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ABSTRACT

Computer networks play an important role in today’s organization and people life.
These interconnected devices share a common medium and they tend to compete for
it. Quality of Service (QoS) comes into play as to define what level of services users

get. Accurately defining the QoS metrics is thus important.

Bursts and serious deteriorations are omnipresent in Internet and considered as an
important aspects of it. This thesis examines bursts and serious deteriorations in
Internet traffic and applies Extreme Value Theory (EVT) to their prediction and
modelling. EVT itself is a field of statistics that has been in application in fields like
hydrology and finance, with only a recent introduction to the field of
telecommunications. Model fitting is based on real traces from Belcore laboratory
along with some simulated traces based on fractional Gaussian noise and linear
fractional alpha stable motion. QoS traces from University of Napoli are also used in
the prediction stage.

Three methods from EVT are successfully used for the bursts prediction problem.
They are Block Maxima (BM) method, Peaks Over Threshold (POT) method, and R-
Largest Order Statistics (RLOS) method. Bursts in internet traffic are predicted using
the above three methods. A clear methodology was developed for the bursts
prediction problem. New metrics for QoS are suggested based on Return Level and
Return Period. Thus, robust QoS metrics can be defined. In turn, a superior QoS will

be obtained that would support mission critical applications.

Vi



ABSTRAK

Rangkaian Komputer memainkan satu peranan yang penting dalam organisasi dan
kehidupan masyarakat saat ini. Penggunaan alat ini menjadi satu media perkongsian
yang biasa dan mandukung alat sedi ada. Qualiti dan pelayanan menentukan tingkat
kepuasan penguna. Pengukuran metrik Qualiti dan pelayanan (QoS) adalah sangat
penting.

Pancutan dan kesan kerosakan serius yang terdapat di Internet dianggap sebagai
satu aspek penting dalam hal ini. Tesis ini membincangkan pancutan dan kesan
kerosakan yang terdapat dalam lalu lintas internet dan berlaku dalam Teori Penilaian
Extreme (evt) untuk membuat keputusan dan permodelan. Evt sendiri merupakan
bidang statistik yang telah di aplikasi dalam bidang-bidang seperti hidrologi dan
kewangan, dengan hanya sebuah pengenalan baru untuk bidang telekomunikasi.
Penelitian ini didasarkan pada jejak nyata dari makmal Belcore bersama-sama dengan
beberapa jejak simulasi berdasarkan hingar Gaussian fraksional dan gerakan alpha
linier fraksional stabil. Jejak QoS dari Universiti Napoli juga digunakan dalam tahap

ramalan.

Tiga kaedah daripada evt yang berjaya digunakan untuk masalah ramalan
pancutan. Kaedah-kaedah itu seperti kaedah Blok Maxima (BM), kaedah Peaks Over
Threshold (POT), dan kaedah R-Terbesar Kumpulan Statistik (RLOS). Pancutan
dalam lalu lintas internet diramal menggunakan tiga kaedah di atas. Sebuah
metodologi yang jelas dibangunkan untuk masalah ramalan pancutan. metrik baru
untuk QoS yang dicadangkan berdasarkan Tingkat Pulangan dan Tempoh Pulangan.
Dengan demikian, kuat metrik QoS boleh ditakrifkan. Pada gilirannya, sebuah QoS

yang unggul akan diperoleh yang akan menyokong misi kritikal ini.
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CHAPTER 1

INTRODUCTION

This chapter introduces some of the materials that are indhe of the subject of this
thesis, it presents then the problems dealt with, definiegsttope and concluding by

describing the organization of the rest of the thesis.

1.1 Computer Networks

Computer networks are a collection of interconnected devibat share a common
medium. Through this medium, they communicate and shaceiress. A perfect ex-
ample of computer networks is the Internet, it is omniprégsemuch aspects of our
today daily life and is beginning to take bigger and bigget peour daily activities and
we are depending on these technologies to a large extents®eatworking technolo-
gies in entertainment, education, business, and commtigricamong others. More
users are being attracted to this Internet medium and nelicappns that depend on
Internet connectivity are being developed. Some of thepécapions depend on the
Internet to a limited extent; however, large portion of thesw applications are heav-
ily Internet dependent and cannot operate without Interiietamples are electronic
mail, voice over Internet protocol, video conferencingnote access, IP telephony and

others.

All these applications share a common medium and some sguthey tend to
compete to use these shared resources. This competitiamgaapplications, in which
every application tries to access the Internet and tramst through Internet, is of
an importance. However, as in transportation traffic whea#fit jams are frequent,

this situation creates congestion and bottlenecks in ctanmetworks. Frustration



will grow when we notice delays and frequent interruptiohaetwork services. This
raises the issue of quality of service for the computer nek&v¢QoS). Therefore, an
active network management is crucial in order for these otwervices to deliver as
expected. To arrive at this end, a framework of theories aathaas should then be

developed for the practitioners to use.

1.2 Teletraffic Engineering and Quality of Service

Tele-traffic theory is a branch of engineering knowledgé teabines probability the-
ory and statistics with telecommunication. It applies @ptcfrom probability and
Queuing theory to the optimization, planning, managemaeaudt@erformance evalua-
tion of telecommunication networks. The tools used and hieerty developed are of
general use and are independent of the technology in use-tradlic theory is ap-
plied to telecommunication system as well as to the roadidrahanufacturing and
storage management. Among the various mathematical tpodmiand concepts, we
find stochastic processes, Queuing theory, numerical atluak, optimization, and re-

cently extreme value theory (EVT).

The major concern in Tele-traffic theory and engineering @esign and develop
systems that are cost effective, optimal, with a predefinadliy of Service. This
includes knowing the type of traffic and having a set of adi@ontingency plan) in
case of abnormal traffic and serious deterioration in théityuaf service. To do this, a
proper measurement and prediction of traffic are succimaded as well as methods

to measure, quantify, and precisely define Quality of Sermetrics.

The field of Tele-traffic itself is pioneered by the work of A.Erlang, a Danish
mathematician and engineer who worked on the classicalgarobf how many circuits
are needed for providing a certain level of quality of seevitn solving this problem,
Erlang developed a body of knowledge which resulted in Tig#ic theory, [30]. This
theory has proved successful in solving congestion anduress dimension problem
in Public Switched Telephone Network (PSTN) context, comiypaalled ordinary

telephone system. One of the mean reasons of the successloéthy is that the arrival
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of telephone calls and their duration were precisely defaratifollowed a pattern that
subscribe to some well known probability distribution liR®isson and Exponential

distributions.

However, with the advent of computers and data communicaigiworks, a new
pattern of traffic which is very different from the telephamee has emerged. This new
pattern has features such as very high variability (NoaledEff persistence (Joseph
effect) and self similarity, [58]. Moreover, data commuation and telephone networks
are completing each other in various instances. Praotitgoand scientist have thus
seen the need to extend the theory to include all these nemsfof development and
traffic patterns. This would help the near to perfect quahigt PSTNs have enjoyed
over the past decades by implementing network managemeiaesign the techniques

that will improve the quality of internet services.

Quality of Service (Qo0S) is a concept that emerged recentlgvercome and
solve service grading and delivery issues. This concepbbas applied long before
in communication network to corporate clients only. In théefnet context, QoS is
implemented using two major ways, differentiated servarasintegrated services [31].
In integrated services every application specifies its sdedore sending traffic into
the network by using a resource reservation protocol (RS¥RY, when the network
can meet the requirements of that particular applicatiosm application is permitted to
send its traffic through that particular network. This metbhbimplementing Quality of
Service is appropriate for some applications that needtantial resources; however,
it has some major drawbacks. All routers and devices aloagaith of the flow need to
support RSVP. Signaling between these devices is also addingputation overhead
and substantial traffic along the path. Furthermore, it liffisuties in being scaled up

to large networks.

The other method in implementing quality of service is thiéedentiated ser-
vices. This method of implementing QoS in network classifiafic into classes with
each class of traffic treated differently [69]. Then eaclslaf traffic is treated in a

predefined manner with certain priorities. This method gblementing QoS is easily

3



scaled up to large networks. In practice, the network maneaye choose between the
integrated services and differentiated services, withespassible combination of both.

This will provide a scalable end to end quality of servicetite hetwork.

As would be expected, providing a QoS needs an agreemen¢éetive service
provider and the customer on some terms and conditions. &lyelginding document
called Service Level Agreement (SLA) provides such a fraotkw In SLA and its
technical details document, ISP and the user agree on arclental of acceptable ser-
vice; they also define, as thoroughly as possible, the latesarvice parameters such
as throughput, jitter, packet loss, delay, and seriousidestions in the Internet traf-
fic. SLA also specifies penalties and compensations in cagelation of the agreed
on service parameters. This will ensure a better treatniemt the traditional least
effort service, default QoS, classically provided by Inetrand will help the service
provider to put its resources for an efficient use and to heathel peaks and rare events

adequately.

1.3 Bursts and Serious Deteriorations

Bursts are defined as aggregation of data in a relatively dimadlinterval. Bursts can
be found in quantities like connection duration, throughfiile sizes, packet counts
etc. Bursts concept is somehow a vague one that lends itsdlff@rent settings to
different interpretations. From security point of view,réis are regarded as a threat
to network where they signal a possible denial of servicack# into the network.
From telecommunications traffic points of view, bursts anesidered as an interrupted
transmission in data network for a period of time, we fouret¢hin particular terms like
bursts size and bursts duration for example. In data trasssom, there is a technique
that is referred to as Optical Bursts Switching (OBS) that @sfithe way the data is

being transmitted in network.

Bursts are thus defined to be the frequent spikes that areeimier the traffic
through different scales. This definition of bursts is symaous to the serious deteri-

orations in the traffic. It can be applied to quantities likeoughput, delay, file sizes,

4



connection duration etc. These different time series ararlyl coming from differ-
ent quantities, but the share properties like heavy talf;ssmilarity and long range

dependence.

Two different visions can be concluded from our bursts dédinj either we can
take bursts in fixed time intervals to be the maximum, or fix @ghold and define

bursts and serious deteriorations to be all the data abavé¢hiteshold point.

Figure[1.1 shows a trace from Belcore set of traces for theradtéraffic bytes
count per 0.1 seconds. In the top plot, the vertical linesngeqg the data into blocks
of 100 observations, such that one segment is of 10 secomaatu From each block
we take the extreme points or the highest value to be thesomrgtat block. The other
interpretation of bursts based on our earlier definitiom@ in the bottom plot where
bursts here are all the data points above the fixed horizbne&bf threshold 2kb and
4kb, as seen in the Figure, many data points are at a very \@h tnly few data points

are above these lines.

Bytes count

0 100 200 300 400 500 600 100 800 900 1000
(a)Time n 0.1 second of trace OctB9EXt

Bytes count

0 100 200 300 400 500 600 700 800 90 1000
(b) Time in 0.1 second of trace Oct89EXt

Figure 1.1: lllustration of bursts definition using two @ifént concepts, intervals max-
ima and threshold based

The definition of the Bursts and serious deteriorations gaeove is inspired

by Extreme Value Theory applications that are going to bel dsetheir prediction.
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These implementations of the bursts and serious detednsatre motivated by a clear
understanding of the traffic as well as by the applicatiorheftbols that we are going
to use for the prediction purpose. Extreme Value Theorysdeshctly with this type

of problems and can effectively used for the prediction pags. It comprises a lot of
tools that predict and extrapolate easily out of the rangthefavailable data. In the

next section, a brief introductory to the method is presinte

1.4 Extreme Value Theory

Whenever a natural event of high magnitude strike aroundhesywhole community

is left with some vexing questions related to these huge matgevents, while some
are immersed in dealing with the devastating consequeaties's are asking questions
like could we have prepared for this? Will this happen agamn® In 5 year, 10 years

or even in 100 years?

These events can be as devastating as the recent tsunarsirtitkt Indonesia
2004 and claimed many lives, floods in Pakistan, Haiti eardlkg, Katarina hurricane,
2008 financial crisis, and the recent Egyptian riot. While sqoulitical events are sim-
ply unpredictable, some share in common that they are hugegnitude, not infre-
guent, and can induce a lot of damage to the system when tip@ghaA construction
engineer in Holland might be assigned a task to determinéeight of a dike to be
built so that only in one hundred years could the water lexeéed that of dike once,
another example is a builder of bridge across a river hasteymae the height of the
bridge so that the bridge would become completely immensedaier once in 50years

period. These are only a sample of plethora of real life exasphese are extremes.

Examples of such questions to be answered are found in mamatisns in dif-
ferent fields. An engineer might be interested in deterngiriire minimum stress on
a structure at which cracks starts to develop? The insuremicgany might be well
interested in answering the question of what premium shbaldharged so that the

company remains solvable in case of extreme 50-years evkaisEms.
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All of these are questions that are best dealt with usingsttwt are especially
developed for the purpose. Some of these questions reaqudrexdrapolation out of the
range of the available data. The Holland dike is such an elgnfiplolland has 200 or
more years of sea level data then it is no problem for the ergito estimate the 100
year event, but if the data are recorded for 20 years only, éstimating the 50 year

event would be mission impossible in classical statisikcggons.

In the past, extremes have often been ignored and labelexuid®fs”, however,
we can't just afford to ignore them anymore. If the above eaxie events are faced
by the layman, he would think then that these things are mgsi® and inevitable;
however, a careful analysis would reveal that actuallydtesnts follow a pattern and
their probabilities of occurrence could have been predidiespite the scarcity of the

available data.

Furthermore, it is true that many variables follow the ndrahiatribution, for
instance if you take a sample of 100 people and measure tagjhts then draw a
histogram, it would be approximated by a normal distributieecause "people don't
range in size from mouse to elephant”, this is what the ckltné theorem tells us,
it is a well understood fact. However, many natural eventsemgineering situations
do not fit in this nice type of distribution and they are ratheavy tailed with very big

value far away from the mean.

In many situations the interest lay solely on the very bignésethe maximum
or minimum, like the dam designers are not really interestetthe average level of
water, but on the probability of the maximum occurring amgeisoon. The Telecom
Company is not only concerned about the average but ofterestesl in peak hour’s
measurements, we hear talking about peak hour probasijliiey design their equip-
ments so that peaks hours can be handled smoothly. Thus|dagesvof the extremes
(minima or maxima) is important for many engineering degigyblem and is a key pa-
rameter in determining the success of the design. This sénaisn is true for Internet
traffic and telecommunication networks, they are more &by bursts and serious

deteriorations.



Classically, if we want to fit a model to the averages of a saifinpia an unknown
distribution, we are pretty sure that the sample meaﬁsw tends to a normal
distribution as the sample sizeincreases. This is what the central limit theorem is
telling and it is a well understood fact. However, if instedanodeling the average, we
want to model maximum of samplesl, = max(X, Xy, ...,X,), then what would be

the distribution of these maximums? Can it be approximateadognal distribution?

Ideally, to find answers to these questions we would want tbthe distribution
F(x) of these maximum, we writé (X) = P(Mn < x) and assuming observations are
independent and identically distributed (i.i.d), thiselatan be writterP(M,, < X) =
P(X1 <X, X2 <X,...,Xn <X) = [P(X1 < x)]". However, knowing that probabilities are
contained between 0 and 1, this latter quantity will tendemzas n tends to larger
values. Thus, in this way the distribution degenerates hisdrésult is of little or no

value.

A shift of the way of thinking is needed to think in terms of nraa and not
averages; we have to think away from the middle of the distioim toward the tail of
the distributions especially when tails are wide enoughttics shift. This is exactly
what the extreme value theory is promising us to do. It presidnswers to these ques-
tions and more. Chaptér 3 introduces the theory with acceptactical application.
However, to fully appreciate the theory and its applicatonhe teletraffic theory, an

overview of some inherent characteristics in Internefitas in order.

1.5 Self-similar, Heavy Tail & Long Range Dependence

Internet traffic has many properties like self similaritgaly tail, and long range de-
pendence. All of these properties are vital for the undadsitey and proper modeling

of the traffic, bursts, and serious deteriorations.
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1.5.1 Self-similarity

The notion of self-similarity is central to this issue, it ams that a process repeats itself
when looked at from different scales, it looks the same aisdsielf similar. It is one of

the most ubiquitous properties recently discovered inrtherimet traffic data.

A stochastic proces$(t),t € Ris said to be self-similar with parametdr> O(H-ss)if

X(0)=0 (1.1)
{X(at), te R} ={a"X(t), teR} (1.2)

where the equivalence relation is in finite-dimensionatriigtions sense.

It is evident that such a process cannot be stationary.

Self-Similar with stationary increments A processX is H-sssi if
1. {X(t), t € R} isH-ss.

2. {X(t+At)—X(At), te R} ={X(t)—X(0), t € R} andAt € R.

The equality is in the finite distribution sense.

A H-sssi process withl < 1 has zero mean and a variare¥?(t) = o?|t|* and the

covariance function is given by
R(s.t 0)?2 2H t 2H t 2H 1.3

A self-similar process looks the same when viewed from cbffié time scales. The
Internet traffic is self-similar. If we plot self-similardffic in a given time scale say
seconds, and if we plot another one aggregated in the scahenotes say, they will

look like the same in terms of roughness and variance. Tlonsirmues throughout

different scales, minutes, hours, days etc.
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Figure 1.2: lllustration of the scaling concept using thelinal Belcore trace pAug89

This concept was first discovered and illustrated in the vadrkeland and col-
leagues; it presented a breakthrough at that time sincictkafs thought of being

smoother with aggregation, based on Poisson’s like models.

This concept of scaling can be illustrated by Figure 1.2. ffhiee plots are for
pAug89tr from Belcore data. These plots are having diffetiem¢ scales, the left one
is in the scale of 0.1 seconds, the middle is in 1 second ialgrand the rightmost one
is showing the same trace in the 2 seconds scale. What is recharkhat the plots
looks the same in terms of the roughness, it does not get s@oetth the aggregation

as the case of the Poisson case.

Hurst parameter Self-similar models are parsimonious models; they areroebed
chiefly by one parameter called Hurst’'s. This parametes a defining parameter of
a self-similar process. In the traffic context, it takes ealin 05 < H < 1. For the
case wherH > 1, it corresponds to non-stationary increments. The ebse0 is best
described as a pathological case and cannot be measuredca3éld = 0.5 define
the Brownian motion which is self-similar but not long-rardgpendent. Nevertheless,
fractional Brownian motion (fBM) is self-similar and long @@ dependent. fBM is a

Brownian motion where the increment process is fractionalgSian noise
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1.5.2 Heavy Talils

The notion of heavy tails is central to the study of extrenmesaffic processes; it is
one of the motivating forces behind the development of extetheory. Representing
events as random variables (RV), we say that a RV has a heéwjigisibution, or
simply heavy tailed, if it assumes very large values fredgjyeNlore formally, a random
variable X will be called a heavy tail distributed if it sdies the following equation for
a>0

P(X>x) ~ x 9% as X— 00 (1.4)

Although this definition serves the purpose, for a more geedefinition, the notions
of slowly varying function could have been used. Lookingetalty into this definition
equation([80], one notices that given a small valu&pfny large values ot have a
non-negligible probability of occurring. This is exactlyhat has been observed in the

many nature phenomena discussed above.

It is still remarked that many measurement these days reljeans and vari-
ances to describe the systems, we talk about mean file siz# aomnection duration
and so forth. How do these measures represent an event tiedvy tail distributed?

But what if the mean is an infinite quantity? , then these messarre not appropriate

for extremes. It may be asked how could the variance be iefibiit indeed it can be

the case, looking at this equation which is part of the cakooh of the moment of order

B

/ X81P(X>X)dxz/ XF-Ix%dx (1.5)
0 1

The above quantity will be< « in case3 < a, and will bew if 3 > a. This means
that any moment of order greater than alpha is infinite and dog exist. It is worth
noting that the mean is referred to as the first order momeahttenvariance is referred

to as the second order moment.

In Figure[1.8, we see two distributions with different tailse leftmost one is

showing the normal tail of a probability distribution furat, while the right one is
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showing probability distribution of data with heavy tailsAve see data in the region of
4 have very low probability of occurrence in the case of ligiit(dotted line), while still
they are far from the mean in the heavy tail, but they have anegtigible probability

of occurrence.

Figure 1.3: lllustration of normal tail and a heavy tail distition

1.5.3 Long Range Dependence

Heavy tailed distributed random variables can induce o#wgrivalently interesting
phenomena called long range dependence (LRD), a conce@\cladated to self-
similarity. It is worth noting that self-similar processase by definition long range
dependent, but not necessary. Brownian motion is an exarhplsaif-similar process
which is not long range dependent, so such a distinction gmant. So what is long

range dependence and why it is important?

In broad terms, long range dependence means that eventyé¢hiar apart have
non-negligible effects on each other. What ever happeneleipést, can influence
what is going to happen in the future, and likewise, what jgieaing in the future can
be explained in part by the far past. Long range dependeraieinatively referred

to as long memory. This property is known in many fields likelfojogy finance and
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others.

More formally, letX(t) be a second order process, we say ¥as long range

dependent if for some € B < 1, its autocorrelation functionk) satisfies the relation
r(k)=ck® as k— o (1.6)

Looking carefully into this relation, it means that autaedation functions decay very
slowly which makes it non summable i.gy |r (k)| = o, this non summability captures
nicely the long-range dependence notion, it means evemgththe events are far apart,

but their effect on each other is non-negligible to the extieait the above sum diverge,

In the past, traffic have been modeled with Poisson like madtielse models
are short range dependent. They didn’t capture that mamacteaistics in the traffic
which is now know to be long range dependent. One way to cheekang range
dependence is by using the correlogram. It is a plot of thecautelation function
of the data against the number of lags, from the plot if th@@utelations decays
fast and become negligible, then we say the series is shayerdependent, and if the
autocorrelations remain significant after the first few Jdlgen we are most probably in
the presence of long range dependent sequence. Howeee, pnegsence of heavy tail
distributed data, and some non stationarity, the corralodgails sometimes to capture
the dependence structure of the data. So this tool needsttkbe with much care.
More about heavy tails can be found in the recent monograpRdsnick. Next, the

guestions and motivations of this thesis are discussed.

