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Reachability Map for Diverse and Energy
Efficient Stepping of Humanoids

Christopher McGreavy and Zhibin Li

Abstract—In legged locomotion, the relationship be-
tween different gait behaviors and energy consumption
must consider the full-body dynamics and the robot control
as a whole, which cannot be captured by simple models.
This work studies the totality of robot dynamics and whole-
body optimal control as a coupled system to investigate
energy consumption during balance recovery. We devel-
oped a two-phase nonlinear optimization pipeline for dy-
namic stepping, which generates reachability maps show-
ing complex energy-stepping relations. We optimize gait
parameters to search all reachable locations and quantify
the energy cost during dynamic transitions, which allows
studying the relationship between energy consumption and
stepping locations given different initial conditions. We
found that to achieve efficient actuation, the stepping lo-
cation and timing can have simple approximations close
to the underlying optimality, resulting in optimal step posi-
tions with a 10.9% lower energy cost than those generated
by linear inverted pendulum model. Despite the complexity
of this nonlinear process, we found that near-minimal effort
stepping locations are within a region of attractions, rather
than a narrow solution space suggested by a simple model.
This provides new insights into the nonuniqueness of near-
optimal solutions in robot motion planning and control, and
the diversity of stepping behavior in humans.

Index Terms—Bipedal locomotion, energy-efficiency, op-
timal control, reachability maps.

I. INTRODUCTION

TO ACHIEVE a long operation time for legged locomotion,
it is essential to study the relationship between energy-

efficiency and locomotion behaviors. The energy-efficiency and
actuation power of a robot during locomotion are highly re-
lated to both its multibody dynamics and its control, which
therefore must be considered together when studying energy
consumption.
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Fig. 1. Building an energy-optimal reachability map by optimizing pa-
rameters of whole-body control for online energy-optimal step selection
in balance recovery.

For high-DoF robots, coupling hardware and software creates
high dimensional state-action and solution spaces, such that
studying energy consumption for general locomotion is complex
and computationally heavy. This article investigates the stepping
behavior and energy consumption and sheds light on this non-
linear relationship for a narrow aspect of locomotion—stepping
and balance recovery—as a proof of concept.

To study energy-efficient stepping, we must consider the
robot system and its dynamic behavior as a whole. Whole Body
Motion Planning (WBM) [1] generates motion plans for the full
robot system and considers its dynamics throughout the planning
stage, and therefore, can be accurately tracked using Whole
Body Control (WBC) [2] and can be formulated to enforce tasks
like kinematic reachability [3], [4], collision avoidance [5], and
centroidal dynamics [6], but plans are computationally expen-
sive to generate. Mixed Integer Convex Optimization produces
WBM plans for online use [3], [7] using conservative constraints
such as static stability, but such motions are unsuitable for
efficient walking. Therefore, though WBM methods could be
used to optimize for energy-efficiency, it is impractical for the
study of a large search space.

Alternatively, reduced models such as point mass models [9]
can quickly produce reactive step plans [10] and stabilization
control [11], and produce energy-efficient motion [12] at the
planning level. Rapid computation comes at the cost of accuracy,
as reduced models simplify the strong nonlinear and coupling
effects of dynamics, therefore, optimality of planned motions is
lost when projected to the whole system. We propose a proof-
of-concept method that uses WBC to evaluate the true energy
cost of tracking trajectories generated by reduced models instead
of optimizing efficiency within the reduced model, resulting
in a method of rapid trajectory generation with an accurate
associated energy cost.
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Fig. 2. Human stepping and balance recovery which is hard to model as a biological multibody system. (a) Subject taking a step during push
recovery. (b) Distribution of step locations during push recovery [8].

Cost of transport (CoT), commonly used to quantify loco-
motion efficiency, is a dimensionless approximation of energy
cost per unit weight of a body during locomotion, expressed as a
single numerical value and is used as a unified metric to compare
different bodies moving at different speeds [13]. CoT can aid
robot design and control development [14], optimize gait for a
given movement speed [15] and, at a high computational cost,
for footstep planning [16]. But CoT can be misleading, as not all
methods account for nonmechanical energy cost, such as heating
loss—around 76% of total energy cost for quadrupeds [17]. We
focus on single-step motions for which it is hard to define walk-
ing speed to calculate CoT, in simulation, where it is difficult to
model nonmechanical energy loss, hence CoT is unsuitable in
this case.

For a robotic system consisting of electric motors, the
mechanical power of all joints is ultimately converted from
electrical power, meaning the mechanical power consumption
can be equally quantified by electrical consumption [18]. Joint
torque is a good index for energy dissipation [19]–[21], since
the torque is directly proportional to current. Therefore, given a
constant voltage in a dc motor, torque can be used to reflect en-
ergy. In our simulation study, the sum of squared joint torque can
be used to quantify whole-body energy use, which is integrated
to give torque use during stepping.

