
PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

Non-Pauli errors in the three-dimensional surface code

Thomas R. Scruby ,1,2,3,* Michael Vasmer ,4,5,† and Dan E. Browne 3,‡

1Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
2National Institute of Informatics, Tokyo 101-8430, Japan

3Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
4Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

5Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 10 June 2022; accepted 26 August 2022; published 21 October 2022)

A powerful feature of stabilizer error correcting codes is the fact that stabilizer measurement projects arbitrary
errors to Pauli errors, greatly simplifying the physical error correction process as well as classical simulations
of code performance. However, logical non-Clifford operations can map Pauli errors to non-Pauli (Clifford)
errors, and while subsequent stabilizer measurements will project the Clifford errors back to Pauli errors the
resulting distributions will possess additional correlations that depend on both the nature of the logical operation
and the structure of the code. Previous work has studied these effects when applying a transversal T gate to
the three-dimensional color code and shown the existence of a nonlocal “linking charge” phenomenon between
membranes of intersecting errors. In this paper we generalise these results to the case of a CCZ gate in the
three-dimensional surface code and find that many aspects of the problem are much more easily understood in
this setting. In particular, the emergence of linking charge is a local effect rather than a nonlocal one. We use the
relative simplicity of Clifford errors in this setting to simulate their effect on the performance of a single-shot
magic state preparation process and find that their effect on the threshold is largely determined by probability of
X errors occurring immediately prior to the application of the gate, after the most recent stabilizer measurement.

DOI: 10.1103/PhysRevResearch.4.043052

I. INTRODUCTION

Traditional wisdom in the field of quantum error correction
says that, although there are infinitely many possible quantum
errors, measurements made as part of the error correction
process will project this spectrum of errors to a discrete set
and it is sufficient to consider only this set when examining
the performance of the code [1–3]. In particular, for stabilizer
error correcting codes this set is just the n − qubit Pauli group
(up to phases). This fact greatly simplifies the study of these
codes, and in particular enables efficient numerical investiga-
tion of code performance [4–7].

In recent years further study has shown that things are not
quite so simple. For example, coherent errors (small rotations
on all qubits of a code) will indeed be projected to distribu-
tions of Pauli errors, but this projection can also create a phase
conditional on the presence/absence of a logical operator and
this will cause a rotation in the logical space [8–13]. Another
kind of non-Pauli error (the subject of this paper) is produced

*thomas.scruby@oist.jp
†mvasmer@perimeterinstitute.ca
‡d.browne@ucl.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

when Pauli errors in a code are mapped to Clifford errors by
the application of a non-Clifford transversal gate [14]. Subse-
quent stabilizer measurements will map these errors back to
Paulis again but not to the same error we started with, instead
producing errors with complex nonlocal correlations [15–17].
The effects of Clifford errors and approaches to correcting
them have also been studied in more general settings [18,19],
and error membranes very similar to those considered in this
paper previously appeared in [20].

Previous studies of Clifford errors due to transversal non-
Clifford gates have mostly been restricted to the setting of
the color code [21–23], where [in the three-dimensional (3D)
variant] transversal application of T and T † can map distribu-
tions of X errors to distributions of S and S† (in addition to
the original Pauli error). In Sec. II we review these results and
in Sec. III we generalise them to the setting of the 3D surface
code, which admits a transversal CCZ [24] gate that can map
X errors to CZ errors. We demonstrate similar behavior to
what was observed in the color code, and additionally (in
Appendix A) we show that our proof technique reproduces
previous results when applied to the color code, providing
a fresh perspective on the problem of Clifford errors in this
setting.

Following this analytical study of these Clifford errors we
numerically investigate their impact on code performance in
Sec. IV. We simulate a magic state preparation scheme that
uses a transversal CCZ gate between three 3D surface codes
followed by a dimension jump [25] to prepare the magic state
CCZ|+++〉 in constant time. To assess the impact of Clifford

2643-1564/2022/4(4)/043052(17) 043052-1 Published by the American Physical Society

https://orcid.org/0000-0002-8750-4820
https://orcid.org/0000-0002-6711-5924
https://orcid.org/0000-0003-3001-158X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.043052&domain=pdf&date_stamp=2022-10-21
https://doi.org/10.1103/PhysRevResearch.4.043052
https://creativecommons.org/licenses/by/4.0/

SCRUBY, VASMER, AND BROWNE PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

FIG. 1. (a) A rectified lattice supporting three surface codes. (b) One of the three surface codes. X stabilizers are on octahedral cells and
Z stabilizers are on square faces. (c) The logical operator structure of the three codes. Logical X s are sheets and logical Zs are strings. The
intersection of logical X s from any pair of codes is the support of a logical Z in the third.

errors on code performance we also simulate the codestate
initialization and dimension jump steps in the absence of the
CCZ gate and compare the performance of the two cases. We
find that X errors occurring immediately before the CCZ gate
(after the most recent stabilizer measurement) can have a large
impact on the threshold, while the impact of earlier errors is
fairly minimal.

Finally, we discuss the implications of these results and
also their generalisations to other codes in Sec. V.

II. BACKGROUND

In this section we provide a review of the 3D surface
(Sec. II A) and color (Sec. II B) codes and review previous
results regarding Clifford errors in the latter (Sec. II C).

A. Surface codes

A 2D surface code can be defined by placing qubits on
the edges of a 2D lattice and then assigning a Z stabilizer
generator to each face and an X stabilizer generator to each
vertex [26]. A 3D surface code can be defined in an identical
fashion using a 3D lattice rather than a 2D one [27]. There
also exists a “rotated” description of the 2D surface code,
which is more qubit efficient, and assigns qubits to vertices
and X and Z stabilizers to a bicoloring of faces [28]. A similar
description exists for the 3D surface code, where qubits are
placed on the vertices of a “rectified” lattice [24], obtained
from the original lattice by placing a vertex at the center of
each edge, joining these vertices with edges if they are part of
the same face in the original lattice, and then deleting all the
vertices and edges of the original lattice.

One such rectified lattice (obtained from a simple cubic
lattice) is shown in Fig. 1(a), and an appropriate coloring of
this lattice allows us to simultaneously define three distinct
3D surface codes. This is done by placing three qubits at each
vertex (one for each code) and then assigning Z stabilizers of
code i to faces with color κi and X stabilizers to cells that
have no κi-colored faces [24]. Figure 1(b) shows one such
code, where Z stabilizers are on square faces and X stabilizers
are on octahedral cells. This code is equivalent to the 3D
surface code obtained by assigning Z (X) stabilizers to faces
(vertices) in the original simple cubic lattice. The other codes

will have Z stabilizers on triangular faces and X stabilizers
on cuboctahedral cells. In what follows we refer to these two
types of 3D surface code as octahedral and cuboctahedral
codes respectively.

The logical X operator of each code is a membrane sup-
ported on a boundary of the lattice, while the logical Z is a
string supported on the intersection of two boundaries (up to
composition with stabilizers). The code distance is therefore
the lattice size L (for a lattice with dimensions L × L × L).
An appropriate choice of boundary stabilizers ensures that
the logical X operators for the three codes are all supported
on different boundaries, and that the logical Z of code k is
supported on the intersection of the logical operators of code i
and j, as shown in Fig. 1(c). These three surface codes admit
a transversal implementation of CCZ [24,29].