1.6 Problem Statement & Objectives

In QoS Service Level Agreement, parameters that define ttvéeceeare defined in
terms of averages and deviations from the mean. Howevegregtdeteriorations in
the traffic are not well accounted for. We need to measuretletsemes and bursts in

the traffic with the appropriate tools to define a robust rastaf the bursts and spikes
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in the traffic. We aim to address these problems and modes #sdseme behaviors in
the network. These extreme deviations if addressed andletdeoperly will provide
better understanding of traffic bursts and spikes which in will help define more
robust Quality of Services metrics. In turn, these new rogtnill be incorporated into
future service level agreements; which will allow both 1Sl aisers to better manage
SLAs. Users will properly ask the type of services they nestithe service providers
will be able to put their valuable resources to whoever distnaeds and pays for them.

Our objectives are:

e Enhance the quality of service in the Internet by a properedsioning and effi-

cient use of resources.
e Predicting traffic and serious deteriorations in the traffic

e Creating a clear methodology for the application of Extreraki¥ Theory in the

field of Internet Traffic Engineering.

Performance evaluation of Internet is a challenge facirtgzoix engineers and

is attracting a substantial amount of research work. Owareh questions are centered

on:
e How to predict bursts and serious deteriorations in netwmadfkic?

e What implications does the prediction will have on the Qyabit Service con-

tracts (SLA)?

e What metrics should be incorporated into future SLAs to prigpaccount for

the extremes and rare events?

The solution to the first question brings also solution to ynaiiner related questions
such as how large the next spike or burst in the traffic will bdfat is the probability
of having a large burst in the next time interval?

We want to predict the spikes and serious deteriorationgtwark traffic parame-

ters such as connection duration, delay, jitter, bandwetith
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1.7 Thesis Contributions

This thesis contribution can be resumed in the followingnfsoi

e Bursts in the traffic are predicted using GEV model based omlibek maxima
approach, where the traffic is segmented into blocks and &aain block the

maxima are selected for the modeling purpose.

e Bursts are predicted using Generalized Pareto Distribdtased model. In this
case, a threshold is fixed and a GPD model is fitted to all tha dhbve the

selected threshold.

e New Quality of Service metrics are proposed based on themetrmeasures
like the Return Level and Return Period, and Mean Excess fumciihese new

metrics are based on measures from the bursts distribution.

¢ A clear methodology is developed for the application of tkieeane value theory

use in bursts and serious deteriorations prediction case.

¢ It has been shown that for queues fed with WAN traffic, the betnaf the buffer
will follow Frechet distribution case. Norros has shownlgtieally that a queue

fed with LAN traffic will follow a Weibull distribution.

The importance of the new QoS metrics implications comeagelgufrom its use in
mission critical applications where there is need for theéewobust definition of Ser-
vice Level Agreement. With a robust SLA definition, both $sand service providers
are aware of the need of each other and this understandulgsrigsa globally enhanced

guality of service.

Our proposed new models provide the basis from which the netvics are

defined and extracted.
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1.8 Scope and limitations

We confine our research work to answer the research questidims context of com-
puter networks, and in particular to the Internet. It doesmdude telecommunication
network like Public Switched Networks, even though someurftechniques still apply

in that context.

The studied traffic is presented in time series quantities fpacket counts, bytes
counts, connection duration, throughput, delay, roune tinp etc. The techniques are
applied using the bytes count; however, it can be easilyaaeld to the other traces

from the above mentioned quantities.

We model bursts and serious deterioration in traffic usingexe Value Theory
methodology. This methodology is best applied when therpatars to be modeled
have a heavy tailed distribution, i.e they assume very habes frequently far away
from the mean. The heavy tail property of network traffic paeger is a well docu-

mented property [73, 26].

This situation ensures the applicability of EVT methodglo@ur treatment fol-
lows such a direction. Our method will apply to parametershsas packet count,
delay, and bandwidth. All of which are well known of being fatled or heavy tailed.
These specifications happen more in the wide area netwdfic tf&/AN). However,

our method will still be applicable in the local area (LANaftfic.

Although our method applies to all kind of traffic, if the tiiafhas a strong corre-
lation factor, our method ceases to apply and some modditsatiave to be made in
the main theory. However, that is another area of reseanathich the EVT specialists

and mathematicians are into.
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1.9 Methodology

The next graph shows a block diagram for the methodologyishgaing to be used in

the prediction problem. The methodology is based on theelrValue Theory. It

starts by collecting data, then chose a proper modelinghtghe out of three frame-

works. The estimation of parameters is then done. Thendbaséhe fitted models,

simulation of the bursts and serious deterioration dat@mslacted. That leads to the
design of performance metrics based on two important measafrreturn period and

return level. It will be made clearer in in Chapiér 3.

The following diagram shows a typical situation where weehawre than one
network connected through a common medium, see Figule hdh Betwork is con-
nected to a boundary node that connects it again to the baekirathe common pool
of resources. These boundary nodes could be routers digetelswitches. The inte-
rior nodes are the service provider’s routers and netwovicds. As the algorithm of
Extreme Value Theory is concerned, measurements are d@ilihe edge boundary
nodes where the traffic shaping can take place. This is wieevece provider and users
will negotiated the level of service that the user will getidine appropriate metrics to

be included.

1.10 Thesis Organization

After the brief introductory chapter, comes the literatuegiew, then methodology,
results and analysis in chapfér 4, performance evaluati@haptet b, and finally the
conclusion. These chapters are arranged as following. €Hapk reserved for the
literature review and assessment. In Chdpter 3, the metbggl®@ presented which is
based on the Extreme Value Theory (EVT) comprising threeeisoi be applied. In
Chaptef 4, the results are presented and discussed basedtbrethprediction models.
Chaptef b is for the prediction and the comparison among thaeleoln Chaptdrl6, a

conclusion from this work is drawn.
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Begin

A

Collect data al the edge nodes for traffic
guantities like bitrate, lossrate, jitter, and delay

v

Decide on which EVT based model would be suitable for the purpose :

* Generalized Extrame Value Modelling (Block Maxima method)
* or Generalized Pareto Distribution model {Peaks Over Threshold method)
* or R-Largest Order Statistics model (modified Block Maxima method)

v

Estimate the selected model parameters using methods like
(Maximum Likelihood, Methods of Moments, Probability
Weighted Moments)

Y

Simulate data based on the model that is fitted
o extremes and serious deteriorations

Design the performance metrics based on measures
like Retum Level, and Retum Period

Figure 1.4: Block diagram of the implementation of EVT models
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CHAPTER 2

LITERATURE REVIEW

In this chapter, literature about basic traffic propertike kelf-similarity is reviewed
along with its manifestations in different types of traffl@AN, LAN, HTTP, VBR).

A further look into the origin of self-similarity and its intipations is then followed.
Subsequently, bursts are discussed from different angliesdonarrowing down to the

literature on the proposed methods based on Extreme Valeery.h

2.1 Self-Similarity

A paradigm shift in networking traffic engineering has résadiffrom a Belcore study in
early 1990s that discovered the self-similarity of netwtygfic [58]. In that seminal
work, Leland and colleagues studied in details a staté&®fatrt high resolution Eth-
ernet traffic data that were collected at Belcore Labs in fets and contained more
than 1000 million packets. That research is considered abreough in the field of
computer networks. Leland and team members have discosaubijuitous property
in the network traffic called self-similarity [28]. They shed in their work that the
Markovian model, largely used for the modeling purposessdwt capture reality, that
the aggregated Ethernet traffic is Self-Similar or fraatahature. This property means
that burstiness is observed across different time scatkssagersistent with the aggre-
gation of traffic. This is in contrary to former beliefs thafgmegation has the effect of
smoothing out the bursts and roughness in traffic when it idetsal by Poisson type

models [75].

The degree of self similarity varies from one process tolaroturst’'s parame-

ter is used to measure the degree of self-similarity, refs parameter is the exponent



appearing in the definition of self-similar procesé), we say thaiX is self-similar
if it satisfies the relationshifX(at),t € R} = {a"X(t),t € R}, wherea is a constant.
The symbolsH in this equation stands for Hurst's parameter. It assunsesgailues
between 0.5 and 1. The higher the valudfthe more pronounced is the degree of

self-similarity. Hurst’s parametét gets larger with increasing network utilization.

Shortly after the discovery of self-similarity, a lot of eegch studies were con-
ducted in different contexts and using different datassttoaeplicate or check this
new discovered property. In particular, researchers pttive self-similarity in differ-
ent settings like (Wide Area Network, Variable Bit Rate, Filafsfer Protocol, and

Hyper Text Transfer Protocol) and replicated the study flecent environments.

In 1994, Vern Paxson and Sally Floyld [75] reported similadifigs on wide
area traffic. They demonstrated that wide area traffic isseiflar. They analyzed 21
datasets collected from different sources including the®&el sets. While the TCP
connection arrival for FTP and Telnet behaved as Poiss@npdcket traffic or data
during the session deviate remarkably from Poisson digtab. Modeling the traffic as
Poisson resulted in models and simulations that extrenrelgrestimate the burstiness

of the actual multiplexed traffic.

Wide Area Network traffic has also been a subject of furtheestigations by
researchers. W. Willinger and others have gone one morerstee modeling of WAN
traffic and showed that it is not only self-similar but it is@almultifractal in nature
[33,/82]. Multifractality is richer than the simple selfrsilarity in properties. And the
self-similarity can be thought of as a special case of theifradtal property. They

fitted multiplicative cascade model to it.

However, the concept of Multifractality has not gone witheame controversy.
Patrice Abry and others have challenged the Multifragtalitggested by W.Willinger
and others, and described it as weak and overstated [95tibubhey did not provide
evidence against the multifractality. They went on and sstgg a point process model.

However, the subject remains controversial. In [92], Musadaqqu and others tried to
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answer the question of whether the network traffic is setflar or multifractal. They
gave some insight into the question and acknowledged th&t/\AAN traffic can be
modeled by either self similar or multifractal models and yfeere is no clear cut in the
modeling and the question remains open, giving opportuoityphysically motivated
network models. Meanwhile, other research directions haken place to show the
self-similar property in other types of traffic like the Vabie Bit Rate (VBR) traffic
and the World Wide Web traffic (WWW) as well.

For VBR video traffic, M. Garett and W. Willinger studied VBR d traffic and
reported the result in [39]. They studied the VBR video tradficefully to better un-
derstand the bandwidth process. They applied a simplefirgnae video compression
code to an action movie, they showed that the VBR video tradflomg-range depen-
dent (LRD), a property that is closely related to the selfiisirity. Another property
being reported is the heavy-tailed marginal distributibthe information content per
time interval. In another study, Jan Beran and others havesd¢om similar conclu-
sion using a variety of different codec in the VBR video date B18]. They showed
that video transmission exhibits self-similarity. Theydied varying lengths of video
frames and found that it is better fitted to a Pareto distidoytespecially in the upper
tail. These characteristics of the VBR video are inhererandigss of the codec cho-
sen or the scene itself. It should also be clear by now thahwestalk about Pareto
distribution it means distribution with heavy tails, a peoty that is demonstrated to be

closely related to self-similarity [79].

Within the context of the world wide web traffic (WWW), M. Crovell&. Bestavros
and others have proved the self-similarity of the world wigkb traffic as well,[[23].
They modeled browsers using an ON-OFF model, where ON pedoésponds to ac-
tivity or transmission and OFF is the non-activity. Theyriduhat ON-periods follow a
Pareto distribution. Meanwhile, Martin F. Arlitt and otkdrave done a thorough analy-
sis on different datasets of Web server workload, [5]. Treaye to the conclusion that
Web traffic is self-similar most of the time with differentlissimilarity parameter de-

pending on the context and that the heavy tail distributibfil@s in web is the biggest
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contributing factor to the observed self-similarity. Thedgo identified ten work load

invariants (observations that apply across all the datastedied).

With the emergence of Voice over Internet Prtocol (VolP) cmmication, VoIP
traffic also has gone self-similarity investigations, anid found that it complies with
self-similarity concept/[76] and [16]. In [16], using reahe data from VoIP calls, the
analysis was done on the aggregated traffic capturing two matrics, the interarrival
times of consecutive VoIP packets and the throughput of gigeemated traffic, estima-
tion of Hurst’s parameter is found in the range betwednOH < 1, which is a strong

indication of the self-similarity.

The self-similarity of the traffic is now clearly establigshdut it is not without
some resistance from researchers who still believe in tieeaon self-similar models
[17]. However, that controversy is likely to be confined imyspecific settings and
diminish in front of the more established fact of self-samity. Natural questions would
be: what are in the origin of the self-similarity of networkffic? and what effects does

this have on performance?

2.2 Origins of self similarity

Walter Willinger et al. provided physical explanation te thbserved self-similarity of
the traffic, [102]. They showed the origin of the self-simikathrough a reformulation
of an ON-OFF model originated from Mandelbrot’s worklin[[pdhere ON period cor-
responds to transmission period and OFF to a non transmipsidod. Inspired by the
packet train model of Jain and Routhier[47], they assumednbtaidual sources send
packets to the network through an ON-OFF mechanism where &idds correspond

to sending of a packet while OFF period is for a silence period

In contrast to traditional modeling where ON-OFF periods amderstood to be
exponentially distributed, it is found that at least ON- dffperiod is heavy-tail dis-
tributed (Noah effect). The heavy tailed distribution, stimes called infinite variance,

of ON-OFF period means literally that activity/silenceipds can be very long and itis
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so frequently. The superposition of the individual ON-OFaific source produces the
self-similar traffic property (Joseph effect). This phydiexplanation applies to LAN
traffic and in large extent to the WAN traffic also. These ONFQ#feriods are strictly
alternating and have distributions with heavy tail. Howetleis heavy tail property is
present in many Internet traffic parameters like files sitagsmission duration pack-
ets count or bytes count per time interval. Numerous stuthes proved the presence
of heavy tail in these quantities in Internet traffic, exaesphre([58],[[101],[[100], in
particular, for the heavy tail in file size se€ [5] and![78]r feansmission rates and

durations see [65] and Resnick articlelin|[34].

The long range dependence is closely related to self-giitperty in the Inter-
net traffic. Long range dependence is found in many quastigkated to the traffic as

well, variable bit rate video is such an examplel[48].

The effect of self-similarity on performance is widely siedl It may include a
profound impact on the network parameters like delayyjdted packet loss[73]. These
effects can be understood since the Markovian models usiitage the burstness of
the traffic and even suggest that the traffic get smootheragtregation which is not

the case [84].

Knowing the model is a part of the story, the other part is teearine param-
eters’ values of the supposed model which can be done by a&sgiim In general,
fewer model parameters are preferred to many, this is cabesimonious modeling.
Self-similar models are parsimonious since they have orenpeter that uniquely de-

termines the process called Hurst’s parameter.

A number of methods are used to estimate the value of Higgtzgameter, they
range from analysis of variance of the aggregated traffecreébcaled range R/S method,
Whittle estimator, and recently wavelet based one [1]. Tladyars of variance method
relies on the slowly decaying variance of the self similavgesses. The variance of
the aggregated process is plotted on log-log scale and fnenslope of the plot the

parameter H is determined. The other promising method i&Ri{Bestatistics method.
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R/S statistics is the ration between partial sums of deviataf observations from their
mean to their standard deviation. Hurst found that this ttyaobeys some empir-
ical relationship that includes H. The H parameter can benestd by plotting that

empirical relationship in a log-log plot.

A rescaled variance method is also been propased [15]. Hualed variance
method V/S is similar to the R/S method. It uses the samplaweei in the place of the
mean in the R/S method. V/S method is superior to R/S in some saeeially when

H’s true value is around 0.5 .

Patrice Abry and Darly Veitch derived an estimator of therdegf self-similarity
H using the wavelet methodl[1]. They showed that the estimatarbiased, consistent
and have the lower Cramer-Rao bound [41]. More interesting sihown in that work
that wavelet estimator is rigorous with respect to trendsativer these trends are linear
or polynomial. In addition, it gives a practical way to elmate the effect of trend on
the estimator by varying the number of vanishing moméhats the analyzing wavelet.

For a recent survey of the estimating methods, [see [81].

2.3 Bursts in the traffic

In [75], bursts have been implicitly defined as a connectiaration above a given
threshold and was applied to different types of traffic, isweferred to as http bursts,
ftp burst, telnet bursts etc. 10 [109], and a series of otk&ted publications by the
same authors, bursts have been defined in data streams tourexgpectedly large

number of events occurring within some certain measuretrfiene), it is a general

definition which the authors apply to all kind of events frootisal to hurricanes and
floods as a part of a knowledge discovery approach using spewifie data structure.
The same point of view is also shared by [111], in which buastsdefined as abnormal
aggregation in data streams. In telecommunication and tdatamission networks,
bursts are referred to differently as a continuous transfefata from one source to

another without interruption [63]. Another cluster of téture is referring to burst as a
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threat to network and is dealing with bursts as an anomalgemetwork traffic rather

than a property of the traffic [65, 107,132].

These disagreements in bursts definition make the task oingowith a defi-
nition that satisfy all these requirements a difficult ortes ieven made worse by the
broad implementation of the word bursts in differently seegty unrelated disciplines.
One way to digest all these seemingly non-consistent defnsitis to look at bursts as
an attribute rather than an object, so a notion of Bursty traifid bursts in the traffic
can be both valid. In this research some definitions of thetbwrill be agreed on for

the purpose of this study.

In the following, bursts are defined as unusual high aggi@galf data in a rel-
atively small time window. It may be adapted in two differevays when the EVT
based models are suggested in later chapters, in the blodknaabursts are defined
to be the block maxima taken in a predefined intervals thabeaminutes, 10 minutes,
etc., while in the peaks over threshold, bursts are defindzbtall the data above a
given threshold. These implementations of bursts defmiic in the best interests of
the QoS perspective to measure, quantify and propose Sleeagmts that take into

account measures of bursts and extreme deteriorations.

As varying as their definitions are, bursts have been studoed different per-
spectives. For instance, and from security perspectivetdmean a possible threats or
attacks to the network, [66, 107,132]. Networks need to beitoed and bursts need to
be detected so that attacks can be repelled on time, thigeigdr the intrusion detection
and the intrusion prevention mechanisms.[In [110], re$emscdetect burst for online
monitoring of data streams, which can be applied to netwaifki¢ as well as for trend
analysis, intrusion detection and geophysical applicatand web clicks analysis. An
inverted Histogram (IH) has been used to adaptively dete@dtd in data streams and
in particular the double sided bursts (increasing - deangasvithout being affected
by the frequent bumps in the data [110]. Many other method$amg used for de-
tecting bursts or aggregation of data. We call in partidyldrose with application to

email [54], to gamma ray [111], in network traffic [22]. In_[P&nd using the notion of
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compact summaries, authors tried to detect abnormal ceangbe traffic. In[[109],
authors used Shifted Binary Tree and a heuristic searchitdgoto detect burst across

multiple window sizes.

Wavelets methods have also seen their application to datests and anomalies
in networks. Wavelet analysis is an ingenious form of trammeftion that is closely
related to the Fourier transformation, where instead afasgnting the data in the usual
time domain, data are transformed into the frequency do&dh A shortcoming
of Fourier transformation is that all the information abdiute is lost once the data
(signal) are transformed into the frequency domain. Howevavelet transformation
or analysis, by using different kind of transformation,ares the frequency as well
as the time, thus it transforms the signal into the frequedmyain while retaining
information about the time. The resulting wavelet coeffitseconstitute in themselves

a new time series that can also be subjected to research aaosation.

Many publications have used the wavelet method with vargiegrees of suc-
cess in detecting the bursts in traffic, in particulariinl [58,/106/ 105]. In[[59], burst
and anomalies in the traffic caused by distributed deniakofise attack (DDoS) are
detected using energy distribution based on wavelet aisalyse detection algorithm
is based on the traffic behavior analysis. Energy distiioutf the normal traffic is
calculated, when a sudden change in the energy level appearsneans an anomaly
in the network and hence a possible threat to the networkha@katin [18] used wavelet
techniques to analyze the traffic and detect if a sudden ehanthe rate of arrival
happens then it would be concluded that an attack or a thoehetnetwork is emi-
nent. Many other studies used the wavelets to detect thoeatitacks in the network
using bursts as a commensurate to an anomaly/ see([106, 36 there are many
types of wavelets, the choice of wavelet has also presenttier set of challenges to
researchers, however, without delving too much into thaitdeind since bursts here
are used from security point of view which is not really theocern here, a point of

reference would be sufficient, sée[77].
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On the other hand, when bursts are defined as very high aggregé traffic in
small time interval, it does not necessary indicate a thieabuld be seen as spikes
and serious deterioration in the traffic. Instead of onlyedeng the bursts, a more
proactive approach would be to predict thesebursts whitheisentral theme of this
thesis. As Internet is becoming the global infrastructorébisiness and all other types
of modern communication, these kind of bursts may cause lnsges and damages if
not managed outside of the historical best effort archirecof the Internet to provide

the agreed on service.

2.4 Quality of Service (QoS)

Historically, Internet was organized to provide the beBirékervices, i.e. applications
will send their traffic into the Internet in the hope that thveyl arrive to the receiving
station. No guarantee of delivery from the part of the InéernTake the example of
two typical users, one is sending an important email and tinerés surgeon operating
a distance open heart surgery. Both of them rely on the netteodeliver. A delay
of seconds in the network will be barely noticed by the firgrygmail sender). The
same delay if happened to the surgeon will be fatal, or at s the patient. Such a
situation shows clearly that different users have diffeexpectations and requirements
from the network service and also have different levels lgfremce to delays and inter-
ruptions. This best effort Internet is no longer feasibléaday’s environment where
Internet is becoming the infrastructure for business @atisns, communication, and a

lot more, [55].

