
Synthesising Linear API Usage
Examples for API Documentation

Seham Alharbi∗‡, Dimitris Kolovos∗, Nicholas Matragkas†

∗Department of Computer Science, University of York, York, United Kingdom
†CEA-List, Université Paris-Saclay, Palaiseau, France

‡College of Computer, Qassim University, Buraydah, Saudi Arabia
∗{saaa528, dimitris.kolovos}@york.ac.uk

†nikolaos.matragkas@cea.fr

Abstract—Code examples are essential resources for learning
application programming interfaces (APIs). The shortage of such
examples can be a major learning obstacle for API users. Writing
and maintaining effective API usage examples can also be an
effort-intensive and repetitive process for API developers because
API users ideally want such examples to be simple, standalone,
and linear. To address these challenges, several approaches have
been proposed to automatically extract API code examples from
various resources and embed them into official API documents;
however, little emphasis has been placed on addressing the
underlying issue directly and helping API developers write and
maintain API usage examples. In this paper, we present a new
approach for automatically synthesising linear code examples
from less repetitive versions by in-lining reusable utility methods.
The proposed approach aims to benefit API developers in terms
of productivity and maintainability, as well as API users in terms
of API learnability and comprehension. We have implemented
the proposed approach in a prototype for the Java programming
language, which we also discuss in this paper.

Index Terms—API, documentation generation, API learnabil-
ity, code comprehension, linear code, usage examples

I. INTRODUCTION

Reuse-based software development is a major approach in

the field of software engineering because it helps developers

effectively and accurately build the desired functionalities,

facilitate programming tasks, and save time [1], [2]. Software

reuse can take many forms, including the use of external

software libraries or frameworks through their application pro-

gramming interfaces (APIs) [3], [4]. However, the effective-

ness of using an API is significantly reliant on the availability

of sufficient resources for learning it; therefore, APIs come

with documentation, such as API reference documentation,

user guides, and tutorials [5]. API documentation is a product

in itself and thus requires effort to develop and maintain, and

its quality cannot be taken for granted [6].

Several studies have shown that one of the main obstacles

when learning an API is related to the availability of code

examples [4], [6], [7]. Moreover, API code examples play

important roles in a variety of learning tasks, and most API

users consider working through code examples as the first step

to take when learning a new API [5]. However, for API code

examples to be effective, API users usually expect them to be

simple, standalone, and (when possible) linear. This is because

non-linear code examples (i.e. examples consisting of multiple

interdependent functions/classes) tend to be more complex,

and require more effort to adapt by the user in their own

codebase. Furthermore, the creation of API documentation is

typically an effort-intensive process [8], and writing efficient

and linear API usage examples is a particularly non-trivial

task.

To compensate for the shortage of API code examples

in API documentation, many researchers have proposed ap-

proaches to automatically extract code examples from several

resources and embed them into official API documents [9],

[10]; however, little attention has been paid to directly address-

ing the underlying challenge of writing API code examples and

helping API developers produce more usage examples for their

APIs. The main question that underpins this research is ‘What

kind of tool support could help API developers write and

maintain knowledge bases of simple, standalone, and linear

API code examples from which users can learn effectively?’.

In response to this question, this paper presents an approach

that contributes to tackling the challenge of writing and

maintaining usage examples for Java APIs. With this approach,

linear code examples are automatically synthesised from less

repetitive variants by in-lining reusable utility methods. Our

assumption is that API users would ideally want the API usage

examples to be linear because linear code tends to be less

complex and therefore easier to follow and comprehend (see

Section III). On the flip side, such examples can be extremely

repetitive and tedious to manually write and maintain for API

developers, particularly when documenting large APIs.

Our main envisioned contribution is a synthesis prototype

that can alleviate the API developers’ burden of writing repet-

itive and lengthy API code examples for API documentation,

thus empowering them to produce more API code examples

that can promote API learnability.

The work presented herein aims to answer the following

research questions (RQs):

RQ1. What mechanisms and techniques can be used to

enable the automated synthesis of simple, standalone, and

linear API usage examples (preferred by API users) from less

repetitive and more maintainable examples (preferred by API

607

2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/22/$31.00 ©2022 IEEE
DOI 10.1109/ICSME55016.2022.00084

developers)?

