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Phase II/III clinical trials are efficient two-stage designs that test multiple exper-
imental treatments. In stage 1, patients are allocated to the control and all
experimental treatments, with the data collected from them used to select exper-
imental treatments to continue to stage 2. Patients recruited in stage 2 are
allocated to the selected treatments and the control. Combined data of stage 1
and stage 2 are used for a confirmatory phase III analysis. Appropriate analy-
sis needs to adjust for selection bias of the stage 1 data. Point estimators exist
for normally distributed outcome data. Extending these estimators to time to
event data is not straightforward because treatment selection is based on corre-
lated treatment effects and stage 1 patients who do not get events in stage 1 are
followed-up in stage 2. We have derived an approximately uniformly minimum
variance conditional unbiased estimator (UMVCUE) and compared its biases
and mean squared errors to existing bias adjusted estimators. In simulations, one
existing bias adjusted estimator has similar properties as the practically unbiased
UMVCUE while the others can have noticeable biases but they are less variable
than the UMVCUE. For confirmatory phase II/III clinical trials where unbiased
estimators are desired, we recommend the UMVCUE or the existing estimator
with which it has similar properties.
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1 INTRODUCTION

Phase II/III clinical trials are efficient since they can answer objectives of phases II and III in a single two-stage trial.1-4 In
stage 1, patients are allocated to a control and multiple experimental treatments. The stage 1 data are used to determine
the experimental treatment(s) that, together with the control, continue to stage 2. A phase II/III clinical trial is efficient
because data of stage 1 and stage 2 are combined to perform a confimatory phase III analysis. However, failing to adjust
for treatment selection in the analysis of phase II/III clinical trials can lead to substantial biases.5 For hypothesis testing,
several methods that adjust for treatment selection exist for normally distributed data1,2,6,7 and time to event data.8-10 In
this paper, we focus on point estimation.

When outcomes are normally distributed, several point estimators that adjust for using stage 1 data for treat-
ment selection have been proposed. The statistical methods used to develop the estimators can be grouped into three
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2 KHAN et al.

based on statistical techniques used to adjust for treatment selection. For the first, estimated bias is subtracted from
the naive point estimate.11 The estimates for the second and third methods are computed using expressions for a
shrinkage estimator12 and a uniformly minimum variance conditional estimator (UMVCUE).13-17 These results extend
asymptotically in cases where the responses uniquely pertain to one stage of the design such as binary response vari-
ables. In trials with time-to-event-endpoints, however, observation of individuals across stages poses an additional
complication.

There are two main features that make extension of estimators for normally distributed outcomes to TTE outcomes
complex. Treatment selection may be based on treatment differences that are correlated so that there is need to determine
the joint distribution of these differences that do not have a diagonal covariance matrix. The covariance matrix for TTE
outcomes is not as well established in literature and as straightforward as for normally distributed outcomes and so it is
important to describe it in detail. Secondly, it is more efficient for patients without events in stage 1 to be followed further
in stage 2. However, this induces correlation between stage 1 and stage 2 data. Brückner et al18 extended a shrinkage esti-
mator and an estimator that involves estimating bias and subtracting it from the naive estimator to TTE. Their conclusion
was that the two estimators over-correct for bias and only the shrinkage estimator can have smaller mean squared error
(MSE) than the naive estimator. Therefore, there is need to explore more estimators for phase II/III clinical trials with
TTE data.

We have extended the UMVCUE for normally distributed outcomes to derive a new approximately UMVCUE for
TTE outcomes and have compared the new estimator to the estimators by Brückner et al. We have derived expressions
that encompass several treatment selection rules and that include the possibility of stopping for futility, which give more
general estimators compared to Brückner et al who considered a single selection rule and assumed that the trial always
continued to stage 2. Also, unlike Brückner et al, we have proposed how to reduce the impact of correlation between stage
1 and stage 2 data and have incorporated these in the estimators.

2 SETTING AND BIAS OF NAIVE ESTIMATOR

2.1 Setting and combining information from different stages

In stage 1, K ≥ 2 experimental treatments are compared to a common control. We denote the true log hazard ratio (HR)
for the comparison between control and experimental treatment j (j = 1, … ,K) by 𝜃j, with 𝜃j < 0 indicating treatment j
is superior to the control. As we will describe in this section, we will compute pairwise log HRs estimates based on the
score statistics derived from the partial likelihood. Consequently, we assume proportional hazards for the comparison
between the control and each experimental treatment.

The trial starts recruitment at time t0. We assume that there is a prefixed condition of when the interim analysis is
performed. The requirement for the condition is described in Section 2.2. For example, as in the simulation study in
Section 6, interim analysis may be performed when a prefixed total number of events is observed from all treatments
including the control. There are alternatives such as fixing the calendar time of interim analysis, which we use in Section 5,
but these are less common in practice. We refer to patients whose data (including censored observations) are used in
the interim analysis as stage 1 patients. Like Kimani et al,19 we first consider basing estimation on the logrank score
statistic and use similar notation. We denote the score statistic and the Fisher information for comparing treatment j
(j = 1, … ,K) to the control using stage 1 data by S1,j and V1,j, respectively. Asymptotically, S1,j ∼ N(𝜃jV1,j,V1,j) so that
̂
𝜃1,j defined as S1,j∕V1,j is asymptotically N(𝜃j, 𝜎

2
1,j), where 𝜎2

1,j = 1∕V1,j.20,21 We demonstrate how to extract the logrank
score statistic and the Fisher’s information for the example data in Section 5 using the R statistical package in the code in
the repository “https://github.com/KimaniPK/Treatment-Selection-with-TTE-data”.22 Their expressions can be found in
textbooks such as Jennison and Turnbull (Chapter 3.7 and Chapter 13).23

The patients recruited in stage 2, who we refer to as stage 2 patients, are randomized to the control and the experimen-
tal treatments that are selected for further testing based on stage 1 results. Rules for selecting treatments are described
in Section 2.5. We assume a prefixed condition for how long to follow stage 2 patients. The requirement for the condi-
tion is described in Section 2.2. As before, this could be until a prefixed number of events are observed from the stage
2 patients or the less common conditions such as at a prespecified calendar date. Also, in stage 2, we assume that there
is additional follow up of stage 1 patients from the control and the selected experimental treatments that did not have
events during the interim analysis. Let denote the set of indices for the selected treatments. We denote the score statistic
and the Fisher information for comparing experimental treatment j (j ∈ ) to the control based on all data from patients
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KHAN et al. 3

recruited in both stage 1 and stage 2 by Sj and Vj, respectively. The estimators that adjust for treatment selection that
we will consider in Section 3 assume that the test statistics attributed to data collected in stage 2 are independent of the
test statistics based on stage 1 data, the so called independent increment structure. We describe below in Section 2.2
how to get an approximate independent increment structure.23-25 Assuming that the independent increment structure
holds, asymptotically Sj ∼ N(𝜃jVj,Vj) so that asymptotically ̂𝜃j defined as Sj∕Vj is N(𝜃j, 𝜎

2
j ), where 𝜎2

j = 1∕Vj. Furthermore,
asymptotically, the stage 2 increment Sj − S1,j ∼ N(𝜃j(Vj − V1,j),Vj − V1,j), and consequently, asymptotically ̂

𝜃2,j defined
as (Sj − S1,j)∕(Vj − V1,j) is N(𝜃j, 𝜎

2
2,j), where 𝜎2

2,j = 1∕(Vj − V1,j).

2.2 Approximate independent structure

In stage 2, data are collected from two sets of patients namely (i) the stage 2 patients and (ii) the stage 1 patients without
events prior to the interim analysis. To have independent increment structure, for each of the two sets of patients, we aim
that data collected from them in stage 2 are independent of stage 1 data. Stage 2 patients are new patients recruited after
the interim analysis. Therefore, their data are independent of stage 1 data if the number of stage 2 patients and either the
number of events from them or calendar length of how long to follow them are set independent of stage 1 data. This is
what we have proposed in Section 2.1.

Patients in the other set, that is, stage 1 patients without events up to the interim analysis that are followed
in stage 2, contribute to both stage 1 data and stage 2 data. Furthermore, these patients are followed in stage 2
because of the selection made using stage 1 data. Consequently, following in stage 2 patients without events during
the interim analysis can induce correlation between stage 1 and stage 2 data. This corresponds to the second com-
plexity with TTE data stated in the introduction. To approximately achieve independence between data collected in
stage 1 and stage 2, we will use the strategy by Jenkins et al.26 They propose prespecifiying a rule for how long stage
1 patients are followed in stage 2. This makes Vj − V1,j independent of stage 1 data but does not necessarily make
Sj − S1,j independent of stage 1 data because of treatment selection and hence the reason that the proposal by Jenk-
ins et al is an approximation of the independent structure. In Sections 5 and 6, we will fix calendar duration for how
long stage 1 patients are followed in stage 2. Alternatives include fixing the number of events in stage 2 from stage 1
patients.