B. Color codes

The 2D color code is defined using a trivalent lattice with
faces that are 3-colorable and have even numbers of vertices
[21]. A qubit is associated with each vertex of this lattice and
an X and a Z stabilizer generator are associated with each face.
The fact that faces have even numbers of vertices ensures that
X and Z stabilizers from the same face commute, while the
trivalency/3-colorability of the lattice ensures that neighbor-
ing faces always meet at an edge, so X and Z stabilizers from
different faces also commute. An example of a distance-3 2D
color code is shown in Fig. 2(a). Logical X and Z operators
are supported on any boundary of this code.

The 3D color code is defined using a four-valent lattice
with four-colorable cells and qubits on vertices. If an edge
connects two κ colored cells then we can color that edge κ ,
meaning that κ color cells will be formed from three colors of
edge (the three colors not equal to κ). Each face of the lattice
supports a Z stabilizer and each cell supports an X stabilizer.
An example of a 15-qubit 3D color code is shown in Fig. 2(b).
An implementation of logical X in this code is supported on
any boundary of the tetrahedron while an implementation of
logical Z is supported on any edge of the tetrahedron. The
color code admits a transversal T gate, which involves the
application of T and T † to a bicoloring of qubits in the lattice
[30].

043052-2

NON-PAULI ERRORS IN THE THREE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

FIG. 2. (a) A 7-qubit 2D color code. (b) A 15-qubit 3D color
code. A Z stabilizer is supported on each face and an X stabilizer is
supported on each cell. The bottom boundary of this code matches
the 2D color code shown in (a).

C. Clifford errors in the color code

The problem of Clifford errors in the 2D color code was
examined by Yoshida in [15], although they are not referred
to as such and instead are considered in the context of excita-
tions in a symmetry-protected topological phase. Specifically,
Yoshida examined the effect of applying a pattern of alternat-
ing S and S† to all qubits within a particular region R defined
by a subset of plaquettes of a particular color as in Fig. 3 .
The 2D color code possesses a transveral S gate, which can be
implemented via such an application of S and S† to all qubits
in the code and so this error can be thought of as a partial
or incomplete logical operator. We can define the boundary
of R, ∂R, to be the set of all plaquettes/stabilizer generators
partially supported on R. An important observation in this and
all subsequent cases is that because logical operators must
preserve the codespace (and therefore are not detectable by
stabilizers of the code) this region of Clifford errors should
only be detected by stabilizers in ∂R. If it could be detected by
a stabilizer not in ∂R then that stabilizer should also detect the

FIG. 3. A region of S errors in the 2D color code. S is applied to
all qubits marked with a white circle and S† is applied to all qubits
marked with a black circle. The qubits in this region are those on the
vertices of the four green plaquettes inside the loop of white edges
while the plaquettes that border this region are either red or blue.
(b) Part of the boundary region of (a). A ZZ error acting on the qubits
marked with red circles anticommutes with the X stabilizers on the
two red plaquettes.

logical S gate as these operators are not locally distinguishable
except on the boundary of R.

The formally derived result of [15] agrees with this in-
tuition. It says that if we apply the Clifford error shown in
Fig. 3, for example, and then measure the stabilizers of the
code (specifically we only need to measure the X stabilizers
as Z and S commute) we will project the S and S† errors to
a distribution of Z errors that anticommute only with the red
and blue stabilizers in ∂R, with each such stabilizer returning
a −1 measurement outcome with probability p = 0.5. Error
strings in the 2D color code must either anticommute with
stabilizers of all three colors or anticommute with a pair of
stabilizers of the same color. The former is not possible in this
case as there are only two colors of plaquette in ∂R and so the
error distribution must be a collection of Z strings supported
on qubits of R that run between same-colored plaquettes in
∂R. Because each such string anticommutes with a pair of
plaquettes the total number of −1 outcomes from plaquettes
of each color should be even. For example, Fig. 3(b) shows
a two-qubit Z error that anticommutes with a pair of red
plaquettes in ∂R.

A corresponding analysis of S errors in the 3D color code
can be found in [16]. This case is arguably of greater practical
relevance because, as mentioned previously, the 3D color code
admits a transversal T gate implemented by an application of
T and T † to a bicoloring of the vertices (qubits) of the lattice.
This gate will create regions of S and S† errors wherever we
have regions of X errors as T XT † = e−iπ/4SX and T †XT =
eiπ/4S†X .

We can initially consider an X error membrane defined on
the vertices of a set of faces of color κ1κ2 (by which we mean
they are formed from edges of color κ1 and κ2). This error
will be detected by Z stabilizer generators on faces of color
κ3κ4 at the boundary of the membrane. An example is shown
in Fig. 4(a). When we apply the T gate described previously
we will create S errors wherever we apply T and S† errors
wherever we apply T †.

Like the 2D color code, the 3D color code admits a
transversal S gate. This gate can be implemented by a mem-
brane of S and S† (using the same coloring as the transversal
T) with its edges at the boundaries of the code [31]. As with
the 2D case, an S error membrane such as the one in Fig. 4(a)
should only be detected by stabilizers at its boundary (i.e., by
X stabilizers on cells that the syndrome loop passes through)
because it is only locally distinguishable from the logical S
operator in this region.

The results of [16] agree with [15] for this case, i.e., we ex-
pect measurement outcomes of +1 from all stabilizers except
for X stabilizers on the membrane boundary, which we expect
to return random outcomes but with an even parity of −1s for
each color. However, more complex errors are possible in the
3D color code and these are where the results diverge from the
2D case.

Consider a pair of intersecting membranes with linked syn-
dromes as in Fig. 4(b). This error is the product of two X error
membranes of the form discussed above, and so one might
expect that application of transversal T and measurement of
the X stabilizers on the boundaries of these membranes would
once again give random outcomes with an even parity of
violated stabilizers of each color. However, what is shown in

043052-3

SCRUBY, VASMER, AND BROWNE PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

FIG. 4. (a) G (top left) and Y (top right) cells of a 3D color code.
These cells meet at an RB face. [(a) bottom] A membrane of X errors
in the 3D color code. The error is supported on qubits on the vertices
of YG faces (grey) and detected by Z stabilizers on RB faces on the
membrane’s boundary. The resulting syndrome is shown by the black
loop, which passes through the centres of the violated Z stabilizers.
The two colors of dots on this syndrome mark the places where it
passes through the center of a G or Y cell. In order to improve visual
clarity full cells are not shown. (b) Two intersecting membranes of X
errors with linked syndromes in the 3D color code. One is defined on
YG faces and the other on RB faces. This error is the product of the
two individual membranes so errors on the intersection cancel. One
face of the YG membrane supports a Z stabilizer that detects the RB
membrane and vice versa.

[16] is that we actually observe an odd number of violated
stabilizers of each color. This is consistent with a distribution
of Z errors as described previously plus an additional Z error
string running between the two membrane boundaries (such
an error string anticommutes with a G and Y cell on one
boundary and an R and a B cell on the other boundary). This is
termed a “linking charge” of the two membranes, since in the
topological phase perspective of the 3D color code the charge
distributions on the boundaries of the individual membranes
are no longer independent. Previously each boundary was
charge-neutral overall, whereas now the distribution for the
pair of membranes is charge neutral but the distributions on
individual membrane boundaries are not.

