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Occam’s razor is the principle stating that, all else being equal, simpler explanations for a set of
observations are preferred over more complex ones1. This idea is central to multiple formal
theories of statistical model selection2–5 and is posited to play a role in human perception and
decision-making6, but a general, quantitative account of the specific nature and impact of
complexity on human decision-making is still missing. Here we use preregistered experiments to
show that, when faced with uncertain evidence, human subjects bias their decisions in favor of
simpler explanations in a way that can be quantified precisely using the framework of Bayesian
model selection. Specifically, these biases, which were also exhibited by artificial neural
networks trained to optimize performance on comparable tasks, reflect an aversion to complex
explanations (statistical models of data) that depends on specific geometrical features of those
models, namely their dimensionality, boundaries, volume, and curvature. Moreover, the
simplicity bias persists for human, but not artificial, subjects even for tasks for which the bias is
maladaptive and can lower overall performance. Taken together, our results imply that principled
notions of statistical model complexity have direct, quantitative relevance to human and
machine decision-making and establish a new understanding of the computational foundations,
and behavioral benefits, of our predilection for inferring simplicity in the latent properties of our
complex world.

Occam’s razor and model selection
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Figure 1: Occam’s razor, Bayesian model selection, and testing their
roles in machine and human inference.
a: Occam’s razor prescribes a bias against complex models. In Bayesian model selection, model
complexity is a measure of the flexibility of a model, or its capacity to account for a broad range of
empirical observations. In this example, we observe an apple falling from a tree (left), and we
compare two possible explanations: 1) classical mechanics, and 2) the intervention of a ghost. b:
Schematic comparison of the evidence of the two models in panel a. Classical mechanics (pink) can
explain a narrower range of observations than the ghost (green), which is a valid explanation for just
about any conceivable phenomenon (e.g., both a falling and spinning-upward trajectory, as in the
insets). In the absence of further evidence, Occam’s razor suggests that the simpler model (classical
mechanics) is preferred, because its hypothesis space is more concentrated around the sparse,
noisy evidence and thus avoids “overfitting” to noise. c: A geometrical view of the model-selection
problem. Two alternative models are represented as geometrical manifolds, and the

maximum-likelihood point for each model is represented as the projection of the data (red star)ϑ

onto the manifolds. d: Large-N expansion of the log evidence of a model M. is theϑ
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maximum-likelihood point on model M for data X, N is the number of observations, d is the number
of parameters of the model, l is the likelihood gradient, h is the observed Fisher information, and g is
the expected Fisher information. The ellipsis collects terms that get smaller as N grows. Each term
of the expansion represents a distinct geometrical feature of the model: dimensionality penalizes
models with many parameters; boundary (a novel contribution of this work) penalizes models for

which is on their boundary; volume counts the number of distinguishable probability distributionsϑ

contained in M; and robustness captures the shape (curvature) of M near . e: Psychophysical taskϑ
with variants designed to probe each of the geometrical features in d. On each trial, a random
location on one of the models is selected (gray star), and data (red dots) are sampled from a
Gaussian centered around that point (gray shading). Subjects see the models (black lines) and the
data (red dots) and have to choose which model is best for the data. Red star (not shown to the
subjects): empirical centroid of the data, by analogy with c. In this task, the maximum-likelihood
point can be found by projecting the empirical centroid onto one of the models. Insets: task
performance for the given task variant, for a set of 100 simulated ideal Bayesian observers (orange)
versus a set of 100 simulated maximum-likelihood observers (i.e., choosing based only on
whichever model was the closest to the empirical centroid of the data on a given trial; cyan). For this
task, the advantage conferred by the simplicity biases is very small.

Making a decision based on uncertain evidence often amounts to choosing between alternative,
plausible explanations for noisy and sparse data. When evaluating such competing
explanations, Occam’s razor posits that we should consider not just how well they account for
the actual observations, but also the extent to which they may be overly flexible in accounting
for many diverse sets of potential observations (such as “a ghost did it!”; Figure 1a). In cognitive
science, simplicity, or parsimony, has long been proposed as an organizing principle in sensory
perception6, from the early concept of Prägnanz in Gestalt psychology7, to a number of
minimum principles for vision8, to investigations based on information-theoretical approaches9.
However, despite evidence that such a preference for simplicity exists in various forms of human
decision-making10–14, we lack a principled understanding of what, exactly, defines the complexity
of an alternative explanation that should be avoided, and by how much complexity should (and
does) trade off against the ability to account for observations when we make decisions.