We have set conditions for when the interim analysis is performed, how long to follow patients recruited in stage
2 and how long to follow stage 1 patients after the interim analysis. This is a practical design to achieve approximate
independent increment structure. The bias adjusted estimators we will consider are appropriate for any design where
independent increment structure can be assumed. The correlation between stage 1 and stage 2 data depends on several
factors such as the true hazard functions, the recruitment rate and the true log hazard ratios. In simulations, the Jenkins
et al approach achieved approximate independence between stage 1 and stage 2 estimates when these factors were varied
in two-stage clinical trials with subpopulation selection.19

2.3 Joint distribution

We first consider the case that treatment one only is selected, that is,  = {1}. We describe the extension to any  at the
end of the section. The estimators developed require knowledge of the joint distribution for ( ̂𝜃1,1, ̂𝜃1,2, … ,

̂
𝜃1,K , ̂𝜃2,1)′. We

assume that ̂𝜃2,1 as defined in Section 2.1 achieves independent increment structure so that ̂𝜃2,1 is independent of the
K stage 1 estimates ̂𝜃1,1, … ,

̂
𝜃1,K . Thus, from Section 2.1, we only need to give the expression for Cov( ̂𝜃1,i, ̂𝜃1,j), which

we denote by qij, to have the joint distribution for ( ̂𝜃1,1, ̂𝜃1,2, … ,
̂
𝜃1,K , ̂𝜃2,1)′ fully defined. Di Scala and Glimm10,27 give

the expression for Cov( ̂𝜃1,i
√

V1,i, ̂𝜃1,j
√

V1,j) (i ≠ j, i, j = 1, … ,K) from which it is straightforward to derive the expres-
sion for Cov( ̂𝜃1,i, ̂𝜃1,j). Consider the control and experimental treatments i and j. Suppose that there are D events
from the three arms in stage 1. For simplicity in the expression for Cov( ̂𝜃1,i, ̂𝜃1,j), we assume that the events occur at
unique times. At event time td (d = 1, … ,D), let rd,c, rd,i and rd,j denote the number of patients at risk for the con-
trol and experimental treatments i and j, respectively. For td (d = 1, … ,D) and experimental treatment i we define
pd,i = 0 if the event came from experimental treatment j (j ≠ i) and pd,i = rd,i∕(rd,c + rd,i) otherwise. For experimen-
tal treatment j, pd,j is defined similarly. Following Di Scala and Glimm10,27 qij = Cov( ̂𝜃1,i, ̂𝜃1,j) = 𝜎2

1,i𝜎
2
1,j
∑D

d=1pd,ipd,j.
Consequently,

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9606 by T
est, W

iley O
nline L

ibrary on [24/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 KHAN et al.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

̂
𝜃1,1

̂
𝜃1,2

⋅

⋅

⋅
̂
𝜃1,K

̂
𝜃2,1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∼ MVN

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜃1

𝜃2

⋅

⋅

⋅

𝜃K

𝜃1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎

2
1,1 q12 ⋅ ⋅ ⋅ q1K 0

q12 𝜎

2
1,2 ⋅ ⋅ ⋅ q2K 0

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

q1K q2K ⋅ ⋅ ⋅ 𝜎

2
1,K 0

0 0 ⋅ ⋅ ⋅ 0 𝜎

2
2,1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1)

An alternative way to obtain the joint distribution above is to use transformation of random variables to transform the
joint distribution derived by Di Scala and Glimm.10 It is straightforward to extend the joint distribution to have multiple
experimental treatments in stage 2. However, we did not give this distribution as it requires additional notation, which is
not required in the estimators in this paper since only stage 1 data determine if a treatment proceeds to stage 2.

2.4 Joint distribution based on Cox’s proportional hazards model

An alternative to basing estimation of ( ̂𝜃1,1, … ,
̂
𝜃1,K)′ and ̂

𝜃2,j (j ∈ ) on logrank score statistics is using Cox’s propor-
tional hazards models. Utilizing all stage 1 data, we propose obtaining stage 1 estimates by fitting a Cox’s proportional
hazards model (stage 1 model) that has K predictors corresponding to indicators for the K experimental treatments.18

Log HR estimates obtained are different to those of fitting K Cox’s proportional hazards models comparing the con-
trol to each experimental treatment. However, the advantage of using a single model is that log HR estimates and the
variance-covariance matrix can be obtained from standard statistical packages making practical implementation easier.
We use the same notation as Section 2.1 with ̂

𝜃1,j and 𝜎2
1,j (j = 1, … ,K) denoting the estimate and variance corresponding

to the estimator for 𝜃j from stage 1 model and qij (i ≠ j, i, j = 1, … ,K) the covariance for the estimators for 𝜃i and 𝜃j. For
j ∈  , a Cox’s proportional hazards model (stage 2 model) is fitted using all stage 1 data and stage 2 data collected from the
control arm and experimental treatment j only. The follow up in stage 2 of stage 1 patients from the control and treatment
j without events in stage 1 is as described in Section 2.2. The log HR estimate and variance corresponding to treatment
j obtained using stage 2 model are denoted by ̂

𝜃j and 𝜎2
j , respectively. To obtain the approximately independent stage 2

estimate and its variance, we follow Jennison and Turnbull (pages 262-264).21 We compute V1,j = 1∕𝜎2
1,j, S1,j = ̂

𝜃1,jV1,j,
Vj = 1∕𝜎2

j and Sj = ̂
𝜃jVj. The stage 2 approximate independent estimate is ̂𝜃2,j = (Sj − S1,j)∕(Vj − V1,j) and its variance is

𝜎

2
2,j = 1∕(Vj − V1,j).

Since we use the same notation for estimation based on the logrank score statistic and estimation based on the
Cox’s proportional hazards model, expression (1) is the common form of the joint distributions for estimators based on
the two models. We emphasize that although the two models have distributions with a common expression that arise
from sharing notation, in general, the parameter values for the joint distributions corresponding to the two models are
different.

2.5 Treatment selection rules

Conditional on a prefixed condition of when the interim analysis is performed which may be based on (V1,1, … ,V1,K),
we will consider selection rules where it is possible to use the observed vector ( ̂𝜃1,1, … ,

̂
𝜃1,K)′ only to determine the treat-

ment(s) to be selected. Based on the observed stage 1 estimates, the estimators we will describe will require describing
the region where a treatment is selected by either specifying the limits for all stage 1 treatments’ effects or the limits for
the effect of a selected treatment conditional on the effects for the other K − 1 treatments. We describe some treatment
selection rules. One rule is to select the best treatment based on observed stage 1 log HR. For this rule, based on lim-
its of all treatments’ effects, experimental treatment j (j ∈ {1, … ,K}) is selected if −∞ <

̂
𝜃1,j < ∞ and ̂

𝜃1,j < ̂
𝜃1,j′ <∞

(j′ ≠ j, j′ = 1, … ,K). For all selection rules, we will denote the lower and upper bounds for the effect of a selected treat-
ment j (j ∈ {1, … ,K}) conditional on the effects for the other K − 1 treatment effects by Lj and Wj, respectively. For the
aforementioned selection rule, Lj = −∞ and Wj = min

(
{ ̂𝜃1,1, … ,

̂
𝜃1,K} ⧵ ̂𝜃1,j

)
. Some other selection rules are summa-

rized in Table 1. We have given examples of selection rules where Lj = −∞ always. We summarize Bowden and Glimm14
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KHAN et al. 5

selection rule where sometimes Lj ≠ −∞ in the Supplementary Material because Table 1 format does not suit this selection
rule.

2.6 Naive estimation

We consider ̂𝜃j (j ∈ ) to be the naive estimator for 𝜃j. Note that from the definitions for ̂𝜃1,j, ̂𝜃j and ̂
𝜃2,j in Section 2.1, ̂𝜃j

can be expressed as

̂
𝜃j =

𝜎

2
2,j
̂
𝜃1,j + 𝜎2

1,j
̂
𝜃2,j

𝜎

2
1,j + 𝜎

2
2,j

. (2)

From Sections 2.1 and 2.2, we assume conditions for how long to follow patients are preset such that there is approximate
independent increment structure. Therefore, from expression (2), ̂𝜃j is the sum of two parts that are approximately inde-
pendent. Furthermore, since there is no selection in stage 2, we assume that ̂𝜃2,j is unbiased for 𝜃j. Consequently, while
deriving the expression for the bias for ̂𝜃j and while adjusting for treatment selection in Section 3, we will assume that
data collected in stage 1 and those collected in stage 2 data are not correlated so that the biases in naive estimates are due
to treatment selection at the interim analysis only. These assumptions are reasonable since from the simulations results
in Section 6.2, the biases for the approximately unbiased estimator derived in Section 4 are small.

