
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-022-06224-6

1 3

Adversarial vulnerability bounds for Gaussian process
classification

Michael Thomas Smith1 · Kathrin Grosse2 · Michael Backes3 · Mauricio A. Álvarez4

Received: 3 February 2022 / Revised: 24 May 2022 / Accepted: 2 July 2022
© The Author(s) 2022

Abstract
Protecting ML classifiers from adversarial examples is crucial. We propose that the main
threat is an attacker perturbing a confidently classified input to produce a confident misclas-
sification. We consider in this paper the L

0
 attack in which a small number of inputs can be

perturbed by the attacker at test-time. To quantify the risk of this form of attack we have
devised a formal guarantee in the form of an adversarial bound (AB) for a binary, Gauss-
ian process classifier using the EQ kernel. This bound holds for the entire input domain,
bounding the potential of any future adversarial attack to cause a confident misclassifi-
cation. We explore how to extend to other kernels and investigate how to maximise the
bound by altering the classifier (for example by using sparse approximations). We test the
bound using a variety of datasets and show that it produces relevant and practical bounds
for many of them.

Keywords Machine learning · Gaussian process · Adversarial example · Bound ·
Classification · Gaussian process classification

Editors: Dana Drachsler Cohen, Javier Garcia, Mohammad Ghavamzadeh, Marek Petrik, Philip S.
Thomas.

 * Michael Thomas Smith
 m.t.smith@sheffield.ac.uk

 Kathrin Grosse
 kathrin.grosse@unica.it

 Michael Backes
 director@cispa.saarland

 Mauricio A. Álvarez
 mauricio.alvarezlopez@manchester.ac.uk

1 Department of Computer Science, University of Sheffield, Sheffield, UK
2 PRA Lab, University of Cagliari, Cagliari, Italy
3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
4 Department of Computer Science, University of Manchester, Manchester, UK

http://orcid.org/0000-0003-2047-605X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06224-6&domain=pdf

 Machine Learning

1 3

1 Introduction

A machine learning (ML) classifier, given labelled training points {�, y} , must classify
a new test point, x∗ . It has been found that popular methods for performing this task are
susceptible to small perturbations in the location of the test point (Dalvi et al., 2004;
Biggio et al., 2013; Szegedy et al., 2014). By carefully crafting the perturbations, an
attacker can cause an ML classifier to misclassify even with only a tiny alteration to
the original data point. The bound in this paper considers L0 ‘norm’ attacks (such that a
small number of dimensions are perturbed).

There is currently an absence of proven bounds on adversarial robustness that pro-
vide guarantees across the whole input domain. We find we can achieve this using
Gaussian process (GP) classification. The two key features of GPs are that first, they
allow one to specify priors, providing an equivalence to the smoothness mentioned by
Ross and Doshi-Velez (2018). Second, the posterior latent mean can be expressed as a
linear sum of observations. These two features allow us to bound the effect a perturba-
tion can have on a prediction.

Typically, to obtain an adversarial example (AE), one might perturb some input to
cause the ML algorithm to misclassify, while minimising a norm on the perturbation so
the new input looks, to humans, largely indistinguishable from the original. We instead
follow recent approaches of high-confidence adversarial examples (Carlini & Wagner,
2017b; Grosse et al., 2019), with the additional constraint that the starting point is also
confidently classified. To motivate, we want self-driving cars to be very confident a traffic
light is green before moving: If our self-driving car is only 55% confident the traffic light
is green, we would expect it to stop. We are more interested in AEs in which the classifica-
tion is moved from, say, 99% confident of a red light to 99% confident of a green. Unlike
previous work, our guarantee holds for the whole domain and lower bounds the scale of a
perturbation required to misclassify any confidently classified, as yet unknown, future test
point. This guarantee we refer to as the adversarial bound (AB).

Other papers chose norms to reflect human perception, but we feel the choice should
also consider the capacity of the attacker. We propose that the L0 norm reflects the most
likely real-world attack, where the adversary is likely to only have access to a small por-
tion of the domain. For example only being able to manipulate a subset of features used by
a spam filter, or stickers on road-signs (Sitawarin et al., 2018) which modify a subset of
dimensions. Su et al. (2019) even show single pixel perturbations can be sufficient to cause
a misclassification with a typical DNN.

The algorithm in this paper provides a true mathematical lower bound on the scale of
perturbation required to cause a (confident) misclassification, not an empirically derived
result. We use Gaussian process classification (GPC), a powerful and widely adopted clas-
sifier, as the basis for our analysis and demonstrate the AB algorithm provides meaningful
bounds for a variety of datasets.

1.1 Limitations

The AB algorithm described in this paper has several limitations.

• It assumes the data (and test locations) lie within a restricted hyperrectangular domain.
This might be defined by the problem (e.g. the range of values pixels can equal).

Machine Learning

1 3

• It is only applicable to binary classification. Extending it to multi-class classification
poses a challenge, which we discuss in Sect. 5.2.

• It has been principally developed for the EQ kernel. An extension to other kernels is
described in Sect. 3.3.2 and demonstrated in Sect. 4.6 with the exponential kernel.
However the approach is limited to stationary, isotropic kernels, and hasn’t been dem-
onstrated with other kernels.

• It doesn’t use the variance in the posterior latent distribution. This leads to looser
bounds, but still bounds changes to predictions made using GPC integrating over the
full distribution. Sect. 2.4 discusses this in more detail.

• We used the Laplace approximation to move from a classification problem to a regres-
sion problem. Other approaches for inference in non-Gaussian likelihoods include
expectation propagation and variational inference, but we leave applying the AB algo-
rithm to these for future work (see Sect. 5.3).

• It is arguably still quite loose, and depends on several tricks. One that really helped
was the use of inducing points. We explored small numbers (e.g. up to 30) of inducing
points. Clearly for some more complex datasets this might be insufficient.

1.2 Structure of the paper

Background
We start by reviewing Gaussian process regression (Sect. 2.1) and the Laplace approxi-

mation to perform Gaussian process classification (Sect. 2.2). We explain the vulnerability
we are testing for (Sect. 2.3).

The adversarial bound (AB) algorithm
We then explain the AB algorithm, which involves first expressing the regression prob-

lem in such a way that one can bound the perturbation of the posterior mean (Sects. 3.2.2
and 3.2.3). This initial bound is restricted to low dimensions. We propose a method to
allow higher input dimensions by projecting the space to a lower dimensionality (using
PCA) and, to ensure the bound remains valid, handle the negative weights efficiently
(Sects. 3.2.4 and 3.2.5 respectively).

Improvements to the algorithm
The bound is often still too loose to be practical, so two more refinements are explored:

The domain is sliced so that a bound is found on smaller parts of the domain, then all
the contiguous combinations of these parts are checked to find the largest perturbation
(Sect. 3.3.1). We also find it worth revisiting those dimensions that have the largest pos-
sible perturbation and rerunning their analysis with more slices (Sect. 3.3.3).

We also propose a method for extending the algorithm to GPs with other kernels
(Sect. 3.3.2. Section 4.6 demonstrates it).

Experiments
We then explore the method through a series of experiments and datasets. We look at

MNIST (Sect. 4.1), a non-linearly-separably dataset (Sect. 4.2) and several other, real-
world, datasets (Sect. 4.3). We then explore the effect of the number of slices and inducing
points (Sect. 4.4).

Finally we look at the results of empirical attacks on the classifier to get an insight into
how tight the bounds are (Sect. 4.5).

We conclude with a discussion of the results, the AB algorithm’s limitations and some
proposals for future work.

 Machine Learning

1 3

2 Background

2.1 Gaussian process regression

We first, briefly review Gaussian process regression (GPR) before looking at GP clas-
sification (GPC) using the Laplace approximation.

A GP is a stochastic process defined such that any finite subset of output variables
will have a multivariate normal distribution. The covariance between pairs of variables
is defined by the kernel function, k(�, ��) which describes how the covariance between
pairs of points changes depending on their location and proximity. If the covariance only
depends on the relative location of the two points it is called a stationary covariance.
Because the values of a set of locations are assumed to be samples from a multivariate
normal distribution, one can condition on some of these variables to make a closed-
form prediction of the posterior latent mean for the remaining. This is a key advantage
of using a GP, making prediction relatively trivial. To be specific: We are given a set of
training input-output pairs, � ∈ R

N×D and � ∈ R
N . We wish to estimate the value of the

latent function f at a test point �∗ : f∗ = f (�∗) . We assume that the training points have
been generated with this function but with the addition of (independent) Gaussian noise,

This decides the likelihood model, i.e. it tells us how likely we consider an observation to
be, given the value of f at the point’s location. By assuming the observations are Gaussian-
noise-corrupted versions of the latent function, we can keep the solution in closed form:

The conditional distribution of f∗|� can be expressed analytically as a normal distribution
with mean and covariance, f̄∗ = �⊤

∗
(� + 𝜎2�)−1� and � [f∗] = �∗∗ − �⊤

∗
(� + 𝜎2�)−1�∗.

Where �∗∗ = k(�∗, �∗) is the kernel variance at the test point. �∗ = k(�, �∗) and � = k(�,�)
are the covariances between test-training points and within training points respectively.
The kernel used for most of this paper is the exponentiated Quadratic (EQ) kernel
k(x, x�) = v exp

(
−

(x−x�)2

2l2

)
 , where v and l are, respectively, the kernel’s variance and

lengthscale. The posterior latent mean can be written as the sum of weighted kernels, let-
ting � = K−1y,

2.2 Binary Gaussian process classification using the Laplace approximation

To extend to classification, we consider binary observations, so yi = +1 or −1 . The like-
lihood will no longer be normal, but instead the probability of a point being of the posi-
tive class (given the latent function).

(1)�i = f (�i) + �i, �i ∼ N(0, �2).

(2)
[
�

f∗

]
∼ N

(
�,

[
k(�,�) + �2I k(�, �∗)

k(�∗,�) k(�∗, �∗)

])
.

(3)f̄∗ =

N∑
i=1

𝛼ik(xi, x∗),

Machine Learning

1 3

For binary classification our real-valued latent function (with GP prior) is trans-
formed by a logistic link function, � , to give us a prior on the class probabilities,
�(�) ≡ p(y = 1|�) = �(f (�)).

To perform inference we need to consider two steps. First, the posterior distribu-
tion of the latent function is computed by combining the latent function and the likeli-
hood and marginalising out the latent function; p(f∗|�, �, �∗) = ∫ p(f∗|�, �∗, �)p(� |�, �)d� .
We then need to find the expected value of the transformed latent function’s distribution
(i.e. after applying the link function) to give us the probability of being in class y∗ = +1 ,
�(�∗) = ∫ �(f∗)p(f∗|�, �, �∗)df∗.

Neither of the above integrals can be solved analytically. In this paper we use the
Laplace approximation to the posterior distribution. Specifically, we place a Gaussian
N

(
� |�̂ ,A−1

)
 on the mode �̂ , of the posterior distribution p(� |�, �) with a covariance A−1

that matches the posterior distribution’s second order curvature at that point. Finding the
mode and covariance is mildly involved and is described in Williams and Rasmussen
(2006), (pp. 42–43). The approximate mean of the latent function is then computed as for
normal GP regression, but using f̂ : f̄∗ = k⊤

∗
�−1 f̂ . Importantly, this is now a regression

problem again, but with new training output values (f̂). The second integral, to compute
�(�∗) , can either be ignored (if one wishes simply to report which class is most likely) or
can be computed quickly using sampling or analytical approximation. The effect of includ-
ing the latent predictive variance is to, ‘soften the prediction that would be obtained using
the MAP prediction �̂�∗ = 𝜎(f̄∗) , i.e. to move it towards 1/2’(Williams and Rasmussen
2006). Computing the variance requires an additional integration step but the AB-algo-
rithm, for simplicity, ignores this source of uncertainty, and only considers the mean func-
tion. We discuss what this means for our bound in Sect. 2.4.

2.3 Confident misclassification

Rather than just produce a misclassification, we want to place a bound on the possibility
of a confident misclassification, i.e. moving from a confidently classified point of one class
to a confidently classified point of another class. The robustness of a Logistic Regression
(LR) classifier is easy to quantify as one can simply cumulatively sum the sorted weight
values associated with the inputs. One can determine the number of inputs that need alter-
ing to cause a confident misclassification by considering when the cumulative sum reaches
a given threshold.