In the next section we provide a proof that these same phe-
nomena occur in the 3D surface code, and explain their origin
in depth. In Appendix A we show that our proof technique
recovers the results of [16] when applied to the 3D color code
and also examine the cases of CS and CCZ applied between
multiple color codes, so readers wishing to understand the
color code case in more detail can consult that Appendix (or
alternatively [32]) for a different perspective on the problem.

III. CLIFFORD ERRORS IN THE 3D SURFACE CODE

A. Single error membrane in cleanable code regions

We now consider three 3D surface codes defined on a recti-
fied lattice as in the previous section, and therefore admitting
a transversal CCZ . We use notation where X c

α means X oper-
ators on qubits from code c ∈ {1, 2, 3} at vertices in the set α.
We start with a single a membrane-like operator X 1

α detected
by Z stabilizers of code 1, which are faces of cells in codes 2
and 3 as in Fig. 5. We assume that this membrane exists in a
cleanable region [33] of the code, i.e., for any given logical

FIG. 5. An X error membrane in one of the cuboctahedral 3D
surface codes that can be defined using the rectified lattice. The error
is supported on qubits placed on vertices of the grey faces and is
detected by Z stabilizers on the blue faces. These faces are part of
cells that support X stabilizers in the other two codes (two examples
shown, octahedral for one code and cuboctahedral for the other).

Pauli operator of the code we can find an implementation
of this operator that has trivial intersection with the mem-
brane. Using the commutation relation (CCZ)(X ⊗ I ⊗ I) =
(X ⊗ CZ)(CCZ) we see that applying transversal CCZ in the
presence of this error has the effect

CCZX 1
α |ψ〉 = X 1

αCZ23
α |ψ ′〉 (1)

where |ψ〉 and |ψ ′〉 are states in the codespace of the three
codes. CZ23

α is a Clifford error analogous to the S error mem-
brane we observed in the 3D color code. As with that error,
this CZ error becomes a logical operator if applied to the
full support of a logical X operator (as CCZ should preserve
the codespace if X 1

α was a logical X operator rather than an
error). We therefore expect that, once again, this error should
only be detected by stabilizers on the boundaries of the error
membrane.

In order to consider the effect of CZ23
α on the codestate

|ψ ′〉 we can consider its effect individually on basis states.
The state |000〉 can be written as

|000〉 = 1√
n

∑
i jk

X 1
βi

X 2
β j

X 3
βk

|0〉 (2)

where X m
β are X stabilizers of code m and |0〉 is the all-zeros

state of the qubits of all three codes. Other basis states can
be written in a similar way by replacing these X stabilizers
with products of X stabilizers and a logical X operator for
a given code. However, as we are currently considering an
error membrane in a cleanable region of the code we can
always choose these logical operators such that they have
trivial intersection with the membrane and thus the analysis
of any basis state is equivalent to the analysis for |000〉 in this
case. We can apply CZ23

α to this state and use the commutation
relation (CZ)(X ⊗ I) = (X ⊗ Z)(CZ) to find

CZ23
α |000〉 = 1√

n

∑
i jk

CZ23
α X 1

βi
X 2

β j
X 3

βk
|0〉

= 1√
n

∑
i jk

X 1
βi

X 2
β j

Z3
α∩β j

X 3
βk

Z2
α∩βk

|0〉 (3)

043052-4

NON-PAULI ERRORS IN THE THREE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

where we have used that CZ23
α acts trivially on |0〉. We can

then commute the Z terms to the right and absorb them into
|0〉 to obtain

|φ〉 = CZ23
α |000〉 = 1√

n

∑
i jk

(−1)|α∩β j∩βk |X 1
βi

X 2
β j

X 3
βk

|0〉. (4)

In order to investigate the possible measurement outcomes
of a specific stabilizer X q

βl
we can split the state into |φ〉 =

a|φ+
l 〉 + b|φ−

l 〉 where X q
βl

|φ+
l 〉 = |φ+

l 〉 and X q
βl

|φ−
l 〉 = −|φ−

l 〉.
Note that (neglecting normalisation) |φ+

l 〉 will be a sum of
pairs

|φ+
l 〉 =

∑
x

(
X 123

βx
+ X q

βl
X 123

βx

)|0〉 (5)

while |φ−
l 〉 will be a sum

|φ−
l 〉 =

∑
x

(
X 123

βx
− X q

βl
X 123

βx

)|0〉 (6)

where X 123
βx

= X 1
βi

X 2
β j

X 3
βk

is a product of stabilizers from all
three codes. The case where q = 1 is trivial because the CZ
error is not supported in this code, and the cases where q = 2
and q = 3 are identical because of the symmetry of the CZ
operator. It is therefore sufficient to consider only the case
where q = 2. Then the pairs in (5) correspond to cases
where (−1)|α∩β j∩βk | = (−1)|α∩(β j+βl)∩βk |, which implies |α ∩
βl ∩ βk| is even (β j + βl is the pointwise addition of these
sets modulo 2). On the other hand, pairs in (6) correspond
to cases where (−1)|α∩β j∩βk | = −(−1)|α∩(β j+βl)∩βk | meaning
|α ∩ βl ∩ βk| must be odd in this case. We now consider three
relevant types of stabilizer:

(i) Stabilizers not on the membrane boundary: Recall that
if X 1

α was a logical X operator of code 1 then CZ23
α should be a

logical CZ of codes 2 and 3 and so must preserve the stabilizer
groups of these codes. This means that for any cell of code
2 not on the boundary of the CZ membrane, the intersection
of this cell with the CZ membrane must be the support of a
Z stabilizer of code 3 or X stabilizers in one code would be
mapped to Z errors in the other by a transversal application of
CZ . This means that α ∩ βl is the support of a Z stabilizer of
code 3 and since βk is the support of an X stabilizer of code 3,
|α ∩ βl ∩ βk| must be even for all such βl and βk . Therefore
|φ〉 = |φ+

l 〉 and we are in a +1 eigenstate of these stabilizers.
(ii) Stabilizers generators (cells) on the membrane bound-

ary: The error X 1
α is detected by Z stabilizers supported on

the faces of these cells as in Fig. 5. Each such face is the
intersection between a pair of generators X 2

βl
and X 3

βk
and

so |α ∩ βl ∩ βk| must be odd or a Z stabilizer on this face
would not detect the error. There are two such faces for every
generator on the membrane boundary (because the syndrome
is a loop) and so every X 2

βl
has two X 3

βk
neighbors for which

|α ∩ βl ∩ βk| is odd, which we will refer to as the “boundary
neighbors” of X 2

βl
. The boundary neighbors are disjoint, so

if X 3
βk

is instead the product of the boundary neighbors then
|α ∩ βl ∩ βk| is even. Thus, the terms in |φ+

l 〉 are those for
which X 123

βx
contains neither or both of the boundary neigh-

bors of X 2
βl

, whereas the terms in |φ−
l 〉 are those where X 123

βx

contains a single one of these neighbors. The overall super-
position contains an equal number of each type of term so

|φ〉 = 1√
2
(|φ+

l 〉 + |φ−
l 〉) and we measure a random ±1 out-

come from this stabilizer.
(iii) The product of all stabilizer generators on the mem-

brane boundary: For any generator X 2
β j

on the membrane
boundary the intersection |α ∩ β j ∩ βk| with a neighboring
generator X 3

βk
is odd (as discussed above). This means a Z

operator Z3
α∩β j

anticommutes with these X 3
βk

, and for each such

X 3
βk

there are two generators X 2
β j

that have this property, so

if X 2
βl

is the product of all generators from code 2 on the
membrane boundary then Z3

α∩βl
is a stabilizer. This means that

|α ∩ βl ∩ βk| is even for all X 3
βk

and so |φ〉 = |φ+
l 〉 for this

choice of X 2
βl

.
In summary this gives us an analogous result to what was

observed for an isolated membrane in the color code. Stabiliz-
ers not on the boundary always give +1. Stabilizer generators
on the boundary give ±1 randomly but we must get an even
number of −1 stabilizers in any given code.

