-shaped cantilever versus frequency at 
various thicknesses for the three modes of vibration 

(a) Mode 1 
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Table 4-2 Theoretical and simulation results of resonant frequency for various 

thicknesses of the U-shaped cantilever for the three modes of vibrations 

 Resonant frequency (kHz) 

Thickness 
(µm) 

Mode 1 Mode 2 Mode 3 

Simulation Theoretical Simulation Theoretical Simulation Theoretical 

1 0.62 0.55 1.74 1.23 86.66 82 

2 1.21 1.10 3.35 2.46 86.64 82 

5 3.00 2.80 8.08 6.16 86.58 82 

10 6.00 5.50 15.00 12.33 86.58 82 

15 8.99 8.20 21.52 18.50 86.6 82 

20 11.9 11.0 26.91 24.67 86.66 82 

 

 
Fig 4-7 Theoretical and simulation results of resonant frequency versus thickness for the 

three modes of vibration 
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4.2.2    Variation of the cantilever width  

A width (w) of 5, 10 and 15 μm is used to investigate its effect on the resonant frequency 

of the cantilever for the three modes of vibration, while the thickness,  length of arms and 

length of base were kept constant at 2 μm, 1000 μm, and 760 μm, respectively. Figures 

4.10 (a) and (b) show that the resonant frequencies for modes 1 and mode 2 are 

independent of the width of the U-shaped cantilever, while for mode 3, as shown in 

Figure 4.8 (c), the resonant frequency increases with increase in width. 
 

Unlike the thickness effect, the sensitivity decreases when the width is increased for 

mode 3 while there is no change in the sensitivity of mode 1 and mode 2. Theoretical 

calculations of the resonant frequencies using equations (3.10), (3.12) and (3.14) for 

mode 1, 2 and 3 respectively for five values of the width of the U-shaped cantilever were 

also obtained in order to confirm that the results obtained by simulation are justifiable for 

the three modes of vibration. Table 4.3 and Figure 4.9 shows the simulation and 

theoretically derived results for five values of the width of the cantilever. The steps of the 

theoretical calculations are presented in Appendix (B). For mode 1 and mode 3 the 

simulation results in table 4.3 are agree by small relative error (error ratio) from with the 

calculation results. However, relative error of 28% between the calculation and the 

simulation results of mode 2 obtained due to the calculation only based on the cantilever 

dimension and ignores the cantilever is fixed to the SiO2 and Si layers in one end of both 

of the arms. 
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(a) Mode 1 

 
(b) Mode 2 

 
(c) Mode 3 
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Table 4-3 Theoretical and simulation results of Resonant frequency for various widths 

for the three modes of vibration 

 Resonant frequency (kHz) 

Width  
(µm) 

Mode 1 Mode 2 Mode 3 

Simulation Theoretical Simulation Theoretical Simulation Theoretical 

5 1.177 1.1 3.110 2.46 21.24 20.5 

10 1.190 1.1 3.220 2.46 42.80 41.0 

15 1.200 1.1 3.290 2.46 64.58 61.5 

20 1.213 1.1 3.359 2.46 86.89 82.0 

25 1.223 1.1 3.433 2.46 108.80 102.5 

 

 
(a) 

 
(b)  
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4.2.3    Variation in length of arms  

Variation in the length of the arms (l) affects all the three modes of vibrations of the U-

shaped cantilever, but its effect is more pronounced for mode 1 and mode 3. Table 4.4 

and Figures 4.11 shows the effect of the length of the arms for the resonant frequency at 

different values of arms length and thus different values of the ratio between the base and 

arm b/l, while the base length is held constant at 760 µm for (a) mode 1 and 2 (b) two 

behaviors of mode 3 (mode 3a and mode 3c) explained in chapter 3 last section.   Mode 

3a occurs when the ratio between the length of base and length of arm b/l < 0.82, and 

mode 3c when b/l >0.82. Figure 4.10 shows samples of the simulation results of the three 

submodes for mode 3. 

     
(a)                                                            (b) 

   
 

 

 

(c) 

Fig 4-10 Simulation results of the three submodes for mode 3 of the cantilever’s 

mechanical vibration for (a) l = 1000 μm, b = 1000μm,  b/l > 0.82, (b) l = 1000 μm, b = 

820 μm,  b/l = 0.82 and (c) l=1000 μm, b=760μm,  b/l < 0.82 
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For length of base in the interval between 800 to 880, the ratio of length of base to length 

of arm b/l is taken to be 0.82 (mode 3b). In this case the base is fixed and the motion is 

only in the arms of the cantilever and the resonant frequency (f0) is about 120 kHz. 
 

