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We present the results from combining machine learning with the profile likelihood fit procedure, using
data from the Large Underground Xenon (LUX) dark matter experiment. This approach demonstrates
reduction in computation time by a factor of 30 when compared with the previous approach, without loss of
performance on real data. We establish its flexibility to capture nonlinear correlations between variables
(such as smearing in light and charge signals due to position variation) by achieving equal performance
using pulse areas with and without position-corrections applied. Its efficiency and scalability furthermore
enables searching for dark matter using additional variables without significant computational burden. We
demonstrate this by including a light signal pulse shape variable alongside more traditional inputs, such as
light and charge signal strengths. This technique can be exploited by future dark matter experiments to
make use of additional information, reduce computational resources needed for signal searches and
simulations, and make inclusion of physical nuisance parameters in fits tractable.

DOI: 10.1103/PhysRevD.106.072009

I. INTRODUCTION

Xenon-based time projection chambers, such as LUX
[1], excel at directly searching for dark matter in the form of
weakly interacting massive particles (WIMPs). However, as
these experiments grow in size and sensitivity, analysis
procedures have become increasingly complex and time-
consuming. In estimating events above backgrounds either
for exclusion limits or for discovery contours, the profile
likelihood ratio (PLR) is the statistical analysis method of
choice for most direct detection collaborations [2,3] having
taken over from older “cut and count” approaches that used
strict rectilinear cuts.
While more accurate and more powerful than earlier

approaches, the PLR is far slower and scales poorly with the
number of observables. This leads to limitations on which
variables can be practically included in the analysis, either as
observable dimensions or as nuisance parameters. The goal
of this work is to combine machine learning (ML) with the
PLR to remove some of these limitations on the PLR
approach. The motivations of our approach were as follows:

(i) Fewer Monte Carlo simulation statistics needed: ML
is more efficient at capturing information to create
models in the form of probability density functions
(PDFs) than using binned histograms in a high-
dimensional space.

(ii) Variable independence is not a required assumption:
Typically, observable signal sizes and positions are
fed into a 4-5 dimensional model, which is broken
up into independent 2D and 3D spaces to make
computations tractable.

(iii) Faster computation time: ML collapses multiple var-
iables for signal/background discrimination into only
one 1D discriminant, taking much of the work out of
generating PDFs, setting up the likelihood function,
and designing PLR code to handle all of them
appropriately in multiple dimensions. This is particu-
larly valuable when increased model complexity is
required, such as in the LUX second science run [4,5]
where the electric field, fiducial mass, and signal gains
were both spatially and temporally changing.

(iv) Full use of information: This approach is highly
scalable with the inclusion of extra observable
variables. In addition, while not explicitly addressed
in this initial paper, evaluation of systematic un-
certainties through the variation of nuisance param-
eters in the fit is made more feasible due to the faster
calculation and lower statistics requirements.

The rest of the paper is organized as follows: in Sec. II,
the basic design and operation of the LUX detector is
explained. Section III describes the common technique
applied here of training a neural network to reduce the
number of inputs to the PLR, along with details of the
training procedure, such as how to ensure all relevant
information is preserved. Section IV applies this technique
to four different case studies: establishing its capability to
reproduce a simple prior result; quantifying its ability to
speed up the analysis; demonstrating its ability to use raw
variables without loss of performance; and incorporating an
additional S1 prompt fraction variable to demonstrate its
scalability with additional inputs.

II. THE LUX EXPERIMENT

The technique employed by LUX is the dual-phase time
projection chamber (TPC) [6,7]. An incoming particle
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interacts with liquid xenon to produce scintillation light and
ionization electrons [1]. The ratio of ionization to scintil-
lation depends on particle type, energy deposition, and
electric fields. The difference in ratio between nuclear
recoils (NR) and electronic recoils (ER) is the primary
means for discriminating signal from backgrounds such as
gamma-rays or electrons [8,9]. WIMPs should lead exclu-
sively to NR events [10] but non-WIMP dark matter may
not [11].
An electric field drifts liberated electrons to the gas,

where higher fields extract and drift them to make their own
UV scintillation. The primary liquid scintillation signal is
called S1, the secondary in gas, S2. S1 is the combination
of photons from initial atomic deexcitations, and those
from ionization electrons being recaptured into excited
states. Electrons which are not captured escape to make
the S2.
Xe detectors all search for WIMPs in a fashion inde-

pendent of a specific model (e.g. Supersymmetry) by
looking for excess NR events above the background.
Neutrons can mimic WIMPs, but fewer background neu-
trons are produced than gamma-rays, so background ER is
of the highest concern [12]. Underground deployment, and
very aggressive material cleaning and screening cam-
paigns, respectively, reduce cosmic-ray and intrinsic back-
grounds dramatically [13,14]. Because of the remaining
external radioactivity from cavern walls, internal sources
like U and Th within the photomultiplier tubes (PMTs)
[15,16], and most importantly Rn contamination from the
environment [17], discrimination of backgrounds at the
level of data analysis remains a key requirement. It is
largely achieved thanks to the S1 and S2 discrimination
power: ER exhibits larger S2/S1 at fixed S1 than NR [18].
This discrimination is complicated by decays at the radial
edge of the TPC (“wall backgrounds”) where the S2
signal is degraded, leading to partial overlap with the
NR region.
The LUX detector housed 122 PMTs, with the xenon