RQ2. How much more effective (in terms of API learnabil-

ity and comprehension) are the generated examples compared

to the less repetitive and more maintainable examples from

which they were synthesised?

II. MOTIVATING EXAMPLE

To motivate our proposed approach, we consider the Java

code snippets shown in Listings 1 and 2. The code snippet

in Listing 1 demonstrates how different layout managers1 (i.e.

BorderLayout and BoxLayout) operate in the Java Swing API2.

Although the two methods in this code snippet (lines 1 and 10)

show the usage of two different layout managers, they contain

some duplicated code (i.e. lines 2, 4, and 6 in docBorder-
Layout() and lines 11, 13, and 17 in docBoxLayout()). The

manual writing and maintenance of such repetitive examples

can be tedious for API developers, particularly for large APIs.

Arguably, it would be more efficient if this repetitive code

could be moved to a set of reusable methods and invoked

whenever needed (methods shown at lines 1 and 9 in Listing

2).

Invoking a set of reusable/utility methods will make the

code be more maintainable for API developers; however, API

users, particularly newcomers to the Java Swing API, will have

to jump between the definitions of different utility methods

(Listing 2) to fully comprehend how to create different com-

ponents (e.g. buttons) and place them within a container, as

well as how to create and display a GUI.

1 p u b l i c v o i d docBorde rLayou t () {
2 J P a n e l p a n e l = new J P a n e l () ;
3 p a n e l . s e t L a y o u t (new Borde rLayou t ()) ;
4 J B u t t o n b u t t o n = new J B u t t o n (” B u t t o n ”) ;
5 p a n e l . add (b u t t o n , Borde rLayou t .NORTH) ;
6 JFrame frame = new JFrame (” BorderLayoutDemo ”) ;
7 / / . . . a d j u s t f rame s i z e and show GUI
8 }
9

10 p u b l i c v o i d docBoxLayout () {
11 J P a n e l p a n e l = new J P a n e l () ;
12 p a n e l . s e t L a y o u t (new BoxLayout (pane l , BoxLayout . Y AXIS

)) ;
13 J B u t t o n b u t t o n = new J B u t t o n (” B u t t o n ”) ;
14 b u t t o n . s e t F o r e g r o u n d (t h i s . f o r e g r o u n d C o l o r) ;
15 b u t t o n . se tAl ignmen tX (Component . CENTER ALIGNMENT) ;
16 p a n e l . add (b u t t o n) ;
17 JFrame frame = new JFrame (” BoxLayoutDemo ”) ;
18 / / . . . a d j u s t f rame s i z e and show GUI
19 }

Listing 1. Java Swing Layout Managers Usage Examples.

Our assumption is that the fewer method calls (fewer jumps)

the code contains, the less complex and easier to follow and

comprehend it will be for API users. This is because the code

complexity increases with the number of independent paths

(e.g. method calls), which can impact the users’ comprehen-

sion of code (see Section III).

1 p u b l i c J B u t t o n c r e a t e B u t t o n (S t r i n g name , b o o l e a n
w i t h C o l o r) {

2 J B u t t o n b u t t o n = new J B u t t o n (name) ;
3 i f (w i t h C o l o r) {
4 b u t t o n . s e t F o r e g r o u n d (t h i s . f o r e g r o u n d C o l o r) ;

1https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
2https://docs.oracle.com/javase/7/docs/api/index.html

5 }
6 r e t u r n b u t t o n ;
7 }
8

9 p u b l i c v o i d showGUI (S t r i n g f r a m e T i t l e , J P a n e l p a n e l) {
10 JFrame frame = new JFrame (f r a m e T i t l e) ;
11 T o o l k i t t k = T o o l k i t . g e t D e f a u l t T o o l k i t () ;
12 / / . . . p o s i t i o n and s e t f rame s i z e
13 f rame . s e t D e f a u l t C l o s e O p e r a t i o n (JFrame . EXIT ON CLOSE) ;
14 f rame . s e t V i s i b l e (t r u e) ;
15 }

Listing 2. Utility Methods.