One can reduce the coefficients by simply increasing the regularisation, until the classi-
fier can never reach the specified threshold output (Fig. 1). Clearly this makes little sense.
Instead we propose that, to assess the quality of the bounds, one should use, as a heuristic,
the value of the 5th and 95th percentile training points’ values, and report how many inputs
need perturbing to pass between these two thresholds. This normalises the target of the
adversarial attack by correcting for the scaling caused by regularisation.

Regularising can still help protect the classifier from adversarial examples even using
this new way of framing the problem, as will be illustrated later.

 Machine Learning

1 3

2.4 Using just the latent mean

Returning to the issue of only using the mean latent function. An upper bound in the
change in the posterior latent mean also allows us to compute, through the link function,
upper bounds on the change in the predictive distribution: Adding any variance to the
latent function’s posterior distribution will cause the prediction to move towards 1

2
 (chance),

as explained in the quote at the end of Sect. 2.2. Therefore the change in the prediction
probabilities will be smaller than without the variance included in the calculation, so the
bound we compute in this paper, on the effect a perturbation can cause on the predictions,
remains applicable, even if one does integrate over the full variance of latent posterior’s
distribution. The consequence is that the bound will be looser than it otherwise would need
to be but a practitioner can still use the Bayesian approach (integrating over the distribution
of f∗) for prediction (the bounds described will still apply to their predictions).

A separate issue that needs consideration is the effect of the variance in the posterior dis-
tribution on our use of training-point percentiles for evaluating the utility of the approach.
To recap, this paper devises and proves a bound on the amount a prediction could change,
for a certain number of input perturbations. But we also need to evaluate its utility: To
demonstrate the approach we select the posterior latent mean values of the 5th and 95th
percentile training points to evaluate the relevance of the bound. These percentiles provide
a heuristic to allow us to assess the classifier in a way that allows us to control for the effect
of regularisation (as discussed above). An issue is if some training points are in regions
of the domain with high uncertainty. This would cause the prediction to lie nearer to the
1

2
 (chance) line, while the posterior latent mean might be a long way from zero. The result

a

b

Fig. 1 2d example using logistic regression. a The logistic function, to move from 5% to 95% confidence
requires a change of 2.94 in the latent function, w

0
+ x

1
w
1
+ x

2
w
2
 . b Left plot, least regularisation: mov-

ing between thresholds is possible by changing just one input, x
2
 (as |w

2
| > 2.94), see dashed line. Middle

plot: greater regularisation. It is only possible to move between the thresholds by altering both inputs (as
|w

1
| < 2.94 & |w

2
| < 2.94). Right plot: even more regularisation. It becomes impossible to move between

the two thresholds (i.e. when |w
1
| + |w

2
| < 2.94) even changing all inputs! We suggest rather than use fixed

values for these trhresholds one should use the values of the 5th and 95th percentile training points (orange
and blue lines) to assess the robustness of a classifier. C is inverse L

2
 regularisation (Color figure online)

Machine Learning

1 3

would be a latent-mean threshold at the 5th or 95th percentile being unrealistically difficult
to reach. However, given (for computing the percentiles) we are evaluating the posterior
latent mean at training points, the variance is likely to be relatively small. So we suggest
that using the 5th and 95th percentile training points is a good metric for assessing the util-
ity and relevance of the bound and the robustness of a classifier to adversarial attack.

We emphasise that this issue looking for a ‘regularisation-corrected’, appropriate way to
assess the robustness of a classifier doesn’t affect the bound result itself.

2.5 Related work

Much of the focus of the adversarial ML field has been on AEs with respect to deep neural
network (DNN) classification. Overfitting, linearity and sharp decision boundaries associ-
ated with DNNs are hypothesised to be the cause of their susceptibility (Papernot et al.,
2016b). Attempts have been made to regularise the DNN’s output. Ross and Doshi-Velez
(2018) regularised the input gradients as they suggested a model with ‘smooth input gra-
dients with fewer extreme values’ will be more robust (others, for example, Finlay and
Oberman 2021, develop this further). Papernot et al. (2016b) used distillation (a method
for crafting a smaller DNN) but this was later found to be insufficient (Carlini & Wag-
ner, 2017b). The conclusions of Carlini and Wagner (2017a) were that adversarial per-
turbations are very challenging to detect or mitigate: attempts at mitigation quickly being
compromised.

To move beyond the ‘arms-race’, researchers have begun providing formal guaran-
tees on the scale of the perturbations required to cause a misclassification (Carlini et al.,
2017; Hein & Andriushchenko, 2017; Huang et al., 2017; Madry et al., 2018; Wong &
Kolter, 2018; Ruan et al., 2019; Bojchevski et al., 2020; Finlay & Oberman, 2021). These
approaches only guarantee a ball around each training point is protected from AEs. For
example Wong and Kolter (2018) proposed a method for producing a bound on the scale
of adversarial examples if using a deep (ReLU) classifier. Hein and Andriushchenko
(2017) also provided a formal proof for a minimum perturbation � which could create an
AE around a particular training point, with a convex norm. Recently however, research
has been conducted into the change that can be brought about due to perturbations any-
where in the domain. This ensures that future, unseen test data has guarantees regarding
the minimum perturbation required to cause a misclassification. Peck et al. (2017) found a
formal bound for DNNs in which one can start at any location, but produced bounds that
were many orders of magnitude smaller than the true smallest perturbation. They also still
require one chooses an initial test point. Blaas et al. (2020) proposed an approach for GPC,
quantifying robustness in a ball around a test point. They do not however give robustness
guarantees for the whole domain, something that our AB algorithm can provide. Cardelli
et al. (2019) found bounds on the probability of a nearby point to a test point having a
significantly different prediction. We found that the above results did not provide practi-
cal bounds for use across the whole domain, or with an L0 norm attack. The algorithm
described in this paper achieves both.

 Machine Learning

1 3

3 Method

3.1 Threat model

We assume the GP classifier (with EQ kernel, for now) has been trained (both for hyperpa-
rameter optimisation and regression) using trusted data. At test-time, the attacker can manipu-
late a subset of input dimensions. We describe the attack by the number of dimensions that
an attacker must manipulate to cause the classifier to confidently misclassify a test point it
had previously confidently classified. We define ‘confident’ as having a posterior latent mean
either greater than 95% or less than 5% of the training data labels. For simplicity in the deriva-
tions, the feature ranges of both the original unperturbed test data and the attacker perturbed
adversarial example are defined to lie within the unit hypercube. This is w.l.o.g, as one can
achieve this by simply scaling the data and lengthscales accordingly or including minor adjust-
ments in the implementation. Using the ‘FAIL’ model (Suciu et al., 2018) we can formalise
this: The attacker could have complete knowledge of the training data and the algorithm and
complete access to the test point being manipulated (although we do motivate the L0 ‘norm’
by noting that in real situations this is less likely). This leads to full feature (F), algorithm (A)
and instance (I) knowledge and full leverage (L).

3.2 The adversarial bound (AB) algorithm

3.2.1 Introduction

We wish to find a lower bound on the number of dimensions that need perturbing to cause the
posterior mean to change more than t, the distance between the 5th and 95th percentile train-
ing points’ posterior latent means. Section 2.2 summarised how one ‘converts’ a classification
problem into a regression problem using the Laplace approximation. This means we instead
need to produce lower bounds for the number of dimensions that need altering for the regres-
sion case. Lemma 8 combines upper bounds on how much perturbing each dimension can
increase the posterior mean, to allow us to lower bound the number of dimensions that are
required to change the mean by t. These upper bounds for each dimension are provided by
Lemma 1.

The trick to produce such an upper bound is to redefine the problem as finding an upper
bound on the sum of weighted kernels in a D − 1 dimensional domain. This D − 1 dimen-
sional domain is an upper bound on the amount the posterior mean can increase along a given
dimension (fixing the D − 1 others). To find this upper bound over the sum of such weighted
EQ kernels we use Lemma 2, which depends on Lemmas 3–7.

Finally, to further tighten the bound to a useful level we apply Lemma 9 which allows us to
slice the domain and compute tighter upper bounds for the contribution from each dimension.

3.2.2 Upper bounding the posterior mean perturbation

The algorithm below computes an upper bound on the increase in the posterior mean due to an
increase along one dimension d̂ . To find the increase in the opposite direction one can simply
negate the training point values and rerun the algorithm (Lemma 7).

We are given training inputs, X ; training outputs, y ; the EQ kernel, k(⋅, ⋅) ; and the weights,
� , computed from the product of the precision matrix and the training outputs, � = K−1y . We

Machine Learning

1 3

can compute the posterior mean, for Gaussian process regression (with no likelihood variance)
using (3), reproduced here,

Where xi is the location of training point i (a row in X). We also define x†
i
 as the vector xi

but with the d̂ dimension removed:

Similarly x†
∗
 is the vector x∗ with the d̂ dimension removed:

We define a function m(⋅, ⋅, ⋅) that equals the largest increase in the latent mean moving
along dimension d̂ (constrained between a and b) for a given position in the remaining
dimensions, specified by the D − 1 dimensional vector x†

∗
:

Where we use a test point pair (
▵

x∗ and
▿

x∗) in which only one dimension, d̂ , differs. So, mak-
ing the other dimensions all equal, 0 ≤ [

▵

x∗]j = [
▿

x∗]j = [x∗]j = [x†
∗
]l ≤ 1, ∀j ≠ d̂ , where the

element of the x∗† vector is l = j if j < d̂ , otherwise l = j − 1 . The a and b limits on the d̂
dimension apply to the test point pair: 0 ≤ a ≤ b ≤ 1 ; a ≤ [

▿

x∗]d̂ ≤ b and a ≤ [
▵

x∗]d̂ ≤ b.

Lemma 1 (Bounding posterior mean change) The largest increase in the latent mean as
defined above can be bounded by a weighted sum of kernels,

where k(⋅, ⋅) is the EQ-kernel (with same hyperparameters as previously) and

𝛽i = 𝛼i

(
k

(
[xi]d̂, [

▵(i)
x∗]d̂

)
− k

([
xi
]
d̂
, [

▿(i)
x∗]d̂

))
 . Here [

▿(i)
x∗]d̂ and [

▵(i)
x∗]d̂ are the positions along

the d̂ axis that maximise �i , for each training point, i. This depends on the the training
point’s location and sign,

(4)f̄ (x∗) =

N∑
i=1

𝛼ik(xi, x∗).

[xi
†]j =

{
[xi]j, if j < d̂

[xi]j+1, if j ≥ d̂.

[x∗
†]j =

{
[x∗]j, if j < d̂

[x∗]j+1, if j ≥ d̂.

(5)m(x∗
†, a, b) = max

a≤[
▿

x∗]d̂≤b; a≤[
▵

x∗]d̂≤b

[
f̄ (

▵

x∗) − f̄ (
▿

x∗)
]
.

(6)m
(
x†
∗
, a, b

)
≤

N∑
i=1

�ik
(
x
†

i
, x†

∗

)

(7)[
▵(i)
x∗]d̂ =

⎧
⎪⎪⎨⎪⎪⎩

[xi]d̂ if a < [xi]d̂ < b and 𝛼i ≥ 0

a if [xi]d̂ ≤ a and 𝛼i ≥ 0

b if [xi]d̂ ≥ b and 𝛼i ≥ 0

a if [xi]d̂ ≥ (a + b)∕2 and 𝛼i < 0

b if [xi]d̂ < (a + b)∕2 and 𝛼i < 0.

 Machine Learning

1 3

As explained, [
▿(i)
x∗]d̂ and [

▵(i)
x∗]d̂ are simply the positions along the d̂ axis that maximise

�i , for each i. Note that we never use the rest of the
▵(i)
x∗ or

▿(i)
x∗ vectors in this proof, but we

maintain the vector notation for consistency.