We compile the realistic, whole-body energy cost of reduced
models into reachability maps (see Fig. 1), which maps trajec-
tories to energy costs and, inversely, automatically generates re-
duced model trajectories for step locations with optimal whole-
body energy cost. Previous work has shown effective use of
similar reachability maps for kinematic reachability [22], [23],
feasible transition motions [24], [25], obstacle avoidance [5],
[26], applied to faster locomotion planning [27], [28], complex
end-pose planning [29], dynamic transitions [30], and warm-
start learning [31]. Moreover, analysis of our maps shows simple
heuristics and a diverse range of efficient stepping locations to
plan motions with low computational cost.

Heuristics for energy-efficient step regions provide insights
into complex stepping behaviors in humans. Fig. 2(b), from [8],
shows step positions for human balance recovery (see Fig. 2(a)),
offset by mean initial velocity of nonstepping trials (0.1103 m/s)
and shows the stochasticity of human stepping [32], [33]. Our
heuristics for the underlying optimality help explain the stochas-
ticity of human stepping.

Our article is motivated to study the relationship between step
location and energy optimality for balance recovery from a set

of initial conditions by using a whole-body model to evaluate
the energy cost of motions generated by simple models. Energy
efficiency is not a primary concern in balance recovery, but by
studying efficiency we find simple heuristics to rapidly select
recovery step positions for full-body, dynamic motions which
are limited when using simple models alone. We accurately
quantify the energy cost of stepping for the whole stepping
space for all joints in a 32-DoF robot in a realistic dynamic
physics simulation to fully explore this relationship and de-
velop a method of rapid, energy optimal step planning. We
use Bayesian Optimization (BO), a sample efficient, nonlinear
optimization method suited to whole-body tasks [34] to optimize
open parameters for efficient stepping.

A. Scope

We develop an optimization pipeline (see Fig. 1) and focus
on the following set of stepping motions: taking a single step
forward from an initialized standing position with the center of
mass (CoM) above stance foot and without toe-off motions. This
allows us to search for optimal locomotion parameters given
different initial states, and obtain results of the torque usage
and energy consumption of a full-body humanoid robot with
redundancies.

B. Contributions

This article develops a nonlinear optimization pipeline and
studies the efficiency of power consumption in humanoid step-
ping. Our contributions are as follows:

1) Energy-optimal stepping (Section IV-B3): Reachability
maps that show energy-optimal step positions based
on whole-body dynamics and the use of optimal
control.

2) Optimization pipeline (Sections IV-A and IV-B): A par-
allelized optimization pipeline for whole-body control
based stepping in full dynamics in a physics simulation.

3) Reachability maps (Section IV-B2): A proposed method
for computing precise reachability maps for dynamic
motions which can rapidly select energy-efficient step
locations.

4) Finding of simple approximation of optimal stepping
(Section IV-B2): Finding of simple approximations and
the disclosure of a funnel of near-optimal step locations.
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Fig. 3. Pipeline for optimizing trajectory generation and HQP parameters. Phase 1 optimizes trajectory generation parameters for sets of motions
and outputs a parameter mapping. Phase 2 uses this mapping to build reachability maps and an energy-optimal step selection mapping; both
mappings are combined for energy-optimal push recovery motions.

Our sampling-based energy cost maps reveal a complex,
nonlinear distribution of efficient stepping locations, surrounded
by regions of similar efficiency, indicating a simple step selec-
tion heuristic for balance recovery—which can only be studied
and understood by considering the complexity of whole-body
dynamics and optimal control as a whole. We find optimal step
regions are different from those predicted by simple models
which do not capture whole-body dynamics. Reachability maps
can also be used for rapid step selection and give insight into
nonuniqueness in human step selection.

The rest of this article is organized as follows. We mathemat-
ically define the pipeline and parameterized control system in
Section II, then describe the methods of the pipeline in more
detail in Section IV. We then present our results in Section V,
followed by our discussion in Section VI. Finally, Section VII
concludes this article.

II. PROBLEM FORMULATION

To study energy-efficiency during stepping, we generate tra-
jectories for the CoM and swing foot using simplified models and
evaluate their energy cost by tracking them with a whole-body
feedback controller in a full dynamic simulation. Trajectories
each have two open parameters and BO is used to optimize the
open parameters for energy-efficient stepping, we then produce
maps to associate pairs of initial conditions and trajectories
to energy cost. We achieve this using our two-phase pipeline,
defined mathematically below.