Define tj = V1,j∕Vj and let 1 and Prob(), denote the indicator and probability for the event that the set of indices for
the selected treatments is  , respectively. From expression (2), the bias for ̂𝜃j can be expressed as

Bias( ̂𝜃j) = tj

(
E
[
̂
𝜃1,j1

]

Prob()
− 𝜃j

)

. (3)

For j′ ∈ c, we take ̂𝜃1,j′ to be the naive estimator for 𝜃j′ . The bias for ̂𝜃1,j′ is given by

Bias( ̂𝜃1,j′ ) =
(

E
[
̂
𝜃1,j′1

]
∕Prob()

)
− 𝜃j′ . (4)

Simple to compute expressions for Prob(), E
[
̂
𝜃1,j1

]
and E

[
̂
𝜃1,j′1

]
in expressions (3) and (4) can be obtained if the selec-

tion rule is known. Let us consider the case of selecting an experimental treatment if its corresponding stage 1 observed
log HR is below b and it is smallest among the K experimental treatments (fifth selection rule in Table 1). For demon-
stration, we suppose that experimental treatment 1 is selected, that is,  = {1}. Let A be the K × K matrix given in the
Supplementary Material where the first element in column one is 1 while all the other elements in column one are equal
to−1. For column i (i = 2, … ,K), the ith element is equal to 1 while the other elements are all equal to zero. Let ̂𝜽1 and ̂𝜹1

T A B L E 1 Summary of common selection rules

Limits for individual treatments’ effects A selected treatment upper bound

Selected experimental treatment(s) j ∈  j ∈  , j′ ∈ c (Wj) conditional on other effectsa

All treatments with log HR ≤ b −∞ <
̂
𝜃1,j ≤ b b < ̂

𝜃1,j′ <∞ b

All treatments with P-valuesb ≤ a −∞ <
̂
𝜃1,j ≤

Φ−1(a)
√

V1,j

Φ−1(a)
√

V1,j′
<
̂
𝜃1,j′ <∞ Φ−1(a)

√
V1,j

Treatment with smallest log HR −∞ <
̂
𝜃1,j < ∞ ̂

𝜃1,j < ̂
𝜃1,j′ <∞ min

(
{ ̂𝜃1,1, … ,

̂
𝜃1,K} ⧵ ̂𝜃1,j

)

Treatment with smallest P-valueb −∞ <
̂
𝜃1,j < ∞ ̂

𝜃1,j

√
V1,j

V1,j′
<
̂
𝜃1,j′ <∞ min

({
̂
𝜃

Ij
1,1, … ,

̂
𝜃

Ij
1,K

}
⧵ ̂𝜃Ij

1,j

)

Treatment with smallest log HR ≤ b −∞ <
̂
𝜃1,j ≤ b ̂

𝜃1,j < ̂
𝜃1,j′ <∞ min

(
{b, ̂𝜃1,1, … ,

̂
𝜃1,K} ⧵ ̂𝜃1,j

)

Treatment with smallest P-valueb ≤ a −∞ <
̂
𝜃1,j ≤

Φ−1(a)
√

V1,j

̂
𝜃1,j

√
V1,j

V1,j′
<
̂
𝜃1,j′ <∞ min

({
aIj
,
̂
𝜃

Ij
1,1, … ,

̂
𝜃

Ij
1,K

}
⧵ ̂𝜃Ij

1,j

)

Note: c = {1, … ,K} ⧵  .
aFor all selection rules, lower bound Lj = −∞ and for j and j′ (j, j′ = 1, … ,K), we define ̂𝜃Ij

1,j′ = ̂
𝜃1,j′

√
V1,j′ ∕V1,j and aIj = Φ−(a)∕

√
V1,j.

bThese are pairwise one-sided P-values.
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6 KHAN et al.

denote the vectors ( ̂𝜃1,1, … ,
̂
𝜃1,K)′ and ( ̂𝛿1,1, … ,

̂
𝛿1,K)′, respectively, where ̂𝜹1 = A ̂𝜽1 so that ̂𝛿1,1 = ̂

𝜃1,1 and ̂
𝛿1,j = ̂

𝜃1,j − ̂
𝜃1,1

(j = 2, … ,K). Then

Prob() =
∫

b

−∞∫

∞

̂
𝜃1,1

⋅ ⋅ ⋅
∫

∞

̂
𝜃1,1

f ( ̂𝜃1,1, … ,
̂
𝜃1,K)d ̂𝜃1,K ⋅ ⋅ ⋅ d ̂𝜃1,2d ̂𝜃1,1 =

∫

b

−∞∫

∞

0
⋅ ⋅ ⋅
∫

∞

0
f ( ̂𝛿1,1, … ,

̂
𝛿1,K)d ̂𝛿1,K ⋅ ⋅ ⋅ d ̂𝛿1,2d ̂𝛿1,1,

(5)
where f ( ̂𝜃1,1, … ,

̂
𝜃1,K) and f ( ̂𝛿1,1, … ,

̂
𝛿1,K) are the densities for ( ̂𝜃1,1, … ,

̂
𝜃1,K)′ and ( ̂𝛿1,1, … ,

̂
𝛿1,K)′, respectively. Let

𝜽 = (𝜃1, … , 𝜃K)′ and Σ
̂𝜽1

be the matrix obtained by excluding the last column and row in the variance covariance
matrix in expression (1). Note that ̂𝜽1 is MVN(𝜽,Σ

̂𝜽1
) and since ̂𝜹1 is a linear combination of ̂𝜽1, it is MVN(𝜹,Σ

̂𝜹1
),

where 𝜹 = A𝜽 and Σ
̂𝜹1
= AΣ

̂𝜽1
A′. Computing Prob() using the density for ̂𝜹1 is computational easier and can be done

using standard statistical programs, such as “pmvnorm” function in “mvtnorm” package28 in R,29 because limits of inte-
gration are not dependent on the random variables. From the properties of taking expectation, E

[
̂
𝜃1,11

]
= E

[
̂
𝛿1,11

]
,

where

E
[
̂
𝛿1,11

]
=
∫

b

−∞∫

∞

0
⋅ ⋅ ⋅
∫

∞

0
̂
𝛿1,1f ( ̂𝛿1,1, … ,

̂
𝛿1,K)d ̂𝛿1,K ⋅ ⋅ ⋅ d ̂𝛿1,2d ̂𝛿1,1, (6)

For j (j = 2, … ,K), from the transformation ̂
𝛿1,j = ̂

𝜃1,j − ̂
𝜃1,1 and properties of expectation, E[ ̂𝜃1,j1 ] = E

[
̂
𝛿1,j1

]
+

E
[
̂
𝜃1,11

]
. Note that E

[
̂
𝛿1,j1

]
(j = 2, … ,K) is expression (6) with ̂

𝛿1,1 replaced with ̂
𝛿1,j. Let ej (j = 1, … ,K) denote the

row vector with jth element equal to one and other elements equal to zero. Following Kan and Robotti,30 a simple to
compute expression for E

[
̂
𝛿1,j1

]
(j = 1, … ,K) is

E
[
̂
𝛿1,j1

]
= 𝛿jProb() + ejΣ ̂𝜹1

c, (7)

where c is a column vector described in the Supplementary Material. Note that from expressions (2), (4), and (7), the bias
of stage 1 estimate ̂𝜃1,1 is e1Σ ̂𝜹1

c∕Prob() and the bias of stage 1 estimate ̂𝜃1,j (j = 2, … ,K) is (ejΣ ̂𝜹1
c + e1Σ ̂𝜹1

c)∕Prob().
For the other selection rules in Table 1, we give expressions for Prob(), Bias( ̂𝜃j) and Bias( ̂𝜃1,j′ ) in the Supplementary
Material.

3 EXISTING ESTIMATORS THAT ADJUST FOR TREATMENT SELECTION

3.1 Bias subtracted estimators

We have derived the expression for the bias of the naive estimator in Section 2.6 and we will observe in Section 6 that
biases of the naive estimator are substantial in some scenarios. In this section and Section 3.2, we describe bias adjusted
estimators based on Brückner et al.18

If bias of a naive estimator was known, this could be subtracted from the naive estimator to obtain an unbiased esti-
mator.11,31 However, from the expressions in Section 2.6, bias is a function of the unknown vector 𝜽. One option is to
substituted the jth element in 𝜽 with its naive estimate defined in Section 2.6 while computing bias.32 Let ̂𝜽 denote the
vector for the naive estimators and bj( ̂𝜽) bias for 𝜃j computed as described in Section 2.6 while replacing 𝜽 with ̂𝜽. Then
the bias adjusted estimate for 𝜃j (j ∈ ), which, similar to Kimani et al,32 we refer to as a single iteration bias subtracted
estimator, is given by

̂
𝜃j,SI = ̂

𝜃j − bj( ̂𝜽). (8)

Since naive estimates may have substantial bias, another option is to use an iterative procedure.11,31 Let bj(𝜽) (j = 1, … ,K)
denote bias for the naive estimator for 𝜃j and b(𝜽) the bias vector (b1(𝜽), … , bK(𝜽))′. The bias is estimated by solving
iteratively ̃𝜽 = ̂𝜽 − b( ̃𝜽). Let bj( ̃𝜽i) denote the bias of 𝜃j at iteration i (i = 1, 2, … ). If the solution is achieved at iteration r,
for j ∈  , the multiple iterations bias subtracted estimator for 𝜃j is given by

̂
𝜃j,MI = ̂

𝜃j − bj( ̃𝜽r). (9)
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KHAN et al. 7

3.2 Shrinkage estimator

Hwang33 proposed a shrinkage estimator for single stage trials for the setting that is analogous to the case where the
statistics corresponding to the true treatment effects 𝜃1, … , 𝜃K are uncorrelated and have a common variance. A com-
mon normal distribution prior for the K treatment effects is assumed. Hwang obtains the posterior mean expression for
the selected treatment, and then replaces the prior treatment effect with average of observed effects from the K treat-
ments. This gives empirical Bayes estimator and Hwang shows how to adjust it to get a shrinkage estimator. Carreras and
Brannath12 extended the work to obtain a shrinkage estimator for two-stage trials. It is a weighted mean of the shrinkage
estimator based on stage 1 data and the unbiased stage 2 estimate ̂𝜃2,j.