Proof Substitute (3) into (5),

We can upper bound this by noting (e.g. using Jensen’s inequality) that in general,
max�

�∑N

i=1
fi(�)

�
≤
∑N

i=1
[max� fi(�)] . To this end we replace the pair of locations

▵

x∗ and
▿

x∗ with specific pairs of locations,
▵(i)
x∗ and

▿(i)
x∗ which maximise each element of the summa-

tion, associated with each training point, to produce an upperbound;

The EQ kernel factorises across dimensions, as the exponent is the sum across dimensions.
Specifically,

and

Substituting these two expressions into (10) and rearranging, noting that k(x†
i
, x†

∗
) remains

constant with respect to [
▿(i)
x∗]d̂ and [

▵(i)
x∗]d̂ , we obtain

The value of [
▵(i)
x∗]d̂ which maximises the max term can be determined by considering

the condition of the other two variables within the max operation: the value of �i and the
value of [xi]d̂ . If �i ≥ 0 then the expression is maximised if the (one-dimensional) kernel

(8)[
▿(i)
�∗]d̂ =

⎧
⎪⎪⎨⎪⎪⎩

[xi]d̂ if a < [xi]d̂ < b and 𝛼i < 0

a if [xi]d̂ ≤ a and 𝛼i < 0

b if [xi]d̂ ≥ b and 𝛼i < 0

a if [xi]d̂ ≥ (a + b)∕2 and 𝛼i ≥ 0

b if [xi]d̂ < (a + b)∕2 and 𝛼i ≥ 0.

(9)m(x∗
†, a, b) = max

a≤[
▿

x∗]d̂≤b; a≤[
▵

x∗]d̂≤b

[
N∑
i=1

𝛼ik
(
xi,

▵

x∗

)
−

N∑
i=1

𝛼ik
(
xi,

▿

x∗

)]
.

(10)m
(
x∗

†, a, b
)
≤

N∑
i=1

max
a≤[

▵(i)
x∗]d̂≤b

[
𝛼ik

(
xi,

▵(i)
x∗

)]
−

N∑
i=1

min
a≤[

▿(i)
x∗]d̂≤b

[
𝛼ik

(
xi,

▿(i)
x∗

)]
.

k(xi,
▵(i)
x∗) = k

(
[xi]d̂, [

▵(i)
x∗]d̂

)
× k

(
x
†

i
, x†

∗

)

k(xi,
▿(i)
x∗) = k

(
[xi]d̂, [

▿(i)
x∗]d̂

)
× k

(
x
†

i
, x†

∗

)
.

(11)

m
(
x∗

†, a, b
)
≤

N∑
i=1

k
(
x
†

i
, x†

∗

)
×

[
max

a≤[
▵(i)
x∗]d̂≤b

[
𝛼ik

(
[xi]d̂, [

▵(i)
x∗]d̂

)]
− min

a≤[
▿(i)
x∗]d̂≤b

[
𝛼ik

(
[xi]d̂, [

▿(i)
x∗]d̂

)]]
.

Machine Learning

1 3

is maximised. The EQ kernel increases monotonically and symmetrically as the distance
between the two inputs reduces. Hence the maximum will occur when |[xi]d̂ − [

▵(i)
x∗]d̂| is

minimised. (7) and (8) document the locations of the maxima and minima for all configura-
tions. For example, if [xi]d̂ < a then this distance is minimised when [

▵(i)
x∗]d̂ = a , if [xi]d̂ > b

this distance is minimised when [
▵(i)
x∗]d̂ = b and if a ≤ [xi]d̂ ≤ b the distance is minimised

if [
▵(i)
x∗]d̂ = [xi]d̂ . If �i is negative then the expression is maximised if the kernel term is

as small as possible. Thus |[xi]d̂ − [
▵(i)
x∗]d̂| should be maximised. This occurs by placing

[
▵(i)
x∗]d̂ on either a or b depending on which is furthest from [xi]d̂ which can easily be deter-

mined by comparing [xi]d̂ with the midpoint between a and b. A similar (but negated) logic
applies to the min term. Figure 2 shows some of the configurations of training point loca-
tion and value to demonstrate where the expression is maximised and minimised.

Once these values have been chosen, we can rewrite (11) without the min and max oper-
ations and with �i factored out.

 ◻

3.2.3 Bounding a weighted sum of EQ kernels

Lemma 1 defined an upper bound on the perturbation modifying one dimension can cause to the
posterior mean, for any start point in the domain. The upper bound is in the form of a weighted
sum of EQ kernels, which we need to upper bound instead. Research exists looking at heuristics
and methods for approximating this sum (Carreira-Perpinan 2000; Pulkkinen et al., 2013) but we
are interested in finding a strict bound on the peak. Specific to our problem, each EQ has the same,
isotropic covariance, but the contribution weights for the EQs can be negative.

We propose below that one can compute such an upper bound by sampling from the
domain on a regular grid, taking the maximum value and adding a term to account for the
true maximum point lying between grid points.

For a low value of D this can be done with a simple grid search over the D − 1 dimen-
sional domain, taking into account that the actual maximum will lie between grid points.

(12)m
(
x∗

†, a, b
)
≤

N∑
i=1

k
(
x
†

i
, x†

∗

)
× 𝛼i

(
k

(
[xi]d̂, [

▵(i)
x∗]d̂

)
− k

(
[xi]d̂, [

▿(i)
x∗]d̂

))
.

a b c

Fig. 2 Examples of three configurations of the training point’s location ([x
i
]
d̂
) and value (�

i
), to illustrate where

�
i
k(x

i
,
▵

x∗) is maximised. One can easily see the equivalent locations which minimise the expression. Here we have
chosen a = 0 and b = 1 . a If 0 ≤ [x

i
]
d̂
≤ 1 and a

i
≥ 0, �

i
k(x

i
,
▵

x∗) is maximised if [
▵

x∗]d̂ = [x
i
]
d̂
 . b If [x

i
]
d̂
≥ 1 and

a
i
≥ 0, �

i
k(x

i
,
▵

x∗) is maximised if [
▵

x∗]d̂ = 1 . c If [x
i
]
d̂
≥ 1

2
 and a

i
≤ 0, �

i
k(x

i
,
▵

x∗) is maximised if [
▵

x∗]d̂ = 0

 Machine Learning

1 3

For high dimensions this is intractable, so we project the training points to a low dimen-
sional manifold using the principle components (from PCA), in Lemma 3. This holds only
if the weights are non-negative. One could force the weights to be non-negative by simply
setting the negative weights to zero, but this leads to a very loose bound. In Sect. 3.2.5, we
improve on this by iteratively pairing each negative weighted kernel to its nearest positive
counterpart and replace both with a new kernel that upper bounds their sum.

Lemma 2 (Grid bounded sum of positive-weighted EQ kernels)

Consider a positive-weighted sum of EQ kernels, with lengthscale, l, i.e.
k
(
x1, x2

)
= exp

[
−|x1 − x2|22∕(2l2)

]
 , centred at points {xi}Ni=1 with associated weights

{wi}
N
i=1

 , wi ≥ 0 ∀i ∈ N . For a given point p , the weighted sum is
∑N

i=1
wik(xi, p) . This sum

is sampled on a regular, square, d-dimensional grid of points (with a spacing of s) fully
spanning a hyperrectangular part, D , of the domain. If � is the largest observed value at a
grid vertex, then within the domain of the grid, D , the sum is bounded by ∑N

i=1
wik(xi, p) ≤ � ∕ exp

�
−

s2

8l2
d
�
∀p ∈ D.

Proof To upper bound the function’s maximum we place the EQ kernels to maximise the ratio
between the true maximum and the maximum evaluated at the grid points. Using Lemmas 5 and
6 we note that this occurs when all the kernels are colocated at the same point, and placed as far
from the point being compared to as possible. We can extend the two lemmas to include length-
scale l in the kernels w.l.o.g. as one could scale the domain to make l = 1.

Consider placing p in D : Placing the point equidistant from the nearest grid vertices, the
largest L2 distance possible to p , from any grid point (in the square grid, with spacing s) is �∑d

i=1
(s∕2)2 =

√
d(s∕2)2 = s

√
d∕2 . We can then compute the value of the EQ at this dis-

tance from its maximum, exp
�
−
�
s
√
d∕2

�2

∕
�
2l2

��
 , and compute the ratio. This is the

maximum ratio possible, between the maximum grid value and the true maximum. We
thus multiply the actual measured value by this ratio, to give us an upper bound. ◻

The above proof relied on the maximum difference between a grid point and the true
maximum occurring when all kernels are co-located. We show this is true for identical
positive kernels in Lemma 5 then elaborate for the positive weighted kernels on a grid in
Lemma 6. These two lemmas are in Sect. 3.2.6.

3.2.4 Higher dimensions

Lemma 2 specifies how we can upper bound the sum of EQs in the the case of the low-(d)-dimen-
sional input (we use d = D − 1) with positive only weights, which we can exhaustively search
with an evenly s-spaced grid. To summarise, we can evaluate the sum at each grid point but the
actual peak is almost certain to lie between grid points. The furthest distance from a grid point is
1

2
s
√
d . The worst case is that this consists of a Gaussian centred at that furthest point. Thus we

assume this worst case contingency and assume that the actual peak is equal to the maximum grid
value, � , divided by exp

(
−

s2

8l2
d
)
 , where l is the lengthscale of the kernel.

For higher dimensions the grid search becomes impractical, thus we apply Lemma 3
which allows us to find a (looser) bound by using a projection to lower dimensions.

Machine Learning

1 3

Lemma 3 (Bounding the sum of a mixture of EQs in higher dimensions) Consider per-
forming PCA on the d-dimensional, N locations of the EQs, {xi}Ni=1 , discarding all but
the k principle components producing a series of equivalent low-rank vectors {x�

i
}N
i=1

 and
then applying the grid upper bound algorithm (from Lemma 2) to the locations in the low-
dimensional manifold. Any bound on the sum of inputs for the lower-dimensional manifold
will hold for the full domain, assuming positive weights. For an illustration, see Fig. 3.

Proof The proof is in two parts, first we show how the distance between pairs of points
will never become larger in the low dimensional PCA manifold. Second we show that this
means the upper bound on the low dimensional manifold applies to the full domain.

Consider how the distance between two points will differ in the k-(low)-dimensional
manifold vs the (d-dimensional) full-domain. We can factorise the PCA transformation
matrix, W , into a rotation, R , and a simple dimension removal matrix, B . Without loss of
generality we can chose the rotation to ensure that it is the first 1..k dimensions which are
preserved (i.e. so B is a d × k rectangular matrix, consisting of the k × k identity matrix in
the top sub matrix and zeros in the bottom sub matrix). Consider any pair of points, xa and

Fig. 3 Upper left, contour plot of the sum of three, two-dimensional EQs. Upper right, the values of the
sum along the diagonal, one-dimensional line. Lower left, the effect on the contour plot if the three points
are placed on the diagonal line to illustrate the effect of a principle component approximation. Lower right,
the sum along the diagonal line. Note that this new function is never less than the function for when the EQ
points are spaced in the full two-dimensional domain

 Machine Learning

1 3

xb . The distance between any pair of points is invariant to the rotation. The distance
between them in the full domain can be written ��xaR − xbR��2 =

�∑d

j=1

�
(xa − xb)R

�2
(j)

and in the low-dimensional hyperplane ��(xa − xb)RB��2 =
�∑k

j=1
[(xa − xb)R]

2
(j)

 . Where
the B can be removed from the RHS as it is the identity for j ≤ k and the [(xa − xb)R]

2
(j)

terms then equal zero for j > k , so are not included. We note that the terms in the two
sums, [(xa − xb)R]

2
(j)
≥ 0 as they consist of the square of real numbers. So the sum over the

k dimensions will necessarily be no greater than than the sum over the d ≥ k dimensions.
I.e. the distance between the two points will never be greater in the low-dimensional
manifold.

We next note that the EQ decreases monotonically with increasing distance. For any
location x∗ the distance to any training point xi will not increase when transformed to the
k-dimensional manifold, and thus the associated EQ contribution to the (positive) weighted
sum at x∗ will not be reduced. As this is true for all test points and over all training points, we
can see that the maximum of the weighted sum of EQs can not get smaller, when transformed
to the k-dimensional manifold. Thus if we find an upper bound on the sum of the k-dimen-
sional domain this will also hold for the full domain. There are no guarantees that the bound
will be a close one, although, if the k principle components used capture sufficient variance in
the data the residuals will not contribute as much to the distance between points. ◻

3.2.5 Negative weights

We finally need to consider the negatively weighted EQ bases. One could set these to zero,
and accept a looser bound. However, we found for this application there was a more effi-
cient way to treat them.

A function f(x) equal to the sum of two (positive and negative weighted) Gaussians is
upper bounded by a single EQ, placed at the peak of f(x), with a height equal to the height
of the peak.

