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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:People with disabilities disproportionately experience negative health outcomes. Purposeful

analysis of information on all aspects of the experience of disability across individuals and

populations can guide interventions to reduce health inequities in care and outcomes. Such

an analysis requires more holistic information on individual function, precursors and predic-

tors, and environmental and personal factors than is systematically collected in current prac-

tice. We identify 3 key information barriers to more equitable information: (1) a lack of

information on contextual factors that affect a person’s experience of function; (2) underem-

phasis of the patient’s voice, perspective, and goals in the electronic health record; and (3) a

lack of standardized locations in the electronic health record to record observations of func-

tion and context. Through analysis of rehabilitation data, we have identified ways to mitigate

these barriers through the development of digital health technologies to better capture and

analyze information about the experience of function. We propose 3 directions for future

research on using digital health technologies, particularly natural language processing

(NLP), to facilitate capturing a more holistic picture of a patient’s unique experience: (1) ana-

lyzing existing information on function in free text documentation; (2) developing new NLP-

driven methods to collect information on contextual factors; and (3) collecting and analyzing

patient-reported descriptions of personal perceptions and goals. Multidisciplinary collabora-

tion between rehabilitation experts and data scientists to advance these research directions

will yield practical technologies to help reduce inequities and improve care for all

populations.

Author summary

As medical successes have increased lifespans and improved health outcomes around the

world, global ageing and more frequent occurrence of chronic diseases are contributing to
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a corresponding increase in the impact of disability worldwide. People with disabilities

often experience injustices and ableism in healthcare, and as the prevalence and impacts

of disability continue to grow, there is a clear need for more disability-focused and disabil-

ity-aware practices in healthcare. Here, we present a roadmap towards bringing better

information on the concrete impacts and lived experience of disability into healthcare

practice, as a key step towards addressing this need. We describe 3 major barriers to col-

lecting and analyzing information on people’s experience of function and disability,

including a lack of contextual information, underemphasis of the patient’s voice and expe-

rience, and technical challenges in recording disability-related information in health rec-

ords. These barriers create significant information inequities that contribute to the

disparities in health and healthcare experienced by disabled people. We further propose 3

specific directions for new research and development on using digital health technologies,

particularly natural language processing (NLP) and other artificial intelligence technolo-

gies, to help mitigate these barriers and support more equitable healthcare for people with

disabilities.

Introduction

Disability affects over 25% of adults in the United States, and the number of people experienc-

ing disability globally is rapidly increasing [1]. People with disabilities experience disparities in

health and healthcare, from higher hospital readmission rates to greater multimorbidity and

mortality risk [2–4] and are faced with reduced access to care and lower quality of care

received [5,6]. While disparities disproportionately affect disabled people, the disparate out-

comes themselves are not caused solely by disability and are largely avoidable [7,8]. The Inter-

national Classification of Functioning, Disability and Health (ICF)—the international

standard conceptual model of function and disability—represents disability as a multidimen-

sional phenomenon deeply entwined with a person’s health and with barriers and facilitators

in their environments [9]. This framework thus provides an invaluable lens for understanding

how disability and disparities interact, and how disparities are magnified when disability inter-

sects with other marginalized identities and combinations of ableism, racism, and gender dis-

crimination reduce opportunities for employment, housing, education, and community

activity [10,11].

This multidimensional lens presents 2 key questions for reducing disparities for people

with disabilities: understanding where the disparities come from (i.e., contributions of envi-

ronmental and personal factors in addition to health condition and impairment) and how they

are realized in peoples’ lived experiences. Many factors affect disparities in outcomes, from

bias in provider interactions [12,13] and quality of services received [14,15] to structural dis-

parities in access to healthcare [16,17] and rates of poverty [18,19]. By knowing what to look

for, we can identify people at risk early and tailor the services they receive to support their

underlying needs [8,20]. Each person may also experience impairments or functional limita-

tions in different ways; for example, reduced mobility can affect getting to work, meeting with

family and friends, and other activities to varying degrees. By understanding how a person’s

functioning affects their experience of their own health and their priorities, we can better

address what matters most to them and achieve person-centered goals in their care.