Quality of Service becomes an important concept in the hetetoday; two ap-
proaches for the quality of service are prevalent in thedttge, integrated services
and differentiated services. A study that was supportedhbyliternet Engineering
Task Force presented a compelling discussion about the foe@utegrated services,
see[12]. In integrated services, before the traffic is gbetapplication will signal its
requirement and ask for reservation of some resourcesdffie is only sent when the

resources required are available; this mechanism is cedigolurce reservation setup
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protocol (RSVP), for the design and more about this algorjttiva reader is referred
to [108]. Thus, Integrated Services is very effective arfitient method in provid-
ing Quality of Service solutions in the Internet; howeversimore effective in single

managed networks, and when it comes to scalability it ssi{fés].

A most common and scalable approach is the differentiatedces approach, it
lies somewhere between the best effort Internet and thgratisd services. In differ-
entiated services traffic is classified into classes calleddrding classes and allocates
resources based on the traffic class, which means each €laaffio is treated differ-
ently giving high priority to some and low priority to othgfkl]. When packets arrive

at network, it performs packet classification and trafficdibaning.

Network services in the case of differentiated service afendd and agreed on
between the Internet service provider and the customemendiethe parameters of the
service are formally defined in a legally binding contradkszhservice level agreement
(SLA). SLAs are a subject of constant change and modificatiomeflect the needs of
both the service providers and the users, many mechanisthere for the negotia-
tion of these agreements, a recent approach is using Agerasbmpletely automated
negotiation for the service, see [104]. Associated with Slofnes the traffic condi-
tioning agreement TCA where technical details of the serparameters are formally
defined. Thus performance metrics are included in the SLesthroughput, delay,
jitter, average connection duration and others. Howeaaipeters that determine the
class of services are defined in terms of average and deviftbon the means, thus,
extreme deteriorations in the traffic are not properly asisled. Since it is noted earlier
that Internet traffic variables exhibit heavy tail propertyore appropriate methods to

guantify and measure the extremes is thus needed.

2.5 Extremal Events : History and Motivations

Netherlands is the country where most of the early motivatioehind extreme value
engineering took place. This country has more than a thirtdsiurface below the sea

level. The danger of floods and high see levels is thus obviblie government has to
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tackle this problem and protect its territory by buildinghidikes. The natural question
to be asked is how high these dikes are to be built so that theapility of floods is
very small? The government requirement for this "very simabbability is 0.0001
for any given year. Another question of equal interest is hayh these dikes are to be
built so that a certain very high sea level can be expected ione hundred or thousand

year period?

These questions posed enormous challenge for engineat étle. They had no
direct answers to these questions using the classicadtgtatitheory. The seemingly
difficulty comes from the need to extrapolate beyond thelalvkes data. Extreme Value

Theory was thus the right tool.

The analogy between the Netherland dike problem and inténaféc bursts and
serious deteriorations is thus clear. Both of the eventgipeaed might have profound
unwanted effects on the system. Prediction and modelingesie rare, hence frequent
events is thus important. However, before going into thaiteof the theory a brief

account of the history of Extreme Value Theory is in order.

The beginning of Extreme Value Theory development can beddadck to 1928
when Fisher and Tippet derived a key result for the possavdiimits for sample max-
ima [36], but the idea itself can be traced back as far as 11Ehwicolas Bernoulli

discussed the mean of the distribution of the largest distamsome given settings.

The probabilistic side of the theory was treated by R. von B{d®36) leading
to the comprehensive work of B. Gnedenko (1943). The steaisside of extremes is
treated by J. Pickands 111(1975). A comprehensive refezgnanual for the theory was
published on 1958 and authored by E. J. Gumbel.

In the last two decades, we noticed more publications than @&vd a growing
interest in the theory by practitioners and engineers fraiferént disciplines. Em-
brecht and others published a manual detailing the apitabf extreme statistics

to the Insurance and Finance industry[29]. We notice amdhgre Jan Berlian and
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others in "Statistics of Extremes’,|[8]; Enrique Castillodapthers in "Extreme Value
and Related Models with Applications in Engineering and S&,[19]; a collection
of research papers is edited by Barbel Finkenstadt and HBIgetzen titled "Extreme
Values in Finance, Telecommunications and the Environimf34#]; Stuart Coles pub-
lished a monograph titled "An Introduction to Statisticabtieling of Extreme Values”
in which he addressed the essential of the theory for itd@gin in different field[21].
The literature of Extreme Value Theory is huge, however, glected a representative
body of the literature of the theory and it is by no means a detapaccount of the

subject, which is out of the scope of this brief introductory

Generally speaking, to find the distribution function of aapdom variablex
we would write
F(x) =P(X <X) (2.1)

whereF is the distribution function an® stands for probability function. The distri-
bution function takes value strictly between 0 and 1, i B(X < x) < 1; The same
applies for the random variabM,, (The maximum of random samples).

To calculate its distribution function one would wrigéx) = P(M;, < X). And since we

know thatM,, = Max(Xy, X2, ..., Xn) the above expression can be re-written as

G(X) = P(Mp < X) = P(Max(Xg, X2, ..., Xn) < X) (2.2)

The evenMax(Xy, Xz, ..., Xn) < Xis equivalent to the everiK; < X, Xz < X,... Xy <X).
Substituting in the above expression and noting that thieghidity of the intersection of
independent events equals the multiplication of their phalities, the above expression

transforms to

G(X) =P(X1 < X) x P(Xg < X) *...xP(Xqy < x) = [F(x)|" (2.3)

So this way we found the distribution function of the maxinfarandom samples
G(x) = [F(x)]". However, since(x) < 1, the distribution function will degenerate

to 0 asn gets larger and larger. This will make difficult and wortld@ssult to do with.
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This is exactly why we needed more rigorous result for th&itigtion of the maxima
of random samples. And this is exactly what brought the Ex¢r&/alue Theory into
being, a field of knowledge that is pioneered by the work of psaminent scientists,

Fischer and Tippet [37].

Two methods are commonly implemented from EVT. The first am$tnecom-
monly used is the Block Maxima in which data are segmentedluicks and the max-
ima are taken from each block and a new series of maxima idittgeg. A model is
thus fitted to this new series of maxima. The second methdwiPéeaks Over Thresh-
old method, in this second a threshold is fixed and data albatetireshold are fitted

to a distribution.

An extension of the extreme value models is the r largestraridgistics model.
In contrary to what happens in block maxima method were drdynhaxima is chosen
from each block, in r largest order statistics and as the rerggests, from each block
the r largest values are chosen to be modeled instead, wherk The joint distri-
bution of the r largest value is then defined and used to cletwhe parameters that
correspond to the GEV for the block maxima. This method issm®red as a middle
way between the POT and the BM methods, its development cattriimited to the
work of Weissman in[99]. The monograph by Stuart Coles previdetailed discussion

as how about to implement the r largest order statistics iingbeactice [21].

Another research direction which is more theoretical isedby Albin, [3] and
[4]. Albin showed the existence of limit distribution for mena from self-similar pro-
cesses. In his highly abstract mathematical work, he déypgper and lower limits for
the distribution of maxima of self-similar processes inlthg classes of totally skewed
alpha stable processes. This work gives us the confidendee @pplicability of the
theory to the self-similar network traffic. However, theyobncern is that Albin work
is a very much mathematical with no clear indication of howwhio apply the theory

in practice. It is highly theoretical and inaccessible t® tlasual practitioner.
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2.6 Traffic Prediction

Predicting Internet traffic in particular proved to be a tdrading task due to the self-
similarity of the traffic and its long range dependence! B3]l decomposition is used
to predict bursts and serious deteriorations in the traffice essence of the method
lies in the use of filters and a variant of Least Square Metheaidstly, the traffic is
decomposed into two parts, low frequency and high frequehiogn both the low and
high frequency traffic are predicted using a variant of |sgstare method. The result
of the prediction is then superposed back to produce thaqgbeedtraffic. The main
motivation behind that work is to predict possible attackghweats to the network.
Several other attempts have been and continue to be madelt mosts. Researchers
in [9] reviewed bursts and other related facts like long eadgpendence and heavy
tails, termed stylized facts and fitted an analytical modéhe bursts in the data traffic.
They modeled bursts and related quantities by an infiniteceo®oisson model. In this
analytical model, they took measurements in a fixed time wwsddelta and let this
delta goes to zero to capture bursts. It is a slight modificadf the queuing system of

infinite source Poisson model.

Although extreme value theory methods have been in practieenumber of
discipline for decades, their introduction into the fieldtaffic engineering is rela-
tively recent, in[[34] Sidney Resnick argues for the use ofé&xre Value Theory for
the telecommunication paying a particular attention toittreerent properties of the
telecommunication data network like heavy tails and lomgeadependence, Resnick
made it clear that although some models may fit some datahbuthallenge would
remain which classes of model would fit which classes of dR&snick in [34] gave
an insight into some questions related to modeling data or&wusing a variety of
tools from statistical analysis, in particular, plots ligaantile to quantile plot, Hill's
plot, mean excess plots are being discussed to check on &g teel and long range
dependence of the data. When it comes to extremes, Resnidiembdefly on the ap-
plication of the extreme value theory paradigm and in paldicthe peaks over thresh-

old method but in very broad terms with an open end questiénsumber of other
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studies suggested EVT as a framework for modeling diffetygres of traffic [94] 60].
In [94], Masato Uchida used the throughput as a network peir@nto be modeled. It
was argued that throughput, link usage rate, packet lossrat delay time can be used
to predict telecommunication quality. To arrive at preutigtserious deteriorations in
telecommunication quality, POT method was used for the mragiby fitting a gener-
alized Pareto distribution for the purpose. The data wasled/into two sets, on set
is considered unknown while the other set is used to cortdtneanodel, the model is
used to predict the supposedly unknown set. He showed &&ai using GPD is bet-
ter in approximating the unknown part of the data than theipusly commonly used
lognormal distribution. In[[60], authors used the same @tAOT for the analysis of
wireless traffic. They fitted a GPD model and reported the anwg@ment to their model
compared to the lognormal, Gamma, Exponential, etc. Thepotational overhead is
clearly reduced when using the EVT model because we neecaasuipset of the data

to work on.

A passage in the literature to the extreme value traffic exeging was in an arti-
cle by RATZ. The article (and the references therein) dispesk traffic in telephone
switching office and fitted a gamma distribution to it. Altlygbuthe word extreme value
was mentioned, it referred to a different thing than EVT. fheed the extreme value
to mean literally the maximum value of telephone traffic inigeg setting, while we
use it to denote a theory. Moreover, they used and fitted n&Mandistribution, but a
gamma distribution to predict peaks in the traffic correciiie research in [68] gave
an overview of some of testing procedures to determine stellition of the extremes
and to assess EV conditions. They illustrated some of thenteesting tools using

teletraffic data.

In [52], systems downtime or repair times are being studedleir obvious
importance in planning and it was found that system repaie fiollows a heavy-tailed
distribution. Since the mean fluctuates too much (not existnd thus cannot be used
as metric to evaluate the system performance, a concepticklear return level from

Extreme value theory is used for the analysis and predicfldve T-year return level,
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which is the amount exceeded once in a T-year return levasgd as way to predict the
down time or IT repair time. This same return level is usednatriice literature and is
referred to as Value at Risk (VAR). As reported there, the mgaot a robust metric to
be considered in the heavy tail distributed parameter densd. The T-year return level
is used instead. The method is clearly described and itscapiph is straightforward,
however, the study did not include any evaluation of theqrertince of the prediction
results. This study could be improved by including the nefugriod which is the time at
which certain threshold will be reached. As remarked, vewythese studies that touch
on the application of the extreme value theory, these ssuajplied the theory of EVT
and in particular the POT method with the assumptions thadlds true. They did not
include any preliminary analysis of the data to check whrethe theory assumptions
hold or not, such steps are important and crucial for theessof the model. One of
the most important reasons for this is the i.i.d. assumptidine theory was developed
based on this assumption. As it is shownlin [57], if data aghllyidependent then the
application of theory needs to be modified and a further patantalled extremal index
need to introduced, otherwise erroneous results would bduged. In this regard,
we can say that the literature survey so far found that inyapglEVT in network
traffic was superficial and is ignoring the high dependeneetire of the traffic where
extremal index assumes a major role in correctly modeliegithta. This might be the
result of the recondite nature of the theory itself, but minedess, it is an important

step in the prediction of bursts and serious deteriorations

2.7 Summary

In this chapter, we discussed the subject from its widest@spnd narrowed down
to the problem. We started by the Self-Similarity liter&tuits existence in different
types of traffic and some of the controversy surrounding #i&sémilarity. In the
subsequent sections, we looked into the bursts definitmm ifferent angles in the
literature before positioning and defining our concept eflibrsts. In the later part we
reviewed our methodology, Extreme Value Theory and sometofather disciplines

and problems.
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CHAPTER 3

EXTREME VALUE THEORY BASED MODELING

This chapter presents the theory behind the methodologystla@plied for bursts and
serious deteriorations prediction problem. It starts lynghg a system model, and then
introduces the cornerstone theory. Three models basedeothélory are introduced
along with concepts of Return Level and Return Periods thapamposed as metrics
for Service Level Agreements. Model diagnostics and sitrarldechniques based on

EVT are also discussed.

3.1 Traffic Bursts & Serious Deteriorations

Network traffic parameters like connection duration, packent, file size, bytes count
share properties like heavy tail, long range dependenceharstiness. Understanding
these properties and their implications is central to tlogper modeling and prediction

of bursts and serious deteriorations in the traffic [79].

Bursts and serious deteriorations of different traffic gitistare bound to hap-
pen and they are unavoidable [9]. Their prediction and prgpantification with ade-
guate measures will define robust Quality of Service (QoS)inseto be incorporated
into future QoS service level agreements. This will be dongerms of probability

density distributions and the tools derived from them.

While central limit theorem (CLT) states the limiting disuiion of sample means
when the number of trials increases|[35], the extreme vdleery (EVT) is about the

limiting distribution of sample maxima. The CLT defines themal distribution as the



limit distribution. EVT defines three distributions to betbnly possible limit distribu-
tions of properly centered and scaled sample maxima. ThEB |&nds itself naturally
to this kind of problems, and a clear methodology about pted) using the EVT based

models is presented in the following.

The method developed for the quality of service control béllused at the bound-
ary level between the service provider and the customeradusers as illustrated by
Figure[3.1. The methodology that is going to be used is deitin an online imple-
mentation. It needs the least resources in terms of data racegsing time. It is not
going to add any significant overhead to the network resasitee it is going to work

only on subset of the data while other methods work on the evtata set.

Customer network 4

Customer network 1

Service provider
network

Boundary node

Customer network 2

Customer network 3

Figure 3.1: System model network diagram
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3.2 Extreme Value Theory

Fisher and Tippet theory is considered the fundamentaftytiedxtreme Value Theory
literature [29]. Our methodology depends primarily on Hssderived from this theory.
This theory serves for the sample maxima as does the cemmaltheorem to the
sample means. It defines the only three possible limits qignty centered and scaled

maxima of observations.

Say we have a series of random varialdes<y, . . ., Xy. This sequence of random
variables can represent any event we are interested in systhiet count, bytes count,
bursts, file size, or connection duration. We suppose tlestetlandom variables are
independent and identically distributed (i.i.d.) with arcoon distribution functiorx.
Now take the maximum of samples of random variallgs= max Xy, Xz, ..., X,) and
constitute a new series of random variabiés To calculate the distribution of these

Mp, we could have

Fu(x) = P(Mp<X)
= PX1 <xX2<X,...,Xq <X)

= P(Xg < X)*P(Xo < X)*...%P(X < X) = [P(X < x)]". (3.1)

Assuming that a probability function takes values betwesno and one, this last
expression will converge to zero aggets larger, making it of little or no use. EVT

solves this problem and tells us about the limiting distiiiu of these maxima.

Theorem 1. (Fisher-Tippet[37 20]). LetX,) be a sequence of independent identically
distributed random variables with distributiorkF Let M, = max(Xy, Xa,..., X). If
there exist norming constantg & 0 and d, € R and some non-degenerate distribution

function H such that

Mn —dn
Ch

—H (3.2)
then H is one of the following three types:
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e | (Gumbel, [42])

Nz=e® *, zeR 5.3)
e |l (Frechet, [38])
0, z<b
o(2) (3.4)
e*(z%ab)_a’ z>b
e Il (Weibull, [97])
e Y z<p
(g = (3.5)
1, z>b

These three distributions are the only possible limit dstions for properly centered
and scaled maxima [37, 19]. Furthermore, we say Ehat in the maximum domain
of attraction (MDA) of one of the above distribution if the riima from sample from
F converge to that distribution. For example, we whte MDA(W) if maxima drawn

from F converge to a Weibull distribution, denotdd

These three distributions are shown in Figuré 3.2. They lifferent shapes
and imply different properties. We find the Weibull distriiaun to be of a finite upper
tail which means data that can be fitted into this calls ofithstions are bounded from
above. On the other hand, the Frechet distribution showswayttail distribution with
an unbounded support which clearly shows the tendency affded to this distribu-
tion to assume very high values frequently. The Gumbelidigion lies somewhere in
the middle between the two distributions, Weibull and Feg¢cBoth Frechet and Gum-
bel densities are skewed to the right, while the Weibull dgnis skewed to the left.
All the three distributions have scale, location, and shagrameters except Gumbel
which has no shape parameter. More discussion about thexatiff properties of the

three extreme value distributions can be found in [19].

Thus, EVT outlines the only possible limits for the disttilom of the maximum

of random samples. The proof of this theory is rather tec@inloterested readers can
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consult Embrecht manual [29]. Gnedenko is the first to prbeetheory in[[14]. De
Haan proved the theory using regular variation theory ahéroanalytical tool$[25].
Weisman simplified De Haan’s rather analytical proof. Thegbthat is provided by
Weisman was implemented in many Extremes Value Theory dexi[98]. Von de
Mise took the three families and put them in one simplifiedsie@r named Generalized
Extreme Value Distribution (GEV). The method of block maaithat will be discussed

later relies on this GEV model to a great extent.

K<0, Weibull Distribution
K=0, Gumbel Distribution ||
— — - K=>0, Frechet Distribution

Probability Density

Random Values X

Figure 3.2: The three Extreme Value Distributions

3.2.1 Block Maxima Modeling

The Basic Model The GEV distribution forms the basis of the method called Bloc
Maxima or Annual Maxima. Von De Misé [21] has taken the thiegtldistributions
in Fisher and Tippet theorem and combined them in a simplifiedly of distributions
called Generalized Extreme Value distribution (GEV) whisldetermined chiefly by
one shape parametértogether with locatiorn and scaleo parameters. The shape
parameter value determines the type of the extreme distiband the shape of its

tail. The tail can be either finite, exponentially decayimgheavy one. The Generalized
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Extreme Value (GEV) distribution function is given by

e{—(l—‘—&(ch))a} if E 7&0
Gi,u,c (2) = (3.6)
el—e W} if £=0

defined on{z: 1+ ¢&(z— p)/o0 > 0} where both shape parameteand location param-
eterp take values in the real line. However the scale parantetealways greater than
zero. The parametédy determines the shape of the distribution. Whether the distri
bution has a light tail or heavy tail depends on the value & af this parameter. If
the parameteg < 0, GEV family is referring to Weibull distribution which hasfinite
support, to Frechet distribution f@r> 0, and to Gumbel in case= 0. One should
note that we are talking about the distribution of the maximaf the samples and not

the whole data, a concept that is frequently misunderstood.

BM Method Block Maxima (BM) is the classical approach to model extrenes;
works by dividing data into blocks, then from each block takdy the highest value
which is the maximum [8]. Figure 3.3 illustrates the use @ thethod where data are
segmented in blocks. From each block the maximum value éetsl. These maxima
constitute a new series composed solely of sample maximaevdaenple here refers
to a particular block. A GEV distribution is then fitted toghmew series of maxima by

estimating its parameters.

Let’'s say we have a trace of data in the formXafXs, ..., Xmn, With X represent-
ing the packet count or any other quantity of interest (cotioe duration, packet size)
andm,n are integers. To implement the method, first we divide thieseof raw data
into madjacent blocks, each with sine The choice of the block sizeshould be large

enough so that the theory is valid to be applied on the newsefimaxima, given by

MR = Max(X(j-pns1, X nszs- Xg-pnem) fOrf =L.om— (3.7)
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Figure 3.3: The method of Block Maxima

Having obtained this new series, we fit the GEV model by estimgahe model

three parameters using methods such as Maximum Likelihotkethod of Moments

[8].

Table[3.1 summarizes the BM modeling schema. In the classpgaication of
the theory, blocks were selected to represent a year. Howeigselection was moti-
vated by the historical application of extremes in hydrglfEB]. Any other meaningful
block size can be selected depending on the context. Form&afigurd 1.2 in page

[1d, maxima can be taken in blocks of any time units like sespminutes, or hours.

However, the selection of the block size and length of da&yslthe classic bias-
variance trade off [29]. The maximum series smehould be large enough to allow
for an acceptable confidence in the estimated model paresnétereasing the number
of blocks leads to a reduction in the variance which is de&raHowever, since the
data set is finite, increasing the number of blocks will leac treduction in the size
of blocks and that will produce a bias since the size becomedler. Once the choice
of the size of blocks is made and the parameters of the modedsiimated, various

prediction results can be obtained based on the model.
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Table 3.1: Summary of Block Maxima Methodology
Method Block Maxima (BM)
Model Generalized Extreme Value Distribution with three pararseflo-
1

cation, scale, and shap8} ,, ;(2) = e (118(%5) *

Application | Segment data into blocks of equal length, from each block thie
maxima to which a GEV is fitted.

Remarks Tradeoff in Block size selection, too small leads to poor agjpna-
tion of asymptotic nature of model, too high generate too data
for the model to be reliable fit.

Interpretation| Model assessment of fit is done using graphical tools (pritityab
plots, quantile plots, return level plots and probabiligndity plot).
A properly fitted model can be used to extrapolate over thgaarf
available data.

Challenges | The change of model parameters with time. That is, non siatity
of the process producing the extremes. To overcome, an ateyf¢
time varying parameters are to be introduced into the model.

