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ABSTRACT

A mechanism of variable ballast system which manipulates volume of water in the
ballast tank is designed and modeled in this thesis. The mechanism is designed to
make water always fulfill space in the variable ballast tank with varying volume.
Therefore the internal dynamic that is caused by the movement of water in the tank
can be avoided. The variable ballast is utilized for vertical motion actuator of a
spherical URV by controlling the difference between buoyant force and gravitational

force. In this thesis, the VBS can change the weight of URV body, AW,in range
+9.96 N in order to make URV in positive buoyancy, neutral buoyancy or negative

buoyancy. The buoyancy of URV is considered as a constant value. By using this

mechanism, then the URV can move in vertical plane in the range of velocity

+1.019 ms_l.

Two approaches, i.e. linearized approximation and nonlinear approach, are presented
to design the controller of the dynamic model which behaves as nonlinear system. In
linearized approximation, the nonlinear model is linearized about the equilibrium
point by using Taylor series. Since the linearized model is controllable then a linear
control strategy is applied. In order to analyze the stability of the system, Lyapunov’s
linearization method is used. Since the eigenvalues of the linearized model is zero,

A =0, then the Lyapunov’s linearization method cannot determine whether the

nonlinear system is stable or unstable. The second method of Lyapunov stability
analysis, i.e. Lyapunov direct method, is also applied. By using this method, it can be
known that the equilibrium point of this depth positioning system is unstable,
furthermore, nonlinear approach, i.e. state-space feedback linearization and input-

output feedback linearization, are also used to stabilize this system.

These control strategies are then simulated in MATLAB/Simulink. All control
strategies designed in this thesis can asymptotically stabilize the equilibrium point, for

t >, e—>0. The linearized approximation approach is the fastest to reach steady
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state compare to the others, but it consumes more power. For tracking a trajectory,
input-output linearization gives better performance compare to the others by resulting

smallest error. If the change of trajectory is constant, then error of input-output

feedback linearization converges to zero. For linearized approach and state-space

feedback linearization, if change of input is 0.1ms~then absolute error converge to

2.408m and 6.082m respectively, and if change input is 0.2 ms™! then absolute

error converge to 6.361m and 12.163m respectively.



ABSTRAK

Suatu mekanisma sistem Variable ballast yang memanipulasi isipadu air dalam tangki
balast direkabentuk dan dimodelkan dalam tesis ini. Mekanisma direkabentuk agar air
sentiasa memenuhi ruang dalam tangki variable balast dengan isipadu yang pelbagai.
Oleh itu, dinamik dalaman yang disebabkan oleh pergerakkan air dalam tangki dapat
dielakkan. Variable ballast digunakan sebagai penggerak secara menegak spherical
URV dengan mengawal perbezaan diantara daya mengapung dan daya graviti. Dalam
tesis ini, VBS dapat mengubah berat badan URV, AW, dalam julat £9.96 N untuk

menjadikan URV berada dalam keadaan keapungan positif, keapungan neutral atau
keapungan negatif. Keapungan URV dianggap sebagai suatu nilai tetap. Dengan

menggunakan mekanisma ini, maka URV dapat bergerak dalam keadaan rata menegak

dalam julat halaju +1.019ms 2.

Dua pendekatan, iaitu penganggaran linear dan pendekatan bukan-linear dibentangkan
untuk merekabentuk pengawal model dinamik yang berfungsi sebagai sistem bukan-
linear. Dalam penganggaran linear, model bukan-linear dilinearkan sebesar titik
keseimbangan dengan menggunakan Taylor series. Supaya model linear mudah
dikawal, maka strategi kawalan linear diaplikasikan. Untuk menganalisa kestabilan
sistem, kaedah linear Lyapunov turut digunakan. Disebabkan eigenvalues model

linear adalah kosong, 4 =0, maka kaedah linear Lyapunov tidak dapat menentukan

sama ada sistem bukan-linear adalah stabil ataupun tidak. Kaedah kedua analisis
kestabilan Lyapunov iaitu Lyapunov direct method juga turut diaplikasikan. Dengan
menggunakan kaedah ini, dapat diketahui bahawa titik keseimbangan sistem pengesan
kedudukan ini adalah tidak stabil, seterusnya pendekatan bukan-linear, seperti state-
space feedback linearization dan input-output feedback linearization juga turut

digunakan untuk menstabilkan sistem ini.

Strategi kawalan ini disimulasikan menggunakan MATLAB/Simulink. Semua strategi

kawalan yang direkabentuk dalam tesis ini dapat menstabilkan titik keseimbangannya
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secara asimptot, untuk ¢t — o, e — 0. Pendekatan penganggaran linear merupakan
yang tercepat untuk menjangkau keadaan tegap dibandingkan dengan yang lainnya,
namun ianya menggunakan kuasa yang lebih besar. Untuk mengesan trajektori, input-
output feedback linearization memberi persembahan yang lebih baik dibandingkan
dengan yang lainnya dengan keputusan ralat yang paling kecil. Jika perubahan
trajektori adalah tetap, maka ralat input-output feedback linearization bertumpu
kepada kosong. Untuk pendekatan linear dan state-space feedback linearization, jika

perubahan input ialah 0.1ms *maka ralat mutlak bertumpu masing-masing kepada

2.408m dan 6.082m, dan jika perubahan input ialah 0.2 ms ™ maka ralat mutlak

bertumpu masing-masing kepada 6.361m dan 12.163m.
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Chapter 1: Introduction 1

CHAPTER 1

INTRODUCTION

1.1 Underwater Robot Vehicle (URV)

Underwater robot vehicle has been used in many tasks in underwater environment,
such as for inspection and maintenance purpose of underwater cable and pipelines
network [1-3] and also used for gathering bathymetry data for oceanographic
research [4]. The URV is utilized to perform task in depth where it would be too
hazardous or impractical for human to do. The kind of task that is performed by URV
will decide what shape of URV’s body/hull is suitable. For surveying where URV
must travel in long distance, torpedo-like or airplane-like is suitable. By having this
shape, the URV will have streamline body so that it can decrease the drag force.
Hence, the URV will be able to move in high speed. If the URV is utilized for
observation therefore it does not need to move in long distance with high speed, the
hull in box frame or spherical shape is suitable, e.g. JHUROV [5] and ODIN [6].

In this thesis, a spherical shape of URV’s hull is used. The spherical shape is chosen
because it has axially symmetric and provides uniform drag in any directions of its
movement, therefore it is easy to develop the algorithm to control motion of the URV.
By this advantage, a spherical underwater robot vehicle is suitable for test-bed. In full
DOF, URV has 6 degree of freedom in its motions those are surge, sway, heave, roll,
yaw, and pitch. This thesis focuses on heave motion that is movement of URV in

vertical plane.

Currently, some mechanisms for motion actuator are developed. C. Watts et al. [7]
developed propulsion by mimicking tail of salmon fish. By using this mechanism they
want to increase the propulsive efficiency and maneuverability, thus will increase
duration and operation in enclosed environments. Joshua G. Graver [8] and Jui Min
Tun et al. [9] developed glider. This URV glides in the water by utilizing the change
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of buoyant force and the position of centre of mass of its hull. They used
variable ballast mechanism to change the buoyant force.

The kind of the actuators used in an URV depends upon the task want to be
accomplished by the URV. It also depends on the location where it is operated. The
common actuator used as propulsion is thruster. If the URV uses thruster as motion
actuator, the zero buoyancy or neutral buoyancy is needed. Zero buoyancy or neutral
buoyancy is a condition where the gravitational force is equal to the buoyant force.
With neutral buoyancy, if there is no propulsion, the URV will not move and keep
staying at its position. The buoyant force depends on the density of the water, so that
it is not easy to make URV in neutral buoyancy if the mass of URV is fixed because
the density of the water sometime is different from one place to another place. The
diversity of water density is caused by the difference of material dissolved in the
water. The availability of variable buoyancy or variable ballast can be used for
adjusting the URV’s buoyant force thus the neutral buoyancy can be kept. Besides
that function, the variable ballast also can be used as motion actuator in vertical
plane. By using variable ballast as motion actuator in vertical plane, the power used
to supply the propeller can be reduced, because we can replace the usage of propeller
as vertical motion actuator by this variable ballast. Therefore, the usage of power
supply can be more efficient. In this thesis, the development of variable ballast
mechanism is performed. This variable ballast is utilized as motion actuator of a

spherical underwater robot vehicle in vertical plane.

1.2 Variable Ballast System (VBS)

The variable ballast idea is adopted from Archimedes principle, “When a solid body
is partially or completely immersed in water, the apparent loss in weight will be equal
to the weight of the displaced liquid”. So, if the specific mass of URV is equal to
specific mass of water, the URV will drift in the water which is called
neutral buoyancy. If specific mass of URV is bigger than specific mass of the water,

the URV will submerge which is called negative buoyancy and if specific mass of
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URV is less than specific mass of water, the URV will emerge which is known as
positive buoyancy. By controlling specific mass of URV, we can control motion of

URV in vertical direction in order to control depth position of URV.

Some mechanisms of VBS have been developed by researchers.
Koji Shibuya et al. [10] developed variable buoyancy system based on the spermaceti
oil hypothesis. Sperm whales have a spermaceti organ in their head that is filled with
spermaceti oil. Spermaceti oil is high quality oil and has been used as material for
candles, lubricant, and so on. There is a hypothesis about spermaceti oil of sperm
whales, the sperm whales melt and congeal their spermaceti oil and change the
volume of the oil to control their own buoyancy. This hypothesis appears suitable for
the underwater robot because no materials for the ballast, such as sea water taken in at
another place and iron, are discarded in the sea. They designed a mechanism to melt
the material by heating it inside a chamber (syringe) thus the volume can be
increased, hence the buoyancy also increased. In this mechanism, it needs a long time
to heat the material so that the change of buoyancy is slow. K. S. Wasserman et al.
[11], M. Xu and S. M. Smith [12] utilized variable ballast system in their URV. They
designed mechanism to fill and release water from ballast tank by using air pressure
due to control URV’s buoyancy. To release water from the ballast tank, the high
pressure air must be pumped to the ballast tank thus the water pushed out from the
tank. To fill water into the tank, the air must be released from the tank thus the water
will enter the tank freely. In this mechanism, high pressure air compressor must be
available. So, the duration and the area where the URV is operated will be limited by
the pressure of the air in the compressor. J. S. Riedel et al. [13] and M. Worall et al.
[14] designed a variable ballast system for deep-ocean. They exploit the water as
ballast to control the weight of the URV. They used hydraulic pump to control

amount of the water in the ballast tank in order to change the weight of the URV.

1.3 Problem Statement

From the existing variable ballast design explained at section 1.2, the dimension and
volume of the ballast tank that can be filled by the water is fixed so that if the amount



Chapter 1: Introduction 4

of water in the tank is not maximum, there will be an empty space. The availability of
empty space in the ballast tank will make water can move freely around this space. If
motion of the URV is unstable, this condition will result an internal dynamic and it is
not easy to control it. Therefore, in this thesis, a mechanism of variable ballast system
with variable volume of ballast tank is designed. Because of the variably volume of
ballast tank, there will be no empty space in the ballast tank. Hence, the internal

dynamic that is caused by the motion of water in the ballast tank can be revoked.

1.4 Objectives of Thesis

In this thesis we aim to:
1. Design a mechanism of variable ballast system.
2. Derive mathematical model of variable ballast system.
3. Design the controller for depth position of the spherical underwater robot

vehicle.

1.5 Scope of Thesis

In this thesis, a mechanism of variable ballast system is designed and used as motion
actuator of a spherical URV in vertical plane. The mathematical model of the VBS
and vertical motion equation of a spherical URV are presented in this thesis. These
models are derived based on the physical laws involved in this system. The variable
ballast is used to position the URV in a particular depth. The depth control system is
developed based on the derived model. Since the dynamic of the spherical URV

behaves as nonlinear system, then the nonlinear controller is designed.

The dynamic model of the URV and the controller design are simulated by using
Simulink/MATLAB. This simulations use some ideal parameters where the density of

the water, air pressure and temperature at water surface are constant.
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1.6 Outline of Thesis

This thesis is organized as follow:

Chapter 2 explains some existing variable ballast mechanisms. Review of some

previous controller designs are also presented in this chapter.

Chapter 3 emphasizes the modeling of a spherical underwater robot vehicle and
variable ballast system which is used as vertical motion actuator. The kinematic and
dynamic model of depth positioning of a spherical URV are obtained by considering
the physical laws involve in this system. This chapter also presents detail mechanism
of the variable ballast system and describes detail of the used parts and design of the

mechanism.

Chapter 4 defines the design of the controllers by using linearized approximation
approach and nonlinear approach. The nonlinear model for depth positioning of the
spherical URV s linearized using Taylor series expansion at equilibrium point.
Nonlinear control approach applied in this system by using feedback linearization. As
SISO nonlinear system, there are two types of feedback linearization which are state-
space linearization and input-output linearization. Some properties of the control

system such as controllability, observability and stability are analyzed.

Chapter 5 presents the simulation of dynamic model and controller design by using
Simulink/MATLAB. Performances of these controllers are discussed and compared
each others in this chapter. Some input model such as step input, ramp and trajectory
are tested to system in order to know the responses and performances of the

controller.

Chapter 6 is conclusions. The contribution of this thesis and the future works are also

presented in this chapter.
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CHAPTER 2

LITERATURE REVIEW

Variable ballast system is utilized in URV system for controlling the buoyancy of the
URV. This mechanism is needed because the density of the water is uncertain from
one place to other place, so that the buoyancy of the URV also becomes uncertain.
Some existing VBS mechanisms are presented in this chapter. This VBS also been
utilized for vertical motion actuator of URV. Some control designs applied in URV

system are also presented in this chapter.

2.1 Introduction

Mission in sending of an underwater robot vehicle at certain position or known as
positioning system needs some motion actuators such as thruster that is used for
propelling the motion of the URV, fin or rudder that is used for steering the direction
of the URV or variable ballast system that is used for maintaining zero buoyancy
condition. If a URV with single thruster and stern planes want to reach a certain
depth, it should drive the thruster and trim the angle of stern planes. By using these
actuators, the URV does not have the capability to move in vertical plane directly
without making a maneuver. If others thrusters are added to the URV direct vertically,
then the URV will have capability to move in vertical plane directly by using these

thrusters.

If URV uses thrusters to propel its motion, then a continuous energy must be supplied
to the thrusters. This condition is not efficient in terms of energy usage. Therefore,
other mechanism that can conserve the usage of energy is needed, such as variable
buoyancy. Since the function of variable ballast is for controlling the buoyancy, then
it can be used as vertical motion actuator by making the buoyancy of the URV into
negative buoyancy, positive buoyancy or neutral buoyancy. Hence the usage of

thrusters as vertical motion actuator can be replaced. By using variable ballast as
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vertical motion actuator, then the usage of energy will be reduced because the URV
does not need to supply energy to this actuator continuously [15].

2.2 Variable Ballast Mechanism

Variable ballast mechanism which is applied in URV system can be used for
controlling the difference between buoyancy and gravitational force by controlling the
density of URV’s body. Some mechanisms of variable ballast were proposed by
researchers [10-14, 16-22]. These mechanisms change the difference between
buoyancy and gravitational force by expelling and infusing water from and into the
tank.

A mechanism mimicking a phenomenon of sperm whales was designed by
K. Shibuya et al. [10]. In their VBS design, they used materials which have similar
nature as spermaceti oil of sperm whales. They put the material in the syringes which

are arranged inside heater as shown in Figure 2.1.

Acryl domes Acryl cylinder

Figure 2.1 VBS design by mimicking phenomenon of sperm whales [10].

By heating the syringes, the material inside will be melt and its volume will expand so
that the syringes’ pistons will be pushed out. Hence, the buoyancy of URV will be
increased. If URV has positive buoyancy, then it will move upward. In order to
decrease the buoyancy, the temperature of the material should be lowered so that the

material inside syringes will congest and the volume will be decreased. Springs which
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are coupled to the syringes’ pistons will attract the pistons to clog the material inside.
By decreasing the volume of material inside the syringes, then the buoyancy will be
decreased. If the buoyancy is negative, then the URV will move downward. By using
this mechanism, there will be no material to be expelled to the environment such as
iron or other material. Therefore, this mechanism will not pollute the underwater
environment. In this mechanism, it needs a long duration to melt or congest the
material so that it is looked impossible to change the buoyancy in fast response. If the
buoyancy should be held at a particular value, then temperature must be held at
certain value. It means that URV must supply power to the heater continuously.
Therefore, the URV should provide more energy to this mechanism especially if the

URYV is operated for a long duration.