volume approximately 50 cm across and 60 cm tall between
top and bottom PMT arrays [1,19]. The innermost
100–150 kg of 370 kg total were used as the fiducial
mass. The S1 analysis threshold was 2 photons detected
(phd, or spikes) corrected for the position dependence of
the S1 photon detection efficiency, and the S2 threshold
was 150–200 phd (6 to 8 extracted electrons), resulting in a
50% detection threshold at 3–4 keV(nr) [20]. It was
deployed at the Sanford Underground Research Facility
(SURF) in Lead, South Dakota, former site of the
Homestake gold mine, at a depth of 4850 feet (4300 meters
of water equivalent). The Xe was housed in a low-
background Ti cryostat, which was itself housed within
a water tank that further reduced background. In the TPC,
the drift field was 180 V=cm and extraction field
6.0 kV=cm in the first science run, but 50–400 V=cm
and 8.0 kV=cm, respectively, in the second [5]. To calibrate

the ER response and thus better understand the backgrounds
as well as position resolution and monitor detector stability,
83mKr, CH3 T, and 14CH4 were injected during calibration
acquisitions [21–24]. For NR calibrations (for emulating the
response of LUX to WIMPs) a D-D (deuterium-deuterium
fusion) external neutron source was utilized [3].
These calibrations were used to define functions which

correct for the position dependence of S1 and S2 signals, to
ensure an approximately uniform mean signal size through-
out the detector given a fixed energy. Such corrections, and
the overall scaling factors for S1 and S2 signals versus
energy, are not known perfectly; as such, it is common to
incorporate these scaling factors as nuisance parameters in
the PLR fit.

III. METHOD

The analyses in Sec. IV all follow essentially the same
approach. First, a neural network (NN) [25,26] is trained
using simulated data to distinguish events from a given dark
matter signal model from backgrounds using a small set of
high-level variables, x, such as position, S1 area, and S2
area. The quality of the training is evaluated using several
performance metrics including mutual information (MI),
described further in Sec. III B, as evaluated on an inde-
pendent set of simulated testing data. In the case of
suboptimal training, adjustments to the training procedure
were made as detailed in Sec. III A. In particular, enforcing
that the MI for the NN output matches that of the input
variables ensures that the NN transformation is optimal
(preserves all relevant information) and provides an abso-
lute calibration for when to stop the training process.
The output of the NN, fðxÞ ∈ ½0; 1�, which gives a

monotonic indication of how signal-like an event is, is then
transformed so that the test data, composed of equal parts
background and signal events, follows a uniform distribu-
tion gðfðxÞÞ ∈ ½0; 1�. This is achieved by generating the
cumulative distribution function (CDF) at any value, f, as
the fraction of test events, f0, with f0 < f, and then
assigning gðfðxÞÞ ¼ CDFðfðxÞÞ, where linear interpola-
tion is used between the f0 that appear in the test set. The
purpose of this uniform transformation is to spread out the
distribution, which the NN tends to focus at 0 and 1, so that
the binned PDFs used in the PLR calculation better
preserve information for events at the extreme values; an
equivalent approach would be to use the original f space
but nonuniform binning which uses finer bins near the
edges of the distribution. Including this transformation led
to a small but noticeable improvement in PLR results
during initial testing.
Once the NN is trained and the uniform transformation

function is determined, both are applied to the simulated
backgrounds, simulated signal, and the search data. The
PLR calculation then proceeds in the usual fashion, using
binned versions of the simulated signal and background
distributions in this one-dimensional output variable
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gðfðxÞÞ as the PDFs in its likelihood function. It is
performed in RooStats [27] using code that is functionally
identical to the non-NN approach, aside from the reduced
complexity of a single input. Because each signal model
(e.g. each WIMP mass) is different, a separate network is
trained in each case, each with its own gðfðxÞÞ; further
details on techniques to ensure a smooth transition between
similar models and avoid unnecessary duplicate training are
provided in Sec. III A. This approach is equally applicable
to dark matter signal discovery as to limit-setting in the
absence of signal, as the PLR procedure itself is unchanged.
The handling of systematic errors in the PLR calculation

is not meaningfully changed by the use of the NN function
fðxÞ, which is a well-defined and deterministic (if not
simple to write down) function of the inputs, and as such
cannot introduce any additional systematic uncertainties.
As relevant nuisance parameters θ are varied within their
uncertainties θ → θ0, the distribution of the inputs to the
NN, pðxjθÞ, is adjusted accordingly to pðxjθ0Þ. These
changes are simply propagated through the NN output,
resulting in a shift to the distribution pðfðxÞjθ0Þ (and hence
the PDFs used in the fit) and a corresponding variation in
the likelihood.

