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ABSTRACT 

 

 

A mechanism of variable ballast system which manipulates volume of water in the 

ballast tank is designed and modeled in this thesis. The mechanism is designed to 

make water always fulfill space in the variable ballast tank with varying volume. 

Therefore the internal dynamic that is caused by the movement of water in the tank 

can be avoided. The variable ballast is utilized for vertical motion actuator of a 

spherical URV by controlling the difference between buoyant force and gravitational 

force. In this thesis, the VBS can change the weight of URV body, ,WΔ in range 

N96.9±  in order to make URV in positive buoyancy, neutral buoyancy or negative 

buoyancy. The buoyancy of URV is considered as a constant value. By using this 

mechanism, then the URV can move in vertical plane in the range of velocity 

1ms019.1 −± . 

 

Two approaches, i.e. linearized approximation and nonlinear approach, are presented 

to design the controller of the dynamic model which behaves as nonlinear system. In 

linearized approximation, the nonlinear model is linearized about the equilibrium 

point by using Taylor series. Since the linearized model is controllable then a linear 

control strategy is applied. In order to analyze the stability of the system, Lyapunov’s 

linearization method is used. Since the eigenvalues of the linearized model is zero, 

,0=λ  then the Lyapunov’s linearization method cannot determine whether the 

nonlinear system is stable or unstable. The second method of Lyapunov stability 

analysis, i.e. Lyapunov direct method, is also applied. By using this method, it can be 

known that the equilibrium point of this depth positioning system is unstable, 

furthermore, nonlinear approach, i.e. state-space feedback linearization and input-

output feedback linearization, are also used to stabilize this system.  

 

These control strategies are then simulated in MATLAB/Simulink. All control 

strategies designed in this thesis can asymptotically stabilize the equilibrium point, for 

∞→t , 0→e . The linearized approximation approach is the fastest to reach steady 
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state compare to the others, but it consumes more power. For tracking a trajectory, 

input-output linearization gives better performance compare to the others by resulting 

smallest error. If the change of trajectory is constant, then error of input-output 

feedback linearization converges to zero. For linearized approach and state-space 

feedback linearization, if change of input is 1ms1.0 − then absolute error converge to 

m408.2  and m082.6  respectively, and if change input is 1ms2.0 −  then absolute 

error converge to m361.6  and m163.12  respectively. 
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ABSTRAK 
 

 

Suatu mekanisma sistem Variable ballast yang memanipulasi isipadu air dalam tangki 

balast direkabentuk dan dimodelkan dalam tesis ini. Mekanisma direkabentuk agar air 

sentiasa memenuhi ruang dalam tangki variable balast dengan isipadu yang pelbagai.  

Oleh itu, dinamik dalaman yang disebabkan oleh pergerakkan air dalam tangki dapat 

dielakkan. Variable ballast digunakan sebagai penggerak secara menegak spherical 

URV dengan mengawal perbezaan diantara daya mengapung dan daya graviti. Dalam 

tesis ini, VBS dapat mengubah berat badan URV, ,WΔ dalam julat N96.9±  untuk 

menjadikan URV berada dalam keadaan keapungan positif, keapungan neutral atau 

keapungan negatif. Keapungan URV dianggap sebagai suatu nilai tetap. Dengan 

menggunakan mekanisma ini, maka URV dapat bergerak dalam keadaan rata menegak 

dalam julat halaju 1ms019.1 −± . 

 

Dua pendekatan, iaitu penganggaran linear dan pendekatan bukan-linear dibentangkan 

untuk merekabentuk pengawal model dinamik yang berfungsi sebagai sistem bukan-

linear. Dalam penganggaran linear, model bukan-linear dilinearkan sebesar titik 

keseimbangan dengan menggunakan Taylor series. Supaya model linear mudah 

dikawal, maka strategi kawalan linear diaplikasikan. Untuk menganalisa kestabilan 

sistem, kaedah linear Lyapunov turut digunakan. Disebabkan eigenvalues model 

linear adalah kosong, ,0=λ  maka kaedah linear Lyapunov tidak dapat menentukan 

sama ada sistem bukan-linear adalah stabil ataupun tidak. Kaedah kedua analisis 

kestabilan Lyapunov iaitu Lyapunov direct method juga turut diaplikasikan. Dengan 

menggunakan kaedah ini, dapat diketahui bahawa titik keseimbangan sistem pengesan 

kedudukan ini adalah tidak stabil, seterusnya pendekatan bukan-linear, seperti state-

space feedback linearization dan input-output feedback linearization juga turut 

digunakan untuk menstabilkan sistem ini. 

 

Strategi kawalan ini disimulasikan menggunakan MATLAB/Simulink. Semua strategi 

kawalan yang direkabentuk dalam tesis ini dapat menstabilkan titik keseimbangannya 
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secara asimptot, untuk ∞→t , 0→e . Pendekatan penganggaran linear merupakan 

yang tercepat untuk menjangkau keadaan tegap dibandingkan dengan yang lainnya, 

namun ianya menggunakan kuasa yang lebih besar. Untuk mengesan trajektori, input-

output feedback linearization memberi persembahan yang lebih baik dibandingkan 

dengan yang lainnya dengan keputusan ralat yang paling kecil. Jika perubahan 

trajektori adalah tetap, maka ralat input-output feedback linearization bertumpu 

kepada kosong. Untuk pendekatan linear dan state-space feedback linearization, jika 

perubahan input ialah 1ms1.0 − maka ralat mutlak bertumpu masing-masing kepada 

m408.2  dan m082.6 , dan jika perubahan input ialah 1ms2.0 −  maka ralat mutlak 

bertumpu masing-masing kepada m361.6  dan m163.12 .     
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 Underwater Robot Vehicle (URV) 

 

Underwater robot vehicle has been used in many tasks in underwater environment, 

such as for inspection and maintenance purpose of underwater cable and pipelines 

network [1-3] and also used for gathering bathymetry data for oceanographic 

research [4]. The URV is utilized to perform task in depth where it would be too 

hazardous or impractical for human to do. The kind of task that is performed by URV 

will decide what shape of URV’s body/hull is suitable. For surveying where URV 

must travel in long distance, torpedo-like or airplane-like is suitable. By having this 

shape, the URV will have streamline body so that it can decrease the drag force. 

Hence, the URV will be able to move in high speed. If the URV is utilized for 

observation therefore it does not need to move in long distance with high speed, the 

hull in box frame or spherical shape is suitable, e.g. JHUROV [5] and ODIN [6]. 

 

In this thesis, a spherical shape of URV’s hull is used. The spherical shape is chosen 

because it has axially symmetric and provides uniform drag in any directions of its 

movement, therefore it is easy to develop the algorithm to control motion of the URV. 

By this advantage, a spherical underwater robot vehicle is suitable for test-bed. In full 

DOF, URV has 6 degree of freedom in its motions those are surge, sway, heave, roll, 

yaw, and pitch. This thesis focuses on heave motion that is movement of URV in 

vertical plane.  

 

Currently, some mechanisms for motion actuator are developed. C. Watts et al. [7] 

developed propulsion by mimicking tail of salmon fish. By using this mechanism they 

want to increase the propulsive efficiency and maneuverability, thus will increase 

duration and operation in enclosed environments. Joshua G. Graver [8] and Jui Min 

Tun et al. [9] developed glider. This URV glides in the water by utilizing the change 
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of buoyant force and the position of centre of mass of its hull. They used 

variable ballast mechanism to change the buoyant force.  

 

The kind of the actuators used in an URV depends upon the task want to be 

accomplished by the URV. It also depends on the location where it is operated. The 

common actuator used as propulsion is thruster. If the URV uses thruster as motion 

actuator, the zero buoyancy or neutral buoyancy is needed. Zero buoyancy or neutral 

buoyancy is a condition where the gravitational force is equal to the buoyant force. 

With neutral buoyancy, if there is no propulsion, the URV will not move and keep 

staying at its position. The buoyant force depends on the density of the water, so that 

it is not easy to make URV in neutral buoyancy if the mass of URV is fixed because 

the density of the water sometime is different from one place to another place. The 

diversity of water density is caused by the difference of material dissolved in the 

water. The availability of variable buoyancy or variable ballast can be used for 

adjusting the URV’s buoyant force thus the neutral buoyancy can be kept. Besides 

that function, the variable ballast also can be used as motion actuator in vertical 

plane. By using variable ballast as motion actuator in vertical plane, the power used 

to supply the propeller can be reduced, because we can replace the usage of propeller 

as vertical motion actuator by this variable ballast. Therefore, the usage of power 

supply can be more efficient. In this thesis, the development of variable ballast 

mechanism is performed. This variable ballast is utilized as motion actuator of a 

spherical underwater robot vehicle in vertical plane.  

 

1.2 Variable Ballast System (VBS) 

 

The variable ballast idea is adopted from Archimedes principle, “When a solid body 

is partially or completely immersed in water, the apparent loss in weight will be equal 

to the weight of the displaced liquid”. So, if the specific mass of URV is equal to 

specific mass of water, the URV will drift in the water which is called 

neutral buoyancy. If specific mass of URV is bigger than specific mass of the water, 

the URV will submerge which is called negative buoyancy and if specific mass of 
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URV is less than specific mass of water, the URV will emerge which is known as 

positive buoyancy. By controlling specific mass of URV, we can control motion of 

URV in vertical direction in order to control depth position of URV.  

 

Some mechanisms of VBS have been developed by researchers. 

Koji Shibuya et al. [10] developed variable buoyancy system based on the spermaceti 

oil hypothesis. Sperm whales have a spermaceti organ in their head that is filled with 

spermaceti oil. Spermaceti oil is high quality oil and has been used as material for 

candles, lubricant, and so on. There is a hypothesis about spermaceti oil of sperm 

whales, the sperm whales melt and congeal their spermaceti oil and change the 

volume of the oil to control their own buoyancy. This hypothesis appears suitable for 

the underwater robot because no materials for the ballast, such as sea water taken in at 

another place and iron, are discarded in the sea. They designed a mechanism to melt 

the material by heating it inside a chamber (syringe) thus the volume can be 

increased, hence the buoyancy also increased. In this mechanism, it needs a long time 

to heat the material so that the change of buoyancy is slow. K. S. Wasserman et al. 

[11], M. Xu and S. M. Smith [12] utilized variable ballast system in their URV. They 

designed mechanism to fill and release water from ballast tank by using air pressure 

due to control URV’s buoyancy. To release water from the ballast tank, the high 

pressure air must be pumped to the ballast tank thus the water pushed out from the 

tank. To fill water into the tank, the air must be released from the tank thus the water 

will enter the tank freely. In this mechanism, high pressure air compressor must be 

available. So, the duration and the area where the URV is operated will be limited by 

the pressure of the air in the compressor. J. S. Riedel et al. [13] and M. Worall et al. 

[14] designed a variable ballast system for deep-ocean. They exploit the water as 

ballast to control the weight of the URV. They used hydraulic pump to control 

amount of the water in the ballast tank in order to change the weight of the URV.  

 

1.3 Problem Statement 

 
From the existing variable ballast design explained at section 1.2, the dimension and 

volume of the ballast tank that can be filled by the water is fixed so that if the amount 
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of water in the tank is not maximum, there will be an empty space. The availability of 

empty space in the ballast tank will make water can move freely around this space. If 

motion of the URV is unstable, this condition will result an internal dynamic and it is 

not easy to control it. Therefore, in this thesis, a mechanism of variable ballast system 

with variable volume of ballast tank is designed. Because of the variably volume of 

ballast tank, there will be no empty space in the ballast tank. Hence, the internal 

dynamic that is caused by the motion of water in the ballast tank can be revoked. 

 

1.4 Objectives of Thesis 

 

In this thesis we aim to: 

1. Design a mechanism of variable ballast system. 

2. Derive mathematical model of variable ballast system. 

3. Design the controller for depth position of the spherical underwater robot 

vehicle. 

 

1.5 Scope of Thesis 

 
In this thesis, a mechanism of variable ballast system is designed and used as motion 

actuator of a spherical URV in vertical plane. The mathematical model of the VBS 

and vertical motion equation of a spherical URV are presented in this thesis. These 

models are derived based on the physical laws involved in this system. The variable 

ballast is used to position the URV in a particular depth. The depth control system is 

developed based on the derived model. Since the dynamic of the spherical URV 

behaves as nonlinear system, then the nonlinear controller is designed.  

 

The dynamic model of the URV and the controller design are simulated by using 

Simulink/MATLAB. This simulations use some ideal parameters where the density of 

the water, air pressure and temperature at water surface are constant. 
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1.6 Outline of Thesis 

 

This thesis is organized as follow:  

 

Chapter 2 explains some existing variable ballast mechanisms. Review of some 

previous controller designs are also presented in this chapter.  

 

Chapter 3 emphasizes the modeling of a spherical underwater robot vehicle and 

variable ballast system which is used as vertical motion actuator. The kinematic and 

dynamic model of depth positioning of a spherical URV are obtained by considering 

the physical laws involve in this system. This chapter also presents detail mechanism 

of the variable ballast system and describes detail of the used parts and design of the 

mechanism. 

 

Chapter 4 defines the design of the controllers by using linearized approximation 

approach and nonlinear approach. The nonlinear model for depth positioning of the 

spherical URV is linearized using Taylor series expansion at equilibrium point. 

Nonlinear control approach applied in this system by using feedback linearization. As 

SISO nonlinear system, there are two types of feedback linearization which are state-

space linearization and input-output linearization. Some properties of the control 

system such as controllability, observability and stability are analyzed.  

 

Chapter 5 presents the simulation of dynamic model and controller design by using 

Simulink/MATLAB. Performances of these controllers are discussed and compared 

each others in this chapter. Some input model such as step input, ramp and trajectory 

are tested to system in order to know the responses and performances of the 

controller. 

 

Chapter 6 is conclusions. The contribution of this thesis and the future works are also 

presented in this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

Variable ballast system is utilized in URV system for controlling the buoyancy of the 

URV. This mechanism is needed because the density of the water is uncertain from 

one place to other place, so that the buoyancy of the URV also becomes uncertain. 

Some existing VBS mechanisms are presented in this chapter. This VBS also been 

utilized for vertical motion actuator of URV. Some control designs applied in URV 

system are also presented in this chapter. 

 

2.1 Introduction 

 
Mission in sending of an underwater robot vehicle at certain position or known as 

positioning system needs some motion actuators such as thruster that is used for 

propelling the motion of the URV, fin or rudder that is used for steering the direction 

of the URV or variable ballast system that is used for maintaining zero buoyancy 

condition. If a URV with single thruster and stern planes want to reach a certain 

depth, it should drive the thruster and trim the angle of stern planes. By using these 

actuators, the URV does not have the capability to move in vertical plane directly 

without making a maneuver. If others thrusters are added to the URV direct vertically, 

then the URV will have capability to move in vertical plane directly by using these 

thrusters.  

 

If URV uses thrusters to propel its motion, then a continuous energy must be supplied 

to the thrusters. This condition is not efficient in terms of energy usage. Therefore, 

other mechanism that can conserve the usage of energy is needed, such as variable 

buoyancy. Since the function of variable ballast is for controlling the buoyancy, then 

it can be used as vertical motion actuator by making the buoyancy of the URV into 

negative buoyancy, positive buoyancy or neutral buoyancy. Hence the usage of 

thrusters as vertical motion actuator can be replaced. By using variable ballast as 
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vertical motion actuator, then the usage of energy will be reduced because the URV 

does not need to supply energy to this actuator continuously [15].  

 

2.2 Variable Ballast Mechanism 

 
Variable ballast mechanism which is applied in URV system can be used for 

controlling the difference between buoyancy and gravitational force by controlling the 

density of URV’s body. Some mechanisms of variable ballast were proposed by 

researchers [10-14, 16-22]. These mechanisms change the difference between 

buoyancy and gravitational force by expelling and infusing water from and into the 

tank. 

 

A mechanism mimicking a phenomenon of sperm whales was designed by 

K. Shibuya et al. [10]. In their VBS design, they used materials which have similar 

nature as spermaceti oil of sperm whales. They put the material in the syringes which 

are arranged inside heater as shown in Figure 2.1.  

 

 
Figure 2.1 VBS design by mimicking phenomenon of sperm whales [10]. 

 

By heating the syringes, the material inside will be melt and its volume will expand so 

that the syringes’ pistons will be pushed out. Hence, the buoyancy of URV will be 

increased. If URV has positive buoyancy, then it will move upward. In order to 

decrease the buoyancy, the temperature of the material should be lowered so that the 

material inside syringes will congest and the volume will be decreased. Springs which 
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are coupled to the syringes’ pistons will attract the pistons to clog the material inside. 

By decreasing the volume of material inside the syringes, then the buoyancy will be 

decreased. If the buoyancy is negative, then the URV will move downward. By using 

this mechanism, there will be no material to be expelled to the environment such as 

iron or other material. Therefore, this mechanism will not pollute the underwater 

environment. In this mechanism, it needs a long duration to melt or congest the 

material so that it is looked impossible to change the buoyancy in fast response. If the 

buoyancy should be held at a particular value, then temperature must be held at 

certain value. It means that URV must supply power to the heater continuously. 