Lemma 4 (Combining a negative EQ kernel and a positive EQ kernel in 1d) Consider a
one dimensional function f(x) equal to the sum of a positively weighted and a negatively
weighted EQ (of equal lengthscale), w.l.o.g. placed at the origin and at a > 0 , respectively.
(Note that given these equal lengthscales, a can be scaled so that their lengthscales equal
one).

We define the maximum of f(x) to be y0 , at x = x0 . This lemma states that f(x) is upper

bounded by
▵

f (x) , which consists of a single positive EQ, located at x0 and with weight y0 .
Note that we have negated w, so the weight of the negative EQ kernel is −w < 0 . Figure 4
illustrates this combination of kernels and bound.

Proof We proceed as follows. We first note that the gradient of f(x) should be zero (with
respect to x) at the maximum (where x = x0),

(13)f (x) = e−x
2

− we−(x−a)
2

≤ y0e
−(x−x0)

2

Machine Learning

1 3

So,

This gives us an expression for w,

We note that y0 is simply (13) evaluated at x0 , so y0 = e−x
2
0 − we−(x0−a)

2.
Substituting in our expressions for w and y0 into inequality (13) we have,

and multiplying out the bracket,

Dividing both sides by x0

x0−a
e−x

2 (this is always positive), and cancelling some exponential
terms, we are left with;

(14)
df

dx
= −2xe−x

2

+ 2(x − a)we−(x−a)
2

= 0.

(15)2x0e
−x2

0 = 2(x0 − a)we−(x0−a)
2

.

(16)w =
x0

x0 − a
ea

2−2x0a.

(17)

e−x
2

−
x0

x0 − a
ea

2−2x0ae−(x−a)
2

≤
[
e−x

2
0 −

x0

x0 − a
ea

2−2x0ae−(x0−a)
2

]
e−(x−x0)

2

(18)
e−x

2

−
x0

x0 − a
ea

2−2x0a−x
2+2ax−a2

≤ e−x
2
0
−x2+2xx0−x

2
0 −

x0

x0 − a
ea

2−2x0a−x
2
0
+2x0a−a

2−x2+2xx0−x
2
0 .

Fig. 4 A single EQ (dashed black line) placed and scaled to the maximum of the sum of positive (red line)
and negative (green line) EQs bounds their sum (blue line) (Color figure online)

 Machine Learning

1 3

Which finally results in,

We define a function g(x) which is simply the result of subtracting the right hand side of
the inequality from the left,

We wish to show that g(x) is never greater than zero. To do this we shall show that (a) it
has only two turning points (at x0 and a); (b) g(x) only has one (finite) point where it equals
zero and that (c) this location is at x0 ; (d) the turning point at x0 is a maximum; (e) at this
maximum g(x) is non-positive. The conclusion of these is that, as x0 is the only location
where g(x) = 0 , and the function must be negative everywhere else: g(x) ≤ 0.

First we note that g(x)’s derivative with respect to x has only two zero-crossing points
(for finite x). The gradient can be written as dg

dx
= −2ae−2ax0e2xa + 2ae−2x

2
0e2xx0 . This expres-

sion equals zero (for non-zero a) in two cases. One at x = a and one where x = x0 . The
function g(x) only equals zero for one (finite) value of x. Setting the expression for g(x) = 0
in (21), then rearranging and solving for x gives us x = x0 . Thus the turning point at x = x0
is the only (finite) location where g(x) = 0 , too. We can disregard the other turning point
and must now simply show that g(x) is at a maximum at x = x0 (and thus g(x) ≤ g(x0) for
all x). We do this by differentiating again, d

2g

dx2
= −4a2e−2ax0e2xa + 4ax0e

−2x2
0e2xx0 . Setting

x = x0 means d
2g

dx2
= 4a(x0 − a) . This expression is never positive (as x0 is never positive and

a is non-negative). So this is a maximum location. We note again that using (21) we find
that g(x0) = 0 . As this is a maximum and the only location where g(x) = 0 we can state that
g(x) ≤ 0 for all finite values of x. Thus our original inequality (13) holds too, i.e. an EQ
function of scale y0 at location x0 is never less than f(x). ◻

Remark 1 (Combining a negative and a positive kernel in higher dimensions) We can
extend this to higher dimensions by considering this one dimension as lying on the line
between two EQ centres in a high dimensional domain. Every parallel line in the domain

has the same pair of summed functions, but scaled by some constant w: wf(x) and w
▵

f (x) . As
the two functions are scaled equally the same bounds will apply.

3.2.6 Bound on true maximum using maximum from grid vertices

The two results in this Section are used by other proofs, and are relatively ‘self-evident’.
If we want to bound the maximum of a sum of positive EQ kernels, we might evaluate
the sum on a set of vertices in a grid, and then scale the maximum we find to bound the
maximum we know probably lies somewhere between grid vertices - getting a bound by

(19)

x0 − a

x0
− e−2x0a+2ax

≤
(
x0 − a

x0
− 1

)
e−2x

2
0
+2xx0

(20)1 −
a

x0
− e2xa−2x0a ≤ −

a

x0
e2xx0−2x

2
0 .

(21)g(x) = 1 −
a

x0
− e2xa−2x0a +

a

x0
e2xx0−2x

2
0 ≤ 0.

Machine Learning

1 3

assuming a worst case that the maximum is as large as possible, given the largest sums
we found on the vertices. Lemmas 5 and 6 simply show that the worst case is when the
sum consists of all the kernels at the same location, at a point as far from a vertex as
possible.

Lemma 5 (Kernel placement to maximise peak to test point ratio)Consider function
S(x) =

∑N

i=1
e−(x−ai)

2 , the sum of positive, one dimensional EQ kernels, with equal width
and height, centred at {ai}Ni=1 . The ratio of the maximum of this function to any other point
is maximised if all kernels are placed at the maximum.

Proof We assume w.l.o.g. that the maximum is at 0. Given that the gradient of S(x) at x is,
dS(x)

dx
= −2

∑N

i=1
(x − ai)e

−(x−ai)
2 , we note that at x = 0 , where the maximum is,

We wish to show that the ratio of S(x)/S(0) at any x, is smallest if all the kernels are placed
at 0 (i.e. that all ai = 0). This means showing that,

The lhs is S(x)/S(0) for arbitrary ai . The rhs is S(x)/S(0) if all ai = 0 . We note the rhs can be
simplified, leaving,

Multiplying out the numerator’s exponential and dividing through by e−x2,

To show this is true, we apply Jensen’s inequality, noting that the exponential function is
convex and the exponential terms are all positive,

The last expression’s numerator’s summation equals zero, from (22), Thus the inequality
becomes,

 ◻

(22)
N∑
i=1

aie
−a2

i = 0.

(23)

∑N

i=1
e−(x−ai)

2

∑N

i=1
e−a

2
i

≥

∑N

i=1
e−x

2

∑N

i=1
e0

2
.

(24)

∑N

i=1
e−(x−ai)

2

∑N

i=1
e−a

2
i

≥ e−x
2

.

(25)

∑N

i=1
e2xai e−a

2
i

∑N

i=1
e−a

2
i

≥ 1.

(26)

∑N

i=1
e2xai e−a

2
i

∑N

i=1
e−a

2
i

≥ exp

�∑N

i=1
2xaie

−a2
i

∑N

i=1
e−a

2
i

�
= exp

�
2x

∑N

i=1
aie

−a2
i

∑N

i=1
e−a

2
i

�

(27)

∑N

i=1
e2xai e−a

2
i

∑N

i=1
e−a

2
i

≥ exp(0) = 1.

 Machine Learning

1 3

Lemma 6 (Placing all EQ kernels at same point as far from grid vertices as possible, max-
imises the ratio between the true maximum and the maximum at any grid vertex)Consider
a function f (x) equal to the sum of N, d-dimensional EQ-kernels, with positive, rational,
weights, {wi}

N
i=1

 . A series of regularly spaced grid points G span the domain D . The ratio
of the function’s true maximum to its maximum at grid vertices, maxx∈D f (x)∕maxx∈G f (x) ,
is maximised by placing all the kernel centres, {ai}Ni=1 at a point p , that has the greatest
distance from the grid vertices.

Proof The function evaluated along a straight line drawn through the sum of d-dimensional
EQ-kernels, will equal the sum of 1-dimensional EQ-kernels, with new weights, due to the
property of Gaussian conditioning. If one finds the greatest common measure (GCM) of
these weights, one can construct the sum using a new sum of identical kernels, dividing the
sum by the GCM. From (5) we know that for any such line, passing through the true maxi-
mum, the optimum placement of the EQ kernels is at the maximum: for the ratio of the
maximum to any other point to be maximised. As this applies to all lines through the maxi-
mum and to all points on those lines, the kernels must all be placed at the maximum (in all
dimensions) to maximise the ratio of the maximum to any point. One can write the sum of
these EQ kernels as a single EQ at the maximum weighted by the sum of weights

∑N

i=1
wi .

We finally note that, as the standard EQ kernel is monotonic and isotropic, the largest ratio
of its maximum at p to a point x will occur when |p − x|2 is maximised. Thus one should
place the maximum at a point furthest from any grid point. ◻

3.2.7 Opposite direction

The entire algorithm will also need rerunning with the training point values negated, to
account for paths moving in the negative direction along d̂.

Lemma 7 (Reverse direction) Negating the training point values and applying Lemma 1 is
equivalent to applying the Lemma but for travelling in a negative direction along dimen-
sion d̂.

Proof We simply note that if we can bound some change in a function f (a) − f (b) < c in
which a > b , then to upper bound the change in the opposite direction f (b) − f (a) < d one
can negate the two functions, (−f (b)) − (−f (a)) = f (a) − f (b) < d . This negation is equiva-
lent to negating the training output values, as these are combined in a linear weighted sum:
� = K−1y . ◻

3.2.8 Lower bound on number of dimensions

So far we have been finding a bound on the largest change a single perturbation (in dimen-
sion d̂) can cause to the posterior mean of a GP. We are actually interested in the number
of inputs that need to change to cause the posterior mean to change more that a threshold, t.
Lemma 8 cumulatively sums the single dimensional perturbation bounds to find how many
need to be changed to reach the threshold.

Lemma 8 (Lower bound on the number of dimensions that need perturbing to cause the
posterior mean to change more than t) We wish to find a lower bound, L, on the number of
dimensions that will need to be perturbed to cause a change in the posterior mean more

Machine Learning

1 3

than a threshold, t. From Lemma 1, for N, d-dimensional training inputs {xi}Ni=1 and outputs
{yi}

N
i=1

 and EQ kernel k(⋅, ⋅) , we can find values vd̂ =
∑N

i=1
𝛽ik(x

†

i
, x†

∗
) which upper bound

the largest change perturbing each dimension, d̂ , can cause to the posterior mean. We con-
sider the sequence constructed of cumulatively summed bounds, presorted in descending
order, such that the jth element of the sequence equals

∑j

i=1
vd̂i

 , where vd̂i ≥ vd̂i+1
 . The lower

bound is simply the index of the first element of the sequence less than the threshold, t. I.e.
the j in which

∑j

i=1
vd̂i

< t.

Proof The upper bound on the change in the posterior due to a perturbation in any given
dimension d̂ is vd̂ =

∑N

i=1
𝛽ik(x

†

i
, x†

∗
) . If a series of perturbations are made in dimensions

(d̂1, ..d̂L) , with associated upper bounds vd̂1 , .., vd̂L , the sum of the upper bounds,
∑L

i=1
vd̂i

 ,
will be a valid bound on the total perturbation of those selected dimensions. To see this,
note that each upper bound value is for a perturbation starting at any location. Thus the
bound for d̂i is still valid, regardless what previous perturbations have been applied. Finally,
we need to find a lower bound on the number of dimensions that need to be perturbed to
change the posterior mean beyond a threshold amount. Given a list of upper bounds for all
the dimensions, {vd}Dd=1 , maximising the sum of L items would be achieved by selecting
the largest items. Hence we cumulatively sum the descended sorted bounds and find how
many are needed to exceed the threshold. I.e., find the smallest L which leads to a sum ∑L

i=1
vd̂i

≥ t . ◻

Remark 2 The lower bound L, on the number of dimensions one needs to perturb, would be
tighter if one explored two or more dimensions, by also slicing the domain into hyperrec-
tangles along multiple dimensions. This will give a tighter bound, but at the cost of expo-
nential computation, with

(
d

S

)
 combinations, which for small t is approximately O((dS2)t) .