B. Linked error membranes in cleanable code regions

Consider the case where we have X error membranes in
codes 1 and 2

CCZX 1
α X 2

γ |ψ〉 (7)

such that α ∩ γ is nonempty. Then commuting the CCZ to the
right we have

X 1
αCZ23

α X 2
γ CZ13

γ |ψ ′〉 = X 1
α X 2

γ Z3
α∩γCZ23

α CZ13
γ |ψ〉. (8)

So we now have some CZ errors acting on a codestate as
before, but we also have a Z string Z3

α∩γ on the intersection
of these membranes in code 3. This is the surface code equiv-
alent of the linking charge string described in [16]. Thus we
expect that in code 1 we get random outcomes from stabilizers
on the boundary of CZ13

γ and +1 outcomes from all others,
with the total number of −1s even. In code 2 we expect the
same thing on the boundary of CZ23

α . In code 3 we expect
random outcomes from stabilizers on the boundaries of both
membranes, and also expect an odd parity of −1 stabilizers on
each boundary due to the linking charge string.

The simplicity of this statement stands in stark contrast to
the complexity of the original proof of this phemonenon in
the case of the color code as presented in [16], to the extent
that it may seem unremarkable to readers who are not familiar
with that paper. Additionally, it is not only the mathematical
origin of linking charge that is clearer in the surface code but
also its physical significance. The transversal CCZ in this code
is achieved because the intersection of logical X operators
from any pair of codes is the support of a logical Z operator
in the third and so the logical action CCZ123X 1X 2CCZ123 =
X 1X 2Z3CZ23CZ13 is correctly implemented. Linking charge
in this case is just another example of this creation of Z strings
on X membrane intersections. This is consistent with claims
made in [16] that linking charge is important for the correct
function of the transversal T gate in the 3D color code.

043052-5

SCRUBY, VASMER, AND BROWNE PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

C. Error membranes in noncleanable regions

Finally we address the case of error membranes in non-
cleanable regions of the code. Consider

CCZX 1
α |ψ〉 = X 1

αCZ23
α |ψ ′〉 (9)

where CZ23
α now contains the support of a logical Z operator in

code 2 or 3. We choose code 2 but this choice is not important.
This means that any implementation of logical X in code 2
must have nontrivial intersection with X 1

α and this changes our
analysis for some codewords. For |010〉 we have

CZ23
α |010〉 = 1√

n

∑
i jk

CZ23
α X 1

βi
X

2
LX 2

β j
X 3

βk
|0〉

= 1√
n

∑
i jk

X 1
βi

X
2
LZ3

α∩LX 2
β j

Z3
α∩β j

X 3
βk

Z2
α∩βk

|0〉

= Z3
α∩L√

n

∑
i jk

(−1)α∩β j∩βk X 1
βi

X
2
LX 2

β j
X 3

βk
|0〉 (10)

where X
2
L is a logical X implementation for code 2. We there-

fore create a global Z error on the intersection of the error
membrane support α and the logical operator support L. Both
α and L are membranes so we can always choose L such that
α ∩ L is a string. This does not affect observed syndromes
(because Z3

α∩L runs from one side of the membrane to the
other and so anticommutes with a pair of stabilizers on the
membrane boundary) and also does not affect the encoded
logical information unless α ∩ L is the support of a logical
Z operator for code 3. Therefore we only get a logical error
from applying CCZ to Xα if α contains the support of logical
operators of both code 2 and code 3.

IV. EFFECTS OF CLIFFORD ERRORS
ON CODE PERFORMANCE

To investigate the effects of Clifford errors on the perfor-
mance of an error correcting code we simulate a single-shot
magic state preparation procedure that makes use of the sur-
face code CCZ . Previous work has simulated the effect of
Clifford errors arising from the application of transversal T
in the color code [17] but did not include the contribution
due to linking charge (as it cannot be modelled locally in that
setting). On the other hand, that paper used a circuit noise
model whereas we use a simpler phenomenological noise
model. All code used for our simulations can be found at [34].

Our simulated procedure consists of the following steps:
(1) Prepare the three codes in the logical |+〉 state by

preparing all physical qubits in |+〉, measuring all Z stabi-
lizers that correspond to faces of the lattice and applying a
correction. This can be done in constant time as the 3D surface
code allows for single-shot decoding of X errors.

(2) Apply transversal CCZ to the three codes to create the
magic state CCZ|+++〉.

(3) Perform a 3D → 2D dimension jump in each code,
such that we end with three entangled 2D surface codes in the
state CCZ|+++〉. This can also be done in constant time at
the cost of reduced code performance.

We apply measurement errors during the initial Z stabilizer
measurements and also apply a depolarising error either just

FIG. 6. For each of the three codes, we show a plot of the logical
error rate pfail (separately for X and Z errors) as a function of the
depolarising/measurement error rate p for various lattice sizes L
(with and without the CCZ gate). For these simulations, the depo-
larising noise channel was applied after the CCZ gate. The error bars
show the Agresti-Coull 95% confidence intervals [35,36].

before or just after the CCZ gate, all with the same probability
p. After all the steps are complete we use perfect stabilizer
measurements to calculate a final correction for the 2D codes,
check for logical errors and declare success or failure depend-
ing on the outcome. The results can be seen in Fig. 6 and
Fig. 7, with observed thresholds as shown in Table I. To es-
timate the error thresholds we use standard finite-size scaling
analysis [5]. Specifically, in the vicinity of the threshold we fit
the data to the following ansatz:

pfail (x) = a0 + a1x + a2x2, (11)

where x = (p − pth)L1/ν and a0, a1, a2, pth and ν are the
parameters of the fit.

We observe that when the depolarising channel is applied
after the CCZ gate the inclusion of CZ errors (in this case
arising only due to measurement errors) results in only a
marginally lower Z error threshold estimate in the octahedral
surface code, and actually leads to a slight increase in the
estimated Z error threshold value in the cuboctahedral surface

043052-6

NON-PAULI ERRORS IN THE THREE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

FIG. 7. For each of the three codes, we show a plot of the logical
error rate pfail (separately for X and Z errors) as a function of the
depolarising/measurement error rate p for various lattice sizes L
(with and without the CCZ gate). For these simulations, the depo-
larising noise channel was applied before the CCZ gate. The error
bars show the Agresti-Coull 95% confidence intervals [35,36].

codes. On the other hand, when the depolarising channel is
applied just before the CCZ gate the CZ errors (now due to
both measurement and qubit errors) have a significant impact
on the threshold. In Sec. IV A and Sec. IV B we consider
each of these cases in detail, and following this analysis we
provide a more detailed description of the above procedure,

with explanations of state preparation, CCZ application and
3D → 2D dimension jumping given in Sec. IV C, Sec. IV D,
and Sec. IV E, respectively.

