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Abstract

Recent interest in structure solution and refinement using electron diffraction (ED)

has been fuelled by its inherent advantages when applied to crystals of sub-micron

size, as well as a better sensitivity to light elements. Currently, data is often processed

using software written for X-ray diffraction, using the kinematic theory of diffraction

to generate model intensities – despite the inherent differences in diffraction processes

in ED. Here, we use dynamical Bloch-wave simulations to model continuous rotation

electron diffraction data, collected with a fine angular resolution (crystal orientations

of ∼ 0.1◦). This fine-sliced data allows us to reexamine the corrections applied to

ED data. We propose a new method for optimising crystal orientation, and take into

account the angular range of the incident beam and varying slew rate. We extract

observed integrated intensities and perform accurate comparisons with simulations

using rocking curves for a (110) lamella of silicon 185 nm in thickness. R1 is reduced

from 26% with the kinematic model to 6.8% using dynamical simulations.
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1. Introduction

Electron diffraction (ED) is currently enjoying increased attention and activity due

to its ability to work with crystallites that are far smaller than can be tackled by

X-ray diffraction (XRD) (Gemmi et al., 2019; Grüne et al., 2018). Structural solution

utilising ED has dramatically increased since the turn of the century due to advances

in computer control and detector development (Gemmi & Lanza, 2019a) and the new

methodologies that have been developed for structure solution are generally known

by the term three-dimensional electron diffraction (3D-ED) (Gemmi et al., 2019) .

Just as in XRD, these techniques measure the direction and integrated intensity of

many Bragg-diffracted beams from a crystal, which are then processed to deduce

a unit cell, given Miller indices hkl and observed intensities I
(obs)
hkl . These data are

then used to produce a crystal model using structure solution methods. There are

many differences between ED and XRD, (Gemmi & Lanza, 2019b) including very

different wavelengths and damage mechanisms, but the principal one which affects

diffracted intensities is the strength of interaction with electrons roughly 10,000 times

more likely to be scattered than X-rays (Spence, 2017; Xu & Zou, 2019). It is this

aspect which allows ED to outperform XRD at the nanoscale, but unable to tackle

macroscopic crystals. The methods are therefore complementary, and together they

make a powerful combination (Yun et al., 2015).

Even at the nanoscale, multiple scattering is usual for electrons – it is essential to

capture the interaction of a fast electron with even a single gold atom (Howie, 2014) –

whereas single scattering usually dominates for XRD. Since structural refinement relies

on minimising the difference between I
(obs)
hkl and calculated values I

(calc)
hkl , it is therefore

unsurprising that a fit to a single (kinematic) scattering model is poor for a method

where multiple (dynamical) scattering dominates. Currently, some analyses of ED

data for structural solution and refinement still use the well-established and relatively
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sophisticated XRD software, despite the vastly different scattering processes involved.

As a result, structural solution statistics from 3D-ED often appear much worse than

that of XRD, even though the structures obtained seem reliable. To develop the field

of ED further, it is necessary to improve the quality of fit by taking into account the

differences between electron diffraction and other methods. As first demonstrated by

(Palatinus et al., 2015a), and now firmly established by (Klar et al., 2021), signif-

icant improvements can be obtained when dynamical electron scattering effects are

considered.

The differences between electrons and X-rays when used for structure solution can

be relatively subtle in data that only contain integrated intensities, where each re-

flection is measured over a time interval during which the diffracted beam passes

completely through its Bragg condition. This type of data is found in continuous-

rotation electron diffraction (cRED) experiments, where each data frame typically

covers one or more degrees of crystal rotation. However, electron detector technology

has seen a significant improvement in both quantum efficiency and speed in recent

years (Faruqi & McMullan, 2018; Paterson et al., 2020; Grüne & Mugnaioli, 2021), al-

lowing ever greater amounts of data to be obtained. These fast pixelated detectors can

provide data that has fine resolution both temporally and in scattering angle. cRED

experiments may now have data frames covering a small fraction of a degree (Fröjdh

et al., 2020). The additional information in such fine-sliced data allows the detail of

electron scattering processes to be observed more clearly and provides an opportu-

nity to model them more comprehensively. In this work, we explore data taken with

a crystal orientation resolution of ∼ 0.1◦, in combination with Bloch-wave electron

diffraction simulations. Our aim is to elucidate the most important experimental and

modelling parameters that will be necessary in future electron diffraction methods.

The main reason for the continued adherence to a scattering model that is known

IUCr macros version 2.1.11: 2020/03/03



4

to be inadequate for ED is the relative difficulty of calculation for dynamical scatter-

ing in comparison with the kinematic model. In both models, the starting point for

calculation of the diffracted intensity for reflection g = hkl is the structure factor Fhkl

Fhkl =
N∑
j=1

fj(θB)Tj exp (2πig · rj) , (1)

where fj(θB) is the atomic scattering factor evaluated at the Bragg angle θB, Tj the

thermal factor and rj fractional atomic coordinates of the jth atom, the sum taken

over all N atoms in the unit cell. In the kinematic model, it is commonly stated

that the structure factor Fhkl is proportional to the amplitude of the diffracted beam,

i.e. intensity is proportional to I
(kin)
hkl = |Fhkl|2 = FhklF

∗
hkl, where * indicates com-

plex conjugate. With tabulated scattering factors Eq. (1) can be evaluated almost

instantaneously on even the most basic computer. In comparison, modelling dynam-

ical scattering for ED to obtain I
(dyn)
hkl requires solving Schrodinger’s wave equation

for an electron travelling through the crystal, usually done using either the Bloch-

wave method or a multislice wave scattering/wave propagation calculation. The struc-

ture factor enters the Bloch-wave calculation as elements in the scattering matrix,

which contains all excited g-vectors and their differences, but is present only indi-

rectly in a multislice calculation. These models, which require significant computing

resources and may be cluster or GPU-based, are widely used in more traditional elec-

tron diffraction work such as convergent beam electron diffraction (CBED) (Tsuda &

Tanaka, 1995; Spence, 1993; Zuo & Spence, 2013) and in the simulation of transmission

electron microscopy (TEM) and scanning TEM (STEM) images.