A hierarchical quadratic programming (HQP) feedback con-
troller [35] is used to map the simple trajectories onto a complex
whole-body system with low computational cost due to its
quadratic formulation. The HQP H tuned for dynamic stepping,
solves joint torques τ given a set of task constraints

H : (c, s, t,q, q̇, q̈) �−→ τ (1)

where (q, q̇, q̈) ∈ Rm are the position, velocity, and accelera-
tion of the robot’s joints, and m is the number of joints and t
the current time. c and s are reference trajectories for the CoM

TABLE I
OPTIMIZATION VARIABLES AND DESCRIPTIONS

and the swing foot, respectively, additional details are given in
Section III-A.

Trajectory planning generates spatial paths which are in-
tended to be followed by a specific part of the robot, in our
case, we have two trajectories, one for the CoM [36] and one
for the swing foot [37], [38]. Similarly, trajectory optimization
seeks to find the best spatial paths between two points according
to some task or cost [39], which in this case is performed by
BO. The trajectories are time indexed position references such
that c(t) ∈ R3 and s(t) ∈ R3, generated by the parameterized
functions

Ctraj_gen : (tmin, smax) �−→ c (2a)

Straj_gen : (sdes, tswing_start, sspeed) �−→ s. (2b)

CoM trajectory generator Ctraj_gen takes minimum step time,
tmin, and maximum step length, smax, as arguments. Swing
foot trajectory generator Straj_gen is a function of desired step
position sdes, swing start time tswing_start, and step speed sspeed
parameters. Step speed sspeed is the swing foot target speed,
typically reached at swing apex. Open parameters are tuned
in Phase 1 of our pipeline, summarized in Table I, and are
concatenated in vector p (see Fig. 1)

p = [tmin, smax, tswing_start, sspeed]
T . (3)

Note that sdes is not an open parameter, it is provided as an
initial condition (Phases 1 and 2), or generated from (7). The
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Fig. 4. Technical illustrations of pipeline show (a) example reference trajectories for the CoM and swing foot, and measured trajectories from the
HQP. Initial conditions ẋ0 = 0.15 m/s, sdes = 0.4 m. (b) Distribution of parameter, sampling, and validation points.

TABLE II
OBJECTIVE FUNCTION WEIGHTS AND THEIR VALUES

output of Phase 1 is function G

G : (ẋ0, sdes) �−→ p∗ = arg max
p

J(ẋ0, sdes,p) (4)

which maps initial CoM velocity, ẋ0 ∈ R1 in the lateral plane,
and desired step position sdes to a set of optimal parameters
p∗ (optimal values are denoted by (·)∗). In Phase 1, the values
of sdes are set to predetermined intervals increasingly far away
from the robot; in Phase 2, optimally efficient step positions s∗des
can be generated automatically.

To build this mapping, we use BO to maximize the objective
function J (see (5)) for pairs of initial conditions. Initial condi-
tions and BO parameters are iteratively passed to the trajectory
generators (see (2a) and (2b)), produced trajectories are then
tracked by the HQP (see (1)), in a full dynamic simulation
environment, detailed in Section III-C, where the robot attempts
to step toward the desired step position sdes. This is highlighted
in dark blue in Fig. 3. The objective function J takes values from
the dynamic simulation, which we consider to be a black-box
and each term is assigned a manually tuned weight, each denoted
by a subscript of w, defined in Table II

J(ẋ0, sdes,p) = −(wf (ttotal − tterm)

+ wswing(sdes − std)
2 + wx_mid(xf − smid)

2

+ wz(znom − zf ) + wτJτ (ẋ0, sdes,p)). (5)

Weights are tuned to promote successful stepping, low energy
cost, and scale down large terms. For example, ttotal is set to
7 s at 1000 Hz, giving 7000 time-steps; termination at 4.5 s

would incur a cost of 0.001 · (7000 − 4500) = 2.5, whereas
other terms typically evaluate to less than one during success and
are nominally high during failure to amplify wf . Termination
conditions are detailed in Section III-D.

The error between swing foot position at touchdown std and
desired step location sdes incurs a cost proportional to the square
of the error between them. To increase stability after the step, a
cost is applied between final CoM position, xf , and the midpoint
between the stance foot and the desired swing foot position:
smid = sstance + (sstance − sdes). To encourage straight legs
after landing, a cost is applied to the final CoM height zf to
be as close as possible to a nominal height znom = 0.925 m.
A term is added to minimize the integral sum of the squared
measured torque τ in all the robot’s joints (32 in this case)
between the time swing foot motion begins tlo and touchdown
time ttd

Jτ : (ẋ0, sdes,p) �−→
∫ ttd

tlo

τ 2 dt. (6)

After BO is completed for each pair of initial conditions,
we are left with the mapping function G (see (4)), which
outputs optimized parameters for pairs of initial conditions.
In Phase 2, we query this mapping with a larger set of ini-
tial velocities and desired step positions to test how the op-
timized parameters generalize to novel initial condition pairs,
illustrated in Fig. 4(b). Here, objective function J is no
longer used, and we use the optimal parameters in the map-
ping function; instead, the dynamic simulation returns two
values, shown in Fig. 3: a binary reachability value to encode
whether motions are successful, and the integral sum of the
square of the measured torque (see (6)) for every pair of initial
conditions.

