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LETTER
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Abstract
Duopolies are one of the simplest economic situations where interactions between firms determine
market behavior. The standard model of a price-setting duopoly is the Bertrand model, which has
the unique solution that both firms set their prices equal to their costs—a paradoxical result where
both firms obtain zero profit, which is generally not observed in real market duopolies. Here we
propose a new game theory model for a price-setting duopoly, which we show resolves the
paradoxical behavior of the Bertrand model and provides a consistent general model for duopolies.

Economic systems are exemplars of complex systems, in which the properties of the whole system are deter-
mined by, but not simply reducible to, the behavior of numerous interacting sub-units [1–4]. The inherent
complexity of economic systems has manifested itself in the analysis of markets, where most effort has been
devoted to two extreme cases: on the one hand, a monopoly (consisting of a single firm) and on the other,
a perfectly competitive market (consisting of a large number of firms). The rationale for this restriction is
that the analysis of these two cases is especially simple because strategic interactions between the firms can be
ignored—in a monopoly there are no strategic interactions by definition, and in perfect competition it is rea-
sonable to assume that no one firms’ actions can significantly affect the behavior of the large number of other
firms in the market. Thus, the theoretically most interesting case, which is also of great real-world importance,
is that of a market consisting of a small number of firms. In such a situation, the strategic interactions between
the firms are the key determinant of the behavior of the market. The paradigm of such a case is a duopoly, in
which there are two firms in the market. Bertrand introduced a celebrated duopoly model [5], in which the
firms decide simultaneously the price at which they will sell a homogeneous good, where the amount of the
product consumed is determined by the price. It is assumed that the firm that sets the lower price captures the
whole market, while the firm that sets the higher sells nothing. Given these assumptions the unique solution
of the Bertrand model is that the firms should set a price that is equal to their costs of production, in which
case they obtain zero profit [6–10]. Since real-world duopolies are generally profit-making, this outcome is
referred to as the Bertrand Paradox.

In this letter we propose a new game theory model for price competition which is more realistic and general
than the Bertrand model. We study this model analytically using adaptive dynamics and also through agent-
based simulations, and show that it resolves the Bertrand paradox.

To place the new duopoly model in context we first briefly review the Bertrand model. Consider two
firms i and j, selling a homogeneous good. The strategies of the firms are the unit prices pi and pj at which
they sell their product (where pi, pj ∈ R+ = [0,∞)). We denote the corresponding quantities sold by the
firms by qi(pi, pj) and qj(pi, pj), respectively. In the Bertrand model it is assumed that the cost incurred by
a firm is determined by the amount of the product that it produces and subsequently sells. Let C(q(pi, pj))
be the cost to a firm of producing a quantity q(pi, pj). Here we consider the standard case C(q(pi, pj)) =
cq(pi, pj), in which the firms have the same constant marginal cost c > 0. The quantity q of the product
sold in the market at price p is given by the demand function q = d(p). Here we focus on the standard case
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of a linear demand function d(p) = a − bp, where a, b > 0. Since we will assume that d(c) > 0, it follows
that a > bc.

Under these assumptions the revenue for firm i is piqi(pi, pj)Θ(pj − pi) = pid(pi)Θ(pj − pi) and the cost to
firm i is C(qi(pi, pj))Θ(pj − pi) = cd(pi)Θ(pj − pi), where Θ is the Heaviside function, with the half-maximum

convention (i.e., Θ(x) = 0 if x < 0, Θ(x) = 1
2 if x = 0, and Θ(x) = 1 if x > 0). Thus, the payoff to firm i is

given by
Π(pi, pj) = piqi(pi, pj)Θ(pj − pi) − C(qi(pi, pj))Θ(pj − pi)

= (pi − c)d(pi)Θ(pj − pi).
(1)

The payoff to firm j is correspondingly given by Π(pj, pi). Therefore, for the case of a linear demand function
the payoff to i in the classical Bertrand game is given by

Π(pi, pj) = (pi − c)(a − bpi)Θ(pj − pi). (2)

Since there is no incentive for any firm to set a price that results in a negative payoff (as a firm may always
obtain a profit of zero by not selling its product) the feasible strategy space for this game is S = [c, m], where
m = a/b.

The unique Nash equilibrium of the Bertrand game with payoff (2) is that the firms set their prices equal
to the marginal cost c [6–10]. At this Nash equilibrium both firms obtain a payoff of 0. This is the Bertrand
paradox. Moreover, the Bertrand paradox persists in an evolutionary analysis of the Bertrand game, since
the long-run behavior is equivalent to perfect competition [11]. Approaches to resolving the Bertrand para-
dox include: capacity constraints [6], sluggish consumers [12], endogenous timing of pricing decisions [13],
endogenous choice of production technologies [14], product differentiation [15, 16], demand uncertainty
[17, 18], product quality uncertainty [8, 19], and non-constant marginal costs [11, 20–22].