Prior to the development of 3D-ED methods an additional difficulty in ED re-

sulted from the collection of static diffraction patterns, meaning that with parallel

illumination almost all reflections were measured away from the Bragg condition. In

this case, even minuscule changes in crystal orientation can produce large changes in
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diffracted intensity and while dynamical modelling was possible (Jansen et al., 1998)

it was not straightforward. The introduction of beam precession (Vincent & Midg-

ley, 1994) allowed measurement of intensities integrated around a circular path in

reciprocal space, which reduced the sensitivity to precise crystal orientation. However,

dynamical modelling of intensities in individual ED patterns with beam precession

then had to take account of the different integration path for each g-vector (Sinkler

& Marks, 2010; Dudka et al., 2007). In order to solve a crystal structure in three

dimensions, multiple precession ED measurements were obtained at different crystal

orientations (Kolb et al., 2007). This method has had great success but still requires

corrections for integration of different g-vectors (Palatinus et al., 2015b). In the cur-

rent cRED method, integration is performed by rotation of the crystal in a similar

manner to ’X-ray precession measurements’ (in which the crystal is referred to as ’pre-

cessed’ which is referring to crystal rotation, not in the case with ED the incident beam

). Extraction of integrated intensities in cRED data with, or without, beam preces-

sion is possible using the data reduction program Process Electron Tilt Series PETS

(Palatinus, 2011; Palatinus et al., 2015a) and PETS2 (Palatinus et al., 2019) with

structure solution and refinement with dynamical modelling using the programs JANA

and Dyngo (Petř́ıček et al., 2014; Palatinus et al., 2015b; Palatinus et al., 2019; Klar

et al., 2021).

In any quantitative experiment, measurements and calculations must meet at some

point and in XRD it is most convenient for that point to be the structure factor. The

correspondence between model and experiment is usually captured using an R-factor

(see section 3). Although it is often said that diffracted X-ray intensities from a crys-

tal are proportional to |Fhkl|2 (Eq.1), in reality things are not so simple and many

other factors need to be accounted for, which depend on both the experiment being

performed and the material. These factors are usually considered to be experimental
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and can be either measured or determined during refinement, but are separate from

the crystal structure itself. As noted by (Ladd & Palmer, 1994) it can be helpful to

list these corrections in the form of an equation, Eq. 2. This makes a distinction be-

tween raw experimental measurements of diffracted intensity I
(expt)
hkl and the ‘observed’

intensities I
(obs)
hkl that are suitable for comparison with calculations |F (calc)

hkl |2.

|F (obs)
hkl |2 ∝ I

(obs)
hkl = M−1A−1E−1S−1G−1C−1B−1L−1p−1{I(expt)hkl }, (2)

with corrections for polarisation p, Lorentz factors L, background B, fluctuations in

the incident beam intensity C, geometry G, scaling S, extinction E, absorption A,

and mosaicity M . Each correction in Eq. 2 will be different for each reflection hkl

and should be considered a rather general operation when applied to a full diffraction

data set. Furthermore if, like extinction in XRD, a correction is determined iteratively

during refinement, it could be argued that they form part of a scattering model and

therefore should be applied to I
(obs)
hkl in Eq. 2 rather than I

(expt)
hkl . For simplicity here,

where we are concerned with the effect of these factors rather than their point of

application during data processing, we consider any modification of data necessary to

improve structure solution and refinement to be applied to the raw experimental data,

resulting in a set of ‘observed’ intensities that depend only on the crystal structure

and nothing else.

In XRD each reflection hkl has a single well-defined integrated I
(obs)
hkl , so that if it

is sampled multiple times, or there are symmetrically equivalent reflections, they can

be merged into a single measurement with improved fidelity. However, in dynamical

diffraction a reflection no longer has a single well-defined intensity (Spence, 1993),

as illustrated by Fig. 1. This shows a Bloch-wave simulation of a 1̄4 2̄ 2̄ reflection

from the silicon cRED data set (section 3) which, although kinematically forbidden,

has intensities up to 10% of the incident beam intensity where pathways for multiple

allowed reflections exist. Although this is an extreme example, it is not uncommon
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for weak reflections to be affected in this way in ED. Thus an average intensity,

taken either by merging multiple measurements, symmetrically equivalent reflections,

or through the use of a precessed incident beam (Vincent & Midgley, 1994), will in

general converge to some ill-defined value. Conversely, comparison of experimental

data with a dynamical model in which each measurement is simulated individually

gives a better match without any data merging (Palatinus et al., 2015b).

Fig. 1. An illustration of the range of intensities that are obtained for the kinematically-
forbidden 1̄4 2̄ 2̄ reflection in silicon with a thickness of 180nm in a dynamical
simulation. The image below shows the corresponding LACBED pattern (see section
3)

Before embarking on a structural refinement in which rj and Tj in Eq. 1 are deter-

mined for each atom in the unit cell by minimising the difference between observed and

calculated intensities, the many corrections in Eq. 2 must be applied to optimise the

experimental input |F (obs)
hkl |. At first sight, it might therefore appear that Eq. 1 deals

with scattering theory while Eq. 2 deals only with experimental parameters, but this
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is not strictly correct – absorption and extinction, for example, are scattering effects

that depend upon the sample. For dynamical electron diffraction, we must reconsider

the validity of Eq. 2 to account for the differences in ED vs XRD experiments. For

electrons, we can discard the polarisation correction p since electron beams are unpo-

larised, but each of the other terms has an equivalent in ED. Thus, before presenting

our results from a continuous rotation electron diffraction (cRED) measurement, we

briefly discuss each in turn.

i) Lorentz corrections L. Lorentz corrections ensure that a given reflection has the

same integrated intensity in XRD irrespective of the way the crystal is rotated, i.e.

they account for the different time spent in the vicinity of each Bragg condition during

data collection. As purely geometrical corrections, they apply equally to XRD and

ED (Zhang et al., 2010b). If beam precession is employed in a set of ED patterns

taken with a static crystal the circular path in reciprocal space taken by the direct

beam must be taken into account (Gjønnes, 1997; Zhang et al., 2010a) but if data

is collected with a continuously rotating crystal, beam precession adds no additional

geometrical correction factor to integrated intensities (Palatinus et al., 2019). In our

cRED experiment, we measure the integrated intensity of each reflection individually

from rocking curves in both experiment and simulation and it is therefore possible

to compare intensities without applying Lorentz corrections. However, to maintain

equivalence with XRD refinement methods it is preferable to apply them, and we do

so for both experiment and simulation.

ii) Geometry G. Corrections for other geometrical issues, such as variations in speci-

men height or rotation axis, are needed in XRD and also for ED (Palatinus et al., 2019).