A forward map then encodes which step positions are reach-
able from each initial CoM velocity and another map quantifies
the integral sum of the square torque cost during the swing phase
of each reachable step position. Using the second map, we create
an inverse mapping K from an initial CoM velocity ẋ0 to an
energy-optimal step position s∗des and the optimal parameters
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Fig. 5. Binary reachability maps show successful (green) or unsuccessful (red) steps for pairs of initial conditions. (a) Phase 1: Parameter
optimization map. (b) Phase 2: Dense reachability map. (c) Validation: SVM generated reachability map with validation testing points.

used to reach that location

K : (ẋ0) �→
⎧⎨
⎩
p∗ = G (ẋ0, s

∗
des)

s.t.:s∗des = arg min
sdes

Jτ (ẋ0, sdes,G (ẋ0, sdes)).

(7)

Automatically generated energy-optimal step positions s∗des
are passed to G to reduce the input dimensionality such that only
initial CoM velocity ẋ0 is required to query optimal trajectory
generation parameters p∗.

All maps are built offline and a regression model is used to
approximate energy-optimal step positions s∗des for arbitrary
initial CoM velocities ẋ0. We can query these mappings for
stepping or push recovery; we run validation tests using the
mappings and previously unseen initial conditions.

III. TECHNICAL DETAILS

A. HQP Structure

The HQP feedback controller is a function of forward dy-
namics and two parameterized trajectories (see (1)). We tuned
the tasks, weights, and hierarchy order of an existing HQP
controller [35]. Upper body joints such as the arms and head
are not required for the stepping motion, so a posture task is also
added to regulate arm motion and keep them near a nominal
position with a low weight in the HQP.

B. Trajectory Generation

CoM and swing foot trajectories are passed to the HQP to
determine their energy cost. Each has two open parameters
which determine their profile and outputs time-indexed position
references for the X-,Y - and Z-axes. Parameters determine the
length of the trajectory and its gradient and are optimized in
Phase 1 (see Section IV-A).

1) CoM Trajectory Generation: An existing LIPM-based
model [36] produces CoM trajectories as a function of two
parameters: minimum step time tmin and maximum step length
smax. An example trajectory is shown in Fig. 4(a). During

testing, smax was set to reflect the capabilities of the physical
32-DoF Talos humanoid robot, but this results in falling, so this
parameter was added to the optimization. Since this pipeline is
modular, this can be replaced with alternative CoM trajectory
generation methods.

2) Swing Foot Trajectory Generation: Swing foot trajec-
tories are fifth degree minimum-jerk polynomials [40] (see
Fig. 4(a)), parameterized by the time at which the swing foot
starts to move, (tswing_start), and the swing foot speed (sspeed).
The Z-axis consists of two minimum jerk trajectories connected
at a via point at the maximum desired swing height zmax, for
which we found 80 mm to be a reliable value.

C. Simulation Setup

For the dynamic simulation, we used Pinocchio rigid body
dynamics library [41], based on the widely used dynamics
equations in [42]. In the long term, we aim to move the query
of mapping implementation onto the real robot, but was not
possible for this article. This pipeline is compatible with any
humanoid robot, here we used the Talos humanoid robot model
(32 DoF), with the complete dynamic and kinematic properties
of the real robot including the position, velocity, acceleration,
and torque limits. The simulation environment was fully dy-
namic, including friction, torque limits, with both simulation
frequency and control frequency of 1000 Hz (Δt = 0.001 s).
The BayesianOptimization package [43] was used for
parameter optimization.

D. Experimental Setup

We constrain motions for this proof-of-concept to gait initia-
tion in the X-axis (forward), where in each simulation episode
the robot starts in a standing configuration with the swing foot
1 cm above the ground to reduce the complexity of optimizing
weight transfer time while we develop the pipeline.

Initial CoM velocities are induced by directly applying joint
torques in simulation, torque values are calculated using the
Jacobian from the stance foot to the CoM. On the real robot, we
expect CoM velocities to be applied by having the robot lean in a
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Fig. 6. Maps of the measured integral sum of squared joint torques during the swing phase to reach each position, with optimal step locations
marked. (a) Regression model is fitted to optimal step positions; a region with maximum 5% deviation from optimal is shown in the inset. (b) Energy
optimal step positions are compared to predictions from the LIPM model. (c) Map showing step locations which deviate from the optimal by a
maximum 10% for the same initial CoM velocity superimposed onto 6(a).

given direction or being pushed. Termination conditions during
optimization are as follows: robot reaches desired foot position
and remains standing at t = ttotal (success) or the norm of joint
velocities exceed a threshold (1e6) (failure). If tf < ttotal, the
remaining sensor readings are filled with a nominal high value.