Table 4-4 Simulation results of the length of the arms effect on the value of the resonant 

frequency for mode 1, mode 2, mode 3a (b/l > 0.82) and mode 3b (b/l < 0.82) 

 Resonant frequency (kHz) 

Length of the arms (μm) Mode 1 Mode 2 Mode 3a Mode 3c 

640 2.570 6.100 280.340  

700 2.217 5.377 243.501  

760 1.912 4.766 223.001  

800 1.810 4.431 214.401  

880 1.500 3.966 197.700  

900 1.45 4.841  104.002 

940 1.348 3.642  95.011 

1000 1.213 3.359  86.649 

1060 1.097 3.113  78.901 

1120 0.993 2.887  72.009 

1180 0.917 2.733  65.803 
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(a) 

 

 
(b) 

Fig 4-11 Simulation results of the resonant frequency versus length of arms for (a) mode 
1 and 2 (c) mode 3a and mode 3c 

 

These graphs of the effect of the length on resonant frequency shows the same trend  

with that reported by the Jeng-Nan Hung et al [32], who applied the same 

characterization methodology as that in the current work  and K. Brueckner, et al. [49]. 
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They however used different material of beam structure, polysilicon beam in [32] and 

two layers of Au deposited over SiC or AlN beam in [49]. 
 

4.2.4    Variation in length of the base  

Table 4.5 and Figures 4.12 (a and b) show the resonant frequency for (a) mode 1 and 2 

and (b) mode 3a and mode 3c of U-shaped cantilever as a function of the length of base 

while the length of arms are held constant at 1000 µm thus giving different values for the 

ratio between the base and arm b/l. It is observed that increasing the length of the base 

(b) results in a decrease in the resonance frequency for mode 2 and 3, while the resonant 

frequency for mode 1 is independent of the length of base.  
 

Table 4-5 Simulation results of the effect of length of base on the resonant frequency for 

mode 1, mode 2, mode 3a (b/l > 0.82) and mode 3b (b/l < 0.82) 

 Resonant frequency (kHz) 

Length of base (μm) Mode 1 Mode 2 Mode 3c Mode 3a 

260 1.564 7.985 106.001  

360 1.493 6.227 102.520  

460 1.417 5.024 96.345  

560 1.35 4.288 91.877  

660 1.292 3.819 87.334  

760 1.256 3.411 86.800  

860 1.175 3.083  136.001 

960 1.156 2.921  128.800 

1060 1.093 2.685  121.00 

1120 1.069 2.568  117.001 

1180 1.077 2.545  113.901 

1240 1.087 2.539  112.0 
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(a) 

 
(b) 

Fig 4-12 Simulation results of the resonant frequency versus length of the base for (a) 

mode 1 and 2 (b) mode 3a and mode 3c 
 

Table 4.6 and Figure 4.13 (a) and (b) compare the theoretical calculations and the 

simulation results of the resonant frequencies at various lengths of arms for mode1 and 

mode 2. The thickness, width and length of base are held constant at 2, 20, and 760 µm 

respectively. As mentioned earlier in section 3.4 and 4.2.3, the value of the resonant 
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frequency for mode 3 depends on the ratio between length of base and length of arm 

(b/l). The results indicated three situations arising for mode 3 as a result of application of 

the Lorentz force in this mode. These situations are termed mode 3a for the ratio b/l > 

0.82, mode 3b for b/l = 0.82 and mode 3c for b/l < 0.82 (see Figure 4.10). When the base 

is stationary due to the balance between Lorentz force and the mechanical force on the 

base as described in section 3.4 for mode 3, in this situation the motion due to the 

Lorentz force is just on both arms. Therefore, in order to theoretical obtain the values of 

the stiffness and resonant frequency for mode 3b, we assume the motion of the cantilever 

as equivalent to that given for a clamped-clamped beam [34] and so we use equations 

3.13 and 3.14 to obtain 104 kHz as the value for the resonant frequency. However, for 

mode 3a and mode 3c, the motion of the U-shaped cantilever is much more complicated 

and involves all parts of the cantilever. The resonant frequency calculated for mode 3b is 

considered as the standard value and it is multiplied by a given factor in order to obtain 

the theoretical values of the resonant frequency for the other two modes (mode 3a and 

mode 3c). This factor is found to be a function of (b/l). For instance for mode 3a the 

factor is found to be equal to 2.121× b/l while it is equal to 1.0574 × b/l for mode 3c.  
 

Table 4-6 Simulation and theoretical resonant frequency for various length of arms for 

mode 1 and 2 

 Resonant frequency (kHz) 

Length of arm 
(µm) 

Mode 1 Mode 2 

Simulation Theoretical Simulation Theoretical 

880 1.51 1.40 4.00 2.58 

940 1.33 1.23 3.72 2.52 

1000 1.22 1.10 3.47 2.46 

1060 1.10 0.98 3.30 2.41 

1120 1.01 0.88 3.10 2.36 

1180 0.91 0.80 2.90 2.32 
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(a) 

 

 
(b) 

Fig 4-13 Simulation and theoretical resonant frequency versus length of arm for (a) mode 
1 and (b) mode 2 

 

Table 4.7 and Figure 4.14 show the theoretical calculation and the simulation results of 

the resonant frequency as a function of the length of arms for mode 3a and mode 3c. The 

thickness, width and base are held constant at 2, 20, and 760 µm, respectively. 
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Table 4-7 Simulation and theoretical resonant frequency various length of the arms for 

mode 3a and 3c 

 Resonant frequency (kHz) 

Length of the arms 
(μm) 

Mode 3a Mode 3c 

Simulation Theoretical Simulation Theoretical 

640 280.34 261.90   

700 243.50 239.50   

760 223.01 220.60   

800 214.40 204.01   

880 197.70 190.50   

940   95.01 88.90 

1000   86.64 83.57 

1060   78.90 78.85 

1120   72.01 74.60 

1180   65.80 70.80 

 

 

Fig 4-14 Simulation and theoretical resonant frequency versus length of arm for mode 3a 

and 3b 
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4.3     Relationship between applied force and displacement   

The relationship between the applied force and the response of the cantilever 

(displacement) is investigated in this section for the static and dynamic mode situations.  
 