Therefore, the URV should provide more energy to this mechanism especially if the 

URV is operated for a long duration. 

 

R. E. Davis et al. [16], C. C. Eriksen et al. [17], and C. Waldmann [18] developed 

variable ballast mechanism by exploiting the difference of density between oil and 

water. It is well known that density of water is bigger than density of oil. In their VBS 

mechanism, oil is pumped from internal reservoir into external bladder in order to 

increase the buoyancy or pump back the oil from external bladder into internal 

reservoir in order to decrease the buoyancy by using hydro pump and control valve as 

shown in Figure 2.2. The change of buoyancy depends upon the amount of oil 

pumped into bladder.  

 

 
Figure 2.2 VBS mechanism by exploiting difference of density between oil and 

water [16]. 
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In this VBS design, it is not easy to sense the change of buoyancy because it is done 

by sensing amount of oil pumped into bladed or pumped back into internal reservoir. 

If volume of internal reservoir is constant then if oil does not fully fill the reservoir, 

an empty space that is not filled by the oil will exist. This condition can make the oil 

move freely in the reservoir. Hence, it can raise internal dynamic of the URV system 

which is not easy to be controlled. It can disturb the stability of the URV. 

 

Mechanism of variable ballast by exploiting high pressure air compressor was 

developed in [11, 12, 19]. In this VBS mechanism, high pressure air compressor must 

be provided. In order to change the buoyancy, the air must be released from 

compressor to increase the buoyancy or released from the ballast tank to decrease the 

buoyancy as illustrated in Figure 2.3. 

 

 
Figure 2.3 Structure of VBS operated by high pressure air compressor [12]. 

 

If the air is released from the compressor to the ballast tank then water will be pushed 

out from the tank. Since density of air is lower than water then the buoyancy will be 

increased. In order to decrease the buoyancy, the air must be released from the ballast 

tank by opening the control valve so that the water can enter the tank. Hence the 

increment of water in the ballast tank will decrease the buoyancy. In this mechanism 

the duration of the operation depend on the availability of high pressure air 

compressor. The pressure of air compressor should be higher than water pressure so 

that it can push the water from then in order to increase buoyancy. If at certain depth, 

the pressure of water is higher than air compressor, then the buoyancy cannot be 



Chapter 2: Literature Review 
 

10

increased. Hence, if the URV does not have other vertical propeller then it will not be 

able to move to surface. In this mechanism also if the water does not fully fill the 

ballast tank, then empty space will be exist. Hence, this condition can raise internal 

dynamic which is not easy to be controlled. 

 

Other mechanism of VBS system which utilized hydraulic system was designed in 

[13, 14, 20]. They manipulated amount of water in a fixed volume of ballast in order 

to control the buoyancy of the URV. Hydraulic pump was utilized to pump the water 

from ambient to ballast tank in order to decrease the buoyancy or pump the water 

from ballast tank to ambient in order to increase the buoyancy as illustrated in 

Figure 2.4. 

 

 
Figure 2.4 VBS mechanism by utilizing hydraulic system [14]. 

 

Since this mechanism utilized a fixed volume of ballast system, then internal dynamic 

can occur if the water does not fully fill the ballast tank which is uneasy to be 

controlled. Therefore, it is hard to design the controller in order to stabilize this 

system. 

 

A variable ballast mechanism which utilized variable ballast tank was applied in [21]. 

This mechanism utilized a cylinder as ballast tank. Base of this cylinder is movable 
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and the other is opened therefore this cylinder directly contacted to the ambient. 

Hence, this cylinder always full with water. By moving the movable base, then the 

volume of cylinder can be changed, hence the volume of water in the cylinder also be 

changed, therefore the buoyancy also be changed. The movable base is moved by 

motor which is coupled through screw. In this mechanism, the water always fully fill 

the cylinder tank even the volume is different. Therefore, the internal dynamic that 

occur in VBS mechanism with fixed ballast tank can be avoided. This VBS 

mechanism was also applied in [22]. In these papers, mathematical model of VBS 

mechanism was not presented therefore it will not be easy to customize the 

specification of the VBS mechanism in order to apply to URV with different design. 

The availability of mathematical model will ease the designer to simulate the system 

in computer software in order to design an optimal controller. 

 

2.3 Controller Design 

 
Designs of the controller in URV system have been investigated by many researchers 

[23-33]. These controllers were designed to improve performance of the URV in 

order to fulfill a certain task. G. Antonelli et al. [23] proposed a controller for tracking 

the position and attitude of an URV with limited feedback measured by the sensor. 

They combined controller and observer to track desired position and attitude. The 

observer was used to estimate unmeasured feedback that was velocity. K. Y. Pettersen 

and O. Egeland [24] designed position and attitude control of an under-actuated URV. 

They wanted to reduce total of the actuators were used in the URV system by keep 

considering the performance of the system. In designing the controller, the cost that is 

needed to build this system must be considered. If it is possible, the usage of sensors 

and actuators should be reduced but still the URV can fulfill the desired task.  

 

The nonlinearity of the URV system becomes opportunity for the researchers to 

develop a good controller. Many nonlinear control systems were applied in URV 

control design. P. A. DeBitetto [25], E. S. Ammeen and G. O. Beale [26] developed 

fuzzy logic controller to control depth position of an Underwater Vehicle (UV). This 

UV utilized variable ballast as actuator for depth positioning system. The variable 
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ballast mechanism was utilized in [25] used pump to control amount of water in the 

ballast tank. This fuzzy logic controller was used to command the pump in order to 

control the depth position of the UV. T. Chatchanayuenyong and M. Parnichkun [27] 

designed a neural network based-time sliding mode control to control a 6 DOF 

Autonomous Underwater Vehicle (AUV). Sliding mode control (SMC) is a type of 

variable structure control (VSC) that is as a combination of subsystems in which each 

has a fixed control structure and effective at particular region of system behavior. 

They used neural network to optimize the period of switching for each subsystems. 

Fuzzy logic controller or neural network controller was designed by neglecting the 

dynamic model of the system. 

 

The existence of mathematical model of a system is important in designing the 

controller. By having a good mathematical model, an effective controller can be 

designed, and computer simulation can be built to test the performance of the 

controller. In [23, 28, 29], controller of the URV system was developed based upon 

mathematical model. In these papers, they designed an effective controller by 

combining controller and observer. They used observer to estimate the unmeasured 

variable that involved in the model. 

 

Once mathematical model of system is obtained, some controllers can be designed 

and tested in computer simulation. Since the URV is a nonlinear system, a simple 

controller can be designed by linearizing the model of URV by using Taylor series 

expansion. This method linearizes the nonlinear model about steady condition or the 

equilibrium point  [30]. Then if the linearized model is controllable, a linear feedback 

controller law can be design based upon this linearized model. N. E. Leonard and 

J. G. Graver [31] used this linearization method to design the controller of 

an underwater glider. They linearized the nonlinear underwater glider model about 

a steady glide path. Since the linearized model was controllable then the linear 

controller was designed. They applied LQR (Linear Quadratic Regulator) as 

a standard linear optimal control design method to control an underwater glider based 

on the linearized model. 
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Sometimes, the linearized model of a nonlinear system is uncontrollable so that 

a linear controller cannot be applied to control this system. Then a nonlinear 

controller must be utilized. Feedback linearization is one of nonlinear controller 

method. I. Schjølberg and T. I. Fossen [32], A. Chellabi and M. Nahon [33] applied 

this method to control motion of an underwater vehicle. They designed the controller 

to track a trajectory based on kinematic and dynamic model of the underwater vehicle. 

Therefore, the feedback linearization method is known as model-based nonlinear 

controller. 

 

2.4 Summary 

 

Variable ballast mechanism is utilized to control the difference between buoyancy and 

gravitational force of URV system. Therefore, it is possible to make the URV in zero 

buoyancy, negative buoyancy or positive buoyancy condition. Some existing variable 

ballast mechanisms were presented in this chapter. In these mechanisms, if the VBS 

utilize fixed ballast tank, then internal dynamic can occur when water does not fully 

fill the tank. The internal dynamic is not easy to be controlled and can disturb the 

stability of the URV. Therefore, VBS mechanism with variable volume of tank is 

needed and presented in the next chapter. In this chapter, reviews of some previous 

controller designs are also presented. These controllers involve non model based 

controller and model based controller. Model based controller can be used if the 

model of the system is provided. Therefore, in the next chapter, the dynamic model of 

a spherical underwater robot vehicle and its motion actuator is derived. Hence, the 

computer simulation can be built. 
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CHAPTER 3 

MODELING OF A SPHERICAL UNDERWATER ROBOT VEHICLE 

 

 

A spherical shape of a submerged body with closed frame provides uniform drag at all 

direction along its surface. In this chapter, the shape of a spherical URV that is used in 

this thesis is presented. The vertical motion equation is also derived. The forces that 

affect the dynamics of the system are also described. In order to control vertical 

motion due to control depth position of the URV, a variable ballast mechanism is 

used. This mechanism controls the weight of URV’s body. This chapter also presents 

detail mechanism of the variable ballast system and describes detail of the used parts 

and design of the mechanism. Kinematic and dynamic model of the variable ballast 

system are also derived. In order to model this system some factors affecting the 

system should be considered. At the beginning of this chapter, some factors affecting 

to the URV and variable ballast system will be presented. 

 

3.1 Background Theory 

 
Commonly, the controller of the URV is designed to send the URV into a particular 

positioning or to maintain the position of the URV. In other words, it is called 

positioning system. The positioning system of URV involves two kinds of position 

those are horizontal and vertical position. In order to determine position of the URV, 

the coordinate system of the URV must be considered. In this sub section, the 

common coordinate system used in underwater vehicle system is presented. Then to 

maintain the position of an URV, a good control system must be designed. An 

effective control system can be built if the mathematical model and simulation is well 

established. In order to model the URV system, some factors affect this system must 

be considered, such as gravitational force, buoyancy, hydrodynamic damping, added 

mass and hydrostatic pressure. 
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3.1.1 Coordinate System of URV 

 

Normally, the underwater vehicle system has six degree of freedom (DOF), including 

spatial coordinate zyx and,, ; and Euler angles ψθφ and,, . The illustration is shown 

in Figure 3.1. 

 

 

 
Figure 3.1 Coordinate system of URV and DOFs. 

 

Surge, sway and heave are translation motion in zyx and,,  coordinate space 

respectively and roll, pitch and yaw are rotation motion in zyx and,,  axis 

respectively. In order to meet the full six degrees of freedom, the URV must be 

equipped with the actuators that can drive the URV in these six motions. By having 

six DOF, the URV will have high maneuverability. The total degree of freedom of the 

URV can be less than six, it depends on the application or task that want to be 

performed by the URV. Therefore it can save usage of the resources like power 

supply, sensor and also propeller and it will cause the time operation of the URV be 

longer. 
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3.1.2 Factors Affecting Submerged Body 

 

The URV can be analogous to submerged body in the water. In order to derive 

the model of the URV, some factors that affect a submerged body in water must be 

considered, including gravitational force, buoyancy, hydrodynamic damping, added-

mass and hydrostatic pressure.  Gravitational force and buoyancy are two important 

factors that must be considered in designing an URV. This two factors influence the 

stability of the URV besides external force. 

 

3.1.2.1 Gravitational Force and Buoyancy 

 

Every object on the earth is affected by the gravitational force or weight, .W  

The magnitude of the gravitational force depends on the mass of the object and 

gravitational acceleration at the object position. Direction of the gravitational force 

directs to the center of the earth. This force acts at the centre of mass of the object or 

the body. 

 

URV as a submerged body in the water, besides affected by gravitational force, it is 

also affected by buoyancy. The buoyant force, ,BF  is a vertical force which acts at 

a submerged body in a fluid, and its magnitude is equal to the weight of the fluid 

displaced by the body. This is known as Archimedes’ principle. The buoyant force 

acts at the centre of mass of the displaced fluid. 

 

The relation between gravitational force and buoyant force of a submerged body is 

illustrated in Figure 3.2. If the weight of the submerged body is less than buoyant 

force then the body will move upward, namely positive buoyancy. If the weight is 

equal to the buoyant force then the body will drift in the fluid, namely neutral 

buoyancy or zero buoyancy. If the weight is bigger than buoyant force then the body 

will move downward, namely negative buoyancy. 
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Figure 3.2 Relation of gravitational force and buoyant force. 

 

3.1.2.2 Hydrodynamic damping 

 

A moving body in a fluid will experience a force which is caused by the flow of fluid 

around the body. This force is resultant of two kinds of forces due to relative motion 

between the body and the fluid. These forces consist of [34]: 

 

- The component of force in the direction of flow on a submerged body which is 

called the drag force. 

- The component of force at right angles to the direction of flow which is called 

lift force. 

 

If flow of the fluid approaches the body along the axis of symmetry then the force 

acting on the body is only the drag force, the lift force is equal to zero. Therefore if 

the fluid flows on a sphere body, which has symmetry axis along its surface, the only 

force exerts on the body is drag force. 

 

If the fluid is water with density wρ , then for a sphere submerged body moving at 

a uniform velocity ,v  the drag force, DF ,  exerts on the body can be expressed as 
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 2
2
1 vwfbDD ACF ρ= , (3.1) 

 

where DC  and fbA  are drag coefficient and projected area of the body respectively. 

The drag coefficient is obtained based on the value of Reynolds number, ,eR  which 

depends on the relative velocity of the flow, shape of the body and viscosity of the 

fluid [34]. The Reynolds number of a sphere submerged body in the water can be 

obtained from  

 

 
μ

ρ fbw D
eR

v
= , (3.2) 

 

where fbD  and μ  are diameter of the sphere body and dynamic viscosity of the 

water respectively. If the Reynolds number of the sphere body is known then the drag 

coefficient can be obtained based on the condition stated below [34]:  

 

(i) For 2.0≤eR :  When the velocity of flow/body is very small or fluid is very 

viscous such that the Reynolds number is very small as low as 0.2. In this 

case, Stokes analyzed theoretically the flow around a sphere under very low 

velocities. Stokes found that total drag coefficient can be calculated by: 
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=  (3.3) 

 

(ii) For 52.0 << eR : Oseen made an improvement to the Stokes’ solution by 

partly taking into account the effect of inertial terms. He found that 
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(iii) For 10005 ≤≤ eR : The value of DC  is equal to 0.4. 

(iv) For 1000001000 ≤≤ eR : The value of DC  in this range is more or less 

independent of Reynolds number, and may be taken as 0.5. 

(v) For 100000>eR : Value of DC  is approximately equal to 0.2. 

 

Because of the availability of the drag force, if the body with constant dimension, 

shape and mass, is free fall in the water, at a certain time it will reach a constant 

velocity which is known as terminal velocity. 

 

3.1.2.3 Added Mass 

 

When a fix body moves in the liquid with unsteady velocity, acceleration or 

deceleration will be exist, and an additional effect (force) on the structure will exist. 

Therefore if a force F  is applied to the submerged body in the water with mass ,tm  

the force will not just accelerate the body but also the water surrounding this body. 

The mass of the water which is accelerated along with the body is known as added 

mass, .am  So, the total force needed to accelerate the body with the mass tm  in 

acceleration a  can be expressed as 

 

 a)( at mmF +=  (3.5) 

 

The total added mass of an accelerated body depends on the shape of the submerged 

body. For a spherical submerged body in the water, the total added mass can be 

calculated by [34] 

 

 3
12
1

fbwa Dm ρπ=  , (3.6) 

 

where fbw Dandρ  are density of water and diameter of the spherical body 

respectively. 
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3.1.2.4 Hydrostatic Pressure 
 

Hydrostatic pressure is a pressure exerted by a liquid at rest condition. Every object 

which is immersed in the liquid will be affected by this pressure. The intensity of this 

pressure depends on the depth position of the object and also the specific weight of 

the liquid. If the object is immersed in the water, then the intensity of the hydrostatic 

pressure, ,hsP  can be calculated by 

 

 zgP whs ρ= , (3.7) 

 

where zg and  are gravitational acceleration and depth position of the object 

respectively. 

 

If the immersed object is horizontally flat with a surface area ,A  then a force on the 

surface of the immersed object will be produced by the hydrostatic pressure which is 

expressed as 

 

 
Azg

APF

w

hshs
ρ=

=
 (3.8) 

 

3.1.2.5 Stability 
 

The stability position of a static object in the static water is affected by the difference 

between the weight and buoyant force of the object. For example, if the buoyant force 

is bigger than the weight, the object will float at the water surface. If this object is 

pushed down and released, then buoyant force will against the weight and will push 

the object float again at surface. Therefore this vertical position is stable. But if the 

buoyant force is equal to the weight, when we give a certain force vertically, the body 

will move for awhile but cannot comeback to the original position. When the object is 

moving, the drag force opposes that force so that the object will be stopped. In this 

condition the vertical position of the object is unstable. 
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The position of center of mass, MC , and center of buoyancy, BC ,  is also affected by 

the rotational stability of the object in the water. In equilibrium condition, the position 

of center of mass and center of buoyancy of a static object in the water is vertically 

inline. If position of center of mass is below center of buoyancy (bottom heavy), then 

if a force is exerted to the object horizontally then it makes the angle position of the 

object change which is illustrated in Figure 3.3. 