To provide this understanding, we turn to an approach based on Bayesian statistics, which
allows us to measure the complexity of an explanation for data on a universal scale. Our
process is formalized as a model-selection problem: given a set X of N observations and a set
of possible statistical models {M1, M2, …}, we seek the model M that in some sense is the best
for the data X. In this context, Occam’s razor can be interpreted as requiring the goodness-of-fit
of a model to be penalized by some measure of its flexibility, or complexity, when comparing it
against other models. Bayesian statistics offers a natural characterization of such a measure of
complexity and specifies the way in which it should be traded off against goodness-of-fit to
maximize decision accuracy, typically because the increased flexibility provided by increased
complexity tends to cause errors by overfitting noise in the observations2,3,15.

Specifically, according to this framework models should be compared based on their evidence

or marginal likelihood , where represents model parameters𝑝(𝑋|𝑀) =  ∫ 𝑑ϑ 𝑤(ϑ) 𝑝(𝑋|𝑀, ϑ) ϑ
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and their associated prior (Figure 1b). Under mild regularity assumptions and for large N,𝑤(ϑ)
the (log) evidence can be written as the sum of the maximum log likelihood of M and several
penalty factors, which can be interpreted as a measure of model complexity15,16. This approach,
called the Fisher Information Approximation (FIA), generalizes the well-known Bayesian
Information Criterion (BIC) for model selection17,18. If the prior is taken to be𝑤(ϑ)
uninformative19, each penalty factor can be shown to capture a distinct geometric property of the
model16, including dimensionality (number of parameters), boundary (a novel term, detailed
below), volume, and shape (Figure 1c). Similar quantitative definitions of statistical model
complexity or model selection prescriptions can be obtained with different theoretical
approaches, such as the Minimum Description Length20–22, Minimum Message Length23, and
Predictive Information24 frameworks, testifying to the generality of this approach.

Measuring the simplicity bias in simple decisions
We designed a simple decision-making task to relate the FIA complexity terms to the biases
exhibited by artificial and human decision-makers. On each trial, N=10 observations (red dots in
Figure 1e) were sampled from a 2D Normal (“generative”) distribution centered somewhere
within one of two possible shapes (black shapes in Figure 1e). The identity of the shape
generating the data (top versus bottom) was chosen at random with equal probability, and the
location of the center of the Normal distribution within the selected shape was also sampled
uniformly at random, in a way that did not depend on the model parametrization, by using
Jeffrey's prior19. Given the observations, the subjects decided which shape (model) was more
likely to contain the center of the generative distribution. We designed four task variants, each
conceived to probe primarily one of the distinct geometrical features that are penalized in
Bayesian model selection (Figure 1d and e).

A key feature of the task is that the observations, and their empirical centroid, tended not to fall
exactly on one of the two alternative models. Accordingly, the maximum-likelihood projection of
the data often fell on the boundary of one of the models, even when the data were sampled
from that model. These conditions are common in the real world (as implied by the “all models
are wrong to some degree” mantra) but pose a challenge for the FIA and related
model-selection approaches, which typically assume that the maximum likelihood solution is in
the interior of the parameter space of a given model16. To overcome this challenge, we extended
the FIA to deal with the simple case of a linear boundary in parameter space (see Appendix).
When the maximum-likelihood solution is on such a boundary, an additional penalty term
appears in the FIA, which we denote “boundary” (Figure 1d).
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Figure 2: Simplicity biases in deep neural networks
a: A novel deep neural-network architecture for statistical model selection. The model takes as
inputs two images, each representing a model, and a set of 2D coordinates, each representing a
datapoint. The output is a softmax-encoded choice between the two models. b: Each network was
trained on multiple variants of the model-selection task (Figure 1e), including systematically varying
model length or curvature, then tested using the same configurations as for the human tests. c:
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Summary of model behavior. Hue (pink/green): k-nearest-neighbor interpolation of the model choice,
as a function of the empirical centroid of the data. Color gradient (light/dark): marginal density of
empirical data centroids for the given model pair, showing the region of space where data were more
likely to fall. Cyan solid line: decision boundary for an observer that always chooses the model with
highest maximum likelihood. Orange dashed line: decision boundary for an ideal Bayesian observer.
d: Network behavior analyzed via hierarchical logistic regression, using the terms of the FIA (the
features that determine model complexity) as predictors. Each fitted bias coefficient was normalized
to the likelihood coefficient and thus could be interpreted as a relative sensitivity to the associated
FIA term. For each term, an ideal Bayesian observer would have a relative sensitivity of one (dashed
orange lines), whereas an observer that relied on only maximum-likelihood estimation (i.e.,
choosing``up'' or ``down'' based only on the model that was the closest to the data) would have a
relative sensitivity of zero (solid cyan lines). Top, gray: population-level estimates. Purple: relative
sensitivity of an ideal observer that samples from the exact Bayesian posterior (not the
approximated one provided by the FIA). Shading: posterior mean ± 1 or 2 stdev., obtained from a
simulation. Bottom: individual network-level sensitivity estimates for a population of 50 randomly
initialized neural networks. e: Accuracy as a function of relative sensitivity of individual networks
(points) for each term (columns and lines are as in c and d).