Brückner et al18 described an extension to the case where, as in our setting, stage 1 estimates are correlated. As in
Carreras and Brannath, a shrinkage estimator for stage 1 data is obtained, with the two-stage shrinkage estimator being
the weighted mean of the stage 1 shrinkage estimator and the unbiased stage 2 estimator ̂𝜃2,j. Let IK denote a K × K
identity matrix. A multivariate normal MVN(𝜇, 𝜈2IK) prior for 𝜽 is specified. The posterior mean, after updating the prior

with ̂𝜽1, is C ̂𝜽1 + (IK − C)𝜇, where C = IK − Σ ̂𝜽1

(
𝜈

2IK + Σ ̂𝜽1

)−1
. Let ̂𝜃1,all be the stage 1 log hazard ratio estimate obtained

by comparing control to all K experimental treatments taken as a single treatment. The prior mean 𝜇 in the posterior
mean is replaced by a K-vector that has all elements equal to ̂

𝜃1,all. The value of 𝜈2 in C is evaluated using an iterative
procedure.18,34 The procedure is described in the Supplementary Material. Let ̂𝜃1

j,SH denote the stage 1 shrinkage estimator
for 𝜃j and w (0 ≤ w ≤ 1) be a prespecified weight. The two-stage shrinkage estimator is given by

̂
𝜃j,SH = w ̂𝜃(1)j,SH + (1 − w) ̂𝜃2,j.

It is reasonable to choose w based on the expected number of events in each stage.18 Let E1 denote the preplanned
number of events at interim analysis from all treatments including the control and E2 the preplanned number of
events from all stage 2 patients including from the control. In Section 6, where || is fixed, we take w = E1(|| +
1)∕ (E1(|| + 1) + E2(K + 1)).

4 NEW APPROXIMATELY UNIFORMLY MINIMUM VARIANCE
CONDITIONAL UNBIASED ESTIMATOR

4.1 General principles for obtaining the new estimator

The new approximately uniformly minimum variance conditional unbiased estimator (UMVCUE) is based on the
Rao-Blackwell theorem. The UMVCUE is conditional on the selection rule, observed data and a sufficient and complete
statistic. For j ∈  , the stage 2 estimator ̂𝜃2,j is approximately unbiased for 𝜃j. Therefore, by Rao-Blackwell theorem, we
obtained the UMVCUE for 𝜃j by deriving the expression for the expected value for ̂𝜃2,j conditional on a sufficient and com-
plete statistic that is based on stage 1 and stage 2 data. Such an estimator was first proposed in two-stage designs by Cohen
and Sackrowitz.13 Following Cohen and Sackrowitz, several UMVCUEs have been derived for several settings14-17,35,36

including the case where selection is based on comparing correlated statistics.16,17,36 As in our case, the UMVCUE derived
by Robertson et al36 is based on correlated stage 1 estimates. Kimani et al32 build on Robertson et al36 to include stopping
for futility. Our new UMVCUE builds on Robertson et al and Kimani et al extending the estimators to time to event data
based on the asymptotic distribution given by expression (1) and to consider several selection rules.

4.2 Deriving the uniformly minimum variance conditional unbiased estimator

In this section, we give the UMVCUE and the main steps we used to derive it. Let BL and BU denote the bounds for ̂𝜃2,j.
These bounds are functions of Lj and Wj and hence from Section 2.5, depend on the selection rule used. Expressions for
BL and BU for the selection rules in Table 1 are considered in Section 4.3. For j ∈  , the UMVCUE for 𝜃j is given by

̂
𝜃j,UMV = ̂

𝜃j −
𝜎

2
2,j

𝜎

2
1,j + 𝜎

2
2,j

𝜙

{(
BU − ̂

𝜃j
)
∕𝜂j
}
− 𝜙

{(
BL − ̂

𝜃j
)
∕𝜂j
}

Φ
{(

BU − ̂
𝜃j
)
∕𝜂j
}
− Φ

{(
BL − ̂

𝜃j
)
∕𝜂j
} , (10)
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8 KHAN et al.

where 𝜂j = 𝜎2
2,j

/√
𝜎

2
1,j + 𝜎

2
2,j, and 𝜙 and Φ correspond to density and distribution functions of a standard normal,

respectively.
After establishing the joint distribution given by expression (1), the main steps we used to derive the UMVCUE which

we describe in the rest of this section follow Robertson et al.16 Let Q denote the event of obtaining the data that led to 
being the set of indices corresponding to the selected treatments. Further let 1Q be the indicator for Q and KQ (𝜽) the
probability for QS given 𝜽. Let P denote the inverse of the variance covarinace matrix Σ

̂𝜽1
. We first consider the case of

selecting one treatment and without loss of generality take  = {1}. The joint density for ( ̂𝜽1, ̂𝜃2,1)′ is given by

f ( ̂𝜽1, ̂𝜃2,1) =
1Q

KQ (𝜽)
1

√
(2𝜋)K |||Σ ̂𝜽1

|||

exp
{
−1

2
( ̂𝜽1 − 𝜽)′P( ̂𝜽1 − 𝜽)

} 1
𝜎2,1

𝜙

(
̂
𝜃2,1 − 𝜃1

𝜎2,1

)

.

Let pij (i, j = 1, … ,K) denote ijth entry in P. Expanding the terms in the exponents and re-arranging we get

f ( ̂𝜽1, ̂𝜃2,1) =
1Q

KQ (𝜽)
1

√
(2𝜋)K |||Σ ̂𝜽1

|||

1
√

2𝜋𝜎2
2,1

exp

{
1
2

[

2

( K∑

i=1
pij ̂𝜃1,i +

1
𝜎

2
2,1

̂
𝜃2,1

)

𝜃1 + 2
K∑

i=2

( K∑

j=1
pij ̂𝜃1,j

)

𝜃i

]}

× exp

{

−1
2

(

𝜽
′P 𝜽 + 1

𝜎

2
2,1
𝜃

2
1 + ̂𝜽

′
1P ̂𝜽1 +

1
𝜎

2
2,1

̂
𝜃

2
2,1

)}

. (11)

Define T1 =
∑K

i=1p1i ̂𝜃1,i + 1
𝜎

2
2,1

̂
𝜃2,1 and Ti =

∑K
j=1pij ̂𝜃1,j (i = 2, … ,K). The joint density f ( ̂𝜽1, ̂𝜃2,1) given by expression (11)

has the exponential family form so that the vector (T1, … ,TK)′ is sufficient and complete statistic while estimating 𝜃1.
A linear transformation of (T1, … ,TK)′ is also sufficient and complete statistic while estimating 𝜃1. Consequently,

from the simplification of the expression T1 +
∑K

j=2(qij∕q1i)Tj (i = 1, … ,K), ( ̂𝜃∗1, … ,
̂
𝜃

∗
K), where ̂𝜃∗i = ̂

𝜃1,i +
q1i
𝜎

2
2,1

̂
𝜃2,1, is suf-

ficient and complete statistic while estimating 𝜃1. Conditional on Q , the UMVCUE is the expression for E[ ̂𝜃2,1| ̂𝜃
∗
1, … ,

̂
𝜃

∗
K]

and so we seek the density

fQ ( ̂𝜃2,1| ̂𝜃
∗
1, … ,

̂
𝜃

∗
K) =

fQS( ̂𝜃2,1, ̂𝜃
∗
1, … ,

̂
𝜃

∗
K)

fQ ( ̂𝜃
∗
1, … ,

̂
𝜃

∗
K)

.

Let g(x) denote the density of a multivariate normal distribution for the random vector X. Further, let 𝜽∗ and q1 denote
the vectors ( ̂𝜃∗1, … ,

̂
𝜃

∗
K)′ and (q11, … , q1K)′, respectively. Then fQ ( ̂𝜃2,1, ̂𝜃

∗
1, … ,

̂
𝜃

∗
K) is given by

1Q

KQ (𝜽)
g

(

𝜽
∗ −

̂
𝜃2,1

𝜎

2
2,1

q1

)
1
𝜎2,1

𝜙

(
̂
𝜃2,1 − 𝜃1

𝜎2,1

)

.

