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ABSTRACT 

 

Communication system links that do not have the ability to retransmit generally rely 

on forward error correction (FEC) techniques that make use of error correcting codes 

(ECC) to detect and correct errors caused by the noise in the channel. There are 

several ECC’s in the literature that are used for the purpose. Among them, the low 

density parity check (LDPC) codes have become quite popular owing to the fact that 

they exhibit performance that is closest to the Shannon’s limit.  

This thesis proposes a novel code-construction method for constructing not only (3, k) 

regular but also irregular LDPC codes. The choice of designing (3, k) regular LDPC 

codes is made because it has low decoding complexity and has a Hamming distance, 

at least, 4. In this work, the proposed code-construction consists of information sub-

matrix (Hinf) and an almost lower triangular parity sub-matrix (Hpar). The core design 

of the proposed code-construction utilizes expanded deterministic base matrices in 

three stages. Deterministic base matrix of parity part starts with triple diagonal matrix 

while deterministic base matrix of information part utilizes matrix having all elements 

of ones. The proposed matrix H is designed to generate various code rates (R) by 

maintaining the number of rows in matrix H while only changing the number of 

columns in matrix Hinf.  

All the codes designed and presented in this thesis are having no rank-deficiency, no 

pre-processing step of encoding, no singular nature in parity part (Hpar), no girth of   

4-cycles and low encoding complexity of the order of (N + g
2
) where g

2«N. The 

proposed (3, k) regular codes are shown to achieve code performance below 1.44 dB 

from Shannon limit at bit error rate (BER) of 10
−6

 when the code rate greater than      

R = 0.875. They have comparable BER and block error rate (BLER) performance 

with other techniques such as (3, k) regular quasi-cyclic (QC) and (3, k) regular 

random LDPC codes when code rates are at least R = 0.7.  In addition, it is also shown 

that the proposed (3, 42) regular LDPC code performs as close as 0.97 dB from 

Shannon limit at BER 10
−6

 with encoding complexity (1.0225 N), for R = 0.928 and 

N = 14364 – a result that no other published techniques can reach. 
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ABSTRAK 

 

Sambungan sistem komunikasi yang tidak memancar semula umumnya bergantung 

kepada forward error correction (FEC), error correction code (ECC) digunakan untuk 

mengesan dan memperbaiki kesalahan disebabkan oleh kebisingan dalam saluran. 

Ada beberapa ECC dalam kajian terdahulu yang digunakan untuk tujuan tersebut. 

Antara kesemuanya, low density parity check code (LDPC) telah menjadi pilihan 

utama kerana ia mempamerkan prestasi yang paling hampir dengan batas Shannon. 

Tesis ini mencadangkan sebuah kaedah baru pembinaan kod tidak hanya (3, k) 

reguler, tetapi juga kod-kod LDPC tidak reguler. Kod (3, k) LDPC reguler ini dibuat 

kerana ia memiliki kerumitan menyahkod rendah dan mempunyai jarak Hamming, 4. 

Dalam kajian ini, pembinaan kod yang dicadangkan terdiri daripada maklumat sub-

matriks (Hinf) dan persamaan segitiga sub-matriks (Hpar). Rekabentuk utama 

pembinaan kod yang dicadangkan menggunakan asas matriks penentu yang 

dikembangkan dalam tiga tahap. Matriks H yang dicadangkan direka untuk 

menghasilkan kod pelbagai peringkat (R) dengan mengekalkan jumlah baris  matriks 

H di samping hanya menukar jumlah lajur matriks Hinf. Semua kod yang direka dalam 

tesis ini tidak mempunyai kekurangan peringkat, tidak ada pra-langkah pengolahan 

pengekodan, tidak ada sifat tunggal pada persamaan (Hpar), tidak ada girth 4-kitaran 

dan pengekodan kerumitan yang rendah iaitu O(N + g
2
) di mana g

2
 « N. Kod-kod (3, 

k) regular yang dicadangkan mencapai prestasi kod di bawah 1.44 dB daripada batas 

Shannon pada bit error rate (BER) daripada 10
-6

 ketika kadar kod lebih besar daripada 

R = 0.875. Mereka memiliki BER setanding dan prestasi kadar kesalahan blok 

(BLER) dengan teknik lain seperti (3, k) quasi-siklik reguler (QC) dan (3, k) LDPC 

kod rawak reguler ketika kadar kod sekurang-kurangnya R = 0.7. Selain itu, kajian 

menunjukkan (3, 42) kod reguler LDPC yang dicadangkan mempamerkan nilai paling 

hampir iaitu 0.97 dB daripada batas Shannon BER 10
-6

 dengan kerumitan pengekodan 

O(1,0225 N),  R = 0.928 dan N = 14364 -- keputusan yang tidak ada teknik kajian lain 

boleh mencapainya. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1  LDPC Codes 

 

There are several techniques that are used to help achieve reliable communication in 

digital communication systems. One of these methods is applying error control coding in 

the system. In the case of communication links where retransmission of information is 

not conveniently implemented and there is no reverse channel to inform an error has 

occurred, it is necessary to include enough redundancy (also called parity-bits) in the 

information bits that can be used for error detection and also correction so that errors 

during transmission will not cause an unacceptable loss. This technique of recovering 

transmission errors is termed as forward error correction (FEC) scheme with error 

correcting code (ECC).    

 

The capability of detecting and correcting the errors in FEC scheme is mainly determined 

by the type of ECC applied in the system and that influences its error performance 

measured by bit error rate (BER) and block error rate (BLER). Among several ECC‟s in 

the literature, the low density parity check (LDPC) codes have become quite popular 

owing to the fact that they exhibit performance that is closest to the Shannon‟s limit. 

These codes are derived from a pre-designed parity check matrix that consists of 

extremely low density of ones.  

 

LDPC codes were invented by Gallager in 1960‟s [1, 2]. Gallager‟s work received no 

attention for a long time except for the papers by Zyablov and Pinsker, Margulis [7] and 

Tanner [18]. LDPC codes were re-discovered and brought back in 1996 independently by 
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MacKay [4, 9], Neal [4], Wiberg [5], M.Sipser and D.A. Spielman [6]. Irregular LDPC 

codes have been able to achieve a threshold of just 0.0045 dB from Shannon limit in 

additive white Gaussian noise (AWGN) channel at BER of 10
-6
 with code rate ½, block 

length of 10
7
 bits [8]. Up until now, the outstanding performance of LDPC codes has not 

been obtained for any real implementation and it is mostly reported in simulations. 

 

A useful parameter that describes the amount of redundancy in an LDPC code is called 

code rate denoted by R. It is defined as the ratio of the number of information bits (K) to 

the value of code length (N). Thus, the length of its parity bits or redundancy is measured 

by (N − K). If we are using low code rate (R < 0.5) of LDPC codes, it means that these 

LDPC code have more redundancy but carry less information per code bit. Meanwhile, if 

we are using high code rate (R > 0.5) of LDPC codes up to a maximum of R = 1, these 

LDPC codes convey more information bits than their redundancy or less parity part is 

applied in those codes. Such applications of high code rate communication (R ≥ 0.8) are 

found in magnetic recording and optical communication with high speed. 

 

 

1.2  Motivation  

 

A parity-check matrix (H) describes any block code completely. It is used to check if the 

received codeword is a legitimate codeword or not. Most commonly, the design of LDPC 

codes is derived from a specific parity check matrix (H) that consists of low density of 

ones -- hence the name and also the benefit of having very low decoding complexity. 

Since the code lengths are quite large, the property of low density of ones proves very 

useful in decoder implementation. In 1960‟s, Gallager proposed LDPC codes by 

randomly constructing H with fixed number of j ones in each column, fixed number of k 

ones in each row and zeros elsewhere, called (j, k) regular LDPC codes with the choice of 

j = 3 and k = 4 [1]. In his regular LDPC codes, there are at least (j − 1) rows of matrix H 

which are linearly dependent [1]. This condition means that matrix H is rank-deficient 

and the codes have a slightly higher code rate than the matrix H indicates. 
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Many researchers have contributed to the design of regular LDPC codes by random and 

structured construction. Structured construction of regular LDPC codes such as algebraic 

[10], [11], [12], [13], [18], [23], [26], [31], [35] and combinatorial [14], [15], [49], [51] 

also have some dependent rows of matrix H. Quasi-cyclic (QC) LDPC codes as one 

example of algebraic codes have at least (j − 1) dependent rows in matrix H as stated in 

[11] and [24]. Therefore, generally in regular LDPC codes, there are likely to be some 

dependent rows in matrix H.  

 

A generator matrix (G) that encodes the information bits is derived from this H. 

Generally, obtaining G from H involves Gauss elimination before encoding that may 

require computation of the order of (N³) where N is the code length [11, 16]. In case, H 

has some rows that are linearly dependent, it is not possible to manipulate H to get G. 

Therefore, it is important to start with a full-rank matrix H in the design of regular LDPC 

codes. Many existing technique, either erase the linearly dependent rows in H or replace 

it with another independent row. In addition, regular LDPC codes are also required to 

avoid girth 4-cycles that may exist in matrix H. These cycles imply endless looping at the 

time of decoding. Since the parity part of matrix G is generally dense, encoding 

complexity of LDPC codes becomes prohibitively complex ~ (N²). Moreover, the value 

of N in LDPC codes is large, around hundreds to thousands of bits or more.  

 

QC LDPC codes solve high encoding complexity in regular LDPC codes since they have 

sufficient structure to allow simple encoding and they can be encoded with simple shift 

registers based on their generator polynomial in matrix G [12, 13, 14]. This type of 

encoding is only useful for a class of QC and cyclic codes. If QC LDPC codes are 

encoded by parity check matrix using inversion method, we need other process before 

encoding. Hanghang Qi and Norbert Goertz [52] show that if regular QC LDPC codes are 

encoded by Richardson-Urbanke method as one example of encoding by parity check 

matrix using inversion method, they require a pre-processing step like triangulation and 

check-rank of the order of (N³).  
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There are two designs of LDPC codes that have been implemented in some standards, 

their code performances are not near the best performance of LDPC codes reported in the 

literature. These designs, called extended irregular repeat-accumulate (eIRA) and 

irregular quasi-cyclic (QC) designs, utilize base matrices of dual-diagonal parity part [17] 

and dual-diagonal parity part with single weight-3 column stated in [45,46].  

 

Parity check matrix using dual-diagonal parity part, also known as semi-random parity 

check matrix, yields non-singular matrix with lower or upper triangular structure that is 

suitable to encode by its matrix H with no other process before it. Dual-diagonal parity 

part in matrix H gives non-singular parity part, linear encoding complexity and no pre-

processing step before encoding. At the same time, dual-diagonal parity part padded with 

one weight-3 column, also recognized as irregular QC LDPC codes, has the same 

properties as dual- diagonal parity part alone.  

 

Unfortunately, these advantages of parity-check matrix with dual-diagonal parity part 

and/or dual-diagonal parity part with single weight-3 column are only applicable for 

irregular LDPC codes precluding regular LDPC codes. Irregular LDPC codes are type of 

LDPC codes that do not satisfy the constant number of ones in each row and column. 

Therefore, there is scope for research into code-construction method for regular LDPC 

codes that has all the stated advantages of dual-diagonal parity part. 

 

 

1.3  Problem Statement  

 

The first class of (3, k) regular LDPC codes were invented by Gallager in 1960‟s. (3, k) 

regular LDPC codes have low decoding complexity and the value of their minimum 

distance (dmin) is lower bounded by 4. 

 

It has been observed by MacKay and Davey [22] that (3, k) regular LDPC codes of code 

length around thousand bits (N ≤ 4000) are not suitable for high code rate application     
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(R > 0.875) as BER performance is not good. So, design of (3, k) regular LDPC codes 

that perform satisfactorily for above condition is still an open problem. 

 

In general, (j, k) regular LDPC codes suffer from following design limitations such as: 

o Rank-deficiency of matrix H  

o High encoding complexity and  

o Pre-processing step of encoding 

 

Therefore, design methods of (3, k) regular codes that can overcome the above 

limitations are still open research problem. 

 

 

1.4  Objective 

 

The objectives of this thesis are given below: 

  

 To develop novel code-construction for (3, k) regular LDPC codes : 

The first objective of this thesis is to develop a novel code-construction method 

for designing (3, k) regular LDPC codes with good error performance in high 

code rate (R  0.875). This is accomplished by constructing suitable parity check 

matrix, H. 

 

The following characteristics are included in the proposed H:    

o No rank-deficiency of matrix H, 

o No singular parity part, 

o No pre-processing step of encoding in the order of (N³) if  it is encoded 

by parity check matrix (H) using inversion method, 

o No girth of length 4, 

o Low encoding complexity. 
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 To obtain the coded information bits from proposed H : 

The coded information bits that consist of information bits and designed parity 

bits are achieved by encoding using parity check matrix. Encoding by parity 

check matrix is chosen to simplify encoding and decoding process by using only 

matrix H without converting it into G. Moreover, this method can be applied to 

any LDPC codes like random or structured codes.  

 

 To test the performance of coding using simulation : 

Finally, the performance of coded information bits is investigated in the 

simulation system in terms of bit error rate performance, closeness to Shannon 

limit and complexity analysis. 

 

 

1.5  Scope of Thesis  

 

Scope of the thesis is outlined as follows: 

 

 Code-Construction : 

The proposed code-construction is aimed at developing binary LDPC codes. It 

makes use of sparse matrix function in MATLAB
®
 for constructing (3, k) regular 

and irregular LDPC codes for code length N < 15000 bits with the characteristics 

mentioned in the objective. 

 

 Simulation System : 

No hardware implementation is proposed for the proposed code-construction in 

this thesis. Instead, detailed study is conducted to investigate the performance 

using simulation developed by binary phase shift keying (BPSK) modulation, 

AWGN channel and MATLAB
®
 7.4.  

 

 Performance Parameters  

o The performance of the proposed (3, k) regular LDPC codes in this thesis 

is evaluated in terms of the bit-error rate (BER) and block-error rate 
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(BLER) as a function of signal-to-noise ratio (SNR). Since the proposed 

code-construction can be utilized to construct irregular LDPC codes, we 

give one example of the proposed irregular LDPC code compared with 

other irregular LDPC codes in term of bit-error rate (BER). 

 

The performance comparison of the proposed (3, k) regular with other    

(3, k) regular QC and (3, k) regular random LDPC codes is made by the 

BER in low and high code rate, and also the BLER in high code rate. 

Mean while, the performance comparison of irregular LDPC code is the 

BER performance. 

 

o LDPC codes manage to reach the Shannon limit in an error rate of 10
-6

 at 

the lowest SNR as compared to all other error control codes. The 

performance of the proposed (3, k) regular codes are also measured in 

terms of this limit and compared with other regular LDPC codes in the 

literature particularly for high code rate (R ≥ 0.875). The proposed (3, k) 

regular LDPC codes are also compared with theoretical un-coded BPSK 

and theoretical upper bound of an [N, K] binary block code with soft-

decision decoding and BPSK modulation. 

 

o The proposed (3, k) regular LDPC code is said to avoid several 

computational steps of pre-processing that most other popular regular 

LDPC codes must carry out, the performance of the proposed (3, k) 

regular LDPC code is also measured in terms of the computational load.  

 

 

1.6  Methodology of Research 

 

This research is conducted through two stages:  

 Code-Construction Development 

Derived from the analysis of literature review, a new design of code-construction 

method is developed to obtain matrix H with characteristics mentioned in the 
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objective.  The proposed code-construction is designed for constructing not only 

(3, k) regular LDPC codes but also irregular LDPC codes.  

 

The proposed matrix H is checked for girth of length 4 when its information part 

is combined with parity part and in case this condition exists, the columns of 

expanded base matrices of information part are randomly cyclically shifted till it 

is devoid of any girth of length 4. 

 

 Simulation System Development 

Simulation model is developed for the purpose of evaluating the coded 

information bits using BPSK modulation and AWGN channel in conjunction with 

the encoder-decoder of MATLAB
®
 7.4. The proposed parity check matrix, H, is 

provided to the MATLAB
®
 7.4 encoder.  

 

The encoder of MATLAB
®

 encodes the binary data using matrix inversion of H 

as explained by Richardson-Urbanke in their work [16]. Similarly, the decoder of 

MATLAB
®
 makes use of sum-product algorithm to decode the received 

codeword. 

 

In order to validate the proposed code-construction, the comparison of code 

performance is conducted by comparing the BER and BLER performance of the 

proposed codes.  

 

In addition, the performance of the proposed (3, k) regular LDPC code is also 

compared in terms of how close it performs to the Shannon limit particularly for 

high code rate (R ≥ 0.875) LDPC codes. This is compared with those of regular 

QC and cyclic LDPC codes. The proposed (3, k) regular LDPC code is also 

compared with theoretical un-coded BPSK and theoretical upper bound on the 

BER of an [N, K] binary block code with soft-decision decoding and BPSK 

modulation. 
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Since encoding is the strength of the proposed code-construction, complexity 

analysis is made based on comparison of pre-processing step of encoding 

followed by encoding complexity with (3, 5) regular QC LDPC codes. This 

section is ended by computational time of actual encoding step in the proposed 

codes that includes a description of encoding complexity in the proposed codes 

and also compares the time of encoding between the proposed (3, 6) regular with 

(3, 6) regular QC LDPC code. The complexity analysis for irregular LDPC codes 

has been excluded from the scope. 

 

 

1.7  Thesis Organization 

 

This thesis is organized as follows: Chapter 2 gives background theory and literature 

review of this work that gives some related concepts of LDPC codes, encoding of LDPC 

codes and some related works for this thesis. By understanding some related concepts of 

LDPC codes, one is brought to an appreciation of some concepts used in this thesis such 

as linear block code, the minimum distance of code (dmin), generator matrix (G) and 

parity check matrix (H), syndrome error and a description of LDPC codes which covers 

explanation of Tanner graph including a cycle and girth properties, concept of regular-

irregular LDPC codes, quasi cyclic (QC) LDPC codes, repeat accumulate (RA) LDPC 

codes, decoding of LDPC codes and code performance utilized in this thesis. After 

introducing some background of this work, encoding issues of LDPC codes is reported 

that presents encoding by generator matrix and encoding by parity check matrix. Some 

relevant works in this thesis as the literature review are introduced to give an overview of 

this work that includes code-construction method of regular, irregular and implemented 

irregular LDPC codes. 

 

Chapter 3 shows the steps of designing the proposed matrix H in three stages of code-

construction. Calculation of code rate (R) in the proposed LDPC codes is given after the 

explanation of constructing the proposed matrix H. After introducing calculation of R, 
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encoding step utilized in the proposed LDPC codes is given, followed by a description of 

encoding complexity based on Richardson-Urbanke method. 

 

Chapter 4 presents code performance, simulation model and error performance conducted 

in this thesis to validate the proposed LDPC.   

 

Chapter 5 presents some results, analysis and discussion of the proposed codes in terms 

of BER, BLER, Shannon limit performance and complexity analysis. Code performance 

of (3, k) regular LDPC codes presents BER and BLER performance of the proposed 

codes and compares them with other regular LDPC codes such as QC and regular random 

at both high and low code rate. The limiting performance is also obtained and compared 

with the Shannon limit and those of a selected few codes at high code rate (R ≥ 0.875). 

Moreover, the proposed (3, k) regular LDPC codes are also compared with theoretical 

upper bound of an [N, K] binary block code with soft-decision decoding and BPSK 

modulation.  Code performance of irregular LDPC codes presents BER performance of 

the proposed irregular LDPC code compared with other irregular LDPC codes. 

Discussion of complexity analysis begins by exploring pre-processing step in the 

proposed (3, k) regular LDPC codes based on Richardson-Urbanke method. The 

complexity analysis for irregular LDPC codes has been excluded from the scope. The 

discussion of complexity analysis is continued for comparison of pre-processing step of 

encoding followed by encoding complexity with (3, 5) regular QC LDPC codes. This 

section is ended by computational time of actual encoding step in the proposed codes that 

includes comparison with regular QC LDPC and a description of encoding complexity in 

the proposed codes. 

 

The conclusion of this work and recommendations for future work of this thesis are given 

in the last chapter. 

 

Appendix of this thesis gives feasible values of parameter base and expansion factor L 

with given choice of deterministic right cyclic shift (RCS) that give matrix H with no 

rank-deficiency and girth of 4-cycles.  
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CHAPTER 2 

BACKGROUND THEORY AND LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

LDPC codes nowadays are in vogue and are often used to have a reliable communication 

with low power consumption. In order to employ LDPC codes as one of Shannon limit 

approaching codes, one needs to utilize some patterns of redundancy and to fulfill some 

requirements of LDPC codes like the need of designing sparse code. 

  

In this chapter, we present some background material related to LDPC codes and some 

crucial issues in the design of regular LDPC codes such as the rank-deficiency of matrix 

H, high encoding complexity and pre-processing before encoding.  The focus of this 

chapter is to give a description about some background concepts relevant to this thesis 

and present the related literature.  

 

Section 2.2 will discuss the background concepts used in this work, starting from basic 

concept of generator matrix and parity check matrix to the code performance utilized in 

this thesis. Encoding of LDPC codes is explained in section 2.3 that covers encoding by 

generator matrix and encoding by parity check matrix. Section 2.4 focuses on some 

relevant works of code-construction method for regular, irregular and implemented 

irregular LDPC codes. The last section, section 2.5, summarizes this chapter.  
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2.2 Related Concepts  

 

This section explores some introductory concepts used in this thesis for better 

understanding of the work presented herein. Since LDPC codes are a special class of 

linear block codes, there are some notations that are common to both codes such as 

generator matrix (G), parity check matrix (H), minimum distance (dmin), encoding by a 

generator matrix (G) and syndrome error. In order to get more details about LDPC codes 

and linear block codes, the reader is referred to read reference [3], [20]. 

 

2.2.1 Linear Block Codes 

 

Linear block codes, represented by (n, k) notation, are a subclass of block codes that 

having k information bits, (n - k) redundant or parity bits and n bits as code length. 

Transformation of k information bits into a longer block of n codeword bits is constructed 

with linear mapping transformation.  

 

One example of linear block codes is Hamming codes, the first code in error correcting 

code (ECC) invented by Richard Hamming in 1950 [21]. In our discussion of linear block 

codes, we restrict ourselves to binary codes that consist of two elements (0 and 1). A 

binary block code is said to be a linear code if and only if modulo-2 sum of any two 

codeword is also a codeword (c) known as closure property. 

 

Linear block codes have special properties as listed below: 

 

1. All zero codeword (0 0 0 0 … 0) is always a codeword (c). 

2. The distance between any two codeword is the same as the weight of the sum of 

both codeword. 

d (ci , cj) = w( ci + cj )     (2.1) 

  

 where distance is the number of different places in two codeword.  
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The Hamming weight known as weight of a codeword (c) is defined by the 

number of non-zero elements in codeword (c) denoted by w(c). 

 

3. The minimum distance (dmin) of linear block code is equal to the weight of the 

smallest weight (wmin) of any non-zero codeword excluding the-all zero 

codeword. 

dmin =  wmin      (2.2)  

  

where wmin is the smallest weight or the number of non-zero elements in a 

codeword. 

 

 

A desirable property of linear block codes is systematic structure of codeword as given in 

Figure 2.1 also known by systematic linear block codes [20]. Systematic (n, k) linear 

block codes are divided into information part and parity check part. Information part 

consists of k information bits and parity check part consists of (n - k) redundant bits.  

 

In Figure 2.1, parity part or redundancy part bits are placed at the beginning of a 

codeword while information bits are placed at the end of a codeword, however this can be 

done the other way round. The choice of position does not modify the properties of a 

given code, although there will be some different forms in mathematical expressions 

related to the code itself.  

 

 

 

 

 

Figure 2.1: Systematic structure of a codeword. 
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2.2.2 The Minimum Distance (dmin)  

 

As already mentioned in section 2.2.1, the minimum distance (dmin) of LDPC codes is 

also equal to the weight of the smallest weight (wmin) of any non-zero codeword 

excluding the-all zero codeword. 

 

The minimum distance (dmin) is an essential parameter that will determine the capability 

of error detection and correction in LDPC codes. The minimum distance (dmin) relates to 

other parameter such as the Hamming weight, the weight of a codeword and the 

Hamming distance, the distance between two codewords c1 and c2, denoted by d(c1, c2). 

 

Linear block codes with minimum distance (dmin) is able for correcting all error patterns 

of weight t or smaller weight than t. Parameter t is recognized by the random error 

correcting capability of a linear block code which is also utilized in LDPC codes [3]. 

 

    t = (dmin - 1)/2      (2.3) 

 

where  means the largest integer number not greater than (dmin - 1)/2.  

 

2.2.3 Generator Matrix (G) and Parity Check Matrix (H)  

 

Generator matrix (G) is a linear independent basis matrix for any codeword in the vector 

space. A desirable property of a (k × n) matrix G with k linearly independent rows and n 

columns is a systematic structure having two part of k information bits as information 

part and (n - k) redundant bits as parity check part. Therefore, a (k × n) matrix G for 

systematic structure is represented below: 

 

G = [P | Ik]        (2.4) 
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    p11    p12    . . .   p1,(n-k)      1 0   . . . 0 

   p21    p22    . . .   p2,(n-k)      0   1   . . .  0 

   . .          .   .                      

G =     . .     .   .    (2.5) 

    . .     .   . 

pk1    pk2    . . .   pk,(n-k)      0   0   . . . 1       

 

 

where P is a k × (n - k) parity part of matrix G with pij = (0 or 1) and Ik is an (k × k) 

identity matrix with ones on the main diagonal and zeros elsewhere.  

 

Parity check matrix (H) is a form of matrix utilized at decoding stage to decode the 

received codeword and to check whether an error has occurred or not in the transmitted 

data stream. Relation between matrix G and matrix H is given by equation (2.6) [3]:  

 

     G H
T 

= 0.     (2.6) 

 

Equation (2.6) means that each matrix G of size (k × n) will have an (n - k) × n matrix H, 

such that the rows of matrix G are orthogonal to the rows of matrix H. Matrix H
T
 is an             

n × (n - k) matrix and 0 is a k × (n - k) matrix with all-zeros elements.  Therefore, matrix 

H for systematic structure will be: 

 

  H = [In-k |P
T
].        (2.7) 

 

 

   1 0   . . . 0      p11         p12     . . .   p1,k       

   0   1   . . .  0      p21         p22     . . .   p2,k       

    .  .  .           .      .    

  H =  .  .  .  .    (2.8) 

    .  .  .  . 

0  0   . . . 1     p(n-k),1     p (n-k),2     . . .   p(n-k),k        
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where P
T
 is a (n - k) × k matrix as the transpose of matrix P and In-k is an (n-k) × (n-k) 

identity matrix with ones on the main diagonal and zeros elsewhere. Matrix H is used in 

decoding to check whether a codeword (c) is a valid codeword using equation (2.9). This 

is represented as the condition: 

cH
T
 = 0     (2.9) 

 

2.2.4 Syndrome Error  

 

Syndrome is the result of parity check performed on received codeword (r). Equation of 

syndrome (S) is denoted by the following equation:   

          

S = r H
T 

     (2.10) 

 

Whenever a non-zero error syndrome (S) is obtained, the decoder knows that at least one 

error has occurred. If the received codeword (r) is a valid codeword and there are no 

received errors then the value of syndrome (S) will be all zero. This condition is 

described in the equation as follows:    

   

r H
T
 = 0     (2.11)  

 

There is a possibility that received codeword (r) contains errors but the value of 

syndrome (S) is zero. This condition occurs when errors (e) convert received codeword 

(r) to another codeword that gives zero value of syndrome (S). This kind of error pattern 

is called as undetectable error pattern and causes an incorrect decoding.  

 

Since received codeword r = c + e and c a valid codeword with c H
T
 = 0, it is possible to 

measure error syndrome (S) of r by [3]: 

 

S = r H
T
 = (c + e) H

T
 = cH

T
+ e H

T 
= e H

T
   (2.12) 
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If there is no error (e = 0), r = c would give r H
T
 = c H

T
 = 0. In fact, syndrome (S) is 

linear combination of error pattern (e) and depends on it not on transmitted codeword (c) 

[20].  

 

2.2.5  Tanner Graph 

 

The Tanner graph, a bipartite graph, is a graphical representation of matrix H. It is 

commonly represented by a diagram in which nodes or vertices are represented by points. 

Two nodes are connected by an edge shown as a line joining the end nodes.  

 

There are two classes of nodes in Tanner graph, namely, variable nodes or bit nodes and 

check nodes. Nodes corresponding to the columns are recognized by variable nodes, 

while nodes corresponding to the rows are recognized by check nodes. Degree of variable 

node is equal to the number of jn ones in the n
th

 column of matrix H while degree of 

check node is equal to the number of km ones in the m
th

 row of matrix H.  

 

It is desirable to have high degree of check nodes. Variable nodes with small degree (one 

or two) do not get enough information to make good estimate, it is also desirable to have 

high degree of variable nodes.  

 

Figure 2.2 shows a Tanner graph for an LDPC code and its matrix H with the size of 

4×8. In this Tanner graph there exist four numbers of check nodes (ci) and eight numbers 

of variable nodes (vi).  

 

Each variable node (vi) in Figure 2.2 is connected to two check nodes that implies each 

variable node has degree of two while each check node (ci) is connected to four variable 

nodes that means each check node has degree of four. Since each column and each row 

have constant number of ones in its matrix H, this LDPC code is recognized by (2, 4) 

regular LDPC code.  
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        Tanner graph 

v1  v2 v3   v4  v5  v6  v7  v8         Variable Nodes                 Check Nodes      

1     0  1    0   1    0   1    0     c1       v1           Edge         c1 

H = 1     0  0    1   0    1   0    1    c2       v2             

0     1  1    0   0    1   1    0     c3         v3           c2 

0     1  0    1    1    0   0    1     c4       v4            

           v5           c3 

                   v6            

           v7           c4 

           v8             

 

Figure 2.2: Tanner graph of (2, 4) regular LDPC code and its matrix H. 

 

 

A cycle of length n in Tanner graph implies that there is a path comprised of n edges 

which returns back to its starting point. A cycle is called even if its length is even and 

similarly, a cycle is odd if its length is odd. Tanner graph in Figure 2.2 has two cycles of 

length four that is shown by dashed line, described by bold ones in its matrix H and 

comprised of nodes (v3, c1), ( v7, c3) and (v4, c2), (v8, c4).  

 

A girth of Tanner graph is the length of the shortest cycle in a graph. Obviously, simple 

bipartite graph or Tanner graph does not have odd cycles. Therefore, the shortest possible 

cycle exists in a Tanner graph is a cycle of length four or a length-4 cycle [25]. Actually, 

there is an impact of girth-4 cycle in decoding algorithm.  