4.3.1    Static mode 

Figure 4.15 shows the simulation and theoretical values of the cantilever displacement as 

a function of a constant applied force for the three modes. A perfectly linear graph is 

obtained with different slopes for the three modes indicating highest sensitivity for mode 

1 followed by mode 2 and lowest for mode 3. Using equations 3.9, 3.11 and 3.13, the 

stiffness of the cantilever is calculated and found to be 0.093, 0.469 and 47.6 for mode 1, 

mode 2 and mode 3, respectively. The displacement is calculated using equation 2.3. The 

calculation procedures and the actual data may be found in the Appendix (C). 
 

 
Fig 4-15 Simulation and theoretical values of the displacement as function of a constant 

applied force for the three modes 
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4.3.2    Dynamic mode 

Figure 4.16 (a), (b) and (c) show the frequency response as function of the periodic 

applied force for mode 1, 2 and 3, respectively. The displacement amplitude is found to 

be a linear function of the applied force. Figure 4.17 shows that the simulation and 

theoretical values of the displacement amplitude is a linear function of the periodic 

applied force at the resonant frequency for the three modes.  
 

Equation 2.4 and its solution which is given in equation 2.5 were used to calculate the 

maximum displacement at the resonant frequency for the three modes of vibration. 

Furthermore, Figure 4.17 shows that the slopes of the graphs for the three modes are 

different being highest for mode 1 followed by mode 2 and lowest for mode 3 which 

indicates correspondingly highest sensitivity for mode1 and lowest for mode 3. The 

calculation procedures and the actual data included in Appendix (C). 
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                   (a) Mode 1           

             

            
                   (b) Mode 2 

 

                   
               (c) Mode 3 
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periodic force for the three modes of vibration 
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Fig 4-17 Simulation and theoretical values of the displacement amplitude at resonance             

                  frequency as function of a periodic applied force for the three modes 

 

4.4    Mechanical quality factor  

The mechanical quality factor (Q-factor) is an important parameter in this study. Its value 

depends on a number of parameters such as mass, stiffness and damping coefficient of a 

vibrating system. Figure 4.18 shows a typical frequency response of vibrating U-shaped 

cantilever. Using equation 2.7, the value of Δf-3dB may be calculated. For example, for 

mode 1 the maximum displacement is about 45 μm and the  –3dB of this value is about 

32 μm while the values for fres,  f1,  and   f2 taken at 32 μm is found to be 3019.495 Hz, 

2654.467 Hz and 3297.35 Hz, respectively. Therefore, Δf is found to be 632.883 Hz and 

the Q-factor is determined to be 4.8. Table 4.8 shows the Q-factor determined for the 

three modes of vibration at same damping factor (d) of 0.1. It is observed that the Q-

factor is the same for all three modes of vibration at a given damping coefficient. The 
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the big damping factor of 0.1 is considered. This value of the damping is selected just to 

characterize the mechanical behaviors of the system in a stable range of the 

displacement. The next section damping coefficient effect presents that the Q-factor 

depends on the damping coefficient. 

 

Fig 4-18 Frequency response of the cantilever and bandwidth at 3dB of the amplitude 

for mode 1 
 

Table 4-8 Calculated Q-factor for mode 1, mode 2 and mode 3 

Mode fres (Hz) ∆f (Hz) Q-factor 

Mode 1 3019.5 632.88 4.8 

Mode 2 8244 1686.5 4.9 

Mode 3 86893.7 17711 4.9 
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4.5    Effect of damping-coefficient  

As mentioned in section 2.1.5 the damping coefficient is an important parameter for the 

system response at all modes of vibration. Figure 4.19 shows the displacement amplitude 

as a function of frequency for mode 1 at the same applied periodic force of amplitude 

0.15 μN and values of the damping coefficient of 0.01, 0.05 and 0.1. As mentioned in the 

methodology chapter these values of the damping coefficient are selected and applied 

observe the effect of the damping and the motion environment on the cantilever response 

(maximum displacement) of vibration. The displacement amplitude at the resonant 

frequency is about 75.4, 15.1 and 7.54 μm for the damping coefficients of 0.01, 0.05 and 

0.1, respectively. Table 4.9 shows the values of the maximum displacement for various 

values of the damping coefficients for the three modes of vibration while Figure 4.20 

shows the displacement amplitude as a function of the damping coefficient. It is observed 

that the maximum displacement decreases exponentially as the damping coefficient 

increases. 