 

If MC  and BC  are not vertically inline, then this condition will produce a righting 

moment, RM , which is obtained from [35] 

 

 dB WFdRM λsin)(
2
1

+= , (3.9) 

 

where d  is distance between MC  and BC , and dλ  is angle changing which is 

illustrated in Figure 3.4. 

 

 
Figure 3.3 Position of BC  and MC  in stable condition. 
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Figure 3.4 Righting moment due to changing of angle position. 

 

This righting moment will drive the object comeback to the original angel position 

thus MC  and BC  are vertically inline. Therefore this configuration is stable. 

 

If the object has internal dynamic thus can change position of center of mass, then it 

can make unstable condition. This condition is illustrated in Figure 3.5. 

 

 
Figure 3.5 Unstable condition. 
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3.2 Design of URV 

 

The shape of spherical URV used in this thesis is shown in Figure 3.6. As a sphere 

body, the location of center of buoyancy, BC , of URV’s body is at the center of 

sphere or the intersection point between vertical and horizontal diameter. The variable 

ballast tank is located at the top inside the hull. Location of the tank is adjusted so that 

the position of center of mass, MC , is aligned vertically with BC . Mechanism of the 

variable ballast and detail of its parts are explained in section 3.4. At the upper side of 

the hull above the tank, there are some holes as the way of water to enter into and exit 

from the tank. The space below the movable plate inside the hull is waterproofed so 

that the water cannot enter this space.  

 

 
Figure 3.6 Shape of spherical URV and its parts. 

 

In order to make the URV stable in equilibrium condition, the hull of URV must be 

designed with bottom heavy that is the center of mass is located at under of the 

equator or at underside hemisphere. To make the hull in bottom heavy, fixed ballast is 
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located at the bottom of the hull. The location of MC  of the hull must be aligned 

vertically with BC  of the hull thus in equilibrium condition, the position of the ballast 

tank is at the top of the URV’s hull exactly. This condition is important when the 

URV is provided with horizontal propulsion in order to give ability to the URV to 

move in horizontal plane. 

 

The diameter of URV used in this thesis is chosen as cm35 . Therefore, in order to 

determine the dimension of the ballast tank we have to consider the dimension of 

URV’s hull, batteries, and other electronics devices used in the URV system. 

Parameters of the URV and VBS are described in section 3.5.  

 

3.3 Vertical Motion Equations 

 

Since the URV moves in vertical plane without any propeller, so it just depends on the 

gravitational force, buoyant force and other forces that appear because of its motion. 

By assuming there are no external forces that can disturb the motion of URV, the 

forces acting on the URV can be shown in Figure 3.7. Let BF  is buoyant force, W  is 

gravitational force, DF  is drag force, af  is force that appear because of the 

availability of the acceleration, am  is added mass, and tm  is total mass of the URV’s 

body which is constant then forces equation act at URV are given as [34] 

 

 DB FFW +=  (3.10) 

and,  

 gmW t= , (3.11.a) 

 gVF fbwB ρ= , (3.11.b) 

 2
2
1)( vv wfbDD ACsignF ρ= . (3.11.c) 

 

The direction of gravitational force and buoyant force are opposite to each other when 

W  is downward and BF  is upward. From Eq. 3.11.c, it can be seen that the direction 
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of the drag force depends upon the direction of the velocity. If the URV moves 

downward, the velocity is positive so that the drag force is positive and it direction is 

upward. The drag force and velocity are negative if the URV moves upward. 

 

 
Figure 3.7 Forces acting at URV’s body. 

 

Substituting Eq. 3.11 into Eq. 3.10, then the force equation can be represented as 

 

 2
2
1)( vv wfbDfbwt ACsigngVgm ρρ += . (3.12) 

 

Since dimension of URV, fbV  and fbA , are constant, then the velocity ,v  is also 

constant. This velocity is known as terminal velocity, which is expressed as 

 

         
( )

wfbD

fbwt
fbwt AC

gVgm
gVgmsign

ρ
ρ

ρ
−

−=
2

)(v , (3.13.a) 

 
( )

wfbD

fbwt

AC
gVgm

ρ

ρ−
=

2
v . (3.13.b) 

 

From Eq. 3.13.a, it can be seen that the vertical motion of the URV depends on the 

gravitational force and the buoyant force. If BFW > , then the URV moves downward 

and it will move upward if BFW < . If BFW = , the URV will stay at its position. 
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Since volume of URV’s hull, fbV , ,g and wρ  are constant, the buoyant force is also 

constant. So, the motion of URV depends on the total mass of URV’s body, tm . By 

controlling tm , the vertical motion of the URV can be controlled. 

 

Since equilibrium condition is occurred when BFW = , then 0=v  and st mm =  

which is initial total mass of the URV. If the total mass changes as much as mΔ  from 

the initial total mass, sm , then the total mass of URV is expressed as 

 

  mmm st Δ+= . (3.14) 

 

By changing the total mass of URV, then the associated velocity will be change. The 

change of the velocity depends upon whether mΔ  is a variable or simply a constant. If 

mΔ  is a variable, the acceleration, a , occurs. This acceleration, besides accelerates 

mass of URV itself, tm , also accelerates mass of surrounding water which is known 

as added mass, am .  

 

Due to this acceleration, the force af  will occur and it is expressed as 

 

 a)( asa mmmf +Δ+= . (3.15) 

 

Considering this last force, af , Eq. 3.10 can be rewritten as 

           

 aDB fFFW ++=  . (3.16) 

 . 

 Substituting Eq. 3.11 and Eq. 3.15 into Eq. 3.16, yields 

 

 a)(
2
1)( 2

aswfbDBs mmmACsignFmggm +Δ+++=Δ+ vv ρ . (3.17) 

 



Chapter 3: Modeling of a Spherical Underwater Robot Vehicle 
 

27

Recalling equilibrium condition, 

 

 BFW = , 

 st mm = , 

   0=v , 

   0=a . (3.18) 

 

From Eq. 3.14 obviously we have 0=Δm . 

By substituting mΔ  and Eq. 3.18 into Eq. 3.17, yields 

 

 Bs Fgm = . (3.19) 

 

Since sm and BF  are constant, then by the change of mΔ , Eq. 3.17 becomes 

 

 a)(
2
1)( 2

aswfbD mmmACsigngm +Δ++=Δ vv ρ . (3.20) 

 

Since Wgm Δ=Δ , then Eq. 3.20 is written as 

  

      a)(
2
1)( 2

aswfbD m
g
WmACsignW +

Δ
++=Δ vv ρ . (3.21) 

 

By solving for the acceleration, a , the dynamic equation for vertical motion is given 

as [12] 

 

 
)(2

)(

)(

2

g
Wmm

ACsign

g
Wmm

W

as

wfbD

as
Δ

++
−

Δ
++

Δ
=

vv ρ
a   . (3.22) 

 

And, if the depth position of the URV can be measured as z , then by differentiating 

z  respect to time t , the velocity of URV in vertical plane can be expressed as 
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 z&=v . (3.23) 

 

3.4 Variable Ballast System 

 

If the design of variable ballast uses tank as chamber for controlling amount of water 

in URV’s body in order to control buoyancy/weight of the URV. The space or volume 

of the used tank is fixed so that if the amount of water in the tank is not full, there will 

be a space which is not filled by water. This condition can make water move freely 

around the space of the tank if the tilt of URV is unstable such as illustrated in 

Figure 3.8(a). This motion can produce a moment that can disturb the stability of the 

URV. If tilt of URV’s body is changed (as shown in Figure 3.8(b)) the center of mass, 

,MC  will also change. This condition sometime is undesired. Therefore, a variable-

ballast with variable volume of chamber of the tank is designed in this thesis, in order 

to make water always fulfill the space in the tank but variably in terms of volume. 

 

 
Figure 3.8(a) Surface of water in ballast tank when the URV’s body is shaking; 

(b) Position of MC  and BC  of water in the tank when tilt is change. 
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3.4.1 Variable Ballast Design 

 

In order to make water always fill space in the ballast tank, even if the volume of 

water is different, then the volume of the tank itself must be adjustable which is 

illustrated in Figure 3.9. The shape of the variable ballast’s tank is cylinder which is 

opened at the top side. This part is connected directly to the water environment 

therefore water can always fulfill the space in the tank (as shown in Figure 3.6(b)). 

 

To make variably volume of the tank, a movable plate is located at the bottom of the 

tank. The space below the movable plate is waterproofed, so that water cannot enter 

this space. If the movable plate is moving upward, the space of the tank will be 

decreased as well as the volume of water in the ballast tank. If the movable plate is 

moving in opposite, downward, the space of the tank will be increased and also the 

volume of water in the ballast tank. Therefore, in any volume of water in the ballast 

tank there is no empty space in the ballast tank that is not filled by water. 

 

 
Figure 3.9 Mechanism of variable ballast system. 

 

In order to change position of the movable plate, a DC motor is used to drive the 

movable plate through power screw and worm gear coupling. This variable ballast 

mechanism is analyzed in this chapter. It involves kinematics and dynamics analyses. 
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3.4.2 Kinematics Analysis 

 

The movable plate of variable ballast system is coupled to the nut of power screw. 

This nut can be moved up and down by turning the screw. So, the screw converts the 

rotation motion into linear (vertical) motion. This coupling can be seen in 

Figure 3.10(a). Based on Figure 3.10(a), l  is lead of screw per revolution, hΔ  denotes 

change of nut position, 3ω  is angular velocity of screw. If tΔ  is the time needed by 

screw to change nut position at hΔ  regarding angular velocity 3ω , then their relation 

can be written as 

 

 
π
ω
2

3l
t
h
=

Δ
Δ . (3.24) 

 

 
Figure 3.10 (a) Power Screw; (b) Worm gear. 

 

To turn the power screw, a DC motor is used and coupled with worm gear as 

illustrated in Figure 3.10(b). The worm has number of thread per revolution equal 

to ,wN  and the gear has number of teeth equal to gN . If the worm is coupled directly 

to the motor which turns in velocity mω , then the gear will turn in velocity 2ω  which 

is expressed as 
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 m
g

w
N
N

ωω ⋅=2 . (3.25) 

 

As shown in Figure 3.10(a), the gear and screw is ally so that its angular velocity is 

the same, 

 

 32 ωω = . (3.26) 

 

By substituting Eq. 3.26 and Eq. 3.25 into Eq.3.24, the change of nut position can be 

rewritten as 

 

 m
g

w
N

Nl
t
h ω

π2
=

Δ
Δ ,  

 m
g

w
N

Nl
h ω

π2
=Δ & ,  

 
w

g
m Nl

hN &Δ
=

π
ω

2
. (3.27) 

     

3.4.3 Dynamics Analysis 

 

The dynamic of variable ballast mechanism is analyzed by considering torques and 

forces acting in the system. The forces and torques involved in the mechanism come 

from internal mechanism those are from the DC motor and the transmission system, 

and also come from external that is from the surrounding as hydrostatic pressure.  

 

3.4.3.1 Power Screw 

 

As illustrated in Figure 3.10(a), 3T  is input torque that is required to operate the screw 

to move the nut which is coupled with movable plate, can be expressed as 
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  frF TTT +=3 , (3.28) 

 

where FT  is torque required to overcome force F , and frT  is torque required to 

overcome friction between screw and nut. To evaluate these terms, the equilibrium 

conditions are applied such as illustrated in Figure 3.11. 

 

 
Figure 3.11 (a) Screw and nut coupling;  (b) Detail of forces working in the power 

screw [36] 
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Figure 3.11(a) illustrates coupling between nut and screw and also its parameters that 

must be considered. There is an additional useful geometric relationship between lead 

angle, α , and lead, l . Suppose the triangular segment of a plane wrapped around the 

screw is considered in such a way that slanted edge lies along the helix and follows it 

for one revolution, obviously we have 

 

md
l

π
α =tan . (3.29) 

 

Figure 3.11(b) illustrates a force P  which is applied at a mean radius mr  which 

causes the load to be raised. The reactive forces act at point O on the screw thread 

surface. The reactive force nF  acting normal to the surface has the following 

components:  

 

OD = rf  which is the friction force opposing movement up the thread surface  

OA = is equal and opposite to the force being lifted. (F)  

OB = is the vector sum of OD and OA and forms an angle nθ  with vector nF  

 

Summing the forces in the vertical direction results in 

 

  ααθ sincoscos rnn fFF += .  (3.30) 

 

If coefficient friction of screw surface is sμ , then friction force is expressed as 

 

  nsr Ff μ= . (3.31) 

 

By substituting Eq. 3.31 into Eq. 3.30, yields 

 

  
αμαθ sincoscos sn

n
FF
−

= . (3.32) 
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By considering forces in horizontal direction, obviously we have 

 

  αθα sincoscos nnr FfP += , (3.33) 

 

and by substituting Eq. 3.31 into Eq. 3.33, yields 

 

  )sincoscos( αθαμ nsnFP += . (3.34) 

 

By equating nF  at Eq. 3.34 and Eq. 3.32, force P  applied on screw in order to lift 

force F can be expressed as 

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

αμαθ
αθαμ

sincoscos
sincoscos

sn

nsFP . (3.35) 

 

By analyzing again Figure 3.11(b), it also can be concluded that: 

 

 θαθ tancostan ⋅=⋅== OBOAAEBC , 

 θαθ tancostan ==
OB
BC

n . (3.36) 

 

If lead angle α  is small, then 1cos ≈α , so we have 

 

  θθ tantan ≈n , 

       θθ ≈n . (3.37) 

 

Substituting Eq. 3.37 into Eq. 3.35, yields 

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

αμαθ
αθαμ

sincoscos
sincoscos

s

sFP , 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

αμθ
αθμ

tancos
tancos

s

sFP . (3.38) 
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Again, by substituting Eq. 3.29 into Eq. 3.38, force P  applied on screw to lift load 

F can be rewritten as 

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

ld
ld

FP
sm

ms
μθπ
θμπ

cos
cos

. (3.39) 

 

In order to lift load F , a torque, ,3UT   must be applied to the screw. If the screw has 

mean diameter ,md  then the torque applied to the screw can be expressed as 

 

  
23
m

U
d

PT = . (3.40) 

 

Substituting Eq. 3.39 into Eq. 3.40, the applied torque required to lift load F  can be 

expressed as 

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

ld
ld

F
d

T
sm

msm
U μθπ

θμπ
cos

cos
23 . (3.41) 

 

In order to lower load F , a torque must be applied to the screw in reverse direction 

with UT3  and it is named as LT3 . Applying torque in reverse direction will also 

deliver force P  in reverse direction. By using same procedure in deriving UT3 , the 

torque required to lower load F can be expressed as 

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⋅

⋅−⋅⋅
=

ld
ld

F
d

T
sm

msm
L μθπ

θμπ
cos

cos
23 . (3.42) 
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3.4.3.2 Worm-Gear Set 

 

Conceptually in worm-gear set, the worm can be analogous to the screw power, and 

worm gear or gear can be analogous to the nut, see Figure 3.12. The forces resolution 

for power screw may therefore be directly applied to the case of a worm by observing 

that screw lead angle α  is equivalent to worm lead angle wλ , and power screw 

normal angle nθ  is equivalent to normal pressure angle nϕ  for the worm gear. 

Illustration of these forces, based on Figure 3.11(b), can be seen in Figure 3.13. 

 

 
Figure 3.12 Worm gear [37] 

 

 
Figure 3.13 Detail of forces on worm gear 

 

If worm has lead wl  per revolution and diameter wd , then worm lead angle wλ  can 

be determined by 

 

  
w

w
w d

l
π

λ =tan . (3.43) 
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Based on Figure 3.13, by summing the forces in vertical direction obviously results in 

 

  wswnwnwa FFF λλϕ sincoscos −= , (3.44) 

 

where waF  is axial force of worm, wnF  is reactive force on worm, and sF  friction 

force of worm. If coefficient friction of worm surface is wμ , then the friction force 

sF  is expressed as 

 

  wnws FF μ= . (3.45) 

 
If Eq. 3.45 is substituted into Eq. 3.44, then the reactive force wnF  is written as 

 

  
wwwn

wa
wn

F
F

λμλϕ sincoscos −
= . (3.46) 

 

If forces in horizontal direction are considered, then by summing of these forces will 

result 

 

  wswnwnwt FFF λλϕ cossincos += , (3.47) 

 

where wtF  is tangential force of worm.  

 

By substituting Eq. 3.46 into Eq. 3.47, the tangential force of worm can be expressed 

as [38] 

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=
wwwn

wwwn
wawt FF

λμλϕ
λμλϕ

sincoscos
cossincos

, 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

wwn

wwn
wawt FF

λμϕ
μλϕ

tancos
tancos

.  (3.48) 
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Then, by substituting Eq. 3.43 into Eq. 3.48, yields 

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

wwnw

wwnw
wawt ld

dl
FF

μϕπ
μπϕ

cos
cos

,  

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
wwnw

wwnw
wtwa dl

ld
FF

μπϕ
μϕπ

cos
cos

.  (3.49)

  

From Figure 3.10(b), it is shown the relation of forces working at gear and worm. 