 

If there are too many girth-4 cycles in a graph, it will slow down the decoding 

convergence of iterative sum product algorithm (SPA) or it will never reach the decoding 

convergence. The reason why sum product algorithm (SPA) avoids girth-4 cycle is that 

SPA will be a correct algorithm if the graph is tree-like. Girth-4 cycle yields a low-weight 

codeword that influences the capability of detecting and correcting error and degrades the 

error performance by having an error floor.  
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If Tanner graph is cycle free, information bits are sent independently and iterative 

decoding is optimal. A graph without cycles is said to be acyclic and called a tree. Figure 

2.3 describes acyclic graph [3]. In [20], it is proven that codes with cycle free Tanner 

graph have very poor minimum distance (dmin) and very low rates. However, girth does 

not seem the only parameter that has impact on the code performance.  

 

  

Figure 2.3: An acyclic graph [3]. 

 

 

2.2.6 LDPC Codes 

 

Low density parity check (LDPC) codes are designed based on their parity check matrix 

H that has sparse density of ones. Sparse density means proportion of non-zero entries in 

matrix H is very small compared with its zero entries. The extremely low density of ones 

in matrix H lends to very low decoding complexity. 

 

Since matrix H plays a major role in designing an LDPC code, a code-construction in 

LDPC codes begins with techniques to build its matrix H. Based on this H, we can 

classify types of LDPC codes which are regular and irregular LDPC codes. If matrix H 

has fixed number of j ones in each column and fixed number of k ones in each row, this 

matrix H is recognized as (j, k) regular LDPC codes. Matrix H that does not satisfy this 

condition is recognized as irregular LDPC codes. 

 

 

 



 

20 

 

The requirement for constructing an LDPC code is two-fold as follows [3], [13], [20]: 

 

1. The density (r) of its parity check matrix (H) must be small or have low density of 

ones. 

 

Density of ones in parity check matrix (H) is defined as the ratio of the number of 

ones to the total number of entries in it. Density is denoted by r = j/M = k/N. 

 

2. No two columns or two rows in parity check matrix (H) can have more than one non-

zero entry in common.  

This property avoids girth with cycle of length four in parity check matrix (H) and 

hence has girth at least 6 [13]. 

 

 

Code rate (R) of an LDPC code is given by ratio of information bits (K) to code length 

(N). Let C be an LDPC code specified by matrix H of size M by N. The number of 

information bits, denoted by K, is N – M. The length of redundant bits or parity bits added 

in the code is (N – K) bits or M bits. Therefore the value of R for an LDPC code is 

defined by: 

 

R = K/N     (2.13) 

 

If we change the value of K in equation (2.13) with N – M then: 

 

  R = K/N = (N – M) ÷ N = 1 – M/N    (2.14)  
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2.2.7 Quasi Cyclic (QC) LDPC Codes 

 

A quasi cyclic is a linear block code for which cyclically shifting a codeword a fixed 

number shift of symbol positions either to the right or to the left results in another 

codeword. It is clear that for one shift of symbol positions, a quasi-cyclic code is a cyclic 

code [3]. The structure of a quasi cyclic (QC) LDPC code can be viewed from its parity 

check matrix (H) in circulant form.  

 

Circulant matrix itself is defined as a square matrix in which each row is a cyclic shift 

(one place to the right) of the row above it, with the first row being a cyclic shift of the 

last row. Each column is a downward cyclic shift of the column on its left, with the first 

column is a downward cyclic shift of the last column. A circulant is completely 

characterized by its first row (or first column), which called the generator of the circulant.  

 

An example of 7×7 circulant matrix Hj,k with w = 3 is given below: 

 

                1    0    0    0    1    0    1      

                  1    1    0    0    0    1    0     

                  0    1    1    0    0    0    1     

    Hj,k =     1    0    1    1    0    0    0         

      0    1    0    1    1    0    0            

      0    0    1    0    1    1    0     

      0    0    0    1    0    1    1     

 

The row and column weights of a circulant matrix are the same, say w, in other words the 

circulant has weight w. If a circulant matrix has w = 1, then the circulant is a permutation 

matrix, called by circulant permutation matrix [12].  

 

A QC LDPC code is characterized by matrix H that consists of small square blocks which 

are zeros matrix and circulant permutation matrices. Matrix H of a QC LDPC code can be 

written as: 
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    H1,1 H1,2 . . . H1,k 

    H2,1 H2,2 . . . H2,k 

          H = H3,1 H3,2 . . . H3,k      (2.15) 

    . . . . . .  . . . 

    Hj,1 Hj,2 . . . Hj,k 

 

 

Let sub-matrix Hj,k = Hx be a p × p circulant permutation matrix which shifts the identity 

matrix I to the right or to the left by x position for any integer x, 0 ≤ x < p given by: 

   

 

    0      1      0  0 

    0      0      1 . . . 0 

              Hx =  .       .        .  .       

    0      0     0 . . . 1 

    1      0      0  0 

     

  Figure 2.4: Example of circulant permutation matrix. 

 

 

The QC LDPC code may be regular or irregular depending on the choice of x of Hx 

Figure 2.4. When matrix H has no blocks corresponding to zero matrices, matrix H 

represents a (j, k) regular LDPC code with column weight j and row weight k. The 

resulting binary matrix H is of size jp×kp. 

 

Cyclic structure of matrix H yields some dependant rows in matrix H [12]. In fact, there 

are at least (j −1) dependent rows in matrix H. Due to linear dependence among the rows 

of matrix H, the code rate (R) may be greater than (1−j/k) or denoted by R ≥ (1−j/k) [l1]. 

 

In order to construct QC LDPC codes, we need to follow the requirement for constructing 

an LDPC code described in section 2.2.4.  
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2.2.8 Repeat Accumulate (RA) LDPC Codes 

 

Another type of codes that has weight-2 columns is called repeat accumulate (RA) codes. 

The advantage of systematic RA codes is that its encoding is linear. 

  

An (n − k) × n matrix H of RA code has two parts H1 and H2 denoted by H = [H1, H2] 

where H1 is information part and H2 is a (n − k) × (n − k) matrix of parity part in the form 

of Figure 2.5. Since parity part of RA codes is in the form of Figure 2.5, RA codes have a 

lower triangular form already built into matrix H during the code design. The built in 

lower triangular form is also called dual diagonal code construction.  

 

RA codes also consist of regular and irregular repeat accumulate (RA). The distinction 

between regular and irregular RA codes is defined by the composition of ones in their 

information part or matrix H1 while the construction of their parity part or matrix H2 for 

both regular and irregular RA codes are the same.  

 

 

     1    0 0       . . . 0    0    0   

1    1  0       . . . 0    0    0   

0    1  1       . . . 0    0    0   

      .         . 

      H2 =       .              .      

      .                                   . 

0    0   0       . . . 1    0    0 

0    0  0       . . . 1    1    0 

0    0  0       . . . 0    1    1     

 

  Figure 2.5: Example of dual diagonal parity part. 

 

 

RA codes are called (q, a) regular RA codes if all the rows of matrix H1 have the same 

weight of a, and all the columns of matrix H1 have the same weight of q. An example of 

regular RA code is given below with the size of 6×10. Information part or matrix H1 of 

this example has a regular composition of ones that is three ones in each column and two 
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ones in each row. Therefore, we call this matrix as (3, 2) regular RA code with code 

length of 10 bits. The value of R for this (3, 2) regular RA code is 4/10 = 2/5. 

 

H = [H1 | H2] 

 

    1    0 1    0          1    0    0    0    0    0   

0    1  0    1       1    1    0    0    0    0  

H = 1    1  0    0          0    1    1    0    0    0   

0    0 1    1        0    0    1    1    0    0          

     1    0   1    0       0    0    0    1    1    0 

0    1  0    1       0    0    0    0    1    1 

 

Irregular RA codes have irregular columns or rows or both columns and rows have 

irregular weight distribution in their information part or matrix H1 with the size of          

(n − k) × p with p > k. Since information part or matrix H1 has the size of (n − k) × k, this 

type of irregular RA code belongs to extended irregular RA (eIRA) codes.   

 
An example of a 7×10 irregular RA code with its information part or matrix H1 has an 

irregular composition of ones in each column and regular composition of ones in each 

row that is only one value in each row is described below. The value of R for this 

irregular RA code is 3/10 = 0.3 with code length of 10 bits. 

 

H = [H1|H2] 

 

     1    0 0          1    0    0    0    0    0 0   

1    0  0          1    1    0    0    0    0 0 

 0    1  0          0    1    1    0    0    0   0 

H =  0    0 1          0    0    1    1    0    0 0          (2.16) 

     0    1   0          0    0    0    1    1    0 0 

1    0  0          0    0    0    0    1    1 0 

0    1  0          0    0    0    0    0    1  1 

  

 

If density of ones in RA codes is sparse and having no girth-4 cycle, then these RA codes 

belong to LDPC codes known as RA LDPC codes. Since RA codes consist of regular and 

irregular, RA LDPC codes are also divided into regular and irregular RA LDPC codes.  
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Regular RA LDPC codes belong to irregular LDPC codes in the sense of general 

description for (j, k) regular LDPC codes since matrix H2 in regular RA LDPC codes has 

all columns of weight-2 except one column having weight-1. Even though we call these 

codes as regular, it denotes irregular code construction in a general classification of 

LDPC codes.   

 

2.2.9 Sum Product Decoding Algorithm 

 

Sum product algorithm (SPA) is an iterative decoding algorithm. It is also known as 

belief propagation algorithm. Sum product algorithm is a decision algorithm that accepts 

the probability of each received bit as input. The aim of sum product algorithm is to 

compute maximum a posteriori probability (MAP) for each codeword. The structure of 

SPA directly matches the Tanner graph since decoding messages are iteratively computed 

for all the variable nodes, check nodes and exchanged through the edges between the 

neighboring nodes.  

 

The input bit probabilities are called a-priori probabilities for the received bits because 

they were known in advance before running LDPC decoder. The bit probabilities 

returned by decoder are called a-posteriori probabilities. A-posteriori probabilities can 

only be established after many events like symbol transmission and receptions have been 

completed. These probabilities are expressed as log-likelihood ratios. The benefit of 

logarithmic representation is that log-likelihood ratios need only be added when 

probabilities need to be multiplied. Therefore, it reduces the complexity. 

 

Maximum a posteriori probability (MAP) of each codeword bit, Pi = P{ci = 1| N}, is the 

probability that the-ith codeword bit is a 1 conditioned on the event N that all parity 

check constraints are satisfied. The extra information about bit received from parity 

checks is called extrinsic information for bit i. 
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Sum product algorithm iteratively computes an approximation of MAP value for each 

code bit. However, a posteriori probabilities returned by sum product decoder are only 

exact MAP probabilities if the Tanner graph does not contain too many short cycles.  

 

The computed MAP values, at the end of decoding iteration, are used as input for the next 

iteration. Decoding iteration process continues until a certain stopping condition (or 

criteria) is met. 

 

Computational complexity and decoding delay (decoding time) of sum product algorithm 

(SPA) increases when the number of decoding iteration increases. Unfortunately, long 

decoding delay is not desirable in high speed communication and data storage system.  

 

There are several parameters that influence sum product algorithm (SPA) and relate to 

error performance [25]: 

 

1. Girth value of its Tanner graph. 

2. The minimum distance (dmin). 

3. Column weight and row weight of its parity check matrix (H). 

 

 

2.3 Encoding of LDPC Codes 

 

Encoding process takes information of k bits and assigns redundancy of (N - k) bits as 

additional parity to be used to detect and correct the errors at the decoder that gives a 

codeword (c) its length N bits. Usually, the process of encoding is determined in the 

encoder.  

 

Generally, encoding of LDPC codes utilizes either the generator matrix (G) or the parity 

check matrix (H). Encoding by matrix G is a straight forward encoding of LDPC codes 

utilized in linear block codes while encoding by matrix H is applied to make use the 

sparseness of matrix H in LDPC codes. 
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2.3.1 Encoding by Generator Matrix (G) 

 

Encoding by matrix G is done by multiplying information bits (i) of k bits and matrix G 

of (k × N) matrix to produce a codeword (c) with length of N bits given in equation (2.17) 

until equation (2.19).   

 

Suppose a (1 × k) matrix of information bits (i) has length of k bits and a (k × N) 

generator matrix (G). The relationship of encoding is stated below:  

 

          g1     g11    g12    g13    . . .    g1N     

           g2   g21       g22     g23      . . . g2N 

            .                          .   

       G =      .       =                  .    (2.17) 

       .                                 . 

          gk                       gk1     gk2     gk3     . . .     gkN 

 

 

    c =  i.G      (2.18)   

 

c = i1g1 + i2 g2 + … + ik gk    (2.19)  

 

 

Information bits (i) are added by certain pattern of redundancy to become a codeword (c) 

by taking the product of information bits (i) with every column in matrix G. Each element 

in i is multiplied by the corresponding element in column of matrix G then summed using 

modulo-2 addition.  

 

Since code-construction in LDPC codes is started with its matrix H, encoding by matrix 

G has the purpose of converting matrix H into matrix G that can be achieved into two 

ways: achieving systematic matrix G and Mac-Kay method. 
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2.3.1.1 Achieving Systematic Structure of Matrix G 

 

In section 2.2.2, finding a systematic structure of matrix G from its matrix H is easy if 

matrix H has a systematic structure. Therefore, using systematic structure of matrix H, 

encoding process will be easier to be done.  

 

Unfortunately, systematic structure of matrix H has a disadvantage. Generally, systematic 

matrix H = [In-k | P
T
] has parity part (P) that is a dense matrix. This condition will yield a 

many girths with 4–cycles that will degrade the decoding performance [27]. As 

mentioned in section 2.2.3, girth-4 cycles in a graph will slow down the decoding 

convergence or it never reaches the decoding convergence.  

 

In order to encode information bits, one should find systematic structure of matrix G in 

equation (2.5) by performing Gauss elimination on matrix H. Achieving structured matrix 

G by Gauss elimination can achieve complexity of the order (N
3
) [16]. Moreover, since 

the parity part of matrix G is generally a dense matrix, it leads to encoding complexity of 

the order of (N²) where N is code length of LDPC code [27]. 

 

Since the value of N is large in LDPC codes, around hundreds to thousands of bits or 

more, the encoder will become prohibitively complex with (N²). That is why encoding 

complexity is one of the crucial issues in LDPC codes.  

 

2.3.1.2 MacKay Method 

 

There is another way of finding a matrix G without altering matrix H proposed by [9]. 

Suppose an M × N matrix H having K information bits in the form of: 

 

   H = [C1| C2]        (2.20) 
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where C1 is an (M × K) matrix and C2 is an (M × M) matrix. The difference is that matrix 

C2 should be a non-singular matrix or invertible matrix and matrix C1 can be any random 

matrix.  Matrix G is computed by solving H G
T 

= 0 and yields: 

 

G
T
= [IK | (C2

-1 
C1)

T
]     (2.21) 

 

This method also has a drawback in achieving a non-singular of matrix C2 which is not a 

trivial task. Encoding complexity of MacKay method is still of the order of (N²) since 

generally matrix (C2
-1 

C1)
T 

is a dense matrix.  

 

2.3.2 Encoding by Parity Check Matrix (H) 

 

Encoding by parity check matrix is utilized to take advantage of the sparseness of matrix 

H using matrix inversion method without constructing its matrix G. The benefit of this 

type of encoding method is that it can be used for random and structured LDPC codes. 

Encoding of LDPC codes via matrix H is done in accordance with c H
T
 = 0.  

 

There are two approaches used in encoding by matrix H. The first one is encoding by 

semi random parity check matrix introduced by Li Ping [17] and the other is Richardson-

Urbanke method. Encoding by semi random parity check matrix is given in section 

2.3.2.1 while Richardson-Urbanke method is explained in section 2.3.2.2 that utilizes an 

approximate lower triangular form of parity part.   

 

2.3.2.1 Encoding by Semi Random Parity Check Matrix  

 

Semi random parity check matrix divides its matrix H into information part and parity 

part. This approach is introduced in [17] and is called semi random technique since the 

information part of matrix H is created randomly and the parity part has deterministic 

construction of dual diagonal matrix. The choice of dual diagonal matrix of parity part 

will be used in encoding process from equation (2.22) to (2.24).  
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Let matrix H = [Hi | Hp] be a (N−K) × N matrix with K information. Hi is a (N−K) × K 

matrix of information part and Hp is a (N−K) × (N−K) matrix of parity part. Suppose a 

codeword (c) has a structure c = [m | p] where m is the information bit with length of K 

bits and p is parity bit with length of (N−K) bits. Applying equation H c
T
 = 0 yields:  

 

[Hi |Hp] . [m| p]
T
 = 0     (2.22) 

 

Hi m
T 
 Hp p

T 
= 0     (2.23) 

 

          p
T
= Hp

-1
Hi  m

T
     (2.24) 

 

where
  
 represents operation of modulo-2 addition. 

 

Note that matrix Hp is a square non-singular matrix with size (N−K) × (N−K) and matrix 

Hi is (N−K) × K. After getting the value of p
T
, we could find codeword (c) by inserting 

the value of p into c = [m | p]. Ensuring matrix Hp to be non-singular is an important task 

to be carried out since it is used to find its parity bit p by solving equation (2.24) and 

complete the encoding process. Since the construction of matrix Hp is dual diagonal, 

matrix Hp is always non-singular and in a full-rank condition. This gives encoding 

complexity of the order of O(N).  

 

The details of how linear encoding complexity results for dual diagonal parity part code 

construction are given below. Derived from equation (2.23), the equivalence of LDPC 

code using dual diagonal construction for matrix Hp is described below:  

 

z = Hi m
T 

= Hp p
T
     (2.25) 

 

To find parity bit p in equation (2.24), one needs to solve Hp p
T
 = z = Hi m

T
. The value of 

z is computed by determining z = Hi m
T
 then the redundant bit is computed through back 

substitution with p0 = z0 as described below: 
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    p0 = z0       

    p1 = z1 + p0 

    p2 = z2 + p1 

    p3 = z3 + p2      

     .  . 

    .  . 

    .  .    

pi = zi + pi-1  with i = 1, 2, …, (N− K) −1  (2.26) 

 

 

Since all computation for encoding are on binary values, XOR and AND gates are used 

instead of adders and multipliers that are more expensive. According to equation (2.26), 

back substitution requires (N−K) −1 XOR‟s.  

 

The total number of ones in matrix Hp is equal to ((N−K) ×j) −1 where j = 2 is the highest 

degree in each column. Since the value of (N−K) is equal to N×(1−R), the overall 

computational complexity amounts to N ×(1 −R)×j −1 ≈ O(N) described in [25].  

 

2.3.2.2 Richardson – Urbanke Method 

 

Encoding procedure of Richardson-Urbanke method is accomplished in two steps, a pre-

processing step followed by actual encoding step [16]. Pre-processing step is an offline 

calculation and actual encoding of Richardson-Urbanke method divides its matrix H into 

information and parity part that are further divided into another six sub-matrices A, B, C, 

D, E and T for encoding process.  

 

Pre-processing step of encoding in Richardson-Urbanke method is accomplished in two 

processes, triangulation and check-rank process. Triangulation is done to get an 

approximate triangular form of matrix H and check-rank process is intended to achieve 

non-singular condition for matrix (ET 
-1

B
 
+ D). An example of matrix H with an 

approximate triangular form is given by Figure 2.6. 
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In the pre-processing step, an assumption is used that matrix H is non-singular with the 

size of M × N matrix and already in full-rank condition. Since it is assumed that matrix H 

is non-singular matrix, an approximate lower triangular form of matrix H is achieved by 

performing row and column permutation only.  

 

Matrix H consists of information part (Hi) and parity part (Hp). Then, parity part of matrix 

H is divided into sub matrices that are going to be used in mathematical calculation of 

actual encoding step as given in equation (2.27) and indicated in Figure 2.6. 

 

     (2.27) 

 

According to equation (2.27), information part (Hi) of matrix H is divided into two sub 

matrices which are matrix A and C. Parity part (Hp) of matrix H is, however, divided into 

four sub matrices that are matrix B, D, E and matrix T. Matrix T has a lower triangular 

form with ones along diagonal. 

 

All of these sub matrices are sparse and each matrix contains at most O(N) elements. 

Based on Figure 2.6, the size of matrix A is (M −g) × (N −M), B is (M −g) ×g, T is          

(M − g) × (M − g), C is g × (N − M), D is g × g and E is g × (M − g).   

 

 

 

Figure 2.6: Parity check matrix (H). 
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Before applying encoding step, we need to perform check- rank process in pre-processing 

step of encoding by multiplying matrix H from the left in accordance with equation 

(2.28) and (2.29) that can be done by Gaussian elimination to effectively perform the pre-

multiplication. This process includes clearing matrix E and checking whether matrix   

(ET 
-1

B
 
+ D) or matrix  is non-singular.  

 

      (2.28) 

         (2.29) 

 

A full-rank condition of matrix (ET 
-1

B
 
+ D) is achieved if all rows of matrix (ET 

-1
B

 
+ D) 

are independent to each other. If matrix  is singular then column permutation is 

performed so as to remove this singularity in matrix H. As such, removing singularity is 

not a trivial task and needs more time to go through all the process in matrix H. 

 

Matrix H will be:   

 

                    (2.30) 

 

Let c = [m, p1, p2] be a codeword where m is the information bit and its parity part is 

divided into 1p with length g and
2p with length M – g. Actual encoding step starts with 

equation (2.31) as follows:  

 

   (2.31) 
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The result from equation (2.31) gives several equations to define the value of p1
T and p2

T 

as stated in equation (2.32) until equation (2.36) given below.  

 

       (2.32) 

  (2.33) 

DBET  1
     (2.34)  

       (2.35)   

      (2.36) 

 

Actual encoding step is aimed at solving the parity p1
T
 and p2

T
 in equation (2.35) and 

(2.36). In actual encoding step, it appears that the solution is obtained by pre-computing 

matrix −
-1

(−ET 
-1

A
 
+ C) of size g  (N−M) and then multiplying it with m

T 
of size 

(N−M) 1, giving complexity of the order of ( g  (N−M)). 

 

It is, however, possible to reduce complexity in actual encoding step by breaking the 

computation into smaller steps as given in Table 2.1 and Table 2.2. Table 2.1 and Table 

2.2 accomplish computation of parity p1
T
 and p2

T
 in equation (2.35) and (2.36) in several 

smaller steps.  

 

Table 2.1 starts to compute Am 
T
 which has complexity of the order (N) since matrix A 

is sparse. Computation of T 
-1

(Am 
T
) is of the order of (N) when computed using back-

substitution since matrix T is lower triangular form and Y = T 
-1

(Am
T
) is equivalent to  

T Y = (Am
T
).  

 

All operations in Table 2.1 have complexity of the order of (N) since matrix A, C, E and 

matrix T are all sparse matrices except operation number 6 since there is multiplication of 

matrix −
-1

 which is dense matrix of size (g  g). The complexity of determining p1
T
 

based on Table 2.1 is of the order of (N + g²). 
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Computation of matrix −
-1

 is not included in Table 2.1 and Table 2.2 since an 

assumption is used that matrix −
-1

 is already solved by other processes and yields a 

dense matrix of size g  g. Therefore, complexity in operation number 6 of Table 2.1 is of 

the order of (g²). 

 

All operations in Table 2.2 have complexity of order of (N) since matrix A, B and T are 

all sparse matrices. Operation number 4 in Table 2.2 also has complexity in order of (N) 

since it can be solved by back substitution with lower triangular form of matrix T and      

Z = T 
-1

( Am
T 

+ B p1
T
 ) is equivalent to  T Z = ( Am

T 
+ B p1

T
 ). 

 

The overall encoding complexity for Richardson-Urbanke method is seen to be of the 

order of (N + g²) as shown in Table 2.1 since computation of p1
T
 is very crucial for 

getting a codeword (c).   

 

 

Table 2.1: Computation for p1
T
 derived from [16] 

N

o 

Operation Note Complexit

y 

1 
 Multiplication by sparse matrix (N) 

2 
 

Solved by back substitution 

Y = T 
-1

( Am 
T 

)  T Y = ( Am 
T 

) 

(N) 

3 
 Multiplication by sparse matrix (N) 

4  Multiplication by sparse matrix (N) 

5 
 

Addition matrices number 3 and 4 (N) 

6 

 

Multiplication by dense – 
-1 

matrix with size of g  g 

( g²) 

 (N + g²) 
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Table 2.2: Computation for p2
T
 based on [16] 

No Operation Note Complexity 

1 
 

Multiplication by sparse matrix (N) 

2 
 

Multiplication by sparse matrix (N) 

3 
 

Addition matrices number 1 and 2 (N) 

4 
 

Solved by back substitution 

Z = T 
-1

( Am 
T 

 + B p1
T
 ) T Z = ( Am 

T 
 + B p1

T
 ) 

(N) 

 (N) 
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Summary of the proposed encoding procedure proposed by Richardson-Urbanke method 

is described by Table 2.3 [16]. 

 

 

Table 2.3: Summary of encoding by Richardson-Urbanke method based on [16] 

 

Pre-Processing Step 

Input:  Non-singular parity check matrix (H) 

1. Triangulation  

Perform row and column permutations to bring matrix H into approximate lower 

triangular form with a gap g as small as possible.  

 

2. Check-Rank 

Use Gaussian elimination to effectively perform pre-multiplication in order to check 

matrix (ET 
-1

B
 
+ D) or matrix  is non-singular. If matrix  is singular then performs 

column permutation in parity check matrix (H) to remove this singularity. 

 

 

Output:  An equivalent parity check matrix given in triangulation process such that 

matrix (ET 
-1

B
 
+ D)   or matrix  is non-singular. 

Actual Encoding Step 

Input:  Parity check matrix (H) given in triangulation process with matrix (ET 
-1

B
 
+ D) 

or matrix  is non-singular. 

1. Determine p1 as shown in Table 2.2 

2. Determine p2 as shown in Table 2.3 

Output:  Codeword c = [m, p1, p2] with cH
T
 = 0. 
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2.4 Relevant Works  

 

LDPC codes were invented by Gallager in 1960‟s. These LDPC codes are classified into 

regular codes [1, 2]. In terms of how LDPC codes are constructed, they can be divided 

into two categories which are random codes and structured codes.  

 

Random LDPC codes are constructed by computer search based on certain design rules 

or graph structures such as girth and degree distributions of nodes [14]. Long random 

LDPC codes with large value of code length (N), in general, perform closer to the 

Shannon limit than structured LDPC codes but the lack of structure due largely to 

randomness presents serious disadvantages in terms of storing, accessing large parity 

check matrix (H) and no simple encoding [11]. If LDPC codes are designed with some 

structure then some of these problems can be overcome [11].  

 

Structured LDPC codes are constructed based on algebraic (geometric) and combinatorial 

methods [14]. LDPC codes derived from algebraic methods are either cyclic or quasi 

cyclic. Some LDPC codes from combinatorial methods are also classified as quasi cyclic 

codes. One class of structured LDPC codes which is the most relevant to this work is a 

class of quasi-cyclic (QC) LDPC codes.  

 

QC LDPC codes can be used to construct two type LDPC codes which are regular and 

irregular LDPC codes. As stated above, regular LDPC codes are denoted by notation     

(j, k) regular LDPC code having fixed number j of ones in each column and also k ones in 

each row while LDPC codes that do not satisfy the stated requirements in regular LDPC 

codes are called by irregular codes. It implies that irregular codes have sparse density of 

ones in matrix H but does not have fixed number of ones in each column or in each row. 

In the next section, we will explore some relevant works in regular LDPC codes that is 

continued by relevant works in irregular LDPC codes in section 2.4.2. 
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2.4.1 Regular LDPC Codes 

 

The first code-construction of regular LDPC codes was suggested by Gallager in 1960‟s 

[1, 2]. Gallager proposed constructing LDPC codes by randomly placing ones and zeros 

in an M ×N matrix H with constraint that each column of matrix H had the same number 

of j ones and each row of matrix H had the same number of k ones. This type of low 

density parity check (LDPC) codes is called (j, k) regular LDPC codes.  

 

The construction of regular LDPC codes should obey two requirements mentioned earlier 

with one additional requirement. The first requirement is that the parity check matrix H, 

containing only elements zero and one, should contain very small proportion of ones. The 

second requirement says that the number of ones, common between any two columns, 

should be no greater than one. The additional requirement of regular LDPC codes is that 

parity check matrix (H) has fixed number of ones in each column and each row 

numbering j and k. 

 

The value of j determines the capability of error detection and correction. The larger the 

value of j in regular LDPC code, the better the performance of the code, the more 

complex the hardware realization.  

 

An example of LDPC code was proposed by Gallager in [1, 2] with the size of (15×20) 

matrix H, M = 15, N = 20, j = 3 and k = 4 described in Figure 2.5. Therefore, LDPC code 

invented by Gallager is recognized by (3, 4) regular LDPC code. Density (r) of 

Gallager‟s code below is r = j / M = k /N = 0.2. In Gallager‟s regular LDPC codes, there 

are at least (j − 1) rows of matrix H which are linearly dependent [1]. 

 

It is also possible to calculate code rate for regular LDPC codes by counting the number 

of ones in matrix H. The number of ones in each column of H is denoted by the value of j 

and the number of ones in each row of H is denoted by the value of k. The total number 

of ones in matrix H is equal to M  k = N  j, then the value of M / N is equal to j / k.  

If we change the value of M / N in equation (2.14) with j / k then: 
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   R = 1 – M / N = 1 – j / k    (2.37) 

 

The value of R in Gallager‟s code with (3, 4) regular LDPC code is given below: 

 

R = 1 – j / k = 1 – 3/4 = ¼.  