To show that these complexity terms are not just abstractions of the FIA framework but instead
are tangible, learnable quantities that impact performance, we designed a novel artificial neural
network architecture that could perform statistical model selection, in a form applicable to the
task described above (Figure 2a,b). On each trial, the network took as input two images
representing the models to be compared, and a set of coordinates representing the data point.
The output of the network was a decision between the two models, encoded as a softmax
vector. We analyzed 50 instances of the deep network that differed only in the random
initialization of their weights and in the examples seen during training.

After training, the networks’ choices were consistent with having learned decision boundaries
that were close to those of an ideal Bayesian observer (Figure 2c). These decision boundaries
reflected tradeoffs between simplicity and goodness-of-fit that also were close to optimal, for
each of the four complexity terms we tested (dimensionality, boundary, volume, and curvature;
Figure 2d). These simplicity biases varied slightly in magnitude across the different networks,
but this variability was not related systematically to any differences in the generally high
accuracy rates for each condition (Figure 2e; posterior mean ± st. dev. of Pearson correlation
coefficient between accuracy and |1-β|, where β is the sensitivity: dimensionality, -0.11±0.10;
boundary, 0.07±0.10; volume, -0.16±0.11; robustness, -0.18±0.12). This result implies that the
networks were all trained comparably well, and some variability in bias magnitude occurred
because of the stochastically generated stimuli used for training and testing. Overall, these
results are different from, and complementary to, recent work that has focused on the idea that
implementation of simple functions could be key to generalization in deep neural networks25–27.
Here we have shown that effective learning can take into account the complexity of the
hypothesis space, rather than that of the decision function, in producing normative simplicity
biases.

6
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Humans are sensitive to the geometric complexity of
statistical models

Figure 3: Simplicity biases in human behavior
a: Summary of human-subject behavior (plotted as in Figure 2c). Hue (pink/green):
k-nearest-neighbor interpolation of the model choice, as a function of the empirical centroid of the
data. Color gradient (light/dark): marginal density of empirical data centroids for the given model
pair, showing the region of space where data were more likely to fall. Cyan solid line: decision
boundary for an observer that always chooses the model with highest maximum likelihood. Orange
dashed line: decision boundary for an ideal Bayesian observer. The subjects’ choices tended to be
biased towards the simpler model, particularly near the center of the screen. For instance, in the left
panel there is a region where data were closer to the line than to the dot, but subjects chose the dot
(the simpler, lower-dimensional “model”) more often than the line. b: Estimated relative sensitivity to
geometrical features characterizing model complexity (plotted as in Figure 2d), measured for
subjects who performed the task variant illustrated directly above in panel 2a. Relative sensitivity is
defined as sensitivity to a model feature divided by sensitivity to likelihood (see Figure 2). Top, gray:
Population-level estimates. Bottom: subject-level estimates. Solid cyan lines: relative sensitivity of a
maximum-likelihood observer. Orange dashed lines: relative sensitivity of an ideal Bayesian
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observer. c: Accuracy as a function of relative sensitivity of individual networks (points) for each term
(columns and lines are as in a and b).

To assess the relevance of these simplicity biases to human decision-making, we conducted an
on-line study using the crowdsourcing platforms Prolific and Pavlovia. Following our
preregistered approaches28,29, we collected data from 202 subjects, divided into four groups that
each performed one of the four separate versions of the task depicted in Figure 1e (each group
comprised ~50 subjects). We used hierarchical Bayesian modeling to measure the sensitivity of
each subject to model likelihood (distance from the data to a given model) and to each of the
geometrical features characterizing model complexity. Just like for the artificial neural networks,
this approach allowed us to define the relative sensitivity to each feature, by dividing the
sensitivity to that feature by the subject’s sensitivity to the likelihood.