The density fQ ( ̂𝜃
∗
1, … ,

̂
𝜃

∗
K) is obtained by integrating out ̂𝜃2,1 in the density fQ ( ̂𝜃2,1, ̂𝜃

∗
1, … ,

̂
𝜃

∗
K) so that

fQ ( ̂𝜃2,1| ̂𝜃
∗
1, … ,

̂
𝜃

∗
K) =

g
(
𝜽
∗ −

̂
𝜃2,1

𝜎

2
2,1

q1

)
1
𝜎2,1
𝜙

(
̂
𝜃2,1−𝜃1

𝜎2,1

)

∫
BU

BL
g
(
𝜽
∗ −

̂
𝜃2,1

𝜎

2
2,1

q1

)
1
𝜎2,1
𝜙

(
̂
𝜃2,1−𝜃1

𝜎2,1

)
d ̂𝜃2,1

The UMVCUE is obtained by getting the expected value of the unbiased ̂
𝜃2,1 by solving

E[ ̂𝜃2,1| ̂𝜃
∗
1, … ,

̂
𝜃

∗
K] =

∫
BU

BL
̂
𝜃2,1g

(
𝜽
∗ −

̂
𝜃2,1

𝜎

2
2,1

q1

)
1
𝜎2,1
𝜙

(
̂
𝜃2,1−𝜃1

𝜎2,1

)
d ̂𝜃2,1

∫
BU

BL
g
(
𝜽
∗ −

̂
𝜃2,1

𝜎

2
2,1

q1

)
1
𝜎2,1
𝜙

(
̂
𝜃2,1−𝜃1

𝜎2,1

)
d ̂𝜃2,1

=
∫

BU
BL

̂
𝜃2,1

𝜂1
𝜙

((
̂
𝜃2,1 −

𝜎

2
2,1

𝜎

2
1,1+𝜎

2
2,1

̂
𝜃

∗
1

)
∕𝜂1

)
d ̂𝜃2,1

∫
BU

BL

1
𝜂1
𝜙

((
̂
𝜃2,1 −

𝜎

2
2,1

𝜎

2
1,1+𝜎

2
2,1

̂
𝜃

∗
1

)
∕𝜂1

)
d ̂𝜃2,1

,
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KHAN et al. 9

T A B L E 2 Expressions for A1 and A2 in expression (13)

qjl > q()a qjl < q()a

Selected experimental treatment A1 A2 A1 A2

Treatment with smallest log HR
(
𝜎

2
2,j+qjk

)
̂
𝜃j−
(
𝜎

2
2,jWj+qjk ̂𝜃2,j

)

(
𝜎

2
2,j∕
√

𝜎

2
1,j+𝜎

2
2,j

)(
𝜎

2
1,j−qjk

) −∞ ∞
(
𝜎

2
2,j+qjk

)
̂
𝜃j−
(
𝜎

2
2,jWj+qjk ̂𝜃2,j

)

(
𝜎

2
2,j∕
√

𝜎

2
1,j+𝜎

2
2,j

)(
𝜎

2
1,j−qjk

)

Treatment with smallest P-value
(
𝜎

2
2,j𝜎1,k+𝜎1,jqjk

)
̂
𝜃j−
(
𝜎

2
2,j𝜎1,kWj+𝜎1,jqjk ̂𝜃2,j

)

(
𝜎

2
2,j∕
√

𝜎

2
1,j+𝜎

2
2,j

)(
𝜎

2
1,j𝜎1,k−𝜎1,jqjk

) −∞ ∞
(
𝜎

2
2,j𝜎1,k+𝜎1,jqjk

)
̂
𝜃j−
(
𝜎

2
2,j𝜎1,kWj+𝜎1,jqjk ̂𝜃2,j

)

(
𝜎

2
2,j∕
√

𝜎

2
1,j+𝜎

2
2,j

)(
𝜎

2
1,j𝜎1,k−𝜎1,jqjk

)

aFor selecting the treatment with the smallest log HR, q() = 𝜎2
1,j while for the other selection rule q() = 𝜎1,j𝜎1,l.

where the simplification to the expressions with 𝜂1 follows from Robertson et al. The expression
𝜎

2
2,1

𝜎

2
1,1+𝜎

2
2,1

̂
𝜃

∗
1 simplifies to ̂𝜃1.

Solving the intergral in the denominator is straightforward givingΦ
{(

BU − ̂
𝜃1
)
∕𝜂1
}
− Φ

{(
BL − ̂

𝜃1
)
𝜂1
}

. The solution to
the integral in the numerator has also been given by several authors including Kan and Robotti30 which gives

̂
𝜃1
(
Φ
{(

BU − ̂
𝜃1
)
∕𝜂1
}
− Φ

{(
BL − ̂

𝜃1
)
∕𝜂1
})
− 𝜂1

(
𝜙

{(
BU − ̂

𝜃1
)
∕𝜂1
}
− 𝜙

{(
BL − ̂

𝜃1
)
∕𝜂1
})
.

Dividing the expressions for the numerator and denominator, expression (10) gives the UMVCUE for 𝜃j when  = {j}.
The UMVCUE is given by the same expression if more than one treatment continues to stage 2. This is because stage 2
estimates are not used for selection so that the terms related to them cancel out in the derivation.

4.3 UMVCUEs for the selection rules in Table 1

To get specific UMVCUEs corresponding to the selection rules in Table 1, we have derived expressions for BL and BU in
the Supplementary Material and substituted in the general form of the UMVCUE given by expression (10). For the case
of an experimental treatment continuing to stage 2 based on its comparison with the control and not the results from the
other experimental treatments, that is, the first and the second selection rules in Table 1, for j ∈  , the UMVCUE for 𝜃j is
given by

̂
𝜃j,UMV = ̂

𝜃j +
𝜎

2
2,j

√
𝜎

2
1,j + 𝜎

2
2,j

𝜙

(
g(Wj)

)

1 − Φ
(

g(Wj)
) , (12)

where Wj is the upper bound described in Section 2.5, and g(Wj) =
(√

𝜎

2
1,j + 𝜎

2
2,j

/
𝜎

2
1,j

) (
̂
𝜃j −Wj

)
. For the third and fourth

selection rules in Table 1, let l be the index for the treatment that corresponds to Wj. For example, in Row 3 (third selection
rule), if Wj = ̂

𝜃1,3, l = 3. For the third and fourth selection rules in Table 1, for j ∈  ,

̂
𝜃j,UMV = ̂

𝜃j −
𝜎

2
2,j

√
𝜎

2
1,j + 𝜎

2
2,j

𝜙 (A1) − 𝜙 (A2)
Φ (A1) − Φ (A2)

, (13)

where expressions for A1 and A2 are given in Table 2. For the fifth selection rule in Table 1, if Wj = b, expression (12) is
used to compute the estimate while if Wj ≠ b, expression (13) is used with expressions for A1 and A2 being those of the
third selection rule (Row 1 in Table 2). Computation for estimates corresponding to the sixth selection rule is similar with
expressions for A1 and A2 being those of the fourth selection rule (Row 2 in Table 2).

5 EXAMPLE

To demonstrate how to compute estimates in Sections 2.6, 3, and 4, we construct a two-stage adaptive trial from the single
stage double blind CANMAT trial.37 The CANMAT trial recruited patients with bipolar I disorder who had a recent acute
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10 KHAN et al.

T A B L E 3 Worked example estimates based on Cox’s proportional hazards model

Cox’s HR estimates Reconstructed dataa

Original Reconstructed Unadjusted quantities Bias adjusted estimates

data data �̂�1,j V1,j �̂�j Vj �̂�j,UMV �̂�j,SI �̂�j,MI �̂�j,SH

Treatment 1 0.53 0.51 −0.5284 8.0705 −0.6528 16.6260 −0.6146 −0.5922 −0.5744 −0.6754

Treatment 2 0.63 0.56 −0.5327 8.7239 −0.5796 16.7495 −0.5281 −0.5110 −0.4890 −0.6057

Abbreviation: HR, Hazard ratio.
aj = 1 and j = 2 for treatments 1 and 2, respectively.

mood (manic or depressive) episode. The aim of the CANMAT trial was to determine optimal duration of taking adjunct
atypical antipsychotic. Patients were randomised to mood stabilizer plus either two (Control), 24 (“Treatment 1”) or 52
(“Treatment 2”) weeks of atypical antipsychotic. The primary outcome is time to relapse to any mood episode.

The CANMAT trial had severe recruitment challenges and if this is typical for trials in this disease, clinical trials in
this condition could benefit from two-stage adaptive designs because, for example, it offers opportunity to stop early for
futility. The CANMAT trial recruited from 17 sites in Canada and Brazil. The target sample size was 180 patients per
group however the trial stopped after a total of 159 patients (52, 54, and 53 in control and treatments 1 and 2, respectively)
because of slower recruitment than anticipated and funding expiry.37 We extracted data points from the CANMAT trial
Kaplan-Meier plot using the Webplotdigitizer38 and reconstructed the survival times using the method of Guyot et al.39

From Table 3, HR estimates from the reconstructed data are similar to those from the original data. The slight difference
can be attributed partly to adjusting for potential confounders in the CANMAT trial (original) analysis.

In the constructed phase II/III clinical trial, we assume uniform recruitment and since the CANMAT trial had recruit-
ment difficulties, that this is over three years. We assume 1:1:1 random allocation for the control, treatments 1 and 2
within blocks of size three. Allocation of patients from each treatment, for example 52 patients for control, to different
blocks was random with equal probability.

Figure 1 gives the key aspects of the constructed two-stage trial. Considering that the CANMAT trial maximum patient
follow up was 52 weeks, the recruitment was challenging, most patients relapse within 6 months37 and limited funding
and hence trial duration, we assume interim analysis based on calendar time with stage 1 patients consisting of those
recruited in the first 80 weeks (approximately 1.5 years). Since the difference between treatments 1 and 2 is the duration of
taking adjunct atypical antipsychotic (24 vs 52 weeks), we assume interim analysis of stage 1 patients with data collected
until 104 weeks from start of recruitment so that patients included in the interim analysis have follow-up of at least
24 weeks. This was informed by the fact that most patients relapse within 6 months. Between weeks 80 and 104 weeks,
the trial continues recruitment and random allocation to the three groups. Patients recruited in this period and after
104 weeks form stage 2 patients. Note that since it is 24 weeks between recruiting the last stage 1 patient and performing
interim analysis, if only one experimental treatment is selected to continue to stage 2, patients randomised to the dropped
experimental treatment in stage 2 can be switched to the selected treatment group.