 

 

1     1  1    1  0    0  0    0  0    0  0    0  0    0  0    0  0    0  0     0 

0     0  0    0  1    1  1    1  0    0  0    0  0    0  0    0  0    0  0     0 

0     0  0    0  0    0  0    0  1    1  1    1  0    0  0    0  0    0  0     0 

0     0  0    0  0    0  0    0  0    0  0    0  1    1  1    1  0    0  0     0 

0     0  0    0  0    0  0    0  0    0  0    0  0    0  0    0  1    1  1     1 

1     0  0    0   1    0  0    0  1    0  0    0  1    0  0    0  0    0  0     0 

0     1  0    0  0    1  0    0  0    1  0    0  0    0  0    0  1    0  0     0 

H  =  0     0  1    0  0    0  1    0  0    0  0    0  0    1  0    0  0    1  0     0   

0     0  0    1  0    0  0    0  0    0  1    0  0    0  1    0  0    0  1     0 

0     0  0    0  0    0  0    1  0    0  0    1  0    0  0    1  0    0  0     1 

 

1     0  0    0  0    1  0    0  0    0  0    1  0    0  0    0  0    1  0     0 

0     1  0    0  0    0  1    0  0    0  1    0  0    0  0    1  0    0  0     0 

0     0  1    0  0    0  0    1  0    0  0    0  1    0  0    0  0    0  1     0 

0     0  0    1  0    0  0    0  1    0  0    0  0    1  0    0  1    0  0     0 

0     0  0    0  1    0  0    0  0    1  0    0  0    0  1    0  0    0  0     1 

 

Figure 2.7: (3, 4) Regular LDPC code 

 

 

Another example of regular LDPC codes is given in the previous of Figure 2.2 that 

describes a (2, 4) regular LDPC code and its Tanner graph of size (4×8) for M = 4, N = 8, 

j = 2 and k = 4. In Figure 2.2, the value of code length N is 8 bits while the value of j and 

k are 2 and 4 in (2, 4) regular LDPC code. Therefore, the value of R is given by: 

 

R = 1 – j / k = 1 – 2/4 = ½. 
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Let c be a codeword in C having j ones in each column with c H
T
 = 0. If the code C is a 

regular LDPC code, there are j parity check sums orthogonal on every code bit c. This 

means that smaller error or any error pattern with j/2 can be corrected, where  means 

the largest integer number not greater than j/2 [3], [20].  

 

Therefore, the minimum distance (dmin) of regular LDPC code is at least j + 1 that is [3], 

[13]: 

     dmin ≥ j + 1     (2.38) 

 

Based on the results in [22], the minimum distance (dmin) of (j, k) regular with quasi 

cyclic (QC) LDPC codes satisfy this equation: 

    dmin ≤ (j + 1)!     (2.39) 

 

This means that the largest value of the minimum distance (dmin) of (j, k) regular with QC 

LDPC codes is at most (j + 1)!. 

 

Regular LDPC codes with minimum distance (dmin) are able to correct all error patterns of 

weight t or smaller weight than t as given in equation (2.3). 

 

Encoding complexity of regular Gallager LDPC codes is shown to be of the order of 

(N²). An improvement of Gallager‟s original random construction is done by Mackay 

who rediscovered Gallager LDPC codes in 1999 [9]. The key idea is to construct parity 

check matrix with a well-defined invertible sub-matrix of parity part. Thus, one can 

generate the generator matrix in term of invertible matrix.  

 

As mention in section 1.3, MacKay and Davey [22] stated that regular LDPC codes with 

column weight j = 3 give weak codes if they are applied in high code rate (R > 0.875) 

using code length around thousand bits (N ≤ 4000). They suggested to use regular LDPC 

codes with column weight j = 4 to get a better performance than column weight j = 3 in 

high code rate (R > 0.875). 
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The other construction of regular LDPC codes using an algorithm is proposed by Xiao 

Yu Hu et al [28] as non-algebraic method that builds Tanner graph with large girth by 

progressively establishing edges or connections between variable and check nodes in an 

edge-by-edge manner, called progressive edge-growth (PEG) construction. Regular 

construction of PEG algorithm has a good performance and large girth but encoding 

complexity is of the order of (N²). Yet, another algorithm for regular LDPC codes 

proposes additional pivoting and bit-reversed algorithm to achieve non-singular parity 

check matrix in regular Gallager LDPC code that requires process of swapping rows-

columns and bit-reversed procedure [29]. The process of swapping rows-columns and bit 

reversed procedure prepares matrix H in a manner suitable to be used in actual encoding 

step. Work in [29] claims to have low encoding complexity but how low the complexity, 

does not state clearly. 

 

The algebraic construction of regular QC LDPC codes perform quite well compared to 

regular random LDPC codes at short to moderate block lengths. But, for long block 

lengths, a randomly constructed regular LDPC code typically performs somewhat better 

[11]. In fact, well-designed structured LDPC codes perform equally well as their 

equivalent random LDPC codes do in terms of BER performance, BLER performance 

and error-floor [14].  

 

Some works on structured regular LDPC codes from a class of QC codes are given in 

[10], [11], [12], [13], [14], [18], [23], [26], [31], [32] and [35]. Fossorier [10] investigates 

the construction of LDPC codes from circulant permutation matrices. He shows that 

LDPC codes with a girth of at most 12 are relatively easy to obtain but such codes can 

not have a girth larger than 12. This construction does not guarantee achieving a full-rank 

matrix H. 

 

R. Michael Tanner et al [11] present a class of algebraically structured QC LDPC codes 

and their convolutional counterparts. These QC LDPC codes compare favorably with that 

of randomly constructed for short to moderate code length while the performance of 
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LDPC convolutional codes is superior to that of the QC codes on which they are based. 

These QC LDPC codes have at least (j − 1) dependent rows in matrix H.  

 

Zongwang Li et al [12] address the issue of efficient encoding of QC LDPC codes. They 

find the generator polynomial of QC-LDPC codes from their parity check matrices. Even 

though they show that the encoding complexity of a QC LDPC code is linearly 

proportional to the length of the code, there may still exist linear dependent rows of 

matrix H due to cyclic structure [12]. 

 

Yu Kou et al [13] show a geometric approach to the construction of LDPC codes based 

on lines and points. Furthermore, they can obtain either cyclic or quasi-cyclic structure 

and their encoding can be achieved in linear time with simple feedback shift register. 

These long extended codes achieve a performance a few tenths of a decibel away from 

Shannon limit. However, the rows of their matrix H are not necessarily linearly 

independent [13]. 

 

Bassem Ammar et al [14] present a method for constructing structured regular LDPC 

codes based on a special type of combinatorial design. Several classes of these codes are 

quasi-cyclic and their encoding can be implemented with simple feedback shift registers. 

R. Michael Tanner [18] generates (3, 5) regular QC LDPC codes with code length 155 

and minimum distance 20.  T. Zang and Parhi [23] report a construction of (3, k) regular 

LDPC codes that fit to partly parallel decoder. Gabofetswe Malema and Liebelt [26] 

propose an algorithm to construct (2, k) regular QC LDPC code codes over wide range of 

girths, rates and lengths. Xu Xia et al [31] construct (3, k) regular QC LDPC codes at 

high code rate derived from permutation theorem for Latin squares. Sunghwan Kim et al 

[32] analyze the cycles of Tanner (3, 5) QC LDPC codes and their girth values are 

derived. H. Tang et al [35] propose regular Gallager LDPC codes and circulant LDPC 

codes using algebraic construction. All of these constructions of regular QC LDPC codes 

in [14], [18], [23], [26], [31], [32], [35] may have some linear dependent rows of matrix 

H. 
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Another structured construction of regular LDPC is derived from combinatorial methods 

as given by [14], [15], [49], [51]. In [14], Bassem Ammar et al present a method for 

constructing structured regular LDPC codes based on a special type of combinatorial 

design. Sarah. J. Johnson and S. R. Weller [15, 49] propose (3, k) and (4, k) regular 

LDPC codes based on resolvable Steiner 2-designs based on combinatorial method. 

Masaya Fujisawa and S. Sakata [51] show a class of regular LDPC codes from a cyclic 

difference family which is also a kind of combinatorial design. Unfortunately, all 

combinatorial constructions of regular LDPC codes in [14], [15], [49], [51] do not 

guarantee linearly independence rows among matrix H. 

 

Based on discussion above, random construction of regular Gallager codes and regular 

structured construction of LDPC codes like QC LDPC and combinatorial designs may 

have some dependent rows in its matrix H. This condition means that the matrix H is 

rank-deficient and the codes have a slightly higher code rate (R) than the matrix H 

indicates denoted by R ≥ (1 − j/k).  

 

In order that the rows of matrix H are linearly independent, a full-rank condition of 

matrix H is needed to be achieved by either erasing these dependent rows or replacing 

with new rows which are independent to each other. Basically, erasing or replacing these 

dependent rows to achieve a full-rank of matrix H needs additional time. The 

characteristic of rank–deficiency of matrix H occurs not only in regular LDPC codes but 

also in some of irregular LDPC codes.  

 

Despite rank-deficiency of matrix H, another issue in regular LDPC codes is high 

encoding complexity. In general, before encoding, regular LDPC codes convert matrix H 

into systematic structure of matrix G by Gauss elimination that has complexity of the 

order of (N³) where N is the code length of LDPC codes [11, 16]. When N is large, 

Gauss elimination can be costly in terms of both memory and operations involved [17]. 

Moreover, the parity part of matrix G is generally a dense matrix, so encoding complexity 

of LDPC codes becomes prohibitively complex, ~(N²) since the value of N achieves 

hundreds to thousands of bits or more [11, 52].  
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Observation 

 

As shown previous, the general fact that the regular LDPC codes employ a very low 

complexity decoding, the rank-deficiency of matrix H, high encoding complexity and 

Gauss elimination before encoding are serious issues that researchers are still grappling 

with.  

  

QC LDPC codes solve high encoding complexity in regular LDPC codes since they have 

sufficient structure to allow simple encoding and they can be encoded with simple shift 

registers based on their generator polynomial in matrix G [12, 13, 14]. Unfortunately, this 

type of encoding is only useful for a class of QC and cyclic codes.  

 

Moreover, if QC LDPC codes are encoded by parity check matrix using inversion 

method, we still need other process before encoding. Hanghang Qi and Norbert Goertz 

[52] show that if regular QC LDPC codes are encoded by Richardson-Urbanke method as 

one example of encoding by parity check matrix using inversion method, they require a 

pre-processing step of the order of (N³). 

 

In order to overcome the general issues in the design of regular LDPC codes, we propose 

a code-construction method for constructing not only (3, k) regular but also irregular 

LDPC codes that has no rank-deficiency in matrix H. The proposed code-construction 

follows the construction method of quasi-cyclic (QC) LDPC codes that use right cyclic 

shift.  

 

Moreover, the proposed LDPC codes can be encoded by parity check matrix using 

Richarson-Urbanke as one of matrix inversion method. It implies that the proposed 

LDPC codes are able to avoid pre-processing step of the order of (N³). The proposed 

LDPC codes also have low encoding complexity and non-singular parity part.  
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2.4.2 Irregular LDPC Codes 

 

Irregular LDPC codes are LDPC codes that do not satisfy the stated requirements in 

regular LDPC codes. It implies that their matrix H has sparse density of ones but does not 

have fixed number of ones in each column and in each row. If matrix H has variable 

number of ones occurring only in each column or in each row, such codes are still 

identified as irregular LDPC codes.  

 

Since irregular LDPC codes have variable number of ones, we use the term „degree 

distribution‟ to measure the variability of ones in matrix H. Degree distribution of 

variable nodes describes degree distribution of ones in each column while degree 

distribution of check nodes represents degree distribution of ones in each row. Degree 

distribution is useful to measure the value of R in random construction of irregular LDPC 

codes, since arbitrary matrix H is having unclear boundary between information part and 

its redundant part.  

 

In degree distribution, we need to find fraction of edges which are connected to degree-i 

variable nodes denoted by i in each column and fraction of edges which are connected to 

degree-i check nodes denoted by i in each row. Therefore, the value of R in irregular 

LDPC codes is defined in equation (2.40) where i is the total number of nodes with the 

value of i i = 1 and i i = 1. 

 

R = 1 – ((i i / i) / (i i / i))     (2.40)  

 

An example of a 4×8 irregular LDPC code and its Tanner graph are explained in Figure 

2.8 that has an irregular composition of ones in each column and regular composition of 

four ones in each row.  

 

i i / i = 1/8.   

i i / i = 1/4. 
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  v1  v2 v3   v4  v5  v6  v7  v8            Tanner graph 

     1    0 1    0    1    0 1    0    c1  v1  

 H  = 1    0  0    1    0    1  0    1   c2  v2     c1 

0    1  1    0    0    1    1    0      c3  v3      

1    0  0    1    1    0    0    1      c4  v4     c2 

      v5 

      v6     c3 

        v7    

        v8    c4 

Figure 2.8: Irregular LDPC code and its Tanner graph 

 

 

This irregular LDPC code has a code length of 8 bits with total number of variable nodes 

is eight and total number of check nodes is four. Therefore, the value of R for this 

irregular LDPC code is R = 1 - 4/8 = ½. Measuring the value of R for this irregular LDPC 

code can also be done by equation (2.14) above, so the value of R is 1 – 4/8 = ½ that 

gives the same result as equation (2.40).  

 

If the code C is an irregular code with minimum column weight (jmin), there are at least 

jmin parity check sums orthogonal on every code bit. Then, smaller errors or any error 

pattern with jmin/2 can be corrected, where  means the largest integer number not 

greater than jmin/2 [3], [20]. 

 

Thus, the minimum distance (dmin) of irregular LDPC code is lower bounded by jmin+1 

that is [3], [20]: 

 

     dmin ≥ jmin + 1     (2.41)  

 

Irregular LDPC codes with minimum distance (dmin) are able for correcting all error 

patterns of weight t or smaller weight than t as given in equation (2.3). 
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Irregular code-construction of LDPC codes were developed after the invention of (3, k) 

regular Gallager codes, firstly introduced in [36], [37] and further studied in [38], [39], 

[40] as randomly constructed LDPC codes. Luby et al showed that irregular random 

LDPC codes perform better than regular random ones [38, 39].  

 

Another approach in random construction of irregular LDPC codes computed the 

threshold of noise level for a large class of binary input channels by density evolution 

like [8], [30]. Here, the threshold of noise level means the maximum noise level that has 

the zero probability as the code length tends to infinity [24]. In other word, density 

evolution is an expected behavior with cycle free graph to obtain the zero probability as 

the code length goes to infinity [8], [30].  

 

Density evolution tracks the evolution of message distribution associated with probability 

of error as a function of iteration number and iterative decoding [25]. Density evolution 

observes convergence at some fixed SNR from one decoder iteration to the next iteration. 

A plot is made showing the evolution of density that will be used to determine a 

threshold. A threshold is defined when the probability of error converges to zero as the 

number of iterations tends to infinity and gives asymptotical performance of infinite code 

length in LDPC codes.  

 

This approach has proven to achieve arbitrarily close to Shannon limit by long random 

irregular LDPC codes show by Chung et al that achieve outstanding performance using 

degrees of nodes varying from 2 to 8000. It showed that in computer simulation at a BER 

of 10
-6
, code rate ½ and block length of 10

7
 bits with binary input can achieve a threshold 

of just 0.0045 dB away from Shannon limit in additive white Gaussian noise (AWGN) 

channel [8].  

 

If the asymptotical performance of density evolution utilized in finite length of LDPC 

codes, a high error floor may result since Tanner graph for finite lengths can not be made 

cycle free. Therefore, it is not guaranteed that finite length LDPC codes with degree 

distribution suggested by density evolution will have good performance [24]. 
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Generally, long random irregular LDPC codes outperform algebraically constructed 

irregular LDPC codes like cyclic or quasi cyclic. On the other hand, for medium-length 

LDPC codes (up to a few thousands bits long for code rate R = ½), the situation is quite 

different. For these lengths, irregular LDPC codes are generally not better than regular 

ones, and algebraic constructions can outperform random ones [10]. 

 

Works of irregular QC LDPC codes are shown in [11], [12], [24], [45], [46], [47], [48], 

[50]. R. Michael Tanner et al [11] and Zongwang Li et al [12] are able to construct 

irregular QC LDPC codes even though there is rank-deficiency of matrix H. Rank–

deficiency of matrix H in irregular QC LDPC codes is also found in Sarah. J. Johnson 

and S. R. Weller [47] and Gianluigi Liva et al [50]. 

 

Other works on irregular QC LDPC codes are shown by Seho Myung et al [24], IEEE 

P802.16e
TM

 [45], IEEE P802.11.n
TM

/D1.02 [46] and Jeong Ki Kim et al [48]. These QC 

LDPC codes can be encoded using Richardson-Urbanke method and achieve linear 

encoding complexity by solving inverse matrix (ET 
-1

B
 
+ D) as an identity matrix with 

the value of g
2
 = 0.  

 

Some works on structured irregular LDPC codes that can be encoded by parity check 

matrix using inversion method are these of Li Ping et al [17], Michael Yang et al [41], R. 

Echard and S. Chang [42], Hughes Network System [43] by constructing parity part 

using dual diagonal construction.  

 

Dual diagonal parity part is introduced by Li Ping et al [17] in 1999 known as semi 

random parity check matrix and classified into eIRA LDPC codes. Parity check matrix 

using dual diagonal parity part yields non-singular matrix and solves equation (2.37) 

without Gauss elimination of H and converting into G. Therefore, advantages of dual 

diagonal parity part in matrix H are non-singular parity part, no Gauss elimination in H if 

encoded by inversion method and linear encoding complexity denoted by O(N).  

 



 

50 

 

Nowadays, LDPC codes have been implemented in the 2
nd

 standard of digital video 

broadcasting (DVB-S2) for the satellite transmission of digital television in 2003 [44], 

adopted as one of optional ECC in IEEE 802.16e [45] and adopted as the up-coming 

IEEE 802.11n standard [46] even though these code performances are not categorized 

into outstanding performance in LDPC codes.  

 

DVB-S2 standard applies dual diagonal construction of parity part in order to utilize all 

of its advantages that follow the construction in [17], [41], [42], [43]. Meanwhile, 

adopted LDPC codes for IEEE 802.16e standard [45] and the up-coming IEEE 802.11n 

standard [46] utilize base matrices of dual-diagonal parity part with single weight-3 

column.  

 

Base matrices of dual-diagonal parity part with single weight-3 column have the same 

advantages as dual-diagonal parity part and are categorized into irregular QC LDPC 

codes. An example of base 6 × 6 matrix of dual-diagonal parity part with single weight-3 

column is given by Figure 2.9 [55]. 

 

              1     1    0    0    0    0     

0     1    1    0    0    0     

    1     0    1    1    0    0         

        Hp = 0     0    0    1    1    0                 

      0     0    0    0    1    1         

1     0    0    0    0    1         

     

Figure 2.9: Matrix Hp of dual-diagonal parity with single weight-3 column. 

     

 

Observation 

 

In this section, we observe all relevant works of this thesis that have been presented 

above including regular and irregular LDPC codes. Derived from the discussion above, 

there are two categories of method of code-construction which are random and structured 

LDPC codes.  
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The most relevant to this work among structured LDPC codes is QC LDPC. Most 

commonly, the construction of QC LDPC codes whether regular or irregular LDPC codes 

have rank-deficiency of matrix H.  

 

However, there is one example of irregular QC LDPC codes in the literature [45, 46, 55] 

that utilizes base matrices with dual-diagonal parity part and single weight-3 column. It 

gives rise to no rank-deficiency and has linear encoding complexity when encoded by 

their parity check matrix using Richardson-Urbanke. Linear encoding complexity of 

Richardson-Urbanke method in this irregular QC LDPC codes is achieved by solving a 

matrix equation where the inverse matrix (ET 
-1

B
 
+ D) is equal to an identity matrix while 

g
2
 = 0. This type of irregular QC LDPC code has the same advantages as those with dual-

diagonal parity part. As already mentioned above, these irregular QC LDPC codes have 

been adopted for IEEE 802.16e standard [45] and the up-coming IEEE 802.11n standard 

[46]. 

 

Unfortunately, these advantages of parity-check matrix with dual-diagonal parity part 

and/or dual-diagonal parity part with single weight-3 column are only applicable for 

irregular LDPC codes precluding regular LDPC codes. Irregular LDPC codes are type of 

LDPC codes that do not satisfy the constant number of ones in each row and column.  

 

Therefore, there is scope for research into code-construction method for regular LDPC 

codes that has all the stated advantages of dual-diagonal parity part.  

 

The summary of relevant works in regular and irregular LDPC codes is presented in 

Table 2.4. 
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Table 2.4: Summary of relevant works in regular and irregular LDPC codes 

References Proposed Technique 

Contribution 

Results 

 

Analysis / Comments 

 Ref Year 

[1, 2] 

Gallager 
1960‟s 

The first code-

construction method of 

LDPC codes with 

iterative decoding. 

o (3, 4) regular LDPC code 

with N = 20. 

o There are at least (j − 1) 

linear dependent rows of H. 

Encoding complexity is 

(N²) by converting H to 

G. 

[36] M. 

Luby 

et al 

 

1998 

Novel algorithm to 

construct irregular LDPC 

codes. 

Encoding complexity is        

 (ln (1/є) × N) with є is any 

real number. 

This construction does not 

guarantee to obtain a full-

rank matrix H. 

[38] M. 

Luby 

et al 

1998 

Novel algorithm to 

construct irregular 

random LDPC codes.   

Compare LDPC codes with 

code rate R = ½ and show 

that irregular random LDPC 

perform better than regular 

random ones. 

o Encoding complexity is 

(N²). 

o This construction does not 

guarantee a full-rank H. 

[17] Li 

Ping et al 

 

1999 

The first dual-diagonal 

construction of parity part. 

This code is known as 

extended-irregular RA       

(e-IRA).  

Dual-diagonal parity part 

with R = {1/3, ½, 2/3},           

K = 3000 in AWGN channel.  

o Encoding complexity is 

(N) by inversion of sub 

matrix of H. 

o This construction 

guarantees a full-rank H. 

[9] 

MacKay 
1999 

Matrix H with a well-

defined invertible parity 

part. Thus, one can 

generate matrix G in term 

of invertible matrix. 

(3, 6) regular LDPC codes 

with R = ½, N = {504, 1008} 

and AWGN channel. 

o Encoding complexity is 

(N²). 

o This construction does not 

guarantee a full-rank H. 

[22] 

MacKay 

and 

Davey 

 

2000 

Evaluation of Gallager 

codes for short block 

length and high rate 

application. 

o (4, k) regular LDPC codes 

with R > 0.875, N ≤ 4000 

and AWGN channel. 

o (3, k) regular LDPC codes 

with j = 3, R > 0.875 and     

N ≤ 4000 are weak codes. 

o The minimum distance (dmin) 

o Encoding complexity is 

(N²). 

o This construction does not 

guarantee a full-rank H. 
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of (j, k) regular QC LDPC 

codes. 

[8] S.Y. 

Chung   

et al 

 

2001 

The best random irregular 

LDPC code using density 

evolution and varying 

degrees of nodes from 2 

to 8000. 

An irregular LDPC code 

achieves 0.0045 dB away 

from Shannon limit at a BER 

of 10
-6 

using with R = ½,       

N = 10
7
 and AWGN channel. 

o Encoding complexity is 

(N²). 

o This construction does not 

guarantee a full-rank H. 

[17] 

Richardson 

and 

Urbanke 

 

2001 

An algorithm to encode the 

information bits for any 

type of LDPC codes using 

an approximate lower 

triangular form of H. 

Example of (3, 6) regular 

LDPC code with R = ½,          

N = 12, g = 2 and encoding 

complexity (N + g²). 

 

This construction does not 

guarantee a full-rank H. 

[30] 

Richardson 

et al 

 

2001 

Random regular and 

irregular LDPC codes 

using density evolution. 

Random (3, 6) regular LDPC 

code achieves 0.06 dB away 

from Shannon limit at a BER 

of 10
- 6 

with R = ½, N = 10
6
 

bits and AWGN channel.  

o Encoding complexity is 

(N²). 

o This construction does not 

guarantee a full-rank H. 

[13] Yu 

Kou 

et al 

 

2001 

The first construction of 

(j, k) regular QC LDPC 

codes. 

Regular LDPC codes with     

j > 3, R > ½, N > 250, 

AWGN channel, SPA 

decoding and how close to 

Shannon limit at BER of     

10
- 4

and 10
- 5

.    

o Encoding complexity is 

(N) using shift registers 

that is useful only for a 

class of QC and cyclic. 

o This construction does not 

guarantee a full-rank H. 

[44] 

DVB-S2 

Standard 

 

2003 

Outer codes for 

encoder/decoder of DVB-

S2 using eIRA LDPC and 

dual-diagonal parity. 

Irregular LDPC codes with 

variable R, code length N = 

{16200, 64800} and full-rank 

of H. 

Encoding complexity is 

(N) by inversion of sub 

matrix of H. 

 

[29] Su 

Chang 

Chae and 

Park 

2004 

Additional pivoting and 

bit-reversed algorithm to 

achieve non-singular 

matrix H.  

(3, 6) regular LDPC codes 

with R = ½, N = {900, 1800}, 

AWGN channel and BPSK 

modulation. 

This claims to have low 

encoding complexity but 

how low the complexity, 

does not state clearly. 

[10] 

Fossorier 
2004 

Construction of QC 

LDPC codes from 

o (3, 13), (4, 9), (4, 18),         

(8, 18) and (16, 16) regular 

o Encoding complexity is 

(N) using shift registers 
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 circulant permutation 

matrices.  

QC LDPC codes with R = 

{0.55, 0.77}, N = {1050, 

4100} and AWGN channel.  

o A simple and sufficient 

condition to determine QC 

LDPC codes with girth ≤ 12. 

that is useful only for a 

class of QC and cyclic. 

o This construction does not 

guarantee a full-rank H. 

[11] R. 

Michael 

Tanner  

et al 

 

  2004 

Design of QC LDPC 

codes and their 

convolutional 

counterparts. The regular 

convolutional LDPC 

codes outperform regular 

QC LDPC codes. 

o (3, 5), (5, 7) regular and 

irregular QC LDPC codes 

with R < 0.5, N ≤ 10000 and 

AWGN channel. 

o These QC LDPC codes have 

at least (j − 1) dependent 

rows in matrix H. 

o Encoding complexity is 

(N) using shift registers 

that is useful only for a 

class of QC and cyclic. 

o This construction does not 

guarantee a full-rank H. 

[14] 

Bassem 

Ammar 

et al 

 

2004 

(4, k) and (5, k) regular 

LDPC codes based on 

combinatorial design. 

(4, k) and (5, k) regular LDPC 

codes with R > 0.7, N < 8500, 

AWGN channel, SPA 

decoding and how close to 

Shannon limit at BER of 10
- 6

. 

o Several classes are QC 

codes and encoding 

complexity is (N) by shift 

register. While, other classes 

have complexity of the order 

of (N²). 

o This construction does not 

guarantee a full-rank H. 

[23]  

T. Zang 

and Parhi 

 

2004 

A partly parallel decoder 

using (3, k) regular LDPC 

codes. 

(3, 6) regular LDPC codes 

with R = 0.5, N = {2304, 

4608}, AWGN channel and 

BPSK modulation.  

o Encoding complexity is 

(N) using shift registers 

that is useful only for a 

class of QC and cyclic. 

o This construction does not 

guarantee a full-rank H. 

[45] IEEE 

802.16e
TM

 
2005 

A standard for 

encoder/decoder of IEEE 

802.16.e using irregular 

QC LDPC codes.  

Irregular QC LDPC codes 

with base matrices of dual-

diagonal parity part with 

single weight-3 column. 

o Encoding complexity is 

(N) using Richardson - 

Urbanke method. 

o This construction 

guarantees a full-rank H. 
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[28] Xiao 

Yu Hu   

et al 

 

2005 

An algorithm to build 

Tanner graph with large 

girth by progressively 

establishing edges called 

progressive edge-growth 

(PEG) as non-algebraic 

method. 

(3, 6) regular LDPC codes 

with R = ½, N = {504, 1008} 

and AWGN channel 

compared with MacKay‟s 

work [9]. 

Encoding complexity is  

(N²) by converting H to G 

[24] 

Seho 

Myung 

et al  

2005 

A code-construction for 

irregular LDPC codes 

with linear encoding 

complexity.  

Irregular QC LDPC code 

with R = ½, N = 1000 and 

AWGN channel. 

Encoding complexity is 

(N) using Richardson - 

Urbanke method. 

[12] 

Zongwang 

Li  

et al 

 

2006 

Efficient encoding of QC 

LDPC codes using simple 

shift register.  

(4, 32) regular QC LDPC and 

irregular QC LDPC code with 

R = 0.875, N = {8176, 

10272}, AWGN channel, 

BPSK modulation, SPA 

decoding and how close to 

Shannon limit at BER of 10
-6
.  

o Encoding complexity is 

(N) using shift registers 

that is useful only for a 

class of QC and cyclic. 

o This construction does not 

guarantee a full-rank H. 

[26] 

Gabofetswe 

Malema 

and 

Liebelt 

2007 

An algorithm to construct 

(2, k) regular QC LDPC 

codes over wide range of 

girths. 

(2, k) regular QC LDPC code 

with R < 0.875, N < 4500, 

AWGN channel and BPSK 

modulation. 

o Encoding complexity is 

(N) using shift registers 

that is useful only for a 

class of QC and cyclic. 

o This construction does not 

guarantee a full-rank H. 

[52] 

Hanghan

g Qi and 

Norbert 

Goertz 

2007 

Investigation of encoding 

process when regular QC 

LDPC codes are encoded 

by Richardson-Urbanke 

method. 

(2, k), (3, k), (4, k) and (5, k) 

regular QC LDPC codes with 

N < 3000. 

o Encoding complexity is   

(N + g²). 

o Regular QC LDPC codes 

require a pre-processing 

step of the order of (N³). 
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2.5 Summary 

 

This chapter explores background concept of this work, some crucial issues in regular 

LDPC codes and some related works in LDPC codes. In general, issues in regular LDPC 

codes are rank-deficiency of matrix H, Gauss elimination before encoding and high 

encoding complexity.  

 

QC LDPC codes achieve linear encoding complexity since they have sufficient structure 

to allow simple encoding and they can be encoded with simple shift registers based on 

their generator matrices. Unfortunately, QC LDPC codes may have some dependent rows 

in matrix H. If QC LDPC codes are encoded by parity check matrix using inversion 

method, they require a pre-processing step of the order of (N³).  

 

Meanwhile, implemented irregular LDPC codes in some standards [44], [45], [46] 

achieve non-singular parity part, linear encoding complexity and no pre-processing step 

of the order of (N³) if encoded by inversion method even though their code 

performances are not the best in irregular LDPC codes.  

 

Derived from explanation above, one characteristic of implemented LDPC codes is that 

they can be encoded by their parity check matrix using matrix inversion method with no 

pre-processing step. 
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CHAPTER 3 

PROPOSED LDPC CODE-CONSTRUCTION 

 

 

 

3.1 Introduction 

 

In the previous chapter, we covered background study and literature review of this thesis 

that includes basic concepts of LDPC codes, encoding of LDPC codes and some relevant 

literature on (3, k) regular and irregular LDPC codes. It also included some critical issues 

in general design of regular LDPC codes like the rank-deficiency of matrix H, Gauss 

elimination before encoding and high encoding complexity.  

 

In order to overcome these problems in the design of regular LDPC codes, section 3.2 

proposes a novel code-construction method for constructing not only (3, k) regular LDPC 

codes but also irregular LDPC codes that has no rank-deficiency in matrix H, has low 

encoding complexity and also has no singular parity part.  

