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Effect of Geometric Complexity on Intuitive Model Selection

Abstract

Occam'’s razor is the principle stating that, all else being equal, simpler explanations for a set of
observations are to be preferred to more complex ones. This idea can be made precise in the context of
statistical inference, where the same quantitative notion of complexity of a statistical model emerges
naturally from different approaches based on Bayesian model selection and information theory. The
broad applicability of this mathematical formulation suggests a normative model of decision-making
under uncertainty: complex explanations should be penalized according to this common measure of
complexity. However, little is known about if and how humans intuitively quantify the relative complexity
of competing interpretations of noisy data. Here we measure the sensitivity of naive human subjects to
statistical model complexity. Our data show that human subjects bias their decisions in favor of simple
explanations based not only on the dimensionality of the alternatives (number of model parameters), but
also on finer-grained aspects of their geometry. In particular, as predicted by the theory, models intuitively
judged as more complex are not only those with more parameters, but also those with larger volume and
prominent curvature or boundaries. Our results imply that principled notions of statistical model
complexity have direct quantitative relevance to human decision-making.

Keywords

bayesian statistics, cognitive neuroscience, complexity, decision making, psychophysics, information
geometry, statistical model selection

Disciplines
Cognition and Perception | Cognitive Neuroscience | Computational Neuroscience | Neuroscience and
Neurobiology | Physical Sciences and Mathematics | Physics | Statistical Models

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/physics_papers/663


https://repository.upenn.edu/physics_papers/663

Effect of Geometric Complexity
on Intuitive Model Selection

Eugenio Piasini’, Vijay Balasubramanian, and Joshua I. Gold

Computational Neuroscience Initiative, University of Pennsylvania

Abstract

Occam’s razor is the principle stating that, all else being equal, sim-
pler explanations for a set of observations are to be preferred to more
complex ones. This idea can be made precise in the context of statistical
inference, where the same quantitative notion of complexity of a statistical
model emerges naturally from different approaches based on Bayesian
model selection and information theory. The broad applicability of this
mathematical formulation suggests a normative model of decision-making
under uncertainty: complex explanations should be penalized according
to this common measure of complexity. However, little is known about if
and how humans intuitively quantify the relative complexity of competing
interpretations of noisy data. Here we measure the sensitivity of naive
human subjects to statistical model complexity. Our data show that human
subjects bias their decisions in favor of simple explanations based not
only on the dimensionality of the alternatives (number of model param-
eters), but also on finer-grained aspects of their geometry. In particular,
as predicted by the theory, models intuitively judged as more complex are
not only those with more parameters, but also those with larger volume
and prominent curvature or boundaries. Our results imply that principled
notions of statistical model complexity have direct quantitative relevance
to human decision-making.

1 Introduction

Occam’s razor is a philosophical prescription to keep our models of the world as
simple as possible. But does naive human decision making under uncertainty
follow this prescription, and if it does, how strong is the preference for simple
models? To ask these questions we must first provide a normative reference point
for human behavior, by understanding from first principles what it means for a
model to be simple or complex and how strongly should an optimal decision-
making process be affected by a simplicity bias.
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Many statistical learning techniques are governed by hyperparameters that
can be tuned to control some notion of complexity of the underlying model.
For instance, in regression, regularization techniques such as LASSO enforce
an adjustable-strength constraint on the space of desired solutions [13]. In
unsupervised learning, clustering methods often allow to control the desired
level of granularity by specifying in advance the number of clusters [6]. More
generally, in many probabilistic model selection settings, one compares several
models with different number of parameters. In this case, the well known
Akaike and Bayesian Information Criteria (AIC, BIC) state that the best model
for a certain set of observations is the one that maximizes the log likelihood
of the data minus some penalty that depends on the complexity of the model,
measured by the number of parameters it contains [13]. A common thread
among these examples is the idea of trading off some goodness of fit on the
training data in exchange for model simplicity. A bias towards simplicity is
desirable because it improves the performance of the model on unseen data, or
because it makes it more interpretable, instantiating Occam’s razor in concrete
statistical practice. However, the examples above highlight that there are multiple
possible definitions of complexity, some of which may be applicable only in
relatively narrow contexts.

To overcome this difficulty, we draw on the theory of Bayesian model se-
lection [16, 12, 20, 3]. This framework offers a principled definition of model
complexity that is applicable across multiple settings, and makes complexity
commensurable with goodness of fit by placing the two quantities on the same
scale. Here, "model" always refers to a parametric family of probability distribu-
tions. For instance, the set of all Binomial probability distributions with n fixed
to a certain value and p unknown, 0 < p < 1, is a one-parameter model. Starting
from a set of observations X = {x,} and a (finite) set of models, with a choice
of prior probability over models p(M) and over the parameters  characteris-
ing each of them p(#|M), by applying Bayes’ theorem and marginalising over
model parameters one can invert the likelihood function p(X|M,#) to yield a
posterior distribution over models given the data, p(M|X). One can then select
the model that maximises the posterior. It can be shown [3] that assuming an
uninformative prior for the model parameters ¥ leads to an expression for the
model posterior that generalizes the BIC. When the number of data points N is
large enough, the (log) posterior probability of a model can be approximated by
an expression consisting of the maximum log likelihood of the data under that
model, plus a number of penalty factors which posses an elegant geometrical
interpretation. The expression, known as Fisher Information Approximation
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where {4 is the parameter value that maximises the likelihood of the data under
M, d is the dimensionality of M (number of parameters), g,;, and h,, are
respectively the Fisher Information and the Observed Fisher Information [7],
and the remainder (...) collects terms that get smaller when N grows larger. We
will call the terms of the FIA likelihood (L), dimensionality (D), volume (V) and
robustness (R), respectively. It can be shown [3] that the volume term actually
measures the volume of the model, seen as a statistical manifold in the sense of
information geometry [2]. The robustness term is related to the shape of the
statistical manifold in the vicinity of the maximum likelihood point, and more
specifically to its embedding curvature in data space [24].