In this narrative review, we draw on an interdisciplinary set of references across the digital

health, artificial intelligence, physical medicine and rehabilitation, and disability studies litera-

tures to illustrate current challenges to understanding people’s unique situations in healthcare

and identify opportunities for addressing these challenges with digital health technologies. We
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focus on information about a person’s situation captured during clinical encounters as the pri-

mary source of information used in healthcare decisions. The electronic health record (EHR)

helps to aggregate and communicate health information for providing optimal care, and thus

presents significant potential for understanding the origin and experience of disparities in the

experience of function [21]. However, the practical value of EHR data is often limited by barri-

ers of technology and practice that restrict our ability to document and analyze information

on individual needs, priorities, and experiences [22]. This lack of individualized information

creates information inequities that contribute to inequitable processes and outcomes across

patient care, health system administration, and social support programs. As illustrated in Fig

1, we define 3 key information barriers that lead to loss of valuable information and under-

standing about peoples’ unique situations in their roles as patients, directly contributing to

these inequities. We further describe 3 ways in which digital health technologies—particularly

natural language processing (NLP)—can help capture more of this important information and

facilitate multidimensional understanding of patient needs.

The language used to discuss disability is an important factor in the inclusion or marginali-

zation of disabled people [23,24]. In this article, we use a mixture of the identity-focused “dis-

abled people,” to reflect the nature of disability as an identity and political category; the

person-focused “people with disabilities,” to reflect a person-first approach; and “persons

experiencing disability,” to reflect the conceptualization (reified in the ICF) of disability as a

phenomenon produced in the interaction of a person with their environment. We refer to

“patients’ situations” and “patient needs” to reflect our focus on digital health technologies spe-

cifically in the healthcare setting, in which people assume a patient role.
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Fig 1. Information barriers to a complete picture of patients’ unique situations in EHR create information inequities at multiple levels. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1; 2; and4to6:Pleaseverifythatallentriesarecorrect:Panel (A): We
describe 3 significant information barriers in current practice, which significantly reduce the amount of information about patients’ situations recorded in the
EHR and negatively impact decisions made about patient care based on the EHR. Panel (B): We identify 3 directions for new research on digital health
technologies to facilitate better understanding patient experience. EHR, electronic health record.

https://doi.org/10.1371/journal.pdig.0000135.g001
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Multidimensional factors of disability

Clearly defining the factors affecting disability is the first step for effective analysis. We draw

on the common language of the ICF, which presents a biopsychosocial model defining disabil-

ity as “a multidimensional phenomenon resulting from the interaction between people and

their physical and social environment,” including impairments in body functions and struc-

tures, activity limitations, and participation restrictions [9]. The ICF framework enables cap-

turing a deep understanding of the multiple factors affecting an individual’s experience,

including both health characteristics and contextual factors. Fig 2 illustrates how the ICF can

be used to ground analysis of valuable observations in EHR, mapping information about

impairments to body functions or structures, limitations in functional activity, environmental

factors such as use of assistive devices, and social participation and priorities to standardized

categories within the ICF framework. The ICF thus provides a powerful multidimensional

framework to represent patients’ unique situations and help guide more equitable decision-

making.

Information barriers to a multidimensional picture of disability in practice

Using individual-level data such as that within the EHR to inform efforts to address disparities

in the experience of disability faces significant practical and technical barriers. Translating

health data into a multidimensional picture of an individual’s experience requires synthesizing

information on function (including body functions, activities, and participation), personal

Fig 2. Examples of information related to different domains of the ICF in free text data.Diverse data, including information in free text, can be linked to
standardized categories in the ICF classification, providing an internationally recognized conceptual structure for capturing multidimensional factors of
patients’ functional experience. NLP technologies for information extraction and normalization can serve to perform this linking automatically, making free
text observations accessible for analysis and insight. ICF, International Classification of Functioning, Disability and Health; NLP, natural language processing.

https://doi.org/10.1371/journal.pdig.0000135.g002
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experience (including behaviors and choices), and contextual factors that may reflect structural

or individual inequities. This requires both clinical observations—such as in histories, physical

examinations, and activity measures—and patient-provided information. As Fig 3 illustrates,

these sources of information may require multiple means of assessment and data collection,

and often complement one another by capturing different aspects of a patient’s situation.