 

The details of how to obtain the desired code rate, R, for (3, k) regular and irregular 

LDPC codes is described in section 3.3. Section 3.4 explores encoding scheme utilized in 

the proposed code-construction that covers both the encoding procedure and its encoding 

complexity.  

 

 

3.2   Code-Construction 

 

The proposed code-construction method follows the construction method of quasi-cyclic 

(QC) LDPC codes that use right cyclic shift. It consists of an information part and a non-
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singular parity part. For achieving no rank-deficiency of matrix H, low encoding 

complexity and non-singular parity part, we propose a structured construction of matrix 

H, wherein the information part (Hinf) employs random right cyclic shift of identity 

matrix and the parity part (Hpar) employs an approximate lower triangular form.  

 

The proposed code-construction is divided into three stages. The first stage consists of 

building the parity part of the matrix H (using deterministic base matrix) in the form of 

approximate lower triangular structure, then expanding the parity part by one expansion 

factor. The second stage builds the information part of the matrix H (using deterministic 

base matrix), then expanding the information part by another expansion factor, and lastly 

combined together as one matrix H. In the third stage, each element in H is expanded by 

another expansion factor (L1), wherein element 0 becomes the L1 × L1 matrix of 0‟s and 

each element 1 becomes an identity matrix of L1 × L1.  

 

The proposed matrix H is represented by H = [Hinf | Hpar] as given in Figure 3.1. 

 

 

Figure 3.1: Proposed parity check matrix (H). 

 

 

An advantage of the proposed matrix H is that its parity part (Hpar) can be used for 

constructing not only (3, k) regular but also irregular LDPC codes. The distinction 

between the proposed (3, k) regular and irregular LDPC codes is mainly in their 

information part (Hinf) that is constructed in the second stage of code-construction. The 
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(3, k) regular code follows the condition of 3 ones in each column of the information part 

while the irregular code is not required to abide by this condition.  

 

Suppose we would like to construct (3, k) regular LDPC codes, it means that there is 

fixed number of 3 ones in each column and fixed number of k ones in each row of matrix 

H. In order to satisfy (3, k) regular in the proposed matrix H, there must be constant 

number of 3 ones in each column of information part and there should be constant 

number of 3 ones in each column of parity part. For a general formulation, let ji be the 

number of ones in each column of information part and let jp be the number of ones in 

each column of the parity part. Of course, for (3, k) regular LDPC codes, j = ji = jp = 3. 

 

Since the proposed matrix H has two parts, constant number of k ones in each row of 

matrix H is achieved by adding constant number of ones in each row of information part 

denoted by parameter ki and also with constant number of ones in each row of parity part 

denoted by  parameter kp. In other words, the value of parameter k is equal to k = ki + kp. 

These four parameters (parameter ji, jp, ki and kp) retain their values in the first, the 

second and the third stage of code-construction.  

 

There are eight parameters used in the proposed code-construction. They are parameter 

base, expansion factor L, expansion factor Z, expansion factor L1, parameter ji, parameter 

ki, parameter jp and parameter kp. Parameters utilized in the first stage of code- 

construction are parameter base, expansion factor L, parameter jp and parameter kp. The 

second stage employs expansion factor Z, parameter ji and parameter ki while the third 

stage of code-construction utilizes only one parameter called expansion factor L1.  

 

There are two parameters (jp
 
= 3 and kp

 
= 3) determined from the specifications while 

expansion factor Z is influenced by expansion factor L, parameter base and ji. This 

implies that only five parameters (base, L, L1, ji and ki) influence the proposed code-

construction. Parameters applied in the proposed code-construction are explained in 

Table 3.1 for (3, k) regular LDPC and irregular LDPC codes. 
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Table 3.1: Parameters utilized in the proposed code-construction 

Type of  

LDPC 

Codes 

1
st
 Stage of Code-Construction 2

nd
 Stage of Code-Construction 

3
rd

 Stage of 

Code 

Construction 
Parity Part Information Part 

jp
 

(Given) 

kp
 

(Given) 

Base 

(Design 

variable) 

L 

(Design 

variable) 

ji
 

(Design 

variable) 

ki
 

(Design 

variable) 

Z 

(Derived) 

 

L1 

(Design 

variable) 

 

(3, k) 

Regular 

jp = 3 

 

Constant 

value 

 

kp = 3 

 

Constant 

value 

 

Base 

 

Variable 

Value 

L 

Variable 

Value 

 

ji = 3 

 

Constant 

value 

 

 

ki
 

Variable 

Value 

 

Influenced 

by L, base 

and 

ji = 3 

 

In Equation 

(3.3) 

 

L1 

 

Variable Value 

 

Irregular 

jp = 3 

 

Constant 

value 

 

kp = 3 

Constant 

value 

 

Base 

 

Variable 

Value 

L 

 

Variable 

Value 

ji ≠ 3 

 

Variable 

Value not 

equal to 3 

 

ki
 

Variable 

Value 

Influenced 

by L, ji and 

base. 

In Equation 

(3.2) 

L1 

 

Variable Value 

 

 

 

The proposed code-construction is also described in the flowchart given in Figure 3.2. 

  

The use of these parameters in the proposed code-construction will be presented in the 

following section. The description of the proposed matrix H in the first stage, the second 

stage and the third stage of code-construction for (3, k) regular and irregular LDPC codes 

are given in section 3.2.1, section 3.2.2 and section 3.2.3.  
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Figure 3.2: Flowchart of the proposed code-construction. 

Combine Matrix Hi and Hp:  
H1 = [Hi, Hp] 

Expand H1 with Expansion Factor L1 with no RCS 
to construct matrix H 

Display 
H = [Hinf, Hpar] 

  

 
End 

Build Base Matrix for  
Parity Part: 

(Base × Base) 

Expand with Expansion Factor L with 
Deterministic RCS to construct Matrix Hp 

Yes 

Determine ji ≠ 3 

Build Base Matrix for  
Information Part: 

(ji ki)  
with all values of ones. 

Expand with Expansion Factor Z 
with Random RCS to construct Matrix Hi 

Get Code Length (N) 
and Code Rate (R) 

Start 

 (3, k) Regular ? 

ji = 3 
 

Yes 

Random ? 

No 

End 

1. Determine the value of ki from R (Eq.3.18): R = ki ÷ (ji + ki) 
2. Determine Parameter Base, L, L1 from the value of N, ji and ki. 

3. Determine Expansion Factor Z from (Eq. 3.2): Base  L ÷ ji 
 

Build Parity Part Build Information Part 

No 

Use Other 
Method 

Irregular Codes 
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3.2.1 First Stage of Code-Construction – Parity Part 

 

The basic design philosophy of the proposed parity part in the first stage of code-

construction is to build a triple diagonal base matrix, to put some constraints to meet the 

condition of 3 ones in each column and each row in the form of (3, 3) regular LDPC code 

and to expand it with expansion factor L.  

 

The main purpose of deterministic construction for parity part is to achieve non-singular 

parity matrix with an approximate triangular form which avoids pre-processing step of 

encoding as stated in section 2.3.2.2. 

 

As already mentioned, there are four parameters utilized in the code-construction. 

Parameters utilized in constructing parity part in the first stage of code-construction are 

parameter base, expansion factor L and two deterministic parameters (jp = kp = 3). 

 

Parameter base creates deterministic base matrix in parity part. This base matrix is then 

expanded by expansion factor L in the first stage of code-construction. Expanded base 

matrix of parity part is denoted by matrix Hp. The parity part of the proposed (3, k) 

regular and irregular LDPC codes is the same that constructs (3, 3) regular LDPC codes 

denoted by Hp.  

 

Since the goal of deterministic base matrix of parity part is to build (jp, kp) regular LDPC 

code with jp = kp = 3, there is an additional parameter needed to construct base matrix in 

the form of triple diagonal matrix, given by parameter base. The parameter base acts as a 

variable with base > 3 so as to construct a deterministic base matrix of size (base × base) 

having (3, 3) regular form. Variable expansion factor L  3 expands this base matrix into 

matrix Hp. 
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The design methodology given hereafter must adhere to the following requirements: 

 

1. The base matrix, and therefore, the matrix Hp must have 3 ones in all the columns 

and rows to be (3, 3) regular base matrix. 

2. The base matrix, and therefore, the matrix Hp must have none or as few as 

possible the girth of 4-cycles. 

3. The base matrix, and therefore, the matrix Hp should be approximately lower 

triangular form. 

 

Accordingly the following are the steps in designing the base matrix which is then 

suitably expanded to form the parity check matrix H. 

 

 Build base matrix in the form of triple diagonal matrix with the size of (base × 

(base+j-1)). Each element of base matrix has coordinate position of (x, y) in the triple 

diagonal base matrix.  

 

An example is illustrated in Figure 3.3 with parameter base = 7, j = 3 and the size of 

(7×9). The column of base matrix in Figure 3.3 has coordinate of (1, 1) until (1, 9) 

while the row of base matrix in Figure 3.3 has coordinate of (1, 1) until (7, 1).  

 

                  1    1    1    0    0    0    0    0    0      

                  0    1    1    1    0    0    0 0    0    

                  0    0    1    1    1    0    0 0    0    

Base matrix of Parity Part   =        0    0    0    1    1    1    0 0    0        

      0    0    0    0    1    1    1    0    0        

      0    0    0    0    0    1    1 1    0    

      0    0    0    0    0    0    1 1    1    

 

Figure 3.3: Triple diagonal matrix with base = 7.  
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 Rearrange the location of all elements of ones in triple diagonal base matrix to 

construct (3, 3) regular base matrix with the new size of (base × base).  

 

o At position (x, y) of triple diagonal base matrix, each one with column       

y ≤ base has the new location of (x, y mod (base + 1)).  

o At position (x, y) of triple diagonal base matrix, each one with column       

y > base has the new location of (x, y mod base). 

o The new size of base matrix is (base × base) with an approximate lower 

triangular form and the size is no longer (base × (base+2)). 

 

Examples of the new location of ones in triple diagonal base matrix with 

parameter base = 7 is described below.   

 

The new location of one in base matrix at position (1, 3) is (1, 3 mod 8) = (1, 3). 

The new location of one in base matrix at position (2, 4) is (2, 4 mod 8) = (2, 4). 

The new location of one in base matrix at position (5, 7) is (5, 7 mod 8) = (5, 7). 

The new location of one in base matrix at position (6, 7) is (6, 7 mod 8) = (6, 7). 

The new location of one in base matrix at position (6, 8) is (6, 8 mod 7) = (6, 1). 

The new location of one in base matrix at position (7, 8) is (7, 8 mod 7) = (7, 1). 

The new location of one in base matrix at position (7, 9) is (7, 9 mod 7) = (7, 2). 

 

Figure 3.4 presents the new location of ones in triple diagonal matrix and the new 

size of base matrix with parameter base = 7. The new size of base matrix is         

(7 × 7) with an approximate lower triangular form.  

 

Total girth of length 4 in Figure 3.4 is six. Therefore, six girths of length 4 should 

be reduced as few as possible. 
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         1    1    1    0    0    0    0          

                  0    1    1    1    0    0    0     

                  0    0    1    1    1    0    0     

Base matrix of Parity Part   =        0    0    0    1    1    1    0         

      0    0    0    0    1    1    1            

      1    0    0    0    0    1    1        

      1    1    0    0    0    0    1  

 

Figure 3.4: (3, 3) Regular base matrix with base = 7.  

 

 Manipulate (3, 3) regular base matrix to reduce the existence of girth of 4-cycles as 

small as possible by shifting the second element of main diagonal until the last 

element of main diagonal to the left for 1 column. 

 

The ones marked with the straight line shown in Figure 3.5 is the second element of 

main diagonal until the last element of main diagonal which is moved 1 column to the 

left. 

 

          1    1    1    0    0    0    0      

                  1    0    1    1    0    0    0     

                  0    1    0    1    1    0    0     

Base matrix of Parity Part   =        0    0    1    0    1    1    0         

      0    0    0    1    0    1    1            

      1    0    0    0    1    0    1     

      1    1    0    0    0    1    0     

 

Figure 3.5: Manipulate main diagonal of base matrix with base = 7.  

 

 

 Check the consistency of 3 ones in all the columns and rows.  

If there are more than 3 ones in one column, remove the additional one to the column 

that has ones below 3 to construct (3, 3) regular base matrix having 3 ones in all the 

columns and rows.  
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In Figure 3.5, there are 4 ones in the first column of base matrix and there are 2 ones 

in the last column of base matrix. Therefore, additional one in the first column of base 

matrix must be removed to the last column of base matrix to construct (3, 3) regular 

base matrix. 

 

The bold one with square in Figure 3.6 is removed to the last column of base matrix 

to construct (3, 3) regular base matrix. The expected result of (3, 3) regular base 

matrix after one element has been removed is given by Figure 3.7. 

 

 

                   1    1    1    0    0    0    0      

                  1    0    1    1    0    0    0     

                  0    1    0    1    1    0    0     

Base matrix of Parity Part  =        0    0    1    0    1    1    0         

      0    0    0    1    0    1    1            

      1    0    0    0    1    0    1     

                             1    1    0    0    0    1    0     

 

        Remove this one to the last column 

 

Figure 3.6: Removing one element of base matrix with base = 7.  

 

 

 

               1    1    1    0    0    0    0      

                  1    0    1    1    0    0    0     

                  0    1    0    1    1    0    0     

Base matrix of Parity Part   =        0    0    1    0    1    1    0         

      0    0    0    1    0    1    1            

      1    0    0    0    1    0    1     

                             0    1    0    0    0    1    1     

 

Figure 3.7: Expected (3, 3) regular base matrix with base = 7.  
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After manipulating main diagonal of base matrix and checking 3 ones in all the 

columns and rows, the total girth of length 4 in Figure 3.7 is reduced to two. The bold 

ones in Figure 3.7 describe the total girth of 4-cycles in base matrix.  

 

The two girths of 4-cycles are eliminated by the value of parameter base and 

expansion factor L applied in the construction of parity part. Feasible values of 

parameter base and expansion factor L with given choice of deterministic RCS that 

give matrix H with no rank-deficiency and girth of 4-cycles are given in the appendix.  

 

An example of deterministic base matrix after applying some constrains with 

parameter base = 7 and the size of (7 × 7) is shown in Figure 3.8.  

 

 

1    1    1    0    0    0    0 

1    0    1    1    0    0    0 

0    1    0    1    1    0    0 

Base matrix of Parity Part    =      0    0    1    0    1    1    0 

   0    0    0    1    0    1    1 

   1    0    0    0    1    0    1 

   0    1    0    0    0    1    1 

 

Figure 3.8: The last form of base matrix of parity part with base = 7. 

  

 

 Expand this base matrix with expansion factor of L to obtain parity part (Hp).   

Each zero in base matrix at position (x, y) is expanded to (L × L) zero matrix and each 

one in base matrix at position (x, y) is expanded to (L × L) identity matrix and  

cyclically shifted right according to some methods of deterministic right cyclic shift 

(RCS) as described in Table 3.2. The shift is to avoid the girth of 4-cycles in Hp. 

 

The ones marked with the straight line shown in Figure 3.8 should be maintained as 

(L  L) identity matrix and not be cyclically shifted, so as to achieve lower triangular 
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matrix form in parity part (Hp). The choice of deterministic RCS in Table 3.2 is 

determined by the value of parameter base and expansion factor L applied in the 

construction of parity part.  

 

For example, if we take L = 9 and deterministic RCS given by (x × (y − 1)) mod L 

then each zero at position (x, y) in base matrix is expanded to (99) zero matrix.  

And each one at position (x, y) in the base matrix is expanded to (99) identity matrix 

shifted according to (x × (y − 1)) mod L. The ones marked with the straight line as 

shown in Figure 3.8 are retained as (9  9) identity matrix. 

 

 

Table 3.2: Some methods of deterministic RCS 

 

No Deterministic RCS 

1 ( x  ×  y ) mod L 

2 ((x − 1) × y) mod L 

 

This equation is based on [23]. 

3 
((x − 2) × y) mod L 

4 
((x − 3) × y) mod L 

5 
(x × (y − 1)) mod L 

6 
(x × (y − 2)) mod L 

7 
(x × (y − 3)) mod L 
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Following the method described above, the design yields, after expansion factor L, three 

ones in each column of parity part and three ones in each row of parity part (Hp). Thus, 

for (3, k) regular LDPC codes, we build (3, 3) parity part (Hp).  

 

Assume that the size of the matrix of parity part (Hp) in the first stage of code-

construction is Mp  Np where Mp is the number of rows in matrix Hp and Np is the 

number of columns in matrix Hp.  

 

The value of Mp and Np are given by: 

 

Mp = Np = Base   L      (3.1) 

 

3.2.2 Second Stage of Code-Construction – Information Part 

 

The core design of the second stage of the proposed code-construction builds information 

part of the matrix H using deterministic base matrix with all elements of ones and 

expands it with expansion factor Z. 

 

Parameters applied in constructing information part in the second stage of code-

construction are expansion factor Z, parameter ji and ki. Parameter ji and ki construct a 

deterministic base matrix of information part with the size of (ji × ki). This base matrix is 

then expanded by expansion factor Z in the second stage of code-construction. Expanded 

base matrix of information part is denoted by matrix Hi in the form of (ji, ki) regular 

LDPC code. 

 

The primary design of base matrix of information part for (3, k) regular and irregular 

LDPC code is almost the same which builds a base matrix of (ji × ki) with all elements of 

one expanded by expansion factor Z. The dissimilarity between (3, k) regular and 

irregular LDPC codes is given by the value of parameter ji.  

The value of parameter ji for (3, k) regular LDPC code is ji = 3 while the value of 

parameter ji for irregular LDPC code is variable, not equal to 3 (parameter ji ≠ 3). In other 
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words, base matrix of irregular information part (Hi) has varying number of rows not 

equal to 3 (ji ≠ 3). 

 

The design methodology of information part must adhere to the following requirements: 

 

1. The base matrix of matrix Hi must have ji ones in all the columns and ki ones in all 

the rows to be (ji, ki) regular base matrix. 

2. Matrix Hi is designed to produce none girth of 4-cycles in matrix H1 = [Hi | Hp] 

when combined with matrix Hp.  

 

Construction of deterministic base matrix of information part for (3, k) regular and 

irregular LDPC code is given below: 

 

 Build base matrix of information part (Hi) with the size of (ji  ki) with all values of 

one. An example of base matrix of information part with ji = 3 and ki = 4 is shown in 

Figure 3.9. 

 

 

Figure 3.9: Base matrix of information part with ji = 3 and ik = 4. 

 

 

 Expand this base matrix with expansion factor Z to become information part (Hi).   

 

The value of expansion factor Z is determined by equation below: 

 

            Z = (Base   L) ÷ ji        (3.2) 
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Each zero in base matrix at position (x, y) is expanded to (Z × Z) zero matrix and each 

one in base matrix at position (x, y) is expanded to (Z × Z) identity matrix and 

cyclically random shifted right.  

 

The value of right cyclic shift (RCS) is created randomly to construct information 

part (Hi). The shift is to avoid the girth of 4-cycles in matrix H1 = [Hi | Hp] when 

combined with matrix Hp.  

 

 

The resulting expanded base matrices of information part and parity part in the first and 

second stage of code-construction are combined to construct matrix H1 in the form of             

H1 = [Hi | Hp] at the end of the second stage of code-construction. 

 

The specific differences between base matrices of information part and parity part are 

given below: 

 

 In the size of respective base matrix: 

The size of base matrix in information part is influenced by parameter ji and ki while 

the size of base matrix of parity part is determined by parameter base. 

 

 In the respective base matrix: 

The elements of the base matrix in information part are all „1‟, while the elements of 

the base matrix in parity part are both „1‟ and „0‟ except that the „1‟s are typically 

along triple diagonal. 

 

 In the way right cyclic shift (RCS) carried out: 

RCS in information part (Hi) with expansion factor Z is random while in parity part 

(Hp) it is deterministic in accordance with Table 3.2. 
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3.2.2.1 Information Part (Hi) for (3, k) Regular LDPC Codes.    

 

The construction of information part in the second stage of code-construction for (3, k) 

regular LDPC code is the same as mentioned above. The proposed information part must 

follow two requirements of design methodology mentioned above.  

 

The information part is built by firstly constructing a deterministic base matrix. As stated 

above, the distinction between (3, k) regular and irregular LDPC code is given by the 

value of parameter ji. The value of parameter ji for (3, k) regular LDPC code is ji = 3. A 

deterministic base matrix of information part for (3, k) regular LDPC code is determined 

by parameter ji = 3 and variable ki. Therefore, the base matrix of (3, k) regular LDPC 

code has the size of (3 × ki). 

 

This base matrix is then expanded by expansion factor Z with random RCS to avoid girth 

of length 4 in matrix H1 = [Hi | Hp]. The value of Z for (3, k) regular LDPC with ji = 3: 

 

   Z = (Base   L) ÷ 3      (3.3) 

 

Variables in equation (3.3) are expansion factor L and parameter base while parameter ji 

remains constant that is ji = 3. Therefore, expansion factor Z in (3, k) regular LDPC code 

is mainly affected by the value of expansion factor L and parameter base applied in parity 

part (Hp) of the first stage of code-construction.     

 

Let the number of rows in matrix Hi be denoted by Mi and the number of columns in 

matrix Hi by Ni. The size of information part (Hi) is given by:  

 

Mi = Z  ji = Z  3        (3.4) 

Ni = Z  ki      (3.5) 
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After the construction of information part (Hi) is complete, we combine parity part (Hp) 

in the first stage of code-construction with information part (Hi) to get (3, k) regular 

LDPC code in the second stage of code-construction denoted by matrix H1 = [Hi | Hp].  

 

The example of matrix H1 in the second stage of code-construction for (3, 5) regular 

LDPC code after information part (Hi) is combined with its parity part (Hp) having ji = 3 

and ki = 2 is described in Figure 3.10. 

 

 

Figure 3.10: Matrix H1 of (3, 5) regular LDPC code with ji = 3 and ki = 2. 

 

 

Assume that the parity check matrix in the second stage of code-construction for (3, k) 

regular LDPC code is denoted by H1. Matrix H1 has M1  N1 where M1 is the number of 

rows in matrix H1 and N1 is the number of columns in matrix H1.  

 

Since the number of rows in Hi denoted by Mi is the same with the number of rows in Hp 

denoted by Mp, the number of rows in matrix H1 denoted by M1 is also the same as Mi 

and Mp as described below: 

M1 = Mp = Mi = Base  L = Z  3    (3.6) 

 

Based on equation (3.1), (3.2) and (3.5) with ji = 3 the value of Ni and N1 are: 

 

Ni = (Z  ki) = (Base  L ÷ ji)  ki    (3.7) 
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N1 = Np + Ni  = (Base  L) + (Base  L  ki ÷ ji)  (3.8) 

 N1 = (3 + ki) ÷ 3  Base  L       (3.9) 

 

Table 3.3 gives a relation between variable ki and code length (N1) in the second stage of 

code-construction with any value of expansion factor L derived from equation (3.9). 

 

 

 

Table 3.3: Code length (N1) for (3, k) regular LDPC codes. 

 

No 

 

ki 

 

(3 + ki ) 

N1 

(3 + ki ) ÷ 3  Base  L 

1 1 4 4/3  Base  L 

2 2 5 5/3  Base  L 

3 3 6 2  Base  L 

4 4 7 7/3  Base  L 

5 5 8 8/3  Base  L 

6 6 9 3  Base  L 

7 7 10 10/3  Base  L 

8 8 11 11/3  Base  L 

9 9 12 4  Base  L 

10 10 13 13/3  Base  L 
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3.2.2.2 Information Part (Hi) for Irregular LDPC Codes.    

 

The construction of information part in the second stage of code-construction for 

irregular LDPC code is the same as mentioned above. The proposed information part 

must follow two requirements of design methodology mentioned above.  

 

The information part is built by firstly constructing a deterministic base matrix. The value 

of parameter ji for irregular LDPC code is not equal to 3 (ji ≠ 3). A deterministic base 

matrix of information part for irregular LDPC code is determined by variable ji and ki. 

Therefore, the base matrix of irregular LDPC code has the size of (ji × ki). This base 

matrix is then expanded by expansion factor Z with random RCS to avoid girth of length 

4 in matrix H1 = [Hi | Hp].  

 

Since expansion factor Z for irregular LDPC code is determined by equation (3.2) above, 

expansion factor Z is not only affected by expansion factor L and parameter base applied 

in parity part (Hp) but also by variable ji. Therefore, in order to satisfy equation (3.2), 

expansion factor L or parameter base should fulfill division by ji.  

 

Assume the size of information part (Hi) for irregular LDPC code is Mi
 
 Ni, where Mi is 

the number of rows in matrix Hi and Ni is the number of columns in matrix Hi. The value 

of Ni is the same as stated in equation (3.5) while the value of Mi with variable ji for 

irregular LDPC codes is given below:  

 

Mi = Z  ji     (3.10) 

 

We combine parity part (Hp) and information part (Hi) to get irregular LDPC code in the 

second stage of code-construction denoted by matrix H1 = [Hi | Hp]. An example of 

matrix H1 for irregular LDPC code after information part (Hi) is combined with its parity 

part (Hp) having ji = 2 and ik = 2 is described in Figure 3.11. 
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Figure 3.11: Matrix H1 of irregular LDPC code with ji = 2 and ik = 2. 

 

Suppose matrix H1 in the second stage of code-construction has the size of M1  N1 where 

M1 is the number of rows in matrix H1 and N1 is the number of columns in matrix H1.  

 

Since the number of rows in matrix Hi is the same with the number of rows in matrix Hp, 

the number of rows in matrix H1 denoted by M1 is also the same as Mi and Mp as 

described below: 

M1 = Mp = Mi = Base  L = Z   ji       (3.11)  

 

The value of code length (N1) for irregular LDPC codes in the second stage of code- 

construction is defined below:  

 

N1 = (ji + ki) ÷ ji  Base  L     (3.12)  

 

Table 3.4 gives a relation between variable ki, code length (N) and variable ji based on 

equation (3.12) for irregular LDPC codes.   
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Table 3.4: Code length (N1) for irregular LDPC codes 

 

No 

 

ki 

N1  

(ji + ki) ÷ ji  Base  L 

1 1 (ji + 1) ÷ ji  Base  L   

2 2 (ji + 2) ÷ ji  Base  L   

3 3 (ji + 3) ÷ ji  Base  L  

4 4 (ji + 4) ÷ ji  Base  L 

5 5 (ji + 5) ÷ ji  Base  L  

6 6 (ji + 6) ÷ ji  Base  L  

7 7 (ji + 7) ÷ ji  Base  L   

8 8 (ji + 8) ÷ ji  Base  L   

9 9 (ji + 9) ÷ ji  Base  L   

10 10 (ji + 10) ÷ ji  Base  L   

 

 

 

3.2.3 Third Stage of Code-Construction 

 

The purpose of third stage of code-construction achieves matrix H = [Hinf | Hpar] after 

expanding matrix H1 = [Hi | Hp] in the second stage of code-construction with identity 

matrix without any cyclic shift to build a longer code length than in the first and the 

second stage of code-construction. The construction of the third stage is the same for    

(3, k) regular LDPC and irregular LDPC codes. The third stage of code-construction is 

determined by one parameter that is expansion factor L1. 

 

Each zero in matrix H1 = [Hi | Hp] at position (x, y) is expanded to (L1 × L1) zero matrix 

and each non-zero in matrix H1 = [Hi | Hp] at position (x, y) is expanded to (L1 × L1) 

identity matrix with no right cyclic shift (RCS).  
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Let matrix H = [Hinf | Hpar] in the third stage of code-construction has the size of M  N 

where M is the number of rows in matrix H and N is the number of columns in matrix H. 

In relation to equation (3.11) and expansion factor L1, the value of M is given by: 

 

M = Mp = Mi = Base  L  L1 = M1  L1   (3.13)  

 

According to equation (3.8) and expansion factor L1, the value of N would be: 

 

N = (Np + Ni)  L1 = N1  L1    (3.14) 

 

The value of information part in the third stage of code-construction is denoted by        

(Ni  L1) = (Z  ki  L1) while the value of parity part in the third stage of code-

construction is denoted by (Np  L1) = (Base  L  L1). Therefore, the value of code 

length N of LDPC codes would be:  

 

N = N1  L1 = (Np + Ni)  L1 = ((BaseL) + (Z  ki))  L1  (3.15) 

 

Based on equation (3.2), the value of Base  L is equal to Z  ji. Therefore, the value of N 

in equation (3.14) and (3.15) will be: 

 

N = N1  L1 = ((Z  ji) + (Z  ki))  L1 = (Z  (ji + ki))  L1  (3.16) 

 

If we replace Z = (Base   L) ÷ ji, the value of code length (N) for the third stage of code-

construction is given by: 

 

N =  (Z  (ji + ki))  L   =  Base   L   L1   (ji + ki)) ÷ ji   (3.17) 
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3.3    Code Rate 

 

Derived from equation (2.13), code rate (R) of LDPC code is evaluated by measuring the 

number of information bits (K) over code length of LDPC codes (N). The number of 

information bits (K) in the proposed code-construction is the same as the length of 

information part in the third stage of code-construction denoted by (Ni  L1).  

 

If we take the value of N in equation (3.16) and K = Ni  L1 = Z  ki  L1, the proposed 

value of code rate (R) is the same as: 

 

       R  =  K ÷ N = (Z  ki)  L1 ÷ ((Z  (ji + ki))  L1)  =  ki ÷ (ji + ki) (3.18) 

 

Variable code rate is developed by changing the number of columns in matrix Hinf and 

maintaining the number of rows in matrix H of the third stage of code-construction. 

Changing the number of columns in matrix Hinf is achieved by changing the value of 

parameter ki in information part (Hinf).  

 

3.3.1  (3, k) Regular LDPC Code 

 

In order to measure the value of code rate (R) for (3, k) regular LDPC code in equation 

(3.18), we need to find the value of parameter ki and ji. Since we generate (3, k) regular 

LDPC code, the value of parameter ji is always equal to ji = 3. Therefore, parameter that 

influences equation (3.18) is parameter ki. 

 

If we put ji = 3 in equation (3.18), the value of code rate (R) for (3, k) regular LDPC is: 

 

R = ki ÷ (3 + ki)     (3.19) 

 

If we compare code rate (R) for (3, k) regular LDPC code in equation (3.19) with 

equation (2.15), the value of parameter j is equal to j = ji = jp = 3 where parameter ji is the 
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value of ones in each column of information part and parameter jp is the value of ones in 

each column of parity part.  