A. Neural network architecture and training

Neural networks [25,26] in this work are implemented in
the PYTHON package KERAS [28], which is a high level
interface for Tensorflow [29]. Sample code that illustrates
the training procedure is available on GitHub.1 All
networks use a simple sequential model, that is, a fully
connected feed-forward network. Furthermore, all net-
works use a topology consisting of four layers which
contain 4, 10, 3, and 1 nodes, respectively, with the
exception of the work in Sec. IV D, which uses 5 nodes
in the input layer due to the inclusion of an additional
variable (S1 prompt fraction).
The training is conducted by using a sequential transfer

learning technique in which we first train a network to
distinguish a single WIMP mass from backgrounds, and
then use the trained network parameters as the starting
point to train on the next WIMP mass. Each training in this
study begins with the smallest simulated WIMP mass of
3.5 GeVand proceed in sequence up to the largest. Figure 1
compares the training performance versus epoch (discrete
training step) for sequential training against the case where
a new network is trained with random initial weights at
each mass.
The main benefit of this technique is in the stability of

training results across masses, due to the fact that the
optimal network parameters should be similar for similar
WIMP masses: poor local minima of the training optimi-
zation (as in epochs 100–110 of the nonsequential case) are
unlikely to be found if the initial training is good. If the

initial training is poor, this can be diagnosed quickly using
the metrics explained below and retraining can occur, rather
than having to retrain multiple faulty networks. An added
benefit is the reduction of training times for each mass,
since it takes fewer iterations to find optimum weights, as
demonstrated by the relatively flat performance vs. epoch
for the sequential case of Fig. 1.
The trained NN performance is evaluated on an inde-

pendent set of testing data in various metrics: the fraction of
background events passing cuts at 50% signal efficiency
(“leakage”), the area under the signal efficiency vs. back-
ground leakage curve (AUC)—a generalized version of
leakage across all cut values in the NN output space, which
varies from 0.5 (random guessing) to 1 (perfect discrimi-
nation)—and mutual information (MI, Sec. III B). If the
networks at any mass showed signs of poor performance in
these metrics, they were retrained using a different set of
initial weights (and in some cases a different number of
training epochs or different batch size). This was rare, and
hence retraining constituted only a minor increase in
computation time. The low chance of requiring retraining
is a good indication that the network optimization function
is strongly correlated with these more physically motivated
metrics.
We note that traditional approaches at dimensional

reduction such as principal component analysis (PCA)
generally offer reduced complexity in the analysis space at
the cost of reduced discrimination power, whereas this
approach allows virtually no such loss as described in
Sec. III B. For a traditional method to achieve the same

FIG. 1. Training performance in area under curve (AUC),
which measures accuracy averaged across cut values, vs. training
epoch. Every 10 epochs, a new WIMP mass is trained. The
sequential method, using the network from the previous mass as
the starting point for the next, converges more quickly and is less
likely to find a suboptimal solution, as opposed to the non-
sequential method (as in epochs 100–110). A subset of masses
used during training is shown, to focus on relevant features.

1https://github.com/luxdarkmatter/MachineLearningPublic.
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computational speed-up as this approach (Sec. IV B)
requires reduction to a single dimension: the first principal
component in the case of PCA. When applied to the data
described in Sec. IVA, the background leakage at 50%
signal efficiency using the first principal component is
greater than 10× worse than using a NN for intermediate
masses where sensitivity is strongest, which would render a
full analysis in the PCA-reduced space noncompetitive.

B. Mutual information

Apart from the standard metrics (AUC and leakage) we
also adopt a technique which makes use of mutual
information (MI) as a metric of performance for the NN
training; specifically, it can be used to determine when the
NN has equal power to discriminate signal from back-
ground as the full space of its inputs. The mutual informa-
tion quantifies the strength of correlation between two sets
of variables, X and Y, which has the following functional
form,

I½x; y� ¼
Z

dxdypðx; yÞ log pðx; yÞ
pðxÞpðyÞ ; ð1Þ

where pðx; yÞ is the probability distribution in X and Y
(defined on a specific dataset), and pðxÞ, pðyÞ are the
marginal distributions, e.g. pðxÞ ¼ R

dypðx; yÞ.
MI has been used in several different contexts from early

work in information theory [30] to novel machine learning
approaches [31]. The context in which MI is used in this
work was developed in [32,33], where it was shown that the
MI provides an upper limit on the performance of any
machine learning algorithm. Specifically, whenever the MI
between the binary signal/background class designation θ
and the inputs x is equivalent to that between θ and the NN
output fðxÞ, i.e. I½θ;x� ¼ I½θ; fðxÞ�, the network is opti-
mal: no information relevant to distinguishing signal from
background events is lost in the transformation.
Figure 2 shows an example comparing the upper-limit,

determined by computing the MI on the input variables
(S1; log10 S2; r; z), to the MI computed on the output of the
trained neural network for each mass, using the case from
Sec. IVA. Details on how the MI is estimated are given in
[33]. Lower WIMP masses show a larger MI (signal and
background are more readily distinguished) largely due to
better discrimination in (S1, S2) space at lower energy
[18,34]. This plot and other similar ones demonstrate that
the NN has learned to summarize all relevant input
information in a single dimension. The small discrepancy
in MI at higher masses is negligible, corresponding in the
worst case (1000 GeV) to a change in leakage for this
analysis from 5.3e-3 to 5.8e-3. This is equivalent to a toy
example of separating two 1D Gaussians of equal σ, where
the separation of means decreases from 2.84σ to 2.81σ.
We note that the MI estimate from this technique can be