R. E. Davis et al. [16], C. C. Eriksen et al. [17], and C. Waldmann [18] developed
variable ballast mechanism by exploiting the difference of density between oil and
water. It is well known that density of water is bigger than density of oil. In their VBS
mechanism, oil is pumped from internal reservoir into external bladder in order to
increase the buoyancy or pump back the oil from external bladder into internal
reservoir in order to decrease the buoyancy by using hydro pump and control valve as
shown in Figure 2.2. The change of buoyancy depends upon the amount of oil

pumped into bladder.

FROM INTERNAL
RESERVOIR

MOTOR

WOBBLE PLATE

INLET CHANNEL
SELF-PRIMING
CHANNEL —

TO INTERNAL
RESERVOIR

LATCHING VALVE

ONE-WAY "

CHECK VALVE

DESCEMDING STATE

/" ",
\—><_ ASCENDING STATE

Figure 2.2 VBS mechanism by exploiting difference of density between oil and
water [16].
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In this VBS design, it is not easy to sense the change of buoyancy because it is done
by sensing amount of oil pumped into bladed or pumped back into internal reservoir.
If volume of internal reservoir is constant then if oil does not fully fill the reservoir,
an empty space that is not filled by the oil will exist. This condition can make the oil
move freely in the reservoir. Hence, it can raise internal dynamic of the URV system
which is not easy to be controlled. It can disturb the stability of the URV.

Mechanism of variable ballast by exploiting high pressure air compressor was
developed in [11, 12, 19]. In this VBS mechanism, high pressure air compressor must
be provided. In order to change the buoyancy, the air must be released from
compressor to increase the buoyancy or released from the ballast tank to decrease the

buoyancy as illustrated in Figure 2.3.

Txgurface war€ N\ sealevd

A2
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! A3
Compressed air tank VB tank

Figure 2.3 Structure of VBS operated by high pressure air compressor [12].

If the air is released from the compressor to the ballast tank then water will be pushed
out from the tank. Since density of air is lower than water then the buoyancy will be
increased. In order to decrease the buoyancy, the air must be released from the ballast
tank by opening the control valve so that the water can enter the tank. Hence the
increment of water in the ballast tank will decrease the buoyancy. In this mechanism
the duration of the operation depend on the availability of high pressure air
compressor. The pressure of air compressor should be higher than water pressure so
that it can push the water from then in order to increase buoyancy. If at certain depth,

the pressure of water is higher than air compressor, then the buoyancy cannot be
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increased. Hence, if the URV does not have other vertical propeller then it will not be
able to move to surface. In this mechanism also if the water does not fully fill the
ballast tank, then empty space will be exist. Hence, this condition can raise internal

dynamic which is not easy to be controlled.

Other mechanism of VBS system which utilized hydraulic system was designed in
[13, 14, 20]. They manipulated amount of water in a fixed volume of ballast in order
to control the buoyancy of the URV. Hydraulic pump was utilized to pump the water
from ambient to ballast tank in order to decrease the buoyancy or pump the water
from ballast tank to ambient in order to increase the buoyancy as illustrated in
Figure 2.4.

—-—-—-— Presgure howsing - — — — —— = ——mmm =
: 3 P
l_ L= _____11 Buoyancy vessel W1 51 52 SW2
I"l\ | | d_Jl_ _l_l.-
4 B 2l C
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E[ W r '!"_1 -
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Figure 2.4 VBS mechanism by utilizing hydraulic system [14].

Since this mechanism utilized a fixed volume of ballast system, then internal dynamic
can occur if the water does not fully fill the ballast tank which is uneasy to be
controlled. Therefore, it is hard to design the controller in order to stabilize this

system.

A variable ballast mechanism which utilized variable ballast tank was applied in [21].

This mechanism utilized a cylinder as ballast tank. Base of this cylinder is movable
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and the other is opened therefore this cylinder directly contacted to the ambient.
Hence, this cylinder always full with water. By moving the movable base, then the
volume of cylinder can be changed, hence the volume of water in the cylinder also be
changed, therefore the buoyancy also be changed. The movable base is moved by
motor which is coupled through screw. In this mechanism, the water always fully fill
the cylinder tank even the volume is different. Therefore, the internal dynamic that
occur in VBS mechanism with fixed ballast tank can be avoided. This VBS
mechanism was also applied in [22]. In these papers, mathematical model of VBS
mechanism was not presented therefore it will not be easy to customize the
specification of the VBS mechanism in order to apply to URV with different design.
The availability of mathematical model will ease the designer to simulate the system

in computer software in order to design an optimal controller.

2.3 Controller Design

Designs of the controller in URV system have been investigated by many researchers
[23-33]. These controllers were designed to improve performance of the URV in
order to fulfill a certain task. G. Antonelli et al. [23] proposed a controller for tracking
the position and attitude of an URV with limited feedback measured by the sensor.
They combined controller and observer to track desired position and attitude. The
observer was used to estimate unmeasured feedback that was velocity. K. Y. Pettersen
and O. Egeland [24] designed position and attitude control of an under-actuated URV.
They wanted to reduce total of the actuators were used in the URV system by keep
considering the performance of the system. In designing the controller, the cost that is
needed to build this system must be considered. If it is possible, the usage of sensors
and actuators should be reduced but still the URV can fulfill the desired task.

The nonlinearity of the URV system becomes opportunity for the researchers to
develop a good controller. Many nonlinear control systems were applied in URV
control design. P. A. DeBitetto [25], E. S. Ammeen and G. O. Beale [26] developed
fuzzy logic controller to control depth position of an Underwater Vehicle (UV). This

UV utilized variable ballast as actuator for depth positioning system. The variable
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ballast mechanism was utilized in [25] used pump to control amount of water in the
ballast tank. This fuzzy logic controller was used to command the pump in order to
control the depth position of the UV. T. Chatchanayuenyong and M. Parnichkun [27]
designed a neural network based-time sliding mode control to control a 6 DOF
Autonomous Underwater Vehicle (AUV). Sliding mode control (SMC) is a type of
variable structure control (VSC) that is as a combination of subsystems in which each
has a fixed control structure and effective at particular region of system behavior.
They used neural network to optimize the period of switching for each subsystems.
Fuzzy logic controller or neural network controller was designed by neglecting the
dynamic model of the system.

The existence of mathematical model of a system is important in designing the
controller. By having a good mathematical model, an effective controller can be
designed, and computer simulation can be built to test the performance of the
controller. In [23, 28, 29], controller of the URV system was developed based upon
mathematical model. In these papers, they designed an effective controller by
combining controller and observer. They used observer to estimate the unmeasured
variable that involved in the model.

Once mathematical model of system is obtained, some controllers can be designed
and tested in computer simulation. Since the URV is a nonlinear system, a simple
controller can be designed by linearizing the model of URV by using Taylor series
expansion. This method linearizes the nonlinear model about steady condition or the
equilibrium point [30]. Then if the linearized model is controllable, a linear feedback
controller law can be design based upon this linearized model. N. E. Leonard and
J. G. Graver [31] used this linearization method to design the controller of
an underwater glider. They linearized the nonlinear underwater glider model about
a steady glide path. Since the linearized model was controllable then the linear
controller was designed. They applied LQR (Linear Quadratic Regulator) as
a standard linear optimal control design method to control an underwater glider based

on the linearized model.
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Sometimes, the linearized model of a nonlinear system is uncontrollable so that
a linear controller cannot be applied to control this system. Then a nonlinear
controller must be utilized. Feedback linearization is one of nonlinear controller
method. I. Schjglberg and T. I. Fossen [32], A. Chellabi and M. Nahon [33] applied
this method to control motion of an underwater vehicle. They designed the controller
to track a trajectory based on kinematic and dynamic model of the underwater vehicle.
Therefore, the feedback linearization method is known as model-based nonlinear

controller.

2.4 Summary

Variable ballast mechanism is utilized to control the difference between buoyancy and
gravitational force of URV system. Therefore, it is possible to make the URV in zero
buoyancy, negative buoyancy or positive buoyancy condition. Some existing variable
ballast mechanisms were presented in this chapter. In these mechanisms, if the VBS
utilize fixed ballast tank, then internal dynamic can occur when water does not fully
fill the tank. The internal dynamic is not easy to be controlled and can disturb the
stability of the URV. Therefore, VBS mechanism with variable volume of tank is
needed and presented in the next chapter. In this chapter, reviews of some previous
controller designs are also presented. These controllers involve non model based
controller and model based controller. Model based controller can be used if the
model of the system is provided. Therefore, in the next chapter, the dynamic model of
a spherical underwater robot vehicle and its motion actuator is derived. Hence, the

computer simulation can be built.
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CHAPTER 3

MODELING OF A SPHERICAL UNDERWATER ROBOT VEHICLE

A spherical shape of a submerged body with closed frame provides uniform drag at all
direction along its surface. In this chapter, the shape of a spherical URV that is used in
this thesis is presented. The vertical motion equation is also derived. The forces that
affect the dynamics of the system are also described. In order to control vertical
motion due to control depth position of the URV, a variable ballast mechanism is
used. This mechanism controls the weight of URV’s body. This chapter also presents
detail mechanism of the variable ballast system and describes detail of the used parts
and design of the mechanism. Kinematic and dynamic model of the variable ballast
system are also derived. In order to model this system some factors affecting the
system should be considered. At the beginning of this chapter, some factors affecting

to the URV and variable ballast system will be presented.

3.1 Background Theory

Commonly, the controller of the URV is designed to send the URV into a particular
positioning or to maintain the position of the URV. In other words, it is called
positioning system. The positioning system of URV involves two kinds of position
those are horizontal and vertical position. In order to determine position of the URV,
the coordinate system of the URV must be considered. In this sub section, the
common coordinate system used in underwater vehicle system is presented. Then to
maintain the position of an URV, a good control system must be designed. An
effective control system can be built if the mathematical model and simulation is well
established. In order to model the URV system, some factors affect this system must
be considered, such as gravitational force, buoyancy, hydrodynamic damping, added

mass and hydrostatic pressure.
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3.1.1 Coordinate System of URV

Normally, the underwater vehicle system has six degree of freedom (DOF), including

spatial coordinate x, y, and z ; and Euler angles ¢, 8, and y . The illustration is shown

in Figure 3.1.

z (heave)

Figure 3.1 Coordinate system of URV and DOFs.

Surge, sway and heave are translation motion in x, y, and z coordinate space
respectively and roll, pitch and yaw are rotation motion in x, y,and z axis

respectively. In order to meet the full six degrees of freedom, the URV must be
equipped with the actuators that can drive the URV in these six motions. By having
six DOF, the URV will have high maneuverability. The total degree of freedom of the
URV can be less than six, it depends on the application or task that want to be
performed by the URV. Therefore it can save usage of the resources like power
supply, sensor and also propeller and it will cause the time operation of the URV be
longer.
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3.1.2 Factors Affecting Submerged Body

The URV can be analogous to submerged body in the water. In order to derive
the model of the URV, some factors that affect a submerged body in water must be
considered, including gravitational force, buoyancy, hydrodynamic damping, added-
mass and hydrostatic pressure. Gravitational force and buoyancy are two important
factors that must be considered in designing an URV. This two factors influence the
stability of the URV besides external force.

3.1.2.1 Gravitational Force and Buoyancy

Every object on the earth is affected by the gravitational force or weight, W.
The magnitude of the gravitational force depends on the mass of the object and
gravitational acceleration at the object position. Direction of the gravitational force
directs to the center of the earth. This force acts at the centre of mass of the object or
the body.

URV as a submerged body in the water, besides affected by gravitational force, it is
also affected by buoyancy. The buoyant force, Fp, is a vertical force which acts at

a submerged body in a fluid, and its magnitude is equal to the weight of the fluid
displaced by the body. This is known as Archimedes’ principle. The buoyant force
acts at the centre of mass of the displaced fluid.

The relation between gravitational force and buoyant force of a submerged body is
illustrated in Figure 3.2. If the weight of the submerged body is less than buoyant
force then the body will move upward, namely positive buoyancy. If the weight is
equal to the buoyant force then the body will drift in the fluid, namely neutral
buoyancy or zero buoyancy. If the weight is bigger than buoyant force then the body

will move downward, namely negative buoyancy.
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Figure 3.2 Relation of gravitational force and buoyant force.

3.1.2.2 Hydrodynamic damping

A moving body in a fluid will experience a force which is caused by the flow of fluid
around the body. This force is resultant of two kinds of forces due to relative motion

between the body and the fluid. These forces consist of [34]:

- The component of force in the direction of flow on a submerged body which is
called the drag force.
- The component of force at right angles to the direction of flow which is called

lift force.

If flow of the fluid approaches the body along the axis of symmetry then the force
acting on the body is only the drag force, the lift force is equal to zero. Therefore if
the fluid flows on a sphere body, which has symmetry axis along its surface, the only
force exerts on the body is drag force.

If the fluid is water with density p,,, then for a sphere submerged body moving at

a uniform velocity v, the drag force, Fp, exerts on the body can be expressed as
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1
Fp=5CpAp PV, (3.1)

where Cp and A, are drag coefficient and projected area of the body respectively.

The drag coefficient is obtained based on the value of Reynolds number, Re, which

depends on the relative velocity of the flow, shape of the body and viscosity of the
fluid [34]. The Reynolds number of a sphere submerged body in the water can be
obtained from

vD
Re=w TR

y7,

(3.2)

where Dy, and u are diameter of the sphere body and dynamic viscosity of the

water respectively. If the Reynolds number of the sphere body is known then the drag

coefficient can be obtained based on the condition stated below [34]:

(1) For Re<0.2: When the velocity of flow/body is very small or fluid is very
viscous such that the Reynolds number is very small as low as 0.2. In this
case, Stokes analyzed theoretically the flow around a sphere under very low
velocities. Stokes found that total drag coefficient can be calculated by:

_ 24

Cn =22
D Re

(3.3)

(i) For 0.2< Re<5: Oseen made an improvement to the Stokes’ solution by

partly taking into account the effect of inertial terms. He found that

24 3
Cp=—I|1+ : 34
D Re[ 16RJ (3.4)
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(iif) For 5< Re <1000: The value of Cp, is equal to 0.4.
(iv) For 1000 < Re <100000: The value of Cp in this range is more or less

independent of Reynolds number, and may be taken as 0.5.

(v) For Re>100000: Value of Cp, is approximately equal to 0.2.

Because of the availability of the drag force, if the body with constant dimension,
shape and mass, is free fall in the water, at a certain time it will reach a constant

velocity which is known as terminal velocity.

3.1.2.3 Added Mass

When a fix body moves in the liquid with unsteady velocity, acceleration or
deceleration will be exist, and an additional effect (force) on the structure will exist.
Therefore if a force F is applied to the submerged body in the water with mass m,,
the force will not just accelerate the body but also the water surrounding this body.
The mass of the water which is accelerated along with the body is known as added

mass, m,. So, the total force needed to accelerate the body with the mass m; in

acceleration a can be expressed as

F=(m;+m,)a (3.5)

The total added mass of an accelerated body depends on the shape of the submerged
body. For a spherical submerged body in the water, the total added mass can be
calculated by [34]

_1 3
m, —EﬂpWbe , (3.6)
where p,, and Dyg, are density of water and diameter of the spherical body

respectively.



Chapter 3: Modeling of a Spherical Underwater Robot Vehicle 20

3.1.2.4 Hydrostatic Pressure

Hydrostatic pressure is a pressure exerted by a liquid at rest condition. Every object
which is immersed in the liquid will be affected by this pressure. The intensity of this
pressure depends on the depth position of the object and also the specific weight of
the liquid. If the object is immersed in the water, then the intensity of the hydrostatic

pressure, P, can be calculated by

Py =pwgz, (3.7)

where g and z are gravitational acceleration and depth position of the object

respectively.

If the immersed object is horizontally flat with a surface area 4, then a force on the

surface of the immersed object will be produced by the hydrostatic pressure which is

expressed as

Fig :PhsA

3.8
=pwgzA (38)

3.1.2.5 Stability

The stability position of a static object in the static water is affected by the difference
between the weight and buoyant force of the object. For example, if the buoyant force
is bigger than the weight, the object will float at the water surface. If this object is
pushed down and released, then buoyant force will against the weight and will push
the object float again at surface. Therefore this vertical position is stable. But if the
buoyant force is equal to the weight, when we give a certain force vertically, the body
will move for awhile but cannot comeback to the original position. When the object is
moving, the drag force opposes that force so that the object will be stopped. In this
condition the vertical position of the object is unstable.
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The position of center of mass, C,,, and center of buoyancy, Cp, is also affected by

the rotational stability of the object in the water. In equilibrium condition, the position
of center of mass and center of buoyancy of a static object in the water is vertically
inline. If position of center of mass is below center of buoyancy (bottom heavy), then
if a force is exerted to the object horizontally then it makes the angle position of the

object change which is illustrated in Figure 3.3.