D

3.2.2 Peaks Over Threshold Method

The second model based on the EVT is the Peaks Over Thre$hold)( This method
fits a GPD distribution to the excesses above a given thré$b6]. Given a sufficiently

high thresholdy, the distribution of excess over the threshold given as

F(u+y)—F(u)
—F(u)

Fu(y) = P{X <u+y[X >u} = , ¥y>0 (3.8)

It has been shown that the above distribution, given a seiffti high threshold

can be approximated by a generalized Pareto distributi@j [2

Fu(y) — G g(y) (3.9)

where Generalized Pareto DistributiGg g is given by :

G p(x) = 1 <1+£§>5, x D(E,B) (3.10)

GPD describes the limit distribution of scaled excess owgh threshold. This is
the model itself and it has two parameters to be estimatews$atistical procedures.

These two parameters are the shape pararfeted the scale paramet@f24].

42



POT Method The method works first by selecting a threshold sufficienidgjhHrom
the data. This threshold value can be any sufficiently hidhevasing either graphical
tools like hill plot, mean excess plot, or motivated by apaiions. In practice, selecting
a threshold can be done on the basis of the stability of thenpeter. First, a threshold
is selected and the model is fitted to the data above thatiblicesSubsequently, the
threshold is increased or decreased to check the stabilibbegparameters’ estimates.
The threshold can then be fixed where the parameters’ essraed more or less stable.
This procedure can be enhanced by the mean excess plot whiargal threshold can

be selected for where plots start to stabilize.

Table 3.2: Summary of Peaks Over Threshold Methodology

Method Peaks Over Threshold

Model Generalized Pareto Distribution (GPD) with two parame(shape
and scale). It is the limiting distribution for excesses rosaffi-
ciently high threshold.

Application | Fix athreshold and take all the data above that fixed thrdsAdilus,
avoiding wasting data for example when some blocks contairem
extremes than others in the BM method.

Remarks A trade off in the selection of threshold is present. Too higlesh-
old will produce too few values for the estimation to be el
meanwhile, too low threshold will bring data from the cergéthe
distribution which will eventually invalidate the modedjrsince it is
asymptotic in nature

Interpretation| Interpretation is similar to the BM method. Graphical toals also
used to assess the fitted model.

Challenges | Dependent series will induce clustering of extremes whighlidate
the model. A de-clustering scheme needs to be adopted indbat
Extremal index used to assess effectiveness of de-clogteri

Secondly, the data above the threshold is considered amgdrmim a GPD and
finally the parameters of a GPD distribution are estimatetitha model is then deter-
mined by these parameters. Figlrel 3.4 illustrates the PQMade This GPD model

has a number of interesting properties, of them we rote [29]:

e The number of exceedences follows a Poisson process.

o If X follows GPD with parametet, then the mean oX is finite only if § < 1.
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e The empirical mean excess function can be used in the tHdesbktection, the

threshold will be from the region where mean excess plotsstarstabilize.

3.2.3 r-largest order statistics Model

Ther-largest order statistics method is the third model to beusised based on EVT.
r-largest order statistics method comes as an extensiomagrdvement over the tradi-
tional block maxima method. It is a halfway between the BM dredROT. Inr-largest
order statistics, data are segmented into adjacent blaukdram each block the

largest observations are selected and fitted into a joint GiEWibution [99].

DefineM;  to be thekth largest observation i(Xy, Xo,...,Xn). If EQuation[3.2
holds, then the distribution of the properly centralized analed sequence of largest

order maxima is

P[Mnk—bn) /an <X = G(X) (3.11)

on{x:1+&(x—m)/c} whereGy(x) =e ™ IR with 1(X) = [1+E(X%,“)]_% where

K is the location parametas,is the scale parameter, agds the shape parametér [21].

The parameters to be estimated in this model are the t(i§lgto), where they
have the same interpretations as in the block maxima methsgliming the indepen-
dence among the observations, the method of estimatiortheseame widely available

methods of maximum likelihood methodology.

The value ofr which represents the number of high order statistics to leetssl
from each block is subject to some tradeoff between the negiand the accuracy as
in the block size selection in BM and the threshold selectmROT methods. A large
value forr will produce too many values that the asymptotic nature efrttodel will
be put in doubt. On the other hand a small valuerfavill produce wide confidence
intervals for the parameters’ estimates that the confidenttee model will be put in

doubt. A balance needs to be reached [21].
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Table 3.3: Summary af-largest order statistics Methodology

Method r-largest order statistics (RLOS)

Model Generalized Extreme Value Distribution as in the BM method

Application | Data are segmented into blocks and from each block tlaegest
are picked and a new series is constituted that has ldrgest from
each block. To this new series the GEV is fitted

Remarks The selection of is crucial. Too smalt will produce model parame

ters with very large confidence intervals, which is not ddsg since
there will be no precision. Very large r order will eventyahclude
observations from the center of the distribution which lidate the
model assumption altogether.

Interpretation

It is similar to the BM method. Few values of r can be tested
from the graphical tools the model can be assessed. Inogetse
value of r improve the quality of estimates, but not to inseesaery
far.

and

Challenges

Selecting the right number of order statistics to be inctliotethe
model fitting.

Some studies that have applied this model in hydrology sstgdevalue of in

the range 3-7.[27]. However, this is not necessarily the catiee traffic data and we

can only tell after carefully studying traffic data modeliesites.
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3.2.4 Return Level and Return Period

Return level and return period are two prediction methodsipglying Extreme Value
Theory [43] 29]. Return level is the value that is expectedctuoonce during a return
period. It answers questions like what is the mean waitintge tbetween very large
events that exceeds the return level. So, T-year return igwhe value that will be
exceeded on average once in a T-year time, year can be régigcde appropriate
blocking structure. For example, if data are blocked adogrtb minutes, then only
would it make sense to talk about T-minutes. In Financeditee the same concept is

applied and it is referred to as Value at Risk (VaR) [91].

The return period gives the mean expected time between tecifgpextreme
events. To calculate them we need first to estimate the deswofithe block maximum
distribution. This is achieved by inverting Equatién {3.6)

0)

3

Xp= M- |1 {-log(1-p)} |, &+0, (3.12)

and in the case the parameéds equal to zero, the above equation becomes
Xp=H—0log{—log(1-p)}, &=0 (3.13)

whereG(xp) = 1—pand 0< p < 1, [29]. To a reasonable degree of estimatiofp 1
is the return period angl, is the associated return level. This prediction tool presduc
some measures of extremes in the network. These measur#dsecape incorporated

into future service level agreements.

However, to use this tool it is necessary to estimate theesponding GEV pa-
rameters and plug them back into Equatiéns 13.12[and 3.13urd{i§.5 illustrates a
return level plot for some of the external traffic traces ahicas first fitted into a GPD
with a threshold 4000 bytes. The plot can be interpreted itiquéar context. In this
example, the plot is being produced for the bit rate of theml traffic data. The data
are fitted to a GPD with a threshold of 4 kilo byte. The horiabrixis shows the bit

46



rate level (above the 4kbyte) that will be exceeded at least n the specified return

period given by the vertical axis.

Return Level Plot
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Return level
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|
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I
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le—0O1 l1e+00 le+01 le+02 le+03

Return period (years)

Figure 3.5: Return Level Plot for Oct89Ext4 Trace based on B @GP

3.2.5 Parameter Estimation

For any model fitting exercise, one needs to estimate thenmeas of that particular
model. As the parameters of the model are yet to be determestnation is nec-
essary. A number of methods exist for the parameter esbmaéind new methods
are always being researched. The classical approach tostimaéon of GEV and

GPD parameters is done using Maximum Likelihood (ML) methad the Probability

Weighted Moment (PWM) method [41].

Maximum Likelihood method can be effectively used to estarmaodel param-
eters(y, 0,&). The use of ML estimator is only possible when the shape petendis
greater than -1/2, and in that case, the variance and cacaria ML are given by the

inverse of the fisher information matrix [29].

Probability Weighted Moments method works in a differenywsn ML method,

in which we equate the empirical moment with the theory. Goheaatage of this ML
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method is that calculations are simple and regularity dooms are met wheré in
[-1/2,1/2], [29]. However, PWM suffers from the fact that agno guarantee of fea-
sibility and might yield non-feasible parameter estimaiése non-feasibility problem

decreases when some further conditions are satisfied [8].

Nevertheless, the recommended method for parameter ésimnsthe one based
on ML. It is widely used, and implemented in the popular datalgsis software such
as R and MATLAB. Other approaches do exist for the estimatioG®V and GPD

parameters such as Bayesian and Robust approaches [50].

Maximum Likelihood Estimation

The ML method is a popular method for estimating many modehmpaters. It is
widely used, acceptable, and possesses good propertigsrkis first by constructing
a likelihood function, and then maximizes the likelihooadtion with respect to the

desired parameters.

Definition  For each sample point let 8(x) be a parameter value at which the like-
lihood functionL(B|x) attains its maximum as a function 6f with x held fixed. A

maximum likelihood (ML) of the parameté&based on a sampk s 6(X).

Suppose we havii, Xo,..., X, are i.i.d. samples from a population that has a
probability distribution function given by (x|01,62,...,6x), the likelihood function is

given by [29]

L(B|X) =L(061,02,...,6k|x1,X2,..., %) = I_l | = lnf(Xi |61,02,...,6k) (3.14)

The Maximum Likelihood Estimator (MLE) is given as the vahlfed at which the
ML function attains its maximum. To find this value, we assuirat the ML function

is differentiable and we differentiate it and equate it tooz® find the maximum value
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of the function and henc@

d :
EEMQX)V:Q|:12WWKBEGCQ‘ (3.15)
|
In general and in all ML estimations, ML procedures suffemirtwo things,
finding a global maximum of the likelihood function and vgniig indeed that it is a
global maximum not a local one. And the second issue is wh&ih& is numerically

sensitive. This second point is a mathematically inheniiexblem [86].

The confidence intervals for the estimator, which dependerFisher informa-
tion matrix, are calculated either by analytically drivitige fisher information matrix
or by making use of the observed information matrix. In pcactve use the inverse of

the observed information matrix [86].

GEV ML Estimation The log likelihood function for a samplé,,..., Yy, of i.i.d.
GEV model is given by [8]

m

|OgL(E,u70') = —mlogo — (% +1) Z|og(1+EY' ; IJ) _ Z(:L_'_EYI ; H)

1
H

(3.16)

In the cas& = 0, the above will not work (divide by zero!), and we have aeotlog

likelihood for that case
Al Yi—u <Y—u
logL(0,p,0) = —mlogo — ) exp(——) -y —— (3.17)
i; Y i; Y

GEV likelihood functions have no analytical solution to eletine the(§, o), they
need to be numerically evaluated. If the iterated valuetiserregiorg, > —1 we can get

a local maximum. The good estimators properties such agbsymptotically efficient
and normal do still hold. However, a local maximum cannot b&aimed in case the
shape parameter value is in the regtoan —1, this problem is discussed thoroughly by
Smith in [88].
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GPD ML estimation Having an i.i.d. sampl&1,Y>,...,Y, drawn from a GPD with

parameters¢, ), the likelihood function is given by [8]
R PIR 13
1((&,B),Y1,---,Yn) = —nInB (E+1)i;In(1—|— BX.) (3.18)

This likelihood function needs to be dealt with numericallyit is the case in the
GEV maximum likelihood estimation. The function works aravé local maxima for

the cas€ > —1/2, the asymptotic normality is obtained and given|byi [29]

Bn

n1/2<£“n—z,§—1> —N(O,M™1),n— o (3.19)
with M1 = (1+8) tred
1 2

Method of Moment Estimator (MME)

The essence of method of moment estimates is in equatingathple moment with
the population moment. We obtain then a system of equatiatsate solve to get the

parameter estimates [87].

The MME is obtained by solving the system

anzéixﬂ r=1,...k (3.20)

wherek is the dimension of parameter spa®eand6 = {61,6,,...6x}. Sometimes
MME produces unreliable results. However, it is used as aialiestimator in numer-
ical calculations. Also, the MLEs of GEV is such a case wheeemay use MME as

initial estimator to supply to our numerical algorithm.

An improvement of the MME is given by the introducing some ges to the
calculations. The idea is to use empirical weights basedcherCOF and equate them
with their theoretical counterparts in the other side ofaun [8]. Such a method is

called Method of Probability Weighted Moment (PWM). Obvityishe advantage of
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PWM is due to the more efficient use of the available data. Teteaily, the weighted
moment is given as
E(X"[F(X;0)]5[1—F(X;0)]") (3.21)

and their empirical counterparts are given as
L I S t
n i;Xi:npi:n(l_ Pi:n) (3.22)

wherer = 1,...,K;X-n IS theith order sample statistics aml, is theith plotting posi-
tion. Having these two equations, then we equate them and ot resulting system
of equations to get the PWM estimates. In case of GEV modd,gasy to show that

E(X(F(X))") can be written as [29]

S g

wherel stands for the Gamma functioit) = ;" e “u*~1du, t > 0 The estimators

B — { —9[1—(r+1)5r(1—z)}}, g1 (3.23)

(é, [, 6) are simply the solution of the system :

Bo=p-¢(1-T(1-8)

2B1—Bo=3r(1-&)(2-1) (3.24)

3Po—Po _ F-1
2B1—Bo  2%-1

and replacing3; by its unbiased estimator gives

N B 1 n r J_l .
B = ﬁjzl (Dm> Xin (3.25)

with the usual convention whe(&y p, ..., Xnn) is the ordered GEV sample.

3.3 Model Diagnostics

Selecting the right model is as important as the modelirgdfit\ great deal of work
has been done to illustrate this point [93]. It is thus imaottto let the data speak

for itself; this can be done by visualizing the data usindedé#nt graphical tools. The
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collection of these graphical techniques is given the nawpmdeatory Data Analysis
(EDA). Selecting the right model will make burst predictiorore accurate. In turn,

accurate prediction of traffic bursts leads naturally to mimaemced Quality of Service.

In this section, we will discuss some of EVT based model sieletools. Namely,
Records, Maximum to Sum Ratio, Gumbel Plot, Hill Plot, QQ Ptptantile plot, and

Mean Excess plot. We illustrate some of these tools with gtes

3.3.1 Records

Records can be used as exploratory tool in distinguishingdsst independent identi-
cally distributed data (i.i.d.) and non i.i.d. data. Recardske use of a known pattern
of records from (i.i.d.). In fact, the number of records frondal. data grows very slowly
[29]. This fact allows us to use the number of recaxdis our traffic data and compare
with expected records in a typical known i.i.d. data. If #hex a match in the number
of records, then we may say that our traffic data can be modeslédd. otherwise we

say that our data cannot be modeled as coming from i.i.d orartocess.

A recordX, occurs if
Xn > Mn_1 =maxXy, ..., 1) (3.26)

By definition Xy is a record. Let be an indicator function, the record counting process
N is given as
n
N]_ - 1, Nn - 1"— Z ka>Mkfl7 n Z 2 (327)
k=2

The expected value of the number of records counting pronessl. settings is given

by E(Nn) = SR_; %, and the variance of that process is giverMay(Nn) = SR_; (% —

k—lz). It increases with the increasing of the sample size. Fomeia&in 100 i.i.d. we
expect 5 record€: (N1gp) = 5.2, when the size of the sample increases to 1000, then

the expected number of records increases to 7, we BaNgyoo) = 7.
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3.3.2 Maximum to Sum Ratio

Maximum to sum ratidM, /S, can be used as an explanatory tool to tell about the finite-
ness (existence) of the moment of given order, g§¥1]. It is a standard knowledge
that the mean and variance of a given data are their first anderent and second order

moment, respectively.

Using maximum to sum ratio, we are able to tell whether theawae, which is
the second order moment, of data is finite (exists) or infifdtes not exist). The™
order partial sum ang'" order maximum are given by
Si(p) = SL1|X[P andMn(p) = max(|Xa|P, ..., |[Xn|P), respectively[[2D].

From [29], we have the following equivalence relation

Ra(p) = Mn(p)/Si(p) = 0= E[X|P <o (3.28)

This equivalence relation means th#t order maximum tagp'" order partial sum
ratio goes to 0 as approaches infinity if and only if th@™ order moment exists.
A direct way to use the above fact is to plot the max to sum ratialifferent order
moments. If the plot for a given moment order goes to zera e conclude that the
moment of that order is finite (exists). It is to note that avydail distribution with tail

parameten < 2 has an infinite variance anddf< 1, the mean is also infinite.

To illustrate this tool, we know that if the moment of the fiostler which is the
mean does not exists then neither the mean is finite nor deetfance exist too. We
tested a sample of 100 realizations from a Pareto distabwiith parametea = 1.5.
In this setting, it is obvious that the mean does exist anchitefbut not the variance

which is infinite.

We plotted both the maximum to sum ratio for the first order sacond order
moments using = 1 andp = 2, respectively. Since the mean is finite, the maximum
to sum ratio withp = 1 will produce a plot that will converge to zero as the number

of realizations increases. However, the variance is imjrittis means of we plot the
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maximum to sum ratio withp = 2, the plot will not converge to zero and will continue

to fluctuate. This is illustrated by the Figurel3.6.

ao08f : : : .

0.6 : - ‘ | : : .

0.4 : . : : .

Max/Sum Ratio,

o 1 1 1
0 2000 4000 6000 8000 10000

(a) Pareto random vairable sample with alpha=1.5

1 T T T T

Max/Sum Ratio, p=2

0 2000 4000 6000 8000 10000
(b) Pareto random vairable sample with alpha=1.5

Figure 3.6: Max/sum ratio with p=1 and p=2 for top and bottoaspectively

Figure[3.6 (a) shows the Maximum to Sum ratio foe 1. Since plots are con-
verging to zero, it shows that the mean is finite which is tret brder moment. How-
ever, for the second order momemt-€ 2) shown in Figuré 316 (b), it is evident that
the plots do not converge. Hence, it is concluded that far dlaita the second order

moment does not exist.

Maximum to sum ratio is used for other purposes as well. Itdseestimation
purposes. Max to sum ratio is suggested as a test statistetimating the tail index
of a very heavy tail distributions [67]. In particular, whre tail indexa approaches

zero, which is the case of a super heavy tail probabilities.
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3.3.3 Probability Plot : Gumbel Plot

The idea behind probability plot is to graphically check e our sample could have
come from the referenced distribution or not. The plot isedarnth respect to a ref-
erence distribution, and it will look linear in case the séanmatches the referenced
distribution. A departure from linearity is a clear indicet that the sample is not well

approximated by the suggested distribution.

Gumbel plot is probability plot where the reference disttibn is the Gumbel
distribution. It is one of the most useful and widely usedmoes in extremes. It is a
plot of the empirical distribution of the observed data agathe theoretical quantiles
of the Gumbel distribution. If the data come from Gumbelrisition then the plot
will look linear, otherwise the plot shows a convex or coreaurvature depending
on whether data come from a distribution with a tail heavient the Gumbel’s or
lighter, respectively. Gumbel plot is also known as doubtgtithmic plot. In Gumbel
method, we plot the empirical quantiles versus the quantifehe theoretical Gumbel

distribution. The plot is given a5 [21]

{Xcn, —In(=In(pn)) } k=1,...,n (3.29)

wherepy , = (n—k+0.5)/n are the plotting positions.

Gumbel plot is used in many of the applications of block maximethod. It is
used to estimate the model parameters in the wind speeddor@e [46]. It is a fitting

technique which is widely used in diverse engineering deprgblems([10].

3.3.4 Hill Plot

Since we are interested in the tail of the distribution, vehidre peaks and bursts take
place, it is essential to know the parameter that deternthreegail of the distribution,

a.

A heavy tail distributionf, can be defined as follows:
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Definition [80] Suppose we have a samplg, Xo, ..., X, that follows a distribution
F(x), we sayF (X) is heavy tailed with indext if P(X > x) = F(x) =x %L(x), x>0

whereL(x) is a slowly varying function.

To characterize and define exactly the heavy tail distrdoytwe need to specify
exactly or to a reasonable degree the value of the pararaetétill estimator is a
popular method for estimating the parameteeventually some difficulties exist with

this method. Hill estimator is defined as follows [29]

1 X
Hin=-5 lo
“n ki; IXesn

whereX; is the ith largest value in the sample. To make full use of eslimator, we

(3.30)

plot (k, Hk‘r}), 1 <k < n. We pick the parameter from the region where the graph is
becoming stable. As an example we simulate 100 Pareto samtplet = 1.2 and we

plot the Hill plot and try to see if we can deduce the value phalfrom the graph.

Figure[3.7 shows two Hill plots for internal traffic and extar traffic. Plot (a)
shows WAN traffic. Its corresponding Hill plot is shown in piz). In the second
column in plot (b) is shown the LAN traffic data of bit rate amdthe plot (d) the
corresponding Hill plot is shown. Both Hill plots are beingpguced with 95 percent

confidence intervals, shown by the jagged line.

Hill plot is used primarly in estimating the heavy tail indakpha Its use and
even introduction started with applications in hydrolo@¢]. However, with the dis-
covery of many natural events that are heavy tailed, its asebl®come a standard

practice in the estimation.

3.3.5 Quantile-Quantile Plot

Quantile-Quantile Plot (QQ-Plot) is an effective tool usedomparing samples from
possibly different distributions [80]. In QQ-Plot, we pltte quantile of a two dif-
ferent distributions. QQ-plot is used in statistical ifiece by plotting quantiles from

unknown distribution against quantiles from a hypothétaiatribution with known
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parameters. If the plot is linear, we infer that the unknowtaccome from the hypo-
thetical distribution. Otherwise, it is concluded the twistdbutions does not match.
Furthermore, if the plot line pass by the origin and have peslof 1, we say that the

two samples have the same location and scale parameters.