These issues primarily affect a diffracted beam’s position, rather than the intensity

that is our main interest here. It is of course important to ensure that the crys-

tal of interest does not wander out of the electron beam as it is rotated (Cichocka
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et al., 2018; Plana-Ruiz et al., 2020). More importantly, since dynamical diffraction is

exquisitely sensitive to geometry, crystal orientation must be known to high precision.

At crystal orientations where diffraction is strong, a good calculation of intensities in a

cRED measurement using dynamical scattering requires an angular precision and ac-

curacy better than 40 arc seconds (∼0.2 mrad). Previously, orientation refinement has

been performed by optimising the fit between experimental and calculated intensities,

either integrated (Palatinus et al., 2013) or pixel-wise for peaks detected on individual

frames (Palatinus et al., 2019). Here, we show that fine-sliced data allows a quicker

and more straightforward orientation refinement to be performed, using the sequence

of reflections as they appear during crystal rotation. The fine sliced data approach

also permits a measurement of varying slew rate (section 3). As a corollary of the

requirement for high precision in crystal orientation, the angular range of the incident

beam must also be taken into account; while parallel illumination is often assumed,

in practice there is always some beam convergence or divergence that broadens the

range of reciprocal space that is sampled.

iii) Background B. In ED, corrections for background need to be considered from

two main sources, a) the detector; and b) non-Bragg scattered electrons (both elastic

and inelastic). For (a), detector characteristics such as dark noise levels, quantum ef-

ficiency and linearity can be measured effectively; these corrections are necessary but

straightforward. Unfortunately, (b) is rather more problematic. Amorphous material,

e.g. the support film for the crystal, can create a non–linear background (Tivol, 2010),

but the sample itself also produces non-Bragg thermal diffuse scattering (TDS, caused

by displacement of atoms from their mean positions by thermal vibrations) and in-

elastic scattering. Importantly, these electrons can be diffracted again by the crystal,

producing a background that is highly structured, with Kikuchi lines and dynamical

scattering effects (Eggeman & Midgley, 2012). Calculating this background is not a
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trivial exercise and generally requires a model of thermal vibrations (ideally, com-

plete knowledge of the phonon spectrum) (Muller et al., 2001; Kolb et al., 2012) and

a full quantum-mechanical description of inelastic processes (Forbes et al., 2011) re-

spectively. In a complete model of electron scattering these effects would be taken

into account in the calculation of diffracted intensities to be compared against exper-

iment. Currently, while some current multislice simulation packages can do so (Allen

et al., 2015) none have yet been implemented for 3D-ED experiments. Here, we use a

simple Bloch-wave model that neglects this ‘background’ intensity of diffuse scattering

by the crystal.

iv) Absorption A. This is another term which, strictly speaking, should be considered

in scattering theory but in XRD its behaviour is simple enough for it to be corrected

as an experimental variable. For the energies typical of ED (80-300 keV) and a thin

specimen suitable for structure solution, true absorption of the electron beam does

not happen to any appreciable extent. However, the attenuation of a Bragg reflection,

as electrons are scattered into the diffuse background by TDS or inelastic interactions,

is a very similar effect. In ED, TDS is enhanced significantly when the electrons are

channeled along atom columns, particularly those with high atomic number (Hall &

Hirsch, 1965). Thus, dark bands can be seen between low-index Bragg conditions in

bright field LACBED patterns (‘anomalous absorption’, (Hirsch et al., 1965; Jordan

et al., 1991) see examples below). This complicated behaviour means that in ED it is

best dealt with in scattering theory, and should no longer regarded as an experimental

parameter. Both Bloch-wave and multislice models can account for this effect in ED.

v) Extinction E. This is simply the X-ray term for dynamical diffraction effects. The

underlying theory is very similar; the two-beam analysis by Darwin (Darwin, 1914a;

Darwin, 1914b; Darwin, 1922) for X-rays has many resemblances to that of Howie and

Whelan for electrons (Howie & Whelan, 1961; Hirsch et al., 1965), so much so that
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they are sometimes referred to as the Darwin-Howie-Whelan model (James, 1990). The

term extinction refers to the transfer of intensity from the direct beam to a diffracted

beam g, and back again, as a function of crystal thickness; the distance over which

this occurs is known as an extinction distance ξg. In XRD this is usually dealt with

during refinement and can be considered as a multiplicative correction factor that

depends only upon Fhkl and g–vector magnitude (Becker & Coppens, 1974; Petř́ıček

et al., 2014; Bourhis et al., 2015). This simple approach can be used because X-ray

extinction distances are usually much larger than the size of a crystallite. In ED,

where extinction distances can be tens of nm and multiple beams are almost always

excited, this is not the case. (In XRD, there is also ‘secondary’ extinction, which

refers to the enhanced absorption of strong diffracted beams in large crystals (Ladd &

Palmer, 1994), whose counterpart in ED is anomalous absorption, above). Again, this

correction should not be applied to ED data, but taken into account in the calculation

of diffracted intensities.

vi) Scaling S. This correction takes account of the varying proportion of the incident

beam occupied by a crystal of irregular shape as it is rotated. This is certainly a

correction that should be applied in principle in ED, although in practice extreme

care must be taken not to confound it with simple loss of intensity in the direct beam

due to a very strong diffracted beam, or the effect of ‘absorption’ due to TDS. ED

has a potential advantage over XRD here, in that a crystal can be imaged directly,

allowing scaling to be calculated from a series of images taken after a diffraction

measurement (Plana-Ruiz et al., 2020). Without these images, frame-by-frame scaling

of intensities is difficult to calculate (e.g.the current implementation of dynamical

refinement refines the scale as part of the refinement process rather than data reduction

process (Palatinus et al., 2019)). Here we propose a method using the direct beam

intensity.
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vii) Fluctuations in incident electron beam intensity C. cRED measurements are in

general very rapid; diffracted electron beam intensities are sufficiently high that they

can be sampled to good precision even in a small fraction of a second and the total time

for data collection is often less than a minute. Variations in incident beam intensity

on this timescale are negligible. Despite this, it is common to see significant changes

in the direct 000 beam intensity in a cRED dataset (e.g. SI video 1). This happens

because electron diffraction is strong and the crystal occupies much, or all, of the

incident electron beam. In ED, it is quite possible for a diffracted beam with a large

structure factor to have a higher intensity than the direct beam. Nevertheless, this

effect is not due to a change in incident beam intensity and therefore this correction

is not appropriate for a cRED measurement.

vii) Mosaicity M . Crystal imperfections, in the form of dislocations, low-angle grain

boundaries and cracks, allows the Bragg condition to be satisfied over a wider range

of angles than would be the case for a perfect crystal without strain. In XRD, the

presence of these defects can be helpful in that they effectively break the crystal into

a mosaic of small crystal blocks that reduces extinction effects significantly, (Ladd

& Palmer, 1994) although it can also produce broadening of diffracted beams. For

high energy electrons, with much smaller extinction distances, defects alter diffracted

intensity very strongly, allowing them to be visualised directly in diffraction-contrast

TEM (Hirsch et al., 1965; Williams & Carter, 2009). In ED they may have a significant

effect on measured intensities that is too complicated to account for in any simple

model and will vary from one crystal to another in an unknown way. Currently, their

effect is neglected completely and this is probably the best approach until the more

tractable effects of dynamical diffraction are fully accounted for.