By direct application of the rules of Bayesian statistics, one then arrives at
the conclusion that more complex models should be penalized, and the correct
measure of complexity and its exchange rate with goodness of fit depends not
only on the dimensionality of the model (as in the BIC, which corresponds to only
using the first two terms of the FIA), but also on its finer geometrical properties.
Interestingly, analogous expressions can be obtained by distinct arguments based
on information theory, using the Minimum Description Length principle [25, 11]
or the Predictive Information framework [5].

The elegance of this result, and the fact that the same prescription emerges
from distinct approaches in information theory, make it a good candidate for a
general notion of statistical complexity upon which to build a normative model
of decision-making under uncertainty in rational observers. It is natural to
ask if human subjects exhibit a preference for simpler models, and if they do,
to quantitatively compare their intuitive measurement of complexity to the
prescriptions of the theory.

1.1 Related work

Some evidence for a simplicity bias in human decision-making can be found
in the existing literature. Johnson, Jin, and Keil [17] showed that, in a model
selection task, subjects prefer simpler models (characterised as those with fewer
parameters) when the likelihood of the data is approximately the same across
the models being compared. Genewein and Braun [10] also studied a model
selection task, providing more solid theoretical grounding in Bayesian model



selection theory. However, that study also focused primarily on qualitative
preferences in equal-likelihood conditions (showing that indeed subjects possess
a bias towards simple models), stopping short of a quantitative evaluation of
the strength of the bias. To our knowledge, our work is the first attempt to:
1) precisely quantify the tradeoff between simplicity and goodness of fit in
human decision-making; 2) investigate the behavioral relevance of geometrical
complexity; and 3) consider the individual impact of the model features captured
by the terms of the FIA, including the effect of a novel form of penalty that can
emerge for models with boundaries.

2 Methods

2.1 Psychophysics

We designed a visual psychophysics experiment to probe human subjects’ sensitiv-
ity to statistical model complexity. The experiment is based on a two-alternative
forced-choice task designed as described below. Detailed preregistration docu-
ments for the experiments, including design, sampling and analysis rationale,
code for running the task, experimental stimuli, and a snapshot of the core
libraries developed to analyze the data are available at [22, 23].

The subjects were shown two curves and 10 dots on a screen (see examples
in Figure 1). One curve was located in the upper half of the screen, the other in
the bottom half. The curves represent two parametric statistical models of the
form

_ 1 _ _ 2
p(XIt)—meXp[ (x —u(t))?/2]

where x is a location on the 2D plane visualized on the screen and u(t) is a
parametrization of the curve. In other words, the curves represent Gaussians of
unit isotropic variance whose mean u can be located at any point along them.
The dots shown to the subjects were sampled iid from one of the two models,
selected at random with uniform probability. The location of the true mean of
the Gaussian generating the dots (i.e., the value of ¢t in the expression above)
was randomly sampled from Jeffrey’s prior for the selected model [15]. All dots
shown within a trial come from the same distribution (same model and same
true mean). The subjects had to report which curve (model) the dots are more
likely to come from. They did so by pressing the "up" or "down" keys on their
keyboard to select the curve in the upper or lower part of the screen.

We designed four variants of the task, each of which asked the subjects to
make a selection between two models. The model pairings differed across task
variants, and are illustrated in Figure 1. Each model pairing is designed to study
primarily a different term of the FIA: dimensionality for the “point” pairing,
boundary for “vertical” (we defer the formal introduction of the boundary term
until the next section), volume for “horizontal”, and robustness for “rounded”.
The models in the “point” task variant have different dimensionality (d = 0 for
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Figure 1: Task types with corresponding names. Each panel shows an example
trial for one of the four task types in the experiment. The model manifolds M; and
M, are drawn in black, and 10 points x sampled from a probability distribution
contained in either M; or M, are shown in red. Given a visual stimulus similar to
one of these panels, the subjects have to report which model (M, or M,) is more
likely to have generated the data.

the point and d =1 for the line)!. In the “horizontal” variant, the models have
the same dimensionality but different volume (length). In the “rounded” variant,
the models have the same dimensionality and volume, but their curvature is
such that one of them bends away from the region of data space which is more
likely to contain ambiguous stimuli, whereas the other bends around it (and
therefore the robustness term for these models has opposite sign for data points
that fall in that region). Finally, in the “vertical” variant, the models have the
same dimensionality and volume, and are both flat so that their robustness
terms are always identically zero; however, they are oriented such that the lower
endpoint (boundary) of the vertically oriented model is the closest point on the
model to the ambiguous (equal-likelihood) region of data space located at the
midpoint between the two models. Therefore, if some data falls within that
region, assigning that data to the vertically oriented model will incur a penalty
due to the boundary effect.

A single run of the task consisted in a brief tutorial followed by 500 trials,
divided in 5 blocks of 100 trials each. In each trial, the chosen curve pairing
was presented, randomly flipped vertically. At the end of each block, the subject
received feedback on their overall performance during that block. Subjects
received a fixed compensation for taking part in the experiment.