A. Noise after CCZ

To understand the minimal effect seen when the depolaris-
ing channel comes after the CCZ we first need to observe that
the CZ error probability in this case is actually a function of
lattice size L (because the CZ errors occur due to uncorrected
X errors). When we are above the X threshold the likelihood
of CZ errors increases with increasing L, whereas below the X
threshold it decreases. We can then define an effective Z error
probability

peff
Z = pZ + q(L) (12)

where pZ is the per-qubit Z error probability due to the
depolarising channel (i.e., 2p/3 where p is the error prob-
ability used in our simulations) and q(L) is the probability
of additional Z errors produced by CZ errors + stabilizer
measurement. If we consider only values of pZ close to the
Z error threshold then we are below the X error threshold so
q(L) will be small and will decrease with increasing L. In this
region we can approximate the curves pL

fail as straight lines
pL

fail = mL pZ + cL, and if we choose a pair of lines pL1
fail and

pL2
fail and replace pZ with peff

Z then the point where pL1
fail = pL2

fail
shifts by an amount

�p(L1, L2) = mL2 q(L2) − mL1 q(L1)

mL1 − mL2

. (13)

If L2 > L1 then this shift is positive if mL2/mL1 <

q(L1)/q(L2) and negative (or zero) otherwise. mL2/mL1 is large
in codes that deal well with Z errors, while q(L1)/q(L2) is
large in codes that deal well with X errors. Hence we see a
positive shift of the threshold estimate in the cuboctahedral
codes (where performance against X errors is very good but
performance against Z errors is fairly poor) and a negative
shift in the octahedral code (which deals better with Z errors
but worse with X errors relative to the cuboctahedral code).

Notice also that although we use the term “threshold” in
this discussion these are not true thresholds as are they are
not independent of lattice size (the shift �p depends on L).
Estimating a threshold value using a set of relatively small
lattices gives values like those in Table I, but if we estimated
a threshold using only very large lattices the impact of the CZ
errors would be negligible and the calculated value would be
almost identical to the case of purely 2D noise. If we consider

TABLE I. Error threshold estimates obtained by fitting the data in Figs. 6 and 7 to the ansatz in (11). The indicated errors were derived via
bootstrap resampling.

Octahedral Cuboctahedral 1 Cuboctahedral 2

Z error threshold (no CCZ) 1.788(8)% 0.525(8)% 0.519(8)%
Z error threshold (noise before CCZ) 1.065(9)% 0.278(9)% 0.276(9)%
Z error threshold (noise after CCZ) 1.747(14)% 0.542(8)% 0.533(7)%
X error threshold (no CCZ) 2.693(12)% 2.864(22)% 2.879(18)%
X error threshold (noise before CCZ) 2.630(14)% 2.750(26)% 2.750(31)%
X error threshold (noise after CCZ) 2.694(12)% 2.874(21)% 2.886(19)%

043052-7

SCRUBY, VASMER, AND BROWNE PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

the true threshold to be the point below which pL2
fail < pL1

fail for
all L2 > L1 then this is the value

ptrue
th = min

L2>L1

(
pIID

th + �p(L1, L2)
)
. (14)

Our numerical results suggest that for the cuboctahedral
lattices ptrue

th = pIID
th [with the minimum value of �p(L1, L2)

being limL→∞ �p(L, L + 1) = 0] while ptrue
th will be very

close to the value shown in Table I for the octahedral lat-
tice [with the minimum (negative) value of �p(L1, L2) being
when L1 and L2 are the two smallest members of the code
family].

B. Noise before CCZ

In the previous case the relative immunity of the threshold
to CZ errors was due to the fact that X error probability in the
code fell with increasing lattice size. This is no longer true if
additional X errors occur after the Z stabilizer measurements
but before the application of the CCZ gate, as these errors
will not be accounted for by the X correction calculated using
those measurements. More explicitly, the per-qubit X error
probability at the point in time when the CCZ gate is applied
will be

peff
X = pX + pres (15)

where pres is the probability of a residual X error from de-
coding using faulty syndrome measurements and pX = 2p/3
(=pZ) is once again the probability of a specific Pauli error
due to the depolarising channel. pres is a function of L (and
decreases with increasing L when we are below the X thresh-
old) while pX is independent of L and so for large L we will
have peff

X ≈ pX , and if we are far enough below the threshold
then we expect pX to dominate even for small L. This means
that if we define the same effective Z error probability peff as
in the previous section the quantity q(L) will also be almost
constant in L for values of pZ close to the Z threshold and the
quantity �p(L1, L2) will then be an almost constant negative
shift of this threshold. This is reflected in Fig. 7.

This kind of problem is not unique to non-Clifford gates
(and in general we expect any nontrivial logical operation
to have a negative impact on the performance of the code
[37]). Consider, for example, the simple case of stabilizer
measurement → correction → transversal CNOT in the 2D
surface code. All X errors in the control code, which occurred
between measurement and correction will now also be applied
to the target code, while all such Z errors in the target will
be applied to the control, effectively doubling the X/Z error
probability in the target/control for this step of the compu-
tation. However, for the case of transversal Clifford gates
we can instead consider a process of stabilizer measurement
→ transversal gate → correction, where the correction we
apply to the code is the correction produced by the decoder
commuted through the transversal gate. For transversal non-
Cliffords things are not so simple because commuting the
Pauli correction through the non-Clifford gives a Clifford cor-
rection. This will be a valid correction for the Clifford error,
which exists in the code, but if we wish to restrict ourselves
to only applying Pauli corrections (e.g., because single-qubit
gates typically have better fidelities than multiqubit gates)

then we must once again measure the stabilizers to project
the Clifford error to a Pauli error and there is then no way
to deterministically infer a suitable Pauli correction from our
previously calculated Clifford correction as the projection is
probabilistic.

This may seem like a serious drawback for transver-
sal non-Clifford gates (and particularly multiqubit ones), as
the decoding calculation will take a non-negligible amount
of time and so it is reasonable to expect that a non-
negligible number of errors will occur in the period between
measurement of stabilizers and application of a correction.
Fortunately, this problem may not be as significant as it seems.
Notice that if we consider peff

X ≈ pX then we can write peff
Z as

peff
Z = pZ + αpX (16)

for some 0 � α � 1 [in practice we expect α ≈ 0.5 since most
X errors from the depolarising channel will be isolated single-
qubit errors that will be mapped to Z errors with (per-code)
probability 0.5]. In our simulations we have pX = pZ and so
we observe a large increase in peff

Z and a large decrease in the
threshold. However, in many architectures we have pZ � pX

[38–42], in which case the increase in peff
Z due to errors of this

type would be much less significant.
Another practical consideration is the trade-off between

decoding speed and performance. Faster decoders will allow
less time for errors to build up before the gate application,
but it is often the case that faster decoders have weaker per-
formance and so if error rates are low enough then using a
slower but more accurate decoder may be preferable.