below the true value in a case with a large number of

variables relative to available sample size in which some
variables contribute no classification information. This
limitation is not relevant for the 4D space considered here
(Fig. 2), chosen for its robust and well-studied modeling in
simulation. MI can also be used to identify such variables
from a large set of inputs by comparing the MI across
different subsets of inputs, as in [33]. This was observed,
for example, in the analysis in Sec. IV D with the addition
of an S1 prompt fraction variable. However, it is generally
the case that modern NNs are capable of easily handling
significantly more inputs than are used here, without loss of
discrimination power (from uninformative variables) or
prohibitive increases in required training time, such that
tuning the set of inputs or significant adjustments to the
training procedure are unnecessary.

IV. RESULTS

In Sec. IVA, we establish that the NN approach is
capable of achieving equal WIMP detection limits to the
traditional approach, using data from the first data-taking
run of LUX. Section IV B demonstrates a speed-up from
this technique of roughly 30× over the traditional approach,
considering the more complicated structure of the second
science run as applied to an effective field theory search.
With the speed and efficacy of the approach established, we

FIG. 2. Mutual information (MI) between a set of discriminat-
ing variables—the input variables (S1; log10 S2; r; z) (black
curve) or the trained NN output (red)—and the classification
of an event as signal or background, as a function of WIMP mass.
The NN training achieves near-optimal results at all masses,
indicating no loss of information from the reduction to a single
dimension. The small discrepancy in MI at higher masses is
negligible (see text for details). Errors on the MI estimate come
from the statistical variation from recalculating on multiple
subsets, and are smaller than the line width at most masses.
At the lowest two mass points, the MI from the NN is slightly
higher than from the inputs; this is unphysical, but within the
error on the MI estimate.
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show in Sec. IV C the network’s flexibility to incorporate
strongly correlated variables by achieving equal limits for
the first science run WIMP search using S1 and S2 areas
before position-corrections are applied. To conclude,
Sec. IV D incorporates an S1 prompt fraction variable into
the analysis, verifying the ease of including new variables
in this approach.

A. Reproduction of 2013 WIMP search

This analysis uses data from the 2013 data-taking run of
LUX [19], with the intent of reproducing the results
published in [20]. Analysis cuts, including data quality,
fiducial volume (spatial cuts), and cuts on S1 and S2 range
match those defined in [20]. The simulated background
model is also the same as in [20], and includes gamma-rays
from multiple locations, beta particles, 127Xe, 37Ar, and
backgrounds originating from decays at the radial edge of
the TPC (“wall backgrounds”). WIMP dark matter signal
models covering a range of masses are generated using the
noble element simulation technique (NEST) version 2.0.1
[35], tuned to match LUX calibration data as described
in [3,24,36].
The variables used as NN inputs were radial (r) and axial

(z) position, position-corrected S1 area (S1c), and the
logarithm of the position-corrected S2 area (log10ðS2cÞ),
as in [20]. However, whereas that analysis defined PDFs for
most components of the form fðr; zÞ × fðS1c; log10ðS2cÞÞ,
assuming independence of spatial and position-corrected
pulse areas, the NN is able to account for relevant
correlations in all variables. After sequential training of
NNs at each WIMP mass as described in Sec. III A and
ensuring no loss of information from the NN transforma-
tion (Fig. 2), the networks were validated against calibra-
tion data. Figure 3 shows the distributions of outputs of an
example NN (trained against a 50 GeVmassWIMP, chosen
for its proximity to the mass where the LUX sensitivity is
maximized) for simulations and data for the standard ER
and NR calibration sources used during the 2013 run.
Both cases show good agreement, with a small excess at the
background-like (signal-like) tails for the ER (NR) source
in data, indicating that simulations are slightly conservative
—the ER and NR calibration source distributions are more
readily separated in data than in simulation.
An illustration of the information used by this

sample 50 GeV WIMP NN is shown in Fig. 4. These
scatter plots indicate that the network has identified the NR
band in the S2 vs. S1 space as signal, while ignoring as
background wall events at the radial edges with low S2
values.
The distribution of the search data in this 50 GeVWIMP

NN output space is shown in Fig. 5, along with the signal
and background PDFs used in the fit. As expected from
prior analyses using this data, it is consistent with a
background-only hypothesis.