A central assumption in the Bertrand duopoly model is that consumers buy purely from the firm with the
lowest price. This results in the Bertrand game having a discontinuous payoff function, which in turn results
in marginal pricing being the unique Nash equilibrium. Here we adopt the perspective advocated by Hotelling
[15], who emphasized that this feature of the model is unrealistic since it assumes that even extremely small
differences in the price of the two products will result in all consumers buying the marginally cheaper and
none buying the slightly more expensive. In reality there are numerous factors that could result in firm i’s
product sometimes being preferred to firm j’s product even if pj < pi. Examples of these are: there could be
incomplete price information, so not all consumers are aware of the price ordering, leading them to sometimes
buy the higher priced product; there may be a non-uniform spatial distribution of the products which results
in it sometimes being more convenient for some consumers to buy the more expensive product; there may
be an effective advertising campaign that leads to consumers in some cases preferring the more expensive
product.

These considerations therefore suggest that a more realistic model would assume that the probability
that firm i’s product is preferred over firm j’s product is a function of the difference in the prices of the
products φ(pj − pi), where φ is a smooth, monotonically increasing function, with limx→−∞ φ(x) = 0 and
limx→∞ φ(x) = 1. In this letter we will study a new model of price competition based on this assumption,
which we will refer to as the smooth Bertrand duopoly model. Given these assumptions, the expected revenue
for firm i is pid(pi)φ(pj − pi) and the expected cost to firm i is cd(pi)φ(pj − pi). Thus, for a linear demand
function, the expected payoff to i in the smooth Bertrand game is given by

π(pi, pj) = (pi − c)(a − bpi)φ(pj − pi). (3)

The expected payoff to j is correspondingly given byπ(pj, pi). The payoffπ(pi, pj) is a smooth function, without
the discontinuity associated with the classical Bertrand game, and thus the smooth Bertrand game can have
quite different behavior to the classical game. We will assume that consumers buy either firm i or firm j’s
product and therefore φ(pj − pi) + φ(pi − pj) = 1, from which it follows that φ(0) = 1

2 and φ′′(0) = 0. We

will let λ = φ′(0), as this parameter will play an important role in the analysis of the smooth Bertrand game.
It is common to study the evolutionary dynamics of important games [23–30], and here we conduct such

an investigation of the smooth Bertrand game. We analyze the dynamics of a population of agents interacting
pairwise through the smooth Bertrand game using the deterministic framework of adaptive dynamics [31–35],
which we briefly review. Consider a monomorphic population in which every agent adopts the same strategy,
p. It follows from replicator dynamics [24] that the invasion fitness of a rare mutant strategy, p′, in the res-
ident population of p-strategists is fp(p′) = π(p′, p) − π(p, p), where π(p′, p) is the payoff to an p′-strategist
interacting with a p-strategist [34]. The evolution of the strategy p is then determined by the selection gra-

dient D(p) = ∂fp
∂p′ |p′=p, and the adaptive dynamics of p is governed by the differential equation ṗ = αD(p),
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where α depends on the population size and on the mutational process at work [36]. For a constant popu-
lation size, α simply scales the time variable, and we can, without any loss of generality, set α = 1. Singular
strategies p� are equilibrium points of the adaptive dynamics and are solutions of D(p�) = 0. If no such solu-
tion exists, the strategy p increases or decreases monotonically with time, according to the sign of D(p). If a
singular strategy p� does exist, then it is convergent stable, and hence an attractor for the adaptive dynamics, if
D′(p�) = dD

dp |p=p� < 0. If, however, D′(p�) = dD
dp |p=p� > 0, then p� is an evolutionary repeller. Initially, the pop-

ulation will approach a convergent stable singular strategy p�; however, the final evolutionary state depends on

whether p� is a maximum or minimum of the invasion fitness fp(p′). If p� is a maximum, (i.e.,
∂2 fp�

∂p′2
|p′=p� < 0),

then p� is an evolutionarily stable strategy (ESS), and this represents an end state of the evolutionary process.
If, however, p� is a minimum then a population of p�-strategists can be invaded by mutant strategies on either
side of p�, and p� is an evolutionary branching point. In this case the population splits into two distinct and
diverging clusters of strategies.

We will now use these methods to study the evolutionary dynamics of the smooth Bertrand game. The
invasion fitness of a rare mutant strategy, p′, in the resident population of p-strategists is fp(p′) = π(p′, p) −
π(p, p), where π(p′, p) = (p′ − c)(a − bp′)φ(p − p′). It follows, therefore, that the selection gradient is

D(p) =
∂fp

∂p′

∣
∣∣
∣

p′=p

=
1

2
a +

1

2
bc + acλ− (b + aλ+ bcλ)p + bλp2.