Hence, we have used the looser bound approach described above.

3.3 Improvements to the AB algorithm

3.3.1 Slicing the Domain

This approach gives a very loose bound, as it combines the largest possible contribution
of each term in (3) without taking into account that the increase associated with each one
occurs at different locations along the d̂ dimension. This was a necessary sacrifice to con-
vert the problem back to a simple sum of weighted EQ kernels. To give an example of
how this leads to a very loose bound, consider the sum of a line of four kernels (all with
�i = +1) spaced with little overlap along the d̂ dimension (Fig. 5). The largest possible
increase in the posterior, when moving along d̂ , would be approximately 1 (e.g. point A to
point B). However, the algorithm above would give an upper bound of 4 on that increase,
as their location in the d̂ direction has been lost in (6). It effectively will add together the
largest increase each kernel can contribute (which is 1 for each). To tighten the bound
we propose that one can slice the original domain orthogonal to d̂ into S smaller hyper-
rectangle subdomains. The path between the initial and adversarial test point (travelling
along d̂) may start, end, cross or be entirely within each subdomain. We can compute �(j)

i

for each xi for each subdomain, j: 𝛽(j)
i

= k([
▵

x∗]d̂, [xi]d̂) − k([
▿

x∗]d̂, [xi]d̂), then sum them,
�i = �i

∑S

j=1
�
(j)

i
 . For the case of starting the path in a given subdomain, we constrain [

▵

x∗]d̂

 Machine Learning

1 3

to equal the upper edge of the hyperrectangle. If we are ending in the subdomain, we set
[
▿

x∗]d̂ equal to the lower edge. If we are crossing the entire subdomain, we set both [
▿

x∗]d̂ and
[
▵

x∗]d̂ to the lower and upper edges respectively. Finally, if the path is entirely within the
subdomain then [

▿

x∗]d̂ and [
▵

x∗]d̂ are unconstrained within the subdomain. We must consider
all combinations of consecutive subdomains and perform the bound calculation separately
for each. The more slices the tighter the bound will be, but at the cost of needing to bound
quadratically more combinations.

To illustrate, we return to the example in Fig. 5. We will first consider a bound on the
increase in the posterior mean when moving from the first subdomain, 1, across the whole
of subdomain 2 to the last subdomain, 3. For each of these subdomains we need to com-
pute the contribution of all training points. As an example, we start with the first training
point, x1 . For subdomain j = 1 (the starting subdomain) the path must end on the right
edge of the subdomain’s hyperrectangle c2 , so [

▵

x∗]d̂ = c2 , where k
(
[
▵

x∗]d̂, [x1]d̂

)
≈ 0 . The

[
▿

x∗]d̂ is placed to minimise k
(
[
▿

x∗]d̂, [xi]d̂

)
 , which happens also to lie at c2 . So �(1)

1
= 0 .

Similar calculations can be made for the other subdomains, leading to �1 ≈ 0 . To explain,
remember we are bounding the increase in the posterior for a path that starts in the left
subdomain and ends in the right subdomain. The contribution from x1 will be small. Run-
ning the calculation for all training points, one finds that just x3 and x4 contribute signifi-
cantly and lead to an upper bound of approximately m(x∗) < 1.5 , considerably better than
the earlier bound of 4. The subdomain approach tightens the bound substantially. This is a
bound on the path being in subdomains: {1,2,3}. We will need to perform the same calcu-
lation again, to test all combinations of contiguous subdomains ({1},{2},{3},{1,2},{2,3},{
1,2,3}).

Lemma 9 (Slicing the domain) If we divide the domain, orthogonal to dimension d̂ , into
several smaller hyperrectangles, then the bound is still valid by summing the appropriate
contributions from these hyperrectangular subdomains.

Proof From Lemma 1 we bound the largest increase in the latent mean with,

(28)m
(
x†
∗
, a, b

)
≤

N∑
i=1

�ik
(
x
†

i
, x†

∗

)

Fig. 5 Example of four kernels in three subdomains. Circles indicate 2 standard deviations

Machine Learning

1 3

where 𝛽i = 𝛼i

(
k

(
[xi]d̂, [

▵(i)
x∗]d̂

)
− k

(
[xi]d̂, [

▿(i)
x∗]d̂

))
 . If the domain were divided, orthogo-

nal to dimension d̂ , into several smaller hyperrectangles, at a = c1 < c2 < ... < cS = b the
perturbation that leads to the maximum change in the posterior will start, end and cross a
contiguous sequence of these new hyperrectanglar subdomains. The bound in (28) still
holds, but we can compute �i more efficiently. Let us assume that the perturbation which
causes the largest change travels from subdomain D(1) to subdomain D(S) , where D(1) may
or may not equal D(S) . We note that one can write the sum as,

where simply the first kernel from each term cancels the second kernel from the following
term. We define �

(j)

i
 equal to each term, times �i . For example

𝛽
(1)

i
= 𝛼i

(
k
(
[xi]d̂, c1

)
− k

(
[xi]d̂, [

▿(i)
x∗]d̂

))
 such that we can write,

Although this has not changed the bound analytically, it has the effect of constraining the
paths that can be taken to those from D(1) to D(S) , which means, practically, the bound can
be tighter. ◻

Remark 3 As we do not know the (contiguous) sequence of one or more subdomains that
the maximum perturbing path takes we must test all of them. To do this efficiently, we
precompute the values of �(j)

i
 for the four conditions, that the path,

• Starts in that subdomain, i.e. �(j,→)

i

• Starts and ends in that subdomain, i.e. �(j,−)
i

• Ends in that subdomain, i.e. �(j,←)

i

• Crosses the entire subdomain, i.e. �(j,↔)

i

To compute the four conditions we note that maxima and minima occur either at the
boundaries of the domain (cj+1 and cj) or where [xi]d̂ = [x∗]d̂ . So we precompute the value

at the start
s
v
(j)

i
= 𝛼ik([xi]d̂, cj) , end

e
v
(j)

i
= 𝛼ik([xi]d̂, cj+1) of each subdomain and the middle

of the kernel
m
v
(j)

i
= 𝛼i

(
k([xi]d̂, [xi]d̂

)
 (iff it lies in the subdomain, otherwise this is assigned

a ‘NaN’). The four expressions above become (with any ‘NaN’ terms being ignored):

• Starts in the subdomain, �(j,→)

i
= max

(
e
v
(j)

i
−

s
v
(j)

i
,
e
v
(j)

i
−

m
v
(j)

i
, 0

)
.

(29)

𝛽i = 𝛼i

((
k
(
[xi]d̂, c1

)
− k

(
[xi]d̂, [

▿(i)
x∗]d̂

))

+
(
k
(
[xi]d̂, c2

)
− k

(
[xi]d̂, c1

))
+ ..

+

(
k

(
[xi]d̂, [

▵(i)
x∗]d̂

)
− k

(
[xi]d̂, cS−1

)))

(30)m
(
x†
∗
, a, b

)
≤

N∑
i=1

�ik
(
x
†

i
, x†

∗

)
=

N∑
i=1

(
S∑
j=1

�
(j)

i

)
k
(
x
†

i
, x†

∗

)

 Machine Learning

1 3

• Starts and ends in that subdomain, �(j,−)
i

= max

(
m
v
(j)

i
−

s
v
(j)

i
,
e
v
(j)

i
−

m
v
(j)

i
,
e
v
(j)

i
−

s
v
(j)

i
, 0

)
.

• Ends in that subdomain, �(j,←)

i
= max

(
m
v
(j)

i
−

s
v
(j)

i
,
e
v
(j)

i
−

s
v
(j)

i
, 0

)
.

• Crosses the subdomain, �(j,↔)

i
=

e
v
(j)

i
−

s
v
(j)

i
.

We then add up the appropriate sequence, for example: �i = �
(2,→)

i
+ �

(3,↔)

i
+ �

(4,←)

i
 and use the

earlier tools as before to bound the sum of weighted EQ kernels, m(x†
∗
) ≤

∑N

i=1
�ik

�
x
†

i
, x†

∗

�
.

3.3.2 Other Kernels

The algorithm and proofs all depend on the Gaussian process using the exponentiated
quadratic (EQ) kernel. In particular the algorithm depends on the ability to write the
expressions for the maximum and minimum over the D − 1 dimensions as the product of,
k
(
[
▵

x∗]d̂, [xi]d̂

)
× k

(
x†
∗
, x

†

i

)
. Most other stationary kernels (for example the exponential) do

not have this property.
To use AB mechanism for other kernels we propose that one can approximate an

alternative, stationary, isotropic kernel kt(r) with a weighted sum of EQ kernels (with
a variety of lengthscales and weights).1 To ensure we maintain a bound we gener-
ate two lists of weights, one that leads to a sum that is greater than our target kernel,
kt(r) ≤

∑Q

q=1

▵

wqk(r;lq) , and one that leads to a sum that is less, kt(r) ≥
∑Q

q=1

▿

wqk(r;lq).
If we want to approximate a kernel such as the exponential, with a sum of EQs, we can

only do so up to a finite r as the tails of the exponential fall away slower than an EQs. So
we state that this holds if r is no more than the length of the longest path |p| possible in the
domain, i.e.;

For all 0 ≤ r ≤ |p|,

where
∨
wq and

∧
wq have been chosen from

▵

wq and
▿

wq to minimise and maximise each term
(so need to be chosen, accounting for the sign of �i and k, we will return to this later).

To see how we can use this approximation we return to (9), substituting in our new defi-
nitions, where wq and lq are the weights and lengthscales of the Q contributing EQ kernels.

(31)𝛼ikt(r;l) <

Q∑
q=1

𝛼i ×
∧
wqk(r;l × lq)

(32)𝛼ikt(r;l) >

Q∑
q=1

𝛼i ×
∨
wqk(r;l × lq),

(33)

m(x∗
†, a, b) = max

a ≤ [x∗]d̂ ≤ b

a ≤ [
▵

x∗]d̂ ≤ b

[
N∑
i=1

𝛼i

Q∑
q=1

∧
wqk

(
xi,

▵

x∗;lq

)
−

N∑
i=1

𝛼i

Q∑
q=1

∨
wqk

(
xi,

▿

x∗;lq

)]
.

1 For isotropic, stationary kernel k(r) ≡ k(x, x�) where r = |x − x
�|
2
.

Machine Learning

1 3

∨
wq and

∧
wq again need to be chosen from the two lists to minimise and maximise each term

appropriately. Moving the sum over Q outside, and rearranging (using the Jensen-derived
inequality max�

�∑N

i=1
fi(�)

�
≤
∑N

i=1
[max� fi(�)] again), we have a similar form to (12),

We again need to compute the four possible starting/ending combinations for each subdo-
main, as described in Remark 3, for example: If the path just starts in that subdomain

𝛽
(j,→)

i
= 𝛼i

∧
wqk

(
[xi]d̂, cj+1

)
− 𝛼i

∨
wqk

(
[xi]d̂, [

▿(i)
x∗]d̂

)
 . A simple approach would be to use

∧
wq

for the first term and
∨
wq for the latter. However we can be a little more efficient and con-

sider the whole path. To do this and to resolve the issue of selecting which value to use for
∨
wq and

∧
wq , we use the notation and structure from Remark 3, but create an upper and lower

version of
s
v
(j)

i
 ,
m
v
(j)

i
 and

e
v
(j)

i
 (which takes into account the sign of �i , wq and k), and compute a

result for each weight in the approximation. So,

• Largest and smallest values at start of subdomain,

• Largest and smallest values at end of subdomain,

• Largest and smallest values within subdomain,

We finally compute new versions of �i,

• Starts in the subdomain,

(34)

m
(
x∗

†, a, b
)
≤

Q∑
q=1

N∑
i=1

k
(
x
†

i
, x†

∗
;lq

)
× 𝛼i

(
∧
wqk

(
[xi]d̂, [

▵(i)
x∗]d̂;lq

)
−

∨
wqk

(
[xi]d̂, [

▿(i)
x∗]d̂;lq

))
.