The full PLR analysis procedure is then performed for
each WIMP mass. As in the benchmark analysis [20], the
profile likelihood includes a Gaussian constraint for each
background normalization nuisance parameter. However, in
this analysis, all backgrounds are combined into a single
component, with its constraint so broad (σ ¼ μ ¼ 450
events, equivalent to the total events in the search data)
as to be inconsequential. This approach is maximally
conservative, as it does not incorporate the information
from stand-alone background studies to constrain the fit.
Despite this, trials using multiple background components
(each with their own PDF shape in the NN output space)
and the stronger constraints enumerated in [20] showed no
noticeable improvement in limit results (well within the 1σ
confidence interval), indicating that the NN efficiently
captures all relevant information without needing such
stand-alone studies.
A summary of the limits produced by this procedure,

relative to the [20] result, is given in Fig. 6. This includes
both the expected median sensitivity from simulations as
well as the observed limit from the search data. These
results indicate that the NN approach achieves virtually
identical expected sensitivity (well within the 1σ confi-
dence interval), with a small boost at masses below 5 GeV
due to changes in NEST modeling at low energy. Notably,
the observed limit outperforms the expectation from

FIG. 3. Monte Carlo simulation validation plots of NN output
against ER calibration data (CH3T) and NR calibration data
(DD). Statistical error bars are shown; for most bins, they are
comparable to the line width. As expected, the ER source appears
similar to the training backgrounds (NN output closer to 0), while
the NR source appears similar to the WIMP training signal
(output near 1). The minor discrepancies between simulations
and data at the extremes are of a similar size to that of the
underlying inputs to the NN, and indicate the simulations are
conservative: data for both the backgroundlike CH3T and signal-
like DD events are more readily identified as such, relative to the
simulations.
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simulation, as it did in the original result (where it was
power constrained [37] to no better than the median
expectation so as not to exclude cross sections for which
sensitivity is low through chance background fluctuation),
likely due to favorable statistical fluctuations and possibly
also conservative modeling. This is a second confirmation,
in addition to the validation on calibration data from Fig. 3,
that the simulation-based NN training is reliably translated
to real data.

B. Computational speed-up

In addition to simplifying the PLR while maintaining
sensitivity, this approach greatly reduces the computational
burden—by a factor of > 30x in this section’s study,
designed solely to quantify this speedup in a realistic
limit-setting context. Because NNs are able to capture
information in spaces with high dimensionality much more
efficiently than histograms, the number of simulated events
required for smooth PDFs is greatly reduced [25,41,42].

FIG. 4. Visualized NN output for simulated background (top), 50 GeV WIMP signal (middle), and data (bottom) events in 2D input
subspaces of log10ðS2cÞ vs. S1c (left) and z vs. r2 (right), for the network trained against a 50 GeV WIMP in the 2013 reproduction
analysis. Background and signal model visualizations use 1000 randomly sampled events. Note that the color scale for the NN output is
truncated at 0.7, roughly the maximum value observed in the data, to visually emphasize the small fraction of events in the data that are
only slightly signal-like. Bands indicate the median, 10%, and 90% intervals.
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Additionally, the PLR limit-setting process itself is greatly
sped up when run in a 1D space. This speed up remains
substantial even after accounting for the time needed for NN
training, as we demonstrate with the following comparison.
We take as our baseline the LUX analysis on effective

field theory (EFT) couplings from its second science run
[40]. This analysis exemplifies the potential complexity of
the standard PLR approach: the PDFs for most components
are of the form fðr; zÞ × fðS1c; log10ðS2cÞÞ, i.e. the prod-
uct of 3D and 2D PDFs, though the wall backgrounds are
fully 5-dimensional. In addition, due to electric field
variation over time and position, each PDF is broken up
into four drift time bins and four date bins, for a total of
sixteen PDFs per component. The fit includes eight back-
ground components, each with its own normalization
nuisance parameter. Due to this complexity, even con-
structing the RooFit models necessary to hold these PDFs
and generating the corresponding likelihood function can
be time-intensive, taking nearly three hours per one mass
value (see Table I).
In contrast, the NN approach can directly incorporate

position- and time-dependence in its structure, preserving
the simplicity of the 1D output distribution. To allow for as
direct a comparison as possible, the NN equivalent includes
the same independent background components (and hence
nuisance parameters allowed to vary in the fit).
Table I compares the compute time needed for the

standard PLR approach as implemented in [40] with the
NN-based approach presented here. Accounting for all
computational steps including the time required to train the
NNs, Table I demonstrates a reduction in computing time of

35× with the NN approach, and a reduction of 47× in the
wall-clock time. This improvement factor is expected to
increase with the number of inputs and the strength of their
correlations, due to the NN’s ability to account for complex
relationships even in high dimensions without significant
increase in computational demand; in contrast, the standard
approach scales exponentially with further variables and
requires additional, computationally inefficient PLR

FIG. 5. NN output space PDFs used in the fits for the 2013
WIMP search reproduction analysis, as well as binned data, for an
example network trained against a 50 GeVWIMP. The output has
been stretched using the uniform transformation described in
Sec. III to distinguish events at the extremes of the output range in
this binned space. The data is consistent with a background-only
hypothesis.