The aspiration of this work is to enable API developers

to reduce repetition in API usage examples by encapsulating

common behaviour in reusable utility functions, while keeping

examples simple and linear for API users by automatically in-

lining such utility functions.

III. BACKGROUND

To predict various aspects such as software quality, defects,

and understandability, several code complexity metrics have

been proposed in the field of software engineering. One of

the well-known metrics for calculating code complexity is

Cyclomatic Complexity [11] which is a quantitative measure

of linearly independent paths in the source code. Fewer and

less complex paths result in a lower cyclomatic complexity.

The cyclomatic complexity is calculated using a control flow

graph and the following formula, where E is the total number

of edges and N is the total number of nodes.

V (G) = E −N + 2 (1)

Several studies have analysed the correlations between

existing code complexity metrics and code understandability

[12], [13]; therefore, new control-flow complexity metrics,

such as the Cognitive Complexity have been introduced to

provide fairer relative evaluations of code comprehension and

overcome the shortcomings of cyclomatic complexity [14].

IV. RELATED WORK

A recent systematic mapping study on API documentation

generation approaches [15] has found that the most popular

approaches are those that generate API usage examples or tem-

plates for using APIs; therefore only those existing approaches

that can fall under this category are discussed below.

In a similar line to our work, Buse and Weimer [16]

proposed an approach that automatically mines and synthe-

sises well-typed representative API usage examples. This

approach incorporates techniques such as data-flow analysis

and clustering to extract and discover the necessary details

for constructing usage examples before using them as API

documentation. In addition, to supplement formal API docu-

ments, other approaches benefit from publicly available API

unit tests [17]–[19]. Using unit tests as API usage examples

has been proven to be efficient for supplementing formal API

documentation, particularly for newly released APIs that lack

the availability of client code.

Some success has been made in filling in the gap between

reference and example-based API documentation. This was

achieved by using various API code examples found on some

608

online sites, such as Stack Overflow and GitHub Gists, and

embedding them into formal API documents [20], [21]. Such

approaches typically employ various mining, clustering, and

ranking techniques to extract API code examples that best

satisfy the intent of the user when browsing API documents.

Other approaches have focused on helping API users con-

struct their code. For example, Jadeite [22] allowed API users

to share their aggregate experience and collaboratively add

placeholders to API documents to indicate the expected classes

and methods. In addition, Docio [23] is a system that helps API

users understand the actual/dynamic input and output values

of API functions. Furthermore, the recommendation of source

code examples by submitting queries against API calls was

also proposed to help both API developers [24] and users [25],

[26].

Unlike these existing approaches, our approach does not

mine usage examples from code that was not originally written

to document APIs (i.e. unit tests and online sites), but provides

a methodology for API developers to write code examples

in a structured way; therefore, the input of our approach is

handcrafted code that has certain annotations.

V. APPROACH

Our proposed approach comes in the form of an Eclipse

plugin to facilitate its use. It takes as input all the non-linear

API code examples that the API developers write to document

certain API usages. As shown in Figure 1, each code example

(i.e. single Java source file) passes through three main stages,

i.e. (1) analysis, (2) transformation, and (3) generation stages.

To illustrate how each stage works, we use the motivating

example described in Section II and the approach overview

shown in Figure 1.

Fig. 1. Approach Overview.

A. Source Code Analysis

To use our prototype, the developers of API libraries should

add two Java annotations, i.e. @Documentation to the API

documentation methods (line 2 in Listing 3), and @Utility
to reusable methods (Listing 2). These annotations help our

analyser to differentiate between the pieces of code (methods)

that are written to document a certain API usage, and pieces

of code that are reusable across multiple API usage examples.

As a first step, each annotated API usage example (i.e. a single

Java source file) is parsed to generate its type-resolved abstract

syntax tree (AST), which is then traversed and analysed by

a visitor to locate all utility method invocations and their

bindings found in the bodies of both documentation and utility

methods.

1 @Documentation
2 p u b l i c v o i d docBorde rLayou t () {
3 J P a n e l p a n e l = new J P a n e l () ;
4 p a n e l . s e t L a y o u t (new Borde rLayou t ()) ;
5 J B u t t o n b u t t o n = c r e a t e B u t t o n (” B u t t o n ” , f a l s e) ;
6 p a n e l . add (b u t t o n , Borde rLayou t .NORTH) ;
7 showGUI (” BorderLayoutDemo ” , p a n e l) ;
8 }

Listing 3. A Non-linear Documentation Method.