We ran the experiment on the online platform Pavlovia (pavlovia.org).
For each task type we collected data from at least 50 subjects who passed a pre-
established performance threshold: 60% correct for the “rounded” task variant
and 70% correct for the other variants, as reported on the preregistration docu-

'In a similar way, one could define a two-dimensional model represented by a 2D area on
the screen. This approach would be useful to provide an additional evaluation point for the
dependence of the simplicity bias on model dimensionality. However, unlike a OD or 1D model, a
2D model in a 2D data space will always suffer from boundary effects for data falling anywhere
outside the model manifold. Therefore, because one primary goal of this study was to disentangle
the distinct contributions of the models’ different geometrical features to the simplicity bias, we
only use OD and 1D models.


pavlovia.org

ments [22, 23]. We discarded the data collected from all other subjects. These
exclusion rules led to a final dataset containing 52 subjects for the “rounded”
task variant, and exactly 50 subjects for each of the other task variants.

2.2 Penalty term for model boundaries

Most of the models used in the experiments have bounded parameter spaces.
For instance, the base model is parametrized by one parameter t that is subject
to the constraint 0 < t < 1. The conditions t = 0 and t = 1 are mapped to
the endpoints of the segment representing the model in data space in Figure 1.
Having models with such boundaries is an issue for the applicability of the FIA,
because one of the hypotheses underlying the derivation of Equation 1 is that i
must be in the interior of the parameter space, and this assumption can easily
break down in presence of models with bounded parameter spaces. To solve this
issue, we extended the FIA to deal with the simple case of a linear boundary in
parameter space (see Appendix A). When the maximume-likelihood point is on
the edge of the parameter space, an additional term, which we indicate with the
symbol S, appears in the FIA:

1 N
SzilogEJrlog[ZnIllllA] 2)
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is minus the empirical average of the score vector (log-likelihood gradient), and
A is the inverse of the observed Fisher information:
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Equation 2 shows that the penalty associated to being at the boundary of param-
eter space corresponds to increasing the parameter dimensionality by one, plus
a term that depends on the norm of the log-likelihood gradient (the gradient
is not zero at the maximum likelihood point, precisely because we are on the
boundary of the optimization domain). For a broad class of models, the second
term can be shown to measure the degree of model misspecification induced by
the existence of the boundary [24].

2.3 Comparison between subject behavior and Bayesian ideal ob-
server

In our experimental scenario, the theory of Bayesian model selection applies
directly. Given two models M; and M,, assuming a flat prior over models



p(M;) = p(M,) =1/2 and an uninformative (Jeffrey’s) prior over the parame-
ters of each model, when N is sufficiently large the log posterior ratio for M;
over M, can be written
p(My]X) p(M,[X)
log =log
p(M,]X) 1—p(M;]X) 3
~(Ly—L1)+(Dy—Dy) +(Sy—S1) + (Vo= V1) + (Ry —Ry)

where L;, D;, etc represent the FIA terms for model i.

This expression suggests a very simple normative model for subject behavior.
Equation 3 determines the probability of reporting M; for an ideal Bayesian
observer performing probability matching. We can then compare subject behavior
to the normative prescription by allowing subjects to have distinct sensitivities
to the various terms of the FIA:

p(report M;|X)
=a+ B;(Ly—Ly)+ Bp(Dy— D7)+
gp(report My lX) Br(Ly 1)+ Bp(Dy 1 @)

+ Bs(Sy —S1) + By (Vo — V1) + Br(Ry —Ry)

where a and 3 are free parameters: a captures any fixed bias, f3; the sensitiv-
ity to differences in maximum likelihood, 8, the sensitivity to differences in
dimensionality, and so on.

2.4 Data analysis

We fitted the model expressed by Equation 4 to subject behavior using a hierar-
chical, Bayesian logistic regression scheme:

Vg VL, ++> Vg ~ 1 + Exponential(29) (5)
Was UL, - -+ Ug ~ Normal(0, 3) (6)
0w 0p,--.,0r ~ Exponential(3) @2
a; ~ StudentT( v, Uy, Tg) (8)

Br,; ~ StudentT(vy,u;, o) ©)]

: (10)

Br,i ~ StudentT(vg, ug, or) a1

Ci ~ Bernoulli (logit_1 (lpr (Oli, Br.i>Bp.i>Bs.i» Bvis ﬁR,i:Xi,t))) (12)

where C; , is the choice made by subject i on trial t, X; , is the sensory stimulus
on that same trial, Ipr is the log posterior ratio defined by Equation 4, a; is
the bias for subject i, 8 ; is the likelihood sensitivity of that same subject, and
so on for the other sensitivity parameters. The bias and sensitivity parameters
describing each subject are modeled as independent samples from a population-
level Student-T probability distribution characterized by a certain shape (v),



Figure 2: Overview of experimental data. Each panel overlays all stimuli shown to
all subjects that performed a given task type. All 10 dots shown on a given trials are
colored red if the subject reported “up” or blue if they reported “down” on that trial.
Note that the actual location of the model manifolds and the stimuli were flipped
vertically in roughly 50% of trials (see Methods), and have been counter-flipped in
this plot for visualization purposes.

location (u) and scale (o). The priors assumed over these population-level
parameters are standard weakly informative priors [9, 18], and broader or
flat priors lead to similar results to those presented below. The model was
implemented in PyMC3 [26], and inference was performed by sampling from the
posterior for the parameters given the experimental data {C; ;,X; ,} using the
No-U-Turn Sampler algorithm [14, 4]. Further technical details on the inference
procedure can be found in Appendix B.