IV. BUILDING REACHABILITY MAP: DYNAMIC STEPPING

OPTIMIZATION PIPELINE

A. Parameter Optimization: Phase 1

1) Bayesian Optimization: Phase 1 of our pipeline, shown in
the dark blue box in Fig. 3, optimizes a set trajectory generation
parameters, p, for pairs of initial conditions. Algorithm 1 shows
the nested loops: for every initial CoM velocity ẋ0∈Ẋ0 and
every desired step position sdes∈Sdes, a set of parameters p is
optimized via BO, such that for each pair, [ẋ0, sdes], is mapped
to a set of parameters and stored in the mapping G .

Optimal parameters were found for 150 initial conditions: 15
initial CoM velocities, 10 step positions—sparsely covering the
state space, as shown in Fig. 4(b)—with 170 BO iterations for
each (100 random, 70 Bayesian) using objective (5). Fig. 5(a)
shows the result, where initial conditions are projected onto a
2-D space and the area around each is colored according to a

binary classification of whether successful stepping parameters
were found. All desired step locations are reachable from low
initial CoM velocity and as this increases, steps which are closer
to the robot’s starting position are no longer reachable, as the
robot is moving too quickly to take a single short step in that
direction.

2) Parameter Interpolation: Linear, element-wise interpola-
tion between the nearest four sets of optimized connected the
sparsely optimized points (see Fig. 4(b)) to create a continuous
mapping G (4) from arbitrary initial values to a set of interpo-
lated, optimized parameters p∗.

B. Reachability Maps: Phase 2

The purpose of Phase 2 (orange box, Fig. 3) is to use the
optimized and interpolated parameters from Phase 1 to create
higher resolution maps to denote the reachability and efficiency
stepping parameters, illustrated in Fig. 4(b); no further parameter
optimization is performed.

The outputs of this Phase are—a high resolution forward
map of reachable step positions, a map of the integral sum of
square torque cost to reaching these positions using the sim-
plified model trajectories, and an inverse mapping for selecting
optimally efficient step positions from any initial condition (see
(7)).

We used 1000 initial condition pairs (40 initial CoM veloci-
ties, 25 desired step positions) to sample the mapping function,
compared to 150 in Phase 1. Initial velocities were between
Ẋ0 = [0.1 m/s, . . . , 0.5 m/s] at 0.017 m/s intervals and desired
step positions: Sdes = [0.1 m, . . . , 0.8 m] at 0.029 m intervals.
A dynamic simulation episode was executed for each initial
condition pair using parameters p∗ = G (ẋ0i , sdesj ) ∀ ẋ0i ∈
Ẋ0, sdesj ∈ Sdes (4).

Simulation episodes return two values—a binary value to
denote if the stepping motion was successful, and the integral
sum of square joint torques, τ , using (6). As a result, each pair
of initial conditions has an associated reachability value and
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Fig. 7. Validation of stepping motions using our automatic step selection validation. Initial CoM velocities 0.164, 0.292, 0.398 m/s, were mapped
to step positions: 0.248, 0.409, 0.617 m for (a), (b), and (c), respectively.

measured integral sum of square joint torque value that we use
to build the reachability maps.

1) Binary Reachability Map: The binary reachability map
(see Fig. 5(b)) projects every sampled pair of initial conditions
from Phase 2 onto a 2-D space and each pair is colored according
to a binary classification of if the robot successfully reached
the desired position and stayed standing or not. Similar to
Fig. 5(a), when using the interpolated parameters many steps are
successful at lower initial CoM velocities and as this increases
the step locations closer to the robot are unreachable. However,
the space of parameters that lead to successful motions appears
to be much smaller for longer steps, but this is not captured by
the interpolation between sparsely sampled points, resulting in
noisy regions at the top of the map. In these areas where success
is uncertain, the robot may not fall in every case, and it may
be possible to take extra steps, but here we consider one-step
capturability to be unsuccessful in the noisy region.

A denser set of optimized parameters would remove this noise
but would require more optimization time and since the robot is
operating at the limits of its workspace, would still be sensitive
to minor changes in modeling or sensor error on the real robot.
Instead, we chose a more conservative approach to trim the noisy
extremes and leave only the conditions which reliably lead to
successful stepping. We train a support vector machine (SVM)
model to separate the reliable step locations from the noisy areas,
shown in Fig. 5(b). By querying the SVM model, we create a
cleaner representation of the safe stepping area (see Fig. 5(c)).
We used a third-order SVM with a radial basis function kernel,
reachable points had a weight of one, unreachable points had a
weight of 14.