To summarise, in reconsidering Eq. 2 for dynamical ED structure solution or re-

finement, we find that some factors that can be separated from the scattering model
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and considered ‘experimental’ variables for XRD – i.e. absorption A, geometry G,

and extinction E – must instead be considered explicitly in the scattering model for

ED. Other experimental factors – polarisation p, incident beam intensity variations

C, and the complicated effects of mosaicity M – can probably be neglected at the

current level of simulation fidelity, being either relatively unimportant or too difficult

to tackle with current methods. Finally, truly experimental corrections L, B and S

that both XRD and ED hold in common must be taken into account, but the differ-

ences in Bragg angle and hardware means that they are rather different for ED. One

of the biggest changes in emphasis is that the point of contact between experimental

measurements and modelled intensities in a dynamical refinement no longer has the

simple and elegant interpretation relating to the structure factor.

In what follows, we use the reliability factor R1 (see S1.3) as a metric to compare

model and experiment, using the square root of the observed (corrected) intensity

I
(obs)
hkl

1/2
. Our discussion above justifies only corrections to the raw data for Lorentz

factors L, background B and scaling S:

I
(obs)
hkl = S−1B−1L−1{I(expt)hkl }. (3)

We compare I
(obs)
hkl

1/2
with the square root of calculated ED integrated intensities

I
(calc)
hkl

1/2
using a dynamical diffraction model in which extinction X and absorption A

are implicit, resulting from the crystal itself. Dynamical integrated intensities I
(dyn)
hkl

are a non-linear function of crystal thickness t, geometry G and beam profile P . It

should be borne in mind that the relationship between these values and the structure

factor Fhkl of Eq. 1 is no longer straightforward. Since we apply Lorentz correction

factors L to the simulation we distinguish between the raw simulation I
(dyn)
hkl and

corrected intensities I
(calc)
hkl :
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I
(calc)
hkl = L−1 {I(dyn)hkl (X, t, G, P )}, (4)

We now explore this approach using Bloch-wave simulations to compare kinematic

and dynamical model fits to experimental data for a simple, well-known material.

We examine data from a single crystal of silicon, ion milled to a thin foil. This almost

perfect crystal shows strong dynamical scattering and is used to evaluate the improve-

ment in fit using dynamical modelling as well as the importance of correction factors

applied to the raw data.

2. Experiment

2.1. Data collection

Experimental data was obtained using selected area electron diffraction (SAED)

with parallel beam illumination on a JEOL 2100 LaB6 transmission electron micro-

scope operating at 200 kV. The sample was a defect-free single crystal milled using

precision ion polishing (PIPS) Ar+ ions at 6 kV to electron transparency with surface

damage minimised by final polishing at 0.5 kV, producing a (110) lamella with exten-

sive thin, parallel-sided regions. Diffraction patterns were produced using a strongly

excited third condenser lens giving close to parallel illumination and a selected area

aperture, and captured using a Gatan OneView camera recording continuously at 8×

binning (4096× 4096 → 512× 512) at 75 frames/sec. (N.B. with 8x binning for data

collection, the point spread function of the camera is negligible.) The crystal was much

larger than the selected area aperture and was rotated at maximum slew rate about

the α-tilt axis over 143◦, giving 1389 frames, each with a nominal crystal rotation of

0.1035◦ (i.e. all data collected in 18.5 seconds). The angular step per frame was deter-

mined by finding the lowest score parameter in PETS from the cylindrical projection

plots.
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2.2. Data reduction and dynamical simulations

We used PETS (Palatinus, 2011) to find the crystal orientation and unit cell, index

reflections and give their rocking curves. The procedure followed sections 4.1-4.6 of

(Palatinus et al., 2019), which refers to the newer version PETS2 (Palatinus et al.,

2019) but remains accurate for both versions.

Bloch wave simulations were performed using the code Felix (Beanland et al., 2019)

running on a high performance computing cluster (typically 384 cores, completing

a simulation in ∼ 30 seconds) using a python script to extract data from the the

dyn.cif pets file generated by PETS and write input files for Felix, e.g. setting the

incident beam orientation with respect to the crystal. Large-angle convergent beam

electron diffraction (LACBED) patterns of size 400x400 pixels were simulated over an

angular range corresponding to 40 frames (4.14◦, or 72.26 mrad). The x-axis of the

image was taken to be along a direction perpendicular to the rotation axis. Successive

simulations overlapped by 10 frames in an attempt to ensure that each reflection was

fully captured in a single simulation, an approach referred to as Overlapping Virtual

Frames (OVF) (Klar et al., 2021). Seventy simulations were required in total to cover

the full angular range of the cRED data.

3. Results

The Si cRED data contained 962 reflections up to 4Å−1, with intensity over 6000

or I
(expt)
hkl /σhkl > 2. Almost all reflections showed a single sharp peak as the crystal

was rotated; only 27 had clear dynamical structure with multiple peaks in their rock-

ing curve, obtained as an intensity given frame-by-frame as an output from PETS.

Although these data were nominally background corrected (B−1 in Eq. 3), close in-

spection showed the tails of the rocking curves had a small non-zero average. An

additional small background correction was therefore performed by subtracting a lin-
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ear fit interpolated beneath the peak of each rocking curve (supplementary Fig. S1).

The origin of the small non-zero intensity when no peak was present is unclear, al-

though we note that complex background from thermal diffuse scattering and Kikuchi

lines are readily apparent in the raw data as shown in Fig. 2 (see also the animated

dataset in supplementary information).

Fig. 2. Seven consecutive frames from the Si cRED data set, showing Kikuchi lines
as diffuse contrast passing through Bragg spots, marked by magenta and yellow
arrows.