In Figure[3.8 (a) the fractional Gaussian noise is plotteadresd the normal quan-
tile. In Figure[3.8 (b) the heavy tailed linear fractionatde noise is plotted against
the normal quantiles. Plot (a) shows a remarkable accoedahthe fractional Gaus-
sian noise quantiles with those of the normal one shown bystitaéght line. This is
due to the fact that fractional Gaussian noise has innawatio a marginal distribution
that is normal. However, plot (b) shows a deviation from ttnaight line. This devia-
tion indicates the marginal distribution of the LFSN doesmatch that of the normal

distribution and there for it is of heavier tail.
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0] 500 1000 1500 0] 500 1000
(a) Bit rate for WAN Traffic (b) Bit rate for LAN Traffic
Hillplot Hillplot
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(c) Thresholds (d) Thresholds % 10%

Figure 3.7: Hill plot illustration for two traffic types
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QQ Plot of Sample Data versus Standard Normal QQ Plot of Sample Data versus Standard Normal
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Figure 3.8: QQ-Plot lllustration

3.3.6 Quantile Plot

Quantile plot is totally different from Quantile-Quantpdot. Quantile plot, sometimes
referred to as Qplot, is a plot that examines a single vagidata set. Quantile-Quantile
plot is for the comparison of two samples from possibly défe distributions. In

Quantile plot we plot the data against standard quantileisheomparing one sample
of the data to the standard quantiles or to itself. While indtieer method, Quantile-
Quantile plot, we take two sample or datasets and we compairecuantiles by plot-

ting their quantiles against each other. This second meithoded to compare two

samples and see if they have the same parent theoretiaabualistn or not.

Quantile plot can help in obtaining valuable informatiorabthe data like me-
dian, quantiles and interquantile range. Such informatem be easily obtained from
simple look at the Quantile plot. The slope of the quantit plill indicate the density
of the data. The flatter the slope is the denser are the ddiatadrea.

Suppose we have a samplenadata points/1, Yo, . .., Y, for which we would like to ob-
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tain its quantile plot. To plot, we arrange the data in astendrdery(y),Y2),-- -, Y(n)
with y(1) being the smallest and Igt =i/n,i =1,...,n be a fraction in [0,1]. Define

the quantileQ(pi) to bey;;). The plot{p;i,Q(pi)} is called the quantile plot.

3.3.7 Mean Excess Plot

The mean excess function of a probability distribution isegiase(u) = E(X —u|X >
u), 0<u< Xxg, whereuis a given threshold anxk is the support or right end point

of the distribution[[29].

Mean excess function is used under different names in diftedisciplines. In
insurance, it is the expected claim size in the unlimiteetain finance, it is the short-
fall; in reliability, it is the mean residual life. Mean exs=plot (meplot) is based on
the mean excess function. It is a useful visualization tttslimportance comes from
the fact that it helps in discriminating in the tail of trafiata. If traffic data comes
from a distribution with a heavier tail than Gumbel’s, thée plot will look linearly
increasing. If data come from a distribution with a lightail than the Gumbel, then
the mean excess plot will be linearly decreasing.

As a graphical tool we use the mean excess plot, it is basdueogstimate of mean
excess function. Suppose that we hxyeXs, ..., X,, the sample mean excess is given

as
enlt) = 1/F(u) [ Faly)dy 33Y)

u

The graph{X n,en(X«n)} is called the mean excess plot.

As is apparent from both plots in Figure B.9, the plots haVemint character-
istics. The internal traffic, plot (a) has a decreasing oratieg slop as the threshold
increases. This plot was based on the authentic trace froooBelbout the internal
traffic. However, the external traffic in plot (b), which isdeal on simulated linear frac-
tional stable noise, shows an positive slope and it inceeasehe threshold increases.
This can be explained since the external traffic marginatiigion is heavy tailed, the
values tends to get larger and larger and eventually the isa@aken on few very large

values only as the threshold increases.
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Figure 3.9: Mean Excess Plot for Internal and External Teaffi

3.4 Extremal Index

Much of the above theory have been discussed in a setting¢hatnes stationarity and
independence of the data (i.i.d.). The reality is that realldvproblems are rarely in
such conformity to the i.i.d. case. More specifically, Inestrand network traffic data
is very far from being independent or stationary. Fortulyagerecent upgrade to the
theory is being done by introducing the extremal index cph{&/]. The extremal in-
dex allows for a successful implementation of the theorhegresence of a dependent

sequence. Thus it relaxes the independence assumptioa tingory.

However, the type of distribution remains unchanged ang#rameters will vary
slightly in the later of dependence. However, it should reoalproblem since they have

to be estimated in either case.

The two conditions to be satisfied are called Leadbettersngiconditions D and
D’ which deal with long range and local mixing [57]. If the twonditions are satisfied,
the GEV theory and the GPD will still be applied with the irduetion of the extremal
index parameter callel which range between zero and one. Zero being for strongly

dependent and one for the independent case. The extreneal gath be thought of as
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the reciprocal of mean cluster size [21] givn as
P{max(Xy, Xz, ..,%n) < x} ~ F®(x) (3.32)

There are a number of approaches to estimate the extreneal iBd basically three
approaches. The block method, the run method, and thegrteredance times method
and some variants of these three methods,see [83]. The tietkod works by seg-
menting the data into consecutive blocks of equal lengths. iumber of exceedances
over some high threshold are counted from each block, theastr is taken then to
be the reciprocal of the average exceedances per block. ¥ge this method which is

relatively easy and yet reliable.

3.5 Simulation

The study of the bursts in the traffic could not be completdait addressing simu-
lation techniques given their significance in computer oeks. As modeling is about
representing data in abstract terms, simulation is abautrgéing data out of that ab-
stract model. The need for simulation in computer netwosks igreat importance not
only to gauge the abstract model, but for other uses likeop@idnce evaluations and
network planning. In some situations like when a networkddbilt is still in the plan-

ning process, the only way to test that network and avoidéuarge scale deficiencies

is through the simulation process.

Simulation can be explained into two categories dependmgwvents type, dis-
crete event simulation and continuous event simulation Bdth discrete and contin-
uous refers to the time at which events happen, as the nangesiggthe continuous
events simulation is suitable for events that take placeoimtisuous time like mea-
suring temperature for example, while discrete eventsastie suitable for computer
networks where the events, be it packets arrival at the efitje oouter for examples,

happen in a discrete manner.
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To simulate, a computer software is obviously needed, memnthare to conduct
simulation, they range from commercial prohibitively erpwe to free open source
one. Down the list notably are OPNET, OMNET, NS2/3, among 40, 61]. OP-
NET is the commercial software of choice for its ease of usaplgical user interface,
myriad modules, and the technical support that comes withdwever, it is expen-
sive and not affordable to many researchers and can onlyumelio large institutions.
OMNET being a free version which tries to emulate OMNET in somay, it becomes
increasingly popular. As for the research community, magent articles and publi-
cations have seen the use of NS2 by the research commungifedés command line
nature. In computer networks models are either describptiyascal or analytical, the
physical one being the one all the above software are dealthg As the models being
discussed in this work are rather analytical, MATLAB is thused for the simulation

purpose hereafter.

The simulation carried out here is twofold, one part is fertitaffic itself both in-

ternal and external, and the other part is simulating thetbdrom EVT based models.

Internal LAN traffic ~ The internal LAN traffic is simulated using fractional Browni
(fBm) model [70] using MATLAB function based on an algorithimat uses wavelet
methods as suggested by Abry and Sellan [2]. In the Flguf®(@)ishows the fractional
Brownian motion which represents the accumulated work imétevork. Figuré 3.10
(b) represents the bitrate, which is modeled as fractiormalgSian. It is worth noting
here also that fGn is closely related to the fBm since it is ttiedmental process of the
fBm. The one parameter that was needed is the so called Hpastsneter (H=0.78).
This value is typical for LAN traffic and has been found in mafyetwork traffic data
where Belcore one is such an example. The command useitms(0.78,1000)after
which a series of commands have been carried out to extraéhtinemental process
which is shown in Figure3.10 (b). A proper scaling and centgis needed to produce

traffic traces with the desired mean and standard deviation.
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Figure 3.10: Simulating Internal LAN traffic using fBm

External WAN traffic  The external WAN traffic simulation is also carried out using
MATLAB. External WAN traffic demonstrate properties that ditferent from internal
traffic and thus the model suggested for the external WANi¢risfthe Linear Fractional
Stable Motion (LFSM) as suggested in the literature by &tikind Taqqu, sekel[2] and
the references therein. LFSM is also a self-similar proeesisthe fractional Gaussian
noise is just a special case of it. While the increments in Bra ire normally dis-
tributed, the difference is that in the case of LFSM the inezats are distributed with a
Pareto type heavy tail distribution, the parameter thatrotsithe degree of heavy tail

is called alpha.
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In Figure[3.11, the external traffic is simulated using LFSkhwarametersi =
1.5 and Hurst#H = 0.75. The function used for the simulation is fftlifsn and it sisiee
fast Fourier transform to produce traffic that has the irdindriance property and the
long-range dependence. Hurst parameter is again neededatrols the degree of
self-similarity along with a parameter alpha that conttbbsdegree of the heavy tail of

the distribution of innovations.

As seen from the simulation results, WAN traffic presentgatizristics that are
different from LAN simulation results. It shows more vatiiiép than LAN traffic. As
for the modeling, the FBM (FGN) was not able to capture the attaristics of WAN
Traffic, seel[51]. Due to the complexity of the WAN traffic (LRBelf-Similarity, very
impulsive innovations), alpha stable random processesgea useful framework [51].
For areference text on alpha stable random processes Wutit@rvariance we cite [85].
In [51], authors proposed the use of linear fractional stalaise (LFSN) which is the
increment process of the linear fractional stable motiatess (LFSM). The proposed
model, LFSN, is self-similar, long-range dependent andhwifinite variance (that is
very high variability). This model, as it is clearly seenrfrits properties, will capture

the key characteristics of the WAN traffic.

Simulating Bursts  Simulating bursts is not less important than simulatingwhele
traffic traces. It presents also similar challenges to thmsemulating the whole traffic.
Two models based on EVT are fitted to the bursts in the traffi€y @nd GPD. Luckily
though, simulating from GEV and GPD is a pretty straightfarsvprocedure given the
availability of the functions to simulate in both MATLAB arfd alike. To simulate
bursts using the GEV model, the function rgev() is used amgpblemented with the
shape, scale, location parameters, and the size of theedgample. The simulation
is curried out successfully using that function and resaitts satisfactory. However,
to simulate bursts for GPD distribution where a thresholéixed and data above it
are fit to that model, it suffices to just supply the shape patamas well as the scale

parameter together with the sample size to the function ngpIATLAB as well.
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Figure 3.11: Simulating External WAN Traffic using LFSM

3.6 Summary

In this chapter, we presented the theory behind our metbggiakith a brief account
to the development of Extreme Value Theory. We presentedthésestimation proce-
dures for the proposed models. An extensive list of the meeleiction and validation
tools is also presented. These tools are to be used selgcive the choice is left to

the practitioner to decide on which one to include in the gsial
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CHAPTER 4

EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the analysis starts by describing traca.ddten it proceeds by applying
some exploratory data analysis to the selected datasetmforformed guess of the
behavior of the dataset in hand. Applications of GEV, GPRI RbOS models based
on EVT are shown. Evaluation using some diagnostics grapbiecks of the models

is then presented followed by discussion and summary.

4.1 Exploratory Analysis

A lot of effort can be saved by first visualizing the availadkta. Doing so, useful
information can be extracted from the graphs. For exampie, @an tell whether a
trend is present in the data, whether data are stationaryhdfuquestion such as, are
they independent or strongly correlated?, can be readdyared. However, it is not
easy for the first time to tell all these information by menelgking into these graphs.
It requires an adequate practice and training to be abledbapthese details from
a simple glance. Fortunately, in this era of available camppower, high quality
graphs can be produced easier and the learning curve frase traphs is becoming
less steep as well. Checking the data and plotting some gtaphsualize data is an
important step toward a successful modeling exercise. Sigghis called exploratory
data analysis and it plays a great deal in deciding on the mgliel to be fitted to data.
Whether data can be approximated as stationary or blataorhstationary can also be

depicted from the graphical assessment.

It pays back to check the stationarity of the data at the fiestgp Stationarity

means that the law governing the process is not changingtimth a property that is



crucial for the analysis and prediction to be relevant [45the mean or variance of
the data changes with time, then the prediction based oorséay model is doomed
to failure. In simpler words, the mean and variance shouldchange significantly
between the beginning of the data, the middle, and the enldeofiata if a stationary
model is to be used [45]. Exploratory data is used to checkstagonarity of the

data by looking at the figure and check weather trends arepresiowever, more
robust stationarity checks are also possible [10]. For tiregse of EVT analysis, the

stationarity assumption found here is fairly acceptable.

The data being examined are high resolution internal arerext network traf-
fic traces. They were collected at Belcore laboratories uspegialized equipments.
These data were the subject of the seminal study discovirengelf-similar and frac-
tal properties in network traffic by Leland et al [58]. Numesaesearchers followed
through and used the data for other research purposes awelbbjective from using
the same data is to predict bursts and serious deteriosatidhe network bytes count

time series. The datasets are summarized in Table 4.1.

Table 4.1: Summary of Belcore WAN & LAN Packet Traces
Dataset Date Duration What Size
BC-pAug89 | August 29, 1989 | 3142.82 Seconds Internal LAN | 1,000,000
BC-pOct89 October 5, 1989 | 1759.62 Seconds Internal LAN | 1,000,000
BC-Oct89Ext | October 3, 1989 122797.83 External WAN | 1,000,000
BC-Oct89Ext4| October 10,1989 215 Hours External WAN | 1,000,000

The four datasets are the mixture of internal and exteriaakes from Belcore
traces. Two traces (BC-pAug89, BC-pOct89) are internal LANdsaand the other
two (BC-Oct89Ext, BC-Oct89Ext4) are External WAN traces. Twodated traces
for both internal and external traffic based on fractionalig€ssan noise (fGn) and linear
fractional stable noise (LFSN), respectively, are alsaluseheck the properties of the
fitted model [2] 89]. The original Belcore traces are compasfeahe million events
each, arranged in columns format, one column records thelktime of the packet
and the other for the size of the arriving packet along witteostate information. For

the purpose of this study and since the objective is to straffid bursts, spikes, and
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serious deteriorations, the data rate per time intervad (@dlisecond=0.1 second), or
bytes counts / 0.1 second is used. Data is then transfornedytes per 0.1 second
in MATLAB with some simple routines. It follows that byteswat per 0.1 second is

obtained.

After successfully transforming the traces into the dekssgtate, simple plots of
both data are produced. They are shown in Figure 4.1. In tgaté; plot (a) shows the
internal LAN trace while plot (b) shows the external WAN fraf Both plots are in the
0.1 second scale for the time, and bytes for the data. Tradies look bursty, which is
obvious in both internal and external traffic, especiallyhia latter. This same behavior
persists when the aggregated data is plotted in the samieriashich is an indication
of the scale invariance property discussed earlier in Ch&ht&his is exactly what is
expected given the self-similar property of the traffic. Hoer, the interest here lies

solely on the spikes and bursts in traffic traces.
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Figure 4.1: (a) Internal LAN traffic, (b) External WAN Traffic
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Moreover, the frequent spikes seen in external traffic aiaedination of a heavy
tail marginal distribution for the internal and externalftic alike [80]. It shows a
clear heavier tails for external traffic given the severitytie magnitude of these spikes
and bursts. However, these are guesses to be confirmed byhéreeaploratory and

analysis tools that are going to be applied and discussédgtiaubsequent sections.

4.1.1 Investigating Independence

The independence assumption is crucial for the applicaifaall the tools from the
classical extreme value theofy [45]. EVT has been developetie independence as-
sumption and, thus, if this assumption fails new methodsd t@be implemented. With
the independence assumption an additional parameted eafteemal index needs to be
included in the model [57]. All the parameters of the model going to be estimated
in both cases of dependence and independence assumptiwavétpit should be clear

that independence would alter the parameters of the modatéfis not taken.

4.1.2 Records

Records provide a reasonable and a convenient way to help dettision of the model
to be fitted for the prediction of bursts and serious detations in traffic traces. How
many records are expected in data is a crucial question anbde#ully answered in
case the data in question consist of i.i.d. observation. %t v8 the case of dependent

data?

Records from independent data are believed to follow a ceptitern. Their be-
havior is predictable and follows some known mathematigialtions [29]. This fact is
used to check whether a given dataset is independent or rooe $pecifically, records
from the given dataset are compared to the typical knownbehaf independent. A
match in the behavior indicates the independence, whilepartiere from the typical

behavior indicates a dependence in the data.

The expected number of records from a typical independeatidaiven by the

second column in Table 4.2. The sample side given by the first column (10 to the
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power of the digit in 1st column). The standard deviationh&f humber of records is
tabulated in the third column. In the other four columns,nbenber of records in the
four datasets under study is tabulated. This is done foribntghnal and external traffic
traces records. As noted earlier, the first two columns ofdkefour are for internal

traces, and the remaining two columns are for the exteraat$:.

Table 4.2: number of records in a typical i.i.d. data andaiffitc traces

n=10| E(N) | /V(N) | pAug89| pOct89| Oct89Ext4| Oct89Ext
K=1 | 2.9 1.2 2 3 1 4
K=2 | 5.2 1.9 7 4 2 6
K=3 | 7.5 2.4 10 7 6 8
K=4 | 9.8 2.8 12 11 11 8

In Table[4.2, both the internal trace pAug89 and the exteina@le Oct89Ext
suggest an overstatement in the number of records in the Tageother external trace
OCt89EXxt4 tends to underestimate the number of records amdpo the number of
records supposedly from an independent identically thisted (i.i.d.) dataset. The
internal trace pOct89 is showing some conformity with thd.icase. Nevertheless, all
the four traces are within the confidence intervals of thedsied i.i.d. case. They do
not deviate too much. The conformity of the number of recdodthe theoretical one
can be considered as an indication of the possibility thaiuld be modeled as coming

from i.i.d. data. That is considered a major step in applgxigeme value theory.

The other major concern is to know the shape of the tail of ib&ildution of
these traffic traces. Whether it is heavy tailed or light thikeimportant for fitting the
right model [79]. Heavy tailed distributions suggest iguent bursts that are very large
in magnitude, in contrary to the light tailed case. A restdtri EVT called maximum

to sum ratio can be used to check on the tail of the distributio

4.1.3 Maximum to Sum Ratio

As previously mentioned, the presence of heavy tails canptetely change model
parameters and properties [79]. This tool gives more irisigh the structure of the

tail of the marginal distribution of traffic traces. The immfance stems from the need
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to differentiate between the existence and non-existeheeoments of some given
orders. For example, the first order moment (the mean), osehend moment order
(the variance), and any higher moment order. The uniqueniedss method come
exactly from the fact that it can tell on the tail finitenessamy given order moment.
The first three order moments are the most interesting in rsasgs. As the method
itself has already been explained in a previous chaptes,nibw applied to the traffic

traces.

Plots of the maximum to sum ratio are shown for the first ordemant (the
mean) and second order (the variance) moments in left ahtl siges of Figuré 412,
respectively. To check the finiteness of these momentss gtand (b) contain the

internal traffic whiel plot (c) and (d) contain the externalftic traces.

1 1
§e
[
€ os]
@
x
&
=
0 ‘
0 200 400 0 200 400
(a) pAug89 sample size (b) pAug89 sample size
1 1
8
[
€ o5} 05]
€
3
=
0 ‘ 0 ‘
0 200 400 0 500 1000
(c) Oct89Ext sample size (d) Oct89Ext sample size

Figure 4.2: Maximum to Sum Ratio with p=2, and p=1 for byte6/frs datasets
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For the first order moment (the mean), the internal trafficasaproduce a ratio
that goes quickly to zero which suggests the mean is finitethAtsame time, the
external traffic traces produce a ratio that goes to zero libtshower rate. This shows
that internal traffic traces have their means finite. The sapmpdies to the case of the

external traffic despite the slow convergence to zero indtter case.

Another interesting case concerns the second order monhentdriance). It is
shown in the second column of the above mentioned figure.idrcse it is remarked
that the internal traffic ratio goes slowly to zero which meamat its second order
moment is finite. The external traffic traces have this mawr/satio slowly approaching
zero but in a very slow rate. Note that for the internal tradfd® values are sufficient
to reach that conclusion, while in the other case more th&® 1@lues and still the
convergence to zero is slow compared to the internal one. Wheamarked from this
tool is in line with what is observed earlier from the simplaghs for the external
traffic and in particular for the external traffic trace Od&® The high fluctuations

show that there is a strong presence of heavy tail distobati

4.1.4 Gumbel Plot

Gumbel distribution plays a central role in determining tiee of distribution that
data follow within EVT three distribution families. Its mlis similar to that of the
normal distribution in classical statistics. Gumbel ptone of the earliest extreme
value method used by engineers and risk analysis [44]. Asatkgarlier, it is a plot
of the data against theoretical Gumbel quantile and is ésfigrused to check the
heavy tail property of the proposed distribution. It helpsdistinguishing whether
data can be modeled as coming from a Gumbel distributionoon & distribution with

heavier/lighter tail than Gumbel tail.

In Figure[4.8, Gumbel plot is produced for internal trafficglot (a) and for
the external traffic in plot (b). In plot (a), two portions fnotwo internal traces are
selected. The internal traces, which are based on the pAng&®al one, are grouped

into blocks of 10 observations each. That translates inecorsd for each block when
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maxima are taken. The plots for internal traces are notlin€aey show an upward
curvature. Such behavior indicates that maxima are diggtwith tail lighter than
Gumbel. The same as saying maxima from internal traces anebdited as Weibull
type. It is also known that Weibull distribution correspsnid a GEV distribution
with a negative shape parameter/[21]. However, the curgasunot very pronounced

suggesting that a Gumbel might be a possible candidateifointiernal traffic maxima

traces.
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Figure 4.3: Gumbel probability plot of the internal (a) axtieenal(b) traffic

Gumbel plot for external traffic shows a different behavitbrhas a downward
curvature which suggests a distribution with a tail heatlian Gumbel. In Extreme
Value Theory, it means a distribution of the maxima of exa¢traffic traces that fol-
lows Frechet distribution. As in the financial and insuramaeket, Frechet distribution

or equivalently GEV with positive shape parameter is a comuhistribution [29].
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Similar observations are made using the mean excess plalasiohave a clear
cut, the estimation of the parameters is thus needed. Timeatsin of the parameters
will reveal more information. Only then these observatiafiseither be confirmed or
put to doubt. However, these informed guesses from Gumbg& phd Maximum to
Sum ratio along with records give some sense of assurante iapplicability of the
EVT analysis. So it can be considered as safe to jump to tireasin of the parameter
for the two proposed models, the GEV and the GPD.