3 Results

In our experiment, a simplicity bias would manifest by shifting the psychometric
indifference point away from the simpler alternative. In other words, given a
sensory stimulus such as those in Figure 1, a subject with simplicity bias would
not always assign the red dots simply to the model that is, on average, closer
to the dot cloud. They would instead trade off some of the goodness of fit of
the models (in this case the geometrical distance) against some measure of
simplicity. For instance, in the “point” task type (Figure 1, left), for the subject
to choose the 1-dimensional model (the line) over the 0-dimensional one (the
point), it would not be enough for the dot cloud to be on average closer to the
line than to the point, but the difference in distance would have to be larger
than a certain nonzero amount. The value of this critical difference is controlled
by the exact nature of the tradeoff operated by the subject between simplicity
and goodness of fit, or in other words the “exchange rate” between these two
desirable objectives.

An overview of the experimental data collected is shown in Figure 2. A
qualitative inspection of the figure already suggests the existence of a simplicity
bias like the one just described. For instance, in the first panel on the left (“point”
task type), the transition from red to blue is located further down than the vertical
midpoint between the two models, suggesting that subjects tended to choose
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Figure 3: Subject-level estimates of sensitivity to the terms in Equation 4. Top
left panel, dark gray dots: posterior mean E[a; ], (4, x,c) for the up/down bias of
individual subjects. Light gray bars: standard deviation of the posterior distribution
for the same parameters. Subjects are ranked based on the mean posterior. All other
panels: same as the top left panel, for the 8 sensitivity parameters in Equation 4.
Dashed lines: reference value of the parameters for the ideal Bayesian observer
described by Equation 3 (magenta) and a “maximum likelihood” observer that
disregards model complexity and selects models only based on distance from the
data (purple). Note that number of dots (subjects) differs across panels because
three of the regression parameters (3, 8y and ) can only be estimated for the
subjects that performed a specific variant of the task (the “point”, “horizontal”, and
“rounded” variant respectively). By contrast, a, 3, and 35 can be estimated for all
subjects.

the point more often than the line for stimuli that were roughly equidistant from
either.

We quantified these effects using the formal framework of Bayesian model
selection and compared them to those predicted by the ideal observer. In Figure 3
we report the mean and standard deviation of the posterior estimates for the
sensitivity of individual subjects to the FIA terms (the ; and f3; parameters in
Equation 4). These estimates show that most subjects possess a bias in favor
of simple models, even though the strength of the bias is fairly heterogeneous
across the population (this hypothesis was also tested with a formal model
comparison procedure, using the Widely Applicable Information Criterion [21] —
see Appendix B.3). We also note that the strength of the bias exhibited systematic
differences in scale between the different terms of the FIA: for instance, the bias
towards models with smaller dimensionality (Figure 3, top right panel) can be
much stronger than the bias towards models with a smaller volume (bottom
middle panel).

We can get a better idea of these global properties of the estimated parameters
by studying the population level parameters u,, t;, Up,. .. ( Equation 6), which



q -==- Bayes . Q Q
> 10 ---- Max Lik. > 20 >
s ~ Q
= 2 3
Y = =
0 - T T 00— T T
0.0 0.5 1.0 0.0 0.5 1.0 0 2 4
4, (Up/Down bias) 1y (Likelihood) tp (Dimensionality)
o | ) )
Xo54 ! X >
&) H H > &
3 : . 3 3
= : ‘ l : = B¢
0— : T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
g (Boundary) ty (Volume) g (Robustness)

Figure 4: Population-level estimates of sensitivity to the terms in Equation 4,
reported as the full posterior distribution for the u, and ug parameters, conditional
on the observed experimental data {X; ,, C; ,}. Dashed magenta and purple lines
are the reference values for the ideal Bayesian and maximume-likelihood observers,
respectively, as in Figure 3.

parametrize the location (the mean) of the distributions from which the subject-
level sensitivities are sampled. We report the full posterior distribution of the u
parameters in Figure 4. These analyses indicate that the subjects were sensitive to
model complexity in general as well as to all terms of the FIA taken individually,
and that some model features contributing to the FIA (dimensionality and
shape) seemed to affect subject behavior more strongly than others (volume and
presence of boundaries).

4 Discussion

Occam’s razor is a ubiquitous principle in statistics and learning theory that we
can express in a rigorous and elegant way using Bayesian model-selection theory.
We sought to build on this solid theoretical grounding by using it to understand
if and how Occam’s razor applies to human decision-making under uncertainty.

Specifically, we have formulated a class of psychophysical tasks that allowed
us to probe this hypothesis directly and quantitatively. A critical technical step
in doing so was the extension of the existing theory surrounding the Fisher
Information Approximation (Equation 1) to deal with the case of parametric
models with bounded parameter spaces. We have shown that, when the maxi-
mum likelihood solution lies on the boundary of the statistical manifold, a novel
term appears in the approximation (Equation 2). This novel boundary term
can be seen as describing an aspect of the geometrical complexity of the model
[3], but unlike the previously known geometric complexity terms describing the

10



model volume and shape (V and R) it scales logarithmically with the sample
size N. This scaling property suggests that, when it is not zero, the boundary
term may be the dominant contribution to geometric complexity in all but the
most undersampled regimes.