To parse and analyse Java source code, we used Eclipse

Java Development Tools (JDT)3, which is an Eclipse project

that provides a set of plugins that support Java code parsing,

analysis, validation, and manipulation (e.g. refactoring). More-

over, these JDT plugins contain a set of APIs to facilitate their

extension and reuse [27].

B. Linear Code Synthesis

The prototype automatically in-lines all utility invocations

found in documentation methods to synthesise and generate

linear code examples. However, successfully in-lining the

utility method invocations requires ensuring that the resulting

synthesised code is syntactically correct. For example, both

the documentation and utility methods must not contain any

variables with the same name that will clash with each

other after the in-lining process is complete; therefore, to

ensure the correctness of the synthesised code examples, our

prototype reuses the refactoring capabilities of Eclipse JDT to

in-line utility method invocations. This refactoring operates by

replacing a reference (i.e. a method call) with the method’s

implementation, and also ensures that no syntax errors will

result (e.g. renames a variable if another variable with the

same name is present).

After parsing and analysing each code example, a code

synthesiser (transformation stage in Figure 1) takes as input all

the documentation methods found in the example source file

and processes them individually to locate all utility invocations

within their bodies. After processing the selections of each

method invocation (i.e. its position as an AST node), and

prior to completing the in-lining process, the prototype also

processes the body of the invoked utility method to ensure that

it is linear and that all the other utility method invocations

within its body are in-lined first. It also ensures and warns the

user if the utility method declaration contains circular calls to

utility methods, as this is a restriction placed by the JDT’s

inline feature.

C. Detection and Elimination of Dead Code

Dead code is source code that is never executed [28].

Furthermore, dead code elimination is usually applied for the

purpose of optimisation (e.g. reducing the program size) or

refactoring [29]. Since in-lining method invocations can result

3https://projects.eclipse.org/projects/eclipse.jdt

609

in some pieces of unreachable code, it is therefore crucial

for our approach to consider the removal of dead code. For

example, in-lining the method call at line 5 in Listing 3 will

result in the body of the if-statement in the createButton
method (lines 3-5 in Listing 2) being dead because the passed

boolean value is ‘false’ (see lines 2-4 in Listing 4).

1 J B u t t o n b u t t o n = new J B u t t o n (” B u t t o n ”) ;
2 i f (f a l s e) {
3 b u t t o n . s e t F o r e g r o u n d (t h i s . f o r e g r o u n d C o l o r) ;
4 }

Listing 4. Dead Code.

Because dead code detection and elimination is a com-

mon compiler optimisation process, our prototype reuses the

capabilities of JDT in detecting and eliminating unresolved

compilation errors and warnings. Moreover, JDT Core4 defines

a rich description of all standard Java problems as detected by

the compiler.

Once all documentation methods are in-lined, the entire

compilation unit is passed to a code processor that detects and

removes dead code (transformation stage in Figure 1). Next,

the compilation unit is sent to a code generator (generation

stage in Figure 1) that generates linear and dead-code-free

API examples and stores them in a separate package under the

source folder of the same project. All the generated Java source

files are copies of the original files, which remain unchanged

to allow any future modifications.

VI. PLAN FOR EVALUATION

It is evident that source code with fewer lines tends to

be more maintainable; therefore it is prudent for software

developers to structure their code into reasonably sized files;

however, to evaluate the usefulness of our proposed synthesis

approach in helping API developers with writing less-repetitive

code examples, we started to collect API documentation code

examples from open-source projects, factor out duplicated

code in a set of utility methods, and assess the benefits of

our approach in terms of code conciseness. We plan to collect

more examples to gain more insights into the strengths and

limitations of our proposed approach and better understand

the mechanisms that can be used to extend our approach.

The collected examples will firstly be rewritten using the

proposed approach, and then a set of software maintainability,

complexity, and conciseness metrics will be used to directly

compare the original and rewritten code examples. By doing

so, we aim to answer RQ1.