The Lorentz correction L−1 was then applied for each reflection g by taking the sum

of counts in the background-subtracted rocking curve and multiplying by the change

in deviation parameter per frame δsg,

I ′hkl = δsg
∑

I
(frames)
hkl . (5)

Since the silicon lamella was close to parallel-sided and much larger than the se-

lected area aperture, it filled the field of view completely throughout data collection

and therefore no frame scaling correction S−1 should be required. Nevertheless, it is

useful to examine the total intensity falling on the detector and the intensity of the

direct beam as the crystal rotated, both shown in Fig. S2. The total intensity (blue

line) shows a drop of approximately 10% when the crystal is perpendicular to the

beam, close to zero α tilt. Since the silicon is not thick enough to absorb 200 kV elec-

trons to any appreciable extent and the short collection time precludes any significant

change in incident beam intensity, the change in total intensity must be due to scat-

tering of electrons to high angles, outside the detector area. This observation remains
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unexplained. For the direct beam, each frame z was cropped to a x = 17 × y = 17

pixel image I(x, y, z) containing just the direct beam. An average beam profile was

obtained by summing all frames and dividing by n = 1387, i.e.

Ī000(x, y) =
n∑

z=1

I(x, y, z)/n (6)

A normalised direct beam intensity I ′000 was then produced by dividing each cropped

frame by Ī000;

I ′000(x, y, z) = I000(x, y, z)/Ī000(x, y) (7)

Re-slicing this 17× 17× 1387 xyz data volume to 1387× 17× 17 zyx, and taking the

average along x, gives a 1387× 17 yz image that shows relative direct beam intensity

as the crystal is rotated (supplementary Fig. S2, black line in Fig. 3). The trend in

total intensity is also visible here (orange line). There is a range of approx. 10◦ at

α = 0◦ where the relative intensity is depressed by ∼ 20%, but this is primarily due

to channeling (see below); since this is calculated as part of the dynamical simulation

it should not be compensated by scaling. Most strikingly, there are many sharp and

significant minima (up to 50% of the relative intensity). Closer examination showed

each of these dark lines to occur when a diffraction condition was satisfied; they simply

indicate a transfer of intensity from the direct beam to a diffracted beam. As seen in

more detail in supplementary Fig. S2, Bragg conditions that are satisfied in only a few

frames are visible as dark vertical bands, while Bragg conditions that pass through the

direct beam slowly are visible as inclined dark lines. In the absence of any explanation

of the broad variations in intensity and knowing that the crystal completely filled the

selected area aperture, no intensity scaling was applied.
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Fig. 3. Blue line: the total intensity in the Si cRED ED pattern as a function of
goniometer angle α, normalised to an average of unity and offset by +0.4. Black
line: the relative direct beam intensity for the data, normalised to an average of
unity (red line). See also Fig. S2.

After applying corrections B−1, L−1 and while discounting S, we perform an overall

scaling to directly compare simulated and experimental intensities. Intensities are cal-

culated with an incident beam intensity of unity and we multiply corrected integrated

observed intensities by the factor K:

K =

∑
I
(calc)
hkl

1/2
I
(obs)
hkl

1/2

∑
I
(obs)
hkl

1/2
I
(obs)
hkl

1/2
(8)

giving a set of integrated intensities KI
(obs)
hkl that can be compared to simulation and

yield an R-factor. We use the usual definitions, e.g. (Palatinus et al., 2013):

R1 =

∑
|[KI

(obs)
hkl ]

1/2
− I

(calc)
hkl

1/2
|∑

[KI
(obs)
hkl ]

1/2
, (9)

R2 =

(∑
|[KI

(obs)
hkl ]− I

(calc)
hkl |

)
∑

KI
(obs)
hkl

, (10)

wR2 =


∑

whkl

(
KI

(obs)
hkl − I

(calc)
hkl

)2
∑

whkl[KI
(obs)
hkl ]2


1/2

, (11)

where the weights whkl = 1/I
(obs)
hkl σ2

hkl (Ladd & Palmer, 1994). We first consider

kinematic intensities calculated using Eq. 1, taking the temperature factor to be
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T = exp(−B sin2(θ)/λ2) where Bj is the Debye-Waller factor. We find a minimum

R1 = 26.4% (R2 = 59.4%, wR2 = 56.2%) at B = 0, shown in Fig. 4 (X-ray re-

finements give B = 0.54Å
2
(Többens et al., 2001)), In this plot the bold black line

indicates R1 = 0
(
F

(obs)
hkl = F

(kin)
hkl

)
while the orange line is a least-squares linear fit

to the data. It is quite clear that the fit of the kinematic model to the data is poor,

not least because there are a number of kinematically–forbidden reflections that have

significant experimental intensities (highlighted in red), but also because many strong

reflections (F
(kin)
hkl > 0.2) are in fact weaker than expected.

Fig. 4. R1 calculation for cRED silicon data using the kinematic model (Eq. 1) with
B = 0.2. Kinematically forbidden reflections are highlighted in red. R1 = 26.0%

The poor R1 seen in Fig. 4 is typical of many ED refinements using a kinematic

model and we now turn to a dynamical one. We use an initial Debye-Waller factor

B = 0.54 (Többens et al., 2001) since the value obtained from the kinematic model is

unphysical. A Bloch-wave simulation of seventy Felix 000 LACBED patterns, stitched

together to make a continuous strip, is shown in Figure 5. Frame numbers underneath

correspond to experiment. In this image, a perfect plane-wave incident beam corre-
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sponds to a single point and the red line marks the nominal path traced by the direct

beam through reciprocal space as the crystal is rotated. Each dark line in the simula-

tion shows the location of a Bragg condition; when the direct beam lies on one of these

lines a diffracted beam is produced, with an intensity that can be obtained from the

corresponding point in the relevant dark-field LACBED pattern. The correspondence

between this simulation and experiment can also be seen by converting the normalised

experimental direct beam data volume to a 2D image, shown in grey-scale below the

simulation. Some features common to both experiment and simulation are marked by

arrows.
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Fig. 5. Dynamical simulation for the path of the 000 beam through reciprocal space
(red line) in the silicon cRED data set, corresponding to 1387 frames (goniometer
rotation of 143◦ about α). Frame numbers are indicated; note that one division =
5 frames = 0.5175◦ = 9 mrad. Each dark line corresponds to a Bragg condition
for a diffracted beam, two of which (9̄3̄3̄, frames 30-50 and 311, frames 545-590)
are labelled. Below the simulation, the experimental intensity of the 000 beam is
shown. Some features that are clearly present in both simulation and experiment
are indicated by arrows. The [110] zone axis lies a few degrees below the beam path
around frame 670.