If C;; and Cp are not vertically inline, then this condition will produce a righting

moment, RM , which is obtained from [35]
1 :
RM :Ed(FB +W)sin A4, (3.9)

where d is distance between C,, and Cpg, and A, is angle changing which is

illustrated in Figure 3.4.
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Figure 3.3 Position of Cz and C,, in stable condition.
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Fpg

H

Figure 3.4 Righting moment due to changing of angle position.

This righting moment will drive the object comeback to the original angel position

thus C,, and Cp are vertically inline. Therefore this configuration is stable.

If the object has internal dynamic thus can change position of center of mass, then it

can make unstable condition. This condition is illustrated in Figure 3.5.

f"ﬁ f"ﬁ Fp
oo |
—> ¥ —

i oM

|

H

Figure 3.5 Unstable condition.
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3.2 Design of URV

The shape of spherical URV used in this thesis is shown in Figure 3.6. As a sphere
body, the location of center of buoyancy, Cp, of URV’s body is at the center of
sphere or the intersection point between vertical and horizontal diameter. The variable
ballast tank is located at the top inside the hull. Location of the tank is adjusted so that
the position of center of mass, C,,, is aligned vertically with Cg. Mechanism of the
variable ballast and detail of its parts are explained in section 3.4. At the upper side of
the hull above the tank, there are some holes as the way of water to enter into and exit
from the tank. The space below the movable plate inside the hull is waterproofed so

that the water cannot enter this space.

{a) Top view (b) Side wiew
1. holes for the way of water 1n and 4. fized ballast.
out of the tank. 5. battery.
2. vartable ballast tank. . cpu and electronics components.

3. mowvable plate.
Figure 3.6 Shape of spherical URV and its parts.
In order to make the URV stable in equilibrium condition, the hull of URV must be

designed with bottom heavy that is the center of mass is located at under of the
equator or at underside hemisphere. To make the hull in bottom heavy, fixed ballast is
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located at the bottom of the hull. The location of C;, of the hull must be aligned
vertically with Cp of the hull thus in equilibrium condition, the position of the ballast

tank is at the top of the URV’s hull exactly. This condition is important when the
URYV is provided with horizontal propulsion in order to give ability to the URV to

move in horizontal plane.

The diameter of URV used in this thesis is chosen as 35cm. Therefore, in order to

determine the dimension of the ballast tank we have to consider the dimension of
URV’s hull, batteries, and other electronics devices used in the URV system.

Parameters of the URV and VBS are described in section 3.5.

3.3 Vertical Motion Equations

Since the URV moves in vertical plane without any propeller, so it just depends on the
gravitational force, buoyant force and other forces that appear because of its motion.
By assuming there are no external forces that can disturb the motion of URV, the

forces acting on the URV can be shown in Figure 3.7. Let Fz is buoyant force, W is
gravitational force, Fp is drag force, f, is force that appear because of the
availability of the acceleration, m, is added mass, and m;, is total mass of the URV’s

body which is constant then forces equation act at URV are given as [34]

W:FB-l-FD (310)
and,

W=mg, (3.11.9)

Fp=pJVpg. (3.11.b)

Fp =sign(v)%CDAfprV2. (3.11.c)

The direction of gravitational force and buoyant force are opposite to each other when

W is downward and F is upward. From Eqg. 3.11.c, it can be seen that the direction
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of the drag force depends upon the direction of the velocity. If the URV moves
downward, the velocity is positive so that the drag force is positive and it direction is

upward. The drag force and velocity are negative if the URV moves upward.

Figure 3.7 Forces acting at URV’s body.

Substituting Eq. 3.11 into Eq. 3.10, then the force equation can be represented as
: 1 2
m;g :pWVfbg+szgn(V)ECDAfprV . (3.12)

Since dimension of URV, V4 and Ag,, are constant, then the velocity v, is also

constant. This velocity is known as terminal velocity, which is expressed as

2 _
V=Sign(mtngVfbg)\/§ (mé‘iA;V;Vﬁg)|, (3.13.3)
w
V] = |2(m’g_pWVfbg)|. (3.13.b)
‘ CpAppy ‘

From Eg. 3.13.a, it can be seen that the vertical motion of the URV depends on the

gravitational force and the buoyant force. If W > Fjp, then the URV moves downward

and it will move upward if W < Fg. If W = Fp, the URV will stay at its position.
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Since volume of URV’s hull, V4,, g, and p,, are constant, the buoyant force is also

constant. So, the motion of URV depends on the total mass of URV’s body, m,. By

controlling m;, , the vertical motion of the URV can be controlled.

Since equilibrium condition is occurred when W = Fp, then v=0 and m, =my

which is initial total mass of the URV. If the total mass changes as much as Am from

the initial total mass, m,, then the total mass of URV is expressed as
m; =mg +Am. (3.14)

By changing the total mass of URV, then the associated velocity will be change. The
change of the velocity depends upon whether Am is a variable or simply a constant. If
Am is a variable, the acceleration, a, occurs. This acceleration, besides accelerates

mass of URV itself, m, , also accelerates mass of surrounding water which is known
as added mass, m, .
Due to this acceleration, the force £, will occur and it is expressed as
fo=(mg+Am+m,)a. (3.15)
Considering this last force, f,,, Eq. 3.10 can be rewritten as
W=Fg+Fp+f,. (3.16)

Substituting Eq. 3.11 and Eq. 3.15 into Eq. 3.16, yields

mgg+Amg=Fp +sign(v)%CDAﬂ,va2 +(mg +Am+m,)a- (3.17)
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Recalling equilibrium condition,

W=Fg,
mt:ms,
v=0,

a=0. (3.18)

From Eqg. 3.14 obviously we have Am = 0.
By substituting Am and Eq. 3.18 into Eq. 3.17, yields

myg=Fpg. (3.19)

Since mgand Fp are constant, then by the change of Am, Eq. 3.17 becomes
Amgzsign(V)%CDAﬂ,pwvz +(mg +Am+m,)a- (3.20)
Since Amg = AW , then Eq. 3.20 is written as
AW:sign(v)%cDA P2+ (mg +% “m,)a. (3.21)

By solving for the acceleration, a, the dynamic equation for vertical motion is given
as [12]

. 2
AW B Slgn(V)CDAﬂ)pwV . (3.22)

AW

d=
(mg +my, +ﬂ) 2(mg +m, +—)
8 g

And, if the depth position of the URV can be measured as z, then by differentiating

z respect to time ¢, the velocity of URV in vertical plane can be expressed as



Chapter 3: Modeling of a Spherical Underwater Robot Vehicle 28

V=12, (3.23)

3.4 Variable Ballast System

If the design of variable ballast uses tank as chamber for controlling amount of water
in URV’s body in order to control buoyancy/weight of the URV. The space or volume
of the used tank is fixed so that if the amount of water in the tank is not full, there will
be a space which is not filled by water. This condition can make water move freely
around the space of the tank if the tilt of URV is unstable such as illustrated in
Figure 3.8(a). This motion can produce a moment that can disturb the stability of the
URV. If tilt of URV’s body is changed (as shown in Figure 3.8(b)) the center of mass,

C,y, will also change. This condition sometime is undesired. Therefore, a variable-

ballast with variable volume of chamber of the tank is designed in this thesis, in order

to make water always fulfill the space in the tank but variably in terms of volume.

(a)
Fa .-'f.‘ﬂxh“‘n! Fs
t / ~
l Cr — / e ,.'"I
T Ciu H Ch _,f"j
l W ) <
w
(b)

Figure 3.8(a) Surface of water in ballast tank when the URV’s body is shaking;

(b) Position of C,, and Cp of water in the tank when tilt is change.
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3.4.1 Variable Ballast Design

In order to make water always fill space in the ballast tank, even if the volume of
water is different, then the volume of the tank itself must be adjustable which is
illustrated in Figure 3.9. The shape of the variable ballast’s tank is cylinder which is
opened at the top side. This part is connected directly to the water environment

therefore water can always fulfill the space in the tank (as shown in Figure 3.6(b)).

To make variably volume of the tank, a movable plate is located at the bottom of the
tank. The space below the movable plate is waterproofed, so that water cannot enter
this space. If the movable plate is moving upward, the space of the tank will be
decreased as well as the volume of water in the ballast tank. If the movable plate is
moving in opposite, downward, the space of the tank will be increased and also the
volume of water in the ballast tank. Therefore, in any volume of water in the ballast

tank there is no empty space in the ballast tank that is not filled by water.

e — e

-

movahle
Pate T R

Power
SCTEW

Worm :J—\/\: 4
gear 'y DC motor

Figure 3.9 Mechanism of variable ballast system.

In order to change position of the movable plate, a DC motor is used to drive the
movable plate through power screw and worm gear coupling. This variable ballast
mechanism is analyzed in this chapter. It involves kinematics and dynamics analyses.
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3.4.2 Kinematics Analysis

The movable plate of variable ballast system is coupled to the nut of power screw.
This nut can be moved up and down by turning the screw. So, the screw converts the
rotation motion into linear (vertical) motion. This coupling can be seen in
Figure 3.10(a). Based on Figure 3.10(a), / is lead of screw per revolution, Az denotes

change of nut position, w3 is angular velocity of screw. If Az is the time needed by
screw to change nut position at Ak regarding angular velocity ws, then their relation

can be written as

Ah_lag (3.24)
At 2m
SCIEwW

Ahlfﬂ IIlF

Hut
=i
T gear
(a) (h)

Figure 3.10 (a) Power Screw; (b) Worm gear.

To turn the power screw, a DC motor is used and coupled with worm gear as
illustrated in Figure 3.10(b). The worm has number of thread per revolution equal
toN,,, and the gear has number of teeth equal to N, . If the worm is coupled directly
to the motor which turns in velocity ,,, then the gear will turn in velocity @, which

is expressed as
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Wy =—%-w,. (3.25)

As shown in Figure 3.10(a), the gear and screw is ally so that its angular velocity is

the same,

Wy = w3. (3.26)

By substituting Eq. 3.26 and Eq. 3.25 into Eq.3.24, the change of nut position can be

rewritten as

A IN,,
At Ng2r "
Ah = [Ny Oy s
Ng27r
Ngzmh
W,y = —— . (3.27)
IN,

3.4.3 Dynamics Analysis

The dynamic of variable ballast mechanism is analyzed by considering torques and
forces acting in the system. The forces and torques involved in the mechanism come
from internal mechanism those are from the DC motor and the transmission system,

and also come from external that is from the surrounding as hydrostatic pressure.

3.4.3.1 Power Screw

As illustrated in Figure 3.10(a), 73 is input torque that is required to operate the screw

to move the nut which is coupled with movable plate, can be expressed as
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T3 :TF +Tﬁ” (328)

where T is torque required to overcome force F', and 7. is torque required to

overcome friction between screw and nut. To evaluate these terms, the equilibrium

conditions are applied such as illustrated in Figure 3.11.

(a)

Y
. :
Serew Centre Line
: L Y
J
]

\

*

\

(b)

Figure 3.11 (a) Screw and nut coupling; (b) Detail of forces working in the power
screw [36]
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Figure 3.11(a) illustrates coupling between nut and screw and also its parameters that
must be considered. There is an additional useful geometric relationship between lead
angle, «, and lead, /. Suppose the triangular segment of a plane wrapped around the
screw is considered in such a way that slanted edge lies along the helix and follows it

for one revolution, obviously we have

tana = (3.29)

nd,

Figure 3.11(b) illustrates a force P which is applied at a mean radius r,, which

causes the load to be raised. The reactive forces act at point O on the screw thread

surface. The reactive force F, acting normal to the surface has the following

components:

OD = f,. which is the friction force opposing movement up the thread surface

OA = is equal and opposite to the force being lifted. (F)

OB = is the vector sum of OD and OA and forms an angle 6,, with vector F),

Summing the forces in the vertical direction results in

F,cos6,cosa =F + f,.sina. (3.30)
If coefficient friction of screw surface is x, then friction force is expressed as

fr=us F,. (3.31)
By substituting Eq. 3.31 into Eq. 3.30, yields

F

F, = —.
Cosd, cosa — ug Sina

n

(3.32)
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By considering forces in horizontal direction, obviously we have

P=f,.cosa+F,cosé,sina,

and by substituting Eg. 3.31 into Eq. 3.33, yields

P =F,(ugcosa +cosd, sina).

(3.33)

(3.34)

By equating F,, at Eq. 3.34 and Eq. 3.32, force P applied on screw in order to lift

force F can be expressed as

p_ F(’us C0s @ + 080, Sin aj_
c0sd, cosa — g Sina

By analyzing again Figure 3.11(b), it also can be concluded that:

BC=AE =04 -tan@ = OB -cosa tand,

BC
tan g, =08 cosatand.

If lead angle o is small, thencosa ~1, so we have

tang, ~tand,

0,~0.

Substituting Eq. 3.37 into Eq. 3.35, yields

po g s cosw+cos€sina ,
cos@cosa — ug Sina

po gl Hs +cosétan o .
cosd — u, tana

(3.35)

(3.36)

(3.37)

(3.38)
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Again, by substituting Eq. 3.29 into Eq. 3.38, force P applied on screw to lift load

F can be rewritten as

P_F 7 ped,, +1cosé . (3.39)
wd, CoSO— gl

In order to lift load 7', a torque, 73;;, must be applied to the screw. If the screw has

mean diameter d,,, then the torque applied to the screw can be expressed as

Substituting Eq. 3.39 into Eq. 3.40, the applied torque required to lift load F can be

expressed as

Ty = dy, F 7 ugd,, +1cosd . (3.41)
2 wd,Ccosd— gl

In order to lower load F', a torque must be applied to the screw in reverse direction

with T3;; and it is named as 73;. Applying torque in reverse direction will also
deliver force P in reverse direction. By using same procedure in deriving T3, the

torque required to lower load F can be expressed as

T3L:d_mF 7Ty -d,, —1-c0s0 . (3.42)
2 w-d, coSO+ g -1
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3.4.3.2 Worm-Gear Set

Conceptually in worm-gear set, the worm can be analogous to the screw power, and
worm gear or gear can be analogous to the nut, see Figure 3.12. The forces resolution
for power screw may therefore be directly applied to the case of a worm by observing

that screw lead angle o is equivalent to worm lead angle A,, and power screw
normal angle &, is equivalent to normal pressure angle ¢, for the worm gear.

Illustration of these forces, based on Figure 3.11(b), can be seen in Figure 3.13.

Warm

Fwn :~.
e [
i {;?-'n‘r..-"' W
E ‘ Ay
wa

Figure 3.13 Detail of forces on worm gear

If worm has lead /,, per revolution and diameter d,,, then worm lead angle A4,, can

be determined by

tan A, = w (3.43)

nd,,
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Based on Figure 3.13, by summing the forces in vertical direction obviously results in
Fyu =F,, COS@, COSA, —F sinA,,, (3.44)

where F,,, is axial force of worm, F,,, is reactive force on worm, and F; friction
force of worm. If coefficient friction of worm surface is x,,, then the friction force

F is expressed as

Fy=u,F,,. (3.45)

If Eq. 3.45 is substituted into Eq. 3.44, then the reactive force £, is written as

Fiva (3.46)

F, = :
COS @, COSA,, — i, SIN 4,

wn

If forces in horizontal direction are considered, then by summing of these forces will

result

F,; =F,, Cos@,sini, +F;CcosA,,, (3.47)

where F,,, is tangential force of worm.

By substituting Eq. 3.46 into Eq. 3.47, the tangential force of worm can be expressed
as [38]

cosg, sinA,, + 4, cos/iwj

F,;=F
v W“[cos @, COS A, — 1,,SiN 1,

cosop, tan A, +
Fyy = Fwa( On - IUWJ- (3.48)
cosg, — i, tan i,
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Then, by substituting Eq. 3.43 into Eq. 3.48, yields

Fo_F l,,Cco8@, +mu,d,
" 7d,, COSP, — iy, Ly, '

Fooop | FhwC0Sn ~twly | (3.49)
wa T l,cosp, +mu,d,

From Figure 3.10(b), it is shown the relation of forces working at gear and worm.