We highlight 3 major barriers in current practice to recording and analyzing this informa-

tion: (1) the challenge of measuring a patient’s contexts of functioning; (2) underemphasis of

the patient’s perspective (affecting both personal experiences and context); and (3) the techno-

logical gap in EHRs (limiting the availability and utility of function, personal experience, and

context information). The interaction of these barriers reduces the information available in the

EHR about the individual experience of disability and about key personal and environmental

factors that help guide treatment plans and identify needs.

Barrier 1: The contextual measurement challenge. Functional outcomes are not deter-

mined by an individual’s health state alone, but result from the interaction of an individual

with their physical, social, and cultural environment. Thus, any picture of a person’s function

is incomplete while it lacks information on the contexts they live in, which the ICF separates

into personal and environmental factors. Contextual factors have been shown to be critical for

measuring both overall function [25,26] and work outcomes [27].

However, measuring contextual factors in a standardized way remains a significant chal-

lenge [28]. While some functional assessment instruments have been developed to include

measurement of contextual factors [29], such measures are burdensome to employ in regular

clinical practice, and the lack of standardization around contextual factors precludes their

structured documentation for easy use. Integration of contextual measurement in EHRs is

minimal, limited by the cost of customization and lack of connectivity between EHRs and

other technologies well-suited for capturing information on context, such as mobile devices

and passive sensors [30]. Development of initial frameworks for capturing social determinants

of health (SDOH), which capture both personal and environmental factors [31], illustrate a
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Fig 3. Conceptual illustration of the multiple dimensions of health data needed to fill in the picture of a patient’s functional situation. Capturing these
data requires information both from clinical observations and patient-provided information. Without including all of functional assessments, the patient’s
personal experiences, and their context, the overall picture of the patient’s situation is incomplete.

https://doi.org/10.1371/journal.pdig.0000135.g003
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potential path forward leveraging both structured and unstructured data [32], though their use

has been complicated by the lack of shared standards for what to document and how [33].

Broader documentation of contextual factors will require surmounting similar challenges.

Barrier 2: Underemphasis of the patient’s perspective. Under the medical model of dis-

ability, individuals experiencing disability have historically been reduced to a diagnosis of

physical, cognitive, and emotional impairments, and healthcare has focused on providing

treatments to fix a “problem.” This way of thinking medicalizes the experience of disability

and embeds ableism into the structure of health systems and the fabric of the healthcare pro-

cess. Even healthcare providers with specialized experience and training to work with people

with disabilities can exhibit a biased view of disability as inherently negative [34], and people

with a disability consistently rate their quality of life higher than others perceive it [35]. Addi-

tionally, providers often dismiss and remain ignorant of different kinds of disability experi-

ences, and in an effort to fix perceived “problems,” may miss the mark on patient-centered

care and patient-driven goals.

This medicalization of disability both contributes to and is exacerbated by the underempha-

sis of the patient’s perspective—i.e., the patient’s views on their own health and functioning

and their priorities for care and quality of life—in the health record. Epistemic injustice is

often encouraged by privileging medical assessment over personal experience, elevating the cli-

nician’s status and diminishing the patient’s perspective [36]. At the same time, medical pro-

fessionals may disregard or deem unreliable information reported by disabled people [37].

While clinical expertise is undeniably important, overvaluing one’s own expertise can lead to

medical errors [38], and a medical perspective of disability as a pathology needing treatment

can ignore personal values of community and culture [39]. This affects the doctor–patient rela-

tionship, and persons experiencing disability often feel ignored and left out of treatment deci-

sions [40]. As Peña-Guzmán [38] argues, “Medical information is wholly insufficient to

understand the lived experience of a person with a particular impairment, an experience satu-

rated with social, cultural, political, and historical complexities typically untouched by even

the best and most capacious forms of medical education.”