For the follow up in stage 2 of stage 1 patients who have not relapsed at the interim analysis, from recruitment, the
natural choice is to follow them for 52 weeks which was the maximum follow up of patients in the CANMAT trial.40 Max-
imum follow-up is 52 weeks after the last recruitment since as in the CANMAT trial, we assume a patient is followed for
up to 52 weeks. Longer use of atypical antipsychotics is associated with more side effects.37 Therefore, we use a selection
rule where all treatments that are promising based on efficacy continue to stage 2 so that sufficient safety data are col-
lected from apparently effective treatments. Specifically, a treatment continues to stage 2 if pairwise P-value ≤ 0.2. This
corresponds to the last selection rule in Table 1 with a = 0.2.

The constructed phase II/III clinical trial data, their format and the R code used to compute various estimates are
in the repository “https://github.com/KimaniPK/Treatment-Selection-with-TTE-data”. In this section, we give estimates
based on the Cox’s proportional hazard model. Estimates based on the logrank score statistic are similar and are presented
in Section 11.1 in the Supplementary Material. The unadjusted quantities from observed data that are needed to compute
various bias adjusted estimates are log HR estimates and Fisher’s information obtained from interim (stage 1) analysis
and naive analysis. These are given in Table 3. From stage 1 log HRs and Fisher’s information, stage 1 P-values can be
computed and both are less than 0.2 so that the trial continues to stage 2 with treatments 1 and 2 and with a = 0.2,
W1 = −0.2948 and W2 = −0.2849.
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KHAN et al. 11

F I G U R E 1 Constructed two-stage trial based on CANMAT trial. Vertical lines correspond to key timepoints in the design. A horizontal
line ending with a circle corresponds to a patient with the left hand side edge being parallel to time of recruitmentment. A filled circle
corresponds to time of relapse whilst a nonfilled circle indicates that a relapse has not yet occurred at that key timepoint in the design. Lines
with a continuous segment correspond to stage 1 patients whilst dotted lines correspond to stage 2 patients

Bias adjusted estimates are given in Table 3. From expressions for variances for estimated log HRs in Section 2.1, and
naive estimator expression (2) and UMVCUE expression (12) that corresponds to the selection rule used in this example,
the unbiased estimates (UMVCUEs) can be computed. This gives the unbiased log HR estimates for effects of treatments
1 and 2 as ̂𝜃1,UMV = −0.6146 and ̂

𝜃2,UMV = −0.5281, respectively.
Covariance of stage 1 log hazard ratios estimates is 0.0522 (correlation is 0.4377). The joint density of stage 1 treat-

ments 1 and 2 log HR estimates, the expression for probability of continuing to stage 2 with both treatments and the
expressions for the expected values for the two log HRs are given in the Supplementary Material. Using those expres-
sions and expressions (2), (3) and (8) gives single iteration bias subtracted estimates for effects of treatments 1 and 2 as
̂
𝜃1,SI = −0.5922 and ̂

𝜃2,SI = −0.5110, respectively. Computation of multiple iterations bias subtracted estimates is similar,
with the only difference being the inclusion of an iteration step because of using expression (9) rather than expression (8).
The multiple iterations bias subtracted estimates for effects of treatments 1 and 2 are ̂𝜃1,MI = −0.5744 and ̂

𝜃2,MI = −0.4890,
respectively.

For the shrinkage estimator, we take 𝜔 = 0.5. This is informed by uniform recruitment and stage 1 patients being
those recruited until the 50% point in the trial. The function to estimate 𝜈2 and stage 1 treatments 1 and 2 shrinkage
estimates is in the Supplementary Material. We obtain 𝜈2 = 0 and ̂

𝜃

(2)
1,SH = ̂

𝜃

(2)
2,SH =-0.5809 and consequently, treatments 1

and 2 two-stage shrinkage estimates are ̂𝜃1,SH = −0.6754 and ̂
𝜃2,SH = −0.6057, respectively.

The shrinkage estimates show slightly bigger treatment effects than the naive estimates (in Table 3, the naive estimates
are bolded). The other bias adjusted estimates exhibit smaller effects than the naive estimates. As it would be expected in
most datasets, multiple iterations bias subtracted estimates correct for biases more than the single iteration bias subtracted
estimates.

6 COMPARISON OF THE ESTIMATORS USING A SIMULATION STUDY

6.1 Simulation study scenarios

We use simulations to compare the properties of the new UMVCUE, the naive estimator and the existing bias adjusted
estimators by Brückner et al that are described in Section 3. In the simulations, we assume proportional Weibull hazard
functions. The hazard function corresponding to the control treatment is given by h0(t) = 𝜆𝛾t𝛾−1, where t is time and 𝜆
and 𝛾 are the scale and shape parameters, respectively. The hazard function corresponding to experimental treatment j is

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9606 by T
est, W

iley O
nline L

ibrary on [24/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 KHAN et al.

hj(t) = e𝜃j h0(t). In all simulations, we will take 𝛾 = 0.5. We do not expect different values for 𝛾 to impact the properties of
the estimators.19

The simulation study is based on the fifth selection rule in Table 1, that is, selecting the treatment that has the smallest
stage 1 log hazard ratio that is below a futility value b. In all cases, the futility boundary b = 0 so that a treatment is selected
if it has the smallest observed log HR that is less than 0. The properties of the different estimators depend on several
aspects such as the number of experimental treatments and information fraction of stage 1. These have been explored
extensively by several authors.12,15,36 Specific to time to event data is the recruitment rate and how long patients without
events in stage 1 are followed in stage 2. These aspects have been explored and are not expected to have impact on the
estimators.19 Therefore, in the main paper we consider the case of K = 4 but with different configurations for the true
vector (𝜃1, … , 𝜃4)′.

Sample sizes in simulations are such that, if it was a single-stage trial and the true hazard ratio (HR) is 0.8, the com-
bined stage 1 and stage 2 number of deaths from the control and the selected experimental treatment correspond to power
of 80%. For 80% power, 632 deaths (rounded up to an even number) are required. We fixed deaths from patients recruited
in stage 2, that is stage 2 patients, to be 316.

Recalling that we take the shape parameter 𝛾 = 0.5 and taking time t in the hazard function to be in days, we set the
scale parameter for the control treatment such that the median is 365 days, that is, 𝜆0 = ln(2)∕365. We determined the
number of deaths in stage 1 assuming the four HRs corresponding to the four experimental treatments are all equal to
0.8, that is, 𝜆i = 0.8𝜆0 (i = 1, … , 4). The scale parameter for the experimental treatment can be computed from the HR
and the scale parameter for the control. Assuming that on average 1 person is recruited per day in stage 1, we set the
interim analysis to be performed after 717 deaths which, after rounding off, corresponds to the expected number of events
comparing each experimental treatment to the control to be 298 (159 in control and 139 in the experimental treatments).

Assuming a uniform recruitment rate of 1 patient per day in stage 2, for the assumed hazard functions when HR is 0.8,
we expect 316 events from stage 2 patients to be observed after 2 years. Therefore we fixed to follow the stage 1 patients
from the control and selected experimental treatment without events at the interim analysis to be followed for 1 year post
interim analysis.

For each scenario, we simulated 100 000 trials and for each trial, we computed the naive estimate and four bias ajusted
estimates corresponding to estimators in Sections 3 and 4. We assessed the properties of the estimates corresponding to
the five estimators using bias and root mean squared error (RMSE). We computed the biases and RMSEs conditional on
the selected treatment. For example, let ̂𝜃(i)Nj

denote the naive estimate for the ith simulated trial and 1(i)[j=l] the indicator that
j = l in the ith simulation trial. Then, for example for the case of selecting treatment three, that is j = 3, bias and RMSE
for the naive estimator was computed as

Bias =

∑100,000
i=1 ( ̂𝜃(i)j − 𝜃j)1(i)[j=3]
∑10,000

i=1 1(i)[j=3]

and RMSE =

√√√√√
∑100,000

i=1 ( ̂𝜃(i)j − 𝜃j)21(i)[j=3]
∑10,000

i=1 1(i)[j=3]

.

Note that these biases and RMSEs are conditional on continuing to stage 2 and hence not stopping for futility. Estimators
in Sections 3.1 and 4 adjust for both treatment selection and possibility of stopping for futility explicitly.