 

The value of parameter k is determined by the value of ones in parity part denoted by kp 

and information part denoted by ki. The value of k with kp = 3 would be: 

 

k = kp + ki = 3 + ki     (3.20) 

 

Therefore, code rate (R) in equation (2.15) with j = 3 and the value of k derived from 

equation (3.20) are as follows: 

 

   R = 1 – (3 ÷ (3 + ki))   (3.21) 

 

Table 3.5 gives a description of generating code rate (R) for (3, k) regular LDPC with       

j = jp = ji = 3, variable ki from 1 until 10 and any value of parameter L and base. Based on 

equation (3.20) and (3.21), the value of k and R are: 

 

Table 3.5: Variable code rate (R) for (3, k) regular LDPC codes 

 

No 

 

ki 

 

(3+ ki) 

 

(3, k) Regular LDPC 

Code Rate (R) 

ki ÷ (3+ ki) 

1 1 4 (3,4)  Regular LDPC ¼ 

2 2 5 (3,5)  Regular LDPC 2/5 

3 3 6 (3,6)  Regular LDPC ½ 

4 4 7 (3,7)  Regular LDPC 4/7 

5 5 8 (3,8)  Regular LDPC 5/8 

6 6 9 (3,9)  Regular LDPC 2/3 

7 7 10 (3,10) Regular LDPC 7/10 

8 8 11 (3,11) Regular LDPC 8/11 

9 9 12 (3,12) Regular LDPC ¾ 

10 10 13 (3,13) Regular LDPC 10/13 
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k   = kp + ki = 3 + ki. 

R   =  ki ÷ (3 + ki). 

 

3.3.2  Irregular LDPC Code 

 

Calculating code rate (R) of irregular LDPC code is the same as explained in section 3.3 

and equation (3.18). Since the value of ones in each column of parity check matrix (H) 

(parameter j) is not the same for information and parity part, we couldn‟t measure the 

value of code rate (R) for irregular LDPC codes by equation (2.15).  

 

Variable code rate (R) is obtained by changing the value of parameter ki that yields 

variable length of information bits in matrix Hinf. Since the value of parameter ji is 

variable, the value of parameter L or base should accomplish division by parameter ji in 

order to satisfy equation (3.2). Examples of variable code rate (R) with variable ji are 

described in Table 3.6 that lists variable code rate (R) for irregular LDPC codes with 

variable parameter ki from 1 until 10, variable L and base. 

 

Table 3.6: Variable code rate (R) for irregular LDPC codes. 

No ki 

 

Code Rate (R) 

ki ÷ (ji + ki) 

 

1 1 1 ÷ (ji + 1) 

2 2 2 ÷ (ji + 2) 

3 3 3 ÷ (ji + 3) 

4 4 4 ÷ (ji + 4) 

5 5 5 ÷ (ji + 5) 

6 6 6 ÷ (ji + 6) 

7 7 7 ÷ (ji + 7) 

8 8 8 ÷ (ji + 8) 

9 9 9 ÷ (ji + 9) 

10 10 10 ÷ (ji + 10) 
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Based on the description above, the summary of how to construct the proposed code -

construction is divided into six steps that are explained below: 

 

1. Set initial parameters that are going to be used in the code design.  

These parameters are the value of code length (N) and code rate (R). 

 

2. Specify type of LDPC code used: (3, k) regular or irregular LDPC code. 

This process influences the value of ones in each column of information part 

represented by parameter ji.  

 If we choose to use (3, k) regular LDPC code, the value of parameter ji 

will be ji = 3.  

 If we select the value of parameter ji ≠ 3 (not equal to 3), this code will be 

classified into irregular LDPC code.  

 

3. Set the other parameters utilized in the proposed codes which are parameter ki, 

base, L, Z and L1. 

 Define parameter ki from its code rate for (3, k) regular or irregular LDPC 

code.  

o Parameter ki of (3, k) regular LDPC code is derived from equation 

(3.19) that is R = ki / (3 + ki). 

o Parameter ki of Irregular LDPC code is derived from equation (3.18) 

that is R = ki / (ji + ki). 

 

 Define parameter base, L and L1.  

o The values selected for parameter base, L and L1 should fulfill 

equation (3.17) for the given value of N, ji and ki.  

o Parameter base and L must satisfy division by ji in equation (3.2).  

o It is suggested to take parameter L1 and L as small as possible and to 

enlarge parameter base since parameter L1 and parameter L gives 

impact to encoding complexity and the value of g. 
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 Define parameter Z.  

According to equation (3.2) which is Z = (Base   L) ÷ ji. 

 

4. Build parity part in the first stage of code-construction. 

 Build deterministic base matrix of parity part (Hp) with the size of      

(base × base) having constraints as given in section 3.2.1. 

 Expand deterministic base matrix of parity part with expansion factor L 

and methods of deterministic right cyclic shift (RCS) based on Table 3.2. 

 

5. Build information part in the second stage of code-construction. 

 Build deterministic base matrix of information part with the size of (ji  ki) 

with all value of ones. 

 Expand deterministic base matrix of information part with expansion 

factor Z and random deterministic right cyclic shift (RCS).  

 Combine parity part (Hp) and information part (Hi) to get the proposed 

LDPC code in the second stage of code-construction denoted by matrix   

H1 = [Hi | Hp]. Expansion factor Z with random RCS avoids girth of length 

4 in matrix H1. 

 

6. Build the proposed code in the third stage of code-construction. 

Expand matrix H1 = [Hi | Hp] with expansion factor L1 to construct matrix H in the 

third stage of code-construction.  

 

Expansion factor L1 in the third stage of code-construction expands each one of 

H1 = [Hi | Hp] into (L1 × L1) identity matrix with no RCS and expands each zero of 

H1 = [Hi | Hp] into (L1 × L1) zero matrix to construct matrix H = [Hinf | Hpar]. 

 

 

 

 

 



 

84 

 

Example of generating the proposed codes with initial parameter N = 1008 and R = ½: 

 

1. (3, k) Regular LDPC Code  

 Parameter ji:  ji = 3. 

 Parameter ki: Derived from R = ki ÷ (3 + ki) = ½, it gives parameter ki = 3.  

 Parameter base, L and L1: Based on equation (3.17) to fulfill the given 

value of N, ji and ki.  

N  = (Base  L  L1  (ji + ki)) ÷ ji = (Base  L  L1 6) ÷ 3 = 1008. 

 Parameter base = 72 with deterministic RCS (x × (y − 1)) mod L. 

  Parameter L = 7. 

  Parameter L1 = 1. 

 Parameter Z = (Base   L) ÷ ji = (72   7) ÷ 3 =  168.  

 The size of deterministic base matrix of information part (Hinf):          

(3  ki) = (3  3) with all value of ones. 

 The size of base matrix of parity part (Hpar): (base × base) = (72 × 72) 

with some constraints given in section 3.2.1. 

 

2. Irregular LDPC Code 

Parameter ji:  The value of parameter ji in irregular LDPC codes can be applied to 

any integer value not equal to 3 denoted by ji ≠ 3. 

 

 If we take parameter ji = 4.  

Derived from R = ki ÷ (ji + ki) = ½, it gives parameter ki = 4.  

The other parameter will be: 

 Parameter base = 72 with deterministic RCS (x × (y − 1)) mod L. 

  Parameter L = 7 and parameter L1 = 1. 

Parameter Z = (Base   L) ÷ ji = (72   7) ÷ 4 =  126.  

The size of deterministic base matrix of information part (Hinf):          

(ji  ki) = (4  4) with all value of ones. 

The size of base matrix of parity part (Hpar): (base × base) = (72 × 72) 

with some constraints given in section 3.2.1. 
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 If we take parameter ji = 6.  

Based on R = ki ÷ (ji + ki) = ½, it gives parameter ki = 6.  

 Parameter base = 72 with deterministic RCS (x × (y − 1)) mod L. 

  Parameter L = 7 and parameter L1 = 1. 

Parameter Z = (Base   L) ÷ ji = (72   7) ÷ 6 =  84. 

The size of deterministic base matrix of information part (Hinf):          

(ji  ki) = (6  6) with all value of ones. 

The size of base matrix of parity part (Hpar): (base × base) = (72 × 72) 

with some constraints given in section 3.2.1. 

 

 If we take parameter ji = 8.  

Derived from R = ki ÷ (ji + ki) = ½, it gives parameter ki = 8.  

 Parameter base = 72 with deterministic RCS (x × (y − 1)) mod L. 

  Parameter L = 7 and parameter L1 = 1. 

Parameter Z = (Base   L) ÷ ji = (72   7) ÷ 8 =  63. 

 

The size of deterministic base matrix of information part (Hinf):          

(ji  ki) = (8  8) with all value of ones. 

The size of base matrix of parity part (Hpar): (base × base) = (72 × 72) 

with some constraints given in section 3.2.1. 

 

 If we take parameter ji = 9.  

Based on R = ki ÷ (ji + ki) = ½, it gives parameter ki = 9.  

 Parameter base = 72 with deterministic RCS (x × (y − 1)) mod L. 

  Parameter L = 7 and parameter L1 = 1. 

Parameter Z = (Base   L) ÷ ji = (72   7) ÷ 9 =  56. 

 

The size of deterministic base matrix of information part (Hinf):          

(ji  ki) = (9  9) with all value of ones. 

The size of base matrix of parity part (Hpar): (base × base) = (72 × 72) 

with some constraints given in section 3.2.1. 
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 If we take parameter ji = 12.  

Derived from R = ki ÷ (ji + ki) = ½, it gives parameter ki = 12.  

 Parameter base = 72 with deterministic RCS (x × (y − 1)) mod L. 

  Parameter L = 7 and parameter L1 = 1. 

Parameter Z = (Base   L) ÷ ji = (72   7) ÷ 12 =  42. 

The size of deterministic base matrix of information part (Hinf):          

(ji  ki) = (12  12) with all value of ones. 

The size of base matrix of parity part (Hpar): (base × base) = (72 × 72) 

with some constraints given in section 3.2.1. 

 

 If we take parameter ji = 18.  

Based on R = ki ÷ (ji + ki) = ½, it gives parameter ki = 18.  

 Parameter base = 72 with deterministic RCS (x × (y − 1)) mod L. 

  Parameter L = 7 and parameter L1 = 1. 

Parameter Z = (Base   L) ÷ ji = (72   7) ÷ 18 =  28. 

The size of deterministic base matrix of information part (Hinf):          

(ji  ki) = (18  18) with all value of ones. 

The size of base matrix of parity part (Hpar): (base × base) = (72 × 72) 

with some constraints given in section 3.2.1. 

 

 If we take parameter ji = 24.  

Derived from R = ki ÷ (ji + ki) = ½, it gives parameter ki = 24.  

 Parameter base = 72 with deterministic RCS (x × (y − 1)) mod L. 

  Parameter L = 7 and parameter L1 = 1. 

Parameter Z = (Base   L) ÷ ji = (72   7) ÷ 24 =  21. 

The size of deterministic base matrix of information part (Hinf):          

(ji  ki) = (24  24) with all value of ones. 

The size of base matrix of parity part (Hpar): (base × base) = (72 × 72) 

with some constraints given in section 3.2.1. 
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3.4    Encoding 

 

This section discusses encoding procedure and encoding complexity that are utilized in 

the proposed code-construction. The encoding procedure of the proposed codes is given 

in section 3.4.1 that is based on Richardson-Urbanke method [16].  Encoding method 

based on Richardson-Urbanke is selected since this method can be applied to any LDPC 

codes like random or structured codes.  

 

Encoding complexity of the proposed code-construction is explained in section 3.4.2 that 

focuses to formulate the value of gap g in relation to code length N. The value of gap g is 

going to be used to measure encoding complexity of (3, k) regular and irregular LDPC 

codes as in [16]. 

 

3.4.1    Encoding Procedure 

 

In order to utilize the sparseness of parity check matrix (H) and to simplify encoding and 

decoding process by using only one matrix, this work applies encoding by matrix H. 

Since the proposed code-construction focuses on avoiding pre-processing step of 

encoding envisaged in Richardson-Urbanke method, we use only actual encoding step of 

this method as described in section 2.3.2.2.  

 

Derived from actual encoding step of Richardson-Urbanke method, we need to divide the 

proposed information part (Hinf) and parity part (Hpar) into several sparse sub matrices 

and each matrix contains at most O(N) elements as given in equation (2.27) and Figure 

2.6.  

 

Sub matrices of information part (Hinf) are matrix A and C while sub matrices of parity 

part (Hpar) are matrix B, D, E and T, of which matrix T has a built-in lower triangular 

with ones along diagonal.  
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All of these sub matrices are going to be used in mathematical equations of encoding step 

that are given in equation (2.32) until equation (2.36). An example of how parity check 

matrix (H) is divided into A, B, C, D, T and E sub matrices is explained in Figure 3.12 

with a (7×10) parity check matrix (H).  

 

  H = [ Hinf | Hpar]  

 

 

 

             A     B      T 

     1    0 0          1    1        1    0    0    0    0   

1    0  0          1    0        1    1    0    0    0 

   0    1  0          0    1        0    1    1    0    0 

         H = 0    0 1          0    0        1    0    1    1    0         

     0    1   0          0    0        0    1    0    1    1 

     

1    0  0          1    0        0    0    1    0    1 

0    1  0          0    1        0    0    0    1    1 

                         C     D      E   

 

Figure 3.12: Sub matrices A, B, C, D, T and E in a (7×10) matrix H. 

 

 

How the proposed base matrix of parity part in section 3.2.1 is divided into sub matrix B, 

D, T and E is given in Figure 3.13. Figure 3.13 takes Figure 3.8 with (7×7) base matrix as 

an example.  

 

The parameter g in Figure 3.13 is a measure of gap in its lower triangular form. Based on 

Figure 3.13, the value of g for base matrix of parity part is equal to 2  L while the value 

of g for the third stage of code-construction is given by  g = 2  L  L1. 
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g  

        B      T 

                1    1        1    0    0    0    0   

            1    0        1    1    0    0    0 

  0    1        0    1    1    0    0 

    Base matrix of parity part   =          0    0        1    0    1    1    0         

                       0    0        0    1    0    1    1 

     

            g           1    0        0    0    1    0    1 

            0    1        0    0    0    1    1 

                            D      E   

 

       Figure 3.13: Sub matrices B, D, T and E in base matrix of parity part with base = 7. 

 

                               Hinf                        Hpar              

 

Figure 3.14: Matrix H in the third stage of code-construction 

 

 

The detail of sub matrices at the third stage of code-construction is described by Figure 

3.14 with g = 2  L  L1. Derived from Figure 3.14, the size of sub matrices at the third 

stage of code-construction is achieved by A is (M − g) × (Z × ki L1), C is g × (Z ×ki L1), 

B is (M − g) ×g, T is (M − g) × (M − g), D is g × g and E is g × (M − g).  

 

Let c = [m, p1, p2] be a codeword in the third stage of code- construction where m is the 

information bit with the length of ki  Z  L1, the parity part, divided into parity p1 with 

length g and parity p2, with length (M − g) = (M − (2  L  L1)).  
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The actual encoding begins with equation (2.9) and uses equation (2.35) and (2.36) to 

solve the parity p1
T
 and p2

T
. Finding a codeword (c) is accomplished by inserting those 

values of parity p1 and p2 into c = [m, p1, p2]. To check whether the value of codeword c 

is a correct codeword, it must satisfy equation (2.9). 

 

Example: 

An example of how the proposed (3, k) regular LDPC code is encoded is given below. 

The proposed (3, 6) regular LDPC code uses parameter L1 = 1, L= 8, base = 15, ji = 3, ki = 

3 and deterministic RCS ((x − 1) × y) mod L. The matrix H is divided into 6 sub-matrices 

as given in Figure 3.13 and 3.14. Encoding solves parity p1
T
 and p2

T
 based on equation 

(2.35) and (2.36).  

 

p1
T
 = −

-1
(−ET 

-1
A

 
+ C) 

p2
T
 = −T 

-1
( Am

T 
+ B p1

T
 ) 

The size of matrix H = 120 × 240 

 

The value of p1, p2, m and codeword c = [m, p1, p2] are given below: 

 The size of parity p1 is 1 × 16.  

p1 = [ 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 ]. 

 The size of parity p2 is 1 × 104. 

p2 = [1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 

1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 

1 1 0 1 0 0 0 1 0 1 0 1 1 0 ]. 

 The size of random information bit m is 1 × 120. 

m = [ 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 

0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 

0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1]. 

 The size of codeword c = [m, p1, p2] is 1 × 240. 

c = [m, p1, p2] 
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c = [ 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 

0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 

0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 

1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1 1 0 

0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 

1 1 1 0 1 0 0 0 1 0 1 0 1 1 0]. 

 

In order to validate the codeword c, we use equation (2.9) that is c H
T
 = 0. If c is a valid 

codeword, the result of c H
T
 will be zero matrix of size of 1 × 120. 

 

 

3.4.2  Encoding Complexity 

 

Encoding complexity gives a description on how many multiplications, additions and 

logical operations are needed in encoding process of the proposed code-construction. 

When encoding complexity is linear, it implies that the complexity grows linearly with 

the code length (N) and is said to be computationally most efficient. 

 

Since the proposed code-construction uses actual encoding step from Richardson-

Urbanke method, encoding complexity of the proposed code is almost linear given by           

(N + g²). This complexity is derived from computation of p1
T
 in Table 2.1. 

 

In this section, we will introduce the notation of g which describes a gap of matrix Hpar 

into its lower triangular form. Since the value of g relates to encoding complexity of the 

proposed LDPC code, the smaller the value of g the lower is its encoding complexity. 

 

The value of g in the third stage of code-construction is given below based on Figure 

3.14.  

g = 2  L  L1      (3.22) 
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Encoding complexity of the proposed (3, k) regular and irregular LDPC code with the 

value of g² is described as follow: 

  

(N + g²) =  (N + 4  L
2
  L1

2
)   (3.23) 

 

Example: 

An example of how to get encoding complexity of the proposed (3, k) regular LDPC code 

is described below. The proposed (3, 39) regular LDPC code uses parameter L1 = 1, L= 9, 

base =102, ji = 3, ki = 36 and deterministic RCS (x × (y − 1)) mod L base.  

g = 2  L  L1 = 18. 

N = Base   L   L1   (ji + ki)) ÷ ji = 11934. 

Since g = 18 and N = 11934, the value of g can be seen to be g << N.  

The value of g² is 324 bits which is equal to 0.0271 N. 

Therefore, encoding complexity is (N + g²) = (1.0271 N)                  

 

 

3.5 Decoding 

 

This section discusses decoding used in the proposed code-construction. Decoding 

algorithm of the proposed codes applies sum product algorithm (SPA) as the decoding 

standard in LDPC codes.  Since the focus of this work is encoding, we do not give more 

detail about SPA as already explained in section 2.2.9.  

 

 

3.6 Summary 

 

The proposed code-construction for (3, k) regular, as well as, irregular LDPC codes, has 

been presented consisting of three stages of code-construction. The first stage of code-

construction builds parity part with an approximate lower triangular form that utilizes two 

variables (parameter base and expansion factor L) and two deterministic parameters 

(parameter jp = 3 and parameter kp= 3). The basic design philosophy of the proposed 
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parity part in the first stage of code-construction is to build a triple diagonal base matrix, 

meeting the requirement of 3 ones in each column and each row while minimizing girth 

of 4-cycles, and to expand it with expansion factor L. The parity part of the proposed  

(3, k) regular and irregular LDPC codes is same, of (3 × 3) size. 

 

The second stage of code-construction builds information part that employs three 

parameters (expansion factor Z, parameter ji and parameter ki). The core design of the 

second stage of the proposed code-construction builds information part of the matrix H 

using deterministic base matrix with all elements of ones and expands it with expansion 

factor Z. After the construction of information part is done, we combine parity part in the 

first stage of code-construction with information part to get the proposed LDPC code in 

the second stage of code-construction denoted by matrix H1 = [Hi | Hp].  

 

The purpose of third stage of code-construction achieves matrix H = [Hinf | Hpar] after 

expanding matrix H1 = [Hi | Hp] in the second stage of code-construction with identity 

matrix without any cyclic shift to build a longer code length than in the first and the 

second stage of code-construction.  

 

The construction of the third stage is the same for (3, k) regular LDPC and irregular 

LDPC codes. The third stage of code-construction is determined by expansion factor L1. 

Therefore, three stages of code-construction make use of eight parameters namely, 

expansion factor Z, expansion factor L1, parameter ji, parameter ki, parameter jp and 

parameter kp.  

 

Encoding complexity of the proposed (3, k) regular and irregular LDPC code is almost 

linear by (N + g²) where g << N. Notation of g describes a gap in matrix Hpar in its 

lower triangular form. Since the value of g relates to encoding complexity of the 

proposed LDPC code, the smaller the value of g the lower is its encoding complexity. 

The value of g in the third stage of code-construction is given by g = 2  L  L1.  

 

 



 

94 

 

 

 

 

CHAPTER 4 

SYSTEM SIMULATION 

 

 

 

4.1   Introduction 

 

The proposed code-construction has been described in chapter 3. It overcomes general 

issues in the design of regular LDPC codes like rank-deficiency of matrix H, pre-

processing before encoding and high encoding complexity. The advantage of the 

proposed code-construction is that the parity part of the design can be used not only for 

(3, k) regular but also irregular LDPC codes.  

 

This chapter presents code performance, simulation model and error performance 

conducted in this thesis as instruments to validate the proposed construction. The 

performance results of the proposed LDPC codes using this system simulation will be 

obtained and discussed in the next chapter. 

 

 

4.2    Code Performance 

 

Code performance of the proposed LDPC codes designed using the proposed code-

construction method is measured in terms of the following: 

 

 Bit error rate (BER).  

BER is the probability that a decoded information bit is in error, while signal-to-

noise ratio (SNR) describes the ratio of energy-per-information bit at the input to 
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one sided noise power spectral density at the receiver denoted by Eb/N0 and 

usually expressed in decibels (dB). A reliable communication is achieved by 

getting the BER performance as low as possible under certain system constraints, 

such as power constraint, bandwidth constraint, or low encoding and decoding 

complexity constraint. This measure is used to evaluate the performance of both 

(3, k) regular LDPC codes and also irregular code. 

 

Since there are no theoretical BER of LDPC codes, we use theoretical BER of un-

coded binary phase-shift keying (BPSK) for lower bound and Shannon‟s limit as 

the upper bound for comparison sake. Hereunder, we give theoretical upper bound 

on the BER of [n, k] binary block code over AWGN channel. It is, however, 

recognized that the LDPC codes outperform these linear block codes for large 

number of information bits and low values of dmin.  

 

Theoretical un-coded BPSK on the BER (Pb) over AWGN channel is given below 

[54]:  

Pb =   Q( √(2 × Eb/N0 )    (4.1) 

 

In general, notation of block code is represented by [n, k]. In order to be 

consistent with notation in this thesis, the notation of [n, k] is replaced by [N, K]. 

Theoretical upper bound on the BER (Pb) of an [N, K] binary block code with 

soft-decision decoding and BPSK modulation over AWGN channel is described 

below [54]:  

    Pb ≤  ½ × (2
K
 − 1) ×Q(√(2 × Eb/N0 × R × dmin ) (4.2) 

 

 Block error rate (BLER) or frame error rate (FER) or word error rate (WER). 

BLER is the probability that a decoded codeword is in error. A decoded codeword 

consists of a decoded information bit and a decoded parity bit. It is generally 

required that the BLER be as small as possible in order to get a reliable 

communication. This performance measure is used for (3, k) regular LDPC codes. 
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Since there are no theoretical BLER of LDPC codes, we use theoretical BLER of 

un-coded binary phase-shift keying (BPSK) that is the same as equation (4.1) and 

theoretical upper bound on the BLER of [n, k] binary block code over AWGN 

channel. In general, notation of block code is represented by [n, k]. In order to be 

consistent with notation in this thesis, the notation of [n, k] is replaced by [N, K]. 

 

Theoretical upper bound on the BLER (Pblock) of an [N, K] binary block code with 

soft-decision decoding and BPSK modulation over AWGN channel is given 

below [54]:  

   Pblock ≤  (2
K
 − 1) × Q(√(2 × Eb/N0 × R × dmin )   (4.3) 

 

 Comparison with Shannon limit. 

As per famous Shannon‟s coding theorem, as long as the data rate in bits/s is less 

than the theoretical capacity of the communication system, a channel code can be 

so designed that the system will have arbitrarily small probability of error. As an 

extension of this theorem, Shannon limit is defined as the theoretical limit on 

minimum SNR required for a coded system at a given code rate (R) to achieve 

arbitrarily small probability of error only if the SNR exceeds this limit. Generally, 

this limit is used as a yardstick to evaluate the performance of codes.  

 

Shannon limit is also used to measure the maximum achievable coding gain for a 

coded system with a given code rate (R) over un-coded system with the same 

modulation signal set.  

 

For example to achieve a BER of 10
-5

, an un-coded BPSK system requires an 

SNR of 9.65 dB and a coded BPSK system with code rate R = ½ has the value of 

Shannon limit 0.188 dB. Therefore, the maximum achievable (potential) coding 

gain for coded BPSK with a code rate R = ½ is 9.462 dB [3]. 
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Table 4.1 gives the value of Shannon limit for various code rate (R) with binary 

input, AWGN channel and binary phase-shift keying (BPSK) modulation as given 

in [3].  The Shannon limit performance is also evaluated only for (3, k) regular 

LDPC codes. 

 

Table 4.1: Shannon limit with AWGN channel, BPSK and binary input [3]. 

 

Code Rate 

(R) 

Eb/N0 

(dB) 

Code Rate 

(R) 

Eb/N0 

(dB) 

Code Rate 

(R) 

Eb/N0 

(dB) 

Code Rate 

(R)  

Eb/N0 

(dB) 

0.3 -0.616 0.49 0.144 0.68 1.143 0.846 2.503 

0.31 -0.579 0.5 0.188 0.69 1.208 0.855 2.6 

0.32 -0.544 0.51 0.233 0.70 1.275 0.857 2.62 

0.33 -0.507 0.52 0.279 0.71 1.343 0.875 2.84 

0.34 -0.469 0.53 0.326 0.72 1.412 0.888 3.05 

0.35 -0.432 0.54 0.374 0.73 1.483 0.9 3.2 

0.36 -0.394 0.55 0.424 0.74 1.554 0.909 3.34 

0.37 -0.355 0.56 0.474 0.75 1.628 0.916 3.47 

0.38 -0.314 0.57 0.526 0.76 1.708 0.923 3.59 

0.39 -0.276 0.58 0.574 0.77 1.784 0.928 3.7 

0.4 -0.236 0.59 0.628 0.78 1.867 0.933 3.8 

0.41 -0.198 0.6 0.682 0.79 1.952 0.937 3.91 

0.42 -0.156 0.61 0.734 0.8 2.045 0.941 3.98 

0.43 -0.118 0.62 0.791 0.807 2.108 0.944 4.05 

0.44 -0.074 0.63 0.844 0.817 2.204 0.947 4.1 

0.45 -0.032 0.64 0.904 0.822 2.25 0.95 4.2 

0.46 0.01 0.65 0.96 0.827 2.302 0.952 4.26 

0.47 0.055 0.66 1.021 0.833 2.36 0.954 4.3 

0.48 0.097 0.67 1.084 0.837 2.402 0.956 4.38 

 

 

 Complexity 

Complexity is a measure of how many multiplications, additions and logical 

operations are needed in a given design. An encoding efficient LDPC encoder 
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should have as low computational load as possible. When the complexity is linear, 

it implies that the complexity grows linearly with the size of the data. In the 

design of encoder/decoder, designs with linear complexity are said to be, 

computationally, most efficient, as it implies that the computation grows linearly 

with the length of the code.  

 

Since the proposed (3, k) regular LDPC codes have low density of ones in H, the 

sparseness of proposed H lends to low decoding complexity. Therefore, 

complexity analysis presented in chapter 5 mainly focuses in encoding portion. 

The complexity analysis for irregular LDPC codes has been excluded from the 

scope. 

 

Complexity analysis starts by exploring pre-processing step in the proposed (3, k) 

regular LDPC codes based on Richardson-Urbanke method and is continued for 

comparison of pre-processing step of encoding followed by encoding complexity 

of other regular QC LDPC codes. This section ends with listing the computational 

time of actual encoding step in the proposed codes that also compares the time of 

encoding between the proposed (3, k) regular with other regular QC LDPC code 

and regular repeat accumulate (RA) LDPC. 

 

 

4.3    Simulation Model 

 

This section gives an overview of the simulation model which is used to measure the 

performance parameters of section 4.2. It assumes binary digits input, binary phase shift 

keying (BPSK) modulation and AWGN channel used in LDPC encoder-decoder of 

MATLAB
®
 7.4. Encoding method used in the encoder is based on matrix inversion of 

matrix H while decoding algorithm used in the decoder of our simulation is sum product 

algorithm (SPA). The encoder is supplied with the parity-check matrix separately built. 

Encoding by parity check matrix is based on Richardson-Urbanke method. 
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The block diagram of the simulation procedure of our code construction is described in 

Figure 4.1. Input to simulation is information bits represented by random binary bits. The 

length of random binary bits depends on the value of code rate (R) applied in the system.  

 

 

 

 

Figure 4.1: Simulation block diagram 

 

 

Inserting certain pattern of redundancy into random binary bits is done in LDPC encoder 

that produces codeword. Addition of redundancy in terms of parity bits is used for 

controlling transmission errors by detecting and correcting error in the transmitted data 

stream without requesting retransmission of information bits. 

 

After passing through LDPC encoder, the codeword is modulated by BPSK modulator 

and added with white Gaussian noise known as AWGN channel. After going through 

AWGN channel in the receiver side, the received codeword is demodulated by BPSK 

demodulator and decoded by LDPC decoder. LDPC decoder reconstructs information 

bits based on type of redundancy used in the encoder, and chooses the one closest to the 

noisy received codeword. Decoding algorithm utilized in LDPC decoder is sum product 

algorithm (SPA), also known as „belief propagation‟.  
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4.4 Error Performance Conducted in the Thesis 

 

In order to validate the proposed LDPC codes, the error performance is measured in term 

of bit error rate (BER), block error rate (BLER) and Shannon limit as follows:  

 

 Bit error rate (BER) performance 

BER performance of this thesis is achieved by evaluating the performance of both 

(3, k) regular LDPC codes and also irregular code. The BER of proposed (3, k) 

regular LDPC codes is compared with published results of (3, k) regular QC 

LDPC and (3, k) regular random LDPC codes in low code rate (R < 0.5) and high 

code rate (R > 0.7). Mean while, the BER of proposed irregular LDPC code is 

also compared with published results of irregular LDPC codes. 