To validate our core assumption (i.e. linear code is easier

for API users to comprehend and follow), we will conduct

a controlled user-based experiment. Through this code com-

prehension experiment, we intend to assess the impact of

both linear and non-linear code on the performance of API

users. Also, the code examples will be of different sizes

to assess whether the length of a linear example has an

impact on its understandability. In addition, to ensure the

representativeness and diversity of the experimental subjects,

4https://www.eclipse.org/jdt/core

we will strive to target both professional Java developers

and university students. The participants will be divided into

two groups, each of which will be working with a different

representation of the API examples (i.e. linear and non-linear).

All participants will be requested to perform the same set

of code comprehension tasks. Through these tasks, we will

carry out a quantitative comparison between the two groups

of participants. This comparison will be based on three main

variables: a) the accuracy of answers, b) the response time

of accurate answers, and c) the response time of inaccurate

answers. By conducting this user-oriented experiment, we aim

to answer RQ2.

VII. CURRENT STATUS AND FUTURE WORK

Thus far, an initial version of the code synthesis prototype

has been implemented, and a set of API code examples from

an open-source project5 was extracted to validate the useful-

ness of our proposed approach. The current results are encour-

aging; however, we plan on extracting more usage examples

from other popular open-source projects and conducting the

user-based experiment discussed in Section VI to ensure that

our prototype can benefit both API developers and users

in terms of programming productivity and API learnability.

Moreover, we will investigate the ability of our prototype to go

beyond what JDT’s inline feature allows (i.e. in-lining is only

possible on simple methods with a single return statement,

or methods used in assignments). In addition, we intend to

implement two extensions, i.e. a) an interactive linear example

generator that allows a user’s interaction and specification of

some properties of the generated API examples, and b) a

feature that allows the API developers to know what APIs

need to be demonstrated in code examples by reporting

documentation coverage metrics (similar to test coverage). We

would also like to investigate whether the proposed approach

could be applicable to other strongly-typed languages.

VIII. CONCLUSION

The shortage of API code examples in API documentation

has been shown to be a significant API learning obstacle.

On the other hand, writing and maintaining such API usage

examples can be an expensive process for API developers. In

this paper, we presented a PhD project aimed at addressing

this problem by proposing a linear code synthesis approach

that facilitates the process of linearising and generating code

examples for API documentation. Our assumption is that,

on the one hand, many simple and standalone API code

examples are preferable from the users’ perspective, while on

the other hand, such examples are repetitive and tedious for

developers to write and maintain. We also argued that linear

code examples can increase the productivity of API users,

and we plan to empirically validate this by carrying out a

user-based code comprehension experiment (Section VI). The

results obtained thus far are promising, and further research

will be conducted to extend the features of the proposed

prototype (Section VII).

5https://www.eclipse.org/epsilon/

610

REFERENCES

[1] M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue, and
D. Lo, “Improving reusability of software libraries through usage pattern
mining,” Journal of Systems and Software, vol. 145, pp. 164–179, 2018.

[2] P. T. Nguyen, J. Di Rocco, C. Di Sipio, D. Di Ruscio, and M. Di Penta,
“Recommending api function calls and code snippets to support software
development,” IEEE Transactions on Software Engineering, 2021.

[3] E. Raelijohn, M. Famelis, and H. Sahraoui, “Checking temporal pat-
terns of api usage without code execution,” in 2021 IEEE/ACM 9th
International Conference on Formal Methods in Software Engineering
(FormaliSE). IEEE, 2021, pp. 86–96.

[4] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE software, vol. 26, no. 6, pp. 27–34, 2009.

[5] M. Meng, S. Steinhardt, and A. Schubert, “Application programming
interface documentation: what do software developers want?” Journal
of Technical Writing and Communication, vol. 48, no. 3, pp. 295–330,
2018.

[6] G. Uddin and M. P. Robillard, “How api documentation fails,” IEEE
software, vol. 32, no. 4, pp. 68–75, 2015.

[7] M. P. Robillard and R. DeLine, “A field study of api learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[8] D. M. Arya, J. L. Guo, and M. P. Robillard, “Information correspon-
dence between types of documentation for apis,” Empirical Software
Engineering, vol. 25, no. 5, pp. 4069–4096, 2020.