Forces on gear are related by equilibrium to forces on the worm as 

 

  wagt FF = ,  (3.50.a) 

  wtga FF = ,  (3.50.b) 

 

where gtF  and gaF  are tangential and axial force working at gear respectively. If 2T  

is torque applied on gear with diameter gd , then this torque 2T  is expressed as 

 

  gt
g F

d
T

22 = .  (3.51) 

 

By equating Eq. 3.49 and Eq. 3.50.a and substitute into Eq. 3.51, yields 

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
wwnw

wwnwwtg

dl
ldFd

T
μπϕ
μϕπ

cos
cos

22 .  (3.52) 

 

To actuate this mechanism, the worm is coupled directly to the shaft of a DC motor. If 

mT  is motor torque applied on worm to result tangential force wtF  which is expressed 

as 

 

  m
w

wt T
d

F 2
= ,  (3.53) 
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then by substituting Eq. 3.53 into Eq. 3.52, torque applied on gear is expressed as 

 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
=

wwnw

wwnw

w

mg

dl
ld

d
Td

T
μπϕ

μϕπ

cos
cos

2 .  (3.54) 

 

Reviewing Figure 3.10 again, obviously can be seen that the gear and power screw are 

allied in same shaft so that torque required to actuate the gear, 2T , will be equal to the 

torque required to turn power screw, 3T . Since 23 TT = , then UU TT 23 =  and UT3  is 

torque needed by screw to lift up the load .F  In order to produce torque UT3  on the 

screw or UT2  on the gear, the DC motor must produce torque mUT . If 

,, 2233 UU TTTT ==  and mUm TT =  then by equating Eq. 3.41 and Eq. 3.44 yields 

  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

ld
ld

F
d

dl
ld

d
Td

sm

msm

wwnw

wwnw

w

mUg

μθπ
θμπ

μπϕ
μϕπ

cos
cos

2cos
cos

, 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

wwnw

wwnw

sm

ms

g

wm
mU ld

dl
ld

ld
d

Fdd
T

μϕπ
μπϕ

μθπ
θμπ

cos
cos

cos
cos

2
. (3.55) 

 

By using the same analogy for calculating mUT , then the torque of the motor required 

to lower the load F  which is known as mLT , can be expressed as  

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=

wwnw

wwnw

sm

ms

g

wm
mL ld

dl
ld

ld
d

Fdd
T

μϕπ
μπϕ

μθπ
θμπ

cos
cos

cos
cos

2
. (3.56) 

 

From Eq. 3.55 and Eq. 3.56, it can be shown that many coefficients, which are 

constant, are involved in the equation, so that if the constants are simplified then we 

have 
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  pr
g

wm k
d
dd

=
2

,    

  TU
sm

ms k
ld

ld
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+
μθπ
θμπ

cos
cos

,    

  TL
sm

ms k
ld

ld
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
μθπ
θμπ

cos
cos

,    

  wg
wwnw

wwnw k
ld

dl
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+
μϕπ
μπϕ

cos
cos

,  

    (3.57) 

 

where prk  is coefficient of power transmission ratio between worm gear set and 

power screw, TUk  and TLk  are coefficient of power screw in lifting and lowering 

load mechanism respectively, and wgk  is coefficient of worm gear set. Hence, 

Eq. 3.55 and Eq. 3.56 can be simplified into 

 

  
FkkkT

FkkkT

wgTLprmL

wgTUprmU

=

=
  (3.58)  

     

or it can be written as 

 

  FkT mm = ,  (3.59) 

 

where  

 mUmwgTUprmUm TTkkkkk =⇒== , and  

 mLmwgTLprmLm TTkkkkk =⇒== .   

 

From Eq. 3.59, it can be seen that torque mT  is the input, and F  is the output. 

Although not explicitly stated, it does not mean that if 0=mT  then F  must be zero. 

Because of friction, a certain value of F must be reached to make it self-locking, 
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before power screw start rotating and allow the load lift or lower, and it is called 

overhauling. To guarantee the screw will be self-locking, a condition based on the 

geometric parameter and coefficient of friction must be fulfilled [38]. 

  

3.4.3.3 External Forces Analysis 

 

Torque and force which are provided by the motor and its mechanics system are used 

to overcome the load F  in order to control amount of water in the ballast tank. Load 

F  itself is total force working on the movable plate of variable ballast system which 

is coming from inside and outside of URV’s hull. The illustration of forces working 

on the movable plate is shown in Figure 3.14. 

 

 
Figure 3.14 External forces working on variable ballast system. 
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If Figure 3.14 is analyzed, the force coming from inside hull, ihF , is caused by the 

change of air pressure inside the hull, ihP , due to the change of space inside the hull. 

As explained before, the variable ballast mechanism is used to control weight of URV 

by controlling volume of water in ballast tank. To control volume of the water, 

a mechanism like piston is designed. In this mechanism, a movable plate which is 

base of space in the tank that can be filled by water is used. By controlling position of 

the movable plate which is height of the tank, the volume of water in the tank can be 

controlled. Since space under movable plate is impermeable, by the change of 

position of movable plate, the volume of space inside URV’s hull is also change. This 

change impacts to the air pressure inside the hull. 

 

As known that relation between pressure and volume, ihV , in closed space is 

expressed as [39] 

 

  constant=ihih VP . (3.60) 

 

So, if the volume of air inside URV’s hull is changed, then its pressure is also 

changed. In initial condition or in equilibrium condition, the pressure inside the hull is 

equal to the pressure of the air at water surface, aP . By assuming the air pressure at 

water surface and temperature inside URV’s hull are constant then since the volume 

of space inside the hull is constant, the pressure inside the hull is also constant. If 

volume of the space inside the hull is changed because of the change of position of 

movable plate, the pressure ihP  is also change and will cause a force act at movable 

plate surface, known as ihF . The relation of aP , ihP , and ihF  is expressed as 

 

  ( ) vbaihih APPF −= , (3.61) 

 

where vbA  is projected area of movable plate which is base of variable ballast tank. 
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In initial condition, where aih PP = , volume of the air or empty space inside URV’s 

hull is ihV , and the position of movable plate is at the middle of full height of the 

tank, so if the maximum height of the tank is h  then the position of movable plate is 

at h5.0  from the top of the tank, which is known as initial position. At this position, 

hΔ , which is the change of movable plate position, is equal to zero ( 0=Δh ). So that 

if position of movable plate is upper than initial position ( h5.0< ) then 0<Δh  and if 

lower than initial position then 0>Δh . By the change of hΔ , the volume of the air or 

space inside the hull will change as VΔ . The relation is expressed as 

 

  vbAhV Δ=Δ . (3.62) 

 

From Eq. 3.62, it is seen that the change of volume of the air inside the hull is equal to 

the change of volume of water in the ballast tank. 

 

By changing the volume of the air, the pressure is also changed from its initial 

condition and expressed as 

 

  )( VVPVP ihihiha Δ−= , 

       
VV

VP
P

ih

iha
ih Δ−
= . (3.63) 

 

By substituting Eq. 3.62 into Eq. 3.63 and substitute the result into Eq. 3.61, then 

force acts on movable plate’s surface due to change of volume of the air inside hull is 

expressed as 

 

  
( )

vbih

avb
ih AhV

PAh
F

Δ−
Δ

=
2

. (3.64) 

 

From Figure 3.14, it can be shown that load F  is resultant of hsF , WΔ , and ihF , and 

the relation is expressed as 
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  ihhsvb FFWF −+= , (3.65) 

 

where vbW  is weight of the water in the ballast tank and hsF  is hydrostatic force on 

surface of movable plate. Weight of water in the ballast tank depends on volume of 

the water in this tank. In equilibrium or initial condition, the volume of water is half 

of maximum volume of the tank, bsvb WW = . By the change of position of movable 

plate in hΔ , the weight of water in ballast is also will change in WΔ  from initial 

weight. So that at any condition, vbW  can be expressed as 

 

  WWW bsvb Δ+= . (3.66) 

 

Hydrostatic force, hsF , is force acting on surface of immersed body caused by the 

height of liquid (water) above of it, or in other word it can be said that hydrostatic 

force is weight of the liquid above immersed surface. In this system, the height of 

liquid above is equal to the depth position of the URV. If depth position of URV is 

measured form water surface to top part of URV’s body known as z , then hsF  acting 

on surface of movable plate is expressed as [34] 

 

  zAgF vbwhs ρ= , (3.67) 

 

where wρ  and g  are density of water and gravitational acceleration respectively. 

Substituting Eq. 3.64, Eq. 3.66, and Eq. 3.67 into Eq. 3.65, load F  can be expressed 

as 

 

  
( )

vbih

avb
vbwbs AhV

PAh
zAgWWF

Δ−
Δ

−+Δ+=
2

ρ , (3.68) 

 

and the change of water in the ballast tank is expressed as 
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  gAhW wvb ρΔ=Δ , 

  
g

WAh
w

vb ρ
Δ

=Δ . (3.69) 

 

Substituting Eq. 3.69 into Eq. 3.68, then the load F can be rewritten as 

 

  
WVg

PAW
zAgWWF

ihw

avb
vbwbs Δ−

Δ
−+Δ+=
ρ

ρ  . (3.70) 

 

Recalling Eq. 3.59 and substitutes Eq. 3.70 into this equation, then torque of the 

motor that is required to change position of movable plate in order to control amount 

of water in ballast tank is expressed as 

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−

Δ
−+Δ+=

WVg
PAW

zAgWWkT
ihw

avb
vbwbsmm ρ

ρ . (3.71) 

 

In order to change position of the movable plate, the DC motor must provide power 

mP  and rotates at angular velocity mω  in order to produce torque at mT , and can be 

expressed as 

 

  mmm TP ω= . (3.72) 

 

By substituting Eq. 3.27 and Eq. 3.71 into Eq. 3.72, obviously yields 

 

 
w

g

ihw

avb
vbwbsmm Nl

hN
WVg

PAW
zAgWWkP

&Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−

Δ
−+Δ+=

π

ρ
ρ

2
. (3.73) 

 

If  gc
w

g k
Nl

N
=

π2
 is known as coefficient of velocity reduction of power screw and 

worm gear couple, then Eq. 3.73 can be rewritten as 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−

Δ
−+Δ+Δ=

WVg
PAW

zAgWWhkkP
ihw

avb
vbwbsgcmm ρ

ρ& . (3.74) 

 

From Eq. 3.69, if vbA  , wρ , and g  are simply constant, then by differentiating this 

equation results 

 

    
vbw Ag

Wh
ρ

&
& Δ
=Δ , (3.75) 

 

where h&Δ  is rate change of position of movable plate and W&Δ  is rate change of 

weight of water in the ballast tank.  

 

By substituting Eq. 3.75 into Eq. 3.74 and solving W&Δ , then the rate change of 

weight of water in the ballast tank is obviously expressed as 

 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−

Δ
−+Δ+

=Δ

WVg
PAW

zAgWWkk

PAg
W

ihw

avb
vbwbsgcm

mvbw

ρ
ρ

ρ& . (3.76) 

 

3.5 Parameters of Spherical URV System and VBS 

 

As mentioned in section 3.2, the diameter of the spherical URV used in the thesis is 

cm35 . By considering the ambient parameters as ideal and constant condition, then in 

order to give ability to the URV moves downward in velocity about 1ms1 − , 

parameters of URV’s hull, variable ballast system and ambient are chosen as given in 

Table 3.1. 

 

For the VBS mechanism, some constants value are chosen as standard value [38], 

those are m;01.0=md  m;01.0=wd m;026.0=gd  ;15.0=sμ  ;15.0=wμ   

m;002.0=l  m;00314.0=wl ;15o=θ  ;20o=nϕ  ;1=wN  and .26=gN  
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Table 3.1 Parameters of URV and the ambient 

Parameters Symbols Values 

Ambient parameters:   
Atmospheric pressure at water surface aP  1 atm 

Density of water wρ  998 kg/m3 

Dynamic viscosity of water μ  10-3 Ns/m2 

Gravitational acceleration g  9.81 m/s2 

   

URV’s hull:   
Initial mass of URV sm  22.39 kg 

Added mass of URV am  11.2 kg 

Diameter of URV fbD  0.35 m 

Projected area of URV fbA  0.09616 m2 

Initial volume of empty space inside URV’s hull ihV  50 % of fbV  

   

Variable ballast system:   
Diameter of variable ballast tank vbD  0.18 m 

Projected area of base of variable ballast tank vbA  0.0254 m2 

Maximum height of variable ballast tank h  0.08 m 

Initial weight of water in ballast tank bsW  9.96 N 

Transmission ratio of worm gear and power screw gck  8.164x104 rad/m 

Coefficient of worm gear and power screw couple for 
downward moving mLk  4.601x10-5 

Coefficient of worm gear and power screw couple for 
upward moving mUk  1.122x10-4 

Power saturation resulted by DC motor maxmP±  ±100 Watt 

Angular velocity saturation of DC motor maxmω±  ±157 rad/s 

 

3.6 Summary 

 
The dynamic model of depth positioning of a spherical URV is obtained by 

considering the physical laws involved in this system. Since the dimension of VBS is 

bounded therefore the change of weight is also bounded, then the dynamic model 

obtained in this chapter behave as nonlinear system. Therefore, in order to control this 

system, this nonlinearity must be considered. In the next chapter, the control systems 

will be designed in order to control the depth position of this spherical URV. 
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CHAPTER 4 

CONTROL DESIGN 
 

 

In order to position the spherical URV by using variable ballast mechanism, a proper 

controller must be designed. Since the dynamic model of this system is nonlinear, 

then linearized and nonlinear approaches are presented in this chapter. In nonlinear 

approach, feedback linearization which consist of state-space feedback linearization 

and input-output feedback linearization are presented. Analysis of control properties 

involving stability, controllability and observability are also presented in this chapter 

based on linearized model and original nonlinear model. 

 

4.1 Linearized Approach 

 

In the linearized approach, the original nonlinear model is linearized then a linear 

controller will be designed based on the linearized model. Before design of the 

controller is presented, some properties of control design based on linearized model 

will be analyzed in this section. 

 

4.1.1 Properties of Control System 

 

Knowing the properties of control system such as stability, controllability, and 

observability, is important in designing the controller. By analyzing the controllability 

of the system, it can be known whether the system is controllable or uncontrollable. 

Therefore, if the system is controllable then the controller can be designed. The 

controller is designed in order to stabilize the system. The stability of the system can 

be analyzed in Lyapunov sense. 
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4.1.1.1 Controllability and Stability of Linearized Model 

 

Revisit a linear system, the linear system is to be controllable if a given control input 

u  can steer the system from )0(x , as origin, into )(Tx , as a given target, in finite 

time [40]. A linear system which is expressed in state space as 

 

 
Cxy

BuAxx
=

+=&
 (4.1) 

 
with nRx∈  is completely controllable if and only if the controllable matrix MC  has 

full rank, n  which is order of the system. The controllability matrix MC  is expressed 

as 

 
 ]BA........BAABB[CM

12 −= n   (4.2) 

 
If a linear system is controllable, then control law )x(xKu e−=  makes the closed 

loop system asymptotic stable about equilibrium point ex , where K  is feedback gain. 

A nonlinear system can be approximated with linear system using Taylor series 

expansion about a particular point. If the linearized model is controllable, then a linear 

control law can be implemented. Recalling the dynamic model of depth positioning of 

a spherical URV which is derived in chapter 3, can be expressed as 

 

 21 xx =&  
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where Wxxzx Δ=== 321 and,, v  are state variables and mPu =  is the input. If the 

equilibrium point occurs at any depth position, when power input, velocity and 

change of weight is zero, then ee zxx == 11 , 022 == exx , 033 == exx  and 

0== euu . Then by considering the linearization of Eq. 4.3 about equilibrium point, 

the linearized model of the system by using Taylor expansion is given as 

 

 u
u
fx

x
fx

ee uuxx ==
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=&  (4.4) 

 

By solving Eq. 4.4, the linearized model is written in state space as 
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 (4.5) 

 

By using method in Eq. 4.2, the controllability matrix mC  of linearized model can be 

obtained as 
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From Eq. 4.6, the rank of controllable matrix mC  is 3 which is equal to the order of 

the system, 3=n . Then according to the Kalman rank condition [40], this linearized 

model is completely controllable, therefore the linear control law can be implemented. 

 

Considering the stability of the system about the equilibrium point based on the 

linearized model, Lyapunov provides a method that is called Lyapunov’s linearization 

method [41]. This method is concerned with the local stability of a nonlinear system. 

It is a formalization of intuition that a nonlinear system should behave similarly to its 

linearized approximation for small range motion. The relationship between the 

stability of linear system, Eq. 4.5, and that of the original nonlinear system, Eq. 4.3, is 

described as: 

 
 If the linearized system is strictly stable which positions of all eigenvalues are 

at the left-half of complex plane, then the equilibrium point is asymptotically 

stable for the actual nonlinear system. 

 If the linearized system is strictly unstable which at least position of one 

eigenvalue is at the right-half of complex plane, then the equilibrium point is 

unstable for the actual nonlinear system. 