 
Fig 4-19 Frequency response for mode 1 at different values of the damping coefficient  
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Table 4-9 Maximum displacement at the resonant frequency for various values of the 

damping coefficient for the three modes of vibration   

 

 Maximum displacement (μm) 

Damping 
coefficient Mode 1 Mode 2 Mode 3 

0.1 

0.08 

0.06 

0.05 

0.04 

0.02 

0.01 

0.008 

0.006 

0.005 

0.004 

0.002 

0.001 

7.54 

9.44 

12.58 

15.10 

18.87 

37.75 

75.40 

94.40 

125.80 

151.01 

188.70 

377.50 

754.60 

1.68 

2.10 

2.80 

3.36 

4.21 

8.41 

16.80 

21.01 

28.01 

33.02 

42.05 

84.10 

168.00 

2.37E-03 

2.97E-03 

3.95E-03 

4.74E-03 

5.93E-03 

1.18E-02 

2.37E-02 

2.97E-02 

3.95E-02 

4.74E-02 

5.93E-02 

1.18E-01 

2.37E-01 
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Fig 4-20 Maximum displacement at the resonant frequency versus damping coefficient 

for the three modes of vibration 
 

Figure 4.19 also shows that the Q-factor of the system is dependent on the damping 

coefficient. The Q-factor decreases as the damping coefficient increases since the value 

of the bandwidth (Δf) is inversely proportional to the damping coefficient. Table 4.10 

shows the value of Δf and Q-factor for the three modes of vibration at three different 

values of damping coefficient. Q-factor of 60 is achieved for 0.01 damping coefficient 

and it can be improved to ten times of this value by decreasing the damping of the 

vibration system.   
 

Table 4-10 Calculated Δf and Q-factor for the three modes for various damping 
coefficients 

 Mode 1 Mode 2 Mode 3 

Damping_coeff. Δf Q-factor Δf Q-factor Δf Q-factor 

0.01 50 60.3 137.8 59.8 1445.82 60.1 

0.05 326 9.3 858.7 9.6 9260 9.4 

0.10 633 4.8 1686.5 4.9 17711 4.9 
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4.6    Piezoresistor transduction  

A simple technique to measurement the external magnetic field is by the transduction of 

the deflection produced by the Lorentz force into electrical signal by using piezoresistor 

technology. This section simulates these transduction procedures. Figure 4.21 shows 

cross sectional view of a sample 100 μm length of the polysilicon piezoresistor grown in 

the silicon layer of the arm of the cantilever device to realize the electrical measurement. 

   

Fig 4-21 Cross sectional view of the arm of the U-shaped cantilever device with 

embedded polysilicon piezoresistor 

4.6.1    Effect of arms deflection on Resistivity                                                    

To investigate the change in the resistance of the piezoresistor, the constant force applied 

to the cantilever is varied in mode 1 and the different deflections resulting recorded.   The 

percent change in resistance (ΔRp %) from the original value of piezoresistor resistance 

Rp (unstressed position of the piezoresistor) is then obtained. Rp from the simulation 

result for the indicated dimensions in Figure 4.23 is equal to 1709.83 Ω. Table 4.11 and 

Figure 4.22 show the results of ΔRp % for different values of the cantilever deflections. It 

is observed that the change in resistance of the piezoresistor increases nonlinearly with 

increase in the displacement of the cantilever. The results agree quite well with 

experimental result presented by Vincent B, et al [4] and Tyler Lane [38]. 
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Table 4-11 Simulation results of ΔRp % for different values of the cantilever deflections 

Displacement (μm) ∆Rp% 

5 5.60E-02 

12.74 6.18E-02 

20 7.48E-02 

25 8.93E-02 

30 1.08E-01 

35 1.32E-01 

 

 
Fig 4-22 ΔRp % various cantilever deflections for mode 1 
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Wheatstone bridge circuit discussed in Figure 3.19 in section 3.3.6 to achieve the voltage 

output measurements. As mentioned in the methodology of the research, Multisim 

Electronic Workbench is used for the design and simulation of this electrical circuit. The 

simulation software will realize the output as percent values of the original (unstressed) 

value of the piezoresistor as given in equation 2.17. The value obtained is then used to 

calculate the change in the resistance in Ω by using equation 2.18. As an example, at 5 

μm deflection of the cantilever in –z direction in mode 1, the value of ∆Rp% is 0.056 as 

shown in Table 4.11. The unstressed resistance value is calculated to be equal to 1709.83 

Ω and thus ∆Rp is calculated to be 0.96 Ω. Therefore the actual resistor values for the 

circuit diagram of Wheatstone bridge shown in Figure 3.19 become as shown in Figure 

4.23.  

 

 

Fig 4-23 Conditioning circuit for strain gauges at 5 μm deflection of the cantilever 

in –z direction 

 

After simulating the circuit in the electronic workbench software, the output voltage Vout 
is found to be 1.405 mV and equation 3.2 is used to determine the calculated value to 

validate and compare and the values are found to be 1.4033. Table 4.13 and the Figure 

4.24 show the calculated values of ∆Rp and the estimated output voltage (mV) of the 

measurement circuit for different values of the cantilever deflection shown in Table 4.12. 