FIG. 6. Top: spin-independent WIMP-nucleon cross sec-
tion 90% confidence level upper limits for this work and the
original analysis using the standard PLR approach on the same
data from [20]. Limits from the much larger XENON-1T [38] and
PandaX-4T [39] experiments are shown for context. This
indicates equal performance when using the NN approach, both
in simulations and in real data. Note that the original observed
limit surpassed the median expectation, as in the NN case here,
but was conservatively power constrained [37] to the expectation.
Bottom: ratio of limits using the NN approach presented here vs.
the original limits. Values less than 1 indicate an improved limit
using the NN analysis. Improvements below 5 GeVare primarily
due to updates to the NEST yields model used to generate the
signal events. Mass-to-mass fluctuations in expected limits of
order 10% are typical from prior non-ML analyses of LUX
data [40].
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structure to deal with correlations if independent PDFs are
used (such as breaking up fðS1c; log10ðS2cÞÞ by drift time
bin to preserve independence from fðr; zÞ). As the NN
training comprises a significant fraction of the total
compute time, this speedup may increase with more
efficient training methods, such as the use of GPUs.
A full traditional PLR analysis including 15 EFT

operators, each with 24 different masses, already stretches
the limits of the computational resources that were avail-
able to LUX (approximately 18k CPU hours). The wall-
clock time required for this style of analysis is an equally
important limitation, as a delay in results on the order of
weeks is a significant setback, particularly given that
iteration is typically required during analysis development
before unblinding; in practice, a single iteration of the PLR
analysis took several days and the full procedure, which
required multiple iterations, required roughly two weeks of
constant computation.
This gain in processing speed makes it feasible to

introduce further sophistication to the analysis through
inclusion of PDF shape-varying nuisance parameters (such
as linear scaling factors for S1 and S2 signals versus
energy) in the fit, taking full advantage of strongly
correlated variables (Sec. IV C), and even use of additional
variables as inputs (Sec. IV D). From studies of this PLR
analysis and similar traditional PLR approaches [43], we
estimate the additional computational cost of increasing
from four to five analysis dimensions to be 7–8×, the cost
of adding a single PDF shape-varying nuisance parameter
to be 6–8×, and the cost of increasing the number of
observed events to be commensurate with those expected in
the full 1000 day exposure of LZ to be 1.5×. Extending the
benchmark analysis from [40] to include an additional
dimension would thus take roughly a month for a single
PLR iteration, and the actual workflow which required
multiple iterations of this would have taken several months.
Other approaches to speed up the PLR procedure,

notably Flamedisx [43], exist but lack the flexibility and
modularity of this approach. Flamedisx uses an internal
model of the detector and LXe microphysics to evaluate the
likelihood of specific datapoints, requiring relevant detector

effects for all variables of interest be implemented as
analytic functions directly in the code. Events with multiple
LXe interactions, such as some rare backgrounds, are also
not modeled by Flamedisx. While this approach is more
efficient than populating histograms in high-dimension,
particularly when incorporating PDF shape-varying nui-
sance parameters, such modeling requirements limit its
domain of application. In contrast, the NN approach is
independent of the stages before and after it—any model
(or combination of models) can be generated prior to the
training, and a simple 1D PLR can be run after the training,
allowing for checks at each stage.

C. Use of raw variables

This approach allows full use of the measured signal
information, without assuming independence of position and
pulse area variables, as in the traditional approach. Though
position-correcting pulse areas improves sensitivity in the
traditional case (through narrower ER and NR bands), even
with perfectly measured correction functions, the assumption
of position-independence of pulse areas is not strictly
accurate: corrections can adjust the mean of the distributions
but not their widths, which vary due to position-dependence
in light collection efficiency and electric field strength. In
practice, this second-order effect of position-varying band
widths is unlikely to significantly affect sensitivity unless
there are strong nonuniformities in the detector, which was
not the case for the 2013 LUX data considered here.
However, this position correction approach is reliant on
the assumption of well-measured position correction func-
tions and sufficiently uniform detector response.
In contrast, the NN can account for correlations, making

the step of applying position corrections to the pulse areas
(and assuming position-independence) unnecessary. We
demonstrate this by achieving equal sensitivity on LUX
data whether using position-corrected pulse areas (S1c,
S2c) or raw ones (S1, S2). This analysis uses the same
background and signal models as in Sec. IVA, with the
exception that the inverse position-correction functions are
applied to the existing simulations to get S1 and S2, and a
more sophisticated version of the wall background model is

TABLE I. Comparison of total CPU hours required to generate a limit for a single signal model (e.g. single signal mass) for the
standard PLR analysis described in [40] vs. the NN approach, summed across all parallel processes. Workspace creation corresponds to
building RooFit models containing the relevant PDFs and likelihood function; MC generation is the step of generating toy datasets from
these PDFs—this is distinct from the full MC generation used to build the PDFs and train the NN; and hypothesis testing is the process
of fitting the data and toys to the models and generating profile likelihood test statistic values. As some steps are not efficiently run in
parallel, the speedup in real (wall-clock) time including all stages is further improved to 47×. When run over a set of 24 masses for each
of 15 EFToperators, the original CPU cost is approximately 18k CPU hours and the real time required to complete these computations is
several days, making the addition of further complexity, such as nuisance parameters or additional analysis variables, impractical.