The simulated rocking curve for a reflection is given by the intensity along a line in its

dark field LACBED pattern, as shown in Fig. 6 for a) a typical reflection with a single

peak 9̄3̄3̄, and b) one with obvious dynamical structure 311. Integrated intensities
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I
(dyn)
hkl can be obtained from these simulated rocking curves in the same way as they

are taken from experimental ones, although here there is no diffuse scattering and

therefore no background correction. The incident beam intensity is fixed at unity so

there is no scaling correction and only Lorentz corrections need to be applied.

Fig. 6. Two examples of silicon cRED rocking curves. (a) and (b) are experimental
data. Most experimental rocking curves have a simple peak like (a) 9̄3̄3̄, while less
than 3% show dynamical structure like (b) 311. c) and d) show the corresponding
dark field LACBED simulations (specimen thickness 185 nm). The nominal beam
path is a red line, with frame numbers in yellow. Intensity profiles along the red
line give the rocking curves (e) and (f). The difference in frame numbers (a) to (e)
and (b) to (f) are caused by a varying slew rate (Fig. 9b). g) and h): Applying the
angular spread of the incident beam (Fig. 10) as a convolution to the simulation
gives simulated rocking curves that are a good match to experiment.
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Kinematic intensities are independent of crystal thickness, but dynamic intensities

can be very sensitive to it, particularly strong reflections with short extinction dis-

tances. It is therefore necessary to perform simulations for a range of thicknesses.

(Supplementary sections S1.4 and S1.5). We may also expect the specimen thickness

along the path of the electron beam to vary as the crystal is rotated, but this is ignored

for the moment. The best R1 is obtained for a thickness of 190nm, shown in Fig. 7. A

very significant improvement over the kinematic model is apparent, with R1 = 12.6%

(R2 = 23.8%, wR2 = 39.8%). The wide spread of intensities is no longer present, but

there is still considerable scatter about the expected R1 = 0 line and the gradient of

a linear fit is 0.74.

Fig. 7. R1 calculation for cRED silicon data with a Bloch wave model, using the
nominal direct beam path (red line in Fig. 3) and a specimen thickness of 190
nm. The kinematically forbidden reflections identified in Fig. 4 now have non-zero
values. The black line marks perfect correspondence (R1 = 0) and the orange line
a least squares linear fit. R1 = 12.6%

Dynamical simulations therefore clearly give a much better fit to experimental data,

as may be expected. However, R1 is still relatively high in Fig. 7 and further improve-
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ments are possible by increasing the precision of the crystal orientation. The wide

range of reciprocal space covered in the simulation allows geometry to be optimised,

as described below.

3.0.1. Orientation optimisation G. For any given reflection in Fig. 5 its Bragg condi-

tion is satisfied, and a spot will appear in the SAED pattern, when the 000 beam sits

on the corresponding dark line. The frame in which the maximum diffracted intensity

appears is given by the crossing point of the Bragg condition and the red line. It is thus

possible to obtain the sequence of reflections which appear in a cRED experiment, and

the frame spacing between them, for any given direct beam path. Conversely, with

knowledge of the frames in which diffracted maxima appear in an experiment we can

find the corresponding path through reciprocal space.

Fig. 8. a) The intersections with Bragg conditions for eight reflections in the first Si
Felix simulation. Frame numbers are given at the bottom of the image and the
frame in which each peak intensity is found is marked by a vertical blue line. The
intersection of the blue line with its Bragg condition is marked by a yellow dot
(yellow lines correspond to an error of ±0.5 frames). The horizontal red line marks
the nominal beam path (output from PETS) and if the crystal orientation was
correct the yellow dots would all lie on this line. b) The best fit to a straight line
is obtained by shifting the blue lines by -2.5 frames. c) R1 calculation using an
optimised beam path and a specimen thickness of 185 nm. R1 = 10.0%

The effect of a slightly incorrect crystal orientation is shown in Fig. 8a. In this

simulated image each frame corresponds to a vertical stripe ten pixels wide and the
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nominal direct beam path runs horizontally through the centre, marked by a red

line. Experimentally, the 1̄4 2̄ 2̄ and 11 1 3 reflections were seen in frame 4, 844̄ was

seen in frame 9, etc, as marked by blue vertical lines. The image is a superposition

of eight dark-field LACBED patterns; each bright line corresponds to a diffracted

beam (and to a dark line in the direct beam LACBED pattern, not shown). The

intersection of each blue line and its corresponding diffraction condition is marked

by a yellow dot and must lie on the beam path; yellow lines indicate an error of

0.5 frames. Clearly, these points do not correspond to the expected horizontal line

through reciprocal space, indicating that the nominal crystal orientation is slightly

in error. An optimised crystal orientation can be found by shifting the group of blue

lines while maintaining their relative frame spacing (e.g. 33̄9 has an experimental peak

intensity one frame before 137̄ and three frames after 844̄). Shifting the set of blue

lines by 2.5 frames to the left brings all points close to a horizontal line (Fig. 8b).

An optimised direct beam path was then calculated by fitting a smoothed curve to

the best crystal orientation for each simulation (Fig. 9), both for changes about the

rotation axis δα and perpendicular to it δβ by least-squares fitting a horizontal line

to the optimised set of intersection points. Rocking curves extracted from the Bloch-

wave simulations using an optimised beam path gives a significant improvement to

R1 = 10.0% (R2 = 19.9%, wR2 = 30.2%, Fig. 8c), mainly by reducing the scatter in

reflections with lower intensities. This can be understood by referring back to Fig. 1,

which shows how large variations in intensity can be found in weak beams when they

coincide with stronger beams. Optimisation of the beam path is essential to capture

these interactions correctly.

The resulting corrections are shown in Fig. 9. The actual path traced by the direct

beam deviates vertically from the red line (i.e. about the β tilt axis) in Fig. 9 by

a maximum of 10 pixels (equivalent to 1 frame, or 0.1◦). There is a much larger
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correction needed along α, up to 5 frames (0.5◦, Fig. 9b) that varies through the data

series, caused by a varying slew rate during rotation of the specimen. This varying

slew rate is apparent in Fig. 5, where the features in the normalised experimental

direct beam intensity are not found directly beneath their corresponding points in the

simulation above. A changing slew rate also has an impact on integrated intensities,

since the crystal is rotating more slowly or quickly through a diffraction condition

than expected. Applying a slew rate correction to the simulated intensities gives a

further improvement to R1 = 9.4%. (R2 = 13.8%, wR2 = 28.7%, Fig.9c).