 If the linearized system is marginally stable which positions of all eigenvalues 

are at the left-half of complex plane, but at least one of them is on the ωj  

axis, then it cannot conclude anything from the linear approximation, the 

equilibrium point may be stable, asymptotically stable, or unstable for the 

actual nonlinear system. 

 

Recalling the linearized model of depth positioning of the spherical URV in Eq. 4.5, 

the eigenvalues of the open loop system can be obtained from the characteristic 

equation as 

 

 0=− AIλ  (4.7) 

 

By substituting A  matrix of linearized model in Eq. 4.5 into Eq. 4.7, then the 

characteristic equation of the system can be written as 
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 03 =λ  (4.8) 

 

Since the eigenvalues are on the ωj  axis, then the Lyapunov’s linearization method 

cannot conclude whether the equilibrium point of the actual nonlinear system in open 

loop condition is stable or unstable. 

 

4.1.1.2 Observability of Linearized Model 

 

A system to be completely observable if the state of the system or plan can be 

determined from a finite number of its most recent inputs and outputs [42]. 

Determining the state of the system from its inputs and outputs is important capability 

in control system design because in some situations it is necessary to know the actual 

states to control that states effectively. The observability of a system can be analyzed 

from the observability matrix. 

 
The linear model at Eq. 4.1 is completely observable if the observability matrix, ,Om  

has full rank. The observability matrix ,Om  can be obtained from 
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CA
CA
C
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M

 (4.9) 

 

where A  C and  are output matrix and coefficient matrix of the linear model 

respectively and n  is order of the system. Then, if rank of matrix ,Om  is equal to n  

then the linear system is completely observable. 

 

Recalling the linearized model from Eq. 4.5, the observability matrix can be obtained 

as 
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Since 
as mm +

1  is constant and  01
≠

+ as mm
, then it is obvious that rank of the 

observability matrix ,Om  is 3  which is equal to the order of the system. Therefore 

the linearized model for depth positioning of the spherical URV is completely 

observable. 

 

4.1.2 Feedback Control Design 

 

The existence of feedback in automatic control system can improve performance of 

the control system even external disturbance is present. Therefore the availability of 

feedback control can stabilize the system. 

 

Consider to an unstable linear or linearized system, in order to stabilize it, the poles 

placement method can be used. By designing the gain feedback, the poles of the 

closed loop linear system can be located at left-half of complex plane.  

 

The closed loop system with gain feedback, K,  for linear system at Eq. 4.1 can be 

written as 

 

 
)(

)()(][)(

t

ttt

xCy

rFBxKBAx

=

+−=&

 (4.11) 

 

where F  and )(tr  are scaling factor and command input or input reference 

respectively. The control law of this closed loop system is 
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 )()()( ttt xKrFu −=  (4.12) 

 

If  clAKBA =− ][ , then Eq. 4.11 can written as 

 

 
)(

)()()(

t

ttt

xCy

rFBx Ax cl

=

+=&

 (4.13) 

 

By choosing a proper value of K  then the system will be asymptotically stable, 

therefore for ∞→t , yields 

 

 0)( ==∞ ∞xx &&  (4.14) 

 

if dr  is desired command input then yields 

 

 drFBx Acl += ∞0  

 

By solving ∞x , yields 

 

 drFB Ax cl
1−

∞ −=  (4.15) 

 

In steady state condition,  

 

 drxCy == ∞∞  (4.16) 

 
By solving ∞x , yields 

 

 drCx 1−
∞ =  (4.17) 

 



Chapter 4: Control Design 
 

55

By equating Eq. 4.17 and Eq. 4.15, yields 

 

 dd rFB ArC cl
11 −− −=   

 

By solving F , yields 

 

 11][ −−−= ]BA [CF cl  (4.18) 

  

Recalling the linearized model for depth positioning of a spherical URV as modeled 

by Eq. 4.5, if [ ]321 kkk=K  and the command input dz=r   which is the desired 

depth position and also be the equilibrium point, de zz = , then the closed loop system 

can be written as 
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  (4.19) 

 

Then by using MATLAB, F  can be solved as, (see Appendix 1) 

 

 ][ 1k=F  
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So, the control input for depth positioning of a spherical URV is presented as 

 

 [ ] )()( 3211 tkkkzktu d x−=  (4.20) 

 

From Eq. 4.19, if  
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are time invariant, then Eq. 4.19 can be rewritten as 
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 (4.21) 

 

Then the characteristic equation of the closed loop system is 

 

 211212
2

23
3 CCkCCkCk +++ λλλ  (4.22) 

 

The desired characteristic equation of the closed loop system for depth positioning of 

the spherical URV is 

 

 0,),2)(2( 22 >+++ aaaa ξλξλξλ  (4.23) 

 

Therefore, the closed loop system is asymptotically stable. By matching coefficient of 

Eq. 4.22 and Eq. 4.23, then the gains is obtained as 
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4.2 Nonlinear Approach 

 

In nonlinear approach, the controller is designed based upon the original nonlinear 

model. Before design the controller, some properties of the control design are 

analyzed based upon the original nonlinear model and presented in this section. 

 

4.2.1 Properties of Control System 

 

Some nonlinear systems could not be approximated through linearized model in order 

to know the properties of the control system. In this sub section, the properties of the 

control system are analyzed from the original nonlinear model involving 

controllability, stability and observability. 

 

4.2.1.1 Controllability and Stability of Nonlinear Model 

 

An affine nonlinear system with single input and single output (SISO) can be 

expressed as 

 

 
(x)

g(x)f(x)x
hy

u
=

+=&
 (4.25) 

 

In order to simplify checking controllability of nonlinear system at Eq. 4.25, local 

analysis is done, i.e. the results are valid only in neighborhood of operating point, but 
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global results are available elsewhere [43]. Local controllability can be determined by 

examining the rank of the controllability matrix which is analogous to the linear 

controllability matrix. The controllability matrix of nonlinear system can be obtained 

by using Lie brackets which is expressed as [43] 

  

 ⎥⎦
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where nk ≤≤1 , n  is order of the system, and 
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Revisit nonlinear model at Eq. 4.3, then vector f(x)  and g(x)  can be express as 
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where  
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 vbw AgB ρ=4 ;  

 avbPAB =5 ;  and   

 ihw VgB ρ=6 .  

 

The controllability matrix C(x) is obtained by using Lie brackets and solved in 

MATLAB (see Appendix 2). This controllability matrix has full rank, 3, which is 

equal to the order of the system. Thus, the nonlinear model at Eq. 4.3 holds the 

condition to be controllable. 

 

Considering the stability of nonlinear model, Lyapunov provides a method that is 

known as Lyapunov direct method. Lyapunov’s stability analyzes stability of the 

system at equilibrium state. The first step in analyzing stability using Lyapunov direct 

method is constructing possible Lyapunov function, )(xV . Once Lyapunov function is 

obtained, the Lyapunov stability can be analyzed. The Lyapunov theorems [44] say: 

 
1. If it is possible to find a continuous scalar function )(xV  which has 

continuous first derivatives and which satisfies: 

a. 0,0)( ≠∀> xxV  )(xV  is positive definite 

b. 0)( ≤xV&  )x(V&  is negative semidefinite 

c. ∞→∞→ xV as)(x  )(xV  is radially unbounded 

then the condition state ex  which is satisfies 00xf =),( e  is globally stable in 

the Lyapunov sense. If only condition a and b are satisfied, then the 

equilibrium state is local stable in the vicinity of the origin. 

 

2. If it is possible to find a continuous scalar function )(xV  which has 

continuous first derivatives and which satisfies: 

a. 0,0)( ≠∀> xxV  )(xV  is positive definite 

b. 0)( <xV&  )x(V&  is negative definite 

c. ∞→∞→ xV as)(x  )(xV  is radially unbounded 
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then the condition state ex  which is satisfies 00xf =),( e  is globally 

asymptotically stable in the Lyapunov sense.  

 

One of the methods used for constructing Lyapunov function is the variable gradient 

method [41, 44] . The variable gradient method is a formal approach to construct 

Lyapunov function. An assumption of a certain form for the gradient of an unknown 

Lyapunov function is involved, and the Lyapunov function is obtained by integrating 

this assumed gradient.  

 

If we consider the unforced nonlinear model of Eq. 4.25, then )(xfx =& , nRx∈ , for 

which 00f =)( , and )(xV  is the possible Lyapunov function for this system. If 

nt RRx →+:)(  is any differentiable function with ,)( 00x =  then for any possible 

Lyapunov function: 

  

 )()( xfxx TT VVV ∇=∇= &&  (4.29) 

 

The possible Lyapunov function is obtained by integration, respectively 

 

 ∫∇=
x

0
xx dVV T)(  (4.30) 

 

where { }TnxVxVV ∂∂∂∂=∇ ....,,1  is the gradient function which is assumed as the 

form 

 ∑
=

=∇
n

j
jiji xaV

1
 (4.31) 

 

where ija  is coefficients to be determined. The gradient function must satisfy the 

condition of symmetry, therefore 
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Revisit the nonlinear model from Eq. 4.3, since this model is unforced, 0=u , then  
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Since the order of the system 3=n , then we assume the gradient of  Lyapunov 

function candidate has the following form 

 

 3132121111 xaxaxaV ++=∇  

 3232221212 xaxaxaV ++=∇  (4.34) 

 3332321313 xaxaxaV ++=∇  

 

To satisfy symmetry condition, then 
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Using assumed gradient at Eq. 5.34 as well as the dynamic model from Eq. 4.33 and 

substitute to Eq. 4.29 then we have 
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In order to fulfill symmetry condition, a proper )3,2,1,( =jiforaij  must be chosen. 

If we chose 03113211211 ===== aaaaa ,  122 =a , and 13223 −== aa , then 

Eq. 4.36 can be written as 
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Then by simplifying Eq. 4.37 obviously we have 
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If 133 =a , then gradient from Eq. 4.34 can be expressed in vector as 

 



Chapter 4: Control Design 
 

63

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=∇

23

32

0

xx
xxV  (4.39) 

 

The possible Lyapunov function can be obtained as 

 

 ∫∫ ∫ −++=
31 2

0
3232

0 0
21 )(0)(

xx x
dxxxxdxdxV x  

 
22
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3

32

2
2 x

xxx
+−=  (4.40) 

 

From some parameters and specification (see table 3.1) used in the system, it is 

known that: 

1. 32 and xx  are upper and lower bounded.  

2. 
g
x

mm as
3>+  

Therefore, from the above conditions of the system, and if condition  

 3
2

222 )( xxBxsign <  and 32 xx <   

or if  

 3
2

222 )( xxBxsign >  and 32 xx >   

are satisfied then the gradient )(xV&  at Eq. 4.38 is negative definite, otherwise it is 

positive definite. Therefore, )(xV&  satisfy the condition to be first derivative of 

Lyapunov function because it is locally negative definite.    

 

By considering the possible Lyapunov function at Eq. 4.40, if 32 xx = , then 

0)( =xV , otherwise 0)( >xV ; 0≠∀x . Therefore, it can be concluded that 0≠∀x , 

the Lyapunov function )(xV  is positive semidefinite. From characteristic of )(xV&  and 

),(xV  it can be concluded that the origin as one of the equilibrium point is unstable in 

Lyapunov sense. In order to stabilize this nonlinear system, state feedback will be 

used and explained in this chapter. 
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4.2.1.2 Observability of Nonlinear Model 

 

As mentioned before, determining the state of the system from its inputs and outputs 

is an important capability because in some situation it is necessary to know the actual 

state to control that state effectively. For the linear time invariant control system, the 

observability can be known from observability matrix which is obtained directly from 

A  and C  matrix. It is so different in nonlinear control system. To analyze the 

observability of the nonlinear control system, we will need to work with a Lie algebra 

formed of operators rather than vector fields [45].  

 

Revisit the nonlinear system from Eq. 4.25, let x  denotes the state vector and 

)(xhy =  denotes the output, then the observability map, ),(xΦ  for the system can be 

determined from Lie derivative of vector f  along h  at point x  which is expressed as 

  

  systemtheoforderis,1,,1,0for

)(

)(

)(

)(

1

1
nni

hL

hL

hL

n
f

i
f

i
f

−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Φ

−

+
K

M

x

x

x

x  

 

 

( )
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

∂
∂

=

f(x)
xx

f(x)f(x)
xx

f(x)
x

x

L

M
h

h

h
h )(

 (4.41) 

 

 

 

 

 

 



Chapter 4: Control Design 
 

65

The Jacobian of observability map is called observability matrix which is expressed as 
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The nonlinear system is to be observable if the Jacobian or observability matrix, 

),(x
x
Φ

∂
∂  has full rank [46]. 

 

For the dynamic system from Eq. 4.3, the output is chosen as 1xy = . Then the 

observability map can be expressed as 
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The observability matrix can be obtained by solving the Jacobian of the observability 

map which is expressed as 
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The observability matrix of the dynamic system has full rank for all possible values 

of x . Therefore the dynamic model of depth positioning of spherical URV given at 

Eq. 4.3 is observable. 

 

4.2.2 Feedback Linearization Control Design 

 

Feedback linearization is one of the methods in designing feedback controller for 

nonlinear control system. The main idea of this method is to algebraically transform 

nonlinear systems dynamics into (fully or partly) linear ones, therefore linear control 

techniques can be applied. This differs entirely from conventional linearization 

method because feedback linearization is achieved by exact state transformation and 

feedback, rather than by linear approximations of the dynamics. The feedback 

linearization can be viewed as ways of transforming original system models into 

equivalent models of a simple form. The transforming model is in the form of linear 

model, therefore in order to design the controller, the linear control designed can be 

considered. 

 

The depth positioning system of a spherical URV modeled by Eq. 4.3 has single input 

and single output, therefore single input single output (SISO) feedback linearization 

strategies are considered. There are two approaches in SISO feedback linearization 

which are as follow [41, 46, 47]: 

 

 Input-state linearization or state-space linearization 

In the state-space linearization approach, the goal is to linearize the map between 

the transformed input and the entire vector of transformed state variable. It means 

that the whole states of the system are linearized. The linear control strategy is 

then designed for the linearized state-space model. In the application, not all 

models are state-space linearizable. There are some condition must be satisfied. 
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 Input-output linearization 

In the input-output linearization approach, the objective is to linearize the map 

between transformed input and the actual output. A linear controller strategy is 

then synthesized for the linearized input-output model. 

 

4.2.2.1 State-Space Linearization 

 

A single input single output of nonlinear model given as Eq. 4.25 is to be state-space 

linearizable if and only if it satisfies the below conditions [41, 48]: 

 

 Controllable, the matrix ⎥⎦
⎤

⎢⎣
⎡ g(x)g(x)g(x) ff

1n-adad L  has rank n  or it 

has full rank. 

 The vector fields ( )g(x),g(x),g(x), ff
2n-adad L  are involutive. 

 

A set of vector field { })(,),(1 xpXxX L  is involutive if there is scalar function 

)(xijkδ  such that Eq. 4.45 is satisfied. 

 

 jipjixXxxXad k
p

k
ijkjX i

≠≤≤= ∑
=

,,1),()()(
1
δ  (4.45) 

 

Therefore when Lie bracket is taken with in this vector field, a new vector will not be 

generated. Hence the rank of [ ]{ }LL ,,),(,),(1 ji XXxpXxX ; jipji ≠≤≤ ,,1  is 

equal to p . 

 

If both condition are satisfied, then new state variable (x)z φ=  and new input v  are 

determined in such that satisfy a linear time-invariant relation  

 

 vbAzz +=&  (4.46) 
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where 
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The feedback control law can be designed as 

 

  vu )()( xx γψ +=  (4.47) 

 

where 

 
1

1
1)(

zLL

zL
n

n

−
−=

fg

fxψ ;  
1

1
1)(

zLL n−=
fg

xγ  ;  

 

and n  is order of the system. The new state z  is called the linearizing state, and the 

control law at Eq. 4.47 is called linearizing control law. The )(xφ  is diffeomorpishm 

in such that )(1 zx −= φ  is satisfied. 

 

In order to determine the linearizing state z , the first state 1z  must be determined by 

considering the following conditions [41]: 

 

 01 =∇ gf
iadz             2,,0 −= ni L  

 01
1 ≠∇ − gf

nadz        n  is order of the system 

   (4.48) 
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Then the state transformation [ ]Tn zLzLz 1
1

11)( −= ffxz L is used as a new set 

of state variables, and the state equation verify 

 

 1+= kk zz&  1,,1 −= nk K

 uzLLzLz nn
n 1

1
1

−+= fgf&   

   (4.49) 

 
Consider to designing the state-space feedback linearization for dynamic model given 

at Eq. 4.3, it must satisfy the conditions to be state-space linearizable before 

continuing the controller designing. As mentioned in sub section 4.2.1.1, this dynamic 

model is controllable thus it holds first condition to be state-space linearizable.  