 

o Results of the proposed (3, k) regular LDPC codes 

This section investigate some behaviors related with the proposed (3, k) 

regular LDPC codes. 

 

o Comparison of proposed (3, k) regular LDPC codes with published (3, k) 

regular QC LDPC codes.  

 (3, 5) regular QC LDPC codes [11].  

These codes are chosen as they have low code rates (R = 0.4125 and         

R = 0.4029). 

 (3, 12) regular QC LDPC codes [48].  

These codes are chosen since they have code rate R = 0.75. 

 

o Comparison of proposed (3, k) regular LDPC codes with published (3, k) 

regular random LDPC codes. 

 (3, 5) regular random LDPC codes [11]. 

These regular codes give low code rate R = 0.4  

 (3, 24) regular random LDPC codes [19].  

This regular random LDPC code produces high code rate R = 0.875. 
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o Comparison of proposed irregular LDPC codes with published irregular codes 

 Irregular LDPC codes using dual diagonal parity [53]. 

 Irregular random LDPC codes using density evolution by Richardson et. al 

[53].  

 Irregular random LDPC codes by Mackay [53]. 

 The performance result of the proposed irregular code is also compared 

with (64, 64) regular cyclic LDPC code [53] in order to show that the 

proposed design outperforms it even though the proposed irregular code 

has lower code rate and lower code length.  

 

 Block error rate (BLER) performance 

BLER performance of this work is conducted by comparing the BLER of 

proposed (3, k) regular LDPC codes with published results of (3, k) regular QC 

LDPC and (3, k) regular random LDPC codes in high code rate (R > 0.7). 

BLER performance is determined by two following sections: 

 

o Comparison with published (3, 13) regular QC LDPC codes  

These codes give high code rate of BLER performance (R = 0.769) based on 

M. P. C. Fossorier [10]. 

 

o Comparison with published (3, 13) regular random LDPC codes 

These codes produce high code rate of BLER performance (R = 0.769) based 

on M. P. C. Fossorier [10]. 

 

 Comparison with Shannon limits  

Shannon limit performance in this thesis is obtained in terms of BER performance 

that is evaluated in high code rate (R ≥ 0.875). The choice of high code rate        

(R ≥ 0.875) is taken since the proposed (3, k) regular LDPC codes are not able to 

outperform the other regular LDPC in low code rate performance. 
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Comparison of Shannon limit in term of BER performance of published QC and 

cyclic LDPC codes with the same value of code rate is also evaluated in this 

section. Published QC and cyclic LDPC codes are chosen since those codes are 

also classified into structured LDPC codes and the most related to the proposed 

code-construction.    

 

Shannon limit of the proposed (3, k) regular LDPC codes in R ≥ 0.875 are 

compared with published QC and cyclic LDPC codes at the same code rate. 

 

o High code rate of BER performance of regular QC LDPC code (R = 0.875) 

derived from Shu Lin and Daniel J. Costello [1]. 

 

o High code rate of BER performance of regular cyclic LDPC codes (R = 0.875, 

R = 0.9, R = 0.916, R = 0.923 and R = 0.928) based on Yu Kou, Shu Lin and 

M. P. C. Fossorier [13].  

 

The proposed design method has been used to obtain viable choices of design parameters 

such as base and expansion factor L that lead to viable matrix H with no rank deficiency 

of matrix H, no girth of 4-cycles and no singularity. This has been done for parameter     

base ≤ 114 and expansion factor L ≤ 35. 

 

The proposed (3, k) regular LDPC codes is limited by the size of H = 1026 × 14364 with 

code length N = 14364 bits that is inverted in the MATLAB
®

 7.4 encoder. Hence, the 

results obtained in this thesis are limited to code- length N < 15000 bits.   

 

 

4.5 Summary 

 

The code performance of the proposed (3, k) regular LDPC code is measured in terms of 

BER, BLER and Shannon limit. BER performance of this thesis is achieved by 

evaluating the performance of both (3, k) regular LDPC codes and also irregular code. 
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The BER performance for (3, k) regular LDPC codes explores the behavior of the 

proposed (3, k) regular LDPC codes and evaluates the proposed (3, k) regular LDPC 

compared with published results of (3, k) regular QC LDPC codes and (3, k) regular 

random LDPC codes in low code rate and high code rate. Mean while, the BER of 

proposed irregular LDPC code is also compared with published results of irregular LDPC 

codes. 

 

BLER performance evaluates the proposed (3, k) regular LDPC codes with published 

results of (3, k) regular QC LDPC and (3, k) regular random LDPC codes in high code 

rate. Shannon limit performance in this thesis is measured in term of BER performance 

evaluated at high code rate (R ≥ 0.875). This performance is compared with the published 

QC and cyclic LDPC codes for the same code rate. 

 

Complexity analysis is made based on complexity analysis of encoding of the proposed 

(3, k) regular LDPC code excluded irregular code. The complexity is also compared 

complexity of encoding with that of other designs like QC LDPC code and regular repeat 

accumulate (RA) LDPC having linear encoding complexity. 

  

The simulation model used is developed with binary digits input, BPSK modulation and 

AWGN channel used in LDPC encoder-decoder of MATLAB
®
 7.4. Encoding method 

used in the encoder is based on matrix inversion of matrix H while decoding algorithm 

used in the decoder of our simulation is sum product algorithm (SPA). 

 

The proposed design method has been used to obtain viable choices of design parameters 

such as base and expansion factor L that lead to viable matrix H with no rank deficiency 

of matrix H, no girth of 4-cycles and no singularity. This has been done for parameter     

base ≤ 114 and expansion factor L ≤ 35. 

 

The proposed (3, k) regular LDPC codes is limited by the size of H = 1026 × 14364 with 

code length N = 14364 bits that is inverted in the MATLAB
®

 7.4 encoder. Hence, the 

results obtained in this thesis are limited to code- length N < 15000 bits.   
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CHAPTER 5 

RESULTS, ANALYSIS AND DISCUSSION 

 

 

 

5.1   Introduction 

 

An overview of code performance and system simulation has been described in the last 

chapter whereas the construction of the proposed code itself is reported in chapter 3. This 

chapter presents some results, analysis and discussion of the proposed codes in terms of 

BER performance, BLER performance, Shannon limit performance and complexity 

analysis. 

 

Code performance of (3, k) regular LDPC codes in section 5.2 presents BER and BLER 

performance of the proposed codes and compares them with other regular LDPC codes 

such as quasi cyclic (QC), and regular random at both high and low code rate. The 

limiting performance is also obtained and compared with the Shannon limit and those of 

a selected few codes at high code rate (R ≥ 0.875). The proposed (3, k) regular LDPC 

codes are also compared with theoretical upper bound of an [N, K] binary block code with 

soft-decision decoding and BPSK modulation. 

 

Code performance of irregular LDPC codes is given in section 5.3 that presents BER 

performance of the proposed irregular LDPC code compared with other irregular LDPC 

codes. 

 

Discussion of complexity analysis is given in section 5.4 that begins by exploring pre-

processing step in the proposed (3, k) regular LDPC codes based on Richardson-Urbanke 
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method. The complexity analysis for irregular LDPC codes has been excluded from the 

scope. The discussion of complexity analysis is continued for comparison of pre-

processing step of encoding followed by encoding complexity with (3, 5) regular QC 

LDPC codes. This section is ended by computational time of actual encoding step in the 

proposed codes that includes a description of encoding complexity in the proposed codes 

and also compares the time of encoding between the proposed (3, 6) regular with (3, 6) 

regular QC LDPC code. 

 

 

5.2   Code Performance of (3, k) Regular LDPC Codes 

 

According to chapter 3, there are five variables used for constructing (3, k) regular LDPC 

codes, namely, ji, ki, base, L and L1. In this work, parameter ji is the key factor that 

defines whether parity check matrix (H) is categorized into regular or irregular LDPC 

codes. Since this thesis mainly evaluates the performance of (3, k) regular LDPC codes, 

the value of parameter ji used in this chapter is ji = 3. 

 

Simulation model of the proposed code-construction is developed based on procedures in 

chapter 4 which evaluates the proposed (3, k) regular LDPC codes using LDPC encoder-

decoder of MATLAB
®
 7.4. The block diagram of the simulation of the proposed code-

construction is described in Figure 4.1. 

 

This section is divided into three sections that present the evaluation and comparison of 

the proposed (3, k) regular LDPC codes in terms of bit error rate (BER), block error rate 

(BLER) and Shannon limit. Comparison with other published (3, k) regular LDPC codes 

is presented in each of those sections. All the codes presented in this section are having 

no rank-deficiency of matrix H, no pre-processing step of encoding, no girth of 4-cycles, 

low encoding complexity and non-singular parity part (Hpar). 
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The value of girth in the proposed matrix H is at least girth 6-cycles since girth 4-cycles 

in the proposed codes is eliminated by the choice of parameter base and expansion factor 

L applied in the design of parity part.  

 

Based on [1], [13], the minimum distance (dmin) of   (j, k) regular LDPC code is at least    

j + 1. Therefore, the minimum distance (dmin) of the proposed (3, k) regular LDPC codes 

with j = 3 is at least 4 that gives the ability of correcting at least 1 error.  

  

5.2.1 Bit Error Rate (BER) Performance 

 

As stated in chapter 4, bit error rate (BER) is the probability that a decoded information 

bit is in error. In this section, code performance is evaluated in term of bit error rate 

(BER) versus signal to noise ratio (SNR) curves. BER performance in this section is 

obtained by simulating across 200 errors at each point of SNR. After getting BER value 

at each point of SNR, linear interpolation is applied. 

 

BER performance is categorized into three sub-sections. The first sub-section describes 

BER results of the proposed (3, k) regular LDPC codes while the last two sub-sections 

report the BER comparison of the proposed (3, k) regular with other (3, k) regular quasi-

cyclic (QC) and (3, k) regular random LDPC codes.  

 

5.2.1.1 Results of the Proposed (3, k) Regular LDPC Codes 

 

Derived from section 5.2.3 and 5.2.4, the choice of parameter base and expansion factor 

L with given method of deterministic right-cyclic shift (RCS) impact the pre-processing 

step of encoding. This section would investigate the impact of these parameters and the 

methods of deterministic RCS on the code performance. The number of iterations used in 

this section is set to 50 iterations of sum product decoding algorithm (SPA).  

 

 Code performance and its dependence on variable ki.  

The influence of variable ki on the code performance in (3, k) regular LDPC is 

obtained by varying ki while keeping all other variables constant. This is shown in 



 

107 

 

Figure 5.1 where variable ki = {1, 2, 3}, while ji = 3, base = 30, L = 6, L1 = 1 and 

deterministic RCS is given by (x × (y − 1)) mod L.  

 

Derived from equation (3.24), the value of code rate (R) is influenced by 

parameter ki. Therefore, varying ki leads to varying code rate. Parameter ki =      

{1, 2, 3} produces code rate R = {0.25, 0.4, 0.5}. According to equation (3.22), 

varying ki = {1, 2, 3} while keeping other variables constant gives varying code 

length. Parameter ki = {1, 2, 3} gives code length N = {240, 300, 360}. Figure 5.1 

shows three curves based on three variables of parameter ki = {1, 2, 3} while 

keeping other variables constant. It is shown that circle marked curve gives the 

best BER performance since this curve has the longest value of code length N. 

 

 Code performance and its dependence on variable L.  

The influence of variable L on the code performance in (3, k) regular LDPC is 

obtained by varying expansion factor L while keeping other variables constant. 

This condition is reported in Figure 5.2 where expansion factor L =                    

{6, 10, 30, 25}, while L1 = 1, base = 18, ki = 2, deterministic RCS = (x × (y − 1)) 

mod L with the same code rate R = 0.4. 

 

Based on equation (3.22), varying expansion factor L while keeping other 

variables constant yields varying code length N. Expansion factor L =                

{6, 10, 25, 30} yields code length N = {150, 300, 750, 900}. 

 

Figure 5.2 presents four curves derived from four variable expansion factor L =             

{6, 10, 25, 30} while keeping other variables constant. It can be seen that the 

longer the value of N, the better the performance. Therefore, curve having N = 

900 gives the best performance of all in Figure 5.2. 
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Figure 5.1: (3, k) Regular LDPC with ki = {1, 2, 3}, base = 30, L = 6 and L1 = 1. 

 

 

Figure 5.2: (3, 5) Regular LDPC with variable L = {6, 10, 25, 30} 
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Proposed (3, 4) Regular     N = 240, R = 0.25, RCS Eq.(X(Y-1)modL), L1=1, L=6, Base=30, ji=3, ki=1 
Theoritical Uncoded BPSK 
Proposed (3, 5) Regular     N = 300, R = 0.4, RCS Eq.(X(Y-1)modL), L1=1, L=6, Base=30, ji=3, ki=2 
Proposed (3, 6) Regular     N = 360, R = 0.5, RCS Eq.(X(Y-1)modL), L1=1, L=6, Base=30, ji=3, ki=5 
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Based on chapter 3, encoding complexity of the proposed code-construction is 

determined by the value of g. The value of g is influenced by expansion factor L 

and L1 since g is 2  L  L1. At the same time, increasing expansion factor L while 

keeping other variables constant yields encoding complexity that is also becoming 

higher and more complex. Encoding complexity is reduced by applying as small 

as possible expansion factor L and L1 while utilizing as big as possible parameter 

base.  

 

 Code performance and its dependence on parameter base and L.  

The impact of parameter base and L on the code performance of (3, k) regular 

LDPC codes is examined in Figure 5.3 by applying two different parameters of 

base and L while keeping other variables constant. Figure 5.3 shows three curves 

that maintain parameters ji = 3 and ki = 27, and produce the same value of code 

rate (R) but yield variable code length (N).  

 

 

Figure 5.3: Proposed (3, 30) regular LDPC codes with variable base and L. 
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N = 7290  R = 0.9 Deterministic RCS XY mod L, L1=1, L=9, Base=81, ,ji=3, ki=27 
N = 4500  R = 0.9 Deterministic RCS X(Y-1) mod L, L1=1, L=9, Base=50, ji=3, ki=27 
N = 5670  R = 0.9 Deterministic RCS (X-2)Y mod L, L1=1, L=7, Base=81, ji=3, ki=27 
Theoritical Uncoded BPSK 
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Parameter difference between curve marked with square legend and that with 

diamond in Figure 5.3 is in the value of parameter base. Similarly the difference 

between the square marked curve and circle marked curve is in the value of 

expansion factor L. It is shown in Figure 5.3 that for the same code rate R = 0.9 

the longer the value of N, the better the performance for the proposed (3, 30) 

regular LDPC codes. Since there will be no difference in the BER performance, 

different RCS are used in Figure 5.3. This condition will be explained in the next 

section. 

 

 Code performance and its dependence on the method of RCS.  

The influence of some methods of deterministic RCS in the BER performance is 

shown in Figure 5.4 and Figure 5.5. All variables in Figure 5.4 and Figure 5.5 are 

kept constant except the method of deterministic RCS.  

 

 

 

Figure 5.4: (3, 5) Regular LDPC with deterministic RCS and N = 150. 
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(3, 5) Proposed Regular N = 150  - Deterministic RCS 
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Figure 5.5: (3, 5) Regular LDPC with deterministic RCS and N = 300. 

 

 

 

Figure 5.4 utilizes parameter L1 = 1, L = 3, base = 30, ji = 3, ki = 2, R = 0.4 and it 

compares the five methods of deterministic RCS given by {(x × y) mod L,           

((x − 2) × y) mod L, ((x − 3) × y) mod L, (x × (y − 1)) mod L, and (x × (y − 3)) 

mod L}. These five methods of deterministic RCS are chosen since all of them 

use base = 30 without column permutation and Gauss elimination as listed in 

Table 5.5. Since five curves in Figure 5.4 use the same value of code length N, the  

BER performance of five curves is having a comparable performance.  
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Parameters used in Figure 5.5 are L1 = 1, L = 6, base = 30, ji = 3, ki = 2, R = 0.4 

while five methods of deterministic RCS are (x × y) mod L, ((x − 2) × y) mod L, 

((x − 3) × y) mod L, (x × (y − 1)) mod L and (x × (y − 3)) mod L. The same 

situation of comparable performance using five methods of deterministic RCS can 

be seen also in Figure 5.5 even though there is a slightly difference in the BER 

performance. In this Figure, all of the five curves utilize the same value of code 

length N = 300 bits.  

 

 

According to Figure 5.1 to Figure 5.5, following are some conclusions that can be drawn 

about the behavior of the proposed (3, k) regular LDPC codes: 

 

1. The longer the value of code length N, the better the BER performance.  

2. Variable code rate (R) is achieved by applying variable value of ki.  

3. Changing one parameter while keeping the other variables constant generates 

variable value of code length (N). 

4. Encoding complexity is reduced by applying as small as possible parameter L and 

L1 while utilizing as large as possible parameter base. 

5. The comparison of code performance will be fair if all curves have the same code 

length (N) and code rate (R) even though they are achieved by applying different 

parameter of ji, ki, base, L and L1. 

6. The choice of deterministic RCS yields a comparable BER performance for all 

methods of deterministic RCS. The comparison of deterministic RCS in terms of 

complexity will be discussed in the section 5.4. 

 

5.2.1.2 Comparison with (3, k) Regular Quasi Cyclic (QC) LDPC Codes   

 

This section presents the comparison of the proposed (3, k) regular with (3, k) quasi 

cyclic (QC) LDPC codes for low code rate (R = 0.4125 and R = 0.4029) and high code 

rate (R = 0.75). 
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 (3, k) regular QC LDPC codes in low code rate (R = 0.4125 and R = 0.4029).   

Low code rate regular QC LDPC codes are constructed according to [11] 

presented by (3, 5) regular QC LDPC codes in Figure 5.6 and Figure 5.7.  

 

Figure 5.6 compares BER performance of (3, 5) regular QC LDPC code having               

R = 0.4125 and N = 155 to the proposed (3, 5) regular LDPC having R = 0.4 and 

N = 150 with 50 iterations applied in sum product decoding algorithm (SPA). The 

proposed regular LDPC codes in Figure 5.6 utilize parameter L1 = 1, L = 3,      

base = 30, ji = 3, ki = 2 with two different deterministic RCS (x × (y − 1)) mod L 

and (x × (y − 3)) mod L. 

 

Figure 5.6 shows that BER performance of the proposed (3, 5) regular LDPC 

code is not better than that of (3, 5) regular QC LDPC code when the value of 

code rate R < 0.5.  

 

Moreover, the value of code rate and code length between the proposed (3, 5) 

regular and (3, 5) regular QC LDPC in Figure 5.6 are not the same. As mentioned 

in [11], the matrix H of (3, 5) regular QC LDPC has linear dependency among its 

rows that causes erasure of rows. Hence, there is a code rate gain (R > 0.4) that 

results in a better waterfall performance than the proposed regular LDPC codes in 

Figure 5.6 
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Figure 5.6: BER of (3, 5) regular LDPC with R < 0.5 and N ≤ 155. 

 

 

The comparison of BER performance for (3, 5) regular QC LDPC codes having                 

R = 0.4029, N = 305 and the proposed (3, 5) regular LDPC having R = 0.4,          

N = 300 is shown Figure 5.7 with 50 iterations SPA. The proposed regular LDPC 

code in Figure 5.7 has parameter L1 = 1, L = 6, base = 30, ji = 3, ki = 2 with 

deterministic RCS (x × (y − 1)) mod L. 

 

In this figure is also shown that (3, 5) regular QC LDPC has the best performance 

when compared with the proposed (3, 5) regular LDPC in code length N = 300. In 

the value of code rate R < 0.5, the proposed (3, 5) regular LDPC codes are not 

able to outperform (3, 5) QC LDPC codes even though code length of the 

proposed codes are increased into 300 bits. 
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(3, 5) Regular Quasi Cyclic LDPC   N = 155, R = 0.4129  based on Ref [11 ]     
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Figure 5.7: BER of (3, 5) regular LDPC with R < 0.5 and N = 305. 

 

 

In Figure 5.7, the value of code rate and code length between the proposed (3, 5) 

regular and (3, 5) regular QC LDPC are also not the same. There is a code rate 

gain (R > 0.4) in Figure 5.7 that results in a better waterfall performance than the 

proposed regular LDPC codes since the linear dependency among rows in matrix 

H for (3, 5) regular QC LDPC codes.  

 

 (3, k) regular QC LDPC codes in high code rate (R = 0.75).  

This regular QC LDPC code is built based on [48] represented by (3, 12) regular 

QC LDPC in Figure 5.8 with 30 iterations SPA. Comparison of LDPC codes with 

R = 0.75 and N = 2412 is by comparing BER performance of (3, 12) regular QC 

LDPC codes to the proposed (3, 12) regular LDPC code.  
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(3, 5) Regular Quasi Cyclic LDPC N = 305, R = 0.4029 based on Ref [11] 
Proposed (3, 5) Regular LDPC  N = 300, R = 0.4,RCS Eq.X(Y-1)modL,L1=1,L=6,Base=30,ji=3,ki=2 
Theoritical Uncoded BPSK 
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Figure 5.8: BER of (3, 12) regular LDPC with R = 0.75 and N = 2412. 

 

 

The proposed regular LDPC codes in Figure 5.8 use parameter L1 = 1, L = 9,     

base = 67, ji = 3, ki = 9 with two different deterministic RCS (x × (y − 1)) mod L 

and ((x − 2) × y) mod L. The proposed codes in Figure 5.8 have a comparable 

performance when the value of code rate R = 0.75 and both values of code rate 

also code length are the same. 

 

Based on Figure 5.6 to Figure 5.8, following are some conclusions that can be drawn 

about the BER performance of the proposed (3, k) regular LDPC codes compared with   

(3, k) regular QC LDPC codes: 

 

1. In terms of BER, the proposed code is not able to outperform regular QC LDPC 

codes when the value of code rate R < 0.5. 
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2. The linear dependency among rows in matrix H for (3, 5) regular QC LDPC 

codes, resulting in erasure of rows, gives a code rate gain that results in a BER 

performance better than the proposed code. 

3. The proposed (3, 12) LDPC code has a comparable performance with regular QC 

when the value of code rate R = 0.75.  

 

 

5.2.1.3 Comparison with (3, k) Regular Random LDPC Codes   

 

In this section, comparison is done by comparing (3, k) regular random LDPC codes with 

the proposed (3, k) regular LDPC codes for low code rate (R = 0.4) and high code rate   

(R = 0.875). 

 

 (3, k) regular random LDPC codes in low code rate (R = 0.4).   

Low code rate regular random LDPC codes are constructed according to [11] 

presented by (3, 5) regular random LDPC codes in Figure 5.9 and Figure 5.10. 

The number of iterations used in this section is set to 50 iterations of sum product 

decoding algorithm (SPA).  

 

The BER performance of (3, 5) regular random LDPC codes having R = 0.4 and 

N = 155 are compared with the proposed (3, 5) regular LDPC having R = 0.4 and 

N = 150 shown Figure 5.9. Meanwhile, Figure 5.10 gives a comparison of BER 

performance in code rate R = 0.4 and N ≤ 305.  

 

The proposed regular LDPC codes in Figure 5.9 utilize parameter L1 = 1, L = 3,        

base = 30, ji = 3, ki = 2 with two different deterministic RCS (x × (y − 1)) mod L 

and  (x × (y − 3)) mod L while the proposed codes in Figure 5.10 use parameter   

L1 = 1, L = 6, base = 30, ji = 3, ki = 2 with deterministic RCS (x × (y − 1)) mod L 

and  ((x − 1) × y ) mod L. 
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In Figure 5.9, the proposed (3, 5) regular LDPC code have a better error floor than 

regular random LDPC code. This may be due to the minimum distance (dmin) of 

random regular codes that can not grow linearly with the code length (N). 

 

As can be seen from Figure 5.9 to Figure 5.10, the proposed (3, 5) regular LDPC 

codes are not able to outperform (3, 5) regular QC LDPC codes when the value of 

R < 0.5. Moreover, the value of code length between the proposed (3, 5) regular 

and (3, 5) regular QC LDPC in Figure 5.9 and Figure 5.10 are not the same.  

 

 

 

 

Figure 5.9: BER of (3, 5) regular LDPC with R = 0.4 and N ≤ 155. 
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(3, 5) Regular Random LDPC      N = 155, R = 0.4  based on Ref [11]   
Theoritical Uncoded BPSK 
Proposed (3, 5) Regular     N = 150, R = 0.4, RCS Eq.(X(Y-3)modL), L1=1, L=3, Base=30, ji=3, ki=2 
Proposed (3, 5) Regular     N = 150, R = 0.4, RCS Eq.(X(Y-1)modL), L1=1, L=3, Base=30, ji=3, ki=2 
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Figure 5.10: BER of (3, 5) regular LDPC with R = 0.4 and N ≤ 305. 

 

 

 (3, k) regular random LDPC codes in high code rate (R = 0.875).  

This regular random LDPC code is built based on [19] represented by (3, 24) 

regular random LDPC in Figure 5.11. The proposed regular LDPC codes in 

Figure 5.11 apply parameter L1 = 1, L = 7, base = 81, ji = 3, ki = 21 with two 

different deterministic RCS ((x − 2) × y) mod L and (x × (y − 3)) mod L.  

 

In Figure 5.11, the proposed (3, 24) regular LDPC codes have a comparable 

performance when the value of R = 0.875 and code length N = 2412. We also see 

in Figure 5.11 that the BER curve of (3, 24) regular random LDPC code does not 

have a smooth waterfall shape. Instead, it flattens out for higher SNR. This 

behavior can be due to the fact that the minimum distance (dmin) of random 

regular code, perhaps, does not grow linearly with the code length. However, the 

proposed code does not suffer from such problem. 
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(3, 5) Regular Random  LDPC   N = 305, R = 0.4 based on Ref [11] 
Proposed (3, 5) Regular   N = 300, R = 0.4, RCS Eq.X(Y-1)modL, L1=1,L=6,Base=30,ji=3,ki=2 
Theoritical Uncoded BPSK 
Proposed (3, 5) Regular  N = 300, R = 0.4, RCS Eq.((X-1)Y)modL,L1=1,L=12,Base=15,ji=3,ki=2 
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Figure 5.11: BER of (3, 24) regular LDPC with R = 0.875 and N = 4536. 

 

 

 

Derived from Figure 5.9 to Figure 5.11, following are some conclusions that can be 

drawn about the BER performance of the proposed (3, k) regular LDPC codes when 

compared with (3, k) regular random LDPC codes: 

 

1. The BER performance of the proposed code performance is not able to 

outperform regular QC LDPC codes when the value of code rate R < 0.5.         

2. The minimum distance (dmin) of the proposed (3, k) regular codes grows linearly 

with the code length as seen in Figure 5.9 to Figure 5.11.  

3. The proposed (3, 12) LDPC code has a comparable performance with regular 

random when the value of code rate R = 0.875 and N = 4536. 
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(3, 24) Regular Random LDPC   N = 4536, R = 0.875 based on Ref [19] 
Theoritical Uncoded BPSK 

N = 4536 and R = 0.875 



 

121 

 

5.2.2  Block Error Rate (BLER) Performance 

 

As mentioned in chapter 4, block error rate (BLER) is the probability that a decoded 

codeword is in error. A decoded codeword consists of a decoded information bit and a 

decoded parity bit. Code performance in this section is evaluated in term of block error 

rate (BLER) versus signal to noise ratio (SNR) curves.  

 

Since there are not much works of BLER performance in (3, k) regular LDPC codes, this 

thesis takes only one comparison in BLER performance that is categorized into high code 

rate with R = 0.769. 

 

BLER performance of this work is conducted by comparing the BLER of proposed        

(3, 13) regular LDPC codes with published (3, 13) regular QC LDPC and (3, 13) regular 

random LDPC codes in high code rate (R = 0.769) [10].  

 

High rate BLER comparison for R = 0.769 is taken since it is shown in the BER 

performance that the proposed (3, k) regular are not able to outperform other (3, k) 

regular QC and random LDPC codes in code rate R < 0.5. 

 

BLER performance in this section is obtained by simulating across 200 errors at each 

point of SNR. Linear interpolation is applied after getting BLER value at each point of 

SNR. The number of iterations used in this section is set into 200 iterations of sum 

product decoding algorithm (SPA).  

 

BLER performance is classified into two sub-sections that gives comparison between the 

proposed (3, k) regular LDPC codes with other (3, k) regular quasi-cyclic (QC) and (3, k) 

regular random LDPC codes in code rate R = 0.769.  
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5.2.2.1 Comparison with (3, k) Regular Quasi Cyclic (QC) LDPC Codes   

 

In order to compare with regular QC LDPC codes in code rate R = 0.769, this section 

takes (3, 13) regular QC LDPC code.  (3, 13) regular QC LDPC code shown in Figure 

5.12 is taken based on [10]. Figure 5.12 gives BLER performance of LDPC codes with   

R = 0.769 and N = 1053 between (3, 13) regular QC LDPC codes and the proposed       

(3, 13) regular LDPC code.  

 

The proposed regular LDPC codes in Figure 5.12 employ parameter L1 = 1, L = 3,         

base = 81, ji = 3, ki = 10 and girth at least 6-cycles with two different deterministic RCS 

(x × y) mod L and (x × (y − 3)) mod L. In Figure 5.12, the proposed (3, 13) regular LDPC 

codes outperform (3, 13) regular QC LDPC codes in the same value of code rate             

R = 0.769 and code length N = 1053. 

 

 

Figure 5.12: BLER Comparison with (3, 13) Regular QC LDPC R = 0.769 and N = 1053. 
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Proposed (3,13) Regular LDPC    N = 1053, R = 0.769,RCS Eq.XYmodL,L1=1,L=3,Base=81,ji=3, ki=10 
(3,13) Regular Quasi Cyclic LDPC  N = 1053, R = 0.77, Girth = 6 based on Ref [10] 
(3,13) Regular Quasi Cyclic LDPC  N = 1053, R = 0.77, Girth = 8 based on Ref [10] 
Proposed (3,13) Regular LDPC N = 1053,R = 0.769,RCS Eq.X(Y-3)modL,L1=1,L=3,Base=81,ji=3,ki=10 
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5.2.2.2 Comparison with (3, k) Regular Random LDPC Codes   

 

This section takes an example of (3, 13) regular QC LDPC code for R = 0.769. Regular 

random LDPC for code rate R = 0.769 shown Figure 5.13 is built according to [10]. The 

proposed regular LDPC codes in Figure 5.13 employ parameter L1 = 1, L = 3, base = 81, 

ji = 3, ki = 10 and girth at least 6 with two different deterministic RCS (x × y) mod L and          

(x × (y − 3)) mod L.  