The human subjects exhibited all four forms of simplicity bias, despite substantial individual
variability that was greater than that found for the ANNs (note the different axis scales when
comparing Figures 2d and 3b). Specifically, the estimated normalized population-level sensitivity
for human subjects (posterior mean ± st. dev.) was 4.66±0.96 for dimensionality, 1.12±0.10 for
boundary, 0.23±0.12 for volume, and 2.21±0.12 for robustness. Formal model comparison
(WAIC; see Appendix) confirmed that their behavior was better described by taking into account
the geometric penalties described by the theory of Bayesian model selection, rather than by
relying on only the minimum distance between model and data (i.e., the maximum-likelihood
solution). The broad range of individual variability also highlighted the importance of
appropriately tuned (i.e., close to Bayesian) simplicity biases, because accuracy tended to
decline for subjects with biases further away from the Bayesian predictions (Figure 3c; posterior
mean ± st. dev. of Pearson correlation coefficient between accuracy and |1-β|, where β is the
sensitivity: dimensionality, -0.75± 0.02; boundary, -0.12±0.10; volume, -0.42±0.06; robustness,
-0.58±0.09. Overall, these results show that the intuitive aversion of human subjects for complex
explanations for empirical data can be quantified precisely, in terms of the geometrical features
identified in a Bayesian model-selection framework.

Robustness of simplicity biases to different instructions

Penalizing complex models by the appropriate amount is optimal in model selection, but in
practice for our task the expected performance advantage from doing so is minimal. In
simulations, the difference in performance between ideal observers that penalized model
complexity according to the FIA and simulated observers that only used model likelihood was
~1% (depending on the task type; Figure 1e, insets), which translates to ~5 additional correct
trials over the course of an entire experiment. Moreover, trial-by-trial feedback was not provided
to the subjects. It is therefore unlikely that the task itself could provide sufficient incentive or
information for the human subjects to learn to penalize complex models by adaptively optimizing
their performance as they performed the task. We thus sought to determine if and how behavior
depended on the specific form of our task instructions.

8
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We compared performance for two different data sets collected using identical task conditions
but different instruction sets. The data depicted in Figure 3 were collected using instructions that
were formulated to mirror the Bayesian model-selection problem. Specifically, those instructions
used the analogy of seeds from a flower located in one of two flowerbeds to provide an intuitive
framing of the key concepts of noisy data generated by a particular instance of a parametric
model from one of two model families, respectively. In contrast, the instructions (and brief
training block, with feedback) for the second data set asked subjects to pick the model with the
maximum likelihood, thus disregarding model complexity. Specifically, the visual cues were the
same as in the original experiment, but the subjects were asked to report which of the two
shapes on the screen was closest to the center-of-mass of the dot cloud. We ensured that the
subjects recruited for this “maximum-likelihood” task had not participated in the original,
“generative” task.

Subject behavior was similar for both tasks, suggesting a general predilection for simplicity even
without relevant instructions or incentives (Figure 4, left). Specifically, despite some quantitative
differences, the distributions of relative sensitivities showed the same basic patterns for both
tasks, with a general increase of relative sensitivity from volume (0.19±0.08 for the
maximum-likelihood task; compare to values above), to boundary (0.89±0.10), to robustness
(2.27±0.15), to dimensionality (2.29±0.41). To confirm that the difference between the two tasks
was in principle learnable, we trained the deep neural networks on the maximum-likelihood task.
In stark contrast to the human data, ANN sensitivity to model complexity on the
maximum-likelihood task was close to zero for all four terms (Figure 4, right).