Next, the implementation of the two core models for the ewtre will take place.
Parameters will be estimated and the fit will be assessed. eigEwestimating and
checking the model parameters requires some software astexp Surprisingly, most
of the standard or well known statistics software (SAS, SR&X appropriate pack-
ages for extremes implementation. However, some spediefliigned programs just for
the purpose are recently available and others are beindog@eeby the research com-
munity. The Extremes Toolkit (extRemes) which is built on Rtistical programming
platform is just one example. MATLAB also has included somieaame distributions
functions in its 2008 edition, but it is limited and far froraraplete. For this reason, a
combination of R and MATLAB has been used to carry out theyaisl The data also

has to be exported/imported to use the capabilities of ofteaie or the other.

We used both software interchangeably in the analysis @f. dddmetimes data
need to be exported from one R to MATALAB or vice versa. Howewe loss of data

occurred in the process.

4.2 Predicting Bursts using GEV

The GEV distribution emerges as the limiting distributiohaosequence of maxima
(minima) of a random variable [37, 29]. This random variat@a be any traffic quantity
of interest. It may refer to file sizes, connection duratittmpughput, packet count,
or bytes count. For the purpose of this study the bytes coata dave been used.
Meanwhile, bursts in the GEV case are considered to be trek bi@xima taken in

appropriate block size.
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Figure 4.4: Flowchart for decision making process

Having examined the data using exploratory tools, we are neady for the pa-

rameter estimation stage. The exploratory tools gave cemdigl in the applicability of

the proposed models and gave informed guesses about tleerautt the model fitting

exercise in GEV case and in the next sections in GPD and RLGS3 eaglivalently.

The importance of the stationarity in the data for the maodgto be relevant

cannot be overlooked. Working with portion of the traced gularantee some station-
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ary of these time series. For this reason data are segmentegartions of 10,000

observations each.

The decision making process is best described using a flatvdnaFigure[4.4,
this process is shown. It applies to the GEV as it is for the G&id RLOS modeling.

4.2.1 Internal Traffic

Network traces from Belcore are split into two types, nambéyinternal and external
traces. Both have different characteristics. The intemaalets are less bursty and the
measures of bursts and serious deteriorations might bes®hleavy tail presence than
in the case of the external one. However, this can only be rroed after fitting the

right model.

The choice of the block size represents some tradeoff batlieas and variance
in the parameters’ estimates which needs to be taken intsidenation. If the block
sizes are too small more blocks are produced and more maxihizewalculated from
each block. While it gives narrower confidence intervals Whscdesirable, it induces
an unwanted bias in the estimates specially when data arealbt independent which
is the case. The other side is when the blocks are selectddrtgg few maxima will
be produced. The estimation procedure will have to rely amyfew maxima which

will induce large confidence intervals rendering the estamanreliable.

Working on each segment separately, and to constitute thessef maxima,
data are blocked into blocks of different sizes 10, 25, 5d, H00. These blocks sizes
translate into 1 second, 2.5, 5, and 10 seconds respectiletymodels have been fitted
for different blocks sizes. It shows the effect of varyingdk size on the parameter

estimates and their stability as well.

The series of maxima are then constituted based on the dawfinitthe different
blocks. The estimation procedures are then carried out. famameters are to be esti-
mated so that GEV model is completely defined. These parasreste shape, location,

scale, and extremal index, referred toéasﬂ, &, and®, respectively. Each of these
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parameters have a different effect on the distribution. [Bbation parametau has the
effect of shifting the distribution either to the left or tieet right in the horizontal axis.
The scale parameter determines the stretch of the shape of the distributionitiee
stretch it or compress it. The shape parameter which is aoriaumt one determines
the type of the distribution tail, either light or heavy. Téremal indeX®, which ac-
counts for the dependency in the data, will adjust the abavampeters. That follows
because in the dependence case these estimates tend stiowaeethe true values of

the parameters.

Classically, only the first three parameters are estimatdie extremal index
parameter is being included to measure the degree of depende the data since
the data are supposed to be i.i.d. The estimation procetiaresbeen carried out in

MATLAB using the Maximum Likelihood procedure.

The segments of the internal traffic traces along with theuted results based

on the fractional Gaussian noise (H=0.78) model are sunzexhin Tablé 4.13.

Data in this table are merely a subset from the data that anensuized in Table
4.1. They contain segments of the data so that the statipaasumption remains valid.
For example, the trace pAuglto5k is extracted from the tp#agg89 starting from the
first observation to the five thousands one. The same coovestiollowed in the other

data set with the exception of fafgn which is the a simulatadtfonal Gaussian noise.

Table 4.3: Summary Statistics of Internal Traffic Traces

Dataset size | Maximum | Mean Variance Std Median | Mode
fafgn 9999 | 99.0970 | 20.3419| 233.1899 | 15.2706| 17.1902| 0.0033
pAuglto5k | 5000| 92524 18022 | 210470000 14507 | 13920 | 4866
pAug5to10k | 5001 85387 14796 | 209710000 14481 | 10471 192
pOctlkto5k | 4000 87015 29858 | 222440000 14914 | 29889 | 22380
pOct5ktol0k| 5000 90706 29712 | 221850000 14894 | 29983 | 8690

The Belcore traces are taken as bytes per 0.1 second. Thhk #regich segment
is set to eight minutes to guarantee some sort of statignarihe data. However, in

practice, this choice can be relaxed once the stationasgyraption is verified. Some
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of the above traces are plotted in Figlre] 4.5 where the faoet look similar and

equally bursty.
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Figure 4.5: Internal traffic traces

The estimation procedure has been carried out for all theeatvaces. The esti-
mates of the shape parameter of the examined datasets rofalteaces are tabulated
in Table[4.4. These estimates are based on the ML method. abheihcludes only
the shape parameter, not the location, scale or the extieded. This is because the
shape parameter is an important factor which will deterrtiveeshape of the resulting
GEV distribution. The other parameters do not alter the sludiphe distribution in any

significant way.

Knowing that the choice of the block size is crucial and intgot, estimates are
calculated for different block sizes of 10, 20, 30, amongecgh This will allow for
judgment of the stability of the shape parameter estimdtalsd shows the effect of

different blocks sizes on the sign of the estimate. Howaves,to be noticed that the
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maximum of the block of size 10 is equivalent to saying the imaxn in 1 second

period. This is because the traces here have one obserf@tievery 0.1 second.

A first glance into the estimates reveals that the shape mearhas predomi-
nately values less than zero in all the selected bock sizeiseh This is equivalent
to saying that the internal traffic trace distribution is e tdomain of attraction of the
Weibull distribution. That is, the maximum from the intektraces are following the

GEV distribution with a negative shape parameter.

A closer look reveals a tendency on the shape parameter &la@er negative
values with the increasing the block sizes of 10 to 20 for eplamThe case of the
block size of 10 is one of interest. When the maxima are takéioicks of sizes 10, it
is possible that these maxima be modeled as coming from Guigtgbution rather
than Weibull distributions. The shape parameter assuniasssaery close to zero that
sometimes traces fall in the domain of attraction of Gumbstribution. A perfect
example is the trace pAuglto5k at the 10 block size level wilee estimate is -0.04
(0.04) which gives a 95 confidence interval of [-0.08 0.00].

A major concern in fitting GEV distribution is to know the typgthe distribution
to be fitted and the shape of the parameter. These resultdif@weeaning that bursts
and serious deteriorations in the internal traffic have gpeufimit that it would not
exceed. This comes from the fact that Weibull distributi@as fa finite upper tail. We

refer to Figuré 3.2 on Pa@el39 for a look into the differentsdus tail shapes.

Having a finite upper end of bursts and serious deterioratiorthe case of in-

ternal traffic is something unexpected. The reason for thigefiess is that often time

Table 4.4: Shape parameter estimae,tésr different block sizes
| Dataset | n=10 | n=20 | n=30 | n=40 | n=50 | n=75 |

n=100 |

fafgn
pAug5to10k
pAuglto5k
pOctlkto5k
pOct5kto10k

-0.09(0.02)
-0.06(0.04)
-0.04(0.04)
-0.11(0.03)
-0.11(0.03)

-0.11(0.03)
-0.21(0.05)
-0.14(0.04)
-0.02(0.06)
-0.05(0.05)

-0.10(0.04)
-0.24(0.06)
-0.16(0.05)
-0.10(0.09)
0.02(0.09)

-0.15(0.04)
-0.30(0.06)
-0.13(0.06)
-0.15(0.09)
-0.18(0.09)

-0.12(0.05)
-0.29(0.07)
-0.15(0.07)
-0.22(0.12)
-0.28(0.09)

-0.09(0.07)
-0.33(0.08)
-0.17(0.08)
-0.36(0.14)
-0.36(0.09)

-0.14(0.07)
-0.42(0.09)
-0.24(0.10)
-0.51(0.15)
-0.45(0.08)
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network resources and equipments have themselves limatediAddth. They have also
a predefined set of applications in which the performancéefinternal network can

be bounded by the set of applications behavior.

These results of internal traffic bursts and serious detdrans distribution are
believed to be strongly related to Norros results on the Wiehaf a buffer that is
fed by the fractional Brownian motion (fBm) traffic. fBm is aldoettype of traffic
that has been simulated here for the internal traffic. It istbktrongly related to the
results shown here bearing in mind that internal traffic $ation is FGN which is the
incremental process of fBm. It is also worth noting that Neraorived to this result

using queuing theory, here it is arrived at using extremeevéteory.

Graphical tools are used to assess the quality of fit . Thelateuidata shows a
good fit. There is a match between the model and empirical dédth other internal
traces showed a good fit as well, with a light deviation due ¢sthy the statistical vari-
ability. An example of the cumulative distribution funatifor the model and empirical

data for the fafgn data with blocks of size 10 is shown in Fejdu6.
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Figure 4.6: CDF of the fitted distribution and the empiricaéon

An almost perfect fit is produced with the block sizes of 20, 80. The same
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plot for the other real Belcore traces produces plots thag same deviations. This is

illustrated in Figuré 4]7.
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Figure 4.7: CDF for two internal traces with different blockes

Assessment of the quality of the fitted models is performatufsur plots, namely:
ggplot, mean excess plot, probability plot, and the hisiogr These plotting tools
are found in the package 'extRemes’ which operates undertétisteeal computing

environment R.

In Figure[4.8, the four diagnostic plots are shown for therimal trace pOct89
with blocks sizes of 30 observations. The probability plud\gs a good alignment to
the straight line while gg-plot shows a little deviation lretupper right corner of the
plot. The return level plot has some points that deviate ftbentheoretical behavior
which is represented by the solid line. The same trace shd&#er fit when produced
in greater block sizes of 75. This is shown in Figure 4.9. Toelpt shows perfect

alignment. Return level plot also shows points that are pdyfaligned.

The deviation of the model and empirical observations isarked through other
internal traces. When viewed in a very small block size of d@ekample, a deviation

is observed. However, with larger block sizes the fittingleto be almost perfect. It
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can be concluded that GEV model provides better fits for matketraffic when blocks

are large enough.

4.2.2 External Traffic

External traffic has patterns than are different from iraetraffic. This has been ob-

served from the exploratory analysis conducted earlieeictiSBn[4.1. The fitting tech-

niques will be conducted for the External traffic traces mfibllowing.

External traffic data that will be looked into in details atetfed in Figuré 4.100.

Their descriptive statistics are tabulated in Tdbleé 4.5cah be seen from both plots

and the tables that the external traffic is burstier than mivermal traffic. However,

estimating the parameters of the GEV model is the primargeonhere.
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Figure 4.8: Diagnostics for pOct89 trace with block size @f 3
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Figure 4.9: Diagnostics for Oct trace with block size of 75
Table 4.5: Summary Statistics of External Traffic Traces
Dataset size | Maximum| Mean | Variance| Std Median | Mode
alfsn 10000| 76153 | 1346.7 | 3637200| 1907.10| 962.17 | 0.54
octltol0Ok | 10000 5913 65.19 | 74855 | 273.60 0 0
oct10to20k | 10000 8182 50.98 | 57567 | 14481 0 0
oct4x1to10k| 10000 6691 133120 364.90 | 14914 64 0

Shape parameter estimaﬁeare calculated using the distribution fitting tool from
MATLAB statistics toolbox. Parameter estimates are cal@d for the four datasets
mentioned above. This is conducted for different blocksa®to see the effect blocks
sizes have on the distribution shape parameter and théitytabthe estimate as well,
see Tablé4]6.
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Figure 4.10: Plot of External traffic traces

Table 4.6: Shape parameter estimaitérsr External Traffic

Dataset|

10]

20]

30140

[50

‘75

[ 100

alfsn
oct1to10k
oct10to20k
oct4x1tol10k

0.41(0.02)
5.01(NA)
5.21(NA)
0.83(0.04)

0.53(0.04)
0.75(0.06)
0.63(0.05)
0.78(0.06)

0.46(0.05)
0.69(0.06)
0.63(0.05)
0.62(0.09)

0.51(0.06)
0.68(0.06)
0.63(0.05)
0.52(0.10)

0.56(0.08)
0.74(0.07)
0.69(0.06)
0.40(0.10)

0.59(0.10)
0.75(0.08)
0.72(0.08)
0.26(0.11)

0.52(0.11)
1.04(0.13)
0.75(0.09)
0.24(0.12)

Unlike internal traffic where estimates are predominatesithan zero, here it
is seen that the parameter estimates are mostly positives i§krue through all the
different choices of blocks and the different externalésacThe estimation procedure
based on ML method has converged for all the estimates efargpie block of size 10.
It did not converge for the second and third traces, octka@l@ oct10to20k. This is
due to the structure of these particular traces where mdogwvare zero and it follows

that small blocks size of 10 would produce nothing but zesowell.

The positive shape parameter has the meaning that blockmadkom external
traffic traces follow a GEV distribution that is heavy tailéichis is equivalent to Frechet
distribution. Thus the external traffic traces fall in thexdon of attraction of Frechet
distribution. This is because of the very heavy tail mariistribution of the original

traces. It was predicted to be so by the exploratory dataysisatonducted at the
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beginning of this chapter.

Now, we look into the stability of the parameter estimatdsis remarked that
estimates of the shape parameter for the first three traeestalle to some extent.
They assume values in the range of 0.5 to 0.77 in most casdg.o0a case happens
in the second trace of blocks of size 100 where it exceeds & sdbility of the shape
parameter in these traces is clear. Only trace [octx1todiddvs a decrease in the value

of the parameter with increase in the block size from 10, 20.t&00.

As for the checking of the model, empirical CDFs of the tracgegx@otted along
with the theoretical CDF based on the fitted models. This issdorFigure 4.12 and
Figure[4.11. In Figure 4.12, two theoretical CDFs are plotteskd on model fits along
with three empirical CDF for the traces. There is a close mbéttveen the empirical
and theoretical one in both cases. A little deviation is nk@e and mostly is due to
the statistical variability. In Figurle 4.11, the empiri€2DF is plotted for fitted model
based on the simulated traffic trace LFSN. The match in thsg ¢ just seen to be

perfect.

=

o
©

°
0

°
3

o
=2}

o
o0

o
i
T

Ifsn20 data

—_— fit2

I1fsn100 data
fit7

Cumulative probability

o
w

o
)

©
[

o

1 2 3 4 5 6 7
Data X 104

Figure 4.11: Two cdf of different fit to the LFSN dataset

However, as discussed in the model fitting and diagnostiteznone should not

rely on one tool or plot as it may be possible to be misled. Mbeagnostics of the
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model are then carried out using ExtRemes package in R congpemivironment.
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Figure 4.12: Cumulative Distribution Function of some fitsl @mpirical ones

The diagnostic plots are shown in two figures for the Belcaedrand the sim-
ulated LFSN trace as well. In Figure 4113, the plots are ferdhiginal traces based
on Belcore data. There is almost no doubt about the quality édrfthe model to the
empirical data. The points are perfectly aligned throughptobability plots and the
g-q plot. The return plot is the typical one for the data thatteavy tailed.

Looking at the Figuré 4.14, which shows diagnostic plotsG&V fit of LFSN
taken at blocks of , the picture is not equally rosy as theiptsvcase. Here, a clear
deviation is shown by the plots and in particular that of thplgt which is not revealing
at all. This is a bit striking if compared to the almost petfécwhen looked at it
through the CDF in Figure 4.11. A possible explanation is thi deviation is due
to some extent to the very strong dependence in the LFSN atatitraces compared
to the empirical ones. However, the other Belcore traceslash@ving quality of fit

similar to each other. Thus, it leaves no doubt about theegdplity of the model.

Return level and return period are two prediction tools basethe fitted GEV

model. It is the inverse of the GEV model. It extrapolateshim high quantile and can

87



answer questions like how large a burst might be in the néstval? And what amount

of time is needed for bursts of such magnitude to happen again

Thus, traffic traces both the internal and external are neadaking the GEV
model. It is a straightforward exercise once the exployatiata analysis is done thor-

oughly and the stationarity of the data is verified.

4.3 Predicting Bursts using GPD

GEV model has been criticized for its not so efficient use efatrailable data as it picks
only one data point from each block, the maxima, to model.[Zkarly, this could
result in some loss of information since all the other data igiven block become

irrelevant no matter how close to the block maximum they righ
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Figure 4.13: Diagnostics plots for oct1to10kb75 fit
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In case an entire time series of data are available, whicheissase for traffic
traces, a more efficient use of the available data is needbis. Wiould be by imple-

menting the POT approach which obviates the need for blgakkata altogether.

In POT, a threshold is fixed and all the data above that fixegstiold are fitted
to a Generalized Pareto Distribution (GPD). In doing so,emafrthe traffic data will
be used in the model. In this setting, bursts will be considéo be all the data above
a sufficiently high threshold. They will be referred to asdtsiror exceedences inter-
changeably. Before a successful application of the model,ctvallenges are need to
be solved. These are the selection of the threshold and ffendence (clustering) of

extremes.
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Figure 4.14: Diagnostics for LFSN at Blocks of 30
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As for the dependence or clustering of extremes, it is wetivkm that traffic is
self-similar which is highly correlated. Such correlatimeans that bursts are not truly
independent and some degree of dependency do exist in bethara. Thus, if a burst
occurred now, it would soon be followed by another burst.sTificalled clustering of
extremes and this dependency structure violates the assumopthe model. It follows
that it puts in doubt any application of the model in that cafsasy application of POT

analysis in the dependency presence may prove invalid amesaerroneous.

However, this problem has been overcome by some de-clogtechnique which
filters dependent observations. It produces observatlwatsare approximately inde-

pendent without altering their values.

Identification of clusters is done by selecting a thresholat fecessary the one
used in estimating GPD parameters). Then it defines corige@xceedences of this
threshold to belong to the same cluster. The cluster enda wimeimber ok observa-
tions fall below the above selected threshold. The nextetulen starts with the first

exceedences of

Selection ofu andk is done by the practitioner. Cautions selection is to be made
since a trade off similar to the one in block selection in GEddaling is present. Ik
is too small, the independence between clusters will berpatdoubt, while ifk is too
large then exceedences that would have been otherwise gifierent clusters will be

regrouped and put in the same cluster.

4.3.1 Internal Traffic

As mentioned earlier, a primary step in applying a GPD masig select an appropriate
threshold. Noting that for the model to be valid, a suffidghigh threshold needs to
be selected. The following mean excess plots are producdtdaonternal traces as to

select an appropriate threshold for the GPD modeling, speréid.15.

Ideally, the threshold is selected after a sudden chandeeimean excess plot,

after which it becomes linear. However, it is not always dasyetermine this point of
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Figure 4.15: Mean excess plots for the internal traces

Table 4.7: Internal Traffic GPD results

Trace Threshold| & Extremal Ind. | Clusters| Run length
fafgn 54.57 -0.15(0.05)| 0.79(0.70,0.91)] 237 2
pAuglto5k | 53374.90 | -0.18(0.10)| 0.65(0.52,0.82)| 80 5
pAug5tol10k | 57432 -0.20(0.13)| 0.520(0.38,0.75) 51 11
pOctlkto5k | 60926 -0.38(0.08)| 0.46(0.35,0.62)|] 53 8
pOct5kto10k| 60290 60290 0.36(0.26,0.50)| 62 9

change and these plots are difficult to interpret precidgly. still, they are better than

guesswork. The selected threshold values are shown in ghediumn in Tablé 4]7.

As mentioned earlier, the extremal index is a measure oféjpermidence. It pro-
vides a mean to adjust the modeling parameters so that tlesdepcy in the data can
be accounted for. Figufe 4]16 shows the extremal index astiplotted against the
threshold for the traffic trace fafgn. The plot shows extreimdex assuming values
around 0.8 which suggest that the extremes tend to happduasters. The other ex-
tremal indexes for other internal traces are showing smhi&havior and their values
are shown in Table4.7.

Clustering is closely related to the extremal indexIf 6 = 1, then there is no
clustering in the data. Data can be considered independenG&®D parameters can

be readily estimated. However,8f< 1, which is the case in many of the traffic data,
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Figure 4.16: Extremal index fafgn

then data needs to be de-clustered first before any estimattitne GPD parameters.
The estimation will be carried out on the de-clustered daltee paramete® cannot be

greater than 1 nor less than 0.

An automatic de-clustering is thus being conducted to aatcfor clustering of
the extremes. The de-clustering was run based on the thdestlected from the data.
The shape parameter is also being estimated and all the efatlsrare tabulated in
Table4.7.