Fig. 9. Corrections to the nominal direct beam path (red line in Fig. 5), a) perpen-
dicular to the line (β-tilt) and b) along the line (α-tilt). Uncertainty in δα and δβ
for each data point are ∼ ±0.5 frames, i.e. 0.05◦. c) R1 calculation after correcting
integrated intensities for varying slew rate gives R1 = 9.4% at a specimen thickness
of 195 nm.

3.0.2. Correction for beam profile P . The sensitivity of dynamical electron diffraction

to thickness is apparent in the R1 calculation for all integrated intensities (see S1.4).

It is also very important for the fine structure of rocking curves of strongly dynamical

interactions, which show fringes that change in size and number as a function of

crystal thickness. It has long been known that crystal thickness can be measured to

an accuracy of a nm or better using these features in CBED patterns.(Kelly et al.,

1975; Allen, 1981) The fine structure of strongly dynamical rocking curves thus gives

another way to measure crystal thickness, which should match the minimum R1 for all
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reflections. These fringes can be seen clearly for the 311 reflection in Fig. 6. However,

the features in Fig. 6f are noticeably sharper than the experimental rocking curve

Fig. 6b and this is due to the angular range of the incident electron beam. Additionally,

in the optimised orientation Fig. 8b the yellow dots do not lie precisely on a straight

horizontal line. Both of these effects may be explained if the intersections are not

points, but have a finite size.

The incident electron beam is not a perfect plane wave because the crossover pro-

duced by the final condenser lens, which acts as an effective illumination source, is

of finite size. We may approximate the angular profile of the incident beam by the

intensity profile of the direct transmitted beam averaged through all frames, which is

shown in Fig. 10a together with a fit to a Lorentzian profile. The fit is excellent and

gives the FWHM of the direct beam to be 0.037 Å
−1

, or 0.47 mrad (97 arc sec). Thus,

the integrated intensity is obtained from the simulated LACBED patterns not from a

single row of pixels, but from multiple rows, each of which contributes in proportion

with the beam profile of Fig. 10a. This has the effect of changing the rocking curve

profile, particularly when the line of the Bragg condition is more parallel to the beam

path, and changing integrated intensities because the intensity of a reflection varies

along its Bragg condition. The most straightforward way to perform this correction is

to apply the beam profile as a convolution to the simulations, allows rocking curves

to be extracted that are a good approximation to experiment shown in Figs. 6g and

6h. Integrated intensities obtained after applying this final correction gives R1 = 8.9%

(R2 = 18.1%, wR2 = 25.3%, Fig. 10b). The largest scatter from the R1 = 0 line is

now found in the highest intensity reflections.
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Fig. 10. a) The direct beam profile, obtained by averaging all frames in the Si cRED
data and a Lorentzian fit. b)R1 calculation after optimising geometry and correcting
for slew rate and beam profile (specimen thickness 185 nm). R1 = 8.9%. c) R1 for
the kinematic model K, initial dynamical model D, with geometry optimisation
G, corrections for slew rate S and beam profile P , and refinement of Debye-Waller
factor DWF .

Having applied all relevant corrections to the experimental data and optimised the

simulation, we are finally in a position to perform a structural refinement. In silicon

there is only one free parameter – the Debye-Waller factor B. Fig. 11 shows the

variation of R1 with B, with a final R1 of 6.8% (R2 = 13.8%, wR2 = 23.6%) and

a well-defined best-fit at B = 0.32Å
2
. This is rather lower than the X-ray value of

B = 0.54Å
2
(Többens et al., 2001) and there is still noticeable scatter in the highest

intensity measurements. These differences may be due to difficulties in background

subtraction, which result from a limited number of intensity measurements in the

PETS output (see section S1.1)
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Fig. 11. a) R1 as a function of Debye-Waller factor B. b) Optimised R1 calculation
for B = 0.33, giving a best R1 = 6.8% at a specimen thickness of 185 nm.

In summary for this silicon cRED data, we have demonstrated that the poor R1

obtained using a kinematical diffraction model is not found when using a dynami-

cal model with appropriate optimisation and correction factors (Fig. 10c). The final

result (R1 < 7%) is still some way above those typical of X-ray diffraction (Ross

et al., 2014), indicating that there is still work to do in data processing or modelling

for electron diffraction. The importance of careful correction is very clear from the

observation that the improvement in R1 due to refinement of the temperature factor

(Fig. 11) is of similar magnitude to improvements that result from optimisation of

geometry (Fig. 10c). Nevertheless, dynamical ED intensities are far more sensitive to

structure (i.e. atomic coordinates) than temperature factors (Beanland et al., 2021),

which is reassuring for structure solution and consistent with the growing number

of structures solved by ED. Further improvements may be possible with improved

background subtraction, which may be incorrect for high intensity reflections in this

particular example due to a lack of data in the rocking curves.
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4. Discussion and conclusions

In this work, we have established a protocol for dynamical modelling of fine-sliced

cRED data, taking account of the corrections that should be applied in the case

of electron diffraction, equivalent to those applied to X-ray data. These corrections

rely on the ability to extract rocking curves from experimental data, i.e. having a

large number of frames collected at small angular increments. We expect that this

approach will become widespread as detector technology continues to improve. Our

results show similar improvements to those seen by (Palatinus et al., 2013; Palatinus

et al., 2015b; Klar et al., 2021), i.e. dynamical modelling of cRED data has a very

significant impact on the quality of fit, reducing R1 by almost 20% in the silicon

example chosen here. Nevertheless, this is a particularly simple material with very

high perfection and many systematic absences. Equivalent improvements may not

be found for more interesting (complex) materials, particularly if they have poorer

crystallinity, strong inelastic scattering as seen in organic materials (Latychevskaia &

Abrahams, 2019), and are not parallel sided lamellae.

Several improvements can be made from this attempt at dynamical modelling, not

least the need for significant computing resources. Each set of 70 simulations calculated

5.6×106 incident beam orientations, producing a 400×400 pixel LACBED pattern for

each of the 962 diffracted beams. The large range of reciprocal space covered in each

LACBED pattern, together with knowledge of which frame each reflection was seen

experimentally, allowed precise correction of the crystal orientation but the area of

reciprocal space covered could be reduced by a factor of > 40 if this optimisation were

first performed by direct calculation of the positions of the different Bragg conditions.

