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An interactive dashboard to track themes, development 
maturity, and global equity in clinical artificial intelligence 
research

Interest in the application of artificial intelligence (AI) 
to human health continues to grow, but widespread 
translation of academic research into deployable AI 
devices has proven more elusive.1,2 There is increasing 
recognition of limitations in how AI research is carried 
out, from methods of model validation that do not 
emulate real-world conditions,3 to characteristics of 
data4 and inadequate inclusion of researchers and 
populations from diverse global regions.5 Systematic 
reviews of clinical AI criticise widespread risk of bias and 
lack of downstream clinical utility, and research waste is 
an increasing concern.6,7

One problem is the lack of a unifying perspective 
over the colossal-sized landscape of global AI research. 
Continual quantification of research characteristics can 
enable identification and monitoring of shortcomings 
in this heterogeneous landscape. However, the sheer 
quantity of published research (>150 000 papers on 
MEDLINE under broad terms; appendix p 1) makes this 
a substantial challenge. Literature database searches 
have poor specificity, and cannot directly identify 
original research in model development, or pinpoint 
research representing advanced stages of model 
validation. Literature reviews only describe a portion of 
research at a single timepoint, are laborious to conduct 
and reproduce, and are quickly outdated in a rapidly 
changing landscape.

In response to these requirements, we produced an 
end-to-end Natural Language Processing (NLP) pipe
line that performs real-time identification, classi
fication, and characterisation of AI research abstracts 
extracted from MEDLINE, outputting results to an 
interactive dashboard, creating a live view of global AI 
development. We identified four primary aims: first, to 
directly discover original research in clinical AI model 
development; second, to identify research at more 
advanced development stages using mature evaluation 
methodology, ie comparative evaluation of AI algo
rithms versus a reference standard8 or prospective 
real-world testing (appendix p 13); third, to map, in 
real-time, global distribution and equity in AI research 

production on a per-author basis; and fourth, to 
track the main active research themes across clinical 
specialties, diseases, algorithms, and data types. 

Development was done using Python (version 3.8) 
and Tensorflow (version 2.5). To achieve the required 
performance, we employed transfer learning, using 
state-of-the-art Bi-directional Encoder Representations 
from Transformers NLP models with pre-training on 
medical corpuses.9 Models were fine-tuned on manually 
labelled abstracts indexed on MEDLINE before 2020 
and tested prospectively on abstracts indexed after 
pipeline completion. The final pipeline and methods 
described are available in the appendix (pp 1–5, 13). 
In a prospective evaluation, the classifier for research 
discovery achieves an F1 score of 0·96 and Matthews 
correlation coefficient (MCC) of 0·94. The classifier 
for maturity achieves an F1 of 0·91 and MCC of 0·90. 
The multi-class classifier for labelling themes achieves 
a macro-average F1 of 0·97. When evaluated against 
publications discovered by recent systematic reviews, 
the pipeline correctly classified 98% for inclusion and 
maturity. Performance metrics are reported in the 
appendix (pp 8–12).

The dashboard allows all discovered research to be 
visualised by development maturity, medical specialty, 
data type, algorithm, research location, publication 
date, or different combinations of attributes. Datasets 
containing labelled abstracts and metadata are 
refreshed every 24 h and made available to download, 
as an aid to literature reviewers, or for reproducible 
analysis of research progress across any cross-section of 
characteristics.

Using dashboard datasets, we illustrate heterogeneity 
in research maturity across major specialties and 
diseases over the past decade using a horizon chart 
(appendix p 17).10 Respiratory medicine, breast cancer, 
and retinopathy demonstrate greatest production of 
mature research relative to total research production. 
Distribution of data type usage across major 
subspecialties are shown as heatmaps (appendix p 14), 
showing increased prevalence of mature validation 

For the interactive dashboard 
see https://aiforhealth.app
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methodology using radiomics (and other computer 
vision tasks) across all specialties. Notably, only 1·3% 
of research, and 0·6% of mature research, involved an 
author from a low to low-middle income country (as per 
World Bank definitions), with 93·6% of such research 
published after 2016 (appendix p 15). Live visualisations 
are found on the dashboard website.

While demonstrating state-of-the-art NLP perfor
mance, classifier limitations include imperfect accuracy 
compared with careful human reviewers (the trade-off 
against time required for manual characterisation). 
We use only MEDLINE due to their unique application 
programming interface. Finally, prediction using 
full articles could increase performance, but this was 
hindered by a paywalled access to most publications.

The interactive dashboard was published in 
November, 2021. Given its popularity and utility to 
date, we plan to continue enhancement of this resource. 
We consider immediate downstream use-cases to 
be analysis of drivers for AI maturity and translation, 
reviewing features of mature AI research, and ongoing 
characterisation of AI development in developing 
countries. Codes and data are made public, with the hope 
that functionality can be expanded in collaboration with 
the global AI community.
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For the codes and data see 
https://github.com/whizzlab
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