C. State preparation

While the state preparation step is not of particular interest
by itself, the details of this step will be relevant when we
discuss the generation of the Z error distributions that result
from the CZ errors. Throughout the simulation we track the
locations of both X and Z errors.

To simulate the preparation of the initial state we start with
no errors on any qubit (i.e., we assume perfect single-qubit
state preparation) and then apply an X error to each qubit
with probability 0.5. This reproduces the effect of measuring
the Z stabilizers of the code when all qubits are in |+〉. We
then calculate the Z stabilizer syndrome and, for each stabi-
lizer, flip the outcome of this calculation with probability p
to simulate measurement errors. We use a minimum-weight
perfect matching decoder [27] to generate a correction for
these measurement errors and we use BP-OSD [43–46] to
calculate a correction for the qubit errors.

In the absence of measurement errors (or if we make no
mistakes in calculating a correction for these errors) the pat-
tern of single-qubit X s after correction will correspond to
a random configuration of X stabilizers and possibly an X
logical. This pattern of X s represents one randomly selected
term of the superposition

|+〉 = 1√
2

(|0〉 + |1〉)

= 1√
2

(
1√
n

∑
i

Xβi |0〉 + 1√
n

X L

∑
i

Xβi |0〉
)

. (17)

043052-8

NON-PAULI ERRORS IN THE THREE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

In the presence of measurement errors (and if we make
mistakes correcting them) this pattern of X s will differ from a
term of this superposition by errors on a subset of qubits [46].
Notice that an “X error” can now mean either an application
of X to a qubit where we should have applied identity or
the reverse, so the locations of these errors are not explicitly
known or tracked by the simulation.

D. Application of CCZ

The pattern of X ’s we have prepared makes the creation
of an appropriate Z error configuration extremely simple: We
simply apply a Z error to any qubit of code k where we have
applied X to the corresponding qubits in codes i and j (i.e.,
just the natural local action of CCZ). We know from (8) that
this will produce linking charge strings so we only need to
check that it will produce appropriate error configurations on
the boundaries of error membranes and also that it will not
produce errors elsewhere.

To check the former we can consider the intersection of a
membrane of X errors in code i with an X stabilizer of code
j [we assume that there are no X errors in code j so that the
pattern of X operators for this code matches a term of (17)].
We know from the analysis in Sec. III that a Z error supported
on this intersection in code k anticommutes with a pair of X
stabilizers of code k that lie on the boundary of the code i error
membrane. We also know that each such stabilizer should
be violated with probability 0.5 while the total number of
violated stabilizers should be even. Each X stabilizer of code
j appears in the pattern of X s for this code with probability
0.5, and so for each error-stabilizer intersection we create a Z
error string with this same probability. The resulting pattern
of all these strings will anticommute with the X stabilizers of
code k exactly as described above.

To check that we do not create Z errors in other cases we
only need to observe that, in the absence of errors, X will only
be applied to a qubit if this forms part of a stabilizer or logical
in the pattern of X ’s for this code. The fact that intersections
of stabilizers and logicals in codes i and j correspond to the
supports of Z stabilizers and logicals in code k is what makes
the CCZ gate transversal so no errors can be created in this
case.

E. Dimension jump

Full descriptions of dimension jumping for 3D surface
codes can be found in in [47,48] but we review the collapse
part here for completeness. It will be helpful to once again
write our codewords in terms of stabilizers, but this time we
use the Z stabilizers rather than the X , so that, for example,

|+〉 =
∑

i

Zβi |+〉. (18)

Measuring out all qubits of the code in the X basis will
project to one specific term of this superposition. If we split
the qubits into two sets M and N and measure out only qubits
in M then we project to a subset of terms

|ψ〉 = Zβ j

∑
n

Zβn |+〉 (19)

where β j ∩ M �= ∅ while βn ∩ M = ∅. If
∑

n Zβn |+〉⊗|N | is a
codeword |+〉 of a smaller code then this code will be subject
to a Z error Zβ j∩N and if we wish to transform from the larger
code to the smaller one fault-tolerantly then this error must
be correctable. A correction can be calculated by finding a
stabilizer of the larger code that matches Zβ j on the qubits
in M and then applying this operator to qubits in N , but
whether or not this reliably corrects the error will depend
on the stabilizer structure of the code and on the choice of
regions M and N . Additionally, in order to correctly transfer
the logical information we require that there is at least one
representation ZL of logical Z for the larger code for which
ZL∩N is a valid logical Z of the smaller code. This means that
|−〉 = ZL

∑
i Zβi |+〉 in the larger code is mapped to

|ψ〉 = ZL∩MZβ j

(
ZL∩N

∑
n

Zβn |+〉⊗|N |
)

|+〉⊗|M| (20)

where ZL∩N
∑

n Zβn |+〉⊗|N | will then be the codeword |−〉 in
the smaller code.

An extra complication is added when the qubits of M are
subject to Z errors prior to measurement. In this case the
outcomes of our single-qubit X measurements will not be con-
sistent with any Z stabilizer Zβ j , and before we can calculate
a correction for the qubits in N we must first find one for the
qubits in M. We can do this by using the single-qubit measure-
ment outcomes along with the measurement outcomes of the
X stabilizers of the smaller code to reconstruct an X stabilizer
syndrome for the larger code, and then use this syndrome to
find a correction.

In our simulation the “larger code” is the full 3D surface
code while the “smaller code” is a 2D surface code supported
on one of the boundaries of the 3D code. The qubits in sets
M and N are referred to as the “inner” and “outer” qubits
respectively. Because the logical Z operators of the three
different surface codes are all perpendicular there is no way
to collapse all three codes to the same boundary, since for
any boundary N of the rectified lattice there is always one

code where ZL∩N �= Z
2D

for every representation ZL. Instead
we choose to collapse the two codes defined on cuboctohedral
lattices to one of the half-cuboctahedral boundaries (giving
two rotated 2D surface codes) while the code defined on
the octahedral lattice collapses to a half-octahedral boundary
(giving an unrotated 2D surface code) as shown in Fig. 8.
Code deformation can be used to transform the unrotated code
into a rotated code that overlaps with the other two.

In each of the three codes the error Zβ j∩N comes from faces
of the 3D lattice that meet the boundary at an edge, since
these faces support Z stabilizers of the 3D code and when
restricted to the 2D code these edges form strings of errors. As
mentioned above, a correction can be calculated by finding a
Z stabilizer of the 3D code that matches the measurement out-
comes from the measured-out qubits, and because each edge
of the 2D code corresponds to a single (nonboundary) face of
the 3D lattice this correction will exactly match the error in
the 2D code. An algorithm for calculating this correction in
each of the three codes is given in Appendix B.