R2 = 1709.83 Ω 

 

 

R4+∆R4 = 1710.79Ω 

R1+∆R1 = 1710.79Ω 

 

 

          R2=1709.83 Ω 
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Table 4-12 Calculated values of ΔRp (Ω) and simulation results of the voltage output for 

different values of the cantilever deflections 

Displacement (μm) ∆Rp (Ω) Output voltage (mv) 

5 0.96 1.403 

12.74 1.057 1.545 

20 1.279 1.855 

25 1.535 2.243 

30 1.857 2.714 

35 2.257 3.298 

 

 
Fig 4-24 Calculated values of ∆Rp and estimated output voltage (mV) versus cantilever 

deflection 

 
For a length of the base (b) of 760 μm, when the cantilever is excited by 100 mA 

alternating current to detect an external static magnetic field of 10 mT, the force induced 
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resistance ∆Rp of 1.057 Ω in the piezoresistev polysilicon. This value is calculated by 

taking ΔRp % to be 6.18  10-2 % of the original value of the resistance and results in an 

alternating voltage with a maximum amplitude of about 1.545 mV at the resonant 

frequency (fo) of 4.55 kHz for the cantilever with the given dimensions. On the other 

hand, for mode 2 at the same Lorentz force of 1 μN acting on both arms of the cantilever, 

the displacement is about 3 m and the percent change (ΔRp %) of 0.0551 % to produce 

0.94 Ω and 1.3 mV output voltage. While the smallest output voltage for mode 3 is 

estimated to be about 0.05 V. 
 

4.6.2    Sensitivity estimation  

The electrical signal output of about 1.545 mV induced by the Lorentz force due to an 

external static magnetic field of 10 mT in mode 1 results in a sensitivity that is estimated 

from equation 2.19 to be 0.155 V/T. Table 4.13 compares the sensitivity of the system 

for the three modes.  The output voltage (Vout) calculated in this study is obtained directly 

from the Wheatstone bridge. However, due to the low signal level available across the 

gauges, on-chip amplification with very high gain of up to 1000 times and low noise is 

required [10, 31]. The different values of the ΔRp % and sensitivity are compared in 

Figure 4.25 for three different values of the piezoresistor thickness based on the thickness 

of the cantilever beam. Vincent B, et al [46] reported that they observed 14 mV/T static 

sensitivity and 530 mVr.m.s/T dynamic sensitivity for mode 1 but for the different 

dimensions of the cantilever and piezoresistor transducers.      
 

Table 4-13 Sensitivity for mode 1, mode 2 and mode 3 

Type of the mode Sensitivity (V/T) 

Mode 1 0.155 

Mode 2 0.13 

Mode 3 0.05×103 
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Fig 4-25 Simulated values of ΔRp% various cantilever deflections for various beam 

thickness 

 

It is noted that the graph is not linear and it is largest, indicating highest sensitivity, for 

small thicknesses. Table 4.14 presents the comparison of piezoresistor resistance and 

resonant displacement and the percentage change of the resistance for three different  

thicknesses of the U-shaped cantilever and the embedded piezoresistor when the same 

force is applied to the cantilever (mode 1) corresponding to Lorentz force at the 10 mT of 

the external magnetic flux. Table 4.15 shows the theoretically determined sensitivities. 
 

Table 4-14 Simulation results showing changes in various parameters for different 

thicknesses of the piezoresistor 

Thickness of 
Si beam 

(μm) 

Thickness of 
piezoresistor 

(μm) 

resistance 
(Ω) 

Resonant 
Frequency (kHz) 

Maximum 
displacement (μm) 

ΔRp % 

2 0.6 5557 2.117 117.6 2.50 

5 3 1709.83 4.55 12.74 6.1759E-2 

9 6 570 8 2.5 1.9002E-2 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40

∆Rp  %

Displacement (μm)

6 μm
3 μm
0.6 μm

Thickness (μm) 
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Table 4-15 Calculated values of the voltage output and the sensitivity for difference 
thickness of piezoresistor 

Thickness of piezoresistor (μm) voltage output (mV) sensitivity (V/T) 

0.6 63.5 6.4 

3 1.55 0.16 

6 0.49×10-3 0.05×10-3 

 

 

As mentioned in section 4.6.2 due to the low signal level available across the gauges, 

amplification circuit with a high gain can be used after the Wheatstone bridge circuit. 

 
As a summary, the highest value of the percent change in resistance (ΔRp) % is obtained 

at the highest displacement of the cantilever when the cantilever is driven at the resonant 

frequency. Experimental work by Laurent Latorre, et al in [50] agree with these results 

just for mode 1. 
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Chapter 5 

 

CONCLUSION AND RECOMMENDATIONS 
 

5.1     CONCLUSION 

This chapter presents the main purpose of the study and major conclusions from the 

progress achieved. This is followed by the limitation of the study and finally some 

recommendations are given for future research.  
 