Our experimental data show that naive human subjects are sensitive to
model complexity in general, and to each component of the Fisher Information
Approximation individually. The sensitivity is different for distinct model features
(dimensionality, volume, shape, and presence of boundary), suggesting that
perceptual or resource constraints may play an important role in determining
the precise pattern of deviation from the ideal observer. Nevertheless, our study
shows how to link principled and abstract notions of statistical model complexity
to human decision making under uncertainty.
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A Derivation of the boundary term in the Fisher Infor-
mation Approximation

Here we generalize the derivation of the Fisher Information Approximation given
by Balasubramanian [3] to the case where the maximum likelihood solution
for a model lies on the boundary of the parameter space. Apart from the more
general assumptions, the following derivation follows closely the original one,
with some minor notational changes.

A.1 Set-up and hypotheses

The problem we consider here is that of selecting between two models (say M;

and M), after observing empirical data X = {xi}ivzl. N is the sample size and
M is assumed to have d parameters, collectively indexed as ¥ taking values in
a compact domain ©. As a prior over ¢ we take Jeffrey’s prior:

v/ det g(%)

w() = (13)
[ &9 /detg(®)
where g is the (expected) Fisher Information of the model M:
22Inp(x|9)
=E|—— - 1
(1) [ aonaer |, (14
The Bayesian posterior
P(M,)
P X )= P(X 1
(M 1X) POX) fddW(ﬁ) (X1[9) (15)

then becomes, after assuming a flat prior over models and dropping irrelevant
terms,

[o &' 04/detg exp[—N(—% ln]P’(XW))]
f & 94/det g

Just as in [3], we now make a number of regularity assumptions: 1. InP(X|%)
is smooth; 2. there is a unique global minimum ¥ for InP(X|9); 3. g,,(¥) is

P(M;]X) = (16)

smooth; 4. gm(ﬁ) is positive definite; 5. ® c R? is compact; and 6. the values
of the local minima of InIP(X|#) are bounded away from the global minimum by
some € > 0. Importantly, unlike in [3], we don’t assume that ¥ is in the interior
of ©.

The shape of ©. Because we are specifically interested in understanding what
happens at a boundary of the parameter space, we will add a further assumption
that, while being not very restrictive in spirit, will allow us to derive a particularly

15



interpretable result. In particular, we will assume that © is specified by a single
linear constraint of the form

D8 +d>0 17

Without loss of generality, we'll also take the constraint to be expressed in Hessian
normal form — namely, ||D,|| = 1.

For clarity, note this assumption on the shape of © is only used from subsec-
tion A.3 onward.

A.2 Preliminaries

We will now proceed to set up a low-temperature expansion of Equation 16
around the saddle point ¢. We start by rewriting the numerator in Equation 16
as

1 1
f@ddﬂexp[—N (—ﬂlndetg— Nln}P’(Xlﬂ))] (18)

The idea of the Fisher Information Approximation is to expand the integrand in
Equation 18 in powers of N around the maximum likelihood point ¥. To this
end, let’s define three useful objects:

- 1

1
D == ViV, INP(X|6)

A

Vi, o Vi, InP(x;]9)

9

231

M=

g

F

e = Vg oV, Indet g(9)

b
1 1
Y= N Indetg — N InP(X|%)

We immediately note that

- 1
=1

Vi, .“vuil‘b prb ﬁFul'““i

H
which is useful in order to compute

o+ v, v
. ( - ) + 5 u vw

Y@ =y + Vv, @ — Y =) + ...

8 8
— S 1 g1 — G G — G
_Zi_'vm...vmw (@81 — D). (M — )
i=0 U $
oo 1 i
= Z =V Y l_[(f}uk — )
im0 U’ §k=1
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It is also useful to center the integration variables by introducing

¢ = VN(3—) (19)
d ¢ =N2d (20)
so that
1
Voo % =) = N2 (T, = g P ) #7089 21
ﬂk 1

and Equation 18 becomes

(o]
_ 1 (- 1 4
J ddﬁ‘exp[—Nlp] =N"9/2 J & ¢ exp _NZ i_lN i/2 (Iur"ui _ ﬁFur"m) pH1 .. P
i=0
=N"92 [ & ¢exp{ —N (—l InP(x|$) — 1 lndetg(ﬁ)) +
N 2N
—N Zi_'N—l/Z (I,ul---,ui_ﬂFul'“Mi)d)’ul ...¢:ui }
i=1
—N"? exp[— (—lnIF’(XIﬁ) - % lndetg(ﬁ))] X

xfddqbexp{ |:\/1—H¢ + — Mv¢u¢+

1l & 1 1 .
+1VZN 2((1+2)' g P P = o Fy g P ¢MI)]}

Therefore,
P(M,|X)=N"2exp | — (—mu»(xw) — % Indetg(®) + lnj & ﬁ,/detg)
X f & ¢ exp [ — \/NINIA)“ — %fuv¢“¢”+
S N—% 1 by, Uiy 1 b, i
DX e A e L

— Nt exp|— (—lnIP(Xlﬁ)— % lndetg(w‘}) + 1nf ddﬂ\/detg)
e

(22)
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where
Q =J & ¢ exp [—me“— %fmw—c(qb)] (23)
0]

and

oo . 1 N 1
G(¢)= Zl:N_f (mlﬂl'““inqbul e pHiv2 — ﬁFul‘“Hi(i)ul ... ¢Mi) (24)

where G(¢) collects the terms that are suppressed by powers of N.