Collecting information on the patient’s perspective and experience is rarely practiced in

patient encounters. This information is thus largely missing from health documentation and

unavailable to inform clinical decision-making. The increasing adoption of patient portals and

technologies for collecting patient-reported information outside the clinic (such as mobile

health (mHealth)) are valuable steps towards providing patients with the ability to communi-

cate to their providers what is important to them and what is affecting their daily lives. Such

tools to help bring the patient’s perspective into the clinical conversation are key to advancing

shared decision-making for patient-centered care [41,42].

Barrier 3: The EHR standardization gap. The inherent tension in EHRs between stan-

dardization and expressivity is a core challenge of recording and using multidimensional

information on patients’ unique experience of function and disability [43]. Standardization

makes communicating and utilizing information easier and enhances EHR data sharing and

reuse in research and practice [21,44]. Some rehabilitation disciplines have been making initial

strides in standardizing outcome reporting [45,46], and the ICF has been explored as a practi-

cal coding system [47,48]. However, the lack of implementation standards for capturing data

on function or context in EHR systems—and the conceptual difficulty of mapping unique fac-

tors of context and personal experience to clearly defined data fields—often leaves standardiza-

tion out of reach in practice [22]. Function, personal experience, and context are thus

primarily documented in free text fields in the EHR [49,50]. This imposes burdens on clini-

cians, requiring time-consuming documentation that may conflict with administrative and

reimbursement demands [51] as well as searching through narrative records for information
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that varies in consistency [22], and limits the ability of health systems to leverage this informa-

tion in administrative decision-making [52].

However, free text documentation also has significant advantages for capturing information

on function, personal experience, and context. The expressivity of natural language allows

both clinicians and patients to describe complex interactions between people and their envi-

ronment and add salient details beyond what standardized measures of function can capture

[22]. This expressivity is key for distinguishing between different individuals’ needs for care,

such as their own perception of their functioning or the contextual factors that differentiate

between an inconvenience and a severe limitation. As Fig 4 illustrates, the same health condi-

tion and/or impairment may have minimal impact on function in a supportive environment,

but lead to significant impacts on function and well-being in non-supportive environments.

These highly individualized differences are difficult to capture in standardized data fields, but

natural to communicate in a free text description. Thus, moving towards more value-based

care that adapts to the needs of diverse individuals requires balancing standardization and the

time and effort required in healthcare documentation with documentation that is expressive

enough to record the complex factors contributing to a patient’s unique experience.

Digital health facilitators: How better technologies can help efforts to
advance equity

Advances in medical data science and AI technologies offer new opportunities to help mitigate

these barriers—and reduce the information inequities they create—by making it easier to record

and analyze a more multidimensional picture of individual function. As we redefine and adapt

data collection practices to support the growing need for rehabilitation care [1], we can focus on

combining structured data elements such as performance measures and other standardized

information on functional outcomes with the flexibility and expressivity of free text documenta-

tion to collect a more nuanced picture of individual context and personal experience [53].

Within the range of digital health technologies, NLP holds particular promise for enabling

more equitable data capture and analysis on factors of function. NLP technologies enable anal-

ysis and standardization of free text data while retaining the human detail and ease of use of

natural language. Fig 5 illustrates a conceptual example of NLP analysis. In this example, the
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https://doi.org/10.1371/journal.pdig.0000135.g004
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https://doi.org/10.1371/journal.pdig.0000135.g005
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free text is first analyzed to identify where individual pieces of medical and functional informa-

tion are mentioned. These spans of text are then mapped to standardized categories in con-

trolled vocabularies (e.g., ICD-9 codes, ICF categories, SNOMED CT codes) and analyzed to

identify other relevant attributes such as historicity or details within a standardized category

(e.g., “spouse” as a specific member of immediate family). Individual pieces of information are

then linked to one another to reflect their relationships: e.g., that a fall led to a blood clot

located in the knee. Finally, this structured information is synthesized into natural language

descriptions and displayed to the provider in the EHR platform. This example does not reflect

a specific existing NLP pipeline, but rather serves to illustrate a variety of relevant analyses that

can be conducted using NLP technologies.