(35)
s▵,q
vi

(j)

= max
(
𝛼i

▵

wqk
(
[xi]d̂, cj

)
, 𝛼i

▿

wqk
(
[xi]d̂, cj

))

(36)
s▿,q
vi

(j)

= min
(
𝛼i

▵

wqk
(
[xi]d̂, cj

)
, 𝛼i

▿

wqk
(
[xi]d̂, cj

))

(37)
e▵,q
vi

(j)

= max
(
𝛼i

▵

wqk
(
[xi]d̂, cj+1

)
, 𝛼i

▿

wqk
(
[xi]d̂, cj+1

))

(38)
e▿,q
vi

(j)

= min
(
𝛼i

▵

wqk
(
[xi]d̂, cj+1

)
, 𝛼i

▿

wqk
(
[xi]d̂, cj+1

))

(39)

if cj ≤ [xi]d̂ ≤ cj+1 then

m▵,q
vi

(j)

= max
(
𝛼i

▵

wqk
(
[xi]d̂, [xi]d̂

)
, 𝛼i

▿

wqk
(
[xi]d̂, [xi]d̂

))

m▿,q
vi

(j)

= min
(
𝛼i

▵

wqk
(
[xi]d̂, [xi]d̂

)
, 𝛼i

▿

wqk
(
[xi]d̂, [xi]d̂

))

else

m▵,q
vi

(j)

= NaN and
m▿,q
vi

(j)

= NaN.

 Machine Learning

1 3

• Starts and ends in that subdomain,

• Ends in that subdomain,

• Crosses the subdomain,

We add up the appropriate sequence as before, e.g.: �q
i
= �

q(2,→)

i
+ �

q(3,↔)

i
+ �

q(4,←)

i
 . We

then use the earlier tools to bound the sum of weighted EQ kernels, but this time we
add up the contributions from the set of approximating EQ kernels,
m(x†

∗
) ≤

∑Q

q=1

∑N

i=1
�
q

i
k
�
x
†

i
, x†

∗
;lq

�
.

3.3.3 Enhancement

To improve the runtime we compute a fast initial pass, with few slices. We then run
the algorithm on those combinations with the greatest bound (i.e. capable of changing
the latent function the most), using a higher slice count. We refer to this procedure as
‘enhancement’.

3.4 Multiple dimensions and complexity

To find a lower bound on the number of dimensions that need to change in order for the
posterior mean to change by more than t, one can run the above algorithm, assigning d̂
as each of the D dimensions, then cumulatively sum the largest t of these upper bounds.
This gives a lower bound on the number of perturbed dimensions required. We found that
for the datasets used, this straightforward method achieved reasonable results. For a fixed
number of training points, N, the time complexity, for S slices along each of the D dimen-
sions, is O(DS2).

3.5 Classification and the sparse approximation

The algorithm above is for regression, but we wish to consider GPC. For the Laplace
approximation we find the mode and Hessian of the posterior. We can then use normal
GP regression but with an alternative set of training values, f̂ in Williams and Rasmussen
(2006)[p. 44].

�
q(j,→)

i
= max

(
e▿,q
vi

(j)

−
s▿,q
vi

(j)

,
e▿,q
vi

(j)

−
m▿,q
vi

(j)

, 0

)
.

�
q(j,−)

i
= max

(
m▵,q
vi

(j)

−
s▿,q
vi

(j)

,
e▵,q
vi

(j)

−
m▿,q
vi

(j)

,
e▵,q
vi

(j)

−
s▿,q
vi

(j)

,

e▵,q
vi

(j)

−
e▿,q
vi

(j)

,
s▵,q
vi

(j)

−
s▿,q
vi

(j)

,
m▵,q
vi

(j)

−
m▿,q
vi

(j)

, 0
)
.

�
q(j,←)

i
= max

(
m▵,q
vi

(j)

−
s▿,q
vi

(j)

,
e▵,q
vi

(j)

−
s▿,q
vi

(j)

,
s▵,q
vi

(j)

−
s▿,q
vi

(j)

, 0

)
.

�
q(j,↔)

i
=

e▿,q
vi

(j)

−
s▿,q
vi

(j)

.

Machine Learning

1 3

The bound becomes increasingly loose as the number of training points increases, how-
ever one can use sparse approximation methods (Snelson and Ghahramani 2006) to miti-
gate this. Specifically, one replaces the original training data with a low-rank approxima-
tion using inducing inputs. First find suitable inducing point locations using gradient ascent
to maximise the marginal log likelihood using the original f̂ , then use the inducing inputs
associated with the low-rank (e.g. deterministic training condition, DTC) approximation as
the new training data for our classification. We then have 𝜶 = �−2�Kuf f̂ , where

� =
(
𝜎−2KufK

⊤

uf
+ Kuu

)−1

 and Kuu is the covariance between inducing inputs, Kuf is the
covariance between the inducing inputs and the original training points. We use this earlier
expression, from Snelson and Ghahramani (2006), for inducing point approximation,
instead of, for example the variational approach (in which induing points are integrated
out) in Titsias (2009), as the AB algorithm only uses the posterior mean, which is equiva-
lent in the two papers.

4 Results

We consider several classification problems, including three real datasets in which robust-
ness against AEs is important for security (specifically credit-worthiness, spam-filtering
and banknote-forgery). For each we compare the GPC results to LR, considering both
accuracy and robustness. We investigate the effect of the number of splits and the number
of inducing inputs on robustness, accuracy and runtime. We generate AEs that approach
our new confident misclassification threshold to demonstrate bound tightness. We finally
look at the approximation to allow us to use other kernels and apply it to the exponential
kernel.

4.1 MNIST

We used a subset of 43 pixels from the 8 × 8 MNIST(LeCun et al., 1998) (3 vs. 5, N = 100,
not using a sparse approximation). Figure 6 shows the GPC has a greater accuracy (over
80%) than the LR algorithm (70%). The GPC (with l = 2) achieves a bound of 3 pixel-
changes and a higher accuracy than the LR solution, which can only achieve a two pixel-
change bound. Thus the GPC solution is more robust and more accurate.

We then applied the GPC AB algorithm to the full resolution 28 × 28 MNIST images
(using 475 pixels) for 0 versus 1 (N = 1000). Four inducing points were used. The results
are recorded in Table 1. For longer lengthscale configurations, dozens of pixels are required
to change to achieve a confident misclassification.

4.2 Non‑linearly‑separable synthetic data

To demonstrate the AB algorithm on a dataset for which LR would fail, we generated an
8d linearly inseparable synthetic dataset (N = 50, not using a sparse approximation) placed
in three Gaussian clusters (� = 0.1) within a unit hypercube, along its main diagonal, illus-
trated in Fig. 7. We confirm that, as expected, the LR classifier fails to classify beyond
chance while the GPC achieves reasonable (96%) accuracy (l = 0.7 , v = 0.3 , �2 = 1).

 Machine Learning

1 3

With this configuration, the 5th and 95th percentile training points lie 0.321 apart. The
AB algorithm (using enhancement) found the upper bound for a single input perturbation
was 0.220. Thus at least two inputs need perturbing to cause a confident misclassifica-
tion (Fig. 8). A brute-force search found a change as large as 0.144 was possible with a
single dimension change. Thus the true value lies between 0.144 and 0.220.

4.3 Real world data: credit, spam and banknotes

The data used for these experiments was from the UCI Repository of Machine Learning
Databases (Dua and Graff 2017). The ‘Australian Credit Approval’ dataset has 690 train-
ing points with 14 dimensions, consisting of categorical and continuous data (100 train-
ing points were used in all these examples, with no sparse approximation). The fairly
high accuracy for LR (Fig. 9, upper plots) suggests the problem is mostly linearly sepa-
rable, thus the long-lengthscale GP is able to maintain a good accuracy. The GPC is also

Fig. 6 MNIST 3v5 test using 100 training points. GPC (left) and logistic regression (right). Upper plots:
The bounded change in the posterior induced by changing 1, 2 or 3 input points (blue lines) for given values
of the regulariser or lengthscale. The black line indicates the ‘confident misclassification’ threshold. Lower
plot: how accuracy varies. The yellow/orange areas indicate regions in which two/three pixels need chang-
ing to cause a confident misclassification (Color figure online)

Table 1 AE algorithm results
for 28 × 28 MNIST 0 versus 1.
The accuracy is degraded by
lengthscales that are too short
or too long. Latent threshold
difference refers to the difference
between the 5th and 95th
percentile training points latent
function value

Length-scale Accuracy Pixels required to
change

Latent
threshold
difference

2.154 0.905 15 12.525
10.000 1.000 76 4.916
21.544 1.000 44 3.534
46.416 0.990 58 2.541

Machine Learning

1 3

provably more robust, compared to the linear classifier, with a lower bound of three inputs
requiring perturbation, compared to one, for LR. It is unclear why it achieves more robust-
ness compared to the linear classifier, the most likely explanation is that the two classes
are somewhat compact such that single input changes can not move from one class to the
other. We tested the algorithm on the 57 dimensional spam dataset (Cranor and LaMacchia
1998). Both the GPC and LR classifiers were non-robust, i.e. both had a bound less than
one input, meaning a single dimension might be able to cause a confident misclassification.
Both methods achieved over 85% accuracy (majority class 60%). We also tested the algo-
rithm on 100 points from the four dimensional UCI banknote authentication dataset. For
the GPC, at least two of the four inputs needed changing for some lengthscales, while LR
only required one input change (Fig. 9, lower plots). Note that at the shortest lengthscale
the GPC is not only more accurate but also more robust than at middle-lengthscales.

4.4 Effect of number of slices and the sparse approximation

The contribution of each training point is assumed to be the ‘worst-case’ for a given hyper-
rectangle. By introducing more hyperrectangles we tighten this bound. To test this effect
empirically, we consider again the 8 × 8 MNIST (3 vs. 5) data (N = 100 , 200 test, l = 4 ,
v = 1 , accuracy = 68.5%). Left plots in Fig. 10 demonstrate how the number of slices,
S, affect both the bound and computation. The runtime follows, as expected, an S2 time
complexity and the bound does tighten with increasing S. This ignores the ‘enhancement’
approach of rerunning the algorithm with more slices on the most sensitive dimensions to
use compute more efficiently.

We also tested the effect of the number of slices on the credit dataset. With 400 train-
ing points, 200 test points, lengthscale of 2, 4 inducing points, we reach an accuracy of
80%. Table 2 summaries this for up to 100 slices. As for the MNIST example, more slices
improve the bound but also take more computation. We also looked at the use of inducing
points on this dataset (400 training points, 200 test points, lengthscale of 2, 100 slices).
Table 3 details these results. These also follow the pattern of the MNIST data: having
fewer inducing inputs is associated with a reduction in accuracy, but with improvements in
the bound.

We compared this to the results of an empirical experiment, testing 5M pairs of points
that differ by one, two or three dimensions. We found that for two inducing points, at least

Fig. 7 A slice through two of the
8 axes to show the location of the
training points

 Machine Learning

1 3

three dimensions needed changing. For the remaining rows in Table 3, the empirical num-
ber-of-dimensions equal those of the theoretical bounds: Our limited bound on robustness
appears to be due to the classifier being vulnerable to single dimensional perturbation and
not to our bounds being excessively loose.

We investigated using a sparse approximation using the 8 × 8 MNIST data (3 vs. 5, N
= 1000, l = 1, v = 1). Figure 10 shows, with more inducing points, the accuracy and com-
putation time increase, as one would expect, while the algorithm’s upper bound increases
(weakens). We suggest this is because increasing the number of inducing points leads to a
looser bound directly, but also means the points must be closer together, leading to steeper
gradients in the posterior. With just two inducing points, at least three inputs need to be
altered to cause a confident misclassification (but the classifier has only a 78% accuracy).
With five inducing points the accuracy is over 90% but now the algorithm only guarantees
two inputs need to be modified.