2) Measured Torque Maps: The integral sum of square
torque measured during the swing phase of motions from each
initial condition pair is shown in Fig. 6(a), where each point
in the trimmed reachability map is colored according to the
integral sum of the squared joint torques (see (6)); darker (more
purple) colors denote higher measured integral sum of square
joint torque and the lowest cost step positions for each sampled
initial velocity are marked. The distribution of torque patterns
is highly nonlinear, but steps with minimum measured integral
sum of square joint torques form a simple trend that can be
used for footstep prediction. We consider the energy-optimal
stepping positions to be those with the lowest integral sum of
squared torque integral for all joints.

3) Minimum Energy Step Selection: The relationship be-
tween initial CoM velocity and energy-optimal step positions

can be modeled using a simple fourth-order polynomial re-
gression, which can quickly approximate energy-optimal step
positions given an initial CoM velocity (see (7)). Fig. 6(a) shows
this model captures the minimal energy step positions trends
with a mean error of 216.12 N ·m2 (StD.= 287.84 N ·m2,
Min.= 0 N ·m2, Max.= 1159.39 N ·m2).

C. Query of Mapping

Resultant mappings can be queried to produce trajectories for
stepping motions, shown in the green box in Fig. 3. Therefore,
for a given CoM velocity, an energy-optimal step position is
output by the mapping s∗des = K (ẋ0) (see (7)), which is then
used to generate the stepping parameters to produce this motion
using the mapping p∗ = G (ẋ0, s

∗
des) (see (4)). This allows us to

automatically generate stepping for a given initial CoM velocity
during push motions.

Since the parameters in Phase 1 are optimized for a set of
discrete points, in the next section, we run a series of validation
tests to show that motions are still produced reliably given
continuous initial conditions. In these validation tests, we test the
mapping function G under a range of initial conditions and the
mapping K to test the energy optimal step selection. In each
case, initial conditions passed to one or both of the mapping
functions and their outputs are used to run an episode of the
dynamic simulation.

V. RESULTS

A. Reachability Map Validation

Validation was run for two purposes: first, to verify the inter-
polation of parameters at random, novel points using the original
robot model (see Fig. 4(b)); second is to induce simulated
discrepancies to the robot model to validate the robustness of
the parameters to modeling disturbances.

In each case, 1000 random pairs of initial conditions,
[ẋ0, sdes], were generated which were not the same as those
tested in the previous phases over the entire initial search space.
For each pair, an episode of dynamic simulation was run using
parameters from the mapping G and episodes were judged suc-
cessful (colored blue) or unsuccessful (colored red) according
to the termination conditions in Section III-D.

1) Interpolated Parameter Validation: This validation uses
the original robot model and tests the interpolated region be-
tween optimized points to verify that this region is in fact reliable
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Fig. 8. Validation testing for mass discrepancies (a) +13.1% mass, (b) +18.5% mass and feedback delay, (c) 20 ms, and (d) 30 ms. Only internal
points are shown for clarity.

for the robot used during optimization. Fig. 5(c) shows the ran-
dom initial conditions projected onto the trimmed reachability
map, highlighting the noisy, uncertain regions for longer step
distances and showing that the safe region is conservative given
the region of successful trials surrounding this area.

2) Modeling Error Validation: Next, we introduce modeling
errors to validate the robustness of the parameters to dynamic
discrepancies. Random values were generated between ±20%
of the original robot mass and the robot model was adjusted
according to these values, with no changes to the HQP feedback
gains and for each mass variant, 1000 new random pairs of initial
conditions were generated and tested.

Fig. 8(a) and (b) shows representative validation trials
projected onto the safe reachability region for the original
mass robot. Full plots are shown in the Supplementary Ma-
terial (Figs. S1 and S2) and omitted here for clarity. In all
test cases where the mass is lower than the original robot
(−5.8%,−12.9%,−17.3%), an increasing number of trials out-
side the original safe region were successful, making it appear
more conservative. Increasing robot mass 6.2%, 13.1%, 18.5%,
(Fig. 8(a) and (b) show 13.1%, 18.5%, respectively), causes
failures to increase proportionally to the mass such that a more
conservative safe region would be needed for these variations
under the current settings. Given the large mass variation without
changing the HQP feedback gains, this shows that even under
modeling error, the optimized parameters still lead to successful
stepping in a majority of cases.

3) Feedback Delay Validation: Control loop feedback delays
were also added to validate parameter applicability to real robot
hardware. Delays were simulated by providing the HQP with
noncurrent feedback about the robot state, resulting in modeling
errors. The robot starts each simulation in motion, so feedback
from t0 was given until the current timestep was greater than the
delay being modeled.