We describe 3 directions for future research on using digital health technologies as facilita-

tors to help address the 3 barriers we have identified, with a particular focus on NLP tools and

methodologies. These research directions can be realized through multidisciplinary collabora-

tions between rehabilitation experts and experts in AI and data science. The relationships

between multidimensional patient information, the information barriers we identify, and

NLP-based facilitators are illustrated in Fig 6. Our 3 facilitators are described in order of

increasing scope, beginning with technologies achievable in the short term with the use of

existing EHR data from rehabilitation and other health care.

Facilitator 1: Development of NLP technologies to analyze information on functioning

in EHR notes. Rich information on individual functional status is already frequently

recorded in free text notes in the medical record [49,54]. Studies of the language used by pro-

viders and patients to describe functional outcomes [55,56] and analyses of the linguistic struc-

ture of these descriptions [57,58] have laid valuable groundwork for developing NLP systems

attuned to the language of function.

Technological solutions to extract and organize this information (including descriptions of

impairments, activity limitations, and participation restrictions) from free text are the focus of

a growing body of research. Kukafka and colleagues [59] reported one of the first studies on

coding EHR free text for patient functioning, targeting 5 distinct activity types. Agaronnik and

colleagues [50,60] used NLP to extract data about wheelchair use from EHR narratives and to

identify the frequency with which functioning was documented in oncology notes. Newman-

Function
(Body Functions/Structures,

Activity, Participation)

Barrier 1: Contextual

Measurement Challenge

Barrier 2: Under-emphasis

of Patient Voice

Barrier 3: EHR

Technology Gap

Facilitator 1: NLP methods

to analyze function

information

Facilitator 3: Patient-reported

narratives for experience of 

function

Types of 

Information

Information

Barriers

Digital Health

Facilitators

Facilitator 2: Explore

documentation of context

across settings

Personal Experience

Context

Fig 6. Relationships between multidimensional information on a patient’s situation information barriers limiting collection of this information and

ways in which digital health technologies such as NLP can serve as facilitators to lower these barriers.NLP, natural language processing.

https://doi.org/10.1371/journal.pdig.0000135.g006
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Griffis and colleagues developed methods for extracting information about limitations in daily

living activities from EHR text, including linkage to the ICF [61–63]. Functioning information

has also been investigated in targeted contexts such as geriatric syndrome [64,65] and frailty

[66].

Translating such technologies to practical settings requires new cross-disciplinary research

by rehabilitation scientists and clinicians together with experts in NLP and AI, to investigate

the range of real-world information needs in rehabilitation settings and develop use-grounded

standards for evaluating NLP technologies in practice. Advancing research in this area will

empower analysis of the rich information already recorded in existing clinical rehabilitation

records while maintaining the detail and flexibility of free text clinical narratives.

Facilitator 2: Exploration of contextual documentation across encounter settings.

Documenting environmental and personal factors affecting a person’s function is an impor-

tant part of identifying interventions and environmental modifications to maintain or restore

function [67,68]. The expressivity of free text allows for salient aspects of a person’s context to

be documented in human detail, without restricting it to standardized categories that may not

capture relevant aspects of the environment or person [28,69]. While the contextual measure-

ment challenge limits the availability of structured data on context from standardized instru-

ments, significant information on patient environment and personal factors is often recorded

in free text notes from clinical encounters. This information is not yet well characterized, and

NLP-driven analysis of notes combined with analysis of relevant billing codes and/or stan-

dardized measures where available can provide valuable insight into what kinds of contextual

factors are documented in current practice, when, and in what form.

In addition, encounters in different clinical settings lend themselves to documenting differ-

ent types of information. For example, an analysis of notes from physical therapy encounters

for inpatient stroke rehabilitation found some information on environmental factors [54].