To summarize the similarities and differences between how humans and ANNs used simplicity
biases to guide their decision-making behaviors for these tasks, Figure 5 shows overall
accuracy for each set of conditions we tested. Specifically, for each network or subject, task
configuration, and instruction set, we computed the percentage of correct responses with
respect to both the generative task (i.e., for which theoretically optimal performance depends on
simplicity biases) and the maximum-likelihood task (i.e., for which theoretically optimal
performance does not depend on simplicity biases). Because the maximum-likelihood solutions
are deterministic (they depend only on which model the data centroid is closest to, and thus the
decision boundary is infinitely steep) and the generative solutions are not (they depend
probabilistically on the likelihood and bias terms, and thus the decision boundary is not infinitely
steep), performance on the former is expected to be higher than on the latter. Accordingly, both
ANNs and (to a lesser extent) humans tended to perform better when assessed relative to
maximum-likelihood solutions. Moreover, the ANNs tended to exhibit behavior that was
consistent with optimization to the given task conditions: networks trained to find
maximum-likelihood solutions did better than networks trained to find generative solutions for
the maximum-likelihood task, and networks trained to find generative solutions did better than
networks trained to find maximum-likelihood solutions for the generative task. In contrast,
humans tended to adopt similar strategies regardless of the task conditions, in all cases using
Bayesian-like simplicity biases. Taken together, these results imply that human decision-making
has a natural tendency to follow principles of optimal model selection, even when those
principles are not instructed or incentivized.
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Figure 4: Simplicity biases in a task where penalizing complex
models is suboptimal
a: Relative sensitivity of human subjects to the geometric complexity terms (population-level
estimates, as in Figure 3b, top) for two task conditions: 1) the original, “generative” task where
subjects were implicitly instructed to solve a model-selection problem (same data as in Figure 3b,
top; cyan); and 2) a “maximum-likelihood” task variant, where subjects were instructed to report
which of two models has the highest likelihood (shortest distance from the data; orange). The two
task variants were tested on distinct subject pools of roughly the same size (202 subjects for the
generative task, 201 for the maximum-likelihood task, in both cases divided in four groups of
roughly 50 subjects each). Solid cyan lines: relative sensitivity of a maximum-likelihood observer.
Orange dashed lines: relative sensitivity of an ideal Bayesian observer. b: Same comparison and
format, but for two distinct populations of 50 deep neural networks trained on the two variants of the
task (orange is the same data as in Figure 2d, top).
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Figure 5: Summary of performance accuracy for ANNs and humans
Each panel shows accuracy with respect to maximum-likelihood solutions (i.e., the model closest to
the centroid of the data; ordinate) versus with respect to generative solutions (i.e., the model that
generated the data; abscissa). The gray line is the identity. Columns correspond to the four
geometric complexity terms, as indicated. a: Data from individual human subjects (points),
instructed to find the generative (orange) or maximum-likelihood (cyan) solution. Subject
performance was higher when evaluated against maximum-likelihood solutions than it was when
evaluated against generative solutions, for all groups of subjects (two-tailed paired t-test,
generative task subjects: dimensionality, t-statistic 2.21, p-value 0.03; boundary, 6.21, 1e-7;
volume, 9.57, 8e-13; robustness, 10.6, 2e-14. Maximum-likelihood task subjects: dimensionality,
5.75, 5e-7; boundary, 4.79, 2e-6; volume, 10.8, 2e-14; robustness, 12.2, 2e-16). b: Data from
individual ANNs (points), trained on the generative (orange) or maximum-likelihood (cyan) task.
Network performance was always highest when evaluated against maximum-likelihood solutions,
compared to generative solutions (all dots are above the identity line).

Discussion
Simplicity has long been regarded as a key element of effective reasoning and rational
decision-making, and it has been proposed as a foundational principle in philosophy1,
psychology6,9, statistics2,3,15,21,23, and more recently machine learning25,26. Accordingly, multiple
studies have identified biases towards simplicity in human cognition10,12,13, such as a tendency to
prefer smoother (simpler) curves as the inferred, latent source of noisy observed data11,14.
However, the quantitative form and magnitude of such bias have never been identified. In this
work, we showed that the bias is closely related to a specific mathematical formulation of
Occam’s razor, situated at the convergence of Bayesian model selection and information theory.
This formulation enabled us to go beyond the mere detection of a preference for simple
explanations for data, and to measure precisely the strength of this preference in artificial and
human subjects under a variety of theoretically motivated conditions.

Our study makes several novel contributions. The first is theoretical: we derived a new term of
the FIA in Bayesian model selection that accounts for the possibility that the best model is on
the boundary of the model family. This boundary is important because it can account for the
possibility that, because of the noise in the data, the best value of one parameter (or of a
combination of parameters) takes on an extreme value. This condition is related to the
phenomenon of “parameter evaporation” that is common in real-world models for data30.
Moreover, boundaries for parameters are particularly important for studies of perceptual
decision-making, in which sensory stimuli are limited by the physical constraints of the
experimental setup and thus reasoning about unbounded parameters would be problematic for
subjects. For example, imagine designing an experiment that requires subjects to report the
location of a visual stimulus. In this case, an unbounded set of possible locations (e.g., along a
line that stretches infinitely far in the distance to the left and to the right) is clearly untenable.
Our “boundary” term formalizes the impact of placing boundaries on such a set of possibilities,
which tend to increase local complexity (because they tend to reduce the concentration of local
hypotheses; see Figure 1b).
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The second contribution of this work relates to ANNs: these networks can learn to use or ignore
the simplicity biases in an optimal way (i.e., according to the magnitudes prescribed by the
theory), depending on how they are trained. On the one hand, these results do not seem
particularly surprising, because ANNs (and deep networks in particular) are powerful function
approximators that perform well in practice on a vast range of inference tasks31. Accordingly,
our ANNs trained with respect to the true generative solutions were able to make effective
decisions, including simplicity biases, about the generative source of a given set of
observations, whereas our ANNs trained with respect to maximum-likelihood solutions were
able to make effective decisions, without simplicity biases, about the maximum-likelihood match
for a given set of observations. On the other hand, these results provide new insights into how
ANNs might be analyzed to better understand the kinds of solutions they produce for particular
problems. In particular, assessing for the presence or absence of these kinds of simplicity
biases might help identify if and/or how well an ANN is likely to avoid overfitting to training data
and provide more generalizable solutions.