 

Based on Figure 5.13, we note that the proposed (3, 13) regular LDPC codes give very 

good value of BLER compared with (3, 13) regular random LDPC codes with R = 0.769, 

N = 1057 and girth of 6-cycles even though the proposed code has smaller value of code 

length N. 

 

 

Figure 5.13: BLER Comparison with (3, 13) Regular Random R = 0.769 and N = 1053. 

 

 

As can be seen from Figure 5.12 to Figure 5.13, the BLER performance of the proposed 

(3, 13) regular LDPC codes performance outperforms (3, 13) regular QC and (3, 13) 

regular random LDPC codes when code rate R = 0.769. 
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Proposed (3,13) Regular   N = 1053, R = 0.769, RCS Eq.X(Y-3)modL,L1=1,L=3,Base=81,ji=3, ki=10 
Gallager (3,13) Regular Random LDPC    N = 1057, R = 0.769, Girth 6  based on Ref [10] 
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The followings are some conclusions that can be drawn about the BER and the BLER 

performance of the proposed (3, k) regular LDPC codes compared with other (3, k) 

regular QC and random LDPC codes: 

 

The comparison of the BER and the BLER performance are made under the assumption 

that, for same code length (N) and code rate (R), the LDPC codes can be fairly compared 

irrespective of their design parameters. 

 

1. The proposed (3, k) LDPC codes are not able to outperform other (3, k) regular 

LDPC codes when the value of code rate R < 0.5.  

2. The proposed (3, k) LDPC codes have a comparable BER and BLER performance 

with other (3, k) regular QC and random LDPC codes in high code rate R > 0.7.  

3. The minimum distance (dmin) of the proposed (3, k) regular codes grows linearly 

with the code length since they have no error floor. 

 

5.2.3  Comparison with Shannon Limit 

 

This section compares the proposed (3, k) regular LDPC codes with Shannon limit for 

binary input, BPSK modulation, AWGN channel.  As mentioned in chapter 4, Shannon 

limit is defined as the theoretical limit on minimum SNR required for a coded system at a 

given code rate (R) to achieve arbitrarily small probability of error only if the SNR 

exceeds this limit. In this section, the proposed (3, k) regular LDPC codes are also 

compared with theoretical BER of un-coded BPSK and theoretical upper bound of an   

[N, K] binary block code with soft-decision decoding and BPSK modulation. As 

mentioned in the scope of this thesis, the code length (N) in this section is limited to        

N < 15000 bits. 

 

The Shannon limit performance is only obtained for high code rate proposed LDPC codes 

with R ≥ 0.875, since the comparison results of BER and BLER performance from the 

last section demonstrates that the proposed (3, k) regular have a comparable with other  

(3, k) regular LDPC codes for code rate R > 0.7.  
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The proposed (3, k) regular curves are obtained by simulating across 200 errors at each 

point of SNR. The number of iterations used in sum product decoding algorithm (SPA) is 

set into 50 iterations.  

 

Figure 5.14 to Figure 5.18 show comparison of the proposed (3, k) regular codes with 

theoretical un-coded BPSK based on equation 4.1 and Shannon limit at BER 10
−6

 in code 

rate R ≥ 0.875. The closest performance of the proposed regular codes in this thesis 

achieves 0.97 dB from Shannon limit at BER of 10
−6

 by (3, 42) regular LDPC code with 

R = 0.928, N = 14364 and encoding complexity (1.0225 N) as can be seen in Figure 

5.18. All the details of comparison obtained from Figure 5.14 to Figure 5.18 are 

consolidated and presented in Table 5.1.  

 

 

 

Figure 5.14: Proposed (3, 24) regular with R = 0.875 and N = 4536. 
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Figure 5.15: Proposed (3, 30) regular with R = 0.9 and N = 7290. 

 

 

Figure 5.16: Proposed (3, 36) regular with R = 0.916 and N = 11016. 
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Figure 5.17: Proposed (3, 39) regular with R = 0.923 and N = 11934. 

 

 

Figure 5.18: Proposed (3, 42) regular with R = 0.928 and N = 14364. 
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Proposed (3,42) Regular LDPC  RCS X(Y-1),Base=114,L1=1,L=9,ji =3,ki=39 
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Table 5.1: Comparison of proposed (3, k) regular LDPC codes with Shannon limit. 

Proposed 

(3, k) Regular LDPC 

Codes 

Code Rate (R) 

and          

Code Length   

(N) 

Parameter  

of  

Proposed (3, k) Regular 

LDPC Codes 

Shannon 

Limit 

at BER 10
−6

 

R ≥ 0.875 

 

Distance 

from 

Shannon limit 

 

(3, 24) Regular LDPC code 

g = 14 

(N + 0.0432 N) 

R = 0.875 

N = 4536 

L1 = 1, L = 7, base = 81,          

ji = 3, ki = 21 and 

Deterministic RCS               

((x − 2) × y) mod L 

2.84 dB 1.44 dB 

(3, 24) Regular LDPC code 

g = 18 

(N + 0.0346 N) 

R = 0.875 

N = 9360 

L1 = 1, L = 9, base = 130,        

ji = 3, ki = 21 and 

Deterministic RCS                

((x − 2) × y) mod L 

2.84 dB 1.12 dB 

(3, 30) Regular LDPC code 

g = 18 

(N + 0.044 N) 

R = 0.9 

N = 7290 

L1 = 1, L = 9, base = 81,          

ji = 3, ki = 27 and 

Deterministic RCS                  

x × y mod L 

3.2 dB 1.212 dB 

(3, 36) Regular LDPC code g 

= 18 

(N + 0.0294 N) 

R = 0.916 

N = 11016 

L1 = 1, L= 9, base =102,          

ji = 3, ki = 33 and 

Deterministic RCS 

(x × (y − 1)) mod L 

3.47 dB 1 dB 

(3, 39) Regular LDPC code g 

= 18 

(N + 0.0271 N) 

R = 0.923 

N = 11934 

L1 = 1, L= 9, base =102,          

ji = 3, ki = 36 and 

Deterministic RCS 

(x × (y − 1)) mod L 

3.59 dB 0.98 dB 

(3, 42) Regular LDPC code g 

= 18 

(N + 0.02255 N) 

R = 0.928 

N = 14364 

L1 = 1, L= 9, base =114,          

ji = 3, ki = 39 and 

Deterministic RCS 

(x × (y − 1)) mod L 

3.7 dB 0.97 dB 
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Column 1 of Table 5.1 states the value of parameter j and k in (j, k) regular LDPC codes. 

Since we are investigating (3, k) regular LDPC codes, the value of j is always j = 3.  

Column 1 of Table 5.1 also lists the value of g and encoding complexity of the proposed 

(3, k) regular LDPC codes.  

 

Column 2 of Table 5.1 gives the value of code rate and code length in the proposed (3, k) 

regular LDPC codes while column 3 of Table 5.1 presents variable parameters utilized in 

the proposed codes such as parameter base, ji, ki, L, L1 and method of deterministic RCS. 

Column 4 of Table 5.1 gives the theoretical value of Shannon limit for given code rate 

while column 5 of Table 5.1 lists the distance of the proposed (3, k) regular LDPC code 

from Shannon limit at BER 10
−6

 as obtained in the figures. 

 

Table 5.1 shows that the longer the code length of the proposed (3, k) regular LDPC 

codes, the closer the performance is to Shannon limit. It shows that the closest 

performance of the proposed regular code to Shannon limit in Table 5.1 achieves 0.97 dB 

at BER of 10
−6

 by (3, 42) regular LDPC code with R = 0.928, N = 14364 and encoding 

complexity of the order of (1.0225 N). 
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Comparison of BER theoretical upper bound of an [N, K] binary block code with soft-

decision decoding with the proposed (3, k) regular LDPC codes is described in Table 5.2.  

 

 

Table 5.2: Comparison of proposed (3, k) regular LDPC codes with theoretical upper 

bound of an [N, K] binary block code with soft-decision decoding 

Proposed 

(3, k) Regular LDPC 

Codes with  

dmin = 4 

Code Rate 

(R),       Code   

Length (N) 

and 

Information 

bits (K) 

 

 

Eb/N0 

 

 

BER    

of 

Proposed (3, k) 

Regular 

BER Theoretical 

Upper bound of  

Block Code in 

Equation (4.1) 

(3, 24) Regular LDPC code 

g = 14 

(N + 0.0432 N) 

R = 0.875 

N = 4536 

K = 3969 

4.28 dB 10
−6

 0.5 

(3, 24) Regular LDPC code 

g = 18 

(N + 0.0346 N) 

R = 0.875 

N = 9360 

K = 8190 

3.96 dB 10
−6

 0.5 

(3, 30) Regular LDPC code 

g = 18 

(N + 0.044 N) 

R = 0.9 

N = 7290 

K = 6561 

4.412 dB 10
−6

 0.5 

(3, 36) Regular LDPC code  

g = 18 

(N + 0.0294 N) 

R = 0.916 

N = 11016 

K = 10098 

4.47 dB 10
−6

 0.5 

(3, 39) Regular LDPC code  

g = 18 

(N + 0.0271 N) 

R = 0.923 

N = 11934 

K = 11016 

4.57 dB 10
−6

 0.5 

(3, 42) Regular LDPC code g 

= 18 

(N + 0.02255 N) 

R = 0.928 

N = 14364 

K = 13338 

4.67 dB 10
−6

 0.5 
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Theoretical upper bound of an [N, K] binary block code with soft-decision decoding and 

BPSK modulation over AWGN channel is taken based on equation (4.2). 

 

Column 1 of Table 5.2 lists the value of parameter j and k in (j, k) regular LDPC codes, 

the value of g, encoding complexity and the value of minimum distance (dmin = 4) of the 

proposed (3, k) regular LDPC codes while column 2 of Table 5.2 states the value of code 

rate (R), code length (N) and information bits (K) in the proposed (3, k) regular LDPC 

codes.  

 

The value of Eb/N0 (in dB) is given in column 3 of Table 5.2 that is used to obtain the 

BER value of theoretical upper bound of binary block code with soft-decision decoding 

and the proposed (3, k) regular LDPC codes. Column 4 of Table 5.2 gives the BER result 

of the proposed (3, k) regular LDPC codes when using the value Eb/N0 in column 3. 

 

Meanwhile, column 5 of Table 5.2 lists the theoretical upper bound of binary block code 

with soft-decision decoding and BPSK modulation using the same value of N, K and dmin 

with the proposed (3, k) regular LDPC codes. 
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Comparison of Shannon limit with published regular LDPC codes such as QC LDPC and 

cyclic LDPC codes is described in Table 5.3. 

 

 

Table 5.3: Comparison of several regular LDPC codes with Shannon limit 

Code Rate 
Type of Regular LDPC 

Codes 

(j, k) Regular 

LDPC 
Code Length (N) 

Distance from  

Shannon Limit 

BER 10
−6

 BER 10
−4

 

 

R = 0.875 

Proposed  Regular LDPC 
(3, 24) 

N = 4536 

(1.0432 N) 
1.44 dB 1. 074 dB 

Proposed  Regular LDPC 
(3, 24) 

N = 9360 

(1.0346 N) 
1.12 dB 0. 945 dB 

Regular QC LDPC 

based on [1] 
(4, 32) N = 9360 0.95 dB - 

Regular Cyclic LDPC 

based on [13] 
(8, 64) N = 32760 - 1.26 dB 

R = 0.9 

Proposed  Regular LDPC 
(3, 30) 

N = 7290 

(1.044 N) 
1.212 dB 0.921 dB 

Regular Cyclic LDPC 

derived from [13] 
(6, 64) or (7, 64) N = 40950 - 0.92 dB 

R = 0.916 

Proposed  Regular LDPC 
(3, 36) 

N = 11016 

(1.0294 N) 
1 dB 0.796 dB 

Regular Cyclic LDPC 

according to [13] 
(5, 64) or (6, 64) N = 49140 - 0.73 dB 

R = 0.923 

Proposed  Regular LDPC 
(3, 39) 

N = 11934 

(1.0271 N) 
0.98 dB 0.824 dB 

Regular Cyclic LDPC 

derived from [13] 
(4, 64) or (5, 64) N = 53235 - 0.64 dB 

R = 0.928 

 

Proposed  Regular LDPC 
(3, 42) 

N = 14364 

(1.0225 N) 
0.97 dB 0.798 dB 

Regular Cyclic LDPC 

according to [13] 
(4, 64) or (5, 64) N = 57330 -  0.57dB 
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Since there are not available comparison of (3, k) regular LDPC codes with Shannon 

limit in high code rate in the literature, we compare the proposed (3, k) regular LDPC 

codes with the existing comparison of regular LDPC codes with Shannon limit in high 

code rate.  

 

Generally, the value of parameter j in the existing comparison of regular LDPC codes 

with Shannon limit for high code rate is above j = 3 which are j = { 4, 5, 6, 7, 8}. Since 

the value of j is not j = 3, it makes that the value of parameter k of the existing 

comparison of regular LDPC codes with Shannon limit in high code rate is not the same 

with the proposed (3, k) regular LDPC codes.  

 

Therefore, we only maintain the same value of code rate having different values of 

parameter j, k and code length (N). Only one value in Table 5.3 for code rate R = 0.875 

that gives the same value of code rate and code length but different value of parameter j 

and k. 

 

Column 1 of Table 5.3 states the value of code rate while column 2 of Table 5.3 gives the 

type of regular LDPC codes whether it is proposed regular, regular QC or regular cyclic 

LDPC code. Column 3 of Table 5.3 presents the value of parameter j and k in (j, k) 

regular LDPC code while column 4 of Table 5.3 reports the value of code length for 

regular LDPC codes. The last column of Table 5.3 describes the distance of regular 

LDPC codes from Shannon limit at BER 10
−6

and BER 10
−4

. 

 

Table 5.3 shows that the proposed (3, k) regular LDPC codes have a comparable 

performance with other QC LDPC and cyclic LDPC even though the proposed (3, k) 

regular LDPC codes have a smaller value of code length (N) and smaller value of 

parameter j and k.  
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From Table 5.1 to Table 5.3, following are some conclusions that can be drawn about the 

BER performance of the proposed (3, k) regular LDPC codes when compared with 

Shannon limit: 

 

1. The longer the code length of the proposed (3, k) regular LDPC codes, the closer 

the BER performance to Shannon limit.         

2. (3, 42) regular LDPC code with R = 0.928, N = 14364 and encoding complexity 

of the order of (1.0225 N) achieves 0.97 dB at BER of 10
−6

.  

3. The BER value between the proposed (3, k) regular LDPC codes and theoretical 

upper bound of an [N, K] binary block code with soft-decision decoding is very 

far away even though both codes are using the same value of N, K and dmin. 

4. Even though the proposed (3, k) regular LDPC codes have a smaller value of code 

length (N) and smaller value of parameter j and k, the proposed (3, k) regular 

codes have a comparable performance with other QC LDPC and cyclic LDPC. 

 

 

5.3   Code Performance of Irregular LDPC Codes 

 

Since the scope of this thesis is to develop a code construction method that can construct 

not only (3, k) regular LDPC codes but also irregular codes, this section gives one typical 

example of an irregular LDPC code so designed. Even though the proposed irregular 

LDPC code in this section is not meant to be the best performing code, it has 

characteristics of having no rank-deficiency of matrix H, no pre-processing step of 

encoding, no girth of 4-cycles, no singular nature of parity part (Hpar) and low encoding 

complexity. The value of girth in the proposed irregular LDPC code is at least girth of  

6-cycles.  

 

Code performance in this section is evaluated in terms of BER curves. BER performance 

is obtained by simulating across 200 errors at each point of SNR. After getting BER 

value at each point of SNR, linear interpolation is applied. 
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Based on chapter 3, there are also five variables used for constructing irregular LDPC 

codes, namely, ji, ki, base, L and L1. Since this section evaluates the performance of 

irregular LDPC codes, the value of parameter ji used is not equal to ji = 3. Simulation 

model of the proposed irregular LDPC code is developed based on procedures in chapter 

4 using LDPC encoder-decoder of MATLAB
®
 7.4. The block diagram of the simulation 

is also described in Figure 4.1. 

 

 

 

Figure 5.19: Comparison of irregular LDPC codes. 

 

 

The proposed irregular LDPC code is compared with other published results, namely 

irregular LDPC codes using dual diagonal parity [53], irregular random LDPC codes 

using density evolution by Richardson et. al [53] and irregular random LDPC codes by 

Mackay [53]. This comparison is shown in Figure 5.19. 
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N = 4161, R = 0.824   eIRA LDPC Code - Dual Diagonal Parity Part based on Ref [53] 
N = 4161, R = 0.824    Irregular MacKay   with j=4 based on Ref [53] 
N = 4161, R = 0.824    Irregular Richardson-Urbanke based on Ref [53 ]        
N = 4161, R = 0.824    (65, 65) Regular Cyclic LDPC Code with j=65, k=65 based Ref [53] 
N = 4158, R = 0.818    Proposed Irregular LDPC  RCS (X-2)YmodL ji=4,Base=36,L1=1,L=21,ki=18 
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The performance result of the proposed irregular code is also compared with (64, 64) 

regular cyclic LDPC code [53] in order to show that the proposed design outperforms it 

even though the proposed irregular code has lower code rate and lower code length.  

 

The proposed irregular LDPC code has parameter L1 = 1, L = 21, base = 36, ji = 4, ki = 18 

with deterministic RCS ((x − 2) × y) mod L that give code length N = 4158 and code rate 

R = 0.818. 

 

Based on [1], [13], the minimum distance (dmin) of irregular LDPC code is at least        

jmin + 1. Therefore, the minimum distance (dmin) of the proposed irregular LDPC codes 

with jmin = 3 is at least 4 that gives the ability of correcting at least 1 error.  

 

Figure 5.19 has five BER curves. These are obtained for SNR over a range of 2.6 to 4 dB. 

The BER curve marked with circles is that of proposed irregular LDPC code while curve 

marked with triangle legend is eIRA LDPC code with dual diagonal parity part. Curve 

marked with diamond legend is irregular LDPC code using density evolution by 

Richardson et al while curve marked with plus legend is irregular LDPC code by 

Mackay. 

 

It can be seen from Figure 5.19 that the proposed irregular LDPC code is not able to 

outperform other irregular LDPC codes. We also see in Figure 5.19 that the BER curve of 

eIRA LDPC code using dual diagonal parity part (triangle legend curve) and irregular 

random LDPC codes using density evolution by Richardson et al (diamond legend curve) 

do not have a smooth waterfall shape. Instead, they flatten out for higher SNR. This 

behavior can be due to the fact that the minimum distance (dmin) of these irregular codes, 

do not grow linearly with the code length. However, the proposed irregular LDPC code 

(circle legend curve) does not suffer from this problem. 
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5.4   Complexity Analysis 

 

The proposed LDPC codes have been designed to have small proportion of ones in their 

matrix H. Since the low density of ones in the proposed H lends to low decoding 

complexity, complexity analysis in this section mainly focuses on encoding. The 

complexity analysis for irregular LDPC codes has been excluded from the scope. 

  

Encoding in the proposed (3, k) regular LDPC codes employs Richardson-Urbanke 

method. Richardson-Urbanke method encodes by using inverse of parity check matrix. 

Encoding by parity check matrix simplifies encoding and decoding process by using only 

matrix H without converting it into G. An Advantage of encoding by inversion method is 

that it can be applied to any LDPC codes like random or structured codes. Moreover, the 

MATLAB
®
 7.4 utilizes the same method for encoding in its LDPC encoder built-in 

function, fec.ldpcenc(H). 

 

As mentioned in chapter 2, there are two steps of encoding in Richardson-Urbanke 

method while assuming non-singular parity check matrix (H). Non-singular matrix H 

implies that matrix H is in a full-rank condition.  

 

These two steps are pre-processing step of encoding and actual encoding. A pre-

processing step prepares any parity check matrix to have an approximate triangular form 

and non-singular matrix (ET 
-1

B
 
+ D) before encoding while actual encoding computes 

parity p1
T
 and p2

T
 that depend on inverse of matrix (ET 

-1
B

 
+ D). 

 

 Pre-processing step of encoding in Richardson-Urbanke method is divided into: 

 

1. An approximate triangular form of parity check matrix (H). 

This process is also called triangulation. The objective of triangulation in the 

pre-processing step is to get an approximate triangular form of matrix H. 

Therefore, if matrix H does not have an approximate triangular form, we need 
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to construct this form in matrix H by doing this step. This has the complexity 

of the order (N³). 

 

2. Check-rank process. 

The goal of check-rank process in the pre-processing step is to achieve non-

singular condition for matrix (ET 
-1

B
 
+ D) in equation (2.36). Check-rank 

process in pre-processing step of encoding is done by multiplying matrix H 

from the left based on equation (2.28) to (2.30) to clear matrix E – a process 

that can be achieved by Gaussian elimination. This process includes checking 

whether matrix (ET 
-1

B
 
+ D) known as matrix  is singular or not and solves 

the problem of singularity by performing column permutation in matrix H. 

Based on [52], check-rank process has complexity of the order of (N ² + g³). 

 

 Actual encoding step of Richardson-Urbanke method 

This step solves the calculation of parity p1
T
 and p2

T
 that depends on the inverse 

of matrix (ET 
-1

B
 
+ D) denoted by matrix 1  in equation (2.34). Note that 

inverse of the matrix (ET 
-1

B
 
+ D) can not be obtained if matrix H is rank-

deficient.  

 

The inverse of matrix (ET 
-1

B
 
+ D) is very crucial in computing parity p1

T
 stated in 

equation (2.35). Since the value of p2
T
 is also derived from parity p1

T
 as given in 

equation (2.36), encoding complexity is determined by computation of p1
T
 in 

Table 2.1. The complexity is derived to be of order (N + g²).  

 

Complexity analysis in this section starts by exploring pre-processing step in the 

proposed (3, k) regular LDPC codes based on Richardson-Urbanke method. The 

discussion of complexity analysis is continued for comparison of pre-processing 

step of encoding followed by encoding complexity of (3, 5) regular QC LDPC 

codes. This section ends with listing the computational time of actual encoding 

step in the proposed codes that also compares the time of encoding between the 

proposed (3, k) regular with regular QC LDPC code and regular RA LDPC. 
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5.4.1 Pre-processing Step of the Proposed (3, k) Regular LDPC Codes 

 

Since we focus to avoid pre-processing step of encoding, this section mainly discusses 

pre-processing step in the proposed (3, k) regular LDPC codes. Actual encoding of the 

proposed (3, k) regular LDPC codes gives complexity in the order of (N + g²).  

 

As mentioned above, there are two conditions in the pre-processing step of encoding in 

Richardson-Urbanke method: 

 

1. An approximate triangular form of parity check matrix (H) 

In the proposed code construction, there is no triangulation process since the 

proposed codes have a built-in approximate lower triangular matrix of parity part 

(Hpar). Therefore, the proposed code-construction is able to avoid complexity of 

the order of (N³). 

 

2. Check-rank process 

In the proposed code-construction, there is no process of clearing matrix E. It 

implies that the proposed code-construction is able to avoid complexity of the 

order of (N ² + g³). 

 

If there is girth of 4-cycles, the expected matrix H does not result. Therefore, one 

should be careful in choosing the value of parameter base and expansion factor L 

in the code design.  

 

Even though rank deficiency and girth of 4-cycle are not found in the proposed 

matrix, there is a possibility that matrix (ET 
-1

B
 
+ D) is singular. Removing 

singularity as the worst case in the proposed code is solved by performing column 

permutation in sub- matrix H that is permuting one column of matrix Hinf  and one 

column of matrix Hpar until the determinant of matrix (ET 
-1

B
 
+ D) is not zero 

anymore. 
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The sub matrices of matrix Hinf which are permuted by column permutation are 

matrix A and C while the sub matrices of matrix Hpar which are permuted by 

column permutation are matrix B and matrix D.  

 

Column permutation of matrix Hinf in the proposed code construction starts with 

the first column of matrix Hinf until the (kiZL1)-th column of matrix Hinf while 

column permutation of matrix Hpar starts with the first column of matrix Hpar until 

g-th column of matrix Hpar. The location of (kiZL1)-th column of matrix Hinf 

and g-th column of matrix Hpar can be viewed according to Figure 3.14 in section 

3.4.1. 

 

Actual encoding without any pre-processing step is achieved in two conditions: 

o Matrix H has an approximate triangular form. 

o Matrix (ET 
-1

B
 
+ D) is non-singular.  

 

If we fail to obtain the two conditions mentioned above, it means that we have to do a 

pre-processing step of encoding that is not trivial task and needs extra time in 

constructing matrix H. 

 

5.4.2  Comparison with (3, k) Regular Quasi Cyclic (QC) LDPC Codes 

 

This section compares pre-processing step of the proposed (3, 5) regular with (3, 5) quasi 

cyclic (QC) LDPC codes for low code rate (R = 0.4125 and R = 0.4029). It further 

compares encoding complexity of both codes. 

  

We encode the BER curves in Figure 5.6 and Figure 5.7 using Richardson-Urbanke 

method and compare pre-processing step of the proposed (3, 5) regular with (3, 5) QC 

LDPC code. In both figures, we determine the amount of complexity needed in the pre-

processing step of encoding for all curves.  
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 (3, 5) regular QC LDPC codes in code rate R = 0.4125. 

Comparison of pre-processing step of encoding of (3, 5) regular QC with             

R = 0.4125 and the proposed (3, 5) regular with R = 0.4 based on Figure 5.6 is 

presented in Table 5.3. Table 5.3 also compares encoding complexity of both 

codes. 

 

In order to be encoded by Richardson-Urbanke method, matrix H in Figure 5.6 

needs to be transformed into an approximate triangular form. The process of 

transforming matrix H into an approximate triangular form yields the value of g 

as a gap of matrix H into its lower triangular form. As stated in actual encoding of 

Richardson-Urbanke method, encoding complexity is in the order of (N + g²).  

 

Table 5.4: Comparison with (3, 5) regular QC LDPC in Figure 5.6. 

Type of  LDPC Codes Pre-Processing Step of Encoding 

Encoding 

g  

  

Complexity 

(N + g²) 

(3, 5) Regular QC 

N = 155 

R = 0.4129 

Based on [52]: 

1. Triangulation: Complexity by (N³)  

2.   Check rank: Gauss elimination to clear 

matrix E and column permutation by  

(N ² +g³).  Total complexity is (N³) 

4 (N + 0.103N) 

Proposed (3, 5) Regular 

N = 150, R = 0.4 

Base = 30, L1 = 1, L = 3 

  Deterministic RCS     

(x × (y − 1)) mod L 

 

No 

Pre-Processing Step 

6 (N + 0.24N) 

Proposed (3, 5) Regular 

N = 150, R = 0.4 

Base = 30, L1 = 1, L = 3 

  Deterministic RCS     

(x × (y − 3)) mod L 

 

No 

Pre-Processing Step 

6 (N + 0.24N) 
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Based on [52], the value of g for regular QC in Figure 5.6 is g = 4. Since code 

length of (3, 5) regular QC is N = 155, encoding complexity is (N + 0.103N)     

= (1.103N).  The value of g in the proposed (3, 5) regular LDPC code is g = 2  

L  L1= 6. Encoding complexity of the proposed (3, 5) regular LDPC code is    

(N + 0.24N) since code length of proposed (3, 5) regular is N = 150. It is shown 

in Table 5.3 that the proposed code-construction is able to avoid triangulation and 

check-rank process of pre-processing step of encoding that has total complexity in 

the order of (N³). 

 

 (3, 5) regular QC LDPC codes in code rate R = 0.4029. 

Comparison of pre-processing step of encoding of (3, 5) regular QC with             

R = 0.4029 and the proposed (3, 5) regular with R = 0.4 based on Figure 5.6 is 

presented in Table 5.4.  

 

 

Table 5.5: Comparison with (3, 5) regular QC LDPC in Figure 5.7. 

Type of LDPC 

Codes 
Pre-Processing Step of Encoding 

Encoding 

g  

  

Complexity 

(N + g²) 

(3, 5) Regular QC 

 

N = 305 

R = 0.4029 

Based on [52]: 

1.  Triangulation: Complexity by (N³)  

2. Check rank: Gauss elimination to clear 

matrix E and column permutation by       

(N ²+ g³).   

Total complexity is (N³) 

10 (N + 0.328N) 

Proposed 

(3, 5) Regular 

N = 300, R = 0.4 

Base = 30 

L1 = 1,  L = 6 

No 

Pre-Processing Step 
12 (N + 0.48N) 
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Table 5.4 also compares encoding complexity of both codes. In order to be 

encoded by Richardson-Urbanke method, an approximate triangular form for 

three curves in Figure 5.7 is needed and the value of gap g needed to be searched 

for.  

 

Derived from [52], the value of g for regular QC in Figure 5.8 is g = 10. Since 

code length of (3, 5) regular QC is N = 305, encoding complexity is                 

(N + 0.328N) = (1.328N). The value of g in the proposed (3, 5) regular LDPC 

code is g = 2  L  L1 = 12. Encoding complexity of the proposed (3, 5) regular 

LDPC code is (N + 0.48N) since code length of proposed (3, 5) regular is           

N = 300. 

 

It is shown in Table 5.5 that the proposed code-construction is able to avoid 

triangulation and check-rank process of pre-processing step of encoding that has 

total complexity in the order of (N³). 

 

5.4.3  Comparison of Computational Time of Encoding  

 

This section calculates computational time of actual encoding step based on Richardson-

Urbanke method in the proposed code-construction. Computational time of actual 

encoding step is accomplished by utilizing time elapsed of a built-in function in 

MATLAB. This section also compares the time of encoding between the proposed (3, 6) 

regular with (3, 6) regular QC LDPC code that was given in Table 5.7. 

 

Encoding step of the proposed code-construction solves parity p1
T
 and p2

T
 according to 

equation (2.35) and (2.36). Time of getting codeword is taken after combining 

information bits m
T
, parity p1

T
 and p2

T
 written in milliseconds (ms).  

 

Computational time of actual encoding in this section is taken 100 times and we take 

median value of time elapsed in 100 measurements. The comparison of computational 

time is applied in the same computer having the same specification. The specification of 
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our computer is using AMD Turion 64 X2 TL-60 processor having speed of 2.0 GHz and 

3.18 GB of random access memory (RAM).  

 

The results of computational time of encoding step are given in Table 5.6 until Table 5.9 

in milliseconds. Table 5.6 gives computational time of the proposed (3, 8) regular and   

(3, 5) regular LDPC code while Table 5.7 presents computational time of the proposed 

irregular LDPC codes.  

 

 

Table 5.6: Proposed (3, k) regular LDPC codes 

Parameters Parity p1
T
 

(Milliseconds) 

Parity p2
T
 

(Milliseconds) 

Codeword 

(Milliseconds) 

(3, 8) Regular LDPC 

L1 = 1, L = 4, Base = 15, ki = 5, ji = 3. 