Using the original robot mass and HQP parameters, 10, 20,
and 30 ms feedback delays were tested, each at 1000 random
initial conditions throughout the state space. Fig. 8(c) and (d)
shows successful and unsuccessful validation points within the
original reachability area for the 20 and 30 ms delay cases.
Validation points outside the reachable area are omitted here
for clarity, but shown in full in Supplementary Material (see
Fig. S3), along with the 10 ms delay case.

Fig. 9. Joint profiles in the torso and legs during one validation step-
ping motion in Fig. 7(c).

Unsurprisingly, the 30 ms delay (see Fig. 8(d)) causes the most
errors in the reachable area. In the lower right, total step time is
barely higher than the 30 ms delay, so the robot falls before the
HQP can react. The upper edge shows the delay causes failures
for longer steps, as the body is accelerating throughout the swing
motion, leading to inaccurate touchdown estimation. Feedback
delays are unavoidable on the real robot due to communication
latency and filtering, but these results show that the reachability
map can still be applied to these cases if they are adjusted to be
more conservative to account for this.
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B. Energy-Optimal Step Selection Validation

Energy optimal step selection was validated with 150 initial
CoM velocities, randomly generated within the safe region
(0.1:0.43 m/s). A dynamic simulation episode was executed for
each point, using an energy-optimal step position s∗des. All trials
were successful as shown in Fig. 7 and the attached video.

Fig. 9 shows the measured joint positions and torques of the
torso (trunk and pelvis), hip pitch, knee, and ankle pitch joints
in both legs during the validation shown in Fig. 7(c). All joints
are included in the motion analysis, but the effect of arm and
head joints are negligible so it is not analyzed further. During
the swing phase, swing leg joint torque is lower than in the
stance leg which serves as a rigid pivot. The landing impact is
clear in the measured torque (see Fig. 9 hatched area) and is
close to the actuation limits which helps explain noisy regions
in Fig. 5(b).

Validation experiments were carried out to investigate how
changes in robot mass affect optimal step positions. Phase 2
of the pipeline was run with a range of mass variations us-
ing the optimal output from Phase 1 which is based on the
original robot mass. Fig. 6(a) shows regression models +10%
(blue) and −10% (black) variation alongside that of the original
robot mass (green). Optimized parameters, interpolation, and
HQP feedback gains as tuned for the original robot mass were
used.

Negative mass variations result in optimal step positions at
low initial CoM velocities being further from the robot and being
steady for longer than for the original mass, then converging
to the same location as initial CoM velocities increase. The
variations by increasing the mass result in divergences away
from the optimal step locations, which initially match those of
the original mass, at around 0.14 m/s, and diverge further from
the original optimal as initial CoM velocity increases. These tests
demonstrate that parameters are robust to modeling errors such
as robot mass, and there is an underlying trend to the dynam-
ics of a multibody system such that the optimal step position
can be calculated given the construction and dynamics of a
robot.

C. LIPM Comparison

We compared one-step-capturable step positions predicted
by the LIPM model given an initial CoM velocity to the
energy-optimal step positions from our optimization, as shown
in Fig. 6(b). To do this, we queried the mapping G at the optimal
step locations for each sampled initial CoM velocity, forward
simulated the LIPM using these parameters and recorded the
position of the capture point at the end of the swing time. Final
capture points were projected onto the measured integral sum of
squared joint torque map to extract the torque cost of moving to
that location, we compared this to the measured integral sum of
square joint torque of the optimal step location.

After 0.32 m/s, the LIPM predicted step location is beyond
the reachable area for the robot in our simulations, so are not
included since the torque cannot be measured. We calculated
the error in the integral sum of square joint torque between the
optimal step positions from our optimization and those from
the LIPM prediction, with a root-mean-squared error of 1364.5
N ·m2 (10.9% increase) (StD. = 829.6 N ·m2(6.0%), Min.

Fig. 10. Analysis of pipeline performance and parameter results.
(a) Computational time to optimize parameters for each pair of initial con-
ditions, step positions denoted by colored traces. (b) Three-dimensional
plot of swing time for optimal and suboptimal points. (c) Two-dimensional
projection of swing time for optimal points.

= 164.3 N ·m2(2.1% increase), Max. = 2531.9 N ·m2(20.0%
increase). Comparison of preferred step positions with the LIPM
shows the effect of modeling discrepancies between using the
full dynamic model and the simplified model. Each LIPM
step location in Fig. 6(b) uses the same step parameters as
the optimized step location below it which uses our full-body
model. This demonstrates the extent to which optimality planned
during LIPM motion planning is lost when tracking the tra-
jectories to the full-body model. Moreover, using the LIPM
to predict step locations reduces the potential workspace of
the robot, potentially harming the one-step recovery ability of
the robot.