It is remarked from the above table that the shape paransstensistently show-
ing values that are predominantly less than zero. This beh&svsimilar to GEV mod-
eling case. The extremal index is ranging between 0.35 arfl i@. all the internal
traffic traces. This situation means that although the matietraces can be modeled as
GPD with light tail, extremes tend to happen in clusters. fiurelength depends also

on the threshold and the frequency of crossing thresholdegal
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Table 4.8: External Traffic GPD results

Trace Threshold| & Extremal Ind. | Clusters| Run length
alfsn 6016.73 | 0.35(0.12) | 0.96(0.82,1.15)| 143 4
octltolOk | 543.00 0.30(0.14) | 0.18(0.11,0.38)| 34 41
oct4x1tol0k| 1268.00 | -0.08(0.05)| 0.14(0.10,0.41)| 30 48
oct10to20k | 320 0.63(0.13) | 0.31 (0.24, 0.46 59 25

As a mean of checking the validity of the model, the usualniistjcs are shown
in Figure 4.16 4.77. The plots give no doubt about the qualitijt in simulated traces

case.
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Figure 4.17: Diagnostics for afagn simulated trace

4.3.2 External Traffic

The external traces used here are the same as in the GEV nwputefirevious section,
refer to Figuré_4.70 in papes>5.
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The need of the mean excess plot was mentioned previoudig imternal traffic
case. Figuré 4.18, shows four mean excess plots for thenaktieaces. These mean
excess plots have an upward slope which is fundamentafgrdiit from the downward
direction of the internal traces case in Figure 4.15 pagé\@art from acting as a mean
for selecting a threshold, the upward in the mean excess phaiws that data comes
from a heavy tail distribution. This is a typical behavior &fata from the financial and

insurance data.
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Figure 4.18: Mean Excess plot for external traces

However, the meplot for the trace alfsn shows a net upwanditr€his coincides
with the theory. It comes very clear as alfsn itself is a sated trace. Plot (c) of
oct10to20k is showing an upward trend which comes obviogpiteedecline around
the 2kb value. In contrast to plot (d) when a cyclic trend mssgint with overall positive
slope. This cyclic trend is vexing but it is due to the sileatipds in the trace. It can
be understood also from the way the mean excess plot is agdcusince it averages
the data above a given point. In the presence of a lot of sgeribds, some of the

exceedences are divided by more points that do not corgrtbuhe sum.
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Figure 4.19: Diagnostics plots of alfsn with u=18%80.41(0.03)

4.4 Predicting Bursts usingr-largest order statistics

For the purpose of completeness, thiargest order statistics as a model is included
in bursts analysis and prediction. This model is half wayveenn the block maxima
method and the peaks over threshold method. As in the BM methaftic data are
segmented into blocks and then from each block tte¥gest orders are computed and

used to be fit to the model.

The data used in this consisted of both internal and extéraeds as earlier. The
data have been transformed into a vector in such a way thiat é&ch block, seven
highest values are selected and a new vector consisting afués/for each block is

constructed. This is done through a simple MATLAB routine.
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4.4.1 Internal Traffic

The exploratory phase is the same as the previous sectidrissnat going to be re-
peated. The parameters of the model are estimated forreachr =2,...,r =7.
This is to judge the accuracy of the estimates by the meareofd¢bnfidence intervals.
These results are tabulated in Tdblg 4.9.

In the table, parameter estimates for internal traces oafghpOct5kto10k are
presented. The trace fgn in the top section of table is setpdento blocks of size 40
in the left side of the table and to blocks of size 75 to thetrggthe of the table. For the
fgn trace in 40 size blocks the estimates of the shape pagaret mostly positive as

was the case in the GEV model.
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Figure 4.20: Diagnostics plots oct10to20k with u =2000
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Table 4.9: RLOS Parameters for internal Traffic Traces

Internal Traffic

Trace

fafgn, block size 40

fafgn, block size 75

B
<]
=

g

o

u

g

()

U

Wl
~No o bhwNeE

q
I

-0.100(0.038)
-0.116(0.027)
-0.153(0.022)
-0.177(0.020)
-0.173(0.017)
-0.160(0.015)
-0.120(0.020)

05.600(0.270
05.492(0.181
05.790(0.160
06.235(0.157
06.986(0.167
08.140(0.189
10.220(0.280

34(0.39)
37(0.33)
40(0.32)
43(0.33)
46(0.36)
51(0.42)
56(0.52)

-0.120(0.057)
-0.124(0.042)
-0.175(0.034)
-0.183(0.029)
-0.185(0.027)
-0.162(0.023)
-0.122(0.027)

5.34(0.36)
5.10(0.23)
5.29(0.19)
5.71(0.19)
6.39(0.21)
7.52(0.24)
9.55(0.36)

42(0.52)
44(0.43)
47(0.41)
50(0.43)
54(0.46)
57(0.54)
63(0.67)

Trace

pOct5

kto10k, Block s

ize 40

pOct5kto10k, Block size 75
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~N~No oabhwdN
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0.095(0.062)
0.016(0.041)
0.016(0.037)
-0.017(0.028)
-0.013(0.033)
-0.036(0.030)
-0.089(0.024)

6298(473)
6837(359)
7505(381)
7134(267)
8578(390)
9195(433)
8638(266)

39820(620)
43679(578)
47454(598)
48977(515)
53702(611)
57063(657)
57964(603)

0.095(0.062)

0.016(0.041)

0.016(0.037)
-0.017(0.028)
-0.013(0.033)
-0.036(0.033)
-0.089(0.024)

6298(473)
6837(359)
7505(381)
7133(267)
8578(390)
9195(433)
8638(266)

39820(620)
43679(578)
47454(598)
48977(515)
53702(611)
57062(657)
57964(603)

However, running fromm = 1, tor =7, itis seen that the precision of the estimates

change with increasing value of The least confidence interval (preferable) is seemed

to be inr = 6(0.015), while for the scale parameter it happens at4(0.157) and for

location it is atr = 3(0.32).

When the same fgn trace is blocked in size of 75 blocks, the dm¥idence

interval for the shape parameter happens again-a6(0.023). For scale parameter it

is atr = 4(0.19). For location parameter it happeng at 3(0.41).

For the other internal trace pOct5kto10k, when blockedathd of size 40; = 7

presented the best confidence interval for the shape arelgai@meters. The location

has its best estimate at= 3. Meanwhile, and in the right side of the table where the

trace is blocked at 75 blocks, the best confidence intervatliape and scale was at

r = 7. For the location parameter, it israt 4.

The model fitted to many internal traces is showing confgrmith the expected

behavior based on the estimates calculated in the abowe fabln example, in Figure

4.21, the diagnostics plots are produced for the interaaketfgn with blocks of size
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Figure 4.21: Diagnostics of fractional Gaussian noise #éfgoe at blocks of 75 with
r=6

75. The number of orders statistics is takem as6. Clearly, the quantile plot and the
probability plots are showing agreement with the theoatti@havior expected by the
solid line. This good fit with tighter confidence intervalostd act a base for all the

prediction calculations using the return level and retwenqgals concepts.

4.4.2 External Traffic

External traffic traces are based on the same traces useddelingpwith GEV. As
in the previous cases, GEV and GPD, the shape parameterdsrpiately positive.
This is a clear indication of the heavy tail property of thstdbution of external traffic
bursts and serious deteriorations. Tdble 4.10 summaltimepdrameter estimates for
two traces, one is the simulated trace Isfsn and the othéeisie from Belcore. In

the upper left part of Table 4,110, estimates of simulatecketrahen blocked in 40 are

98



shown. The estimates are littered with NaN for not availaa& for reasons of non

convergence of the Likelihood procedure. However, the ésttnates interval for the

shape parameter and scale parameter are=ei(0.033 122 4774). When blocked in

75 blocks, it is at = 4 that the shape parameter and location parameter are gasd. |

atr =5 for the scale parameter.

Table 4.10: RLOS Parameters for External Traffic Traces

External Traffic

Trace

rlosalfsnb40, block size 40

rlosalfsnb75, block size 75

par

3

o

M

3

o

m

r=1
r=2
r=3
r=4
r=5
r=6
r=7

0.507(0.062)
0.572(0.052)
1.006(NaN)
0.979(NaN)
0.497(0.033)
0.766(0.301)
0.756(NaN)

2290(160)
2326(158)
5081(NaN)
5356(NaN)
2149(122)
4276(2813)
4572(NaN)

4887(165)
4878(140)
6529(NaN)
6817(NaN)
4774(112)
6453(1921)
6777(NaN)

0.587(0.099)
0.822(NaN)
1.036(NaN)
0.575(0.055)
0.827(0.173)
0.821(NaN)
0.893(NaN)

2979(306)
5924(NaN)
7231(NaN)

3158(269)

5947(217)
5912(NaN)
7130(NaN)

6310(302)
8501(NaN)
8770(NaN)

6375(230)
8468(1428)
8484(NaN)
9331(NaN)

Trace

rlosoct4x1to10kb40, B

lock size 40

rlosoct4x1to10kb75, Block size 75

par

3

o

M

3

o

M

r=1
r=2
r=3
r=4
r=5
r=6
r=7

0.519(0.103)
0.672(0.081)
0.787(0.072)
0.803(0.052)
0.750(0.039)
0.795(0.036)
0.761(0.033)

552(44)
675(47)
829(70)
839(64)
781(51)
874(63)

607(46.67)
775(43.63)
903(48.75)
926(45.70)
911(39.34)
993(46.60)

858(60)

1007(45.77)

0.271(0.109)
0.342(0.101)
0.360(0.086)
0.452(0.079)
0.491(0.065)
0.544(0.058)
0.568(0.050)

737(67)
824(60)
881(68)
953(85)
925(74)
925(70)
924(66)

922(79)
1157(76)
1316(71)
1402(71)
1376(64)
1348(60)
1337(56)

At the bottom side of the table is the other trace oct4x1tollPkthis case as

the previous one for the simulated traces, the shape pagaisetlso predominately

positive in value. However, the estimates here do convdtgé them. In the left side

of the bottom table, the estimate for the trace when blockétbaks of size 40. There

is a dramatic improvement in the confidence interval goingifr = 1 to higher values

of r. Asr reaches 7, the best confidence intervals for the shape pneane produced.

It is atr = 1 the best estimate are shown for the scale. The best estitnappen at

r =5 for the location parameter.

The right side of the table shows the same information fortthee blocked at

the 75 size. Both shape and location parameters have théedienates at = 7, it is

atr = 2 for the scale parameter.
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Generally RLOS model is regarded as improving in the paranestmation
and especially in the confidence intervalsrascreases. The optimal have then to be
selected based on experimentation. There is no yet an atitopracedure for the

selection of the.

In any estimation, small confidence intervals are prefetoethe wider ones.
When confidence intervals are small, the estimate is closénedrue value of the
parameter. However, looking at the graphical assessmelst the fits are not as seen
on the table. Although there are some good fits that are pesfjubere are some fits

that are horrible and very far from being a good fit.
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Figure 4.22: Diagnostics for OctExt trace at blocks of sizevith r=7

This problem is presented mainly in the external traffic seaed in particular

in the simulated trace, see Figlre 4.22. In particular, figisre shows that the fitted
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model is not working as expected. There is a clear deviatidmoih the probability
plot and the quantile plot for the theoretical one represeity the solid lines. This
nonconformity is believed to be as a result of some dependenihe data. It is due
in part to the stationarity assumption as well. Thus the RL@8ehespecially for the

external traces is not working as expected.

4.5 summary

In this chapter, models from Extreme Value Theory have beptfied to traffic traces
from Belcore. Exploratory data analysis tools are also agpleaving no doubt about
the applicability of the modeling framework. This is padii@rly true for the POT
method and the BM method. This will serve as validation forrtiedeling using the
proposed methods based on EVT. The BM method is the earliést applied in EVT
literature. It is more suitable for the cases where very fataskets are available. POT

method is more suitable where a lot of data are available.
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CHAPTER 5

PREDICTION AND PERFORMANCE EVALUATION

Most of the reasoning about the choice of the modeling has bempleted. In the
previous chapters, the models have been introduced an#tethéar their correctness
and adequacy in the prediction of bursts and serious ded#inas in Internet traffic.
In this chapter, these models are shown in action usingretéraffic traces from two
sources, Belcore Laboratories and University of Napoli [TR24ta are collected from
Belcore Internet Traffic archive and other dataset comes fdmwersity of Napoli

Federico Il and MAGNET backbone networks that are based aregoint research
activities between these two institutions and DeutschecBeh Laboratories in Berlin.
University of Napoli data are considered for Packet Lossajpend Jitter. The Bitrate

being taken from the above mentioned Belcore.

5.1 QoS and Service Level Agreements Monitoring

In order for the service level agreement to be meaningfeleths a need to monitor
the network. There is a need to check the traffic for compéanith the agreed on
standard and metrics [49]. In case of violation by a party,g@rvice provider or user,
an agreement should be reached and appropriate clauses gonkract need to be
enforced. Network monitoring provides the data necessarytie application of the
prediction tools that have been discussed so far and fontpkementation of the new
proposed metrics based on return level, return period, asmhmexcesses. It helps the
service provider by giving a feedback of the performancehef ¢ore network, and
the user by allowing them to properly provision for theirffimespecially for the out-
of contract traffic. Two broad categories are there for thaitoang of the network,

active network monitoring and passive network monitor(agj[



In passive network monitoring, the statistics collectednieywork devices like
router, switches, and others are polled periodically f@oréng purposes. The data
collected typically contains things like packet count,dsytount, or queue depth han-
dled by the concerned device. These functions are usualfgrpged using a simple
network management protocol (SNMP) to collect the infororathat are held in the
devices management information bases (MIB$) [6]. Differstatistics are collected
from different devices depending on the nature of the devites way of monitoring
does not introduce any artificial traffic or additional traffo the network, the only over-
head traffic that might be occurs although minimal is due ropiecity of the polling.
However, the method isolates every device as a separatandchitannot provide a com-

plete picture of end-to-end traffic properties, which neeliffarent approach.

In active network monitoring, the purpose is to have an ideheend to end be-
havior of the traffic passing through the netwadrkl|[13]. Toreltéerize the performance
of the network, additional traffic is sent to through the natato characterize its per-
formance. The test traffic or "probe” packets are then ct@lgéérom the other side and
the performance of the network is decided for quantities throughput, delay, jitter,

loss, and bitrates.

To implement active monitoring, there is a need to deploya@ivemonitoring
system to the existing network by the service provider. €ragents will help to keep
statistics of the probe packets sent to the network and ¢atehese statistics can be
retrieved using SNMP. However, in sending this traffic addal overhead is put into
the network. For the benefit to overweight the cost, due demation must be given
to how the test stream should be conducted such as frequadajuaation of the test,
packet sizes to be used, the sampling method, the protoodls @and applications.
These are fully explored in [31]. The data collected herenftbe University of Napoli
used active network monitoring system for the collectionthed Quality of Service

metrics discussed next.
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5.2 Bitrate

Bitrate is a network parameter that determines the numbeitofransferred per time
unit by the network, entering or going out through the roateend equipment. This
guantity is also a quality of service parameter that is idetlin the definition of ser-
vice level agreement metrics. In differentiated servigagliaation of quality of ser-
vice, there is a need to profile the traffic and assign it to th@a@priate forwarding
classes. Packet classifiers and traffic conditioners daathise boundary of adminis-
trative domains. To accomplish this, there is a need to dealivenresponsive sources
and misbehaving ones. Traffic sources that misbehave wilklaét with in appropriate

ways such as shaping, marking, and dropping.

Bitrate data are collected from the Belcore labs as showreearlprevious chap-
ters. This data is one of the most accurate data available$earch. The data are put
into two broad categories, internal and external traffibwhie internal traffic being less
bursty than the external traffic. However, without delvintpithe modeling techniques,

which are discussed earlier, we show the prediction results

The bitrate data are the trace BC-Oct89Ext. TL which is an aatdraffic one.
For the internal traffic trace BC-pAug89.TL is used for the jprtdn. Figurd 5.1l shows
the data that are going to be used for the model and the paisthapposed to be un-
known and to be predicted. The horizontal access represeitsme in 1 minute; the
vertical access represents the bitrate per 1 minute. Howasestated in our introduc-
tion chapter, the data are not to be predicted as a whole e of the prediction is
different in our case. We need only to predict the bursts andgs deteriorations in
the network traffic. For this reason, and as our bursts diefingtated, the series of the

bursts and serious deterioration is thus constituted aorsin Figure 5.11.

5.2.1 Bursts Distribution

To model bursts distribution, burst data are arranged wwto garts as see in Figure

B.1. The data used are the one of the external traffic (BC-O&t8BIE) arranged first
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in bitrate per second, then from that bitrate per secon@setie bursts are taken in
blocks of size 60 or equivalently in blocks of 1 minute eacts. shown in the figure,
the first half of the data is used to fit the prediction modelilevtine remaining half of

the data is used for the validation purpose.
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Figure 5.1: Bitrate bursts as block maxima per minute

Bursts distribution answers questions related to the freqpuef the extreme
events in the traffic. We used the block maxima method anddidbat the model
that the bursts follows in case of external traffic bitrata GEV model with parame-
ters(é = 0.76+0.03 6 = 224+ 10,1 = 237+ 8). Based on the GEV model fitted to
the first half portion of the traffic mentioned above, a sirtiolais carried out to predict
the unknown portion of the traffic. As data have been diviaed iwo portions, known
and unknown, the simulation of the prediction is shown iruiFe5.2.

In Figure[5.2, plot (a) shows 300 points that represents taeimmea per 1 minute
time intervals for the bitrate per 0.1 second. In other woeglery point is the maximum
in a one minute period of the bitrate per 0.1 second. This dignows roughly the
approximation that is produced by the fitted model and thaukition results for the
unknown traffic. However, we need to judge on the ability af thodel numerically
since the graphic helps only to have a rough idea. For this Weuse the average
deviation metric and we defer it to the comparison secti@r.néw, we use the above
model as prediction tool that can be also used to define radtricthe QoS service

level agreement such as return level and return period faps@ns.
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Figure 5.2: Plot of the predicted traffic (a) in comparisonhe supposedly unknown
traffic (b)

5.2.2 Return Level and Return Period

Return level denotes the value that will be exceeded at |eastio a predefined period.
It answers questions like, what value of bitrate per secalideexceeded in the next
10 minutes? in the next 20 minutes? in the 30 minutes and samzhfor values that
are far away from the available data. If we have only 10 misatiedata, we still can
predict the return level for 20 minutes, 30 minutes and soHwmwever, extrapolating
very far from the range of available data is not always ea$e donfidence intervals
tend to be larger and the prediction becomes less accuragareturn level is shown for
the internal trace BC-pAug89 case in Figlre 5.3. This is a gcaptepresentation for
the return level and return period concepts. In Figure 88hbrizontal axis shows the
period or intervals we are interested in which is our blocle saken here to be of order
of one minute. In the vertical axis we have the return levacWidenotes the level that

will be surpassed at least once in the corresponding reemag The curve shows this
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Figure 5.3: Prediction using return level plot for pAug gac

behavior and allows for an extrapolation of farther evetitezidirection. The two lines
that contain the middle curve are the 95 percent confiderieevals, the upper and the
lower limits. From this plot, we can predict and design thériog after substituting the
parameter estimates into the equation: The equation ussdidialate the return level is

shown in Chapterl3 pageld6, here we restate the case Wkete
6- A~
Zp={1— = { (1—(~log(1—p)) %) (5.1)
1 )

The only unknown in the above equation is the p value. Howehir value is the one
we base our prediction on. If we want to calculate the retaumellof 5 seconds say,
then p value will be equal tp = 1/5. A direct substitution in the above equation will

thus produced the desired results.

Thus return level and the associated return period provitteaxconvenient tool
and metric for quantifying bursts and serious deterioratioQuality of Service quan-
tities, the bitrate is just an example. However, combineith eiis tool comes the mean
excess function which gives a different perspective to #tealior of extremes in traf-

fic.
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5.2.3 Mean Excess Plot

The mean excess function is a tool that tells the average wdlaxcess above a given
threshold. It answers questions like: what is the averadetite that will exceed 2
mb level? This same concept is used in financial analysis aineferred to as Value
at Risk (VaR). This tool can be used as a prediction tool and a IQetsic as well.
The equation defining the mean excess is defined earlier imétbodology chapter.
Here we show only the mean excess plot which will help deteerthe mean excesses.

Figure[5.4 shows the mean excesses for the bitrate traffie.fijore fluctuates below
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Figure 5.4: Mean Excess plot of bitrates for trace BC-Oct89Ext

the 5000 bit per 0.1 second threshold; however, it develajsaa patter thereafter.

QoS metrics can be based on information given in this plas. dnly interesting
to look at it from 5000 bitrates and above. Thus the servicwiger can define his

version of VaR based on this plot for the traffic to consider.
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5.2.4 Comparison

As seen so far, the model is being fitted is the GEV model. Heweas discussed
earlier in the literature, other models also do exist ang treve been used in different
occasion. For example, the lognormal model which is a thistion with heavy tail has

been used to model the bursts and serious events in traféic dtas been the central

model in the tele-traffic and in estimating the probabilititagye in network.

As to judge on the quality of the models, we fitted differentdels from dif-
ferent distributions to the same training dataset and ulétlesse models to predict
the rest of the data (second half). Figlre 5.5 shows diffedistributions in terms of
probability density functions compared to the GEV disttiba, the histogram of the
to-be-predicted data is the overlaid. The GEV distributipresented by the solid line

25— —
GEV
++rve Normal
= = Rayleigh

Probability Density Function

L
0 500 1000 1500 2000 3000 3500

Figure 5.5: Comparison of the probability densities to tretdgram of the predicted
bitrate

is fitting the in better way than the other two. The normalribstion represented by
the dotted curve is seeming not capturing the peaks in tisetteg 500 bitrate, while
the Rayleigh fits it slighlty better than the normal distribatbut still inferior to the
one fitted by GEV distribution.
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In the next few sections, other network QoS parameters arusied. The ob-
jective is to show modeling results for other QoS paramdilezdoss, delay, and jitter

and provide a performance comparison with other frequerstd models in practice.