To allow rocking curves to be captured fully, each simulation overlapped with the next,

meaning that every incident beam orientation was simulated twice, something easily

avoided if a single simulation (e.g. 20 × 14000 pixels) is calculated instead. Rocking
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curves and integrated intensities could be output directly, rather than extracted from

these simulated data using python scripts. In Felix, the Bloch wave calculation is

optimised by careful choice of the diffracted beams included (Zuo & Weickenmeier,

1995; Chuvilin & Kaiser, 2005), but the time required remains ∝ N3, where N is

the number of beams (Yang et al., 2017). No attempt was made to optimise this

parameter and all simulations were run with N = 200 from a beam pool of ∼ 800 in

each simulation. If all such improvements were to be implemented it seems reasonable

to expect a full set of I
(calc)
hkl to be obtained in seconds. This would then allow dynamical

refinement of crystal structure in reasonable times.

Improvements in simulation fidelity are also possible. The simple Bloch-wave cal-

culation used here assumes that the surface normal is parallel to the incident beam

direction, i.e. it does not properly account for continuity of the electron wave function

at the entrance and exit surfaces of a tilted crystal. This is obviously not correct for a

specimen tilted by up to 70◦. Furthermore, as the crystal rotates, the thickness of ma-

terial transited by the electron beam changes. Interestingly, we found that simulated

rocking curves for a single thickness gave a good match to experiment across the full

dataset (section S1.5), and that this thickness agreed with the minimum R1, obtained

from integrated intensities. Incorporating a change in crystal thickness t correspond-

ing to that expected for a parallel-sided slab gave no improvement in comparison with

a single thickness for the complete data set, although large corrections should only

occur at very high tilts (t ∝ 1/cos α). We expect a more correct model would yield

further improvements in R1. Finally, some experimental rocking curves suffered from

poor background correction (section S1.1). While improved background subtraction

may be possible in PETS2 the presence of diffuse scattering, modulated by strong

Kikuchi lines, may still be a significant factor that prevents a good measurement of

intensity.
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In conclusion, dynamical modelling of cRED data has a significant impact on the

quality of fit. Improvements are still required before fit metrics for electron diffraction

equal those of X-ray diffraction, but there seems to be no fundamental reason why

they cannot be achieved. This is encouraging for future development and application

of 3D-ED techniques to structural solution in a wide range of applications.
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Beanland, R., Evans, K., Römer, R. A. & Hubert, A. J. M., (2019). Bloch wave method
diffraction pattern simulation.
URL: https://github.com/WarwickMicroscopy/Felix (2017-22)
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Supplemental Material for
Modelling fine-sliced three dimensional electron

diffraction data with dynamical Bloch-wave simulations

!

S1.1. Experimental rocking curves and background subtraction.

Four examples of rocking curves from the silicon cRED data produced by PETS, and

subsequent background subtraction, are shown in Fig. S1. The red line is a linear least-

squares fit to data points outside the peak. The raw integrated intensity is the sum of

the green bars. For some strong reflections, such as the 111 peak, the data points in the

rocking curve may not extend sufficiently to allow a good fit to the background, leading

to a systematic underestimation of integrated intensity. Although not optimised in this

data analysis, it is possible to increase the width of the rocking curve extracted by

PETS2 by modifying the mosaicity and rocking curve width parameters. It should

thus be possible to extract the data in a way that the problem with insufficient ”tails”

of the rocking curves is avoided.
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Fig. S1. Background subtraction for four rocking curves in the Si cRED data set. The
line gives the frame by frame output intensity from PETS and the horizontal red line
marks the measured background. Green bars show the intensity after background
subtraction.
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S1.2. Direct beam intensity.

Fig. S2. The relative direct beam intensity, obtained by cropping the stack of n = 1389
frames to just the direct beam, producing an average of the beam profile by summing
all frames and dividing by n, and then dividing each image in the stack by this
average. The stack of frames is then re-sliced to view from the side. Deficits in
the direct beam, caused by each Bragg condition that is passed through as the
goniometer rotates, are visible as dark lines.
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S1.3. Reliability factor R1 calculation and sensitivity to B in the kinematic model.

The usual equation for the reliability factor R1 is

R1 =

(∑
||F (obs)

hkl | − |F (calc)
hkl ||

)
∑

|F (obs)
hkl |

, (S12)

where the sums are taken over all observed reflections. We use an equivalent version

here for dynamical refinement, with |F | replaced by I1/2, i.e.

R1 =

(∑
|(I(obs)hkl )1/2 − (I

(calc)
hkl )1/2|

)
∑
(I

(obs)
hkl )1/2

, (S13)

The quality of fit can be seen by plotting F
(obs)
hkl against F

(calc)
hkl as shown in Fig. S3.

Fig. S3. R1 calculation as a function of B in the kinematic model. The lowest R is
found at B = 0.
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S1.4. Dynamical R-factors as a function of thickness.

Since diffracted intensities change significantly as a function of specimen thickness

in a dynamical model, each specimen thickness has a different R1. This is illustrated

below in Figs. S4 and S5 for Bloch-wave simulations corresponding to the nominal

beam path in Fig. 5.

Fig. S4. R1 calculation as a function of specimen thickness t in the dynamic model,
with the nominal beam path given by PETS. Orange line is a least-squares linear
fit.
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Fig. S5. R1 as a function of specimen thickness t in the dynamic model, with an
optimised beam path and beam profile convolution.
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S1.5. Dynamical rocking curves as a function of thickness.

The fine structure of rocking curves obtained from strongly dynamical reflections

is very sensitive to specimen thickness, as exemplified here by Si 311. The simulated

rocking curves have been convoled with the experimentally measured beam profile.

Fig. S6. Comparison of the experimental Si 311 rocking curve (blue) and simulations
at a variety of thicknesses (orange)
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S1.6. R-factor as a function of B for optimised simulations.

R1 is sensitive to thermal vibrations of atoms in the dynamical model as shown in the

plots of I
(obs)
hkl

1/2
against I

(calc)
hkl

1/2
for different values of the Debye-Waller factor B. The

systematic underestimation of strong reflections (S1.1) may lead to an underestimation

of B.

Fig. S7. R1 calculations as a function of B for an optimised dynamical simulation as
shown in Fig. 11. The lowest R is found at B = 0.33
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