If there were Z errors on the measured out qubits (or if
the measurements themselves were faulty) we will need to

043052-9

SCRUBY, VASMER, AND BROWNE PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

FIG. 8. Code deformation operation for turning an unrotated sur-
face code (supported on a half-octahedral boundary of the rectified
lattice) into a rotated surface code (supported on a cuboctahedral
boundary of the rectified lattice).

find a correction for these by reconstructing a 3D X stabilizer
syndrome. These stabilizers are supported on cells of the 3D
lattice so for cells supported entirely on the inner qubits we
can simply take the product of all single-qubit measurement
outcomes from that cell. If a cell is partially supported on
the outer qubits then its restriction to these qubits gives an
X stabilizer of the 2D code, so to calculate a measurement
outcome for this cell we can take the product of the measure-
ment outcome of this 2D stabilizer and all the single-qubit
measurement outcomes from the other qubits in the cell.
However, obtaining a reliable set of stabilizer measurement
outcomes for the 2D code requires repeated measurements of
these stabilizers, and we have promised a single-shot magic
state preparation process. Fortunately, there is a way to fault-
tolerantly calculate a correction using only the single-qubit
measurement outcomes although this comes at the cost of a
reduction in code performance. This calculation is described
in Appendix C.

V. DISCUSSION

We have generalised results regarding Clifford errors in the
color code to the case of the 3D surface code and found that
not only do these results translate straightforwardly but they
are much more easily understood in this setting. In the surface
code the deterministic linking charge error string and the ran-
dom error strings on the Clifford error boundary have separate
mathematical origins, the former being caused by commuting
the transversal non-Clifford gate through a pair of Pauli errors
and the latter being caused by the action of a Clifford error on
the codestate. In the color code this distinction is less clear
and these two kinds of Z error have the same origin (the
action of the Clifford error on the codestate). The transversal
T gate in the color code and transversal CCZ in the surface
code are related by a local unitary mapping [49,50] and so
we propose that linking charge arising from the T gate in the
color code is best understood as a surface code phenomenon
whose origin is obscured by the mapping to the color code. On
the other hand, we showed in Appendix A that linking charge
effects occurring when CS and CCZ are applied between three
color codes are identical to the surface code case (i.e., they

have a local origin), so we see that the nonlocal linking charge
previously observed in the color code is specifically a property
of the transversal T , rather than of the color code itself.

Clifford errors from the CCZ gate are more approachable
not only from an analytic perspective but also from a numeri-
cal one. Full simulation of Clifford errors due to T requires a
nonlocal method of detecting linked syndromes and as a result
linking charge contributions have been left out of previous
numerical works [17]. In contrast, our simulations reproduce
the full effect of CZ errors in the 3D surface code with only
a simple local check at each lattice site. The results of these
simulations show that the occurrence of a large number of
X errors before the CCZ but after the most recent stabilizer
measurement can result in a significant reduction of the Z
threshold for the code, but in practical implementations we
expect that the number of such errors will be small when
compared to the number of Z errors, which occur naturally
during this period.

Finally, we note that in addition to the 3D surface and color
codes, our proof techniques can be applied straightforwardly
to any CSS code with a transversal non-Clifford that is diag-
onal in the Z basis. For instance, the 4D surface code admits
a transversal CCCZ between four copies of the code [51] and
in the same way as (8) we have

CCCZX 1
α X 2

β X 3
γ |ψ〉 = X 1

αCCZ234
α X 2

βCCZ134
β X 3

γ CCZ124
γ |ψ ′〉

= X 1
α X 2

βCZ34
α∩βX 3

γ CZ24
α∩γCZ14

β∩γ |ψ ′′〉
= X 1

α X 2
β X 3

γ Z4
α∩β∩γ |ψ ′′′〉 (21)

and so we observe a Z linking charge string on the intersec-
tion of these three X errors in addition to whatever effect
the Clifford CZ and non-Clifford CCZ errors have on the
codestate. This effect can be calculated in the same way as for
the CZ errors shown previously, i.e., by writing the codestates
as superpositions of stabilizers, commuting the non-Pauli
errors through these stabilizers, then examining the effect of
the phases produced on the possible stabilizer measurement
outcomes.

ACKNOWLEDGMENTS

T.R.S. acknowledges support from University College
London and the Engineering and Physical Sciences Research
Council [Grant No. EP/L015242/1] and also the JST Moon-
shot R&D Grant [Grant No. JPMJMS2061]. Research at
Perimeter Institute is supported in part by the Government
of Canada through the Department of Innovation, Science
and Economic Development Canada and by the Province of
Ontario through the Ministry of Colleges and Universities.
This research was enabled in part by support provided by
Compute Ontario and Compute Canada.

The authors thank B. Brown, M. Kesselring, A. Kubica
and M. Beverland for valuable discussions regarding linking
charge in the color code.

This work was partially completed while T.R.S. was at
University College London and some parts appeared previ-
ously in [52].

043052-10

NON-PAULI ERRORS IN THE THREE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

APPENDIX A: CLIFFORD ERRORS
IN THE 3D COLOR CODE

In this Appendix we apply the proof techniques used in the
main text to the case of the 3D color code. We recover the
result of linking charge for the case of transversal T in this
setting, although it requires more effort and is considerably
less intuitive than the surface code case. We also examine the
cases where the non-Clifford gates CS and CCZ are applied
between two and three copies of the code.

1. Single error membranes in cleanable code regions

The color code has a transversal T gate corresponding to an
application of T and T † to white and black vertices in a bicol-
oring of the lattice. Consider a membrane-like error Xα (Pauli
X on all qubits in set α and identity otherwise) supported on a
subset of faces of color κ1κ2 and detected by Z stabilizers on
faces of color κ3κ4 at the boundary of the membrane. Using
that T X = e−iπ/4SXT and T †X = eiπ/4S†XT † we have that

T Xα|ψ〉 = e−iπNα
w/4eiπNα

b /4AαXα|ψ ′〉, (A1)

where Nα
w and Nα

b are the numbers of white and black vertices
in α and Aα is a tensor product of S on all white vertices of
α and S† on all black vertices of α. |ψ〉 and |ψ ′〉 are states in
the codespace. Using SX = Y S, S†X = −Y S† and Y = iXZ
we have

e−iπNα
w/4eiπNα

b /4AαXα|ψ ′〉 = e−iπNα
w/4eiπNα

b /4(−1)Nα
b i|α|

× XαZαAα|ψ ′〉. (A2)

α is a product of faces of the code and faces are cycles in the
lattice so must contain an equal number of b and w vertices so
e−iπNα

w/4eiπNα
b /4 = 1. If |α| = 0 mod 4 then i|α| = (−1)Nα

b =
1 and if |α| = 2 mod 4 then i|α| = (−1)Nα

b = −1. Zα is a Z
stabilizer of the code (since it is a Z operator supported on a
set of faces) and commutes with Aα as they are both diagonal
in the computational basis. In summary

T Xα|ψ〉 = XαAα|ψ ′〉. (A3)

We then want to know what effect Aα has on codestates.
Since we are considering an error in a cleanable region of the
code it is sufficient to consider only the effect on |0〉 as the
analysis for |1〉 will be identical. We have that

|0〉 = 1√
n

n∑
i=1

Xβi |0〉 (A4)

where Xβi are stabilizers of the code (which are cells or prod-
ucts of cells of the lattice) and |0〉 is the all-zeros state. We can
then use the same commutation relations as above to show

Aα

1√
n

n∑
i=1

Xβi |0〉 = 1√
n

n∑
i=1

AαXβi |0〉

= 1√
n

n∑
i=1

(−1)N
α∩βi
b i|α∩βi|Xβi Zα∩βi |0〉.