 

In view of the second condition of nonlinear system to be state-space linearizable, 

since the dynamic model at Eq. 4.3 is 3rd order system then the set of the vector fields 

be examined for its involutivity are { }g(x)g(x), fad .  By using Lie bracket, the vector 

g(x)fad  is obtained as  
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Then by using m file in MATLAB (Appendix 2), the involutivity of these vector 

fields are analyzed. Since the rank of set of vector [ ]{ }g(x)g(x),g(x),g(x), ff adad  is 

equal to 2, then these vector fields are involutive. Therefore the dynamic model for 
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depth positioning of the spherical URV given at Eq. 4.3 is state-space linearizable 

then state-space feedback linearization controller can be designed. 

 

By considering the conditions given in Eq. 4.48, the first component 1z  of the new 

state vector z should satisfy 
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Thus 1z  must be a function of 1x  only. The simplest solution to this equation is  

 

 11 xz =  (4.52) 

 

The other states can be obtained by considering function f(x)  given in Eq. 4.27. 
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Then by considering Eq. 4.51, the state space of state transformation is written as 
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where v  is new input of state transformation which is determined as 
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  (4.55) 

 

Then, if the original input u  in Eq. 4.55 is solved, obviously we have 
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where, 
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Therefore Eq. 4.47 is hold and a linear control strategy can be designed based on 

transformed model given in Eq. 4.54. 
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If we compare the transformed state variables to the original state variables, it is 

clearly seen that the transformed state variables have physical meaning that are depth 

position, velocity, and acceleration for ,1z  2z  and 3z  respectively. 

 

By considering system in Eq. 4.54 as linear system, then linear feedback control 

strategy can be applied in order to stabilize the depth positioning system of the 

spherical URV. If feedback gain [ ]321 kkk=K  is applied to the closed loop 

system of model in Eq.4.54, and the desired depth position is given as dz1 , then the 

new input v  can be obtained as 

 

 Kz−= dzkv 11  (4.57) 

 

By locating the eigenvalues, ,λ  of this closed loop system in left of half-complex 

plane, this feedback gain will asymptotically stabilize the system. The eigenvalues of 

the closed loop system of Eq. 4.54 can obtained from the characteristic equation that 

is 

 

 012
2

3
3 =+++ kkk λλλ  (4.58) 

 

and if the desired characteristic equation of the closed loop system for depth 

positioning of the spherical URV is 

 

 0,,0)2)(2( 22 >=+++ aaaa ξλξλξλ  (4.59) 

 

Thus the system is asymptotically stabilized, then by matching the coefficient of 

Eq. 4.58 and Eq. 4.59, the gain of the feedback can be expressed as 
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Since this controller asymptotically stabilizes the system then for ∞→t , the output 

dzxzy 111 →== . 

 

4.2.2.2 Input-Output Linearization 

 

The main idea of the input-output feedback linearization is to transform m  equations 

via feedback into simple decoupled integrators, where m  represents the number of 

inputs. This control technique is designed by differentiating the output, ,y  until the 

physical input, ,u  appears in the thr  derivative of the output. Then the input is 

chosen to cancel the nonlinearities and rising a synthetic input v . The simple relation 

between synthetic input v  and the output y is obtained as (multiple integrator form) 

 

 vy r =)(  (4.61) 

 

where r  is the relative degree obtained from differentiation. For the depth positioning 

model of the spherical URV given at Eq. 4.3, the output is chosen as 1xzy == , 

which is the depth position.  Then by differentiating this output until physical input u  

appears, obviously we have 
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From Eq. 4.62, it is seen clearly the relation between y  and u , that is u  appear at 

third differentiating of y . If the control input is chosen as 
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Since x  is bounded therefore 0)( ≠xβ  then the nonlinearities at Eq. 4.62 can be 

canceled and obtain simple input-output relation as 

 

 vy =&&&  (4.64) 

 

By considering Eq. 4.64 as linear system, then by applying feedback gain K  for the 

closed loop system yields the control law as 

 

 ykykykv &&& 321 −−−=  (4.65) 

 

where [ ] K=321 kkk .  

 

For stabilizing the system, poles placement method is used. A proper value of  K  

must be chosen in order to locate the poles at the left-half of complex plane. The 

characteristic equation of this closed loop system is given as 

 

 012
2

3
3 =+++ kkk λλλ   (4.66) 

 

If desired characteristic equation of the closed loop system for depth positioning of 

the spherical URV is 

 

 0,,0)2)(2( 22 >=+++ aaaa ξλξλξλ  (4.67) 

 

thus the closed loop system is asymptotically stable, then by matching coefficient of 

Eq. 4.66 and Eq. 4.61, the feedback gains is obtained as 
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If dy  is a desired output then by applying tracking error )()()( tytyte d−= , the 

control law is obtained as 

 

 ekekekyv d &&&&&& 321 −−−=  (4.69) 

 

As an asymptotically stable system, this control law leads to exponential convergent 

tracking where for ∞→t , 0)( →te . 

 

4.3 Summary 

 

The control design of a nonlinear system can be approximated through linearization of 

the nonlinear model. Since the linearized model of the system is controllable, then the 

linear control system can be applied. In this chapter, the nonlinear model for depth 

positioning of the spherical URV is linearized using Taylor series expansion at 

equilibrium point. Nonlinear control approach also applied in this system by using 

feedback linearization. As SISO nonlinear system, there are two kinds of feedback 

linearization which are state-space linearization and input-output linearization. Both 

approaches of feedback linearization are applied and presented in this chapter, in 

order to control the depth position of a spherical URV. Some properties of the control 

system such as controllability, observability and stability are analyzed based on 

linearized model and the original nonlinear model. 
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CHAPTER 5 

RESULTS AND DISCUSSION 
 

 

Dynamic model obtained in chapter 3 and control design derived in chapter 4 are 

simulated in Simulink/MATLAB. Simulink model of the dynamic model and control 

design are presented in this chapter. Some results are analyzed and discussed in this 

chapter. 

 

5.1 Simulation of Open Loop System 

 

In order to study the responses of the system resulted from the modeling process, the 

simulation using Simulink/MATLAB is built based on the mathematical models. Each 

model is simulated in separate Simulink block.  Some input models are tested in order 

to analyze responses of the model. 

 

5.1.1 Simulink Model 

 

From Eq. 3.76, Simulink model of rate change of weight in the ballast tank, ,W&Δ  is 

shown in Figure 5.1. From Figure 5.1, it can be seen that value of mk  depends on 

power input, ,mP  which results torque mT  to change amount of water in the ballast 

tank. If  0>mP  then mLm TT =  therefore mLm kk = , otherwise .mUm kk =  
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Figure 5.1 Model for rate change of weight in the ballast tank. 

 

The rate change of weight in the ballast tank, ,W&Δ  has saturation values ( satW&Δ± ). 

This saturation value depends on the maximum angular velocity of the DC motor that 

drives this mechanism both in counterclockwise and clockwise direction. Then, the 

change of weight in the ballast tank, ,WΔ can be obtained by integrating W&Δ  which 

is shown in Figure 5.2. WΔ  also has saturation values ( satWΔ± ) which depends 

upon the maximum volume of the ballast tank. 

 

 
Figure 5.2 Model for the change of weight in the ballast tank. 
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The Simulink model of URV motion in vertical plane which is taken from Eq. 3.22, is 

shown in Figure 5.3. 

 

 
Figure 5.3 Model for vertical motion acceleration of URV. 

 

Output of this model is acceleration of the URV. In order to obtain velocity of URV’s 

vertical motion, v,  an integration block diagram is used. In order to get the depth 

position of the URV, this velocity is integrated. The Simulink model is shown in 

Figure 5.4. The condition of depth position and velocity are depth position always be 

positive ( 0≥z ) and for 00 ≥⇒= vz . 

 

 
Figure 5.4 Model for velocity and depth position of URV. 

 

By combining all models, obviously Simulink model for depth positioning of the 

spherical URV is shown in Figure 5.5. 
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Figure 5.5 Model for depth positioning of a spherical URV. 

 

From Figure 5.5, it can be shown that the power input, ,mP  has saturation values that 

is .maxmP±  This power depends upon the power provided by the DC motor. 

 

5.1.2 Simulation Result 

 

The dynamic model for depth positioning of the spherical URV involves many 

constants and parameters both for URV and it ambient. The assumption of these 

constants and parameters used in the simulation are presented in Table 3.1. Some 

types of input are tested to analyze response of the model. The first input tested in the 

open loop simulation is a single pulse input. The responses of the model are shown in 

Figure 5.6. The given power input from the DC motor, mP , is a single pulse with 

amplitude at 50 Watt. The origin position of URV is at 0 meter from surface. Then by 

applying this input, the URV will be descent from the surface. 

 

From Figure 5.6, it is also seen when the power is applied to the motor as positive 

value, the weight change, ,WΔ  is increased and reaches saturation around N96.9 , as 

maximum value of ,WΔ  and velocity v  reaches saturation at 1ms019.1 − . When the 

power is reset to zero, WΔ  still remain at the last value, and the URV still moves 

with velocity v , which is proportional to WΔ . If power is given as negative, then 

WΔ  will be decreased but velocity v  still positive since WΔ  is positive. The depth 

position of URV, ,z  will increase since the velocity is available as positive.  
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Figure 5.6 Response of the system for positive and negative pulse input. 

 

If the velocity is negative, the URV is ascending as shown in Figure 5.7. The 

increment of WΔ  depends on the total power given by the motor to actuate the 

variable ballast and also depends on the depth position of the URV. If the power given 

is small then the increment of WΔ  is also small, and since the power is available, 

WΔ will keep increasing till reach saturation. If same power is given to the system but 

in different depth positions, the increment of WΔ  at deeper position is lower than 

shallower position. This is caused by the availability of hydrostatic force which is 

become higher at deeper position. If power is keep applied as negative value, then 
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WΔ will reach negative saturation at N96.9−  and velocity v  also reach negative 

saturation at 1ms019.1 −−  as shown in Figure 5.6. 

 

When the power is zero, WΔ remains at its last value as well as velocity v . The 

velocity will remain constant until WΔ change and velocity in this condition is known 

as terminal velocity. This is the advantage of using variable ballast as vertical motion 

actuator, even the zero power is given to the actuator, the URV still moves therefore it 

will save the power usage. If ,0=ΔW  then the zero velocity occurs and the URV is 

in zero buoyancy condition. The depth position of URV, ,z  will remain at its last 

position, and this condition is called equilibrium point. The equilibrium point occurs 

at any depth position since v  and WΔ is equal to zero. 

 

 

Figure 5.7 Response of the system for pulse input in different amplitude. 
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If ramp input is applied, then the response of the system is shown in Figure 5.8. By 

looking to the response, obviously the nonlinearity of the weight change of the URV’s 

body and the velocity in vertical motion are shown. By the increment of  mP , v  and 

WΔ  also increase until both of these reach saturation. Depth position, ,z  keeps 

increasing since 0>v . 

 

 

Figure 5.8 Response of the system for ramp input. 
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5.2 Simulation of Linearized Approach 

 

By using MATLAB/Simulink, the linearized approximation strategy is simulated. 

This controller is applied to control the original nonlinear model for depth positioning 

of a spherical URV which the block diagram is shown in Figure 5.9. The control law 

from Eq. 4.20 can be constructed in Simulink model as shown in Figure 5.10.  

 

 
Figure 5.9 Schematic diagram of linearized approximation control design. 

 

The feedback gains 321 and,, kkk  are obtained by tuning ξ  and a . The value of 

ξ  and a  are obtained intuitively by tuning in the maximum range operation of the 

system that is depth position. By choosing proper value of ξ  and a , the closed loop 

system will be asymptotically stable. Some parameters of the control system obtained 

from simulation with different depth operation are shown in the Table 5.1. The 

simulation is performed in 1000 second and the time sampling is 0.1 second. 

 

 
Figure 5.10 Simulink model of linearized control system. 
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Table 5.1 Performances of linearized control system in different range of depth 

operation. 

Range 
operation(m) ξ  a  rT (s) sT (s) Overshoot 

(%) 
sse /RMSE

(m) 

%  
error 

Energy usage 
(Watt second) 

0-50 1 0.212 45.8 73.4 0.079 0.019 0.038 7676 
0-100 0.8 0.136 89.4 133.1 0.06 0.05 0.05 13740 
0-150 0.85 0.109 132.8 189.6 0.656 0.168 0.112 20450 
0-200 0.76 0.092 176.3 247.3 0.867 0.336 0.168 26900 

 

Some models of desired depth position as input references are tested in order to know 

the response of this control design. By choosing 8.0=ξ  and 136.0=a  which are 

obtained from simulation in the depth operation from 1000 − meter, the response of 

the control system for some different model of desired depth position are shown in 

Figure 5.11, Figure 5.13, Figure 5.15, Figure 5.17 and the error of the depth position 

for corresponding input model are shown in Figure 5.12, Figure 5.14, Figure 5.16. 

 

 
Figure 5.11 Response of linearized controller design for single step input reference. 
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Figure 5.12 Error of depth position of linearized controller design for single step input 

reference. 

 

 
Figure 5.13 Response of linearized controller design for multi steps input reference. 
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Figure 5.14 Error depth position of linearized controller design for multi steps input 

reference. 

 

From Figure 5.13, it is seen that the gain of the feedback K , which depends upon ξ  

and a , is effective for certain range of depth operation.  By giving multi steps input 

reference, the response of the control system for some different initial and final depth 

positions are presented. Some of index performances of this system are presented in 

Table 5.2.  

 

As mentioned before, that the feedback gain K  is obtained as the optimum gain for 

depth operation from 0 to 100 meter. If the desired depth position is deeper than this 

range, then the response is not optimal, the overshoot occurs and becomes bigger for 

the deeper desired depth position. The settling time is increased also.  

 

If the input reference is changed from step input into ramp input with saturation value 

which is desired depth position, the response of the system is shown in Figure 5.15. 
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Table 5.2 Performances of linearized controller design in different initial and final 

depth position. 
Step change 

(Depth position) 
(m) 

rT (s) sT (s) Overshoot
(%) 

sse /RMSE
(m) 

% 
error Energy usage 

(Watt second) 

0-30 59.2 108.8 0.005 0.04 0.133 1859.034 
30-100 68.9 102.7 0.061 0.088 0.088 10642.417 
100-30 84.2 170.7 0.005 0.044 0.147 7741.709 
30-160 105.2 387.1 31.601 0.253 0.158 34967.527 
160-30 128.4 248.1 0.005 0.032 0.107 15154.273 
110-160 52.9 227.4 14.221 0.273 0.171 19204.848 
160-110 77.8 141.6 0.001 0.155 0.141 8914.826 

 

 
Figure 5.15 Response of linearized controller design for ramp model of input 

reference. 
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Figure 5.16 Error depth position of linearized controller design for ramp model of 

input reference. 

 

 
Figure 5.17 Response of linearized controller design for single step input reference 

when 8.0=ξ and 136.0=a . 

 

From Figure 5.15, it is shown that by the same gain of feedback K  but desired depth 

position is deeper than maximum range of depth operation, the ramp model input 

reference gives better response as compared to step input model in Figure 5.17. In 

other words, by changing step input model into a trajectory input model, the response 
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of the control system can be improved, the settling time s3.436=sT  and  steady state 

error m097.0=sse . In Figure 5.17, the desired depth position m200=dz is applied 

as step input model and the value of the gain K is obtained from tuning at 

m100=dz . The steady time and error steady state are obtained as  s7.560=sT  and 

m099.0=sse  respectively. If we consider to the energy usage, single step input 

model consumes 54600 Watt second and ramp input model consumes 8943 Watt 

second. Therefore by manipulating this input reference, the energy usage also can be 

saved. 

 

Since the controller based on the linearized model can stabilize the system by tracking 

the error converge to zero than it can be expected that this control strategy can track 

a given trajectory input reference. If the input reference is dynamic or given as 

a trajectory, then the responses of the control system are shown in Figure 5.18 and 

Figure 5.20. The models of input reference are given as sinus and triangle. The error 

can be seen in Figure 5.19 and Figure 5.21 for each input model respectively. 

 

 
Figure 5.18 Response of linearized controller design for sinus model of input 

reference. 
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Figure 5.19 Error depth position of linearized controller design for sinus model of 

input reference. 

 

 
Figure 5.20 Response of linearized controller design for triangle model of input 

reference. 
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Figure 5.21 Error depth position of linearized controller design for triangle model of 

input reference. 

 

By giving a trajectory input reference, from the simulation can be seen that the output 

is lagging from the reference. If the change of the input reference is constant, the error 

is almost constant as shown in Figure 5.20 and Figure 5.21. From simulation if the 

change of input is 1ms1.0 − then absolute error converge to m408.2 and if change 

input is 1ms2.0 −  then absolute error converge to m361.6 . For sinus model, the error 

(RMSE) is 2.956 m, energy needed in the operation is 1935.541 Watt second. For the 

triangle model, as shown in Figure 5.20, the error (RMSE) is 4.58 m and energy 

needed in the operation is 4215 Watt second. 

 

If URV is sent to a particular depth position and let it stays at this position, it is seen 

that the controller can asymptotically stabilize the system, because for ∞→t , .0→e  

But, if the desired depth position is dynamic (given as trajectory), then the error is not 

convergent to zero, but still the controller can track the trajectory. 
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5.3 Simulation of Nonlinear approach 

 

The mathematical equations of the controller strategy derived in the previous chapter 

will be simulated in this subsection in order to know the performances of each control 

strategies. The simulation will be performed in MATLAB/Simulink. 