Other settings such as outpatient and transitional rehabilitation, as well as telehealth consulta-

tions and social work encounters, are also well positioned for providers to record key details of

a patient’s physical and social environment. Analyzing documentation across various clinical

settings will help to identify future opportunities presented by shifts in care delivery methods

(such as increased use of telehealth) and documentation practice for capturing greater detail

on individuals’ context.

Facilitator 3: Patient-reported narratives of functioning and disability. The patient

themselves is the best source for learning about their own perspective on their functioning and

their priorities and personal goals in their healthcare. Patient-reported outcome measures

(PROs) have experienced rapid growth in research focus and clinical application in recent

years [70,71]. PRO usage has been growing in practice, though numerous logistical, adminis-

trative, and patient challenges remain limiting factors for broader uptake [72,73]. Newer mea-

sures are allowing patients to provide broader information on their functioning, enabling

recording of functional status outside of the clinical setting [74].

The potential for free text items in PROs, with which patients can freely describe salient

aspects of their functional experience, has yet to be explored. As methods to integrate PROs

into EHR systems continue to develop [75], narrative items offer a potential route to combine

the patient’s perspective and experience together with clinical observations in the EHR. The

OpenNotes effort has demonstrated the potential of this approach in access to the record [76];

similar linkage to PRO instruments can further amplify personal experience. Eliciting patient

perspectives and preferences poses significant challenges, but the potential impact in patient-

centered decision-making merits careful investigation [77]. Importantly, the open state of the

field presents an opportunity to co-develop free text items for describing functional status in

PROs alongside the NLP technologies used to analyze them. Entering at the ground level in

PLOS DIGITAL HEALTH

PLOSDigital Health | https://doi.org/10.1371/journal.pdig.0000135 November 17, 2022 10 / 19

https://doi.org/10.1371/journal.pdig.0000135


designing both instrument items and analytic technologies provides an opportunity to ground

the entire design and evaluation process in principles of equity, and to ensure the capacity to

report the broadest set of contextual and patient factors affecting the experience of function.

Doing so will directly support the development of patient-centered goals that reflect the unique

lived experience and diverse needs of each person.

A vision forward: Impacts of the proposed digital health directions in practice

The research and development directions we have proposed will integrate naturally with other

technologies and approaches in the growing digital health ecosystem to support more success-

ful and patient-centered care. Structured coding systems such as the ICD classifications or

CPT have transformed automated clinical decision support systems and data-driven quality

assessment; NLP-driven alignment of clinical observations with the ICF can integrate func-

tional outcomes and facilitators into these processes as well [63]. Indexing information on

function and context in EHR can not only support clinician-directed chart review to under-

stand functional trajectories over time, but also enable automated visualization of functional

measurements and support remote monitoring in patient care. Further, retrieval and display

of patient experiences and priorities alongside clinical measures of function can help guide

patient-centered interventions and interactions to improve health outcomes [78].

Our discussion focused specifically on clinical encounters, which are only one source of

information about a person’s experience of function. While further work is needed to investi-

gate barriers and facilitators in combining clinical data with other sources of person-centered

information, there are clear implications of digital health tools for addressing disparities expe-

rienced by people with disabilities outside the clinic as well. Technologies drawing on EHR

data can be combined with patient-generated health data from consumer devices to combine

quantitative biological and biomechanical measures with clinical and patient-reported obser-

vations for a more holistic understanding of functional experience. Analysis of individual-level

data can be used to identify persistent barriers to function across specific patient populations,

informing changes in policy and practice aimed at reducing outcome disparities. Better infor-

mation on function and its contributing factors can also inform financial decisions such as

reimbursement for care or government disability benefits, which directly affect long-term

functional outcomes, to reduce observed disparities by better addressing the specific needs and

values of individuals [79,80]. However, as we discuss in the following section, these significant

opportunities for positive impact can only be achieved through careful design and with a thor-

ough awareness of the potential risks of inappropriately designed technologies.