Our problem has been now reduced to computing Q by performing the
integral in Equation 23. Now our assumptions come into play for the key
approximation step. For the sake of simplicity, assuming that N is large we drop
G(¢) from the expression above, so that Q becomes a simple Gaussian integral
with a linear term:

Q:J dd’;bexp [_miu¢u_%¢ufuv¢v] (25)
$

A.3 Choosing a good system of coordinates

Consider now the Observed Fisher Information at maximum likelihood, I e
As long as it is not singular, we can define its inverse~ AP = (I W)_l. If I wy
is positive definite, then the matrix representation of I, will have a set of d
positive eigenvalues which we will denote by {0(_12), 0'(_22), cees 0&2)}. The matrix
representation of A*” will have eigenvalues {0(21), 0(22), e, 0(2 d)}, and will be
diagonal in the same choice of coordinates as | uv- Denote by U the (orthogonal)

diagonalizing matrix, i.e., U is such that

2
ofy 0 - 0
0 o2
UAUT = @ , UTuU=UUT=1 (26)
: . 0
0O ... 0 o2

(d)

Define also the matrix K as the product of the diagonal matrix with elements
1/0 ) along the diagonal and U:

1/0'(1) 0 ce 0
1
k=] ° Yoo U @7)
0
0 0 1/O'(d)
Note that s
detK = (detAM”)~ 2 det,,
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and that K corresponds to a sphering transformation, in the sense that
KAKT=1 or KM A*K”, =&" (28)
and therefore, if we define the inverse
p=k!

we have
P'(I,,)P=1 or PKMTMPAV =65, (29)

We can now define a new set of coordinates by centering and sphering, as
follows:

g =k" (¢"+VNA™I,) (30)
Then,
d'e=,/detl,, d ¢ (31)
and
¢t =PHE"—V/NAMT, (32)

In this new set of coordinates,
VNI — i, =
L A

1.
=—(«/N1v+ 5<1>“1W) ¢
| .1 .
=— («/NIV + EP“K«EKIW—JNA“KIKIW) ¢

2
- .. 1 - VN . g
=—vNI,P" E* + NA T, — Epggklmpygl + TP“KEKIWAMIA+
N -+ N ... .
+ ‘/2—_M'<1,<1WP v ER— EA“KIKIWAMIA
N. . 1
=S LAY, - 28608 (33)

where we have used Equation 29 as well as the fact that A*” = A and that
APFT . = &", by definition.
Therefore, putting Equation 31 and Equation 33 together, Equation 25 be-

comes [N ]
exp| 5 1,AM"T, 1
Q=—>-"~ f ddgexp[—iéua“”av] (34)

ydetl,,

The problem is reduced to a (truncated) spherical gaussian integral, where the
domain of integration = will depend on the original domain © but also on T 1

I,,and 8. To complete the calculation, we now need to make this dependence
explicit.
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A.4 Determining the domain of integration

We start by combining Equation 19 and Equation 32 to yield
1 A
o = ‘/—NP“vi”—A‘”IV+1?“ (35)

By substituting Equation 35 into Equation 17 we get

pte” .
DH( - —A“va+ﬂ“>+d20

VN

which we can rewrite as

D,E*+d >0 (36)
with ) 1
D, = 1/—NDVPVH 37)
and

d :=d +D, 6" —D,A""],

A . (38)
= d +Du'l? - (DP"’I“>A

where by (-,-)o we mean the inner product in the inverse observed Fisher
information metric. Now, note that whenever I, is not zero it will be parallel to

D,,. Indeed, by construction of the maximum likelihood point 9, the gradient of

the log likelihood can only be orthogonal to the boundary at 4, and pointing
towards the outside of the domain; therefore [ 41> which is defined as minus the
gradient, will point inward. At the same time, D,, will also always point toward
the interior of the domain because of the form of the constraint we have chosen
in Equation 17. Because by assumption ||D,,|| = 1, we have that

1, = I1,[ID,
and
(D> L) a = Dyl A - 1111

so that B
d=d+D, 0" —|IDylla- ,lla (39)

Now, the signed distance of the boundary to the origin in £-space is

__ 4
1D,

where the sign is taken such that [ is negative when the origin is included in the
integration domain. But noting that

A _ _ A
K* AMKY, =8 = AR =pH 5P
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we have

= ~ 1
15,11 =B,51°D, = \ ;D (P8P, )
1 1Dl A
=\| =D, A¥'D, =
K A \/N
and therefore B
d
l=—+vN
1Dl

Finally, by plugging Equation 39 into Equation 40 we obtain

d+D, o
[=—VN | ————|Llla

1Dl A
= v2(s—m)
where m and s are defined for convenience like so:
Nd+D i
m=\—-—=%— (=0)
2 |IDylla

= \gnmu (=0)

(40)

(41)

(42)

(43)

We note that m is a rescaled version of the margin defined by the constraint
on the parameters (and therefore is never negative by assumption), and s is a
rescaled version of the norm of the gradient of the log likelihood in the inverse

observed Fisher metric (and therefore is nonnegative by construction).

A.5 Computing the penalty

We can now perform a final change of variables in the integral in Equation 34.