The purpose of this study is to design and characterize a MEMS-based U-shaped 

cantilever device capable of detecting magnetic fields from static to low frequency. 

Analytical models describing 3-D vibration modes for U-shaped cantilever devices that 

are actuated by the Lorentz force and their verification by simulation is discussed. It is 

shown that when the cantilever is driven at or near its natural frequency by a periodic 

force, a large displacement is realized as compared to a static force for both modes.  The 

results obtained indicated static sensitivities of 10.1, 1.67 and 12×103µm/µN while the 

resonant sensitivities are about five times the static sensitivity with values of 50.2, 8.33 

and 48.3×103 m/N for mode 1, mode 2 and mode 3, respectivly.  This high response 

of the device in the dynamic mode is useful for increasing sensitivity in the measurement 

of an external magnetic field.  
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Results show that the resonant frequency is directly proportional and the sensitivity 

inversely proportional to the thickness of the cantilevers for mode 1 and 2 while they are 

independent of the thickness for mode 3.  However unlike mode 1 and 2, the resonant 

frequency in mode 3 increases with increasing width of the U-shaped cantilever. The 

theoretically calculated values for the resonant frequencies in all modes agree quite well 

with the simulation results. Three quality factors are determined according to the type of 

the mode and the damping coefficient. When the selected three values of the damping 

coefficient of 0.1, 0.05, and 0.01 of the critical damping is applied, Q-factors of 4.9, 9.3 

and 60 for modes 1, 2 and 3, respectively, are realized. 
   

The graph of displacement as a function of the applied force is shown to be perfectly 

linear in both the static and dynamic situations. The percentage change in resistance, 

∆Rp%, of a polysilicon peizoresistor is found to be proportion to the cantilever 

deflections. The estimated sensitivity from the output voltage of a Wheatstone bridge 

circuit setup for thicknesses of the cantilever of 6, 3, and 0.6 µm is found to be about 

0.06, 0.16, and 64 V/T  respectively. 

5.2    Recommendations and Limitations of Research  

Some important issues are not covered in this research such as the elastic limit of the 

cantilever for the three modes of vibration. Thus, the maximum range of the 

measurement of the magnetic flux under detection is not determined. 
 

This research investigated three modes of vibration for an external magnetic field that is 

perpendicular to the current through the cantilever. And the angel (ߠ) in equation 2.1 is 

equal to 90 thus	݊݅ݏ  is equal to 1. However if the magnetic field is diagonal to the ߠ

currents in any or all of the three modes of vibration, the situation will be a combination 

between two or the three modes described and characterized in this research. 
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In the last part of this research piezoresistor transducers are demonstrated as a simple 

method for the measurement without going into details of how it will be applied to the U-

shaped cantilever. There is need to do an in-depth study of the amplification and 

conditioning circuits and investigate the effect of some parameters such as the ambient 

temperature on the sensitivity of the system. Also there are some materials which are 

more sensitive and have higher gauge-factor compared to polysilicon such as lead-

Zirconate Tetanate, it can be use for the small magnetic field under detection.  
 

The motion of the base has also not been exhaustively treated for the observed submodes 

of mode 3 that depends on whether the based is static or in motion. The optical readout 

method of measurement may be useful to determine the type of mode and thus the 

direction of the external magnetic field especially for the combined modes. It is also 

possible to design smart circuit consisting of piezoresistor transducers in various 

configurations to determine the magnitude and direction of a magnetic field by matching 

the frequency of the excitation current with the resonant frequency value and then 

tracking which mode of vibration is excited. 
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APPENDIX-A 

Actual data of some graphs in the results chapter 

 

Table 1 actual data of the simulation results of the frequency response for the cantilever 

deflection (mode 1) presented in figure (4.4.a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency (Hz) Displacement (μm) 

121.3170 
268.6191 
462.9312 
783.9097 

2235.4819 
2556.4604 
2750.7724 
2898.0747 
3019.3916 
3179.3298 
3373.5251 
3629.6960 
4052.8574 
5966.5341 
6389.6958 
6645.8666 
6840.0620 

7000 

9.0742 
9.1307 
9.2734 
9.6997 

19.0538 
27.4620 
36.3548 
43.6648 
45.2995 
38.2251 
27.1200 
17.9086 
10.7159 
3.0904 
2.5855 
2.3411 

2.17958 
2.05942 

Maximum displacement 
at resonant frequency 
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Table 2 the simulation results table of the frequency response for the cantilever 
deflection (mode 2) presented in Figure (4.5.a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency (Hz) Displacement (μm) 

2000 
2250.9150 
2555.5739 
2957.4616 
3621.3286 
6623.5556 
7287.4223 
7689.3100 
7993.9692 
8244.8837 
8516.2998 
8845.8505 
9280.5742 
9998.6816 

13246.2021 
13964.3095 
14399.0332 
14728.5839 

15000 

2.1419 
2.1773 
2.2279 
2.3088 
2.4864 
5.1849 
7.1769 
8.8735 
9.9455 
10.0930 
9.2957 
7.6918 
5.7798 
3.8123 
1.2510 
1.0629 
0.9707 
0.9092 
0.8632 