Deterministic RCS : ((x − 1) × y) mod L 

The size of matrix H = 60 ×160 

0.65 0.94 1.28 

(3, 5) Regular LDPC 

L1 = 1, L = 8, Base = 15, ki = 2, ji = 3. 

Deterministic RCS : ((x − 1) × y) mod L 

The size of matrix H = 120 × 200 

3.72 5.62 7.49 

 

 

Table 5.7: Proposed irregular LDPC codes 

Parameters of Proposed Irregular LDPC 

Codes 

Parity p1
T
 

(Milliseconds) 

Parity p2
T
 

(Milliseconds) 

Codeword 

(Milliseconds) 

L1 = 1, L = 8, Base = 15, ki = 3, ji = 4. 

Deterministic RCS : ((x − 1) × y) mod L 

The size of matrix H = 120 × 240 

3.8 5.6 7.5 

L1 = 1, L = 8, Base = 15, ki = 2, ji = 5. 

Deterministic RCS : ((x − 1) × y) mod L 

The size of matrix H = 120 × 200 

3.7 5.5 7.3 
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Table 5.8 compares time elapsed of encoding between the proposed (3, 6) regular with   

(3, 6) regular QC LDPC code. The proposed (3, 6) regular LDPC code uses parameter   

L1 = 1, L= 7, base = 9, ji = 3, ki = 3 and deterministic RCS (x × y) mod L. Meanwhile,    

(3, 6) regular QC LDPC code is derived from Gabofetswe Malema and Michael Liebelt 

[26]. In (3, 6) regular QC LDPC code, there are two linear dependent rows that are 

needed to be erased and to be replaced by the new ones. Both of matrices H are divided 

into 6 sub-matrices as given in Figure 3.14.  

 

The last column of Table 5.8 gives time improvement of getting the codeword between 

the proposed (3, 6) regular LDPC code and (3, 6) regular QC LDPC code based on 

reference [26]. Since there is no difference in time elapsed in getting the codeword 

between both (3, 6) regular LDPC codes, the time improvement is 0 %. The time 

improvement of Table 5.8 is calculated based on equation below: 

 

 Time of getting proposed codeword - Time of getting QC codeword     × 100 %     (5.1) 

       Time of getting QC codeword 

 

 

Table 5.8: Comparison of computational time of encoding 

The size of matrix H = 63 × 126 

 

Type of Code 

Codeword 

(Milliseconds) 

Time 

Improvement 

of Getting 

Codeword 

Proposed (3, 6) Regular LDPC Codes 

L1 = 1, L = 7, Base = 9, ki = 3, ji = 3  

Deterministic RCS (x × y) mod L 

1.2 

0 % 

(3, 6) Regular QC LDPC Codes 

Based on Ref [26] 
1.2 
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Table 5.9 compares time elapsed of encoding between the proposed (3, 6) regular with 

regular repeat accumulate (RA) LDPC codes. The choice of RA LDPC codes is taken 

since these codes have linear encoding complexity. Table 5.9 also measures encoding 

complexity of both codes. 

 

 

 

Table 5.9: Computational time of encoding with L1 = 1, L = 3, base = 18 and ki = 3. 

Common Parameter: L1 = 1, L = 3, Base = 18 and ki = 3. 

Deterministic RCS of Proposed Regular and Irregular Codes: ((x − 1) × y) mod L 

The size of matrix H = 54 × 108 

 

Type of Code 

Codeword  

(Milliseconds) 

Encoding 

Complexity 

Proposed 

(3, 6) Regular LDPC 

Codes 

 ji = 3 

Parity p1
T
 

(Milliseconds) 

Parity p2
T
 

(Milliseconds) 

1.16 O(N) + 0.333 N 

 

0.58 

 

0.85 

Proposed 

Irregular LDPC Codes 

ji = 1 

Parity p1
T
 

(Milliseconds) 

Parity p2
T
 

(Seconds) 

1.25 O(N) + 0.333 N 

 

0.60 

 

0.91 

Proposed 

Irregular LDPC Codes 

ji = 2 

Parity p1
T
 

(Milliseconds) 

Parity p2
T
 

(Seconds) 

 

1.18 O(N) + 0.333 N 

 

0.59 

 

0.86 

Regular RA LDPC 

Codes 

ji = 3 

Parity p
T
  

(Milliseconds) 

 

 

 

0.96 O(N) 

 

0.47 
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Derived from Table 5.9, regular RA LDPC codes with dual diagonal parity part are 

having the smallest value of time elapsed of encoding in milliseconds. The complexity of 

regular RA LDPC codes is linear. Even though encoding complexity of the proposed 

code-construction is not as linear as regular RA LDPC codes, computational time of 

encoding in the proposed code-construction is still comparable with regular RA LDPC 

codes. 

 

Encoding complexity of the proposed code is determined by computation of p1
T
 in Table 

2.1 having complexity of the order of (N + g²). The measurement of encoding 

complexity involves calculating the value of g in relation to code length of LDPC codes 

denoted by N.  

 

In the proposed (3, k) regular and irregular LDPC codes, the value of g is influenced by 

parameter L and L1 since g is 2  L  L1. The value of encoding complexity of the 

proposed (3, k) regular and irregular LDPC code is written by equation below: 

 

(N + g²) =  (N + 4  L
2
  L1

2
)    (5.2) 

 

Using, as small as possible, parameter L and L1 while utilizing, as large as possible, the 

parameter base decreases the encoding complexity of the proposed codes. 

 

 

 

 

 

 

 

 

 

 

 



 

148 

 

The influence of some methods of deterministic RCS in computational time of encoding 

is presented in Table 5.10. Applying variable methods of deterministic RCS by 

maintaining the same parameters of L1 = 1, L = 6, Base = 39, ji = 3, ki = 2 and the same 

value of encoding complexity gives a comparable time elapsed of encoding in seconds 

for getting the codeword, the parity p1
T
 and the parity p2

T
.  

 

Since the time for getting codeword using either of 7 methods of deterministic RCS is the 

same and is in the range of 50 milliseconds, the most recommended deterministic RCS is 

determined by the value of parameter base and expansion factor L chosen that yield no 

pre-processing before encoding. The details of feasible values of parameter base and 

expansion factor L that gives matrix H with no pre-processing before encoding, no rank-

deficiency and no girth of 4-cycles is given in the appendix. 

 

 

Table 5.10: Computational time with variable deterministic RCS 

 (3, 5) Regular LDPC codes 

Common Parameter: L1 = 1, L = 6, Base = 39, ji = 3 and ki = 2. 

The size of matrix H = 234 × 390 

Deterministic RCS Parity p1
T
 

(Milliseconds) 

Parity p2
T
 

(Milliseconds) 

Codeword 

(Milliseconds) 

Encoding 

Complexity 

(x × y) mod L 26.7 39.2 52.4 O(N) + 0.369 N 

((x − 1) × y) mod L 27 39.3 52.2 O(N) + 0.369 N 

((x − 2) × y) mod L 27.8 40.7 53.6 O(N) + 0.369 N 

((x − 3) × y) mod L 26.1 38.3 51.1 O(N) + 0.369 N 

(x × (y − 1)) mod L 26.7 39.2 52.2 O(N) + 0.369 N 

(x × (y − 2)) mod L 27.3 39.9 52.9 O(N) + 0.369 N 

(x × (y − 3)) mod L 26.7 39.2 52.3 O(N) + 0.369 N 
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5.5 Summary  

 

In this chapter, results, analysis and discussion of the proposed (3, k) regular LDPC codes 

in terms of BER performance, BLER performance, Shannon limit and complexity 

analysis have been presented. The discussion in this chapter is initiated by code 

performance parameters that evaluate the proposed (3, k) regular LDPC codes in terms of 

BER, BLER and Shannon limit. In order to validate the proposed (3, k) regular LDPC 

codes, the error performance is compared with some published results of (3, k) regular 

QC LDPC, (3, k) regular random LDPC codes theoretical un-coded BPSK and theoretical 

upper bound of an [N, K] binary block code with soft-decision decoding and BPSK 

modulation. 

 

All the parity-check matrices designed for the purpose and used in this section are having 

no rank-deficiency of matrix H, no pre-processing step of encoding, low encoding 

complexity and non-singular parity part (Hpar).  

 

Based on results presented in section 5.2, the proposed (3, k) regular codes have a 

comparable performance with (3, k) regular QC and (3, k) regular random when R > 0.7. 

Moreover, the BER value between the proposed (3, k) regular LDPC codes and 

theoretical upper bound of an [N, K] binary block code with soft-decision decoding is 

very far away even though both codes are using the same value of N, K and dmin. 

 

The proposed (3, k) regular codes are proven to achieve code performance below 1.445 

dB from Shannon limit at BER of 10
−6

 when the value of code rate is greater than  

R = 0.875. It is also shown that the proposed (3, 42) regular code achieves a performance 

of only 0.97 dB from Shannon limit at BER 10
−6

 with encoding complexity (1.0225 N), 

for R = 0.928 and N = 14364.  
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This section is followed by one example of BER performance of the proposed irregular 

LDPC code. Even though the proposed irregular LDPC code is not able to outperform 

other irregular LDPC codes, the BER curve of the proposed irregular LDPC code does 

not flatten out for higher SNR. 

 

After that, it is followed by investigation of complexity analysis that covers pre-

processing step in the proposed (3, k) regular LDPC codes based on Richardson-Urbanke 

method. The complexity analysis for irregular LDPC codes has been excluded from the 

scope. 

 

The discussion of complexity analysis is continued and pre-processing step of encoding is 

compared in terms of its complexity with (3, 5) regular QC LDPC codes. It is shown that 

the proposed code-construction is able to avoid pre-processing step of encoding that has 

otherwise total complexity of the order of (N³). This section ends with listing down 

computational time of actual encoding step in the proposed codes and also compares the 

time of encoding between the proposed (3, 6) regular with (3, 6) regular QC LDPC code. 

 

In the next chapter, we will conclude the entire work of this thesis and recommend future 

work that can be carried out. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

 

 

6.1  Introduction  

 

In the previous chapters, the proposed code-construction method for (3, k) regular LDPC 

codes has been described and the performance results thereof presented. These codes are 

shown to have no rank-deficiency of matrix H, no pre-processing before encoding, no 

singular nature of parity part (Hpar) and fairly low encoding complexity. In this chapter, 

we conclude the entire work and suggest future work for further research in this area. 

 

 

6.2  Conclusion 

 

In this thesis, a novel code-construction method is proposed. It attempts to design its 

information and parity sub-matrices independently. The advantage of the proposed parity 

part design is that it can be used not only (3, k) regular but also irregular LDPC codes. 

Therefore, this code-construction is able to construct not only (3, k) regular but also 

irregular LDPC codes. 

 

In any design of LDPC codes, there are issues like rank-deficiency of parity check matrix 

(H), high encoding complexity of the order of (N²) and pre-processing steps that may 

require computation of the order of (N³) where N is the code length.  

 

Since high encoding complexity is one of the critical issues, we have explained some of 

the existing methods of encoding in LDPC codes such as encoding by generator matrix 
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and encoding by parity check matrix. It has been shown that encoding by parity check 

matrix is preferable than generator matrix since it simplifies encoding and decoding 

processes by using only one matrix H. Encoding by inversion method is also preferable 

than generator polynomial since it can be applied to any random or structured LDPC 

codes.  

 

Accordingly, the proposed code-construction is so designed that it has certain desirable 

structure in its base matrices that are expanded in two stages to have no rank-deficiency 

of matrix H, no girth of 4-cycles, no pre-processing before encoding, no singular nature 

of parity part (Hpar) and low encoding complexity. Moreover, the proposed code-

construction is encoded by parity check matrix using Richardson-Urbanke method that 

uses inversion method.  

 

The proposed code-construction for (3, k) regular and irregular LDPC codes is 

determined by five design parameters, namely parameter base, parameter ji, parameter ki, 

expansion factor L and expansion factor L1. 

 

In the proposed (3, k) regular LDPC codes, parameter base and expansion factor L are the 

key factors that are able to avoid rank-deficiency, girth of 4-cycles. If necessary, it carries 

out column permutation for avoiding singularity in the proposed matrix H. Therefore, one 

should be careful in choosing the value of parameter base and expansion factor L in the 

proposed code design.  

 

It is shown that the proposed code-construction is able to avoid pre-processing step of 

encoding that has, otherwise, total complexity of the order of (N³). The value of code 

rate (R) for the proposed (3, k) regular LDPC codes is given by 3 ÷ (3 + ki) while the 

value of code rate (R) for the proposed irregular LDPC codes are given by ki ÷ (3 + ki).  

  

All the parity check matrices designed and presented in this thesis are having no rank-

deficiency, no pre-processing step of encoding, no singular nature in parity part (Hpar) 

and low encoding complexity.  
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Furthermore, looking forward to test and evaluate the performance of the proposed (3, k) 

regular LDPC codes, the simulation model is appropriately developed with binary digit 

input, BPSK modulation, AWGN channel and LDPC encoder-decoder of MATLAB
®
 

7.4. The proposed parity check matrix, H, is provided to the MATLAB
®
 7.4 encoder 

which inverts it to encode the binary data. Similarly, the decoder of MATLAB
®
 makes 

use of sum-product algorithm to decode the received codeword. The code performance of 

the proposed (3, k) regular LDPC code is measured in terms of bit-error rate (BER), 

block-error rate (BLER) and Shannon limit. 

 

Based on the results and discussion in chapter 5, the proposed (3, k) regular codes are 

proven to achieve code performance below 1.44 dB from Shannon limit at BER of 10
−6

 

when the value of code rate, R, is greater than 0.875.  Moreover, the BER value between 

the proposed (3, k) regular LDPC codes and theoretical upper bound of an [N, K] binary 

block code with soft-decision decoding is very far away even though both codes are using 

the same value of N, K and dmin. 

 

The proposed (3, k) regular LDPC codes have comparable BER and BLER performance 

with other published techniques such as (3, k) regular quasi-cyclic (QC) and (3, k) regular 

random LDPC codes when code rates are at least R = 0.7 or more. 

 

It is shown that the proposed (3, 42) regular code gets as close as 0.97 dB from Shannon 

limit at BER 10
−6

 for R = 0.928 and N = 14364 with encoding complexity of only        

(N + 0.0225 N). The code performance results suggest that the proposed (3, k) regular 

codes are suitable for high code rate R ≥ 0.875. 

 

Even though the proposed irregular LDPC code is not able to outperform other irregular 

LDPC codes, the BER curve of the proposed irregular LDPC code does not flatten out for 

higher SNR. 
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6.3  Contribution of Research Work 

 

Some contributions of this research work are as listed below: 

 

 A novel code-construction method, in that it avoids pre-processing steps that are 

otherwise required in the design of (3, k) regular LDPC codes.  

 

 Since the parity part of this code-construction can be utilized also in irregular 

LDPC codes, the proposed code-construction is aimed for constructing not only 

(3, k) regular LDPC codes but also irregular LDPC codes. 

 

 The proposed codes are categorized as QC LDPC codes and consist of an 

information sub-matrix (Hinf) and a non-singular parity sub-matrix (Hpar) that 

comes in the form of an almost lower triangular. 

 

 The core design of the proposed code-construction utilizes expanded deterministic 

base matrices in three stages of code-construction. Deterministic base matrix of 

parity part starts with triple diagonal matrix while deterministic base matrix of 

information part utilizes matrix having all elements of ones. Expansion factor L1 

in the third stage of code-construction expands combination of expanded base 

matrices of parity part (Hp) and information part (Hi) into Hpar and Hinf to 

construct matrix H = [Hinf | Hpar]. 

 

 Various code rates (R) are generated by maintaining the number of rows in matrix 

H while only changing the value of parameter ki that represents the number of 

ones in each row of information part. 

 

 The proposed design method has been used to obtain viable choices of design 

parameters such as base and expansion factors that lead to viable matrix H with 

no girth 4-cycles and no singularity. This has been done for parameter base ≤ 114 

and expansion factor L ≤ 35 that are sufficient to generate code lengths of up to 
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15000 – a limit that the built-in encoder of MATLAB (fec.ldpcenc(H)) is not able 

to go beyond. 

 

 The encoding complexity of the proposed matrix H is upper-bounded by          

(N + g²) where g is the gap between matrix H and its lower triangular form with 

g
2 

« N. The value of g is equal to 2L L1 where L and L1 are both expansion 

factors. For example, for N = 11016 and g
2
 = 324 only. 

 

 The proposed (3, k) regular LDPC codes have comparable BER and BLER 

performance with other techniques such as (3, k) regular quasi-cyclic (QC) and  

(3, k) regular random LDPC codes when code rates are at least R = 0.7 or more. 

 

 The proposed (3, k) regular LDPC codes are shown to achieve code performance 

as close as 1.44 dB from Shannon limit of SNR at bit error rate (BER) of 10
−6

 

when the value of code rate is greater than R = 0.875 and code length N ~ 15000 

bits. The BER value between the proposed (3, k) regular LDPC codes and 

theoretical upper bound of an [N, K] binary block code with soft-decision 

decoding is very far away even though both codes are using the same value of N, 

K and dmin. 

 

 It is shown in this thesis that the proposed (3, 42) regular LDPC code performs as 

close as 0.97 dB from Shannon limit of SNR at BER 10
−6

 with encoding 

complexity (1.0225 N), for R = 0.928 and N = 14364.  

 

 The BER curve of the proposed irregular LDPC code does not flatten out for 

higher SNR even though the proposed irregular LDPC code is not able to 

outperform other irregular LDPC codes. 
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6.4  Future Work 

 

There are some results of this thesis that can be improved in future and some areas that 

can be undertaken as new research as described below:  

 

 It is possible to extend the proposed design methodology to other regular LDPC 

codes like (2, k), (4, k), (5, k), (6, k) etc and also other regular LDPC codes. 

 

 It is also possible to design codes of length higher than 15000 bits with 

appropriate changes in the computer and also the codes written for the design. 

 

 There is an opportunity to know how far the proposed (3, k) regular LDPC code 

performance be from Shannon limit at BER 10
−6

 when the value of code rate 

exceeds R = 0.928.  

 

 Alternative methods of deterministic RCS for parity part (Hpar) and its influence 

on pre-processing stage of encoding have to be adequately analyzed.  

 

 It would also be interesting to see how other decoding algorithm influence the 

code performance of the proposed (3, k) regular LDPC codes. 

 

 For lower code rate (R ≤ 0.5), other construction method of information part (Hinf) 

needs to be investigated adequately for the proposed (3, k) regular LDPC codes. 

 

 Testing the code performance of the proposed (3, k) regular LDPC codes in other 

practical channel conditions such as fading channel has to be adequately analyzed. 

 

 The hardware implementation of the proposed (3, k) regular LDPC codes and its 

cost analysis are also needed to be examined in detail. 
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Other interesting future works of this research work are summarized below: 

 

 The code performance comparison of the proposed irregular LDPC codes in terms 

of the BER and the BLER performance with other irregular LDPC codes. 

 

 The code performance of the proposed irregular LDPC codes from Shannon limit 

at BER 10
−6

when the value of code rate greater than R = 0.875 in AWGN channel.  

 

 Investigating the influence of another decoding algorithm in the code performance 

of the proposed irregular LDPC codes. 

 

 Utilizing another construction of information part (Hinf) for a better code 

performance of the proposed irregular LDPC codes in lower code rate (R ≤ 0.5).  

 

 Hardware implementation of the proposed irregular LDPC codes has to be 

investigated in detail. 

 

 The proposed code construction should also target typical application scenarios 

like digital video broadcast – satellite (DVB-S), ultra wideband (UWB) based 

wireless personal area network (PAN) and other wireless networks like local area 

network, metropolitan area network and regional area network etc. 
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APPENDIX 

FEASIBLE VALUES OF PARAMETER BASE AND EXPANSION L 

 

 

 

Introduction 

 

As mentioned in chapter 3 section 3.2.1, this is an appendix of feasible values of 

parameter base and expansion factor L with given choice of deterministic RCS that give 

matrix H with no rank-deficiency and girth of 4-cycles.  

 

 

Appendix A: Parameter Base 

 

This section explores feasible values of parameter base investigated by producing the 

proposed matrix H using a given value of parameter base, seven methods of deterministic 

RCS according to Table 3.2 and constant parameters of L, L1, ji, ki that are taken 

randomly. The range value of parameter base is also chosen randomly in order to 

investigate all valid values of parameter base that gives matrix H without rank deficiency 

and girth of length 4.  

 

Parameter base is applied as a basic design parameter of parity part in the proposed 

codes. The proposed parity part begins by a triple diagonal base matrix in the size of 

(base × base), puts some constraints to construct a deterministic form of (3, 3) regular 

LDPC code and expands it with expansion factor L to construct parity part (Hp) in the 

first stage of code- construction having characteristics of no rank-deficiency of matrix H, 

no pre-processing steps of encoding, low encoding complexity and non-singular parity 

part. 
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Each method of deterministic RCS in Table 1 is tested to produce the proposed matrix H 

by applying variable value of parameter base in the range value of base = 3 until         

base = 55 using constant parameters of L1 = 1, L = 6, ji = 3 and ki = 3. The range of 

parameter base that is base = 3 until base = 55 is chosen since this range of parameter 

base gives the value of code length N < 15000 bits that is code length N = 36 until          

N = 660 bits. Then, the proposed matrix H is provided to the MATLAB
®
 7.4 encoder 

which inverts H to encode the binary data. 

 

As stated in section 5.2.1, there is a possibility that matrix (ET 
-1

B
 
+ D) is singular even 

though rank deficiency and girth of 4-cycle are not found in the proposed matrix H. 

Removing singularity is solved by permuting one column of matrix Hinf and one column 

of matrix Hpar until the determinant of matrix (ET 
-1

B
 
+ D) is not zero anymore. 

 

Since we focus to avoid any task or additional computation before actual encoding, we 

prefer to use the proposed matrix H that has no column permutation at all to avoid 

singularity of matrix (ET 
-1

B
 
+ D) in our simulation. 

 

Derived from Table 1, the smallest total value of parameter base that produces encoding 

of matrix H without column permutation is given by deterministic RCS No.2 ((x − 1) × y) 

mod L derived from [23]. 

 

Applying the value of parameter base in the process of code design is useful in 

eliminating rank-deficiency, girth of 4-cycles and column permutation for avoiding 

singularity in the proposed matrix H. Therefore, parameter base is one factor that is able 

to overcome those issues in the proposed matrix H. 
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Table 1: Feasible values of parameter base for designing H without rank-deficiency and 

girth of length 4 having constant parameter L1 = 1, L = 6, ji = 3 and ki = 3.  

N

o 

Methods of 

Deterministic 

RCS in 

Parity Part 

Range Values of  Parameter Base 

Base = 3  until  Base =  55 
Comment 

Total 

Valid 

Choices of  

Parameter 

Base 

1 ( x  ×  y ) mod L 

  9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 

24, 25, 26, 27, 28, 31, 33, 34, 35, 37, 38,       

40, 41, 42, 44, 45, 47, 48, 49, 50, 52, 54, 55 

Do column permutation of H to 

avoid singularity of matrix     

(ET 
-1

B
 
+ D) denoted by . 

34 

8, 11, 18, 22,  23, 29, 30, 32, 36,  

39, 43, 46, 51, 53 

No column permutation of  

matrix H 
14 

2 

((x − 1) × y) mod L 

 

This equation is 

based on [23]. 

9, 12, 21, 24, 27,30, 33, 36, 42,  

45, 48, 51, 54 

Do column permutation of H to 

avoid singularity of matrix . 
13 

15, 18, 39 
No column permutation of  

matrix H 
3 

3 ((x − 2) × y) mod L 

6, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21,  

23, 24, 26, 27, 28, 29, 31, 33, 34, 35, 38,  

40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 54, 55 

Do column permutation of H to 

avoid singularity of matrix     

(ET 
-1

B
 
+ D). 

35 

8, 11,16,18, 22, 25, 30, 32, 36,  

37, 39, 46, 50,51,53 

No column permutation of  

matrix H 
15 

4 ((x − 3) × y) mod L 

7, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 

24, 25, 26, 27, 28, 31, 33, 34, 35, 37, 38, 

40, 41, 42, 44, 45, 47, 48, 49, 50, 52, 54, 55 

Do column permutation of H to 

avoid singularity of matrix     

(ET 
-1

B
 
+ D). 

35 

8, 11, 18, 22, 23, 29, 30, 32, 36,  

39, 43, 46, 51, 53 

No column permutation of  

matrix H 
14 

5 (x × (y − 1)) mod L 

10, 12, 14, 16, 17, 19, 20, 21, 23, 24, 25, 

26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 

40, 41, 42, 44, 45, 47, 48, 49, 52, 54, 55 

Do column permutation of H to 

avoid singularity of matrix     

(ET 
-1

B
 
+ D). 

34 

9, 11, 13, 15, 18, 22, 30, 32, 

 39, 43, 46, 50, 51, 53 

No column permutation of  

matrix H 
14 

6 (x × (y − 2)) mod L 

7, 9, 13, 14, 15, 17, 19, 20, 21, 26, 27, 31, 

32, 33, 35, 37, 38, 41, 45, 47, 49, 55 

Do column permutation of H to 

avoid singularity of matrix . 
22 

8, 11, 23, 25,  29, 39, 43, 44, 50, 51, 53 
No column permutation of  

matrix H 
11 

7 (x × (y − 3)) mod L 

 

9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 

25, 26, 27, 28, 31, 33, 34, 35, 37, 38, 40,  

41, 42, 44, 45, 47, 48, 49, 50, 52, 54, 55 

Do column permutation of H to 

avoid singularity of matrix     

(ET 
-1

B
 
+ D). 

34 

8, 11, 18, 22, 23, 29, 30, 32, 36,  

39, 43, 46, 51, 53 

No column permutation of  

matrix H 
14 
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Appendix B: Expansion Factor L  

 

This section investigates feasible value of expansion factor L investigated by producing 

the proposed matrix H using a given value of expansion factor L, seven methods of 

deterministic RCS according to Table 3.2 and constant parameters of base, L1, ji, ki that 

are taken randomly. The range value of expansion factor L is also chosen randomly in 

order to investigate total valid values of expansion factor L that gives matrix H without 

rank deficiency and girth of length 4.  

 

Expansion factor L is utilized to expand each non-zero of base matrix of parity part at 

position (x, y) by (L × L) identity matrix with deterministic right cyclic shift (RCS). 

Meanwhile, each zero of base matrix of parity part is also expanded by (L × L) zeros 

matrix.  

 

Each method of deterministic RCS in Table 2 is tested to produce the proposed matrix H 

by applying variable value of expansion factor L in the range value of L = 3 until  L = 35 

using constant parameters of L1 = 1, Base = 39, ji = 3 and ki = 1. The range of expansion 

factor L that is L = 3 until L = 35 is chosen since this range of expansion factor L gives 

the value of code length N < 15000 bits that is code length N = 156 until N = 1820 bits. 

Then, the proposed matrix H is provided to the MATLAB
®
 7.4 encoder which inverts H 

to encode the binary data. 

 

All seven methods of deterministic RCS in Table 2 yield bigger value of expansion factor 

L that produces encoding of matrix H without column permutation value than Table 1. 

The reason is that the value of constant parameter base is taken by base = 39 that gives 

no column permutation of matrix H for all seven methods of deterministic RCS in Table 

1. 
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Table 2: Feasible values of expansion factor L for designing H without rank-deficiency 

and girth of length 4 using constant parameter L1=1, base=39, ji=3, ki = 1.  

N

o 

Methods of 

Deterministic 

RCS in 

Parity Part 

Range Values of  Expansion Factor L 

L = 3  until  L =  35 
Comment 

Total 

Valid 

Choices of  

Expansion 

Factor L  

1 ( x  ×  y ) mod L 

7, 14, 21, 28, 35 

Do column permutation 

of H to avoid singularity 

of matrix (ET 
-1

B
 
+ D). 

5 

3, 4, 6, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19,  

20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34 

No column permutation 

of  matrix H 
26 

2 

((x − 1) × y) mod L 

 

This equation is 

based on [23]. 

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,  

16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27,  

28, 29, 30, 31, 32, 33, 34, 35 

No column permutation 

of  matrix H 
32 

3 ((x − 2) × y) mod L 

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,  

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,  

27, 28, 29, 30, 31, 32, 33,   34, 35 

No column permutation 

of  matrix H 
33 

4 ((x − 3) × y) mod L 

7, 14, 21, 28, 31, 35 

Do column permutation 

of H to avoid singularity 

of matrix (ET 
-1

B
 
+ D). 

6 

3, 5, 6, 9, 10, 11, 12, 13, 15, 17, 18, 19,  

20, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34 

No column permutation 

of  matrix H 
24 

5 (x × (y − 1)) mod L 
3, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20,  

21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33,  34, 35 

No column permutation 

of  matrix H 
27 

6 (x × (y − 2)) mod L 

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,  

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,  

28, 29, 30, 31, 32, 33, 34, 35 

No column permutation 

of  matrix H 
32 

7 (x × (y − 3)) mod L 

7, 14, 21, 28, 35 

Do column permutation 

of H to avoid singularity 

of matrix (ET 
-1

B
 
+ D). 

5 

3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17,  

18, 19, 20, 22, 24, 25, 26, 27, 30, 31, 32, 33, 34 

No column permutation 

of  matrix H 
26 
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Based on Table 2, there are four methods of deterministic RCS that produce the proposed 

matrix H with no column permutation for expansion factor L in the range of L = 3 until      

L = 35. These four methods of deterministic RCS are ((x − 1) × y) mod L, ((x − 2) × y) 

mod L, (x × (y − 1)) mod L and (x × (y − 2)) mod L. 

 

Derived from Table 2, the highest total value of expansion factor L that produces 

encoding of matrix H without column permutation is given by deterministic RCS No.3 

that is ((x − 2) × y) mod L. 

 

According to Table 1 and Table 2, the crucial parameters in eliminating rank-deficiency, 

girth of 4-cycles and column permutation to avoid singularity in the proposed matrix H 

are parameter base and expansion factor L. 

 

 

Summary 

 

This appendix gives feasible values of parameter base and expansion factor L with given 

choice of deterministic RCS that give matrix H with no rank-deficiency and girth of 4-

cycles. It is shown that expansion factor L gives larger feasible values of matrix H with 

no rank-deficiency and girth of 4-cycles than parameter base since the chosen constant 

parameter base is base = 39 that gives no column permutation of matrix H for all seven 

methods of deterministic RCS in Table 1. 

 

The crucial parameters in eliminating rank-deficiency, girth of 4-cycles and column 

permutation to avoid singularity in the proposed matrix H are parameter base and 

expansion factor L 

 