 

5.3.1 State-Space Linearization 

 

The simulation for state-space feedback linearization strategy is built based on 

schematic diagram given in Figure 5.22. The Simulink model is built based upon 

mathematical model obtained at previous sub section. The original input for the 

nonlinear system is shown in Figure 5.23. The functions )(xψ  and )(xγ  are shown in 

Figure 5.24 and Figure 5.25 respectively. The states transformation and linear 

controller for the transformed states are shown in Figure 5.26 and Figure 5.27 

respectively. In order to know the performances of this control strategy, some input 

model are tested. 

 

 
 

Figure 5.22 Schematic diagram of state-space feedback linearization control design. 
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Figure 5.23 Simulink model of the original input in state-space feedback linearization. 

 
 

 
Figure 5.24 Simulink model of )(xψ . 
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Figure 5.25 Simulink model of )(xγ . 

 

 
Figure 5.26 Simulink model of state transformation )(xzz = . 

 

 
Figure 5.27 Simulink model of linear controller Kz−= dzkv 11 . 
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In order to stabilize the system, we just consent in linear controller that is by tuning 

the feedback gain. A proper value of ξ  and a  must be chosen in order to obtain 

a good performance of the controller. The feedback gain is tuned at a particular range 

of depth, because it only optimum in a certain range but not for out of the range. 

If a step input reference is applied with different magnitude, the controller will result 

performances those are shown in Table 5.3. 

 

Table 5.3 Some Parameters and performances of state-space feedback linearization 

strategy in different range of depth operation 
Range operation 

(Depth)        
 (m) 

ξ  a  rT    
(s) 

sT    
(s) 

Overshoot 
(%) 

sse /RMSE 
(m) 

% 
error 

Energy usage   
(Watt second) 

0-50 0.764 0.068 46.3 73.7 0.162 0.066 0.132 3900.315 
0-100 0.77 0.036 89.1 159.7 1.194 0.204 0.204 7742.287 
0-150 0.85 0.026 133.8 197.8 0.369 0.300 0.200 11320.82 
0-200 0.82 0.019 177.9 262.3 0.561 0.567 0.284 14962.127 

  
Furthermore, the control strategy will be tested with different model of input 

reference in the same feedback gain that was tuned in the range of depth position from 

0-100 m, 77.0=ξ  and 036.0=a . If a step input is applied in magnitude 100 m, 

the response of the system is shown in Figure 5.28, and the error is shown in 

Figure 5.29. If a multi step input is applied with different magnitude of the step, the 

system will response that is shown in Figure 5.30 and the error is shown in 

Figure 5.31. 

 

By giving the multi step model of input reference, the response of the system when it 

is operated in different origin and final depth position, can be known. The 

performances of the controller are given in Table 5.4. From Table 5.4, it is seen when 

the input is start from 30 m and end at 100 m, results different response when it start 

from 0 m and end at 100 m, see Table 5.3, the overshoot is bigger. If the power usage 

is considered, even its distance is shorter, Table 5.4 consumes bigger power usage 

compare to Table 5.3. This condition is caused by the difference of the hydrostatic 

pressure in different depth which is higher in deeper position. 
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Figure 5.28 Response of the state-space feedback linearization strategy for single step 

model of input reference. 

 

 
Figure 5.29 Error of the state-space feedback linearization strategy for single step 

model of input reference. 
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Figure 5.30 Response of the state-space feedback linearization strategy for multi step 

model of input reference. 

 

 
Figure 5.31 Error of the state-space feedback linearization strategy for multi step 

model of input reference. 
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Table 5.4 Performances of state-space feedback linearization strategy in multi step 

input reference of depth position. 
Step change 

(Depth position) 
(m) 

rT  
(s) 

sT  
(s) 

Overshoot 
(%) 

sse /RMSE 
(m) 

Power usage 
(Watt second) 

0-30 25.6 224 0.234 0.069 1028.794 
30-100 65.2 194.2 6.775 0.213 9477.242 
100-30 87 267.3 0.322 0.085 6743.544 
30-160 106.7 432.8 25.537 0.357 24934.511 
160-30 127.1 342.2 0.307 0.051 14410.108 

110-160 57.1 223.8 8.507 0.293 13030.645 
160-110 87.1 224.8 0.077 0.219 7664.011 

 

By testing step input model, it is seen that the control strategy can asymptotically 

stabilizes the system, for ∞→t , 0→e . Therefore, the control strategy can be 

expected to be used in tracking a trajectory. If ramp input with saturation value is 

applied, the response of the system is shown in Figure 5.32 and the error is shown in 

Figure 5.33. 

 

 
Figure 5.32 Response of state-space feedback linearization strategy for ramp model of 

input reference.  
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Figure 5.33 Error of state-space feedback linearization strategy for ramp model of 

input reference. 

 

From Figure 5.32, it is clearly seen that by changing the model of input reference 

from step input into ramp input with saturation value, the controller can be used for 

out of the range of the depth position in which the feedback gain is tuned. The steady 

time is 553.3 second, overshoot is 0.017 %, RMSE in steady state is 0.004, and the 

energy consumed is 6743.027 Watt second. These performances are better compared 

to step input model. If step input reference with the same magnitude is given, the 

steady time is 595.3 second, overshoot is 35.925 %, RMSE in steady state is 0.135, 

and the energy consumed is 37604.955 Watt second. The response can be seen in 

Figure 5.34. 

 

If the trajectory is given as sinus model and triangle model, the response is shown in 

Figure 5.35 and Figure 5.37  respectively. For sinus model, RMSE in tracking this 

trajectory is 6.741 m and the energy usage is 1944.425 Watt second. For triangle 

model, RMSE is 9.213 m and the energy usage is 3936.512 Watt second. From these 

simulations, it is seen that if the input is given as trajectory, the response of the 

controller is lagging. If the change of trajectory is linear, the error will converge to 

a constant, as shown in Figure 5.38. From simulation, if the change of input trajectory 
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is 1ms1.0 − then absolute error converge to m082.6 and if the change of input is 

1ms2.0 −  then absolute error converge to m163.12  

 

 
Figure 5.34 Response of state-space feedback linearization strategy for step input 

reference which is bigger than range of depth operation. 

 

 
Figure 5.35 Response of state-space feedback linearization strategy for sinus model of 

input reference. 
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Figure 5.36 Error of state-space feedback linearization strategy for sinus model of 

input reference. 

 

 
Figure 5.37 Response of state-space feedback linearization strategy for triangle model 

of input reference. 

 



Chapter 5: Results and Discussion 
 

103

 
Figure 5.38 Error of state-space feedback linearization strategy for triangle model of 

input reference. 

 

5.3.2 Input-Output Linearization 

 

The simulation of input-output feedback linearization strategy is performed by the 

following schematic diagram given in Figure 5.39. 

 

 
Figure 5.39 Schematic diagram of input-output feedback linearization control design. 

 

The Simulink model for the control system is built block by block based on the 

mathematical model. Simulink model of the synthetic input obtained at Eq. 4.68 and 
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Eq. 4.69 is shown in Figure 5.40, and the Simulink model of the original input u  

written at Eq. 4.63 is shown in Figure 5.41. 

 

 
Figure 5.40 Simulink model of the synthetic input in input-output feedback 

linearization control design. 

 
 

 
Figure 5.41 Simulink model of the original input in input-output feedback 

linearization control design. 

 

And the Simulink models of )(xα  and )(xβ  are shown in Figure 5.42 and 

Figure 5.43 respectively. 
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Figure 5.42 Simulink model of )(xα  

 

 
Figure 5.43 Simulink model of )(xβ  

 

In order to stabilize this system, the eigenvalues at Eq. 4.66 must be located at the left 

half of complex plane by choosing a proper value of a  and ξ  thus the system is 

asymptotically stable. By giving step input in different range of depth operation, the 

value of a  and ξ  are obtained as presented at Table 5.5. These values are obtained by 

tuning in order to get an optimum response. The duration of the simulation is 1000 

second and the time sampling is 0.1 second. 
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Table 5.5 Some Parameters and performances of input-output feedback linearization 

strategy in different range of depth operation 
Range 

operation 
(Depth)      

(m) 

ξ  a  rT     
(s) 

sT     
(s) 

Overshoot 
(%) 

sse /RMSE 
(m) 

% 
error 

Energy 
usage   
(Watt 

second) 
0-50 0.762 0.071 45.9 73.3 0.829 0.058 0.116 4122 

0-100 0.762 0.036 89.4 132.8 0.77 0.244 0.244 7832 
0-150 0.835 0.026 133.4 192.3 0.555 0.297 0.198 11450 
0-200 0.85 0.02 177.1 250 0.932 0.498 0.249 15140 

 

In order to know the characteristic of the control system, further, some models of 

input reference are applied in this depth positioning system. Models of the input 

reference are same as models applied in previous control design. These input 

reference models are simulated for  036.0=a  and 762.0=ξ . If steps input are 

applied as single step input and multi step inputs, the responses are shown in 

Figure 5.44 and Figure 5.46 respectively. The error for each input model can be seen 

in Figure 5.45 and Figure 5.47. 

 

 
Figure 5.44 Response of input-output feedback linearization strategy for single step 

model of input reference. 
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Figure 5.45 Error of input-output feedback linearization strategy for single step model 

of input reference 

 

 
Figure 5.46 Response of input-output feedback linearization strategy for multi step 

model of input reference. 
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Figure 5.47 Error of input-output feedback linearization strategy for multi step model 

of input reference 

 

The feedback gain K is effective for certain range of depth operation, as shown in 

Figure 5.46. This gain must be tuned at maximum range of the depth operation and 

the control system is optimum if the operation is in this range. The performance of the 

control system when the URV is operated in different initial and final depth position 

is presented in Table 5.6. The gain used in this control system is obtained from tuning 

in the range of depth position at 100 m. 

 

Table 5.6 Performances of input-output feedback linearization strategy in multi step 

input reference of depth position. 

Step change  
 

 
 Overshoot         /RMSE 

% Energy usage 

(Depth position) (s) (s) (%) (m) error (Watt second) 
(m)       
0-30 43.6 218.6 0.219 0.068 0.227 1254.617 

30-100 65.8 183.4 5.394 0.212 0.212 9335.668 
100-30 86.4 267.5 0.329 0.086 0.287 6773.23 
30-160 106.5 433.4 25.666 0.357 0.223 25053.856 
160-30 126.6 342.6 0.308 0.051 0.170 14423.567 
110-160 56.7 225.8 8.994 0.291 0.182 13401.248 
160-110 85.3 224.9 0.079 0.219 0.199 7712.397 

 
 

rT sT sse
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Table 5.6 shows if the URV descends in the range of depth 0 – 100 m, it shows 

a good behavior with small overshoot. If the URV descends out of its range, the 

overshoot is increased and steady time is also increased. For ascent motion, the 

overshoot is small even the URV operates out of range of the depth position. The rise 

time is slower compare to descent motion. This condition is caused by the difference 

of hydrostatic pressure at different depth position. At the deeper position, the 

hydrostatic pressure is higher than shallower position. It causes the power needed to 

change the weight of URV, ,3 Wx Δ=  is higher. Therefore with the same power, the 

rise time of descent motion is faster then ascent motion, because the rise time is 

proportional to the rate change of weight of URV, .W&Δ  

 

If a ramp model is given as input reference, response of the control system is shown 

in Figure 5.48 and the error is shown in Figure 5.49. 

 

 
Figure 5.48 Response of input-output feedback linearization strategy for ramp model 

of input reference 
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Figure 5.49 Error of input-output feedback linearization strategy for ramp model of 

input reference. 

 

If desired depth position is deeper than maximum range of depth operation where 

feedback gain K  is tuned, the ramp model input reference with saturation value gives 

better response compare to step input. By giving ramp model input reference, shown 

in Figure 5.48, the steady time s8.565=sT  and steady state error m159.0=sse .  

This input model is faster to reach steady state compare to step input model, shown in 

Figure 5.50, which has steady time s8.596=sT  and steady state error 

m135.0=sse . If we consider to the energy used in this operation, for step input the 

energy usage is 37940 Watt second and for ramp input model the energy usage is 

18410 Watt second. Therefore, by changing the input reference from step model into 

ramp model, the better response and optimal control will be obtained. 

 

If we look again to the Figure 5.48 and Figure 5.49, before reach steady state, the 

error is minimized when the input reference keeps changing or dynamic. Therefore 

this controller can be expected to be applied for tracking a trajectory. If trajectory 
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input reference is given to the control system, the response can be seen in Figure 5.51 

and Figure 5.53. The model of input reference is given as sinus and triangle. 

 

 
Figure 5.50 Response of input-output feedback linearization strategy for single step 

model of input reference bigger than range of depth operation. 

 

 
Figure 5.51 Response of input-output feedback linearization strategy for sinus model 

of input reference. 
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Figure 5.52 Error of input-output feedback linearization strategy for sinus model of 

input reference. 

 

 
Figure 5.53 Response of input-output feedback linearization strategy for triangle 

model of input reference. 
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Figure 5.54 Error of input-output feedback linearization strategy for triangle model of 

input reference. 

 

From Figure 5.51 and Figure 5.53, it is seen that the actual depth position of the URV 

keeps following the trajectory given as input reference. If the input reference is given 

as sinus model, the response is looked so smooth, error (RMSE) is 0.008 m. 

Figure 5.53 shows when the trajectory as input reference is extremely change, the 

resulting error position is increased, the error (RMSE) is 1.634 m. This condition is 

also shown in Figure 5.48 when input reference is given as a ramp model. The error is 

increased when the input reference is changed into constant value. From simulation, it 

is seen if the change of input trajectory is constant, then the error converges to zero. 

 

If we consider to the energy needed in this operation, when the trajectory is given as 

sinus the energy usage is 1906 Watt second and if trajectory is given as triangular, the 

energy usage is 13560 Watt second. 

 

5.4 Performances of The Controllers 

 

Since the dynamic model for depth positioning of the spherical URV behaved as 

nonlinear system then two different approaches were designed in this thesis in order 
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to perform the depth positioning system, i.e. linearized approximation and feedback 

linearization. In feedback linearization approach, there are two methods, i.e. state-

space linearization and input-output linearization. The performances for these 

approaches when step input was applied are shown in Table 5.7 and Table 5.8, and 

when trajectory input was applied, the performances are shown in Table 5.9. From 

Table 5.7, generally, it is seen that by using linearized approximation, the steady state 

is reached faster than both feedback linearization approaches.  It also can be seen in 

Table A.1 (Appendix 3), when different multi step input is applied. If the URV is 

operated in the range in which the gain is tuned, the overshoot and steady state error 

of linearized approximation are also smaller than feedback linearization. But, if 

energy usage in operation is considered, feedback linearization strategy consumes less 

power than linearized approximation. It is seen in Table 5.8 and Table A.2 

(Appendix 3). If performances of the state-space feedback linearization and input-

output feedback linearization are compared when the step input reference is applied, it 

is seen that if the URV is operated within the range where the gain is tuned (0-100m), 

input-output feedback linearization give faster response in order to reach steady state. 

The overshoot and steady state error almost the same. But for the energy usage, state-

space feedback linearization consumes less power.  

 

Table 5.7 Rise time ( rT ), steady time ( sT ) and overshoot (OS) of the controllers. 

Step change 
(Depth 

position) 
Linearized approximation State-space feedback 

linearization 
Input-output feedback 

linearization 

(m)   OS   OS   OS 
 (s) (s) (%) (s) (s) (%) (s) (s) (%) 

0-30 59.2 108.8 0.005 25.6 224 0.234 43.6 218.6 0.219 
30-100 68.9 102.7 0.061 65.2 194.2 6.775 65.8 183.4 5.394 
100-30 84.2 170.7 0.005 87 267.3 0.322 86.4 267.5 0.329 
30-160 105.2 387.1 31.601 106.7 432.8 25.537 106.5 433.4 25.67 
160-30 128.4 248.1 0.005 127.1 342.2 0.307 126.6 342.6 0.308 
110-160 52.9 227.4 14.221 57.1 223.8 8.507 56.7 225.8 8.994 
160-110 77.8 141.6 0.001 87.1 224.8 0.077 85.3 224.9 0.079 

 

rT sT rT sTrT sT
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Table 5.8 Steady state error (RMSE) and power usage for step input. 

Step change 
(Depth 

position) 
Linearized approximation State-space feedback 

linearization 
Input-output feedback 

linearization 

(m) RMSE Power usage RMSE Power usage RMSE Power usage 
 (m) (Watt second) (m) (Watt second) (m) (Watt second) 

0-30 0.04 1859.034 0.069 1028.794 0.068 1254.617 
30-100 0.088 10642.417 0.213 9477.242 0.212 9335.668 
100-30 0.044 7741.709 0.085 6743.544 0.086 6773.23 
30-160 0.253 34967.527 0.357 24934.511 0.357 25053.856 
160-30 0.032 15154.273 0.051 14410.108 0.051 14423.567 

110-160 0.273 19204.848 0.293 13030.645 0.291 13401.248 
160-110 0.155 8914.826 0.219 7664.011 0.219 7712.397 

 

 
Table 5.9 Steady state error (RMSE) and power usage for trajectory input. 