The third, and most important, contribution of this work relates to human behavior: people tend
to use simplicity biases when making decisions, and unlike ANNs these biases do not seem to
be simply the consequences of learning specific task demands but rather an inherent part of
how we interpret uncertain information. This tendency has important implications for the kinds of
computations our brains must use to solve these kinds of tasks, and how those computations
appear to differ from those implemented by the ANNs we used. From a theoretical perspective,
the difference between a full Bayesian solution (i.e., one that includes the simplicity biases) and
a maximum-likelihood solution (i.e., one that does not include the simplicity biases) to these
tasks is that the latter considers only the single best-fitting model from each family, whereas the
former integrates over all possible models in each family. Our finding that ANNs can converge
on either solution when trained appropriately indicates that both are, in principle, learnable.
However, our finding that people tend to use the Bayesian solution even when instructed to use
the maximum-likelihood solution suggests that we naturally do not make decisions based simply
on the single best or archetypical instance within a family of possibilities but rather integrate
across that family. Put more concretely in terms of our task, when told to identify the shape
closest to the data points, subjects were likely uncertain about which exact location on each
shape was closest and thus integrated over the possibilities – thus inducing simplicity biases as
prescribed by the Bayesian solution. We hope these findings will help motivate and inform future
studies to identify where and how the brain implements and stores these integrated solutions to
relevant decision problems.

Another key feature of our findings that merits further study is the magnitude and variability of
biases exhibited by the human subjects. On average, human sensitivity to each geometrical
model feature was: 1) larger than zero, 2) at least slightly different from the optimal value (e.g.,
larger for dimensionality and robustness, smaller for volume), and 3) different for distinct
features and different subjects. What is the source of this diversity? One hypothesis is that
people may weigh more heavily the model features that are easier or cheaper to compute. In
our experiments, the most heavily weighted feature was model dimensionality. In our
mathematical framework, this feature corresponds to the number of degrees of freedom of a
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possible explanation for the observed data and thus can be relatively easy to assess. By
contrast, the least heavily weighted feature was model volume. This feature involves integrating
over the whole model family (to count how many distinct states of the world can be explained by
a certain hypothesis, one needs to enumerate them) and thus can be very difficult to compute.
The other two terms, boundary and robustness, are intermediate in terms of human weighting
and computational difficulty: they are harder to compute than dimensionality, because they
depend on the data and on the properties of the model at the maximum likelihood location, but
are also simpler than the volume term, because they are local quantities that do not require
integration over the whole model manifold. This intuition leads to new questions on the
relationship between the complexity of the explanations being compared and the complexity of
the decision-making process itself, calling into question notions of bounded rationality and
diminishing returns in optimal inference32,33. Answering such questions is beyond the scope of
the present work but merits further study.

Another potentially intriguing future direction is a comparison with other formal approaches to
the emergence of simplicity that can lead to different predictions. Recent studies have argued
that Jeffrey’s prior (upon which our geometric approach is based) could give an incomplete
picture of the complexity of a common class of models and proposed instead the use of
data-dependent priors34,35. The two methods lead to different results, especially in the
data-limited regime36. It would be useful to understand the relevance of these differences to
human and machine decision-making.

In summary, our work reveals the direct, quantitative relevance of formal notions of model
complexity for human behavior. By relying on a combination of theoretical advances,
computational modeling and behavioral experiments, we have established a novel set of
normative reference points for decision making under uncertainty. Our findings therefore open
up a new arena in which human cognition could be measured against optimal inferential
processes, potentially leading to new insights into the constraints affecting information
processing in the brain.
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