Forces on gear are related by equilibrium to forces on the worm as

For = Fyg (3.50.a)
Foy =Fyt, (3.50.b)

where Fg and Fg, are tangential and axial force working at gear respectively. If 75

is torque applied on gear with diameter d,, then this torque 7 is expressed as

dg
By equating Eq. 3.49 and Eq. 3.50.a and substitute into Eq. 3.51, yields
d,F, -
T, = g fwi [ md,, COSQ, —p, 1, _ (3.52)
2 [, Cco8p, +mu,d,

To actuate this mechanism, the worm is coupled directly to the shaft of a DC motor. If

T,, is motor torque applied on worm to result tangential force £, which is expressed

as

Fo =—T,), (3.53)
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then by substituting Eq. 3.53 into Eq. 3.52, torque applied on gear is expressed as

T, (3.54)

dW

B dg Ty (7d,, COSQ, — 1,
l,,COSQ, + 7, d,, |

Reviewing Figure 3.10 again, obviously can be seen that the gear and power screw are

allied in same shaft so that torque required to actuate the gear, 75, will be equal to the
torque required to turn power screw, 73. Since 73 =T, then T3, =Ty and Ty is
torque needed by screw to lift up the load . In order to produce torque 73;; on the
screw or Tp; on the gear, the DC motor must produce torque T, . If

I3 =T3y, Tp =Ty, and T, =T,y then by equating Eq. 3.41 and Eq. 3.44 yields

dg Ty (ﬂdw COS @, — i1y, le—d—mF(””S d, +lcos€j

d, \[l,co8¢,+ru,d, 2 wd, Ccosl—u,l
T = dy,d,F(rugd, +Ilcos@ | [, cose, +ru,d, . (3.55)
2d, \7md, cos0—pusl \ md, cosp, —u,l,

By using the same analogy for calculating 7,,,;;, then the torque of the motor required

to lower the load £ which is known as T7,,; , can be expressed as

. dy, dWF[n,us dp, —lcos@)(lw COS @, + 7T i1y, dwj_ (3.56)

2d, \7md,c080+usl \nd,cosp, —u,l,

From Eqg. 3.55 and Eqg. 3.56, it can be shown that many coefficients, which are
constant, are involved in the equation, so that if the constants are simplified then we

have
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d,d
2d

W=k
g

pr

T pgd,, +1cos@ _
xd, cos0—pul) 1Y

wugd, —1cosd _
xd,cos@+pul)

[,,COSQ, + L, dw]
= g+
md,, COS@, — 1,

(3.57)

where k,,. is coefficient of power transmission ratio between worm gear set and

power screw, kp;; and kg are coefficient of power screw in lifting and lowering
load mechanism respectively, and k,,, is coefficient of worm gear set. Hence,

Eq. 3.55 and Eq. 3.56 can be simplified into

Ty :kpr kTU kwg F

(3.58)
T = kpr kTL kwg F

or it can be written as

T, =k, F, (3.59)

where

km :kmU :kprkTUng =T, = mU,and

km =kt :kpr krr kwg =Ty =Ty -

From Eqg. 3.59, it can be seen that torque 7, is the input, and F is the output.
Although not explicitly stated, it does not mean that if 7,, =0 then F must be zero.

Because of friction, a certain value of F must be reached to make it self~locking,
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before power screw start rotating and allow the load lift or lower, and it is called
overhauling. To guarantee the screw will be self-locking, a condition based on the

geometric parameter and coefficient of friction must be fulfilled [38].

3.4.3.3 External Forces Analysis

Torque and force which are provided by the motor and its mechanics system are used
to overcome the load F in order to control amount of water in the ballast tank. Load
F itself is total force working on the movable plate of variable ballast system which
is coming from inside and outside of URV’s hull. The illustration of forces working

on the movable plate is shown in Figure 3.14.

|

TITTRIIT,
=

%ﬂ'm’ i

Figure 3.14 External forces working on variable ballast system.
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If Figure 3.14 is analyzed, the force coming from inside hull, F;;,, is caused by the
change of air pressure inside the hull, Py, due to the change of space inside the hull.
As explained before, the variable ballast mechanism is used to control weight of URV
by controlling volume of water in ballast tank. To control volume of the water,
a mechanism like piston is designed. In this mechanism, a movable plate which is
base of space in the tank that can be filled by water is used. By controlling position of
the movable plate which is height of the tank, the volume of water in the tank can be
controlled. Since space under movable plate is impermeable, by the change of
position of movable plate, the volume of space inside URV’s hull is also change. This

change impacts to the air pressure inside the hull.

As known that relation between pressure and volume, ¥, in closed space is

expressed as [39]
Py, V, = constant. (3.60)

So, if the volume of air inside URV’s hull is changed, then its pressure is also
changed. In initial condition or in equilibrium condition, the pressure inside the hull is
equal to the pressure of the air at water surface, P,. By assuming the air pressure at
water surface and temperature inside URV’s hull are constant then since the volume
of space inside the hull is constant, the pressure inside the hull is also constant. If
volume of the space inside the hull is changed because of the change of position of

movable plate, the pressure Py, is also change and will cause a force act at movable
plate surface, known as £y, . The relation of P,, Py, , and Fj, is expressed as

Fy, =Py =Py )Ayp, (3.61)

where 4, is projected area of movable plate which is base of variable ballast tank.



Chapter 3: Modeling of a Spherical Underwater Robot Vehicle 43

In initial condition, where P, = P,, volume of the air or empty space inside URV’s
hull is V};,, and the position of movable plate is at the middle of full height of the

tank, so if the maximum height of the tank is # then the position of movable plate is
at 0.54 from the top of the tank, which is known as initial position. At this position,
Ah, which is the change of movable plate position, is equal to zero (A2 =0). So that
if position of movable plate is upper than initial position (< 0.5%) then A2 <0 and if
lower than initial position then Az > 0. By the change of A%, the volume of the air or

space inside the hull will change as AV . The relation is expressed as
AV =AhA,. (3.62)

From Eq. 3.62, it is seen that the change of volume of the air inside the hull is equal to
the change of volume of water in the ballast tank.

By changing the volume of the air, the pressure is also changed from its initial

condition and expressed as

P, Vip =B (Vi —AV),
P,V

p, =—4 1 3.63
ih Vih AV ( )

By substituting Eq. 3.62 into Eq. 3.63 and substitute the result into Eq. 3.61, then
force acts on movable plate’s surface due to change of volume of the air inside hull is

expressed as

2
Ah(A4 P
Fy, :M. (3.64)
Vin = Ah Ay

From Figure 3.14, it can be shown that load F is resultant of Fj,, AW ,and Fj,, and

the relation is expressed as
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E=Wyp + Fps = Fip (3.65)

where W, is weight of the water in the ballast tank and Fj, is hydrostatic force on

surface of movable plate. Weight of water in the ballast tank depends on volume of
the water in this tank. In equilibrium or initial condition, the volume of water is half
of maximum volume of the tank, W, = W,,. By the change of position of movable
plate in AZ, the weight of water in ballast is also will change in AW from initial

weight. So that at any condition, #,,;, can be expressed as
Wvb = Wbs +AW. (366)

Hydrostatic force, Fj,, is force acting on surface of immersed body caused by the

height of liquid (water) above of it, or in other word it can be said that hydrostatic
force is weight of the liquid above immersed surface. In this system, the height of
liquid above is equal to the depth position of the URV. If depth position of URV is

measured form water surface to top part of URV’s body known as z, then Fj, acting

on surface of movable plate is expressed as [34]
Fhs =Py 8 Avb z, (367)

where p,, and g are density of water and gravitational acceleration respectively.

Substituting Eq. 3.64, Eq. 3.66, and Eq. 3.67 into Eq. 3.65, load F can be expressed

as

Ah (Avb )2 Pa

F=W,.+AW + Ay z— .
bs Pw & Ayp Vi —Ah A,

(3.68)

and the change of water in the ballast tank is expressed as
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AW =Ah Ay py &

Abd, =2 (3.69)
Pw8
Substituting Eq. 3.69 into Eq. 3.68, then the load F can be rewritten as
AW A}, P,
F:WbS+AW+prAva— i vb_a . (370)
Py &Vip =AW

Recalling Eq. 3.59 and substitutes Eg. 3.70 into this equation, then torque of the
motor that is required to change position of movable plate in order to control amount

of water in ballast tank is expressed as

T, =k, (Wbs +AW +p,, g Ay z— (3.71)

AW A, P, ]
Pw &Vip =AW

In order to change position of the movable plate, the DC motor must provide power

P, and rotates at angular velocity @,, in order to produce torque at 7,,, and can be

expressed as
=Ly @ - (3.72)

By substituting Eq. 3.27 and Eq. 3.71 into Eq. 3.72, obviously yields

(3.73)

AW A.. P N, 27 Ak
Pm=km(Wbs+AW+pngvbz— vb_a j £ .

Pw&Vin =AW ) IN,,

N, 27
g 4

If
IN, %

is known as coefficient of velocity reduction of power screw and

worm gear couple, then Eq. 3.73 can be rewritten as
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(3.74)

. AW A, P,
Py, = kyy kg AR Wie + AW + p,, g Ay 2 — vba__ |
m m Kgc ( bs Pw & Avp oV —AWJ

From Eq. 3.69, if 4,, , p,, , and g are simply constant, then by differentiating this

equation results

Y L (3.75)
Py & Ayp
where Ah is rate change of position of movable plate and AW is rate change of

weight of water in the ballast tank.

By substituting Eq. 3.75 into Eq. 3.74 and solving AW , then the rate change of

weight of water in the ballast tank is obviously expressed as

AW A, P,
ey kg | Was + AW + py, g Ay 2~ vba
m gc[ bs Pw & Ayb 2 &V —AWJ

3.5 Parameters of Spherical URV System and VBS

As mentioned in section 3.2, the diameter of the spherical URV used in the thesis is
35cm. By considering the ambient parameters as ideal and constant condition, then in

order to give ability to the URV moves downward in velocity about 1ms™t,

parameters of URV’s hull, variable ballast system and ambient are chosen as given in
Table 3.1.

For the VBS mechanism, some constants value are chosen as standard value [38],
those are d, =0.01m; d, =0.01m;d, =0.026m; u; =015 u, =0.15

1=0.002m; /,, =0.00314m; 6 =15"; ¢, =20°; N,, =1 and N, = 26.
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Table 3.1 Parameters of URV and the ambient

Parameters Symbols Values
Ambient parameters:
Atmospheric pressure at water surface P, 1atm
Density of water you 998 kg/m?
Dynamic viscosity of water H 10 Ns/m?
Gravitational acceleration g 9.81 m/s?
URV’s hull:
Initial mass of URV myg 22.39 kg
Added mass of URV mg 11.2 kg
Diameter of URV Dﬂ) 0.35m
Projected area of URV A, 0.09616 m?
Initial volume of empty space inside URV’s hull Vi, 50 % of ¥,
Variable ballast system:
Diameter of variable ballast tank D, 0.18 m
Projected area of base of variable ballast tank Ayp 0.0254 m?
Maximum height of variable ballast tank h 0.08 m
Initial weight of water in ballast tank Wi 9.96 N
Transmission ratio of worm gear and power screw kgc 8.164x10" rad/m
dcc?v?/fr:x;?gt nc1)£ \\;\i/;)gr’m gear and power screw couple for kg 4.601x10°
Egil;f:giﬁqn; \;)I; \g/’vorm gear and power screw couple for kot 1.122x10™
Power saturation resulted by DC motor + P, max | 100 Watt
Angular velocity saturation of DC motor * ®,, max| 157 rad/s

3.6 Summary

The dynamic model of depth positioning of a spherical URV is obtained by
considering the physical laws involved in this system. Since the dimension of VBS is
bounded therefore the change of weight is also bounded, then the dynamic model
obtained in this chapter behave as nonlinear system. Therefore, in order to control this
system, this nonlinearity must be considered. In the next chapter, the control systems

will be designed in order to control the depth position of this spherical URV.
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CHAPTER 4

CONTROL DESIGN

In order to position the spherical URV by using variable ballast mechanism, a proper
controller must be designed. Since the dynamic model of this system is nonlinear,
then linearized and nonlinear approaches are presented in this chapter. In nonlinear
approach, feedback linearization which consist of state-space feedback linearization
and input-output feedback linearization are presented. Analysis of control properties
involving stability, controllability and observability are also presented in this chapter

based on linearized model and original nonlinear model.

4.1 Linearized Approach

In the linearized approach, the original nonlinear model is linearized then a linear
controller will be designed based on the linearized model. Before design of the
controller is presented, some properties of control design based on linearized model

will be analyzed in this section.

4.1.1 Properties of Control System

Knowing the properties of control system such as stability, controllability, and
observability, is important in designing the controller. By analyzing the controllability
of the system, it can be known whether the system is controllable or uncontrollable.
Therefore, if the system is controllable then the controller can be designed. The
controller is designed in order to stabilize the system. The stability of the system can

be analyzed in Lyapunov sense.
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4.1.1.1 Controllability and Stability of Linearized Model

Reuvisit a linear system, the linear system is to be controllable if a given control input

u can steer the system from x(0), as origin, into X(7T'), as a given target, in finite

time [40]. A linear system which is expressed in state space as

X = AX+Bu

Yo (4.1)

with x e R" is completely controllable if and only if the controllable matrix Cy, has

full rank, » which is order of the system. The controllability matrix Cy, is expressed

as

Cv=[B AB A’B ... A"1B] (4.2)

If a linear system is controllable, then control law u = K(x—xX,) makes the closed
loop system asymptotic stable about equilibrium point x,, where K is feedback gain.

A nonlinear system can be approximated with linear system using Taylor series
expansion about a particular point. If the linearized model is controllable, then a linear
control law can be implemented. Recalling the dynamic model of depth positioning of

a spherical URV which is derived in chapter 3, can be expressed as

fCl =X2
. 2
. X3 sign(x2)Cp A g pyyX2
2= -
(mg +my, +23)  2mg, +my, +°3)
g
A
ng _ Pw & Ayp — u
bLa X3
kmkgc(Wbs+x3+pngval_ 2 j
Pw &Vin — X3

y=x
(4.3)
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where x; =z, xp =V, and x3 = AW are state variables and u = P,, is the input. If the
equilibrium point occurs at any depth position, when power input, velocity and
change of weight is zero, then x; =x1, =z,, xp =x,=0, x3=x3,=0 and
u=u, =0. Then by considering the linearization of Eq. 4.3 about equilibrium point,

the linearized model of the system by using Taylor expansion is given as

i:(ﬂj 2+(ﬁj u (4.4)
OX X=Xg ou U=u,

x| [0 1 0 X 0
Xp |=[0 0 _ Xo |+ 0 i
7;53 0 0 ms'gma %3 Pw & Avp
_km kgc(Wbs +pw & A Ze)_
(4.5)
y=x

By using method in Eq. 4.2, the controllability matrix C,,, of linearized model can be

obtained as
0 0
C. — 0 Pw & Ayp
m =
Py & A ki kgc(Wbs + Py & Avp Ze)(mg +my )
_km kgc(Wbs + Py 8 Ay Ze) 0
(4.6)
P & Avp |
km kgc (Wbs + Py & Ay Ze)(ms + ma)
0

0
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From Eq. 4.6, the rank of controllable matrix C,, is 3 which is equal to the order of

the system, n =3. Then according to the Kalman rank condition [40], this linearized

model is completely controllable, therefore the linear control law can be implemented.

Considering the stability of the system about the equilibrium point based on the
linearized model, Lyapunov provides a method that is called Lyapunov’s linearization
method [41]. This method is concerned with the local stability of a nonlinear system.
It is a formalization of intuition that a nonlinear system should behave similarly to its
linearized approximation for small range motion. The relationship between the
stability of linear system, Eq. 4.5, and that of the original nonlinear system, Eq. 4.3, is
described as:

= If the linearized system is strictly stable which positions of all eigenvalues are
at the left-half of complex plane, then the equilibrium point is asymptotically
stable for the actual nonlinear system.

= |f the linearized system is strictly unstable which at least position of one
eigenvalue is at the right-half of complex plane, then the equilibrium point is
unstable for the actual nonlinear system.

= |f the linearized system is marginally stable which positions of all eigenvalues
are at the left-half of complex plane, but at least one of them is on the jo
axis, then it cannot conclude anything from the linear approximation, the
equilibrium point may be stable, asymptotically stable, or unstable for the

actual nonlinear system.
Recalling the linearized model of depth positioning of the spherical URV in Eq. 4.5,

the eigenvalues of the open loop system can be obtained from the characteristic

equation as
Al-Al=0 (4.7)

By substituting A matrix of linearized model in Eq. 4.5 into Eq. 4.7, then the

characteristic equation of the system can be written as
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2=0 (4.8)

Since the eigenvalues are on the jw axis, then the Lyapunov’s linearization method

cannot conclude whether the equilibrium point of the actual nonlinear system in open

loop condition is stable or unstable.

4.1.1.2 Observability of Linearized Model

A system to be completely observable if the state of the system or plan can be
determined from a finite number of its most recent inputs and outputs [42].
Determining the state of the system from its inputs and outputs is important capability
in control system design because in some situations it is necessary to know the actual
states to control that states effectively. The observability of a system can be analyzed

from the observability matrix.

The linear model at Eq. 4.1 is completely observable if the observability matrix, O,

has full rank. The observability matrix O, , can be obtained from

C
CA
O =| CA? (4.9)

CAI’l—l
where C and A are output matrix and coefficient matrix of the linear model
respectively and = is order of the system. Then, if rank of matrix O, is equal to n

then the linear system is completely observable.