Analysis Workspace creation (hr) Toy MC generation (hr) Hypothesis testing (hr) NN training (hr) Total (hr)

Original EFT 2.7 39.0 8.8 � � � 50.5
NN case 2.4 × 10−3 1.0 × 10−2 0.81 0.64 1.46
NN speedup 1100× 3900× 11× � � � 35×
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used, described in detail in [40]. Notably, events near the
walls are the most difficult to obtain reliable position
corrections for, due to quickly falling light collection
efficiency with radius in that region [3,44]; this, coupled
with the fact that these simulated events are generated in a
data-driven way, makes use of the original uncorrected
variables particularly well-suited to analysis of wall events.
The training procedure described in Sec. III A was

carried out for two cases, using identical NN architectures:
one using inputs fr; z; S1c; S2cg and another using
fr; z; S1; S2g. Perhaps due to the additional complexity
of the wall model events and/or the relative lack of wall
events (limited, in this data-driven model, by the abundance
of detected events in sidebands of the analysis region),
some versions of the training in either variable space
originally failed to identify the wall backgrounds reliably.
This was easily spotted via the performance metrics
described in Sec. III as well as visualizations, such as
those in Fig. 4. Adjusting the training procedure, for each
mass, to include a period of training with wall events as the
sole background in between initial and final training with
all backgrounds, solved this issue.
After training was complete, no significant differences in

performance on test simulation data were observed between
the corrected and uncorrected versions of the networks. The
full PLR procedure was then performed, this time allowing
the wall and nonwall backgrounds to vary independently in
the fits, with weak Gaussian constraints on their normal-
izations (25% and 50% for nonwall and wall backgrounds,
respectively). A comparison of the limits achieved on the
real data, as well as the model-based expected sensitivity,
following the full PLR procedure is shown in Fig. 7.

Consistent with the training results, the expected and
observed limits are comparable for the two cases.
While this approach does not directly eliminate the need

for measurement of position-correction factors for pulse
areas (these are needed for simulation-based models to
produce raw detected pulse areas from true numbers of
simulated photons and electrons), it avoids introducing
potential errors in the estimate of these correction factors
twice: once when simulating raw signals, and again when
applying corrections to both simulations and data to get
position-corrected variables. This second inverse correction
does not undo the original mapping due to statistical
fluctuations arising from the imperfect detection of gen-
erated signals. It is also a more natural way to analyze data-
driven backgrounds, such as those from the walls, which
need no such correction functions to determine raw signal
size. Future work may be able to train directly on
calibration data, learning such corrections implicitly with-
out the need for extensive analyzer effort.

D. Scalability with increasing number of inputs

This approach is also easily scaled to include additional
variables without significant computational burden or
complexity. We demonstrate this through the use of an
S1 prompt fraction variable, defined as in [45], and
representing the fraction of the S1 pulse area within a
fixed window at the start of the pulse. This variable carries
information about the ER or NR nature of an event due to
the differing ratios of singlet and triplet Xe excimers for the
two recoil types, which in turn carry different photon
emission times. Including this in the traditional PLR
approach would be particularly challenging, as the S1
prompt fraction is correlated with both total S1 area and
position (due to different photon propagation times to reach
the PMTs), adding to the already-complex PDF structure,
which otherwise assumes independence of position and
pulse area variables. Such an analysis would be impractical
to implement due to the computational resources required
both to simulate a sufficient quantity of events to fill out
binned PDFs in this expanded variable space and to carry
out the PLR procedure: we estimate needing hundreds of
thousands of CPU hours and months of real time with the
traditional approach, as quantified in Sec. IV B.
Study of this S1 prompt fraction variable and its

usefulness at ER/NR discrimination has been carried out
in [18,45]; however, validation of NEST-based simulations
of the prompt fraction variable, including all correlations
with pulse areas, position, and electric field strength, as
necessary for this analysis, has not been performed until
now. The details of this validation, using CH3T and DD
calibration data, are presented in the Appendix.
For a more direct comparison with the analyses in

Secs. IVA and IV C, the same background simulations
were bootstrapped through NEST [46]: the energies of the
original simulated events were used to regenerate pulse

FIG. 7. Ratio of limits using raw vs. position-corrected S1 and
S2 pulse areas. Values less than 1 indicate an improved limit
using the raw variables. Mass-to-mass fluctuations in expected
limits of order 10% are typical from prior non-ML analyses of
LUX data [40]; fluctuations in observed limits within the 1σ band
are expected.
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areas and the new prompt fraction variable according to the
NEST model, with multiple output events per input,
sampling the random fluctuations in the model. Wall model
events, being taken directly from sideband data, only
require calculation of the prompt fraction using the
observed waveform (including those corrections described
in [45]), as in the WIMP search data. The WIMP signal
model events were generated directly in NEST using an
identical model as for the previous analyses, but now
including the validated prompt fraction variable.
Neural network training followed the same procedures as

in previous sections, with the exception that the prompt
fraction network had an additional input in its architecture
(the size of the hidden layers was not adjusted). Inclusion of
this variable had minimal impact on the training time of the
networks. No significant differences in performance on test
simulation data were observed between the two versions of
the networks. This is consistent with MI calculations using
the signal model and the nonwall backgrounds (wall events
had insufficient statistics to get a reliable MI calculation),
which indicate that while pulse shape has some relevant
information on its own, it is mostly redundant when
combined with other variables, such as S1 and S2 pulse
area. This also matches expectations from [18], which
suggest the ER leakage is not substantially improved by
including pulse shape as part of a two-factor analysis
(alongside S2/S1 ratio) in the 2013 LUX data, with its
uniform 180 V=cm electric field.
The full PLR procedure was then performed, using the