We rotate our coordinates to align them to the boundary, so that

Dy, =(lID,ll,0,0,...,0)
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Note that we can always do this as our integrand is invariant under rotation. In
this coordinate system, Equation 34 factorizes:

exp A“”I wvg 0 72
I el S
detI J [ 2 ]1 Cexp 2
. (2n)d N .>]1 dC [_C_z]
_\detiweXp[z“l“ L/— 2P T

_ | @m)d 2y 1 = 2
_\ detINW exp(s )ﬁﬁ/ﬁd(exp[ 4 ]

(44)

| B (s2) e = m)
\ detl,, 2

where erfc(+) is the complementary error function [1, section 7.1.2].
Finally, plugging Equation 44 into Equation 22 and taking the log, we obtain
the extended FIA:

~. d N 1 detfv

—InP E)~InP(E[$)+ =In— +1In | d9/detg+=1 E
nP(M;|E) ~ InP(E| )+2 n2n+ nJ@ eg+2 n|:detgw]+s
(45)

where
=1In(2)—In [exp(sz) erfe(s — m)] (46)

can be interpreted as a penalty arising from the presence of the boundary in
parameter space.

A.6 Interpreting the penalty

We will now take a closer look at Equation 46. To do this, one key observation
we will use is that, by construction, at most one of m and s is ever nonzero.
This is because in the interior of the manifold, m > 0 by definition, but s =0
because the gradient of the likelihood is zero at #; and on the boundary, m =0
by definition, and s can be either zero or positive.

Interior of the manifold When ¥ is in the interior of the parameter space ©,
then I » =0=s=0 and Equation 46 simplifies to

= In(2) — In(erfe(—m)) 47)

but since N is large we have m > 0, erfc(—m) — 2 and S — 0, so our result
passes the first sanity check: we recover the expression in [3].
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Boundary of the manifold When ¥ is on the boundary of ®, m = 0 and s > 0.
Equation 46 becomes

S=In(2)—In [exp(sZ) erfc(s)] =1In(2)— ln(w(is)) (48)
where w is the Feddeeva function [1, p. 7.1.3]:

52

w(z)=e* erfe(—iz)

This function is tabulated and can be computed efficiently. However, it is inter-
esting to analyze its limiting behavior.
As a consistency check, when s is small we have at fixed N, to first order:

ln(2)—ln(1 — 2—‘/8_)
2s | 2N =
g]n(Z)—i—ﬁ =1H(2)+ ?”I,u,”A

and S =In(2) when | u =0, as expected.

However, the real case of interest is the behavior of the penalty when N is
assumed to be large, as this is consistent with the fact that we derived Equation 44
as an asymptotic expansion of Equation 23. In this case, using the asymptotic
expansion for the Feddeeva function [1, section 7.1.23]:

(49)

exp[sz] erfe(s) ~ s% 1+ Tg(—l)m 3 (25(22)’:"1 -
To leading order we obtain
~1n(2) +In(sv/7)
=In(2) + ln(Flll ||A)
which we can rewrite as
S = %ln%+ln[2nlll~ul|A] (50)

We can summarize the above by saying that a new penalty term of order InN
arose due to the presence of the boundary. Interestingly, comparing Equation 50
with Equation 45 we see that the first term in Equation 50 is analogous to
counting an extra parameter dimension in the original Fisher Information Ap-
proximation.
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Figure 5: Comparison of Fisher Information Approximation and full Bayes compu-
tation of the log posterior ratio (LPR) for the model pairs used in our psychophysics
tasks (N = 10). Each row corresponds to one task type (from top to bottom, “hori-
zontal”, “point”, “rounded”, “vertical”). First column from the left: full Bayesian
LPR, computed by numerical integration. Second column: LPR computed with
the Fisher Information Approximation. Third column: difference between FIA and
exact LPR. Fourth column: relative difference (difference divided by the absolute

value of the FIA LPR).
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A.7 Numerical comparison of the extended FIA vs exact Bayes

Figure 5 shows that the FIA computed with the expressions given above provides
a very good approximation to the exact Bayesian log posterior ratio (LPR) for
the model pairs used in the psychophysics experiments, and for the chosen
sample size (N = 10). As highlighted in the panels in the rightmost column,
the discrepancies between the exact and the approximated LPR are generally
small in relative terms, and therefore are not very important for the purpose
of model fitting and interpretation. Note that here, as well as for the results
in the main text, the S term in the FIA is computed using Equation 46 rather
than Equation 50 in order to avoid infinities (that for finite N can arise when
the likelihood gradient is very small) and discontinuities (that for finite N can
arise on the interior of the manifold, in proximity to the boundary, where the
value of S goes from zero when { is in the interior to log(2) when & is exactly
on the boundary).

Even though overall the agreement between the approximation is good, it
is interesting to look more closely at where it is the least so. The task type for
which the discrepancies are the largest (both in absolute and relative terms) is
the “rounded” type (third row in Figure 5). This is because the FIA hypotheses
are not fully satisfied everywhere for one of the models. More specifically, the
models in that task variant are a circular arc (the bottom model in Figure 5,
third row) and a smaller circular arc, concentric with the first, with a straight
segment attached to either side (the top model). The log-likelihood function
for this second model is only smooth to first order, but its second derivative
(and therefore its Fisher Information and its observed Fisher Information) are
not continuous at the points where the circular arc is joined with the straight
segments, locally breaking hypothesis number 3 in subsection A.1. Geometrically,
this is analogous to saying that the curvature of the manifold changes abruptly at
the joints. It is likely that the FIA for a model with a smoother transition between
the circular arc and the straight arms would have been even closer to the exact
value for all points on the 2D plane (the data space). More generally, this line of
reasoning suggests that it would be interesting to investigate the features of a
model that affect the quality of the Fisher Information Approximation.