Maximum displacement 
at resonant frequency 
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Table 3 the simulation results table of the frequency response for the cantilever 

deflection (mode 3) presented in Figure (4.6.a) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency (Hz) Displacement (μm) 

10000 

13089.5361 

21789.2949 

29963.5351 

66930.1796 

75104.4140 

80052.8906 

83804.1796 

86893.7109 

91438.2421 

96956.1718 

104235.0937 

116258.9375 

170634.7656 

182658.6093 

189937.5312 

195455.4687 

200000 

0.0117 

0.0118 

0.0123 

0.0130 

0.0265 

0.0377 

0.0485 

0.0563 

0.0578 

0.0489 

0.0348 

0.0231 

0.0138 

0.0040 

0.0033 

0.0030 

0.0028 

0.0026 

Maximum displacement 
at resonant frequency 
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Table 4 the simulation results table of the frequency response for the cantilever 

deflection (mode 1) for calculation of the band width and Q-factor presented in Figure 

(4.22) 

Displacement (μm) Frequency (Hz) 

9.0599 
9.0620 
9.0658 
9.0713 
9.0789 
9.0889 
9.1016 
9.1174 
9.1370 
9.1612 
9.1908 
9.2274 
9.2728 
9.3299 
9.4033 
9.5011 
9.6389 
9.8553 
10.3118 
15.2236 
17.6814 

19.71 
21.6357 
23.5477 
25.4837 
27.4601 
29.4803 
31.5369 
33.6116 
35.6743 
37.6833 
39.5856 
41.3196 
42.8208 

26.2618 
53.4879 
81.7719 
111.2232 
141.9700 
174.1650 
207.9919 
243.6745 
281.4906 
321.7906 
365.0279 
411.8043 
462.9470 
519.6445 
583.7063 
658.1216 
748.4761 
867.6663 
1064.553 
1954.941 
2151.828 
2271.019 
2361.373 
2435.788 
2499.850 
2556.548 
2607.690 
2654.467 
2697.704 
2738.004 
2775.820 
2811.503 
2845.330 
2877.525 

f1  
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44.0287 
44.8955 
45.3939 
45.2964 
44.7476 
43.8638 
42.6574 
41.1600 
39.4182 
37.4876 
35.4258 
33.2867 
31.1170 
28.9534 
26.8226 
24.7413 
22.7173 
20.7499 
18.8293 
16.9344 
15.0234 
13.0019 
10.5285 
5.2727 
4.6890 
4.3858 
4.1768 
4.0167 
3.8868 
3.7774 
3.6830 
3.6000 
3.5260 
3.4592 
3.3984 
3.3426 
3.2910 
3.2431 
3.1985 
3.1566 
3.1172 
3.0449 

2908.271 
2937.723 
2966.007 
3019.495 
3045.417 
3072.292 
3100.211 
3129.282 
3159.631 
3191.411 
3224.801 
3260.023 
3287.350 
3337.130 
3379.809 
3425.981 
3476.464 
3532.429 
3595.664 
3669.118 
3758.306 
3875.957 
4070.302 
4949.193 
5143.538 
5261.188 
5350.376 
5423.831 
5487.065 
5543.031 
5593.513 
5639.686 
5682.364 
5722.144 
5759.472 
5794.694 
5828.084 
5859.863 
5890.213 
5919.28 
5947.203 
6000.001 

Resonant frequency  
fres 

f2  
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                                            (a) Mode 1    

                                                   

 
                                             (b) Mode 2 

 

APPENDIX-B 

Pictures of some results presented on chapter-4 

 

The value of resonant 
frequency 15646.8 Hz 

The value of resonant 
frequency 8677.5 Hz 

The value of resonant 
frequency 6009.18 Hz 

(c) Mode 3 

Vector representation of the displacement of a 10 μm thickness U-shaped cantilever 
for (a) mode 1, (b) mode 2 and (c) mode 3, presented in section 4.1.2 
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                                          (a) Mode 1  

                                                                    

 
                                          (b) Mode 2 

                                             

The value of resonant 
frequency 8999.58 Hz 

The value of resonant 
frequency 22064.2 Hz 

The value of resonant 
frequency 86717.5 Hz 

                                                 (c) Mode 3 

Vector representation of the displacement of a 15 μm thickness U-shaped cantilever 
for (a) mode 1, (b) mode 2 and (c) mode 3, presented in section 4.1.2 
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Calculation procedures for validation of the simulation results 

Samples of the calculation procedure of the modeling results validation to the simulation 

results presented in this thesis: 

Modeling of the resonant frequency 

The effect of the cantilever dimensions on the resonant frequency of the three modes of 

the cantilever vibration presented in section 4.2.1, 4.2.2 and 4.2.3 for the effect of the 

thickness h, width w,  length of the arm l and base b respectively. 