Input 
reference/ 
trajectory 

Linearized 
approximation 

State-space feedback 
linearization 

Input-output feedback 
linearization 

 RMSE Power usage RMSE Power usage RMSE Power usage 
 (m) (Watt second) (m) (Watt second) (m) (Watt second)

Triangle 4.58 4215 9.213 1944.425 1.634 13560 
Sinus 2.956 1935.541 6.741 3936.512 0.008 1906 

 

 

If input reference is given as trajectory, different performances are obtained in 

simulation. Input-output feedback linearization approach results smallest steady state 

error compared to the others approaches. This condition is seen clearly if the 

trajectory is given in sinus model, as presented in Table 5.9 and Table A.3 

(Appendix 3). If the energy usage is considered, the input-output feedback 

linearization approach consumes more energy compared to the others approaches. 

But, if we look to the sinus model reference the difference of energy usage between 

input-output feedback linearization approach and linearized approximation approach 

is not so big, but steady state error resulted by input-output feedback linearization is 

very small compared to linearized approach or state-space feedback linearization. 
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5.5 Summary 

 

Simulation of dynamic model and controller design are simulated in this chapter by 

using Simulink/MATLAB. By simulating the dynamic model in open loop system, 

the characteristic of the system can be analyzed. In order to control depth position of 

the spherical URV by using a variable ballast mechanism, a proper controller is 

needed. Since the system behaves as nonlinear system, then the controllers are 

designed by using linearized approach and nonlinear approach. In nonlinear approach, 

feedback linearization which consist of state-space feedback linearization and input-

output feedback linearization are applied. Performances of these controllers are 

discussed and compared each others in this chapter. Some input model such as step 

input, ramp and trajectory are tested to system in order to know the responses and 

performances of the controller. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORKS 
 

 

6.1 Conclusion 

 

This thesis presented depth positioning of a spherical underwater robot vehicle by 

using a variable ballast mechanism as motion actuator. A spherical shape has 

advantage that is having axially symmetry along it surface, so that it provides uniform 

drag force in any direction of its motion. Hence, it will be easier to design control 

strategy for its motion.  

 

Since the depth positioning system was designed, then this thesis just interested in one 

degree of freedom from six in full degree of freedom, i.e. heave or vertical motion. 

A variable ballast mechanism which works based on Archimedes principle is utilized 

as motion actuator. By assuming there are no external disturbances and parameters of 

ambient such as water density, atmospheric pressure at surface, gravitational 

acceleration are constant, then the dynamic model of this depth positioning system 

was derived in this thesis. Since the dynamic model behaved as nonlinear system, 

then in order to control the depth position of the URV, two different approaches of the 

controllers were investigated, i.e. linearized approximation approach and nonlinear 

approach. 

 

Some properties of these approaches, such as controllability, stability and 

observability, were analyzed. In linearized approximation approach, it was concluded 

that the linearized model is controllable and observable therefore the actual nonlinear 

model is also controllable and observable. Hence, the linear controller strategy can be 

designed based on the linearized model. In order to analyze the stability of the system 

about equilibrium point based on the linearized model, Lyapunov provided method 

that is known as Lyapunov linearization method. Since all of eigenvalues of the 
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linearized model presented in this thesis is zero, ,0=λ  then Lyapunov linearization 

method cannot conclude whether the actual nonlinear model is stable or unstable. 

 

In nonlinear approach, these properties were analyzed from the actual nonlinear 

model. In analyzing the controllability and observability of the system, Lie algebra 

was involved to construct the controllability and observability matrix. Based on these 

matrices, it can be concluded that the actual nonlinear model is controllable and 

observable. Considering the stability of the system based on the actual nonlinear 

model, Lyapunov also provided a method which is known as Lyapunov direct 

method. In this method, first, the possible Lyapunov function must be constructed. In 

this thesis, variable gradient method was utilized to construct the possible Lyapunov 

function. Then from this possible Lyapunov function, the Lyapunov direct method 

concluded that the actual nonlinear model is unstable. Hence, in order to stabilize the 

actual nonlinear model, the feedback linearization strategy was used. Since the actual 

nonlinear model is SISO system, then there are two kinds of feedback linearization 

methods possible to be applied, i.e. state-space feedback linearization and input-

output feedback linearization. These two approaches of feedback linearization can 

perform the stabilization in order to control the depth position of the URV.  

 

By the given parameters used in the design of variable ballast system which is utilized 

for vertical motion actuator of a spherical URV, then the VBS can change the weight 

of URV body, ,WΔ in range N96.9±  in order to make URV in positive buoyancy, 

neutral buoyancy or negative buoyancy. The buoyancy of URV is considered as a 

constant value. By using this mechanism, then the URV can move in vertical plane in 

the range of velocity 1ms019.1 −± . 

 

From simulation of the controllers, can be concluded if the input reference of desired 

depth position is given as step input, the linearized approach can stabilize the system 

faster then both feedback linearization. If we consider to energy usage in the 

operation, then it is shown that state-space feedback linearization consume less energy 

compare to input-output feedback linearization and linearized approach. If the input 

reference is given as trajectory then input-output feedback linearization results the 



Chapter 6: Conclusion 
 

119

smallest error. Since the change of input reference is constant, error of input-output 

feedback linearization is converge to zero, and the other two controller are converge 

to a constant value. 

 

6.2 Thesis Contribution 

 
In this thesis, a mechanism of variable ballast system was designed. This variable 

ballast mechanism utilized a variable tank as the chamber of amount of the water to 

be controlled. In this mechanism, water always fill all space in the tank but can be 

different in term of volume. Therefore, internal dynamic that is caused by movement 

of water in the tank when variable ballast utilizing fixed volume tank and amount of 

water is not maximum, will not occur. This variable ballast mechanism is suitable for 

small-scale URV, because this mechanism is compatible for small tank. 

 

The dynamic model of the variable ballast mechanism was presented in this thesis. 

This mathematical model was derived based on the physical laws involved in this 

system. The dynamic model for vertical motion of a spherical underwater vehicle was 

also presented in this thesis. This vertical motion is caused by the change of weight 

force of the URV’s body, which is from the variable ballast mechanism. By having 

the mathematical model of vertical motion of spherical URV which utilizing variable 

ballast mechanism as actuator, the simulation can be designed. Any controller strategy 

can be designed and tested in computer simulation in order to get an optimal 

controller. 

 

Controller for depth positioning of a spherical URV by using variable ballast 

mechanism as actuator was designed in this thesis. As a nonlinear system, then to 

design the controller, some conditions must be considered. A controller can be 

designed based on linearized approximation approach if the linearized model is 

controllable otherwise this approach cannot be used. The linearized model of the 

actual dynamic of this system is controllable then linear feedback control strategy was 

designed based on the linearized model. A nonlinear approach was also performed to 

design the controller for this depth positioning system, i.e. feedback linearization. As 
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SISO system, there are two approaches of feedback linearization, i.e. state-space 

feedback linearization and input-output feedback linearization. In stabilizing the 

equilibrium point, the linearized approximation approach is faster to reach steady state 

compared to the feedback linearization approach, but it needs more power. In tracking 

the trajectory, input-output feedback linearization approach results smaller error 

compared to linearization approximation approach and state-space feedback 

linearization approach, but it needs more power. Therefore these approaches have 

weaknesses and advantages. 

 

6.3 Future Work 

 
In this thesis, the design and model of variable ballast mechanism was presented. The 

simulations are performed in ideal and constant parameters of ambient. Next, the 

model and the control design should be tested in varying parameters of ambient. 

Therefore, the performance of the controller can be analyzed. The robustness of the 

controller also should be tested by involving some external disturbances. An optimal 

controller also must be designed in order to optimal the usage of energy. 

 

The availability of external disturbances could cause rolling or twisting on the 

spherical URV, therefore in the future works, the influence of this motion should be 

considered in the model. 

 

The implementation of this design is needed so that it can be tested in the real 

condition. Furthermore, any controller design can be tested in the real system. 
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APPENDIX 1: M file in linearized approximation analysis. 

 

 
%linearized.m 
%programmed by Bambang S 
  
syms x1 x2 x3 C1 C2 k1 k2 k3; 
%OPEN-LOOP LINEARIZED SYSTEM 
A=[0 1 0;0 0 C1;0 0 0]; 
B=[0;0;C2]; 
C=[1 0 0]; 
  
%constructing the controllability matrix 
Cm=[B A*B A*A*B];  
  
%testing the rank of controllability matrix 
n_Cm=rank(Cm);     
  
%constructing the observability matrix 
Mo=[C;C*A;C*A*A];  
  
%testing the rank of observability matrix 
n_Mo=rank(Mo);     
  
%CLOSED-LOOP LINEARIZED SYSTEM 
K=[k1 k2 k3]; 
  
%coefficient matrix of closed-loop system 
Acl=[A-B*K];                 
  
%scaling factor 
F=inv(C*(-inv(Acl))*B);      
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APPENDIX 2: M file in feedback linearization analysis. 
 

 
%feedback.m 
%programmed by Bambang S 
  
syms x1 x2 x3 b1 b2 b3 b4 b5 b6 w_bs g; 
%OPEN-LOOP NONLINEAR SYSTEM 
  
f=[x2;(x3-b2*abs(x2)*x2)/(b1+x3/g);0]; 
g=[0;0;b3/(w_bs+x3+b4*x1-(b5*x3/(b6-x3)))]; 
h=x1; 
  
%========================================================= 
%Lie bracket 
dg=[diff(g,x1) diff(g,x2) diff(g,x3)]; 
df=[diff(f,x1) diff(f,x2) diff(f,x3)]; 
  
adfg=dg*f-df*g; 
dadfg=[diff(adfg,x1) diff(adfg,x2) diff(adfg,x3)]; 
ad2fg=dadfg*f-df*adfg; 
%========================================================== 
  
%constructing the controllability matrix of nonlinear system 
C=[g adfg ad2fg];    
  
%testing the rank of controllability matrix of nonlinear system 
n_C=rank(C);           
  
%============================================================= 
%observability analysis 
Lfh=[diff(h,x1) diff(h,x2) diff(h,x3)]*f; 
Lf1h=[diff(Lfh,x1) diff(Lfh,x2) diff(Lfh,x3)]*f; 
  
%constructing the observability map of nonlinear system 
phi=[h;Lfh;Lf1h];        
  
%Jacobian of observability map = observability matrix 
%d_phi=[diff(phi,x1) diff(phi,x2) diff(phi,x3)] 
d_phi=jacobian([h;Lfh;Lf1h],[x1 x2 x3]);         
  
%testing the rank of obseravability matrix of nonlinear system 
n_d_phi=rank(d_phi);     
%============================================================== 
  
%STATE-SPACE LINEARIZABLE ANALISYS 
  
%constructing involutivity vector field of nonlinear system 
X2=adfg; 
dX2=[diff(X2,x1) diff(X2,x2) diff(X2,x3)]; 
adgX2=dX2*g-dg*X2;   
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%involutivity analysis 
v_f=[g adfg adgX2];     
n_vf=rank(v_f); 
 
%state transformation 
z1=x1; 
z2=jacobian(z1,[x1 x2 x3])*f; 
z3=jacobian(z2,[x1 x2 x3])*f; 
  
lfz1=jacobian(z1,[x1 x2 x3])*f; 
lf2z1=jacobian(lfz1,[x1 x2 x3])*f; 
lf3z1=jacobian(lf2z1,[x1 x2 x3])*f; 
lglf2z1=jacobian(lf2z1,[x1 x2 x3])*g; 
  
psi=-1*lf3z1/lglf2z1; 
gamma=1/lglf2z1; 
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APPENDIX 3: Simulation result for different input reference models. 
 
 
 

 
Figure A.1 Response of linearized approximation controller with multi step input 

reference in fixed increment. 

 

 
Figure A.2 Error of depth position for linearized approximation controller with multi 

step input reference in fixed increment. 
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Figure A.3 Response of state-space feedback linearization controller with multi step 

input reference in fixed increment. 

 

 
Figure A.4 Error of depth position for state-space feedback linearization controller 

with multi step input reference in fixed increment. 
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Figure A. 5 Response of input-output feedback linearization controller with multi step 

input reference in fixed increment. 

 

 
Figure A. 6 Error of depth position for input-output feedback linearization controller 

with multi step input reference in fixed increment. 
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Performances for each the controller with multi step input are presented in Table A.1 

and Table A.2.  

 

Table A.1 Rise time ( rT ), steady time ( sT ) and overshoot (OS) of the controllers with 

multi step input in fixed increment. 

Step change 
(Depth position) 

Linearized 
approximation 

State-space feedback 
linearization 

Input-output feedback 
linearization 

(m)   OS   OS   OS 
 (s) (s) (%) (s) (s) (%) (s) (s) (%) 

0-10 51.6 87.8 0.014 77.4 197.7 1.498 75.9 142.5 1.587 
10-20 51.0 80.0 0.007 77.5 125.7 0.749 76.9 123.1 0.782 
20-30 50.8 75.5 0.005 77.5 121.6 0.499 76.9 119.1 0.523 
30-40 50.8 72.0 0.004 77.5 118.1 0.374 76.9 115.1 0.393 
40-50 50.7 69.1 0.003 77.5 115.1 0.300 76.8 111.7 0.315 
50-60 50.5 66.7 0.002 77.5 112.3 0.250 76.8 108.7 0.263 
60-70 50.6 64.7 0.002 77.4 109.7 0.214 76.8 106.4 0.225 
70-80 50.7 63.1 0.002 77.5 107.4 0.187 76.9 104.6 0.197 

 
 

Table A.2 Steady state error (RMSE) and power usage for multi step input in fixed 

increment. 

Step change Linearized approximation State-space feedback 
linearization 

Input-output feedback 
linearization 

(Depth 
position) RMSE Power usage RMSE Power usage RMSE Power usage 

(m) (m) (Watt second) (m) (Watt second) (m) (Watt second)
0-10 0.011 288.342 0.028 29.065 0.067 60.181 

10-20 0.024 552.503 0.067 86.331 0.069 115.699 
20-30 0.037 834.563 0.073 143.597 0.075 171.830 
30-40 0.051 1072.580 0.082 200.864 0.084 227.042 
40-50 0.066 1294.861 0.094 258.131 0.095 281.966 
50-60 0.081 1509.595 0.108 315.397 0.109 336.922 
60-70 0.096 1732.926 0.124 372.664 0.124 392.853 
70-80 0.111 1964.222 0.141 429.930 0.140 450.129 

 
 

rT sT rT sTrT sT
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Figure A.7 Response of linearized approximation controller in ramp input reference 

with gradient 0.05. 

 

 
Figure A.8 Error depth position of linearized approximation controller in ramp input 

reference with gradient 0.05. 
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Figure A.9 Response of state-space feedback linearization controller in ramp input 

reference with gradient 0.05. 

 

 
Figure A.10 Error depth position of state-space feedback linearization controller in 

ramp input reference with gradient 0.05. 
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Figure A.11 Response of input-output feedback linearization controller in ramp input 

reference with gradient 0.05. 

 

 
Figure A.12 Error depth position of input-output feedback linearization controller in 

ramp input reference with gradient 0.05. 
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Figure A.13 Response of linearized approximation controller in triangle input 

reference (range operation 5-50 m). 

 

 
Figure A.14 Error depth position of linearized approximation controller in triangle 

input reference (range operation 5-50 m). 
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Figure A.15 Response of state-space feedback linearization controller in triangle input 

reference (range operation 5-50 m). 

 

 
Figure A.16 Error depth position of state-space feedback linearization controller in 

triangle input reference (range operation 5-50 m). 
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Figure A.17 Response of input-output feedback linearization controller in triangle 

input reference (range operation 5-50 m). 
 

 
Figure A.18 Error depth position of input-output feedback linearization controller in 

triangle input reference (range operation 5-50 m). 
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Figure A.19 Response of linearized approximation controller in sinus input reference 

(range operation 0-50 m). 

 

 
Figure A.20 Error depth position of linearized approximation controller in sinus input 

reference (range operation 0-50 m). 
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Figure A.21 Response of state-space feedback linearization controller in sinus input 

reference (range operation 0-50 m). 

 

 
Figure A.22 Error of state-space feedback linearization controller in sinus input 

reference (range operation 0-50 m). 
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Figure A.23 Response of input-output feedback linearization controller in sinus input 

reference (range operation 0-50 m). 

 

 
Figure A.24 Error depth position of input-output feedback linearization controller in 

sinus input reference (range operation 0-50 m). 
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Table A.3 Steady state error and power usage for trajectory input. 

Input reference/ 
trajectory 

Linearized 
approximation 

State-space feedback 
linearization 

Input-output feedback 
linearization 

 RMSE Power usage RMSE Power usage RMSE Power usage
 (m) (Watt second) (m) (Watt second) (m) (Watt second)

Ramp 1.005 0.081 3.004 0.312 0.172 11.032 
Triangle 2.711 1661.95 6.436 1447.597 1.853 3739.012 

Sinus 3.935 3545.082 8.326 3663.743 0.024 3825.309 
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