Limitations and the need for situated design

Our discussion thus far has focused on the potential for using digital health technologies as a

tool for positive change in disabled people’s health equity. There are also important factors in

the design, development, and management of these technologies that can serve as barriers to

this positive change, and lead technologies (and technology-assisted processes) designed with

good intentions to actually contribute to widening inequities. Achieving our vision in practice

thus also requires both an awareness and careful navigation of these risks throughout the tech-

nology lifespan, from initial conceptualization to management and decommissioning of

deployed technologies. We briefly discuss key risks here and emphasize the importance of fur-

ther research and development of best practices around equitable and inclusive use of health

information technologies, particularly when related to disability.

Access and accessibility. Inequities in access to healthcare services are widely recognized

as major contributors to inequitable health outcomes. Access issues are exacerbated for
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disabled people and people with chronic health conditions, who may need access to highly spe-

cialized care that is often least available in the areas where it is needed most [81]. Adding digi-

tal health technologies into the picture can further compound access challenges: Technologies

for data collection (e.g., mHealth, environmental sensors) are frequently expensive, difficult to

source, and may not be covered by health insurance plans; while high-performance data ana-

lytics technologies (such as many NLP systems) may require expensive hardware or cloud

computing services that are only realistically accessible to large medical centers [82,83]. Reli-

ance on digital health technologies must therefore be balanced in each situation with careful

consideration of economic, geographic, and cultural access of a patient population, so as not to

further widen existing inequities. There is also a significant need for further research on reduc-

ing the cost of digital health technologies, for patients, providers, and health systems.

The usability and accessibility of digital health technologies is also a critical deciding factor

in whether those technologies help or harm. While many of the uses of digital health discussed

in this article are not patient-facing technologies but rather information-processing technolo-

gies without a direct user interface, there remain significant concerns around transparency

and the role of the technology that must be addressed. The use of AI technologies within deci-

sion-making is often invisible to those who are affected by it (e.g., patients affected by AI analy-

sis of their health data), and even visible technology use may still be opaque and difficult to

explain [84]. In technologies that are user-facing, safety issues in both information display and

user interaction have already been identified in consumer health apps [85]; the expansion of

patient-facing tools for data collection, such as our proposal of collecting narratives of lived

disability experience, presents further risks of inaccessible system design excluding those who

are most meant to be included. Turning digital health directions into concrete technologies

thus must include both accessibility of interaction and accessibility of understanding what the

technology is doing and how.

Data and representation. The counterpart of ensuring that technologies are accessible is

ensuring that the information recorded and analyzed with those technologies is both accurate

and representative. Documentation errors are common [86], and time demands and burnout

can reduce healthcare providers’ engagement with care and increase rates of medical errors

[87], further affecting the quality of documentation (and therefore, the quality of any analysis

of that documentation). Personal prejudices and biases may similarly affect the accuracy of

documentation and the language used in it [88,89], and providers may lack the vocabulary or

expertise to appropriately represent the experiences of marginalized patients [90]. Further, a

lack of access to providers with appropriate specialized training may mean that even when

patients with complex health needs do receive care, that care may not accurately reflect their

needs and experiences. Digital health technologies, and particularly NLP technologies working

directly with provider language, must therefore be designed with a sensitivity to the fidelity

and the representativeness of the data collected in a given setting and ideally combined with

multiple distinct data sources (including PRO tools) to provide as complete a picture as possi-

ble of the patient’s situation.

An important possibility for providing additional data sources, and directly incorporating

the patient’s perspective into the EHR, lies in recording and transcribing healthcare encoun-

ters using speech to text technologies, thus making the patient–provider conversation itself

available for NLP analysis. Automated transcription has shown significant promise in improv-

ing providers’ data entry workflows, and some preliminary studies have explored its use in

analyzing clinical conversations directly [91]. These tools can provide direct access and oppor-

tunities for insight into the patient’s description of their own experience and priorities, in addi-

tion to what PRO tools elicit. However, conversational data imposes additional requirements

on analytic pipelines, including accounting for the wide-ranging and continuous nature of a
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conversation (in contrast to discrete items in a survey or semi-structured provider notes) and

the mixed registers of patient and provider language and information. Further research is

needed to understand the challenges and opportunities of automated transcription, particu-

larly in healthcare for disabled people.