Recalling the linearized model from Eq. 4.5, the observability matrix can be obtained
as
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10 0
On=/01 0 (4.10)
00 1
ms + ma
. 1 ) 1 . )
Since ————— is constant and ————— = 0, then it is obvious that rank of the
ms +ma mS +ma

observability matrix O, is 3 which is equal to the order of the system. Therefore

the linearized model for depth positioning of the spherical URV is completely

observable.

4.1.2 Feedback Control Design

The existence of feedback in automatic control system can improve performance of
the control system even external disturbance is present. Therefore the availability of

feedback control can stabilize the system.

Consider to an unstable linear or linearized system, in order to stabilize it, the poles
placement method can be used. By designing the gain feedback, the poles of the

closed loop linear system can be located at left-half of complex plane.

The closed loop system with gain feedback, K, for linear system at Eq. 4.1 can be

written as

x(t) =[A -BKIx(r) + BFr(¢)
(4.11)
y =Cx()

where F and r(¢) are scaling factor and command input or input reference

respectively. The control law of this closed loop system is
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u@) =Fr() — Kx() (4.12)
If [A-BK]=A,,then Eq. 4.11 can written as

X(t) = Aq X(t)+BFr(z)
(4.13)
y =Cx(?)

By choosing a proper value of K then the system will be asymptotically stable,

therefore for ¢+ — oo, yields

X(0) =X, =0 (4.14)
if r; is desired command input then yields

0=A X, +BF1y
By solving x.,, yields

X, =—Ag TBFr, (4.15)
In steady state condition,

Yoo =CXo =Ty (4.16)

By solving X, , yields

X, =C7r, (4.17)
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By equating Eq. 4.17 and Eq. 4.15, yields
Clr, =-Ay1BFr,
By solving F, yields

F=[C[-Aq "1B]?

(4.18)

Recalling the linearized model for depth positioning of a spherical URV as modeled

by Eq. 45, if K=[k; k, k3] andthe command input r =z, which is the desired

depth position and also be the equilibrium point,

can be written as

z, = z4, then the closed loop system

X 0 1
);CZ = 0 0
2l |-k Pw 8 Avb ky Pw & Avp
kp kgc(Wbs +pw8Awzq) K kgc(Wbs +Ppw&Aw 24)
[ w
0 % 0
_— Xo |+ 0 Fz,
M +mcj4 %3 Pw & Ayp
—K3 Pw & Zvb _km kgc(Wbs +pw & Ay Zd)J
ki kgc(Wbs +pyw8&Avpzq) -

(4.19)

Then by using MATLAB, F can be solved as, (see Appendix 1)

F=[k]



Chapter 4: Control Design

56

So, the control input for depth positioning of a spherical URV is presented as

u(t)=kyzg —lky ko k3lx(e)

From Eq. 4.19, if

and
Pw & Avp _
K kgc(Wbs +pw8Awza)

are time invariant, then Eg. 4.19 can be rewritten as

% 0 1 o I®m] [0
X 0 0 C]_ )?2 + 0 k]_ Zgq
X3 —knCy —kpCy —k3Cylx3| |2

Then the characteristic equation of the closed loop system is

A3 +k3CpA? +kpyCiCoA + kG Cy

(4.20)

(4.21)

(4.22)

The desired characteristic equation of the closed loop system for depth positioning of

the spherical URV is

(A +28a)(A2 + 2&ah +a?), £ a>0

(4.23)

Therefore, the closed loop system is asymptotically stable. By matching coefficient of

Eq. 4.22 and Eq. 4.23, then the gains is obtained as
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3
ey = 2&a
GGy
_a’(4g%+) (4.24)
Gy
Jeg = 4éa
G

4.2 Nonlinear Approach

In nonlinear approach, the controller is designed based upon the original nonlinear
model. Before design the controller, some properties of the control design are

analyzed based upon the original nonlinear model and presented in this section.

4.2.1 Properties of Control System

Some nonlinear systems could not be approximated through linearized model in order
to know the properties of the control system. In this sub section, the properties of the
control system are analyzed from the original nonlinear model involving

controllability, stability and observability.

4.2.1.1 Controllability and Stability of Nonlinear Model

An affine nonlinear system with single input and single output (SISO) can be
expressed as

x =f(x)+g(x

() +9(X)u @.25)
Y =h(x)

In order to simplify checking controllability of nonlinear system at Eq. 4.25, local

analysis is done, i.e. the results are valid only in neighborhood of operating point, but
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global results are available elsewhere [43]. Local controllability can be determined by
examining the rank of the controllability matrix which is analogous to the linear
controllability matrix. The controllability matrix of nonlinear system can be obtained

by using Lie brackets which is expressed as [43]
C(x) = [adfk Y900 adfgx) ... ad! _1g(x)} (4.26)

where 1< k <n, n is order of the system, and

ad? g(x) = g(x)
adt g(x) = [f,g]=Vgf-Vfg
ad{ g(x) = [f ad{™ g(x)] fori=12, ...

Revisit nonlinear model at Eq. 4.3, then vector f(x) and g(x) can be express as

T
fx) =[xy, 22 S’g"(xi)B 2%2_ 0 (4.27)
(B +72)
g
T
B
g(x)=| 0,0, 3 P (4.28)
(Wbs +X3 + B4 X1 —5)63]
Bg —x3

where

CpA
By = D fbpw,
2
B3=prAVb;
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By =pwg&Aw;
Bg = A,,P,; and

Be =py gVi -

The controllability matrix C(x) is obtained by using Lie brackets and solved in

MATLAB (see Appendix 2). This controllability matrix has full rank, 3, which is
equal to the order of the system. Thus, the nonlinear model at Eq. 4.3 holds the

condition to be controllable.

Considering the stability of nonlinear model, Lyapunov provides a method that is
known as Lyapunov direct method. Lyapunov’s stability analyzes stability of the
system at equilibrium state. The first step in analyzing stability using Lyapunov direct

method is constructing possible Lyapunov function, ¥(x). Once Lyapunov function is

obtained, the Lyapunov stability can be analyzed. The Lyapunov theorems [44] say:

1. If it is possible to find a continuous scalar function V(x) which has

continuous first derivatives and which satisfies:

a. V(x)>0, vx=0 V(x) is positive definite
b. (x)<0 V(x) is negative semidefinite
c. V(x) > was|x| —> o V(x) is radially unbounded

then the condition state x, which is satisfies f(x,,0) =0 is globally stable in

the Lyapunov sense. If only condition a and b are satisfied, then the

equilibrium state is local stable in the vicinity of the origin.

2. If it is possible to find a continuous scalar function ¥V(x) which has

continuous first derivatives and which satisfies:

a. V(x)>0, vx=0 V(x) is positive definite
b. V(x) <0 V(x) is negative definite

c. V(x) > o as x| —> o V(x) is radially unbounded
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then the condition state x, which is satisfies f(x,,0)=0 is globally

asymptotically stable in the Lyapunov sense.

One of the methods used for constructing Lyapunov function is the variable gradient
method [41, 44] . The variable gradient method is a formal approach to construct
Lyapunov function. An assumption of a certain form for the gradient of an unknown
Lyapunov function is involved, and the Lyapunov function is obtained by integrating

this assumed gradient.

If we consider the unforced nonlinear model of Eq. 4.25, then x =f(x), x e R", for

which f(0)=0, and V' (x) is the possible Lyapunov function for this system. If

x(t):R* > R" is any differentiable function with x(0) =0, then for any possible

Lyapunov function:
)=V x=vrTf(x) (4.29)

The possible Lyapunov function is obtained by integration, respectively

V(X) = )j(VVT dx (4.30)
0

where VV = {0V /oxy, ...., OV /éx, }T is the gradient function which is assumed as the

form
n
VV,=73% X (4.31)

ij
Jj=1

where a;; is coefficients to be determined. The gradient function must satisfy the

condition of symmetry, therefore
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ovV; _ 8VVj

8)6]- 8)61-

(fori,j =12, .., n) (4.32)

Reuvisit the nonlinear model from Eq. 4.3, since this model is unforced, u = 0, then

. 2
— B
K=|xp 3 sign(xp)Bax; 0 (4.33)

X
(By+3)
g

Since the order of the system »n =3, then we assume the gradient of Lyapunov

function candidate has the following form

VV]_ =a11x1 +aipxo +a13x3
VVZ =d9p1X1 Tt A22X) +A93X3 (4.34)

VV3 =agz1Xq] +azpXxy +a33x3

To satisfy symmetry condition, then

OVVy _0VV,. OVVy_OVV3. . OVVy OVV3
ax 2 6x 1 ’ 8x 3 8x 1 ’ ax 3 ax 2
or:
oa oa oa oa oa oa
X1 11 +aip +Xxo 12 + X3 13 =as tx1 21 + X2 22 + X3 —23
ox 2 Ox 2 ox 2 8x1 8x1 8x1
Oa oa oa oa oa oa
X1 11 + X2 12 +dad13 + X3 13 =a3z;tx 31 + X2 32 + X3 33
0Ox3 Ox3 0Ox3 oxq ox ox
oa oa oa oa oa oa
X1 21 + X7 22 + an3 + X3 23 =X 31 + asp + X2 32 + X3 33
6x 3 ax 3 6x 3 ax 2 ax 2 ax 2

(4.35)
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Using assumed gradient at Eq. 5.34 as well as the dynamic model from Eq. 4.33 and
substitute to Eq. 4.29 then we have

T
aq1¥y +apxp +d13x3 X3 — sign(xxy) Byxy?
V(X): an1Xx] +dpXy +as3x3 X9, 3 g i?) 272 , 0
azix) +aszpxy +aszzxs (Bl +§)

2
aAp1X1X3 + AppXpX3 +Ap3X3

V(X) = aqg1xp +ajpxy” +argxgxp +
X3
(By+—)
& (4.36)
. 2
_ (ag1xy +appxp + apzxg)sign(xy)Byx;

X
(By+3)
g

In order to fulfill symmetry condition, a proper a;; for(i,j =1,2,3) must be chosen.
If we chose ajp =aqp =4z =a13 =az1 = 0, asy =1, and ajz3z =agzp = -1, then

EqQ. 4.36 can be written as

2 . 2
) X9Xq — X X9 —Xaq)sign(xo)Box
V(x) =23 x; _ 2 Zx3)sig iSZ) 272 (4.37)
(By +—) (B +—)
8 g

Then by simplifying Eq. 4.37 obviously we have

. 2
V(x) = (x3 —sign(xp)Bpxp”)(xp — x3) (4.38)
g

If az3 =1, then gradient from Eq. 4.34 can be expressed in vector as
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0
VIV =|xy —x (4.39)
2 3

X3 —X2

The possible Lyapunov function can be obtained as

X1 X2 X3
V(X)= [ 0dx + [xp dxy + [(x3—xp) dx3
0 0 0
2 2
- %_Xm J% (4.40)

From some parameters and specification (see table 3.1) used in the system, it is
known that:

1. xp and x3 are upper and lower bounded.

X3
2. mg+m, >—

g
Therefore, from the above conditions of the system, and if condition

Sign(x2)32x22 <xz and xy < x3
orif
sign(xz)Bzxz2 > x3 and xp > x3
are satisfied then the gradient V(x) at Eq. 4.38 is negative definite, otherwise it is

positive definite. Therefore, V(x) satisfy the condition to be first derivative of

Lyapunov function because it is locally negative definite.

By considering the possible Lyapunov function at Eq. 4.40, if x, =x3, then
V(x) =0, otherwise V' (x) >0; Vx=0. Therefore, it can be concluded that vx = 0,
the Lyapunov function 7 (x) is positive semidefinite. From characteristic of ¥ (x) and
V' (x), it can be concluded that the origin as one of the equilibrium point is unstable in

Lyapunov sense. In order to stabilize this nonlinear system, state feedback will be

used and explained in this chapter.
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4.2.1.2 Observability of Nonlinear Model

As mentioned before, determining the state of the system from its inputs and outputs
IS an important capability because in some situation it is necessary to know the actual
state to control that state effectively. For the linear time invariant control system, the
observability can be known from observability matrix which is obtained directly from
A and C matrix. It is so different in nonlinear control system. To analyze the
observability of the nonlinear control system, we will need to work with a Lie algebra
formed of operators rather than vector fields [45].

Revisit the nonlinear system from Eq. 4.25, let x denotes the state vector and

vy = h(x) denotes the output, then the observability map, ®(x), for the system can be

determined from Lie derivative of vector f along /4 at point x which is expressed as

| Leh(x) |
Lfi+1h(x)

d(x) = fori=0,1,...,n—1 nisorder of the system

Ly Th(x) |
h(X)

o (oh
- &(&T(X)Jf(x) (4.41)

_%(%&...)jf(x)
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The Jacobian of observability map is called observability matrix which is expressed as

a_XCD(X) =

dh(x)
dL rh(X)
dL ;2 h(x)

dL ;" h(X) |

(4.42)

The nonlinear system is to be observable if the Jacobian or observability matrix,

iCD(x), has full rank [46].
OX

For the dynamic system from Eq. 4.3, the output is chosen as y =x;. Then the

observability map can be expressed as

d(X) =

X1

X2

x3 — sign(xp) Byxp”

X3
(By+—)
g

(4.43)

The observability matrix can be obtained by solving the Jacobian of the observability

map which is expressed as

OX

1
0

0

0
1

_ 2sign(xp)Boxy  gBy + Sign(x2)32x22

0
0

B1+X73
8

X3.,2
g(By+73)
g

(4.44)
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The observability matrix of the dynamic system has full rank for all possible values
of x. Therefore the dynamic model of depth positioning of spherical URV given at

Eq. 4.3 is observable.

4.2.2 Feedback Linearization Control Design

Feedback linearization is one of the methods in designing feedback controller for
nonlinear control system. The main idea of this method is to algebraically transform
nonlinear systems dynamics into (fully or partly) linear ones, therefore linear control
techniques can be applied. This differs entirely from conventional linearization
method because feedback linearization is achieved by exact state transformation and
feedback, rather than by linear approximations of the dynamics. The feedback
linearization can be viewed as ways of transforming original system models into
equivalent models of a simple form. The transforming model is in the form of linear
model, therefore in order to design the controller, the linear control designed can be

considered.

The depth positioning system of a spherical URV modeled by Eq. 4.3 has single input
and single output, therefore single input single output (SISO) feedback linearization
strategies are considered. There are two approaches in SISO feedback linearization
which are as follow [41, 46, 47]:

= Input-state linearization or state-space linearization
In the state-space linearization approach, the goal is to linearize the map between
the transformed input and the entire vector of transformed state variable. It means
that the whole states of the system are linearized. The linear control strategy is
then designed for the linearized state-space model. In the application, not all

models are state-space linearizable. There are some condition must be satisfied.
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= Input-output linearization
In the input-output linearization approach, the objective is to linearize the map
between transformed input and the actual output. A linear controller strategy is

then synthesized for the linearized input-output model.

4.2.2.1 State-Space Linearization

A single input single output of nonlinear model given as Eq. 4.25 is to be state-space

linearizable if and only if it satisfies the below conditions [41, 48]:

= Controllable, the matrix [g(x) adgg(X) - ad]?'lg(x)} has rank »n or it

has full rank.

= The vector fields (g(x), adsg(x), ---, ad]l“'zg(x)) are involutive.

A set of vector field in(x),---,Xp (x)} is involutive if there is scalar function

Sjji (x) such that Eq. 4.45 is satisfied.

V4
aXm_ X; (x)= > Sijk (x) X (%), 1<i, j<p,i#] (4.45)
k=1

Therefore when Lie bracket is taken with in this vector field, a new vector will not be

generated. Hence the rank of in(x),.--,Xp(x),[Xi,XjJ,'--}; 1<i, j<p,i#j Is

equal to p.

If both condition are satisfied, then new state variable z = ¢(x) and new input v are

determined in such that satisfy a linear time-invariant relation

z=Az+bv (4.46)
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where

01 .- 00 0

0 0 0 0 0
A= : N b=

00 - 01

00 -~ 0 0} 1]

The feedback control law can be designed as

u=w(X)+y(X)v (4.47)
where
L¢"z 1
v0) = 0=
gttt 21 LgLf 2

and n is order of the system. The new state z is called the linearizing state, and the

control law at Eq. 4.47 is called linearizing control law. The ¢(x) is diffeomorpishm

in such that x = ¢_1(z) is satisfied.

In order to determine the linearizing state z, the first state z; must be determined by

considering the following conditions [41]:

Vzads'g =0 i=0,---,n—2

VZladfn_lg # 0 n is order of the system

(4.48)
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Then the state transformation z(x) =|zy Lfz; --- Lf""lzl]ris used as a new set

of state variables, and the state equation verify

(4.49)

Consider to designing the state-space feedback linearization for dynamic model given
at Eq. 4.3, it must satisfy the conditions to be state-space linearizable before
continuing the controller designing. As mentioned in sub section 4.2.1.1, this dynamic
model is controllable thus it holds first condition to be state-space linearizable.