6.2 Results

In this section, we give results when estimation is based on Cox’s proportional hazards model. In a small proportion of
simulated trials, there was no convergence while computing ̂

𝜃j,MI estimate. This information and the number of events
from simulated trials are summarized in the Supplementary Material. Simulated properties for the various estimators are
summarized in Table 4. Column 1 indicates the treatment for which results in a row corresponds to while column 2 gives
the simulated probability of selecting the treatment in column 1. The probabilities for the four treatments do not add up to
one because the trial does not continue to stage 2 if all four observed log HRs are below 0. Columns 3 to 7 give biases for the
five estimators while columns 8 to 12 give their RMSEs computed as described in Section 6.1. Biases and RMSEs for ̂𝜃j,MI do
not include simulated trials where there is no convergence. Since in all scenarios the four true log hazard ratios are less or
equal to zero and a negative log hazard ratio indicates an experimental treatment is more effective than the control, biases
with negative and positive signs in Table 4 indicate overestimating and underestimating treatment effects, respectively.
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KHAN et al. 13

T A B L E 4 Simulated biases and root mean squared errors for the various estimators for the log hazard ratios

Selection Simulated biasa Root mean squared errorb

Treatment probability �̂�j �̂�j,UMV �̂�j,MI �̂�j,SI �̂�j,SH �̂�j �̂�j,UMV �̂�j,MI �̂�j,SI �̂�j,SH

Scenario 1: True log hazard ratios are 𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 0

1 0.1998 −0.0526 −0.0022 0.0169 −0.0091 −0.0331 0.0864 0.0936 0.0942 0.0830 0.0735

2 0.2022 −0.0530 −0.0033 0.0156 −0.0098 −0.0348 0.0861 0.0927 0.0927 0.0822 0.0738

3 0.1974 −0.0536 −0.0037 0.0155 −0.0104 −0.0281 0.0870 0.0933 0.0936 0.0830 0.0696

4 0.1994 −0.0524 −0.0021 0.0170 −0.0089 −0.0342 0.0861 0.0932 0.0936 0.0826 0.0738

Scenario 2: True log hazard ratios are 𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = −0.2231

1 0.2463 −0.0389 0.0002 0.0164 −0.0087 −0.0175 0.0825 0.0893 0.0904 0.0794 0.0728

2 0.2504 −0.0390 0.0006 0.0167 −0.0087 −0.0189 0.0826 0.0898 0.0908 0.0796 0.0734

3 0.2518 −0.0402 −0.0013 0.0149 −0.0101 −0.0023 0.0826 0.0889 0.0896 0.0790 0.0715

4 0.2507 −0.0397 −0.0002 0.0159 −0.0094 −0.0195 0.0833 0.0899 0.0910 0.0801 0.0740

Scenario 3: True log hazard ratios are 𝜃1 = 0, 𝜃2 = −0.1393, 𝜃3 = −0.3011 and 𝜃4 = −0.5108

2 0.0009 −0.1017 −0.0174 −0.0075 −0.0580 −0.0950 0.1243 0.0945 0.0914 0.0962 0.1190

3 0.0503 −0.0563 0.0001 0.0075 −0.0286 −0.0340 0.0933 0.0925 0.0911 0.0834 0.0838

4 0.9488 −0.0034 −0.0002 0.0055 0.0023 0.0182 0.0793 0.0818 0.0841 0.0816 0.0821

Scenario 4: True log hazard ratios are 𝜃1 = 𝜃2 = 𝜃3 = −0.9163 and 𝜃4 = −1.0498

1 0.1041 −0.0624 −0.0025 0.0143 −0.0240 −0.0377 0.0961 0.0963 0.0949 0.0835 0.0806

2 0.1038 −0.0610 −0.0012 0.0156 −0.0226 −0.0378 0.0946 0.0944 0.0938 0.0822 0.0804

3 0.1040 −0.0627 −0.0037 0.0134 −0.0245 −0.0456 0.0959 0.0948 0.0938 0.0829 0.0865

4 0.6882 −0.0203 −0.0012 0.0150 0.0002 0.0073 0.0794 0.0893 0.0927 0.0829 0.0765

aSmallest bias in bold.
bSmallest Root mean squared error in bold.

Four scenarios based on different values for the true log HRs vector (𝜃1, 𝜃2, 𝜃3, 𝜃4)′ are presented. In the first scenario
(𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 0), all treatments including the control have equal hazards of death so that a treatment being con-
sidered best is by chance and when the decision is to continue to stage 2, the observed log HR is either equal to the true
value or overestimates log HR. For this scenario, the probability of continuing to stage 2 is 0.80 with, as expected because
of equal true log HRs, approximately equal simulated probabilities for selecting each of the four experimental treatments.
Also, biases and RMSEs for the four treatments are approximately equal. As expected, the naive estimator ( ̂𝜃j) overes-
timates treatments’ effects. The approximate UMVCUE ( ̂𝜃j,UMV ) has the smallest biases among all the estimators, being
practically unbiased. The multiple iterations bias subtracted estimator ( ̂𝜃j,MI) slightly underestimates treatments’ effects.
The RMSEs for ̂𝜃j,UMV and ̂

𝜃j,MI are approximately equal but bigger than those for the naive estimator. The single itera-
tion bias subtracted estimator ( ̂𝜃j,SI) slightly overestimates log HR, that is, it undercorrects for bias. It is better than the
naive estimator since its RMSEs are also smaller than those for the naive estimator. For this scenario, ̂𝜃j,SI is also bet-
ter than the multiple iterations bias subtracted estimator since, albeit overestimating true log HR, both its biases and
RMSEs are smaller. Making a decision on which estimator between the single iteration bias subtracted estimator ( ̂𝜃j,SI)
and the UMVCUE ( ̂𝜃j,UMV ) is better is not clear cut since ̂𝜃j,UMV is practically unbiased whilst ̂𝜃j,SI has markedly smaller
RMSEs. The shrinkage estimator overestimates treatments’ effects in this scenario and has the largest biases among the
bias adjusted estimators. However, it has smallest RMSEs among all estimators. To enable clearer comparison of all the
estimators, boxplots in Figure 2A complements properties for the effects corresponding to experimental treatment four in
Table 4. Three quarters of the naive estimates provide bigger treatment effects than the true treatment effect. In compar-
ison to the naive estimates, the shrinkage estimates show a small shift of estimates reducing mean bias but with almost
three quarters of the estimates providing bigger treatment effects than the true effect. The spreads of the naive and shrink-
age estimates are approximately equal. The UMVCUE is approximately symmetrically distributed around the true log
HR. The multiple iterations bias subtracted estimator is also approximately symmetrically distributed around the true log
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14 KHAN et al.

F I G U R E 2 Boxplots for treatment four log hazard ratio estimates for (A-D) scenarios 1 to 4. The true log hazard ratios are represented
by the dashed and dotted lines

HR although it slightly overcorrects for bias, exhibiting more bias than UMVCUE. Although they have wider spread than
the naive and shrinkage estimates, their range above line of true log HR is equal to the range of naive estimates below line
of the true log HR. Thus we would consider the UMVCUE and multiple iterations bias subtracted estimator better than
both the naive and shrinkage estimators. If a slight overestimation is acceptable, for this scenario, the single iteration bias
subtracted estimator performs best as it is approximately mean unbiased and has smaller RMSEs than the UMVCUE and
the multiple iterations bias subtracted estimator.

For Scenario 2, 𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = ln(0.8) = −0.2231 so that all experimental treatments are better than the control
and equally effective. From Table 4, the probability of continuing to stage 2 is almost 1 so that bias in this setting is
attributed to treatment selection and not to the possibility of stopping for futility. Since all experimental treatments have
equal hazards of death, their simulated probabilities of continuing to stage 2 are approximately equal. For this scenario,
the biases of the naive estimators corresponding to the four experimental treatments are smaller than those for scenario
1. Considering the results for this scenario in Table 4 and boxplots of treatment four estimates in Figure 2B, we notice that
the UMVCUE has negligible biases and also the other estimators have smaller biases compared to Scenario 1. However,
we still make the same conclusion as scenario 1 when all estimators are compared.

The third scenario considers a case where the four treatments have distinct hazards of death (𝜃1 = 0, 𝜃2 = −0.1393,
𝜃3 = −0.3011 and 𝜃4 = −0.5108). In the simulations, the probabilities of continuing to stage 2 with treatment 3 and treat-
ment 4 are 0.050 and 0.949, respectively. Treatment 1 is not selected and treatment 2 has negligible probability of being
selected. For treatment 3 and treatment 4 that have high numbers of simulated trials, the UMVCUE has neglible biases
which are markedly smaller compared to the biases for the other estimators. When the superior treatment 4 is selected
(fifth last row in Table 4 and Figure 2C), the shrinkage estimator is only slightly biased while the other estimators,
including the naive estimator, are practically mean unbiased. The RMSEs for all the estimators are close, being small-
est for the naive estimator followed by the single iteration bias subtracted estimator. In this case of selecting treatment
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KHAN et al. 15

4 in scenario 3, the naive estimator performs best followed very closely by the UMVCUE but the other estimators also
perform well. When treatment 3 is selected, the single iteration bias subtracted estimator reduces bias substantially
but retains noticeable bias and does not perform much better than the shrinkage estimator. Thus, the single iteration
bias subtracted estimator does not perform well when an inferior treatment is selected. The UMVCUE is practically
mean unbiased and multiple iterations bias subtracted estimator is approximately mean unbiased and these two esti-
mators have similar RMSEs which are below those of the naive estimator so that they have better properties than the
naive estimator. In summary, we consider UMVCUE and multiple iterations bias subtracted estimator to perform better
than the other estimators when treatment 3 is selected. This is clearer to observe in Figure S1C in the Supplementary
Material.

Scenario 4 (𝜃1 = 𝜃2 = 𝜃3 = −0.9163 and 𝜃4 = −1.0498) is a case where all treatments are highly effective with treat-
ment 4 more effective than the other three treatments that have equal effects. In the simulations, treatment 4 is selected
with probability 0.688 while the other treatments are selected with approximately equal probability of 0.104. Selecting
treatment 4 with high probability leads to the naive estimator having small bias. The naive estimator and all the estima-
tors that have adjusted for bias have approximately equal biases and not very different RMSEs (last row in Table 4 and
boxplots in Figure 2D) so that they perform equally well. When treatment 1, treatment 2 or treatment 3 is selected, the
single iteration bias subtracted estimator retains substantial bias so that, as in Scenario 3, it does not perform well when
an inferior treatment is selected. However, the UMVCUE and the multiple iterations bias subtracted estimator perform
well. This is clearer to observe in Figure S1D in the Supplementary Material.