B Supplementary information on the analysis of the psy-
chophysics data

B.1 Technical details of the inference procedure

Posterior sampling was performed with PyMC3 [26] version 3.9.3, using the
NUTS Hamiltonian Monte Carlo algorithm [14], with target acceptance proba-
bility set to 0.9. The posterior distributions reported in the main text are built by
sampling 8 independent Markov chains for 10000 draws each. No divergence
occurred in any of the chains. Effective sample size and R diagnostics for some
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A

Parameter ESS R
Uy | 3214 1.00
u; | 1068 1.01
us | 2017 1.00
up | 2047 1.00
uy | 3737 1.00
ugr | 6181 1.00

Table 1: R statistic and effective sample size (ESS) for 8 Markov Chain traces run
as described in the main text. See [9, sections 11.4-11.5] and [27] for in-depth
discussion of chain quality diagnostics. Briefly, R depends on the relationship
between the variance of the draws estimated within and between contiguous draw
sequences. R is close to 1 when the chains have successfully converged. The
effective sample size estimates how many independent samples one would need to
extract the same amount of information as that contained in the (correlated) MCMC
draws. Note that here, for computational convenience, we report diagnostics for
8 chains with 1000 draws each, while the results reported in the main text have
been obtained with 10 times as many draws (8 chains x 10000 draws per chain),
run with identical settings.

of the key parameters are given in table Table 1 for a shorter run of the same
procedure.

B.2 Posterior predictive checks

We performed a simple posterior predictive check [ 18] to ensure that the Bayesian
hierarchical model described in the main text captures the main pattern of
behavior across our subjects. In Figure 6, the behavioral performance of the
subjects is compared with its posterior predictive distribution under the model.
As can be seen from the figure, the performance of each subject is correctly
captured by the model, across systematic differences between task types (with
subjects performing better in the “vertical” task than the “rounded” task, for
instance) as well as individual differences between subjects that performed the
same task variant.

B.3 Formal model comparison

We compared the Bayesian hierarchical model described in the main text to a
simpler model, where subjects were assumed to only be sensitive to likelihood
differences, or in other words to choose M; over M, only based on which
model was on average closer to the dot cloud constituting the stimulus on a
given trial. Mathematically, this “likelihood only” model was equivalent to fixing
all p parameters to zero except for f8; in the model described in the main text.
All other details of the model were the same, and in particular the model still had
a hierarchical structure with adaptive shrinkage (the subject-level parameters
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Figure 6: Simple posterior predictive check, looking at subject performance. A
random sample of all subject-level parameters (a; and f3;) is taken at random
from the MCMC chains used for model inference. Using those parameter values, a
simulation of the experiment is run using the actual stimuli shown to the subjects,
and the resulting performance of all 202 simulated subjects is recorded. This
procedure is repeated 2000 times, yielding 2000 samples of the joint posterior-
predictive distribution of task performance over all experimental subjects. To
visualize this distribution, for each subject we plotted a cloud of 2000 dots where
the y coordinate of each dot is the simulated performance of that subject in one
of the simulations, and the x coordinate is the true performance of that subject in
the experiment plus a small random jitter (for ease of visualization). The gray line
is the identity, showing that our inference procedure captures well the behavioral
patterns in the experimental data.

a and f3; were modeled as coming from Student T distributions controlled by
population-level parameters). We compared the full model and the likelihood-
only using the Widely Applicable Information Criterion [8]. This comparison,
shown in Table 2, reveals strong evidence in favor of the full model.
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Model | Rank WAIC  pWAIC dWAIC SE dSE

Full 0 -34823.9 640.856 0 188.421 0
Likelihood only 1 -37524.2 369.713 2700.3 190.453 69.3959

Table 2: WAIC comparison of the full model and the likelihood-only model for the
experimental data, reported in the standard format used by [21, section 6.4.2].
Briefly, WAIC is the value of the criterion (log-score scale — higher is better); pWAIC
is the estimated effective number of parameters; dWAIC is the difference between
the WAIC of the given model and the highest-ranked one; SE is the standard error of
the WAIC estimate; and dSE is the standard error of the difference in WAIC. These
estimates were produced with the compare function provided by ArviZ [19], using
8 MCMC chains with 1000 samples each for each model (in total, 8000 samples
for each model).

28



	Effect of Geometric Complexity on Intuitive Model Selection
	Recommended Citation

	Effect of Geometric Complexity on Intuitive Model Selection
	Abstract
	Keywords
	Disciplines

	1 Introduction
	1.1 Related work

	2 Methods
	2.1 Psychophysics
	2.2 Penalty term for model boundaries
	2.3 Comparison between subject behavior and Bayesian ideal observer
	2.4 Data analysis

	3 Results
	4 Discussion
	5 Acknowledgements
	References
	Appendices
	A Derivation of the boundary term in the Fisher Information Approximation
	A.1 Set-up and hypotheses
	A.2 Preliminaries
	A.3 Choosing a good system of coordinates
	A.4 Determining the domain of integration
	A.5 Computing the penalty
	A.6 Interpreting the penalty
	A.7 Numerical comparison of the extended FIA vs exact Bayes

	B Supplementary information on the analysis of the psychophysics data
	B.1 Technical details of the inference procedure
	B.2 Posterior predictive checks
	B.3 Formal model comparison