In view of the second condition of nonlinear system to be state-space linearizable,
since the dynamic model at Eq. 4.3 is 3 order system then the set of the vector fields
be examined for its involutivity are {g(x), ad;g(x)}. By using Lie bracket, the vector

ads g(x) is obtained as

0

By B g + sign(x) By Byxy®

2
B
g(Bl—i-x:gj [Wbs +B4X1+X3 - 543 J
g B

6 — X3

adsg(x) = (4.50)

B3B4X2

Bex 2
Wbs + B4x1 + X3 — 573
Bg —x3

Then by using m file in MATLAB (Appendix 2), the involutivity of these vector
fields are analyzed. Since the rank of set of vector {g(x), adsg(x), [g(x),adfg(x)]} is

equal to 2, then these vector fields are involutive. Therefore the dynamic model for
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depth positioning of the spherical URV given at Eq. 4.3 is state-space linearizable

then state-space feedback linearization controller can be designed.

By considering the conditions given in Eq. 4.48, the first component z; of the new

state vector z should satisfy

0 0o F.p (4.51)
Ox3 Oxp oxq

07 _ 071 _

Thus z; must be a function of x; only. The simplest solution to this equation is
Z1=x (452)
The other states can be obtained by considering function f(x) given in Eq. 4.27.

Zy = VZlf =X2

. 2
- B
2g = Vzf =23 sign(x2)Baxy” _ %

X
(By+3)
g

(4.53)

Then by considering Eq. 4.51, the state space of state transformation is written as

01 0] [0
2=|0 0 1lz+|0 (4.54)
00 0| |1

where v is new input of state transformation which is determined as
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V223 ZVZ3f+V23gu

3 2B22x23 —2sign(xp)Byxoxs N gB1B3 + sign(xz)BzB3x22
B 2 2
B
(Bl + xsj g(Bl + x?,j (Wbs + B4X1 +X3 — 513 j
g g Bg —x3
(4.55)

Then, if the original input « in Eq. 4.55 is solved, obviously we have

B
g(Zsign(xz)Bzxzxg - 2322xZ3IWbS + Byxq + X3 — B 513 J
6 X3

w= 2
(gB1B3 + sign(xp)ByB3x2 )
(4.56)

2
B
g Bl +X73 Wbs + B4X1 +XxX3 — 53
g Bg —x3

* 2
(gBlBg, + sign(xy) By B3x2 )

where,

Bsxs

g(Zsign(xZ)Bzx2x3 - ZBzzng{Wbs + Byxq +x3 —

B6 — X3 j
5 =y (x); and
(gBlB:g +sign(x2)BZB3x2 )

2
B
g B:I_-l-xf3 WbS+B4X1+X3—57x?’
g Bg —x3

(gBlB3 + sign(xy )3233x22 )

=y(x).

Therefore Eqg. 4.47 is hold and a linear control strategy can be designed based on

transformed model given in Eq. 4.54.
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If we compare the transformed state variables to the original state variables, it is
clearly seen that the transformed state variables have physical meaning that are depth

position, velocity, and acceleration for z;, z, and z3 respectively.

By considering system in Eq. 4.54 as linear system, then linear feedback control
strategy can be applied in order to stabilize the depth positioning system of the

spherical URV. If feedback gain K =[k1 ko k3] is applied to the closed loop
system of model in Eq.4.54, and the desired depth position is given as zy,, then the

new input v can be obtained as

V= klzld -Kz (457)
By locating the eigenvalues, A, of this closed loop system in left of half-complex
plane, this feedback gain will asymptotically stabilize the system. The eigenvalues of

the closed loop system of Eq. 4.54 can obtained from the characteristic equation that

is

A3+ kg% +hpA+ky =0 (4.58)

and if the desired characteristic equation of the closed loop system for depth

positioning of the spherical URV is

(A+28a) (A% +2&ai +a) =0, £ a>0 (4.59)

Thus the system is asymptotically stabilized, then by matching the coefficient of

Eq. 4.58 and Eq. 4.59, the gain of the feedback can be expressed as
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ky = 2&a°
ky =422 +a® (4.60)
k3 = 4§a

Since this controller asymptotically stabilizes the system then for ¢ — oo, the output

y=Zl=x1—)Zld.

4.2.2.2 Input-Output Linearization

The main idea of the input-output feedback linearization is to transform m equations
via feedback into simple decoupled integrators, where m represents the number of

inputs. This control technique is designed by differentiating the output, y, until the

physical input, «, appears in the ™" derivative of the output. Then the input is

chosen to cancel the nonlinearities and rising a synthetic input v. The simple relation

between synthetic input v and the output y is obtained as (multiple integrator form)

) =y (4.61)

where 7 is the relative degree obtained from differentiation. For the depth positioning
model of the spherical URV given at Eq. 4.3, the output is chosen as y =z = xq,
which is the depth position. Then by differentiating this output until physical input u

appears, obviously we have
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y =X =X
.. xg—sign(xp)Byxy®
J=tp = ;
(B1 3
g

: 2). . i
(Blg + sign(xy)Boxy )X3 - (Blg + X3 )2 sign(xp)BoxoXy

)
g
: 2
_ (Blg+Slgn(x2)Bzx2 ) B3 y
2 B
5 X3
g(Bl+x3j [Wbs+B4xl+x3_B . J
g 643
| (Brg + x3)2sign(x;)Byx, | x3 — sign(xp)Byxp”
53 ) (By+22)
g
_ B B3g + sign(xp )BZB3x22 - 2322)623 —2sign(xp)Byxox3
2 2
B
g(Bl-l-x?’j (WbS+B4x1+X3— 5713 j (Bl-i-x?)J
g Bg —x3 g

(4.62)

From Eq. 4.62, it is seen clearly the relation between y and u, that is u appear at

third differentiating of y . If the control input is chosen as

1
U= 500 (v-a(x)) (4.63)

where

By B3g + sign(x) By Byxp”

2
B
g(Bl+xSJ (WbS+B4x1+x3— 513 J
g Bg —x3

:and

B(x) =
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2322x23 —2sign(x9)Byxox3
5 .
g

Since x is bounded therefore A(x) =0 then the nonlinearities at Eq. 4.62 can be

a(X) =

canceled and obtain simple input-output relation as
V=v (4.64)

By considering Eq. 4.64 as linear system, then by applying feedback gain K for the
closed loop system yields the control law as

v=—kyy—kyy—kzy (4.65)
where [k; ky k3]=K.

For stabilizing the system, poles placement method is used. A proper value of K
must be chosen in order to locate the poles at the left-half of complex plane. The

characteristic equation of this closed loop system is given as

A3 +k3A® +hpd+ky =0 (4.66)

If desired characteristic equation of the closed loop system for depth positioning of
the spherical URV is

(A +28a)(A% +2&ai+a?) =0, £ a>0 (4.67)

thus the closed loop system is asymptotically stable, then by matching coefficient of
Eq. 4.66 and Eq. 4.61, the feedback gains is obtained as
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ky = 2&a°
ky =422 +a® (4.68)
k3 = 4§a

If y,; is a desired output then by applying tracking error e(¢) = y(¢t) — v, (), the

control law is obtained as

V= yd —kle—kzé—kgé (469)

As an asymptotically stable system, this control law leads to exponential convergent

tracking where for t - o, e(t) > 0.

4.3 Summary

The control design of a nonlinear system can be approximated through linearization of
the nonlinear model. Since the linearized model of the system is controllable, then the
linear control system can be applied. In this chapter, the nonlinear model for depth
positioning of the spherical URV is linearized using Taylor series expansion at
equilibrium point. Nonlinear control approach also applied in this system by using
feedback linearization. As SISO nonlinear system, there are two kinds of feedback
linearization which are state-space linearization and input-output linearization. Both
approaches of feedback linearization are applied and presented in this chapter, in
order to control the depth position of a spherical URV. Some properties of the control
system such as controllability, observability and stability are analyzed based on

linearized model and the original nonlinear model.
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CHAPTER 5

RESULTS AND DISCUSSION

Dynamic model obtained in chapter 3 and control design derived in chapter 4 are
simulated in Simulink/ MATLAB. Simulink model of the dynamic model and control
design are presented in this chapter. Some results are analyzed and discussed in this

chapter.

5.1 Simulation of Open Loop System

In order to study the responses of the system resulted from the modeling process, the
simulation using Simulink/MATLAB is built based on the mathematical models. Each
model is simulated in separate Simulink block. Some input models are tested in order

to analyze responses of the model.

5.1.1 Simulink Model

From Eq. 3.76, Simulink model of rate change of weight in the ballast tank, AW, is
shown in Figure 5.1. From Figure 5.1, it can be seen that value of k,, depends on
power input, P,,, which results torque 7,, to change amount of water in the ballast

tank. If P, >0 then 7,, =T,,, therefore k,, =k, , otherwise k,, =k, .
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Figure 5.1 Model for rate change of weight in the ballast tank.

The rate change of weight in the ballast tank, AW, has saturation values (£ AWy ).

This saturation value depends on the maximum angular velocity of the DC motor that

drives this mechanism both in counterclockwise and clockwise direction. Then, the
change of weight in the ballast tank, AW, can be obtained by integrating AW which
is shown in Figure 5.2. AW also has saturation values (£ AWy, ) which depends

upon the maximum volume of the ballast tank.

T —w

Poweer In (Pmi -
Saturation Power
= 1 Ts

(Z ) {2 _dephiit) d_w 063 i) — -— f 1
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Figure 5.2 Model for the change of weight in the ballast tank.
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The Simulink model of URV motion in vertical plane which is taken from Eq. 3.22, is
shown in Figure 5.3.
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] ke

+ + +
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- I U welocity o
welocity_{w) — 5
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Estimatar
Froduct
. -
Lol pu—
Sign
W o2
square

water densiby

12

Figure 5.3 Model for vertical motion acceleration of URV.

Output of this model is acceleration of the URV. In order to obtain velocity of URV’s
vertical motion, v, an integration block diagram is used. In order to get the depth
position of the URV, this velocity is integrated. The Simulink model is shown in

Figure 5.4. The condition of depth position and velocity are depth position always be
positive (z>0)andfor z=0=>v>0.

S
welocity_(w)
el K Ts )
O ——m 2 = s =]
i =1 N fon v - —— > _‘1"'_ = ——
welocity_{uw™) ) - z in m [ 1 N [mo i
Discrete-Time - . - depth position
Integratori depth sat Rate Transzition3 Discrete-Time Rate Transzition2 izl
Integratarz

Figure 5.4 Model for velocity and depth position of URV.

By combining all models, obviously Simulink model for depth positioning of the
spherical URV is shown in Figure 5.5.
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Figure 5.5 Model for depth positioning of a spherical URV.

From Figure 5.5, it can be shown that the power input, P,,, has saturation values that

is £ P, max. This power depends upon the power provided by the DC motor.

5.1.2 Simulation Result

The dynamic model for depth positioning of the spherical URV involves many
constants and parameters both for URV and it ambient. The assumption of these
constants and parameters used in the simulation are presented in Table 3.1. Some
types of input are tested to analyze response of the model. The first input tested in the
open loop simulation is a single pulse input. The responses of the model are shown in

Figure 5.6. The given power input from the DC motor, P, is a single pulse with

amplitude at 50 Watt. The origin position of URV is at 0 meter from surface. Then by
applying this input, the URV will be descent from the surface.

From Figure 5.6, it is also seen when the power is applied to the motor as positive

value, the weight change, AW, is increased and reaches saturation around 9.96 N, as

maximum value of AW, and velocity v reaches saturation at 1.019 ms ™. When the
power is reset to zero, AW still remain at the last value, and the URV still moves
with velocity v, which is proportional to AW . If power is given as negative, then
AW will be decreased but velocity v still positive since AW is positive. The depth

position of URV, z, will increase since the velocity is available as positive.
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B Frrnas oy

Figure 5.6 Response of the system for positive and negative pulse input.

If the velocity is negative, the URV is ascending as shown in Figure 5.7. The
increment of AW depends on the total power given by the motor to actuate the
variable ballast and also depends on the depth position of the URV. If the power given
is small then the increment of AW is also small, and since the power is available,
AW will keep increasing till reach saturation. I1f same power is given to the system but
in different depth positions, the increment of AW at deeper position is lower than
shallower position. This is caused by the availability of hydrostatic force which is

become higher at deeper position. If power is keep applied as negative value, then
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AW will reach negative saturation at —9.96 N and velocity v also reach negative

saturation at —1.019ms™* as shown in Figure 5.6.

When the power is zero, AW remains at its last value as well as velocity v. The
velocity will remain constant until A/ change and velocity in this condition is known
as terminal velocity. This is the advantage of using variable ballast as vertical motion
actuator, even the zero power is given to the actuator, the URV still moves therefore it
will save the power usage. If AW =0, then the zero velocity occurs and the URV is
in zero buoyancy condition. The depth position of URV, z, will remain at its last

position, and this condition is called equilibrium point. The equilibrium point occurs

at any depth position since v and AW is equal to zero.
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Figure 5.7 Response of the system for pulse input in different amplitude.
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If ramp input is applied, then the response of the system is shown in Figure 5.8. By
looking to the response, obviously the nonlinearity of the weight change of the URV’s

body and the velocity in vertical motion are shown. By the increment of P2,, v and
AW also increase until both of these reach saturation. Depth position, z, keeps

increasing since v > 0.
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Figure 5.8 Response of the system for ramp input.
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5.2 Simulation of Linearized Approach

By using MATLAB/Simulink, the linearized approximation strategy is simulated.
This controller is applied to control the original nonlinear model for depth positioning
of a spherical URV which the block diagram is shown in Figure 5.9. The control law

from Eq. 4.20 can be constructed in Simulink model as shown in Figure 5.10.

Dynathic of ————»
Sphetical
URY

Yd +
—»

Figure 5.9 Schematic diagram of linearized approximation control design.

The feedback gains kq, k,, and k3 are obtained by tuning & and a. The value of
& and a are obtained intuitively by tuning in the maximum range operation of the
system that is depth position. By choosing proper value of £ and a, the closed loop

system will be asymptotically stable. Some parameters of the control system obtained
from simulation with different depth operation are shown in the Table 5.1. The

simulation is performed in 1000 second and the time sampling is 0.1 second.
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Figure 5.10 Simulink model of linearized control system.
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Table 5.1 Performances of linearized control system in different range of depth

operation.
%
opertintry| £ | @ | 70| 10 PTG O e | s
0-50 1 (0212 | 458 73.4 0.079 0.019 0.038 7676
0-100 0.8 | 0136 | 89.4 | 1331 0.06 0.05 0.05 13740
0-150 0.85 | 0.109 | 132.8 | 189.6 0.656 0.168 0.112 20450
0-200 0.76 | 0.092 | 176.3 | 247.3 0.867 0.336 0.168 26900

Some models of desired depth position as input references are tested in order to know

the response of this control design. By choosing &£ =0.8 and a =0.136 which are

obtained from simulation in the depth operation from 0—-100 meter, the response of

the control system for some different model of desired depth position are shown in

Figure 5.11, Figure 5.13, Figure 5.15, Figure 5.17 and the error of the depth position

for corresponding input model are shown in Figure 5.12, Figure 5.14, Figure 5.16.
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Figure 5.11 Response of linearized controller design for single step input reference.
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Figure 5.12 Error of depth position of linearized controller design for single step input

reference.
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Figure 5.13 Response of linearized controller design for multi steps input reference.
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Figure 5.14 Error depth position of linearized controller design for multi steps input

reference.

From Figure 5.13, it is seen that the gain of the feedback K, which depends upon &

and a, is effective for certain range of depth operation. By giving multi steps input
reference, the response of the control system for some different initial and final depth
positions are presented. Some of index performances of this system are presented in
Table 5.2.

As mentioned before, that the feedback gain K is obtained as the optimum gain for
depth operation from 0 to 100 meter. If the desired depth position is deeper than this
range, then the response is not optimal, the overshoot occurs and becomes bigger for

the deeper desired depth position. The settling time is increased also.

If the input reference is changed from step input into ramp input with saturation value

which is desired depth position, the response of the system is shown in Figure 5.15.
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Table 5.2 Performances of linearized controller design in different initial and final

depth position.

Step change %
P Overshoot | e, /RMSE Energy usage
Depth position) | 7,.(s) | T (s 58 error
(Dep (rFr)1) ) r(s) s ©) (%) (m) (Watt second)
0-30 59.2 | 108.8 0.005 0.04 0.133 1859.034
30-100 68.9 | 102.7 0.061 0.088 0.088 10642.417
100-30 84.2 | 170.7 0.005 0.044 0.147 7741.709
30-160 105.2 | 387.1 31.601 0.253 0.158 34967.527
160-30 128.4 | 248.1 0.005 0.032 0.107 15154.273
110-160 529 | 2274 14.221 0.273 0171 19204.848
160-110 77.8 | 1416 0.001 0.155 0.141 8914.826
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Figure 5.15 Response of linearized controller design for ramp model of input

reference.
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Figure 5.16 Error depth position of linearized controller design for ramp model of
input reference.
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Figure 5.17 Response of linearized controller design for single step input reference
when & =0.8and ¢ =0.136.