6.3 Summary findings from the simulation study

From the simulations, the naive estimator has substantial bias in some scenarios. The approximate UMVCUE has the
smallest biases, being practically unbiased. The multiple iterations bias subtracted estimator is slightly more biased than
the UMVCUE, mostly overcorrecting for bias. Apart from that, the two estimators have similar properties. They are
approximately unbiased but in most scenarios, they have higher RMSEs than the naive estimator. This is because, from
the boxplots, their estimates are approximately symmetric around the true value whereas when the naive estimator is
biased, more than half of its estimates are below the true value but its smallest log hazard ratio is approximately equal to
smallest log hazard ratios for the UMVCUE and the multiple iterations bias subtracted estimator. Therefore, in clinical
trials where unbiased estimators are required, we consider the UMVCUE and multiple iterations bias subtracted estima-
tor to be better than the naive estimator, with the former slightly better. The single iteration bias subtracted estimator
does not eradicate bias fully, retaining substantial bias if the selected treatment is not the most effective, but it has smaller
RMSEs compared to the UMVCUE and multiple iterations bias subtracted estimator and so it may be preferable in clinical
trials where some overestimation is acceptable. The shrinkage estimator does not eradicate much bias but it has smallest
RMSEs in most scenarios.

Findings for the case of two experimental treatments in stage 1 are similar (Supplementary Material, Tables S5 and
S6 and Figures S2 and S3) so that the results can be generalized to values of K that are of practical relevance. We
also performed simulations for the case of four treatments in stage 1 and smaller number of deaths (Supplementary
Material, Tables S7 and S8 and Figures S4 and S5). Compared to the results in Section 6.2, there are more cases for
nonconvergence when computing the multiple iterations bias subtracted estimates, the biases of the naive estimator are
larger and RMSEs for all the estimators are larger. However, the conclusion from comparing the various estimators is
similar.

Simulations results when estimation is based on the logrank score statistic are summarized in the Supplementary
Material (Tables S10 to S15 and Figures S6 to S11). For Scenario 1 (𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 0) and Scenario 2 (𝜃1 = 𝜃2 = 𝜃3 =
𝜃4 = −0.2231), results are similar to those where estimation is based on Cox’s proportional hazards model. For Scenario 3
and 4, in some cases, all the estimators underestimate treatments’ effects slightly (eg, Figure S8). This is of little practical
relevance since the biases are small and the treatment is highly effective. Like Kimani et al,19 we attribute underestimation
to the fact that the asymptotic normal distributions in Section 2 are based on using few terms of the Taylor’s expansion
and is more accurate for log hazard ratios close to zero.20 A bigger problem with estimation based on the logrank score
statistic is that, in Scenario 4 where all treatments have HRs less than 0.4, the asymptotic distribution approximation
did not work well especially when the selected treatment is not the most effective and when the sample size is small.
Therefore, we do not recommend estimation based on logrank score statistic if HRs <0.4 are considered plausible in a
clinical trial.
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7 DISCUSSION

Phase II/III clinical trials are efficient for testing multiple experimental treatments. However, in simulations based on
typical sample sizes in confirmatory trials, we observed that in some scenarios the naive estimator for log hazard ratio has
substantial biases arising from adaptation performed at an interim analysis so that it is necessary to have bias adjusted
estimators. Brückner et al18 have shown how to adjust for treatment selection by estimating bias and subtracting it from
the naive estimate (bias subtracted estimators) or by using shrinkage estimators. Extending uniformly minimum variance
conditional unbiased estimator (UMVCUE) for normally distributed outcomes13-17 to time to event data, we have derived
an approximate UMVCUE for the log hazard ratio (log HR). While also adjusting for possibility of stopping for futility, we
have compared the biases and the mean squared errors of the new UMVCUE to those of the naive estimator and existing
estimators.

In most scenarios, all the bias adjusted estimators we have considered perform better than the naive estimator. The
shrinkage estimator does not eradicate much bias but performs best in terms of mean squared error. Our recommendation
is to use the shrinkage estimator if the primary aim is to have an estimator whose variability does not exceed that of
the naive estimator. The interpretation of shrinkage estimates needs to include an acknowledgement that biases of the
shrinkage estimator are only slightly less than those of the naive estimator.

The single iteration bias subtracted estimator does not eradicate bias fully, overestimating treatments’ effects. From
the simulation study, while emphasizing that in practice true treatments’ effects are unknown, the overestimation is only
noticeable if the experimental treatment selected is not the most desired treatment to continue to stage 2 but even in
this case, this estimator is still much less biased compared to the naive estimator. Also, in most scenarios it has smaller
mean squared errors than the naive estimator. Thus, the single iteration biased subtracted estimator is preferable if one
is ready to accept slight overestimation. Because the bias reduction for this estimator depends on the true values for the
log hazard ratios, before conducting a clinical trial, we recommend assessing its properties using a simulation study of
plausible hazard functions.

Regulators recommend that the magnitude of the bias of a naive point estimator is understood, effort is made to control
the bias and the point estimator to be used in the analysis is prespecified.41,42 So, we recommend that trialists choose in
advance of clinical trial conduct to use either the new UMVCUE or the multiple iterations bias subtracted estimator. The
two estimators are approximately unbiased and have similar mean squared errors. The UMVCUE, however, has simpler
expressions for computing estimates, is approximately unbiased by derivation and in simulations had the smallest biases
among all the estimators we considered. Expressions (12) and (13) cover several selection rules, and where it is possible
to determine limits of integration as demonstrated in Section 2.5 and Table 1, steps in the Supplementary Material used to
obtain expressions (12) and (13) can be used to get UMVCUE expressions for more selection rules. The multiple iterations
bias subtracted estimator requires derivation for the expressions for biases which may not be straightforward and also,
sometimes, there is no convergence of the iteration procedure which from simulations, is worse with higher number of
treatments, smaller sample size and selecting a treatment that is not best in terms of true log HR. The risk of convergence
is also higher for estimation based on logrank score statistic than estimation based on Cox’s proportional hazards model
and particularly high when selecting a treatment that is not the best in terms of true log HR. If trialists prefer the multiple
iterations bias subtracted estimator, as mitigation in case there is no convergence for the multiple iterations bias subtracted
estimator, it can be prespecified that UMVCUE estimate will be used in case of no convergence with the former.

Brückner et al18 considered another shrinkage estimator. In our setting, if we had included the estimator in our work,
we expect the same conclusion as that we have made from comparing the shrinkage estimator in this paper to the other
estimators. This is because from Brückner et al simulations, the shrinkage estimator we have considered in this paper per-
formed better in most scenarios than the shrinkage estimator we have not considered. Also, in Brückner et al simulations,
the two shrinkage estimators did not eradicate bias fully in most scenarios.

In simulations, we have used a single treatment selection rule to compare the various estimators. For other selection
rules, we expect the UMVCUE to have least biases as it is approximately unbiased by derivation. The shrinkage estimator
is likely to have largest biases and least MSEs among the bias adjusted estimators since this has been observed for dif-
ferent selection rules when patient outcomes are normally distributed.12,15,32 We expect the single iteration and multiple
iterations estimators to eradicate most biases but we recommend simulations to compare them to the UMVCUE when a
different selection rule is to be used in a trial.

The UMVCUE we have derived is not fully unbiased. One reason for this is following stage 1 patients without events
before the interim analysis in stage 2 so that the independent increment structure is an approximate assumption. Bias
can be reduced by not following stage 1 patients in stage 2. However, this can lead to not including many events which
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increases RMSE. Therefore, we recommend using a design that follows stage 1 patients in stage 2 but has an approximate
independent increment structure.

We have considered estimation based on Cox’s proportional hazards model and on the log rank score statistic. Trial
investigators would need to prespecify the model to use in advance. In general, we recommend estimation based on Cox’s
proportional hazards model since its estimates have better properties than those based on the logrank score statistic, it
is possible to include covariates and using standard statistical packages, it is easier to obtain parameter values for the
distribution given by expression (1). Estimates based on the score statistic are attractive as they would be expected to
align to the logrank test which is commonly used to test hypotheses. However, from literature19 and as we have observed
from simulations, properties of the point estimators can be undesirable when the true hazard ratios of the treatments are
less than 0.4. Therefore, we do not recommend estimation based on logrank score statistic if investigators believe hazard
ratios less than 0.4 are plausible.

We have not considered confidence intervals with appropriate coverage probabilities. To obtain confidence intervals
that adjust for treatment selection, we suggest extending the work of Magirr et al43 as was done for the case of subpopula-
tion selection with time to event data.19 However, confidence intervals obtained using this method can be noninformative
sometimes, especially for the cases where mutiple treatments continue to stage 2.19,43 Therefore, development of new
methods for constructing confidence intervals is necessary.

We have provided a program written in R29 that was used to compute the estimates in Section 5 which can enhance
adoption of the methods in practice. Developing statistical packages can improve adoption and is future work.
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