5.3 Packet Loss

Packet Loss rate is an important parameter that is includede design of network
services and QoS specifications. Packet loss is defined estibvef lost packets to the
total packets transmitted. Packet losses in the Intereedfén caused by congestion,
and such losses can be prevented by allocating sufficierdvidth and buffers for

traffic flows.

The loss rate is due in large to congestion in the network. €stngn in turn
is caused by several factors like the lack of resources ssidimiabandwidth, queu-
ing resources, processing capabilities, routers memasweder, other causes are also
frequent such as network lower layers errors where packetslrapped due to sig-
nal attenuation in the transmitting media; Network elenfaitire such as a router or
switch, however, the time for the network devices to sighalfailing router and for
the routing protocol to converge, the packets that were teetite failing device are

considered lost; loss in application end systems such dsrlmver flow.

When packet loss exceeds some accepted level, the applib&ibomes literally
non usable and meaningless. Real time applications sucheaaéntelephony, video
conferences, and distant surgery subscribe to this kingpliGations. This is con-
trasted with the traditional applications such as file tfansr email application where

a delay will not affect much the delivery of the network.
An engineer might want to design the service in such a waydhigt 1 percent

packet loss is tolerated. This calls for high quantile eation. Using our developed

methodology, the requirement might be that we want to eséirteezp_o oo.
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As an example of such design request, suppose we have a hetwar that 1
million connection requests are sent per hour. We are askdddign the network in
such a manner that the traffic loss probability (TLP) is I&ésstl percent. That is, out
of 1 million connection requests only at most 10000 conoestiare lost. Then we are

in the presence of high quantile estimation.

To predict and asses the models, QoS data from universityapbNare used
for the purpose. The data is packetloss15 from the 10-Judlefo Each sample is
calculated using non-overlapping windows of 50ms lengtlhe Tata are plotted in
Figurel5.6 which shows the two portions of the data, the omevkrand the other to be

predicted. In the x-axis is the time per 50 milliseconds stepile the vertical or y-axis

o 200 i
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time scale in 50 ms

Figure 5.6: Lossrate plot witht he first portion(1000) irating the known values, the
other portion is supposedly unknown and to be predicted

registers the number of lost packets. It is remarked thaetisea cyclical behavior of
the loss in the packet. This cyclical behavior is used asaraldblock size with block
size fixed into 50 observations each. The GEV model fittedus tias the following
parameter$2 =0.78(0.3),1=77(3.5),6 = 13(4)). Thus the model is fat tailed with
a positive shape parameter which is indication that eveartgrieater than what have

been observed so far are possible.

The unknown part of the data shows clearly that the data deeshheavy tailed.
The spikes just before the 1500 point in the plot in Figurécalfirms this fact. The

return level plot in Figuré 5l7 give a further confirmationtbé heavy tail property
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of lossrate data. The upward trend in the curve is such a Jige.mean excess plot
in Figure[5.8 is also a further confirmation of the heavy tase. The plot shows an
upward trend and it drops only where we have too few obsemaiaft her 150 packet

per 50 ms threshold.
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Figure 5.7: Return Level plot for the packet loss rate
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Figure 5.8: Mean Excess plot for the loss rate data
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5.4 Packet Delay

In end to end quality of service measurement, an importaantjy is the end to end
per packet delay. Network delay is measured in two ways: ome delay or round

trip delay. The one way delay is the difference between the the packet received
and the time it has been sent. One way delay is particulagprant for non-adaptive
time-critical applications that have a stringent delayursgment to operate correctly.
Examples are the VoIP and Video conferencing. The otherdypelay measurements
is the round trip delay or round trip time (RTT) which denosgsiply the two ways

delay, that is the difference between the time the packetisand the time it is received
at the other end. Adaptive applications such as data tnafisseng TCP) have their

delay defined in terms of the round trip delay.

The delay in network is composed of four components that gotblgive the
network delay, propagation delay, switching delay, scheduelay, serialization de-
lay. Propagation delay is the time the packet takes to tridneetistance between two
end points; it is affected by the distance and the media usédjaverned by the light
speed. Switching delay is the time the packet spend in arouta network device
for the processing, it gets smaller with increased routecgssing power. Scheduling
delay is the time the packet spend waiting in queue both indaund outbound queues.
The serialization delay is the time taken to clock a packéd anlink. Delay regula-
tion and measurements become particularly important fositee application to delay
such as real time applications. However, when networks esgyded, there should be

some bounds on the appropriate level of the delay.

For example, in VOIP applications, the concept of playbaelk®s an important
use of extreme measures of delay. Playback is simply a meittiad buffers to reorder
the packets and play them back in the correct sequence. Taeadaing before the
playback point are simply stored in a buffer until the plagb@oint comes. Packets
that arrive late are either simply discarded or the playlmuikt is adjusted further. It

is important for such applications to know the extreme messsaf the delay and the
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associated bounds; thus showing the importance of thesenextevents in practice.
Figure[5.9 is showing the delay time series obtained fromUhwersity of Napoli

Dataset.
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Figure 5.9: Packet delay series

The same steps used in the bitrates earlier are applied ieeemodel will be
based on the first 1000 data points as indicated in the figutbégouble arrow. The
rest of the data are kept to validate and assess the perfoenaduthe prediction based
on the fitted model.

To fit a GPD model, first we de-clustered the data with a threlsbic0.05 and a run
length of 4. The fitted GPD model has its parameters estinaaie&j:,o.lg(o.Z), 0=
0.037(0.01). This model shows that delays are eminent and not boundeahdiee de-
lays are possible than what is observed so far. This is tara the positive value of
the shape parametéy, estimates. The mean excess plot is showing an upward curve
which is an indication of the heavy tail of the exceedances,Kguré 5.10. Also we
find closely associated with the delay is the concept of dgtegy which play an impor-

tant role particularly in some real time applications lik@oe and video conferencing.

5.4.1 Comparison

Three models that fit the bursts data are compared for theepdelay series. These
models are the nearest fit to the (to be predicted) packey dela. The densities are
plotted and overlaid on the histogram of the predicted padkay data, see Figure
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Figure 5.10: Mean Excess plot for the packet delay dataset

B.11. In this case, the GEV is again showing a superior padoce in the prediction
of the unknown packet delay represented by the histograma.Nidimal and Rayleigh

densities are still far from the predicted traffic.

5.5 Delay Jitter

Jitter is about the variation in network delay (the diffevefetween the largest and the
smallest delay). Jitter is the variation in one way delaytay consecutive packets as
defined by [RFC3393]. Jitter results from the variation in tbenponents of network
delay discussed earlier, namely: propagation delay, bimigcdelay, scheduling delay,

and serialization delay.

In the application level, some are sensitive to delay whike dthers are less

sensitive to it. In general, applications that use the TCPnatesensitive to delay-
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Figure 5.11: Comparison of the probability densities to tis¢olgram of the predicted
packet delay values

jitter given their internal mechanism. For example, dadagfer applications and email
applications do not suffer much from delay jitter. Howevar\Voip application jitter
has more importance than the delay and should be treatecupitiost priority. The
reason that if we tolerate jitter then the voice will be urgruizable, while if we tolerate
delay we can still hear the voice which means we get the messagectly but with
bit of delay. For example, the sender sends the packets toetiedver in the other
side. The receiver then passes the packets to the audicedevias to hear the voice.
However, if a jitter occurs and the receiver just sends thekgiato the audio device
without arranging, then the voice quality will be very badtie extent that it might not
be distinguishable. To measure the delay-jitter would iregime stamping the packets
at both ends of the network or the monitoring system whiclidaasgnchronizing clocks
in both devices. However, the calculation of the one wayydgteer would be easier

by taking the time stamp difference in two devices.

A typical delay-jitter data or time series records in onesdike time interval and
in the horizontal access the jitter experienced. In Figui@ S5ve plotted several delay
jitter time series. Itis noted that different networks hdifeerent shapes for their delay

jitter series.
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Figure 5.12: Some Delay-Jitter time series

A GPD model was fitted to the jitter series number three in tlo¢ fpom top to
down. The parameters are given (és: 0.3(0.17),6 = 0.000042e°)). Based on
these parameters, all the prediction tools can be used. nBtarice, the return level
plot is given by Figuré 5.13. The mean excess function is défmed accordingly as

discussed in the bitrates case.

5.5.1 Comparison

The delay-jitter or simply the jitter is fitted to a number @bpability density models.
Some of them deviated to far from the to-be-predicted traffibeir densities when
compared to the GEV is less of a fit to the model. In Fidure|5thd, GEV model
is compared to the Lognormal density. The from the figure tléar that the GEV
model outperform the Lognormal model, however, this isguaphical, more elaborate
method is thus needed to effectively assess the perfornanibe different models.

This will be discussed next.
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5.6 Performance Evaluation

Having chose and fitted the right model, one needs to asseggetformance of such
models to those that are typically used in practice. Thughie purpose, we compared
EVT based probability densities that were fitted to othersdiie the Lognormal, Nor-

mal, Rayleigh, and Gamma distributions. These four modeigige a representative

set of models that are used by practitioners.

To compare models, one needs to use a suitable metric forothparison. A
metric called average deviation metric is thus used, [#$ Tetric is based on the
popular chi-square goodness of fit test. However, here wéakeng for a metric to
tell about the deviation of the empirical model to the fittedlgtical model. This metric
shows how much does the model deviate from the supposedperice characterized

by the analytical one. The less the value, the better is the fit

The chi square test statistics is given as

» YA (N—np)?
X _i;T (5.2)

119



14000 T T T T T T
GEV
----- Lognormal
12000 ,
< 10000 |
o
©
o
T
> 8000 |- '~ ]
‘©
c
[} .
[a) \J
£ 6000} N |
S N
: N
[ N
& 4000 . N |
! N
! N~
20001 , ‘N, |
R ~.
~' Y ~|,
V4
0 ‘ ! A o
1 15 2 25 3 35
Jitter in seconds %10~
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series

To apply this test, the distribution is divided into binsdahen the difference between
the number of expected data that falls in particular bin isygared to the actually
falling into that bin. In the above formula, M denotes the m@mof bins,p; is the
probability of observations falling into théh bin, nis the total number of observations
while N; is the number of observations that fall in the ith bin exacfiye difficulty
of using chi-square test comes from the fact that it is deiglo compare identical
distributions of same size. The value ©hi increase withn which make it difficult
to compare different distributions empirical and anaBftiones. Thus, the following

guantity is introduced

K = Zl _np (5.3)

Note the change in the denominator power. This slight matibo makes the test

invariant with the change of values of n. The average d@natietric is then computed

H=/K2/M (5.4)
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Table 5.1: Average deviation metric comparison
Datasetf GEV | Lognormal| Normal | Rayleigh| Gamma
Bitrate (ext)| 2056.2 3158.6 22900 12924 | 7686.6
Prediction| 2372.9 3280.5 31070 6322 4397
Lossrate| 46.75 55.5 52.26 44.57| 136.17
Prediction| 21.3800 15.98 23.21 42.85| 138.73
Delay | 0.9528 0.9137| 149.1398| 43.8856| 1.0830
Prediction| 0.9807 0.9809| 0.9690| 0.9717| 0.9792
Delay-Jitter| 0.9999 0.9996| 0.9620| 0.9998| 0.9983
Prediction 1.00 0.9998| 0.9489| 0.9999| 0.9989

For more discussion on this metric, see![74]. This metricssduto compare the EVT
based models fitted to both internal and external traffic énlditrate case and the other
parameters like loss, delay, and jitter. The comparisoh lvél with the lognormal
distribution which is commonly used for the purpose.

Table[5.1 shows the average deviation metric for the fouli@uat Service param-
eters based on the fitted models. As mentioned above, thiscrakbws how good the
approximation to the analytical models is, where the abuit the prediction is also
shown. For each quality of service parameter we have an torttiie model based on

the used data, and prediction entry based on the (suppyseddgown data.

For the all the data, the average deviation metric is conapide the training
data and for the predicted data as well based on the fittecpilitlp density function.
Four frequently used distributions are put into comparigath the Extremes model
GEV. For example, in the case of bitrate training data, th&/ @Gtodel has a slightly
lower deviation metric than the lognormal model; the normatiel performs the worst.
When it comes to the prediction of the unknown data, the GEN/pstirforms better
than other distributions, with normal distribution perfes the least and Rayleigh doing
slightly better. To visualize the entries from the abovddah plot is produced, see
Figure[5.15. In this plot, each column represents a proipabiénsity as indicated by
the legend to the right. We did a slight change in the scaleenvalues of the bitrate
data, this change of scale does not alter the interpretafitme results, it is merely to
visualize the data in comparable scale.

For every QoS parameter, the columns represent the diffdesrsities that are fit
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compared to the GEV distribution. In the case of the bitrattdjgted data, the plot
shows that GEV model has the least deviation metric from thamwther densities. The
loss rate data, we see the GEV has low deviation metric, lsubtdmnormal outperform
it. However, when seen in the fitting to the original data, &tV outperformed all the
others consistently. The delay and jitter show a very coaigarperformance by all
the densities. In that case, it is believed the a GPD mode&das a threshold would

be more suitable due to the nature of the dat.

The delay rates show a behavior that is dominated by an akgostalent power
of prediction for the four densities compared to the GEV oRais behavior seems to
be governed by some protocol design issues like the rerriga®on in the TCP case;
however, looking into the delay series in Figlrel 5.9 dagé 1§ also remarked that
the delay rates have somehow artificial bound that might waugh have affected the

behavior of the prediction.
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The Delay-Jitter parameter is also showing a similar bedrawithe delay series
where all the distribution are producing almost similamtesfor both the prediction
and the fitting values for the average deviation. Only themaddistribution shows a

different behavior and lower average deviation metric fathtprediction and fitting.

5.7 Summary

Service Level Agreements are tailored and designed to adldiiferent requirements
depending on the application. For example, some applitsidoe sensitive to the bi-
trates; some are for loss rate like real time applicationdendome are more tolerant
than others. The study is conducted for the four parametatsare widely used for
QoS: Bitrate, Packet Loss, Packet Delay, and Delay-Jittheatetwork level. A proper
guantification of the extreme cases in these quantitiedisibée to maintain a well de-

signed quality of service and define robust metrics for Serizevel Agreements.

In this Chapter the prediction tools are shown in action anahaparison is made
among popular models such as Lognormal and Gamma denkiieare used in prac-
tice. These results show good performance of the EVT basektling using GEV in
the case of Bitrate and the Packet Loss. For the packet daperformance of the
EVT based model is not very different from the others andhiertadjustment might
then be necessary to unleash the model prediction capedilifhese methods are ap-

plicable both for the network level QoS and for the applmagilevel as well.
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CHAPTER 6

CONCLUSION

Modeling bursts and serious deteriorations in the traffaritcal for the contin-
uous growth of Internet while maintaining an adequate ¢yafiservice for the users.
In this work bursts and serious deteriorations in Internetsjons are addressed by
using Extreme Value Theory. A clear methodology is devaldijpe some applications

of Extreme Value methods.

Quality of Service parameters that are commonly used inicetevel agree-
ments are modeled and predicted using EVT. These paranae¢eidrate, packet loss,
delay, and jitter. Extreme measures are thus developed esineme value theory,

namely probability distributions of bursts, their retuewél, and return period.

The extreme value tools are applied with care and by takihthalpreliminary
steps towards a successful implementation through ddteXploratory data analysis.
It takes place before any model fitting exercise. This wds\iad with diagnostics and
model checking techniques based on graphical assessroknttbese steps are carried
out for the three models that are applied in EVT, namely Blockxivha Modeling
through a GEV distribution, Peaks Over Threshold modelhrgugh a Generalized

Pareto Distribution, and-Largest Order Statistics.

The first model fitted is the Generalized Extreme Value modsél on the Block
Maxima methodology. This is the classical modeling in ExteeValue Theory. The
internal traffic of both simulated and Belcore traces werewhio fall in the domain of
attraction of Weibull distribution with possibilities oklng in the domain of attraction

of Gumbel distribution as well. This is equivalent to saythgt bursts from internal



traces followed GEV distribution with parameters rangirani zero (Gumbel) to the
negative values (Weibull). This model for the burst and®esideteriorations in internal
traffic means bursts and serious deteriorations in traffiovioa distribution that is

bounded from above and cannot exceed certain values. Thibecaxplained by the
very nature of internal traffic. In LAN settings, the set opgations is finite and they

have a finite set of demonstrated behavior.

On the other hand, external traffic traces were modeled @s@®BYV distribution
with a positive shape parameter which means that exteragrfall in the domain of
attraction of Frechet distribution. Frechet is a heavydastribution which means also
that external traffic have spikes and serious deterioratiwa frequent. That shows the
importance of having appropriate measures for these diesntrhe GEV modeling is
fine-tuned by including the external index parameter thdesgned to account for the
dependency structure in the data. It should be clear by natnBWT was designed for

independent data case.

Secondly, Peaks Over Threshold model was used for the pieedidOT mod-
eling has presented its own point of view of the predictisues Considering a suffi-
ciently high threshold, GPD distribution was fitted to batkernal and external traces.
The internal fitting gave rise to GPD with negative shape ipatars while external
traffic gave a positive GP distribution shape parameter.s&lubservations are in ac-
cordance with those found using the GEV BM methodology. PQiTdmcountered its
own challenges because of the clustering of extremes. Ehds;clustering scheme

was necessary so that Maximum Likelihood estimation woeldadid.

The third and last model in the Extreme Value Theory is thelargest order
statistics (RLOS) model. It was also fitted to a different sknfpr traffic trace. It
is shown that RLOS have indeed brought in an improvement iratioeiracy of the
parameter compared to the GEV. However, the diagnostits splhmwed that the fit was
not particularly good. This model will be subjected to mameeistigation especially

concerning the stationary assumption of the data.
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These findings have many implications to the QoS in the leteand other appli-
cations. The need for a robust QoS metrics in mission cligipplications is thus met.
These applications range from medical field to the militamg.olncluding new robust
metrics based on the bursts fitted model will leave both usmppy for the service they
receive. Service Providers (ISPs) will be able to use thadirable resources in the most
efficient way. The complexity of the processing of the modeékes it very efficient
in terms of memory use and processing power. The modelditnaalily used for the
purpose rely on the whole data set to be fed into the model.edewyin this case we
need only subsets of the data to work on, either the block mmaxir exceedances. This

will make it possible for an on line implementation of our nebd

However, Internet today is a very changing and hectic enwirent that needs a
lot of research and attention. Due to its changing behawioy, research project that
would take too long will have no applicability by the time stdone. When is the last
time somebody used Netscape navigator? Windows 98? or ediah@ connection?.
Analytical modeling by its very nature takes time to devedo to produce mathemat-
ically sound and tractable models. Due to such and the likstcaints, the study was
limited to readily available data from the Belcore laboresiand from the University

of Napoli Traces as conducting a large scale testing waseasilile.

Taking data from Belcore to base the research on would be daungat first
sight since the Internet is changing very rapidly. Howeaéer careful consideration,
the data still represent what is happening now in the Inteldihés bursty, self-similar,
long range dependent and fractal. Its high quality is stijealing to many researchers
and publications. This decision have also been validatesooye simulated Internet
traffic data based on the fractional Brownian motion, and theak fractional alpha
table motion. This study should be applicable to other datasd that would be left

for future work.

As this research straddles tools from probability, stasstand extreme value
with Internet and computer networks, accuracy and rigoeleen practiced. However,

perfection becomes an elusive target to pursue. In thedollp a summary of the main
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contributions without repetitions is presented. Dirensido future work are presented

next.

1. Bursts and serious deteriorations are modeled and peddising mainly three

EVT based models.

2. QoS metrics are proposed using Return Level and ReturndPerioe included

in future Service Level Agreements.
3. A methodology is clearly developed which is less pronetors.

4. The behavior of Queue buffer fed by a WAN traffic is shownabdve as Frechet
distribution, in contrast to Norros finding for a Queue fethAiAN traffic which

behaves as Weibull.

6.1 Future directions

Although this thesis brings a lot of insight into the burstel &erious deteriorations
in the traffic from the extreme value perspective, a lot moogkwcan still be done
from both theoretical and application points of view. Heveng of these directions are

itemized.

e Extending this work by applying the same method to other agtyparameters

and time series such as Delays, Jitter, Connection Durd&oand Time Trip.

e Extremal Dependency is also another case in hand, using sitigariate anal-
ysis, the effect of extremes from some parameters can inelxiceme in other
time series as well. This study needs a large deploymenaffictmeasurement

tools to truly study the effect from different angles.

e Other EVT based method like the recerargest order statistics are to be inves-
tigated and applied. The selection of the block sizes in therB&thod and its

effect is also an object of further investigations and redea

e Other directions is on analytical study of the behavior otifidy fed by a linear

fractional stable noise the type of the external traffic$®ab be investigated, this
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is similar to the Norros results for the buffer behavior wites fed by fractional

Gaussian noise, the typical model for the internal traffic.

6.2 Publications

Abdelmahamoud YD, Abas Md Said, and Halabi Bin Hasbullah, gigation
of Extreme Value Theory to Bursts Prediction”, Signal Prea&s International
Journal, vol.3 (4), 2010.

Abdelmahamoud YD, Abas Md Said, and Halabi Bin Hasbullahetiuting
Traffic Bursts Using Extreme Value Theory”, International @&wance on Signal
Acquisition and Processing, pp 229-233, IEEE Xplorer 2009.

Abdelmahamoud YD, Abas Md Said, and Halabi Bin Hasbullah, 8@y of

Service using Generalized Pareto Distribution”, ITSIM @01

Abdelmahamoud YD, Abas Md Said, and Halabi Bin Hasbullahetiuting In-
ternal LAN Bursts using Extreme Value Theory”, National Bpatuate Confer-
ence, 20009.

Abdelmahamoud YD, Abas Md Said, and Halabi Bin Hasbullahargest order
statistics for the prediction of bursts and serious detations in network traffic”,

International Conference on Computer and Communication @syimdonesia
2011.
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