[9] J. Kim, S. Lee, S.-w. Hwang, and S. Kim, “Adding examples into java
documents,” in 2009 IEEE/ACM International Conference on Automated
Software Engineering. IEEE, 2009, pp. 540–544.

[10] L. Wang, L. Fang, L. Wang, G. Li, B. Xie, and F. Yang, “Api example:
An effective web search based usage example recommendation system
for java apis,” in 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011). IEEE, 2011, pp. 592–
595.

[11] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. SE-2, pp. 308–320, 1976.

[12] N. Peitek, S. Apel, C. Parnin, A. Brechmann, and J. Siegmund, “Program
comprehension and code complexity metrics: An fmri study,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 5 2021, pp. 524–536.

[13] S. Scalabrino, G. Bavota, V. Christopher, L.-V. Mario, P. Denys, and
O. Rocco, “Automatically assessing code understandability: How far are
we?” in International Conference on Automated Software Engineering
(ASE). IEEE, 2017, pp. 417–427.

[14] A. Campbell, “Cognitive complexity: A new way of measuring under-
standability,” SonarSource S.A., Tech. Rep., 2018.

[15] K. Nybom, A. Ashraf, and I. Porres, “A systematic mapping study
on API documentation generation approaches,” in Proceedings - 44th
Euromicro Conference on Software Engineering and Advanced Appli-
cations, SEAA 2018. Institute of Electrical and Electronics Engineers
Inc., 2018, pp. 462–469.

[16] R. P. Buse and W. Weimer, “Synthesizing API usage examples,” in
Proceedings - International Conference on Software Engineering, 2012,
pp. 782–792.

[17] S. M. Nasehi and F. Maurer, “Unit tests as api usage examples,” in 26th
IEEE International Conference on Software Maintenance. IEEE, 2010,
pp. 1–10.

[18] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang, “Mining API
usage examples from test code,” in Proceedings - 30th International
Conference on Software Maintenance and Evolution, ICSME 2014.
Institute of Electrical and Electronics Engineers Inc., dec 2014, pp. 301–
310.

[19] D. Hoffman and P. Strooper, “API documentation with executable
examples,” Journal of Systems and Software, vol. 66, no. 2, pp. 143–156,
2003.

[20] J. Kim, S. Lee, S. W. Hwang, and S. Kim, “Enriching documents
with examples: A corpus mining approach,” ACM Transactions on
Information Systems, vol. 31, no. 1, 2013.

[21] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documen-
tation,” in Proceedings of the 36th international conference on software
engineering. IEEE Computer Society, 2014, pp. 643–652.

[22] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving API
documentation using API usage information,” in 2009 IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC, 2009,
pp. 119–126.

[23] S. Jiang, A. Armaly, C. McMillan, Q. Zhi, and R. Metoyer, “Docio:
Documenting API Input/Output Examples,” in IEEE International Con-
ference on Program Comprehension (ICPC). IEEE Computer Society,
2017, pp. 364–367.

[24] L. Wei Mar, Y.-C. Wu, and H. Christine Jiau, “Recommending
Proper API Code Examples for Documentation Purpose,” in 18th Asia-
Pacific Software Engineering Conference, 2011. [Online]. Available:
http://www.koders.com/

[25] C. McMillan, D. Poshyvanyk, and M. Grechanik, “Recommending
Source Code Examples via API Call Usages and Documentation,” in The
2nd International Workshop on Recommendation Systems for Software
Engineering, 2010, p. 83.

[26] J. Jiang, J. Koskinen, A. Ruokonen, and T. Systä, “Constructing Us-
age Scenarios for API Redocumentation,” in 15th IEEE International
Conference on Program Comperhension(ICPC’07), 2007.

[27] “Eclipse java development tools (jdt).” [Online]. Available: https:
//www.eclipse.org/jdt/

[28] R. C. Martin, Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2008.

[29] S. Romano and G. Scanniello, “Exploring the use of rapid type analysis
for detecting the dead method smell in java code,” in 2018 44th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2018, pp. 167–174.

611