From Figure 5.15, it is shown that by the same gain of feedback K but desired depth
position is deeper than maximum range of depth operation, the ramp model input
reference gives better response as compared to step input model in Figure 5.17. In
other words, by changing step input model into a trajectory input model, the response
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of the control system can be improved, the settling time 7, = 436.3 s and steady state
error eg, =0.097 m. In Figure 5.17, the desired depth position z; =200 mis applied

as step input model and the value of the gain Kis obtained from tuning at

z4; =100 m. The steady time and error steady state are obtained as 7, =560.7 s and
e, =0.099 m respectively. If we consider to the energy usage, single step input

model consumes 54600 Watt second and ramp input model consumes 8943 Watt
second. Therefore by manipulating this input reference, the energy usage also can be

saved.

Since the controller based on the linearized model can stabilize the system by tracking
the error converge to zero than it can be expected that this control strategy can track
a given trajectory input reference. If the input reference is dynamic or given as
a trajectory, then the responses of the control system are shown in Figure 5.18 and
Figure 5.20. The models of input reference are given as sinus and triangle. The error

can be seen in Figure 5.19 and Figure 5.21 for each input model respectively.
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Figure 5.18 Response of linearized controller design for sinus model of input

reference.
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Figure 5.21 Error depth position of linearized controller design for triangle model of

input reference.

By giving a trajectory input reference, from the simulation can be seen that the output
is lagging from the reference. If the change of the input reference is constant, the error

is almost constant as shown in Figure 5.20 and Figure 5.21. From simulation if the

change of input is 0.1msthen absolute error converge to 2.408mand if change

input is 0.2 ms ™! then absolute error converge to 6.361m . For sinus model, the error

(RMSE) is 2.956 m, energy needed in the operation is 1935.541 Watt second. For the
triangle model, as shown in Figure 5.20, the error (RMSE) is 4.58 m and energy

needed in the operation is 4215 Watt second.

If URV is sent to a particular depth position and let it stays at this position, it is seen
that the controller can asymptotically stabilize the system, because for t — «, e — 0.
But, if the desired depth position is dynamic (given as trajectory), then the error is not

convergent to zero, but still the controller can track the trajectory.
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5.3 Simulation of Nonlinear approach

The mathematical equations of the controller strategy derived in the previous chapter
will be simulated in this subsection in order to know the performances of each control
strategies. The simulation will be performed in MATLAB/Simulink.

5.3.1 State-Space Linearization

The simulation for state-space feedback linearization strategy is built based on
schematic diagram given in Figure 5.22. The Simulink model is built based upon
mathematical model obtained at previous sub section. The original input for the
nonlinear system is shown in Figure 5.23. The functions w(x) and y(x) are shown in
Figure 5.24 and Figure 5.25 respectively. The states transformation and linear
controller for the transformed states are shown in Figure 5.26 and Figure 5.27
respectively. In order to know the performances of this control strategy, some input

model are tested.

Yd = f1d Linear iy # | Dynamic of Y,
» controller M w =i+ y v *  Spherical
(‘b’=.35121d—Kz) U-RV b 4
e,m:xﬁy :w:x)T
z Feedback
Linearization|”
State
Transformation [*
zZ=z(x)

Figure 5.22 Schematic diagram of state-space feedback linearization control design.
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In order to stabilize the system, we just consent in linear controller that is by tuning

the feedback gain. A proper value of £ and a must be chosen in order to obtain

a good performance of the controller. The feedback gain is tuned at a particular range
of depth, because it only optimum in a certain range but not for out of the range.
If a step input reference is applied with different magnitude, the controller will result
performances those are shown in Table 5.3.

Table 5.3 Some Parameters and performances of state-space feedback linearization
strategy in different range of depth operation

Rang(ggsfhrf tion & a T, T s |Overshoot | €gg JRMSE % Energy usage
(m) (s) ) (%) (m) error | (Watt second)
0-50 0.764 |0.068 | 46.3 | 73.7 0.162 0.066 0.132 3900.315
0-100 0.77 |0.036 | 89.1 [159.7 | 1.194 0.204 0.204 7742.287
0-150 0.85 [0.026 [133.8 |{197.8 | 0.369 0.300 0.200 11320.82
0-200 0.82 [0.019 [177.9 |262.3 | 0.561 0.567 0.284 | 14962.127

Furthermore, the control strategy will be tested with different model of input
reference in the same feedback gain that was tuned in the range of depth position from
0-100 m, £=0.77 and @« =0.036. If a step input is applied in magnitude 100 m,

the response of the system is shown in Figure 5.28, and the error is shown in
Figure 5.29. If a multi step input is applied with different magnitude of the step, the
system will response that is shown in Figure 5.30 and the error is shown in
Figure 5.31.

By giving the multi step model of input reference, the response of the system when it
is operated in different origin and final depth position, can be known. The
performances of the controller are given in Table 5.4. From Table 5.4, it is seen when
the input is start from 30 m and end at 100 m, results different response when it start
from 0 m and end at 100 m, see Table 5.3, the overshoot is bigger. If the power usage
is considered, even its distance is shorter, Table 5.4 consumes bigger power usage
compare to Table 5.3. This condition is caused by the difference of the hydrostatic

pressure in different depth which is higher in deeper position.
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Figure 5.28 Response of the state-space feedback linearization strategy for single step
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Figure 5.29 Error of the state-space feedback linearization strategy for single step

model of input reference.



Chapter 5: Results and Discussion 98

2EQ o R T R e e e TP R SR IRP :

desired depth
— — —actual depth

depth position {m)

i 1 1 i 1 i 1 i
a aaa 1000 1500 2000 2500 3000 2500 4000
time (=)
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Figure 5.31 Error of the state-space feedback linearization strategy for multi step

model of input reference.
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Table 5.4 Performances of state-space feedback linearization strategy in multi step

input reference of depth position.

Step change T T

L9 Overshoot (N Power usage

(Depth( r|$]c))5|t|on) (SV) (S~; (%) ézl)\/ISE (Watt second)
0-30 25.6 224 0.234 0.069 1028.794
30-100 65.2 194.2 6.775 0.213 9477.242
100-30 87 267.3 0.322 0.085 6743.544
30-160 106.7 | 432.8 25.537 0.357 24934.511
160-30 127.1 | 342.2 0.307 0.051 14410.108
110-160 57.1 223.8 8.507 0.293 13030.645
160-110 87.1 224.8 0.077 0.219 7664.011

By testing step input model, it is seen that the control strategy can asymptotically
stabilizes the system, for t —> o, e— 0. Therefore, the control strategy can be
expected to be used in tracking a trajectory. If ramp input with saturation value is
applied, the response of the system is shown in Figure 5.32 and the error is shown in
Figure 5.33.
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Figure 5.32 Response of state-space feedback linearization strategy for ramp model of

input reference.
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Figure 5.33 Error of state-space feedback linearization strategy for ramp model of

input reference.

From Figure 5.32, it is clearly seen that by changing the model of input reference
from step input into ramp input with saturation value, the controller can be used for
out of the range of the depth position in which the feedback gain is tuned. The steady
time is 553.3 second, overshoot is 0.017 %, RMSE in steady state is 0.004, and the
energy consumed is 6743.027 Watt second. These performances are better compared
to step input model. If step input reference with the same magnitude is given, the
steady time is 595.3 second, overshoot is 35.925 %, RMSE in steady state is 0.135,
and the energy consumed is 37604.955 Watt second. The response can be seen in
Figure 5.34.

If the trajectory is given as sinus model and triangle model, the response is shown in
Figure 5.35 and Figure 5.37 respectively. For sinus model, RMSE in tracking this
trajectory is 6.741 m and the energy usage is 1944.425 Watt second. For triangle
model, RMSE is 9.213 m and the energy usage is 3936.512 Watt second. From these
simulations, it is seen that if the input is given as trajectory, the response of the
controller is lagging. If the change of trajectory is linear, the error will converge to

a constant, as shown in Figure 5.38. From simulation, if the change of input trajectory
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is 0.1ms Lthen

absolute error converge to 6.082mand if the change of input is

0.2ms ™! then absolute error converge to 12.163m
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Figure 5.34 Response of state-space feedback linearization strategy for step input

reference which is bigger than range of depth operation.
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Figure 5.35 Response of state-space feedback linearization strategy for sinus model of

input reference.
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Figure 5.36 Error of state-space feedback linearization strategy for sinus model of
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Figure 5.37 Response of state-space feedback linearization strategy for triangle model

of input reference.
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Figure 5.38 Error of state-space feedback linearization strategy for triangle model of

input reference.

5.3.2 Input-Output Linearization

The simulation of input-output feedback linearization strategy is performed by the
following schematic diagram given in Figure 5.39.

¥4 Linear v _v—alx) & Dynamic of L
31 Feedback ¥ = B(x) *|  Spherical x
Controller TRV
r Y &'I:XIIT ﬁ(xi
Feedback
Linearization|*

Figure 5.39 Schematic diagram of input-output feedback linearization control design.

The Simulink model for the control system is built block by block based on the

mathematical model. Simulink model of the synthetic input obtained at Eq. 4.68 and
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Eq. 4.69 is shown in Figure 5.40, and the Simulink model of the original input u

written at Eq. 4.63 is shown in Figure 5.41.
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Figure 5.40 Simulink model of the synthetic input in input-output feedback

linearization control design.
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Figure 5.41 Simulink model of the original input in input-output feedback

linearization control design.

And the Simulink models of «(x) and g(x) are shown in Figure 5.42 and

Figure 5.43 respectively.
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In order to stabilize this system, the eigenvalues at Eq. 4.66 must be located at the left

half of complex plane by choosing a proper value of a and & thus the system is

asymptotically stable. By giving step input in different range of depth operation, the

value of a and & are obtained as presented at Table 5.5. These values are obtained by

tuning in order to get an optimum response. The duration of the simulation is 1000

second and the time

sampling is 0.1 second.
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Table 5.5 Some Parameters and performances of input-output feedback linearization

strategy in different range of depth operation

Range Energy
operation 5 a T p T s Overshoot | €g¢ JRMSE % usage
(Depth) (s) ) (%) (m) error (Watt

(m) second)
0-50 0.762 | 0.071 | 459 | 73.3 0.829 0.058 0.116 4122
0-100 0.762 | 0.036 | 89.4 | 132.8 0.77 0.244 0.244 7832
0-150 0.835 | 0.026 | 133.4 | 192.3 0.555 0.297 0.198 11450
0-200 085 | 0.02 |177.1 | 250 0.932 0.498 0.249 15140

In order to know the characteristic of the control system, further, some models of

input reference are applied in this depth positioning system. Models of the input

reference are same as models applied in previous control design. These input

reference models are simulated for

a=0.036 and &=0.762. If steps input are

applied as single step input and multi step inputs, the responses are shown in

Figure 5.44 and Figure 5.46 respectively. The error for each input model can be seen
in Figure 5.45 and Figure 5.47.
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Figure 5.44 Response of input-output feedback linearization strategy for single step

model of input reference.
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Figure 5.46 Response of input-output feedback linearization strategy for multi step

model of input reference.
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Figure 5.47 Error of input-output feedback linearization strategy for multi step model

of input reference

The feedback gain K is effective for certain range of depth operation, as shown in
Figure 5.46. This gain must be tuned at maximum range of the depth operation and
the control system is optimum if the operation is in this range. The performance of the
control system when the URV is operated in different initial and final depth position
is presented in Table 5.6. The gain used in this control system is obtained from tuning

in the range of depth position at 100 m.

Table 5.6 Performances of input-output feedback linearization strategy in multi step
input reference of depth position.

Step change T, Ts | overshoot | ©ss /RMSE % Energy usage
(Depth position) (s) (s) (%) (m) error (Watt second)

(m)

0-30 436 | 218.6 0.219 0.068 0.227 1254.617
30-100 65.8 | 183.4 5.394 0.212 0.212 9335.668
100-30 86.4 | 267.5 0.329 0.086 0.287 6773.23
30-160 106.5 | 433.4 | 25.666 0.357 0.223 25053.856
160-30 126.6 | 342.6 0.308 0.051 0.170 14423.567
110-160 56.7 | 225.8 8.994 0.291 0.182 13401.248
160-110 85.3 | 224.9 0.079 0.219 0.199 7712.397
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Table 5.6 shows if the URV descends in the range of depth 0 — 100 m, it shows
a good behavior with small overshoot. If the URV descends out of its range, the
overshoot is increased and steady time is also increased. For ascent motion, the
overshoot is small even the URV operates out of range of the depth position. The rise
time is slower compare to descent motion. This condition is caused by the difference
of hydrostatic pressure at different depth position. At the deeper position, the
hydrostatic pressure is higher than shallower position. It causes the power needed to

change the weight of URV, x3 = AW, is higher. Therefore with the same power, the

rise time of descent motion is faster then ascent motion, because the rise time is

proportional to the rate change of weight of URV, AW.

If a ramp model is given as input reference, response of the control system is shown

in Figure 5.48 and the error is shown in Figure 5.49.
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Figure 5.48 Response of input-output feedback linearization strategy for ramp model

of input reference
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Figure 5.49 Error of input-output feedback linearization strategy for ramp model of

input reference.

If desired depth position is deeper than maximum range of depth operation where
feedback gain K is tuned, the ramp model input reference with saturation value gives
better response compare to step input. By giving ramp model input reference, shown

in Figure 5.48, the steady time 7, =565.8 s and steady state error ey, =0.159 m.
This input model is faster to reach steady state compare to step input model, shown in
Figure 5.50, which has steady time 7, =596.8s and steady state error
e, =0.135 m. If we consider to the energy used in this operation, for step input the

energy usage is 37940 Watt second and for ramp input model the energy usage is
18410 Watt second. Therefore, by changing the input reference from step model into
ramp model, the better response and optimal control will be obtained.

If we look again to the Figure 5.48 and Figure 5.49, before reach steady state, the
error is minimized when the input reference keeps changing or dynamic. Therefore

this controller can be expected to be applied for tracking a trajectory. If trajectory
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input reference is given to the control system, the response can be seen in Figure 5.51

and Figure 5.53. The model of input reference is given as sinus and triangle.
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Figure 5.50 Response of input-output feedback linearization strategy for single step
model of input reference bigger than range of depth operation.
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Figure 5.54 Error of input-output feedback linearization strategy for triangle model of

input reference.

From Figure 5.51 and Figure 5.53, it is seen that the actual depth position of the URV
keeps following the trajectory given as input reference. If the input reference is given
as sinus model, the response is looked so smooth, error (RMSE) is 0.008 m.
Figure 5.53 shows when the trajectory as input reference is extremely change, the
resulting error position is increased, the error (RMSE) is 1.634 m. This condition is
also shown in Figure 5.48 when input reference is given as a ramp model. The error is
increased when the input reference is changed into constant value. From simulation, it

is seen if the change of input trajectory is constant, then the error converges to zero.
If we consider to the energy needed in this operation, when the trajectory is given as

sinus the energy usage is 1906 Watt second and if trajectory is given as triangular, the

energy usage is 13560 Watt second.

5.4 Performances of The Controllers

Since the dynamic model for depth positioning of the spherical URV behaved as

nonlinear system then two different approaches were designed in this thesis in order
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to perform the depth positioning system, i.e. linearized approximation and feedback
linearization. In feedback linearization approach, there are two methods, i.e. state-
space linearization and input-output linearization. The performances for these
approaches when step input was applied are shown in Table 5.7 and Table 5.8, and
when trajectory input was applied, the performances are shown in Table 5.9. From
Table 5.7, generally, it is seen that by using linearized approximation, the steady state
is reached faster than both feedback linearization approaches. It also can be seen in
Table A.1 (Appendix 3), when different multi step input is applied. If the URV is
operated in the range in which the gain is tuned, the overshoot and steady state error
of linearized approximation are also smaller than feedback linearization. But, if
energy usage in operation is considered, feedback linearization strategy consumes less
power than linearized approximation. It is seen in Table5.8 and Table A.2
(Appendix 3). If performances of the state-space feedback linearization and input-
output feedback linearization are compared when the step input reference is applied, it
is seen that if the URV is operated within the range where the gain is tuned (0-100m),
input-output feedback linearization give faster response in order to reach steady state.
The overshoot and steady state error almost the same. But for the energy usage, state-

space feedback linearization consumes less power.

Table 5.7 Rise time (7,.), steady time (7 ) and overshoot (OS) of the controllers.