(4)

The adaptive dynamics of p is described by the differential equation

ṗ =
1

2
a +

1

2
bc + acλ− (b + aλ+ bcλ)p + bλp2. (5)

The phase space of this dynamical system describing the adaptive dynamics is the strategy space S. The singular
strategies p�, which are equilibrium points of the adaptive dynamics, are solutions of D(p�) = 0. There are two
solutions to this equation, with the smaller root being given by

p� = [b + aλ+ bcλ−
√
λ2(a − bc)2 + b2]/(2bλ), (6)

and the larger root being

p̂ = [b + aλ+ bcλ +
√
λ2(a − bc)2 + b2]/(2bλ). (7)

It is straightforward to show that p� ∈ (c, m) and p̂ > m, for all λ, and that p� → c+ and p̂ → m+ as λ→∞.
It follows from this that p� is the unique singular strategy in the strategy space S, or equivalently, that p� is the
unique equilibrium point for the adaptive dynamics in the phase space S.

It follows from the expressions for the selection gradient D(p) and the singular strategies p�, p̂ that

D′(p�) = −
√
λ2(a − bc)2 + b2 < 0, (8)

and
D′(p̂) =

√
λ2(a − bc)2 + b2 > 0. (9)

Thus, the singular strategy p� is convergent stable, or equivalently, p� is a stable equilibrium point of the adap-
tive dynamics, and therefore p� is an evolutionary attractor. Similarly, p̂ is an unstable equilibrium point of the
adaptive dynamics and p̂ is therefore an evolutionary repeller. Moreover, since D(p) > 0 for all p ∈ [c, p�) and
D(p) < 0 for all p ∈ (p�, m] it follows that p� is globally stable, and therefore, p� is the global attractor for the
adaptive dynamics in S. The graph of the selection gradient D(p) is shown in figure 1.

The final evolutionary fate of the system depends on whether p� is a maximum or minimum of the invasion
fitness. Since,

∂2fp�

∂p′2

∣
∣
∣
∣

p′=p�
= b − 2

√
λ2(a − bc)2 + b2 < 0, (10)

p� is a local maximum of the invasion fitness, and thus p� is a local ESS. It is straightforward to show that p� is
in fact a global ESS, which therefore represents the final evolutionary state of the system. In this final state all
agents use the strategy p�, and since p� > c, for all λ, the final evolutionary outcome is that all agents set a price
p� which exceeds their marginal cost. In this final state the payoff to each agent is π(p�, p�) = 1

2 (p� − c)(a −
bp�) > 0, for all λ. Therefore, in the evolutionary end state in which each firm sets its price to be p�, each firm

3
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Figure 1. Graph of the selection gradient D(p) for parameter values a = 8, b = 2, c = 1,λ = 1. The zeroes of D are the singular
strategies. The smaller singular strategy (represented by the filled circle) is p� = 3 −

√
5/2 ≈ 1.4189, which is the unique

equilibrium point of the adaptive dynamics in the strategy space S = [1, 4]. The singular strategy p� is the global evolutionary
attractor for the adaptive dynamics in S , and in addition, is an ESS, and thus represents the final evolutionary state of the system.
The larger singular strategy (represented by the open circle) p̂ = 3 +

√
5/2 ≈ 4.5811 is an evolutionary repeller for the adaptive

dynamics.

receives a positive payoff. This result shows that the smooth Bertrand game satisfactorily resolves the Bertrand
paradox.

Since p� is a global ESS, this implies that p� is a Nash equilibrium [24]. Therefore, our evolutionary analysis
of the smooth Bertrand game also establishes the rational solution of this game. We note that in the limit in
which we let the function φ tend to the Heaviside function Θ (in which λ→∞), the smooth Bertrand game
converges to the classical Bertrand game. In this limit p� → c+ and π(p�, p�) → 0+; and thus, the standard
results for the classical Bertrand game are recovered from the limiting behavior of the smooth Bertrand game.
We also note that in the limit λ→ 0+, p� → pc =

1
2 (c + m), where pc is the cartel price (i.e., pc =

1
2 (c + m)

is the value of p that maximizes π(p, p), and therefore, pc is the price that would be set by both firms if they
colluded to maximize their combined profits). Both p� and π(p�, p�) are monotonically decreasing in λ, with
these quantities approaching the maximum cartel values as λ→ 0+ and the minimum perfectly competitive
values as λ→∞.

The analytical results we have obtained for the smooth Bertrand game can be corroborated using agent
based simulations. In these simulations we can relax some of the assumptions that were made in the analyti-
cal treatment, and we consider here polymorphic populations with stochastic evolutionary dynamics [34, 35,
37–42].