same Gaussian constraints as in Sec. IV C; as the NN
output is in a single dimension regardless of the number of
inputs, the complexity and computation time of the PLR

was not affected by adding the prompt fraction variable. As
expected from the training stage, the limits achieved when
including prompt fraction did not show an improvement
over those without it (Fig. 8), due to a lack of additional
discriminating information in this context. Nevertheless,
the flexible and scalable structure of this analysis frame-
work made achieving this result straightforward. In a
context where prompt fraction is expected to carry more
information, such as in a scenario with lower electric field
[18,47–49], this approach could recover performance lost
by the decreased ability to separate ER and NR sources
using S1 and S2 area alone. Future work with next-
generation experiments can easily extend the results here
to include other variables of interest, such as topological
discriminants relevant for multiple scatters as in [50] or
tracklike signal models.

V. CONCLUSION

We have demonstrated a general-purpose approach to
speed up and greatly improve the flexibility of dark matter
direct detection limit-setting using machine learning. Its
reliability is established both through checks against
calibration data and its ability to reproduce the results of
a prior dark matter search done with traditional methods.
It achieves a speed-up of more than 30x the traditional
method in a realistic test case, with stronger gains expected
as more observables are considered. High sample size
requirements from time-intensive simulations can likewise
be reduced. In this way, it enables more complex analyses
by ensuring their completion in days rather than months of
real time.
This approach is flexible, with the capability to fully

capture information from highly correlated variables, such
as position and raw S1 and S2 pulse areas, without loss of
performance. A future iteration of this may allow for the
possibility of implicitly accounting for position corrections
by training directly on calibration data, removing the need
for analyzers to spend time manually defining analytic
correction functions, as is required currently for accurate
simulations. Furthermore, it is highly scalable in terms of
computational demands, allowing the addition of further
variables, such as S1 prompt fraction, without requiring any
assumptions of variable independence. Future dark matter
experiments can use this technique’s efficiency to reduce
their need for computation in both simulations and limit-
setting, and its flexibility to enable analysis in a richer
space, beyond that of pulse areas and positions.
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APPENDIX: PULSE SHAPE DISCRIMINATION
VALIDATION

This appendix presents the validation of simulations of
the S1 prompt fraction variable from Sec. IV D using

calibration data. Similar validations were performed in
[45], which we extend here by tuning the model to match
the dependence on electric field and drift time seen in data,
as well as to cover smaller S1 pulse areas, which account
for the bulk of WIMP events. Such tuning is necessary, as
correlations can in principle matter for the NN approach.
This was done primarily through adjusting the Xe excimer
singlet-to-triplet ratio and its dependence on energy and
electric field [47].
Adjustments to better account for detector-dependent

effects were also included. Chief among these was the
addition of a random offset in the prompt integration
window, to account for the finite (10 ns) waveform
sampling rate and other sources of timing uncertainty.
When counting a few individual photons (≲10), the chance
of getting the full S1 area within the prompt fraction
window becomes substantial. To account for this, an
empirical adjustment was applied, randomly assigning a
fraction of events to a prompt fraction of 1 according to an
falling exponential in S1 area, as fit to low-energy cali-
bration data.
At smaller still S1 areas, the model diverges from data in

a nontrivial way. For S1 areas below 5 phd, we conserva-
tively assign both simulations and data a prompt fraction
drawn from a single Gaussian with a mean halfway
between that of the ER and NR calibration sources at
5 phd and a standard deviation comparable to that of both,
truncated to the allowable range of 0-1. This ensures the
NN cannot learn any distinguishing features from the
prompt fraction at these low areas (where it is of little
use regardless due to the difficulty of defining a pulse shape
from so few photons [18]). The choice of Gaussian
parameters was verified to have no noticeable effect on
NN training.
Validation plots of the pulse shape variable are shown for

NR calibration with the DD neutron source (Fig. 9), low-
energy ER calibration with CH3T (Fig. 10), and high-
energy ER calibration with 14CH4 (Fig. 11). The NN output
for the model trained in Sec. IV D, as applied to the
calibration sources, showed good agreement between
simulations and data, similar to in Fig. 3, establishing that
the full input space correlations learned by the NN are well-
captured by the simulations.
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FIG. 9. Comparison of MC simulations of S1 pulse shape discriminator (PSD) with that calculated from DD neutron calibration data.
Lines indicate the mean PSD, with the standard deviation at each point indicated via error bars. Drift time and field only varied
significantly in the 2014–2016 data-taking run, so calibration data from that run is used in the bottom two plots. The lobes in the bottom
two plots correspond to the three different heights at which the DD generator was employed.
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FIG. 10. Comparison of MC simulations of S1 pulse shape discriminator (PSD) with that calculated from CH3T ER calibration data.
Lines indicate the mean PSD, with the standard deviation at each point indicated via error bars. Field only varied significantly in the
2014–2016 data-taking run, so calibration data from that run is used in the bottom left plot.
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