D. Diversity in Efficient Step Selection

In addition to the simple trend of energy-optimal step posi-
tions, a diverse range of near-optimal step locations are present
on the map. The highlighted area in Fig. 6(a) shows step positions
where energy costs are a maximum of 5% above optimal for
the same initial condition and Fig. 6(c) shows a band of step
positions superimposed onto Fig. 6(a) which deviates from the
optimal to a maximum of 10%, as a result, any step positions in
this range we define near-optimal.
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Near-optimal regions form simple heuristics: for low initial
CoM velocities, stepping between 22 and −30 cm will result
in minimal impact on energy-efficiency, even if the optimal
position is not reached, allowing coarse, yet rapid step selection
with trivial changes in energy-efficiency. Additionally, since the
regions span a range of initial CoM velocities, inaccurate CoM
state estimation can still lead to efficient stepping.

E. Underlying Energy Optimality

Near-optimal efficiency regions suggest an underlying opti-
mality in dynamic stepping gives us insight into human step
selection. If similar regions exist in dynamic multibody systems
in general, humans can learn similar heuristics and use them for
simple, rapid, near-optimal step selection. Having near-optimal
heuristics for step selection that are robust to sensing delays
and inaccuracies would be beneficial to developing biological
humans.

Fig. 2(b) shows a clustering of selected steps similar to that in
the highlighted area in Fig. 6(a), but with a higher range of initial
CoM velocities. Humans can withstand higher magnitudes using
foot tilting behavior. This is a limitation of our robot control,
which does not consider underactuated foot tilting control, hin-
dering the range of feasible step positions.

We also gain insight into energy optimality by looking at the
optimized step parameters. Total swing time can be calculated
from the optimal parameters (tswing_start + sdes/sspeed), and
plotted in Fig. 10(b), showing all initial condition pairs and their
optimized swing time, with optimal points projected into 2-D
in Fig. 10(c), from the initial foot position [0, 0, 1]cm, swing
time is dependent on the desired step position, displayed on
the vertical axis. This shows a piece-wise relationship between
initial CoM velocity and optimal swing time, where swing time
initially drops, levels off, then rises as the initial CoM velocity
increases. The majority of the swing time effect is caused by the
swing speed parameter sspeed with only minor changes induced
by the swing start time tswing_start as shown by the optimal
ranges in Table I.

F. Analysis of Computation Time

Training used an Intel Core i7-8700 k with 12 cores (6
physical), 32 GB RAM, Ubuntu 16.04, and Pinocchio 2.5.0.
The pipeline is parallelized, with each core optimizing all step
positions for one initial CoM velocity, and took around 5 h,
reachability map building takes around 40 min. Parameters for
one swing foot were used for the opposite foot.

Fig. 10(a) shows the computation time for parameter opti-
mization for each pair of initial conditions, with 170 episodes
for each pair. For larger initial CoM velocities and larger step
distances, the number of early terminations leads to quicker
computation. Parallelization scales linearly with the number of
cores, where large-scale distribution, with one core per initial
condition pair, would lead to 45 min optimization.

Swing foot trajectories are generated in 0.5 ms, and CoM
trajectories in 1.4 s, due to the nonlinear optimization formation
used for generation, but can be reduced to 0.5 ms using the same
generation as the swing foot. Querying the energy-optimal step
selection takes 0.13 ms.

VI. DISCUSSION

The study of energy-efficient locomotion is a complex process
that involves the whole-body dynamics and control together
as a whole and requires complex optimization, as well as a
global search of global energy-optimal step location and timing,
which are all highly nonlinear. The complex interplay between
multibody dynamics, control, and gait parameters is shown by
the optimal gait parameters in Fig. 10(b), where this nonlinear
relationship and nonsmooth gradient would cause standard gra-
dient search methods to get stuck in the local minima. However,
the mapping between initial conditions and key gait parameters,
such as step location and swing time, suggests that the gait
parameters can be represented by piecewise approximations, as
shown in Fig. 10(b) and (c), resulting in a method for rapid
step selection. This indicates that despite the complexity of the
whole process, this nonlinear relationship in human gait can be
possibly learned by humans by prior trials and experience.

Additionally, balance can be recovered using similar step
locations and swing times for different initial CoM velocities
by trading off energy optimality, which can potentially explain
the large variations in step location in human study [8].

VII. CONCLUSION

In this article, we investigated energy-efficient step selection
using nonlinear optimization to build offline reachability maps.
We identified that selecting energy-efficient steps during push
recovery or finding a set of diverse stepping regions are difficult
to characterize with simple models and are hard to compute
online (see Fig. 10(a)). Hence, reachability maps can be used for
rapid step selection on flat ground. Results also give us insight
into the possibility and feasibility of diverse step selection for
humanoids. In our future work, we plan to extend this pipeline
to study energy-efficient locomotion in different modes and
implement the query of mapping for warm-start solution for
online optimization.
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