Technology management and responsible use of machine learning. The implementa-

tion and management of digital health technologies poses a variety of further challenges, from

logistical and economic as well as equity standpoints. Implementing digital health technologies

in practice often requires complex integrations of health IT technologies and standards, as well

as driving behavioral change in adopting and using the new technologies. Information about

functional status and context in particular spreads across a disconnected constellation of IT

systems in outpatient, inpatient, and transitional care and may be recorded in specialized sys-

tems within each setting. Patient-generated health data present its own challenges of data inte-

gration and communication between healthcare and consumer IT systems. Further, as

measures of function and context continuously change and develop, it is not always clear what

the most important or informative constructs are to capture in EHR and other health IT sys-

tems. It is not necessary to have complete solutions to these barriers before working on func-

tion-focused digital health technologies; rather, stakeholder engagement and feedback

throughout the initial technology design process will help to clarify these issues in practice and

lay out concrete, responsive steps to address them.

It is also important to actively engage with the risks and limitations of designing and build-

ing digital health technologies in practice, particularly where machine learning is involved.

One key point of risk that must be taken into consideration is in the use of pretrainedmodels

as components of complex, application-oriented systems. Pretrained components are machine

learning models that have been trained using separate data notAU : PleasecheckifthechangesmadeinthesentencePretrainedcomponentsaremachinelearningmodelsthathavebeentrainedusingseparateorspecific:::arecorrect:specific to the task at hand,

which are then used “off the shelf” either as fixed models within a larger system or as starting

points for further machine learning on task-specific data. Pretrained language models are often

used in NLP systems to represent the words and phrases analyzed by task-specific models, but

these language models can reflect undesirable social biases (e.g., gender bias, racism, ableism)

that may then inform the operation of the broader NLP system [92–95]. Nor are these issues

restricted to NLP technologies, affecting speech recognition, computer vision, and others

[96,97]. Beyond the use of pretrained components, the underlying data being analyzed in task-

specific machine learning processes may exhibit demographic differences that are important to

account for [98] or by similar token may reflect inequitable data collection practices [99]. In the

pipelined technologies typically needed in practice, bias or errors early in the analytic process

can continue to propagate through later stages of analysis and presentation [100]. Digital health

technologies like those we propose must therefore be designed and evaluated through an inter-

sectional lens to understand and mitigate the impact of demographic or conceptual biases

throughout the analytic process, from data collection to algorithm design and beyond.

Conclusions

People with disabilities experience significant health and healthcare disparities, which are fur-

ther magnified when disability intersects with other marginalized identities. Addressing these

disparities requires understanding both where they come from in an individual person’s expe-

rience and how they are reflected in differences in each person’s experience of function. EHR

data, combined with self-reported information, provide an invaluable source for developing a

multidimensional picture of individual functioning that can help identify broader actionable

patterns underlying disparities. We identified 3 significant barriers to using EHR data to better

understand the individual experience of function: challenges in documenting contextual
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factors of functioning, underemphasis of the patient’s perspective in health records, and the

implementation gap for documenting functioning in current EHR systems. We described 3

directions for future research on digital health approaches to mitigate these barriers, such as

combining the flexibility of free text documentation with NLP analytics to convert observa-

tions in text into actionable data. While our discussion focused on the clinical setting, the

opportunities and the impacts for digital health and NLP research on function, context, and

patient experience span across the entire lived experience of health. The directions outlined in

this article provide a roadmap for advancing digital health research for disability and func-

tional experience, with the expectation that specific directions, information needs, and deci-

sion-making priorities will be refined and grow together with our understanding over time.

Digital health approaches drawing on the flexibility of NLP present a compelling opportunity

to advance more equitable and person-centered decision-making processes in healthcare for

people with disabilities.
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