Consider a population P of N agents representing firms, labeled by i = 1, . . . , N. The strategy of agent
i ∈ P is the price pi ∈ S at which the corresponding firm sells its product. The agents interact pairwise by
playing the smooth Bertrand game. In order to compute the payoffs in the smooth Bertrand game we must
specify a functional form for the probability φ(pj − pi). In our simulations we take

φ(pj − pi) = [1 + e−k(pj−pi)]−1, (11)

where k is a positive real parameter. We note that for this choice of the function φ, λ = k
4 .

The agent-based simulation consists of two stages. In the first stage we determine the payoffs the agents
receive through interacting. We pick a pair (i, j) ∈ P at random, and without replacement so this pair is not
picked again, and compute the payoffs to i and j. We repeat this process of picking pairs of agents and computing
payoffs until all pairs of agents have been chosen and every agent in P has received a payoff. In the second
stage, we update the strategies in P using the payoffs that have been computed in the first stage. We pick a
pair (i, j) ∈ P at random (without replacement, so this pair is not picked again): then i adopts j’s strategy with
probability [38, 41]

pi←j = [1 + e−β(π(pj ,pi)−π(pi,pj))]−1, (12)

and j adopts i’s strategy with probability

pj←i = [1 + e−β(π(pi,pj)−π(pj,pi))]−1

= 1 − pi←j.
(13)

The positive real parameter β is the selection strength [42]. We repeat this procedure until all pairs of agents
have been chosen. In addition, we occasionally introduce new strategies (i.e., mutations) into the population,

4



J.Phys.Complex. 2 (2021) 03LT01 (7pp)

Figure 2. Average values of the strategies and payoffs in the population against time in the agent-based simulations of the smooth
Bertrand game for different values of k. The initial strategies of the agents are picked uniformly randomly from [1, 4]. The initial
transients of 2000 generations are not shown in order to focus on the long-term evolutionary dynamics. The average strategies (a)
and average payoffs (b) are in excellent agreement with the analytically predicted values (indicated by dashed lines). Parameter
values: a = 8, b = 2, c = 1, N = 10 000, μ = 0.01, σ = 0.05,β = 1.

in the following way [41]: in a situation in which i would normally adopt j’s strategy, then with probability
μ, i instead adopts a strategy which is randomly picked from a normal distribution (truncated to lie in S)
with mean equal to j’s strategy and standard deviation σ. Performing both these stages once constitutes a
single generation of the agent-based simulation. In the simulations reported here we have taken the selection
strength to be β = 1. However, we have repeated the simulations for a wide variety of values of β and in all
cases the results are unchanged from those shown here.

The time-series for the average strategies and payoffs from the agent-based simulations for different values
of λ are shown in figure 2. The results from the agent-based simulations are in excellent agreement with the
analytical results. The asymptotic values of the strategies and payoffs from the agent-based simulations for a
larger set of λ values are shown in figure 3. These results are again in very good agreement with the analytical
results. It is apparent in figure 3 that both the strategies and payoffs converge to the cartel values as λ→ 0+

and to the perfectly competitive values as λ→∞. Thus, the smooth Bertrand model allows outcomes that
range across the full spectrum of possible behaviors, from prices and payoffs that approximate the maximum
possible values that would be obtained by a cartel to those close to the minimum possible values that would
be obtained in perfect competition.

The results that we have found for the smooth Bertrand game may be understood intuitively in the follow-
ing way. In the classical Bertrand game marginal pricing is the unique Nash equilibrium, with the consequence
that both firms obtain zero profit. This is the Bertrand paradox, which is not observed in real-world duopolies
which are generally profit-making. The zero-profit state is stable in the classical game because firms that
attempt to increase their profits by increasing their prices are punished by losing their revenue entirely. How-
ever, in the smooth Bertrand game firms are not punished so harshly, and the zero-profit state is no longer
stable because when firms are faced with the choice between making no profit using marginal pricing and
making a positive profit by increasing prices with some consequent decrease in revenues, the latter option is
the more desirable.

Finally, we would like to mention that it would be interesting to extend this work to an arbitrary number
of firms, and thereby develop a new model of price-setting oligopolies. Such an extension could elucidate the
results of [43].
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Figure 3. Asymptotic values of the strategies and payoffs in the agent-based simulations of the smooth Bertrand game for
different values of k. The results are calculated over the last 6000 generations from simulations with a total of 10 000 generations.
The data markers show the mean values and the top and bottom of the whiskers indicate the 95th percentile and 5th percentile,
respectively. The asymptotic values of the strategies (a) and payoffs (b) are in excellent agreement with the analytically predicted
values (shown by the dashed curves). Parameter values and initial values are as in figure 2.
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