We investigated the same question with the credit dataset. With more than four inducing
points the classifier was bound such that only one input needed to change. With two induc-
ing inputs it is close to needing three inputs to change. It would seem that a sparse approxi-
mation is a useful way to improve the strength of the bound on the scale of the perturbation
required. However, this does seem to depend on the data. To explore a dataset with a more

Fig. 8 Synthetic dataset using 50
training points and the GPC. The
upper plot shows upper bounds
(blue lines) on the change in the
posterior induced by changing
1,2,3,4 or 5 input points. The
black line indicates the ‘confident
misclassification’ threshold. The
lower plot shows the classifier’s
accuracy versus lengthscale. The
yellow and orange areas indicate
regions in which two and three
pixels respectively need changing
to cause a confident misclas-
sification. There is a trade off
between accuracy and robustness
(Color figure online)

Machine Learning

1 3

complex decision boundary we considered the 0,1,2,3,4 versus 5,6,7,8,9 8x8 MNIST task
(keeping 33 pixels, 500 training points, 200 test points; number of inducing points: 4, 8,
16, 32, 64 or 128, l = 4). In this we found, surprisingly, that the relationship between the
number of inducing points and the bound wasn’t so clear and almost in the opposite direc-
tion, with the bound reaching two pixels only for 128 inducing points. This is probably

Fig. 9 Credit (top set) and bank dataset (lower set) using GPC (left) and LR (right). Upper of each pair
shows bounds on the impact on the latent function. Lower of each pair shows accuracy. Yellow/orange areas
are where two/three pixels need changing to cause a confident misclassification. Black line indicates confi-
dent misclassification threshold (Color figure online)

 Machine Learning

1 3

Fig. 10 Effect of (left) number of domain slices (right) number of inducing points. (upper) Cumulative
effect of the first four most significant input dimensions are indicated by blue lines. Black line indicates
confident misclassification threshold (distance between the 5th and 95th percentile training points). Lower
plots show elapse times and accuracy. Dataset: 8 × 8 MNIST (3 vs. 5) (Color figure online)

Table 2 Credit dataset: Effect of the number of slices on the lower bound on the number of inputs required
to cause a confident misclassification and on computation time. The cumulative effect of the first, two, three
and fourth most significant input dimensions are also listed. The distance between the 5th and 95th percen-
tile training points in the posterior was 2.132

Slices # Inputs to
change

Time (s) Cumulative sum of top four dimensions

1 2 3 4

1 1 49 2.48 4.96 7.32 9.61
2 1 46 2.46 4.88 7.22 9.45
3 1 46 2.34 4.48 6.57 8.62
4 1 44 2.23 4.32 6.23 8.08
6 2 53 2.08 4.09 5.90 7.69
8 2 53 2.00 3.98 5.73 7.45
10 2 53 1.97 3.92 5.63 7.33
12 2 50 1.95 3.87 5.57 7.25
15 2 53 1.94 3.83 5.50 7.17
20 2 58 1.92 3.78 5.44 7.09
30 2 73 1.90 3.74 5.37 7.01
50 2 126 1.89 3.71 5.33 6.94
70 2 190 1.88 3.69 5.30 6.91
100 2 335 1.88 3.68 5.29 6.89

Machine Learning

1 3

Table 3 Credit dataset: Effect of increasing the number of inducing points on accuracy, the lower bound on
the number of inputs required to cause a confident misclassification and on computation time. The cumula-
tive effect of the first, two, three and fourth most significant input dimensions are also listed. The threshold
distance between the 5th and 95th percentile training points in the posterior is also recorded. Chance: 50%

Induc-
ing points

Accuracy # Inputs
to change

Time(s) Threshold
distance

Cumulative sum of top four dimensions

1 2 3 4

2 0.79 2 208 2.28 1.62 2.86 4.08 5.05
4 0.80 2 335 2.13 1.88 3.68 5.29 6.89
6 0.82 1 477 1.94 2.64 5.06 7.15 8.99
8 0.82 1 497 1.44 23.22 42.95 62.53 79.32
10 0.82 1 717 1.33 70.77 135.76 182.26 221.20

partly due to the way inducing points are distributed. Possible future work could explore
optimising the placement of inducing points for robustness (not just for model fit).

4.5 Bounds provided by empirical attack

The AB algorithm provides a lower bound on the number of dimensions that need per-
turbing, to cause a confident misclassification, while an empirical attack provides an upper
bound. We build on the Jacobian-based Saliancy Map Attack (JSMA) by Papernot et al.
(2016a) as it is easy to interpret and implement. It computes the gradient of the prediction
with respect to each input, and sets the inputs with the largest gradients to their largest
permitted value. The GP has a less monotonic relationship with its inputs than a DNN, so
standard JSMA often placed the example away from the training data, causing the poste-
rior to return to the prior mean, far from the 95% threshold. This may explain why shorter
lengthscales are protective in the bank-note experiment. We initially developed a simple
attack which, like Papernot et al. (2016a) produces a saliency map of gradients, but this
time using the gradients of the GP latent mean function itself (with respect to the test
inputs). We found however, as mentioned above, that simply perturbing each input to its
extreme value often resulted in a near-prior mean posterior. Instead, we still choose the
input with the largest absolute gradient but then we performed a search along the perturbed
input’s axis to find the value that causes the largest change in the posterior. Figure 11 gives
two examples of such a perturbation, causing a confidently classified zero or one to become
a confidently classified one or zero. We applied this algorithm to all of the 470 confidently
classified test points, and found examples in which just five pixels needed changing, pro-
viding an upper bound. The AB algorithm was applied to this model (l = 4 , v = 202). This
found a lower bound of 3 pixels needing to be modified. Thus the true number is between
3 and 5.

Figure 12 demonstrates 10 more adversarial examples. Note that these are generated
by the empirical attack based on the JSMA algorithm and do not necessarily represent the
least perturbation required. These plots are rather to illustrate what a ‘confident’ misclas-
sification might look like. I.e. one in which a test point has been moved from being confi-
dently labelled as one class to being confidently labelled of being in the opposite class.

 Machine Learning

1 3

We briefly experimented with the algorithm described in Carlini and Wagner (2017b)
for the L0 attack, but found this produced looser bounds than the above approach. That
algorithm chooses pixels to remove by using the gradient at the perturbed point, but this is
ineffective for GPC, especially with a target threshold far from the 50% decision boundary.

4.6 Exponential kernel

We finally, briefly, look at the result of using the approximation method described
in 3.3.2 applied to the exponential kernel, k(r) = ve−|r∕l| . In Fig. 13 we illustrate the
approximation to the exponential kernel provided by summing seven EQ kernels. This
provided bounds on the kernel for r < 20 . To demonstrate, we construct a simple train-
ing set of two points (at [0.5,0.5], [0.3,0.5] with labels 1 and 0 respectively). Figure 14
illustrates the posterior mean for the two kernels along the x2 = 0.5 line. There is a
complicated interaction between lengthscale and number of slices when looking at the
tightness of the bounds, but at longer lengthscales the bound seems worse for the expo-
nential kernel, even when more slices are used. Remember also the exponential kernel
will take up to 7 times longer due to the summing of the approximation EQ kernels.
The compute time is noted in each figure for the two kernels.

We applied both kernels to a scaled MNIST problem (300 balanced, randomly
picked images were down-sampled to 1/4 size and those pixels that went over a value
of 50 were used, leaving us with 35 dimensions. The GPC was applied using the EQ
and exponential kernels, with l = 4 , v = 3 , 6 inducing points and 15 slices (the accu-
racy was comparable: 74% and 76.5% respectively). The 5% to 95% confident-clas-
sification interval, and bound on one pixel change for the two kernels was, respec-
tively: EQ CI = 2.439 and bound = 1.88 ; exponential CI = 3.182 and bound = 5.744
(no enhancement was applied). The bound means that at least two pixels need to be
changed in the EQ case, but the bound does not guarantee that for the exponential ker-
nel case - the exponential kernel leads to a classifier less protected against adversarial
attack. Part of the exponential kernel classifier’s looser bounds is due to the approxi-
mation, but we suspect it is mainly due to the steepness of parts of the posterior mean
in the exponential-kernel case.

Fig. 11 Demonstration of perturbation necessary from a confidently classified one, left; or zero, right; to
become a confidently classified zero or one respectively. Crosses, pixels that were modified. Initial images
are from test set. The AB algorithm found at least 3 pixels would need to be modified (to move from any
confidently classified zero to a confidently classified one, or the reverse)

Machine Learning

1 3

5 Discussion

The AB algorithm provides guaranteed limits on the ability of an attacker to cause a
confident classification to be confidently misclassified. Specifically this allows us to

Fig. 12 Demonstration of perturbation necessary from a confidently classified zero, left column pair; or
one, right column pair; to become a confidently classified one or zero respectively. Crosses mark the pixels
that were modified. Initial images are from test set. Greyscale from zero (black) to one (white)

 Machine Learning

1 3

Fig. 13 Approximating the
exponential kernel (green dashed
line) with the sum of seven EQ
kernels (components in black,
sum in blue). Both upper and
lower bounds are plotted (so
there are two of each component
and two sums) but are so close
that they are imperceptible on the
plot (Color figure online)

Fig. 14 The posterior mean for two kernels, with two training points (at 0.3 and 0.5 in the x-axis plotted).
The dotted lines indicate the width of the bound (although absolute values are irrelevant). The solid lines
are the posterior mean. Three values of lengthscale 0.1, 0.4 and 1.6 are shown, and three resolutions of
slices are used (2, 8 and 32)

Machine Learning

1 3

prove that changing fewer than a certain number of inputs can not cause the classifica-
tion to change from one threshold for classification confidence to another, given a set
of hyperparameters and training data. This improves on previous efforts to evaluate
the potential for adversarial attacks, as this AB algorithm holds for the whole domain,
and not just a localised volume around each training point. Several interesting features
are apparent. We find that for most of the datasets, more regularisation leads to more
robust bounds. This is largely expected but probably depends on the type of regulari-
sation used (Demontis et al., 2017; Grosse et al., 2018). There is an exception to this
rule in the banknote dataset, where we see very short lengthscales also lead to robust-
ness. With long-lengthscales it has more linear responses while at short lengthscales it
may or may-not be robust, depending on where the training data lies. This reflects the
findings of Grosse et al. (2018) who show empirically that both long and short length-
scales for a GPC can provide robustness against some attacks. We empirically looked
at the tightness of the bound (in Sect. 4.5) by comparing generating AEs to the com-
puted lower bound. The AB was fairly close to empirically generated AEs, suggesting
our bound is quite tight. We considered examples of datasets that require protection
from adversarial attack (credit-worthiness, spam-classification and banknote-forgery).
The robustness of the classifiers in the different examples demonstrates that it is both
the classifier’s parameters and the data distribution which will affect the utility of the
bound. The use of a sparse approximation was found to improve the robustness of the
bound, at the cost of some accuracy.

5.1 Future work: extending to deep architectures

For future work, extending this to a deep framework such as a deep GP (Damianou
and Lawrence 2013) may be possible. The current AB algorithm allows one to bound
the number of variables, for a given layer, required to cause a specific change in the
layer’s output. With a slight modification one could consider the combinations of all
paths in which each dimension has a limited perturbation (this would also open the way
to a loose bound on the L1-norm attack). Although potentially computationally intrac-
table for high dimensionality, typical deep GPs have few dimensions beyond the input
layer (Damianou and Lawrence 2013). Alternatively, if the approximation discussed in
Sect. 3.3.2 could be applied to convolutional kernels then the AB algorithm might be
applied to convolutional Gaussian processes (Van der Wilk et al., 2017). Finally, in the
long term, work building equivalences between DNNs and GPs (e.g. Lee et al., 2018)
might allow the AB Algorithm to provide bounds on some DNN classifiers.

5.2 Multi‑class classification

One surprisingly challenging issue is how to extend the AB algorithm to the multi-class
situation. In the binary classification problem, increasing the latent mean of one class
will result in the posterior mean increasing (for a given variance). In the multi-class
situation the softmax function that is usually used to compute the posterior will mean
the posterior mean could reduce even if there is an increase in the latent mean, as the
latent mean for the other classes could increase more. One approach might be to com-
pute the bound for all the latent GPs for each slice and then computing the bound on
the change to the softmax output (for each slice). This approach might also allow the

 Machine Learning

1 3

variance of the latent distribution to be reintroduced. We hope to address these issues in
future work.

5.3 Uncertainty in the latent posterior distribution

We decided against using the uncertainty estimates that the GP provides. It has been
found (Grosse et al., 2019) that this uncertainty can assist in the detection of off-the-
shelf adversarial attacks. However, the latent mean is usually near zero in highly uncer-
tain locations anyway (for kernels like the EQ, as the posterior will return to the prior
mean) so this would be of limited benefit. Another advantage of ignoring the GP vari-
ance is that it allows us to apply our bound to other stationary-kernel-based classifiers
(i.e. that can be written in the form of (3)) for example after training, the expression for
the posterior mean in (Hensman et al., 2015, Sect. 3.1) would be amenable to our bound
approach.