To obtain the results in table 4.2 following actual values are used:
                   

 

E = 70 ×109 pa, ρ = 2.3 ×1015 kg/µm3,    

h = 5µm,   w = 20 µm,   b = 760 µm  and   l = 980 µm 

are substituted in equation (3.10) to calculate the resonant frequency for mode 1 as 

follows: 

   
     

kHz 2.8     

m109802m10760m10980kg/m10103.22

m105pa1070
2
1

6636615

269

0













f

 

 

And equation (3.12) is used to obtain the resonant frequency for mode 2 

   
     
kHz 163.6      

     
m109802m10760m10720kg/m10103.2

m105pa1070
2
1

6636615

269

0













f

  

 

While equation (3.14) is used to calculate the resonant frequency of mode 3a then 

multiplied the value by the factor of (1.0574 × b/l ) as discussed  in section 4.2.4 

APPENDIX-C 
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   
   

kHz 104      
    

m10980kg/m10103.212
m1020pa1070192

12
192

2
1

46615

269

4

2

0












l
Ewf


 

 

And for these dimensions the correction factor is 1.0574 × (760/1000) = 0.8. 

And the resonant frequency 104 × 0.8 = 83.2 kHz 

 

Modeling of the linearity 

Section discusses the linear relationship between the applied force and the cantilever 

deflection for the three modes at the static motion and dynamic vibration presented in 

Figures (3.15), (3.16) and (3.17)   

Static linearity 

Using equations 3.9 the stiffness of the cantilever is calculated for mode 1 

E = 70×109 pa,   ρ = 2.3×10-15 kg/µm3,  

h = 5µm,   w = 20µm,   b = 720µm   and   l = 980µm  

   
 

0.093     

m 109802

m 1020m 105pa 1070
36

6369












k

 

Equation 3.11 used to calculate stiffness of mode 2 

   
 

0.47     

m 10720
m 1020m 105pa 1070

36

6369












k

 

Equation 3.13 used to calculate stiffness of mode 3 
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   
 

47.6     

m 1098012
m 1020m 105pa 1070192

36

3669












k

                    
 

The displacement calculated using equation (2.3)   
k
Fu 

 

 

The table below presents the comparison of the calculation and simulation result of the 

displacement vs static applied force for the three modes witch presented in Figure (3.15). 

 Displacement (µm) 

Applied 
force 
(µN) 

Mode 1 Mode 2 Mode 3 

Simulation Theoretical Simulation Theoretical Simulation Theatrical 

0.15 

0.3 

0.45 

0.6 

0.75 

0.9 

1.52 

3.04 

4.57 

6.1 

7.62 

9.15 

1.6 

3.2 

4.8 

6.45 

8.06 

9.67 

0.25 

0.5 

0.743 

0.99 

1.25 

1.5 

0.3 

0.63 

0.95 

1.27 

1.59 

1.9 

0.0024 

0.0048 

0.0072 

0.0097 

0.0125 

0.015 

0.0031 

0.0063 

0.0094 

0.0126 

0.0157 

0.0189 
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Dynamic linearity at the resonant frequency 

Equation 2.4 and its solution which is given in equation 2.5 were used to calculate the 

maximum amplitude of the displacement at the resonant frequency for the three modes of 

vibration. 

              

2
1

2

0
max

2 



















m
c

m
kc

F


          

The damping of the system is calculated using equation (2.13)     

mkcdc crit 21.0 

    
and the values of  k  already calculated for the three modes and found to be 0.093, 0.663 

and 47.6 for mode 1, mode 2 and mode 3, respectively.  

For mode 1, )(
2
1 blwhm   = 312.8×10-12 kg and   k = 0.093    So   c = 1.079×10-6 kg/s 

0185.0
0

max
F

  

For mode 2, )(
2
1 blwhm   = 312.8 ×10-12 kg    and   k = 0.47   So   c = 2.425×10-6 kg/s

1176.0
0

max
F

  

For mode 3,  )(
2
1 blwhm  

 
= 230×10-12 kg    and   k = 47.6   So   c = 10.5×10-6 kg/s 

5.9
0

max
F

  

The table below presents the comparison of the calculation and simulation result of the 

amplitude of the displacement vs periodic applied force at the resonant frequency for the 

three modes witch presented in Figure (3.17). 
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The large different for the validation of mode 3 obtained because the mass and thus the 

damping is considered for the arm in this calculation will the base is not completely rigid 

as explained in section  4.2.3.  

 Maximum amplitude of the displacement ψmax (µm) 

Applied 
force (µN) 

Mode 1 Mode 2 Mode 3 

Simulation Theoretical Simulation Theoretical Simulation Theatrical 

0.15 

0.3 

0.45 

0.6 

0.75 

0.9 

7.55 

15.1 

22.64 

30.2 

37.74 

45.2 

8.1 

16.1 

24.3 

32.4 

40.5 

48.6 

1.27 

2.54 

3.81 

5.08 

6.34 

7.61 

1.28 

2.552 

3.82 

5.103 

6.378 

7.655 

0.01 

0.019 

0.029 

0.038 

0.048 

0.06 

0.016 

0.032 

0.047 

0.63 

0.078 

0.09 
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