Ste(%ggir?ge Linearized approximation Stat(i_-spac_e fe_edback Input-_outpyt fgedback

position) inearization linearization

(m) T, T os [T, T os [T T 0s

(s) (s) (%) (s) (s) (%) (s) (s) (%)

0-30 59.2 108.8 0.005 25.6 224 0.234 43.6 | 218.6 | 0.219
30-100 68.9 102.7 0.061 65.2 | 1942 | 6.775 65.8 | 183.4 | 5.394
100-30 84.2 170.7 0.005 87 267.3 | 0.322 86.4 | 267.5 | 0.329
30-160 105.2 387.1 | 31.601 | 106.7 | 432.8 | 25.537 | 106.5 | 4334 | 25.67
160-30 128.4 248.1 0.005 127.1 | 342.2 0.307 126.6 | 342.6 | 0.308
110-160 52.9 227.4 14.221 57.1 223.8 8.507 56.7 225.8 | 8.994
160-110 77.8 141.6 0.001 87.1 224.8 0.077 85.3 2249 | 0.079
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Table 5.8 Steady state error (RMSE) and power usage for step input.

Ste(%ggia ge Linearized approximation Stateljspac_e fe_edback Input-_outpyt fgedback
position) inearization linearization
(m) RMSE Power usage RMSE Power usage RMSE Power usage
(m) (Watt second) (m) (Watt second) (m) (Watt second)
0-30 0.04 1859.034 0.069 1028.794 0.068 1254.617
30-100 0.088 10642.417 0.213 9477.242 0.212 9335.668
100-30 0.044 7741.709 0.085 6743.544 0.086 6773.23
30-160 0.253 34967.527 0.357 24934.511 0.357 25053.856
160-30 0.032 15154.273 0.051 14410.108 0.051 14423.567
110-160 0.273 19204.848 0.293 13030.645 0.291 13401.248
160-110 0.155 8914.826 0.219 7664.011 0.219 7712.397

Table 5.9 Steady state error (RMSE) and power usage for trajectory input.

re ;:rzlrjlt:e / Linearized State-space feedback Input-output feedback
. approximation linearization linearization
trajectory
RMSE | Power usage | RMSE | Power usage | RMSE | Power usage
(m) (Watt second) (m) | (Watt second) (m) (Watt second)
Triangle 4.58 4215 9.213 1944.425 1.634 13560
Sinus 2.956 1935.541 6.741 3936.512 0.008 1906

If input reference is given as trajectory, different performances are obtained in

simulation. Input-output feedback linearization approach results smallest steady state

error compared to the others approaches. This condition is seen clearly if the

trajectory is given in sinus model, as presented in Table 5.9 and Table A.3

(Appendix 3).

If the energy usage is considered, the input-output feedback

linearization approach consumes more energy compared to the others approaches.

But, if we look to the sinus model reference the difference of energy usage between

input-output feedback linearization approach and linearized approximation approach

IS not so big, but steady state error resulted by input-output feedback linearization is

very small compared to linearized approach or state-space feedback linearization.
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5.5 Summary

Simulation of dynamic model and controller design are simulated in this chapter by
using Simulink/ MATLAB. By simulating the dynamic model in open loop system,
the characteristic of the system can be analyzed. In order to control depth position of
the spherical URV by using a variable ballast mechanism, a proper controller is
needed. Since the system behaves as nonlinear system, then the controllers are
designed by using linearized approach and nonlinear approach. In nonlinear approach,
feedback linearization which consist of state-space feedback linearization and input-
output feedback linearization are applied. Performances of these controllers are
discussed and compared each others in this chapter. Some input model such as step
input, ramp and trajectory are tested to system in order to know the responses and

performances of the controller.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

This thesis presented depth positioning of a spherical underwater robot vehicle by
using a variable ballast mechanism as motion actuator. A spherical shape has
advantage that is having axially symmetry along it surface, so that it provides uniform
drag force in any direction of its motion. Hence, it will be easier to design control

strategy for its motion.

Since the depth positioning system was designed, then this thesis just interested in one
degree of freedom from six in full degree of freedom, i.e. heave or vertical motion.
A variable ballast mechanism which works based on Archimedes principle is utilized
as motion actuator. By assuming there are no external disturbances and parameters of
ambient such as water density, atmospheric pressure at surface, gravitational
acceleration are constant, then the dynamic model of this depth positioning system
was derived in this thesis. Since the dynamic model behaved as nonlinear system,
then in order to control the depth position of the URV, two different approaches of the
controllers were investigated, i.e. linearized approximation approach and nonlinear

approach.

Some properties of these approaches, such as controllability, stability and
observability, were analyzed. In linearized approximation approach, it was concluded
that the linearized model is controllable and observable therefore the actual nonlinear
model is also controllable and observable. Hence, the linear controller strategy can be
designed based on the linearized model. In order to analyze the stability of the system
about equilibrium point based on the linearized model, Lyapunov provided method

that is known as Lyapunov linearization method. Since all of eigenvalues of the
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linearized model presented in this thesis is zero, 4 =0, then Lyapunov linearization

method cannot conclude whether the actual nonlinear model is stable or unstable.

In nonlinear approach, these properties were analyzed from the actual nonlinear
model. In analyzing the controllability and observability of the system, Lie algebra
was involved to construct the controllability and observability matrix. Based on these
matrices, it can be concluded that the actual nonlinear model is controllable and
observable. Considering the stability of the system based on the actual nonlinear
model, Lyapunov also provided a method which is known as Lyapunov direct
method. In this method, first, the possible Lyapunov function must be constructed. In
this thesis, variable gradient method was utilized to construct the possible Lyapunov
function. Then from this possible Lyapunov function, the Lyapunov direct method
concluded that the actual nonlinear model is unstable. Hence, in order to stabilize the
actual nonlinear model, the feedback linearization strategy was used. Since the actual
nonlinear model is SISO system, then there are two kinds of feedback linearization
methods possible to be applied, i.e. state-space feedback linearization and input-
output feedback linearization. These two approaches of feedback linearization can

perform the stabilization in order to control the depth position of the URV.

By the given parameters used in the design of variable ballast system which is utilized
for vertical motion actuator of a spherical URV, then the VBS can change the weight

of URV body, AW,in range £9.96 N in order to make URV in positive buoyancy,

neutral buoyancy or negative buoyancy. The buoyancy of URV is considered as a
constant value. By using this mechanism, then the URV can move in vertical plane in

the range of velocity +1.019 mst.

From simulation of the controllers, can be concluded if the input reference of desired
depth position is given as step input, the linearized approach can stabilize the system
faster then both feedback linearization. If we consider to energy usage in the
operation, then it is shown that state-space feedback linearization consume less energy
compare to input-output feedback linearization and linearized approach. If the input

reference is given as trajectory then input-output feedback linearization results the
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smallest error. Since the change of input reference is constant, error of input-output
feedback linearization is converge to zero, and the other two controller are converge

to a constant value.

6.2 Thesis Contribution

In this thesis, a mechanism of variable ballast system was designed. This variable
ballast mechanism utilized a variable tank as the chamber of amount of the water to
be controlled. In this mechanism, water always fill all space in the tank but can be
different in term of volume. Therefore, internal dynamic that is caused by movement
of water in the tank when variable ballast utilizing fixed volume tank and amount of
water is not maximum, will not occur. This variable ballast mechanism is suitable for

small-scale URV, because this mechanism is compatible for small tank.

The dynamic model of the variable ballast mechanism was presented in this thesis.
This mathematical model was derived based on the physical laws involved in this
system. The dynamic model for vertical motion of a spherical underwater vehicle was
also presented in this thesis. This vertical motion is caused by the change of weight
force of the URV’s body, which is from the variable ballast mechanism. By having
the mathematical model of vertical motion of spherical URV which utilizing variable
ballast mechanism as actuator, the simulation can be designed. Any controller strategy
can be designed and tested in computer simulation in order to get an optimal

controller.

Controller for depth positioning of a spherical URV by using variable ballast
mechanism as actuator was designed in this thesis. As a nonlinear system, then to
design the controller, some conditions must be considered. A controller can be
designed based on linearized approximation approach if the linearized model is
controllable otherwise this approach cannot be used. The linearized model of the
actual dynamic of this system is controllable then linear feedback control strategy was
designed based on the linearized model. A nonlinear approach was also performed to

design the controller for this depth positioning system, i.e. feedback linearization. As
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SISO system, there are two approaches of feedback linearization, i.e. state-space
feedback linearization and input-output feedback linearization. In stabilizing the
equilibrium point, the linearized approximation approach is faster to reach steady state
compared to the feedback linearization approach, but it needs more power. In tracking
the trajectory, input-output feedback linearization approach results smaller error
compared to linearization approximation approach and state-space feedback
linearization approach, but it needs more power. Therefore these approaches have

weaknesses and advantages.

6.3 Future Work

In this thesis, the design and model of variable ballast mechanism was presented. The
simulations are performed in ideal and constant parameters of ambient. Next, the
model and the control design should be tested in varying parameters of ambient.
Therefore, the performance of the controller can be analyzed. The robustness of the
controller also should be tested by involving some external disturbances. An optimal

controller also must be designed in order to optimal the usage of energy.

The availability of external disturbances could cause rolling or twisting on the
spherical URV, therefore in the future works, the influence of this motion should be

considered in the model.

The implementation of this design is needed so that it can be tested in the real

condition. Furthermore, any controller design can be tested in the real system.
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APPENDIX 1: M file in linearized approximation analysis.

%linearized.m
%programmed by Bambang S

syms x1 x2 x3 C1 C2 k1 k2 k3;
%OPEN-LOOP LINEARIZED SYSTEM
A=[0 1 0;0 0 C1;0 0 0O];
B=[0;0;C2];

C=[1 0 0];

%constructing the controllability matrix
Cm=[B A*B A*A*B];

%testing the rank of controllability matrix
n_Cm=rank(Cm);

%constructing the observability matrix
Mo=[C;C*A;C*A*A];

%testing the rank of observability matrix
n_Mo=rank(Mo);

%CLOSED-LOOP LINEARIZED SYSTEM
K=[k1 k2 k3];

%coefficient matrix of closed-loop system
Acl=[A-B*K];

%scaling factor
F=inv(C*(-inv(Acl))*B);
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APPENDIX 2: M file in feedback linearization analysis.

%Feedback.m
%programmed by Bambang S

syms x1 x2 x3 bl b2 b3 b4 b5 b6 w_bs g;
%OPEN-LOOP NONLINEAR SYSTEM

=[x2; (x3-b2*abs(x2)*x2)/(b1+x3/9);0];
g=[0;0;b3/(w_bs+x3+b4*x1-(b5*x3/(b6-x3)))1:;
h=x1;

%
%Lie bracket

dg=[diff(g,x1) diff(g,x2) diff(g,x3)];
df=[difF(F,x1) diff(F,x2) diff(F,x3)];

adfg=dg*f-df*g;

dadfg=[diff(adfg,x1) diff(adfg,x2) diff(adfg,x3)];
ad2fg=dadfg*f-df*adfg;

%

%constructing the controllability matrix of nonlinear system
C=[g adfg ad2fg];

%testing the rank of controllability matrix of nonlinear system
n_C=rank(C);

%
%observability analysis

Lfh=[diff(h,x1) diff(h,x2) diff(h,x3)]*f;
Lfilh=[diff(LTth,x1) diff(Lfth,x2) diff(Lfh,x3)]*f;

%constructing the observability map of nonlinear system
phi=[h;Lfh;Lflh];

%Jacobian of observability map = observability matrix
%d_phi=[diff(phi,x1) diff(phi,x2) diff(phi,x3)]
d_phi=jacobian([h;Lfh;Lf1h],[x1 x2 x3]);

%testing the rank of obseravability matrix of nonlinear system
n_d_phi=rank(d_phi);
%

%STATE-SPACE LINEARIZABLE ANALISYS

%constructing involutivity vector field of nonlinear system
X2=adfg;

dX2=[diff(X2,x1) diff(X2,x2) diff(X2,x3)];
adgXx2=dX2*g-dg*Xx2;
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%involutivity analysis
v_T=[g adfg adgX2];
n_vf=rank(v_¥);

%state transformation

z1=x1;

z2=jacobian(zl,[x1 x2 x3])*F;
z3=jacobian(z2,[x1 x2 x3])*f;

Ifzl=jacobian(zl,[x1 x2 x3])*F;
If2z1=jacobian(1fzl,[x1 x2 x3])*f;
If3z1l=jacobian(1f2z1,[x1 x2 x3])*f;
Iglf2zl=jacobian(1f2z1,[x1 x2 x3])*g;

psi=-1*1f3z1/1glf2z1;
gamma=1/1glf2z1;
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APPENDIX 3: Simulation result for different input reference models.
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Figure A.1 Response of linearized approximation controller with multi step input
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Figure A.3 Response of state-space feedback linearization controller with multi step

input reference in fixed increment.
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Performances for each the controller with multi step input are presented in Table A.1

and Table A.2.

Table A.1 Rise time (7,.), steady time (7 ) and overshoot (OS) of the controllers with

multi step input in fixed increment.
Step change Linearized State-space feedback Input-output feedback
(Depth position) approximation linearization linearization

(m) T, |Ts os | T |Ts os | T |Ts 0S

) [ ] () [ (5 (s) (%) | () (s) (%)
0-10 516 | 87.8 | 0014 | 774 | 197.7 | 1498 | 759 | 1425 | 1.587
10-20 51.0 | 80.0 | 0.007 | 775 | 1257 | 0.749 | 76.9 | 123.1 | 0.782
20-30 508 | 755 | 0.005 | 775 | 121.6 | 0499 | 76.9 | 119.1 | 0.523
30-40 508 | 720 | 0.004 | 775 | 1181 | 0374 | 76.9 | 115.1 | 0.393
40-50 50.7 | 69.1 | 0003 | 775 | 1151 | 0.300 | 76.8 | 111.7 | 0.315
50-60 50.5 | 66.7 | 0.002 | 775 | 1123 | 0.250 | 76.8 | 108.7 | 0.263
60-70 50.6 | 64.7 | 0.002 | 77.4 | 109.7 | 0.214 | 76.8 | 106.4 | 0.225
70-80 50.7 | 63.1 | 0.002 | 775 | 1074 | 0.187 | 76.9 | 104.6 | 0.197

Table A.2 Steady state error (RMSE) and power usage for multi step input in fixed

increment.
Step change | Linearized approximation Stat?;ﬁg:?ii;fi%%ba(:k Inputl-i?]:;;;?;ai?ggback
(Depth
position) RMSE | Powerusage | RMSE | Powerusage | RMSE Power usage
(m) (m) (Watt second) (m) (Watt second) (m) (Watt second)
0-10 0.011 288.342 0.028 29.065 0.067 60.181
10-20 0.024 552.503 0.067 86.331 0.069 115.699
20-30 0.037 834.563 0.073 143.597 0.075 171.830
30-40 0.051 1072.580 0.082 200.864 0.084 227.042
40-50 0.066 1294.861 0.094 258.131 0.095 281.966
50-60 0.081 1509.595 0.108 315.397 0.109 336.922
60-70 0.096 1732.926 0.124 372.664 0.124 392.853
70-80 0.111 1964.222 0.141 429.930 0.140 450.129
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Figure A.7 Response of linearized approximation controller in ramp input reference
with gradient 0.05.
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Figure A.10 Error depth position of state-space feedback linearization controller in

ramp input reference with gradient 0.05.
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Figure A.11 Response of input-output feedback linearization controller in ramp input

reference with gradient 0.05.
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Figure A.12 Error depth position of input-output feedback linearization controller in
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Figure A.15 Response of state-space feedback linearization controller in triangle input

reference (range operation 5-50 m).
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Figure A.17 Response of input-output feedback linearization controller in triangle

input reference (range operation 5-50 m).
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Figure A.18 Error depth position of input-output feedback linearization controller in
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Figure A.19 Response of linearized approximation controller in sinus input reference

(range operation 0-50 m).
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Figure A.21 Response of state-space feedback linearization controller in sinus input

reference (range operation 0-50 m).
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Figure A.22 Error of state-space feedback linearization controller in sinus input

reference (range operation 0-50 m).
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Figure A.24 Error depth position of input-output feedback linearization controller in

sinus input reference (range operation 0-50 m).
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Table A.3 Steady state error and power usage for trajectory input.
Input reference/ Linearized State-space feedback Input-output feedback
trajectory approximation linearization linearization
RMSE | Power usage | RMSE | Power usage | RMSE | Power usage
(m) | (Wattsecond)] (m) [(Wattsecond)| (m) [ (Wattsecond)
Ramp 1.005 0.081 3.004 0.312 0.172 11.032
Triangle 2.711 1661.95 6.436 1447.597 1.853 3739.012
Sinus 3.935 3545.082

8.326 3663.743

0.024 3825.309
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