5.4 Runtime

The runtime in our implementation was dominated (for large N) by the computation
of f̂ , which did not take advantage of the sparse approximation. The algorithm scales
to 100s of input dimensions (a typical limit of a GPC). Future computational improve-
ments include the use of dynamic programming when summing path segments and iter-
ative refinement of the grid when finding the bound on the mixture of EQs. The bound
itself could be tightened by improving how the pairs of positive and negative EQs are
selected when cancelling out the negative terms.

5.5 Other kernels

We were able to extend the approach to handle other stationary kernels by approximat-
ing them with the sum of EQ kernels. We demonstrated this with the exponential kernel,
approximating it with seven EQ kernels. We found the bound on the classifier using the
exponential kernel was weaker. This fits with our intuition: we expect that a smoother
latent posterior prediction mean (driven by the prior) to lead to a classifier that is more
robust to adversarial attack. The exponential kernel leads to a posterior latent mean that
isn’t very smooth.

5.6 Optimising parameters

The AB algorithm has several parameters one needs to select, trading off robustness, com-
putational time and accuracy. These choices will depend on the application, the data and
the likely capacity of an attacker to perturb the input (and the consequences of poor clas-
sification vs successful attack). A search over parameters might be practical, or potentially
using GP optimisation with a cost function combining the accuracy with the bound.

Machine Learning

1 3

6 Conclusion

We believe that it is vital we can construct classifiers, confident that imperceptibly small
changes will not cause large changes in classification. The presence of such vulnerabilities
in classifiers used in safety critical applications is of concern. In particular is the danger
of ‘blind spot attacks’ (Zhang et al., 2019) which are overlooked by the common certifica-
tion methods that just work around the epsilon ball. Currently there are no extant practical
global bounds for any (non-trivial) classifiers and it may even be that the true sensitivity
of many classifiers is non-practical (i.e. are vulnerable to single-pixel changes). Having
a practical global bound for a widely used classifier is a significant improvement given
the lack of defences currently available. How one uses the bound to construct such classi-
fiers is a more open question. We imagine that the designer of the classifier could run our
algorithm on their classifier and training data and select model parameters to trade off the
accuracy against this bound.

In summary, we have devised a framework for bounding the scale of an L0 adversarial
attack leading to a confident misclassification, developed a method for applying the bound
to GP classification and through a series of experiments tested this bound against similarly
bounded LR and investigated the effect of classifier configuration parameters. We found
our GP classifier could be accurate, practical and provably robust. This is the first paper to
successfully find such a bound. The AB algorithm provides a foundation for future research
— in particular for expanding to larger datasets and more complex classifiers.

Author contributions MS devised the approach, developed the mathematical proofs, coded and ran the
experiments. KG proposed the initial concept and provided the background and approach. She also cor-
rected many mistakes and improved the overall manuscript. MB acquired funding for the project. MA
acquired funding and also provided useful suggestions and improvements to the manuscript.

Funding This study was funded by the EPSRC (EP/N014162/1). Kathrin Grosse was supported by the Ger-
man Federal Ministry of Education and Research (BMBF) through funding for the Center for IT-Security,
Privacy and Accountability (CISPA) (FKZ: 16KIS0753).

 Data availability Not applicable. All the datasets used in this paper were from other sources, which have
been cited appropriately.

 Code availability The code is split into two python modules, https:// github. com/ lionfi sh0/ bound mixof gauss
ians is a module for finding an upper bound on a weighted sum of EQ kernels. https:// github. com/ lionfi sh0/
GPAdv ersar ialBo und is the main module that computes a bound on the GP regression problem.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article

https://github.com/lionfish0/boundmixofgaussians
https://github.com/lionfish0/boundmixofgaussians
https://github.com/lionfish0/GPAdversarialBound
https://github.com/lionfish0/GPAdversarialBound

 Machine Learning

1 3

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Biggio, B., Corona, I., Maiorca, D. et al. (2013). Evasion attacks against machine learning at test time. In:
Machine learning and knowledge discovery in databases - european conference, ECML PKDD 2013,
Prague, Czech Republic, September 23–27, 2013, Proceedings, Part III, pp. 387–402

Blaas, A., Patane, A., Laurenti, L. et al. (2020). Robustness quantification for classification with Gaussian
processes. In: 23rd international conference on artificial intelligence and statistics

Bojchevski, A., Klicpera, J., Günnemann, S. (2020). Efficient robustness certificates for discrete data:
Sparsity-aware randomized smoothing for graphs, images and more. In: International conference on
machine learning, PMLR, pp. 1003–1013

Cardelli, L., Kwiatkowska, M., Laurenti L. et al. (2019). Robustness guarantees for Bayesian inference with
Gaussian processes. In: Proceedings of the AAAI conference on artificial intelligence, pp. 7759–7768

Carlini, N., Wagner, D. (2017a). Adversarial examples are not easily detected: Bypassing ten detection
methods. In: Proceedings of the 10th ACM workshop on artificial intelligence and security, ACM, pp.
3–14

Carlini, N., Wagner, D. (2017b). Towards evaluating the robustness of neural networks. In: 2017 IEEE sym-
posium on security and privacy (SP), IEEE, pp. 39–57

Carlini, N., Katz, G., Barrett, C. et al. (2017). Provably minimally-distorted adversarial examples. arXiv
preprint arXiv: 1709. 10207

Carreira-Perpinan, M. A. (2000). Mode-finding for mixtures of Gaussian distributions. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(11), 1318–1323.

Cranor, L. F., & LaMacchia, B. A. (1998). Spam! Communications of the ACM, 41(8), 74–83.
Dalvi, N., Domingos, P., Sanghai, S. et al. (2004). Adversarial classification. In: Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 99–108
Damianou, A., Lawrence, N. (2013). Deep Gaussian processes. In: Artificial intelligence and statistics, pp

207–215
Demontis, A., Melis, M., Biggio, B., et al. (2017). Yes, machine learning can be more secure! IEEE transac-

tions on dependable and secure computing: A case study on Android malware detection.
Dua, D., Graff, C. (2017). UCI machine learning repository. http:// archi ve. ics. uci. edu/ ml
Finlay, C., & Oberman, A. M. (2021). Scaleable input gradient regularization for adversarial robustness.

Machine Learning with Applications, 3(100), 017.
Grosse, K., Smith, M. T., Backes, M. (2018). Killing four birds with one Gaussian process: Analyzing test-

time attack vectors on classification. arXiv preprint arXiv: 1806. 02032
Grosse, K., Pfaff, D., Smith, M.T., et al. (2019). The limitations of model uncertainty in adversarial settings.

Bayesian Deep Learning Workshop @NeurIPS
Hein, M., Andriushchenko, M. (2017). Formal guarantees on the robustness of a classifier against adver-

sarial manipulation. Advances in Neural Information Processing Systems, pp. 2266–2276
Hensman, J., Matthews, A., & Ghahramani, Z. (2015). Scalable variational Gaussian process classification.

Journal of Machine Learning Research, 38, 351–360.
Huang, X., Kwiatkowska, M., Wang, S. et al. (2017). Safety verification of deep neural networks. In: Inter-

national conference on computer aided verification, Springer, pp. 3–29
LeCun, Y., Bottou, L., Bengio, Y., et al. (1998). Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11), 2278–2324.
Lee, J., Bahri, Y., Novak, R., et al. (2018). Deep neural networks as gaussian processes. In: International

conference on learning representations
Madry, A., Makelov, A., Schmidt, L. et al. (2018). Towards deep learning models resistant to adversarial

attacks. In: 6th International conference on learning representations, ICLR 2018, Vancouver, BC, Can-
ada, April 30–May 3, 2018, Conference Track Proceedings

Papernot, N., McDaniel, P., Jha, S., et al. (2016). (2016a) The limitations of deep learning in adversarial set-
tings. Security and Privacy (EuroS &P) (pp. 372–387). IEEE: IEEE European Symposium on.

Papernot, N., McDaniel, P., Wu, X. et al. (2016b). Distillation as a defense to adversarial perturbations
against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy (SP), IEEE, pp.
582–597

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1709.10207
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1806.02032

Machine Learning

1 3

Peck, J., Roels, J., Goossens, B., et al. (2017). Lower bounds on the robustness to adversarial perturbations.
In: Advances in Neural Information Processing Systems, pp. 804–813

Pulkkinen, S., Mäkelä, M. M., & Karmitsa, N. (2013). A continuation approach to mode-finding of mul-
tivariate Gaussian mixtures and kernel density estimates. Journal of Global Optimization, 56(2),
459–487.

Ross, A. S., Doshi-Velez, F. (2018). Improving the adversarial robustness and interpretability of deep neu-
ral networks by regularizing their input gradients. In: Thirty-Second AAAI Conference on Artificial
Intelligence

Ruan, W., Wu, M., Sun, Y., et al. (2019). Global robustness evaluation of deep neural networks with prov-
able guarantees for the hamming distance. IJCAI

Sitawarin, C., Bhagoji, A. N., Mosenia, A. et al. (2018). Rogue signs: Deceiving traffic sign recognition
with malicious ads and logos. arXiv preprint arXiv: 1801. 02780

Snelson, E., Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In: Advances in neural
information processing systems, pp. 1257–1264

Su, J., Vargas, D. V., & Sakurai, K. (2019). One pixel attack for fooling deep neural networks. IEEE Trans-
actions on Evolutionary Computation, 23(5), 828–841.

Suciu, O., Marginean, R., Kaya, Y. et al. (2018). When does machine learning {FAIL} ? generalized transfer-
ability for evasion and poisoning attacks. In: 27th {USENIX} Security Symposium ({USENIX} Secu-
rity 18), pp. 1299–1316

Szegedy, C., Zaremba, W., Sutskever, I. et al. (2014). Intriguing properties of neural networks. ICLR
Titsias, M. (2009). Variational learning of inducing variables in sparse Gaussian processes. In: Artificial

Intelligence and Statistics, pp. 567–574
Van der Wilk, M., Rasmussen, C. E., Hensman, J. (2017). Convolutional gaussian processes. arXiv preprint

arXiv: 1709. 01894
Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning. Cambridge: MIT

Press.
Wong, E., Kolter, Z. (2018). Provable defenses against adversarial examples via the convex outer adversarial

polytope. In: International conference on machine learning, pp. 5283–5292
Zhang, H., Chen, H., Song, Z. et al. (2019). The limitations of adversarial training and the blind-spot attack.

In: 7th international conference on learning representations, ICLR 2019, New Orleans, LA, USA, May
6–9, 2019

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1801.02780
http://arxiv.org/abs/1709.01894

	Adversarial vulnerability bounds for Gaussian process classification
	Abstract
	1 Introduction
	1.1 Limitations
	1.2 Structure of the paper

	2 Background
	2.1 Gaussian process regression
	2.2 Binary Gaussian process classification using the Laplace approximation
	2.3 Confident misclassification
	2.4 Using just the latent mean
	2.5 Related work

	3 Method
	3.1 Threat model
	3.2 The adversarial bound (AB) algorithm
	3.2.1 Introduction
	3.2.2 Upper bounding the posterior mean perturbation
	3.2.3 Bounding a weighted sum of EQ kernels
	3.2.4 Higher dimensions
	3.2.5 Negative weights
	3.2.6 Bound on true maximum using maximum from grid vertices
	3.2.7 Opposite direction
	3.2.8 Lower bound on number of dimensions

	3.3 Improvements to the AB algorithm
	3.3.1 Slicing the Domain
	3.3.2 Other Kernels
	3.3.3 Enhancement

	3.4 Multiple dimensions and complexity
	3.5 Classification and the sparse approximation

	4 Results
	4.1 MNIST
	4.2 Non-linearly-separable synthetic data
	4.3 Real world data: credit, spam and banknotes
	4.4 Effect of number of slices and the sparse approximation
	4.5 Bounds provided by empirical attack
	4.6 Exponential kernel

	5 Discussion
	5.1 Future work: extending to deep architectures
	5.2 Multi-class classification
	5.3 Uncertainty in the latent posterior distribution
	5.4 Runtime
	5.5 Other kernels
	5.6 Optimising parameters

	6 Conclusion
	References