(A5)

Zα∩βi acts trivially on the all-zeros state so we can rewrite this
as

Aα|0〉 = 1√
n

n∑
i=1

ig(α∩βi)Xβi |0〉 (A6)

where g(α ∩ βi) = |α ∩ βi| + 2Nα∩βi

b . We can see that(|α ∩ βi| + 2Nα∩βi

b

)
mod 4 = (

Nα∩βi
w + 3Nα∩βi

b

)
mod 4

= (
Nα∩βi

w − Nα∩βi

b

)
mod 4

(A7)

so g(α ∩ βi) can be understood as the difference (mod 4)
between the number of b and w vertices in α ∩ βi. α is a set of
faces of the code and the intersection of any face (or product
of faces) with a cell (or product of cells) of the 3D color code
is even so ig(α∩βi) = ±1 and the effect of Aα on |0〉 is to flip
the sign of some of the terms in this superposition as in the
surface code case. We can then once again write our state
as

Aα|0〉 = a|φ+
i 〉 + b|φ−

i 〉 (A8)

where Xβi |φ+
i 〉 = |φ+

i 〉 and Xβi |φ−
i 〉 = −|φ−

i 〉. The following
lemma will be useful in finding values for a and b.

Lemma A.0.1. ig(α∩(βi+β j)) �= ig(α∩βi)ig(α∩β j) only if |α ∩
βi ∩ β j | is odd (βi + β j is pointwise addition modulo 2)

If βi and β j are disjoint then βi + β j = βi ∪ β j and so α ∩
(βi ∪ β j) = (α ∩ βi) ∪ (α ∩ β j) = (α ∩ βi) + (α ∩ β j). This
means

g(α ∩ (βi + β j)) = |α ∩ (βi + β j)| + 2N
α∩(βi+β j)
b

= |(α ∩ βi) + (α ∩ β j)| + 2N
(α∩βi)+(α∩β j)
b

= |α ∩ βi| + |α ∩ β j | + 2Nα∩βi

b + 2N
α∩β j

b

= g(α ∩ βi) + g(α ∩ β j) (A9)

where we have used that |a + b| = |a| + |b| for disjoint a
and b. Therefore we only have ig(α∩(βi+β j)) �= ig(α∩βi)ig(α∩β j)

if βi ∩ β j is nonempty. In this case we can write βi ∪ β j =
β ′

i + β ′
j + βi ∩ β j where β ′

i (β ′
j) are the elements of βi (β j)

not in βi ∩ β j . βi + β j = β ′
i + β ′

j and β ′
i , β ′

j and βi ∩ β j

are all disjoint, so by the same method as above we can
show

g(α ∩ (βi + β j)) = g(α ∩ (β ′
i + β ′

j))

= g(α ∩ β ′
i) + g(α ∩ β ′

j) (A10)

and

g(α ∩ βi) + g(α ∩ β j)

= g(α ∩ (β ′
i + βi ∩ β j)) + g(α ∩ (β ′

j + βi ∩ β j))

= g(α ∩ β ′
i) + g(α ∩ β ′

j) + 2g(α ∩ βi ∩ β j). (A11)

Thus for general βi and β j we have

ig(α∩βi)ig(α∩β j) = (−1)g(α∩βi∩β j)ig(α∩(βi+β j)) (A12)

and so ig(α∩(βi+β j)) �= ig(α∩βi)ig(α∩β j) only if g(α ∩ βi ∩ β j) is
odd, which means |α ∩ βi ∩ β j | is also odd. �

Corollary 1: If Zα∩βi is a stabilizer then ig(α∩(βi+β j)) =
ig(α∩βi)ig(α∩β j) ∀ β j . This is because the intersection of any X

043052-11

SCRUBY, VASMER, AND BROWNE PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

and Z stabilizer of the code must be even and so α ∩ βi ∩ β j

must be even if α ∩ βi is the support of a Z stabilizer.
Now let us reconsider the state

|φ〉 = Aα|0〉 = 1√
n

n∑
i=1

ig(α∩βi)Xi|0〉 = a|φ+
i 〉 + b|φ−

i 〉.
(A13)

Note that once again |φ+
i 〉 must have the form

|φ+
i 〉 =

∑
j

(Xβ j + Xβi Xβ j)|0〉 (A14)

while

|φ−
i 〉 =

∑
j

(Xβ j − Xβi Xβ j)|0〉. (A15)

The pairs in |φ+
i 〉 are those for which ig(α∩β j) =

ig(α∩(βi+β j)) while the pairs in |φ−
i 〉 are those where ig(α∩β j) =

−ig(α∩(βi+β j)). This means that if ig(α∩βi) = 1 we must
have ig(α∩(βi+β j)) = ig(α∩βi)ig(α∩β j) for terms of |φ+

i 〉 and
ig(α∩(βi+β j)) = −ig(α∩βi)ig(α∩β j) for terms of |φ−

i 〉, whereas if
ig(α∩βi) = −1 then the reverse is true.

Now consider the same options for Xi as in the surface code
(readers may find it helpful to return to Fig. 4(a), which shows
the kind of error we are considering here):

(i) Stabilizers not supported on the membrane boundary:
The fact that ig(α∩βi) = 1 in this case is part of the requirement
for transversal T (see corollary 7 of [53]). Additionally, the
intersection of these X stabilizers with the membrane is either
nothing or the support of a Z stabilizer and so we always have
ig(α∩(βi+β j)) = ig(α∩βi)ig(α∩β j) for this choice of Xi by corollary
1. This means that |φ〉 = |φ+

i 〉 in this case, and so we are in a
+1 eigenstate of these stabilizers.

(ii) Stabilizer generators on the membrane boundary: Our
error membrane is supported on faces of color κ1κ2 and de-
tected by faces of color κ3κ4, which are the interfaces of κ1

and κ2 cells on the membrane boundary. A κ1 cell meets the
membrane at κ2 colored edges, which each contain one w and
one b vertex and so the total numbers of each in α ∩ βi are
equal and ig(α∩βi) = 1 for these stabilizers. The intersection of
a κ1κ2 face, a κ1 cell and a κ2 cell is a single vertex (since
the κ1 cell meets the face at a κ2 edge, the κ2 cell meets
the face at a κ1 edge and these edges meet at a vertex) and
therefore |α ∩ βi ∩ β j | is odd for a pair of neighboring cells
on the membrane boundary. Thus |φ+

i 〉 is formed from pairs
(Xβ j + Xβi Xβ j)|0〉 where Xβ j contains either 0 or 2 such neigh-
bors of Xβi while |φ−

i 〉 contains all pairs (Xβ j − Xβi Xβ j)|0〉
where Xβ j contains only one of the neighbors of Xβi . There are
equal numbers of each type of pair so |φ〉 = 1√

2
(|φ+

i 〉 + |φ−
i 〉)

and we expect a random ±1 outcome from a measurement of
Xβi .

(iii) All stabilizer generators of one color on the mem-
brane boundary: For any κ1 cell Xβi and neighboring κ2 cell
Xβ j that are both on the membrane boundary we have that
|α ∩ βi ∩ β j | is odd, and so Zα∩βi is an error string that an-
ticommutes with the two κ2 colored neighbors of Xβi . If Xβi

is instead the product of all κ1 colored cells on the membrane
boundary then each κ2 cell anticommutes individually with
the string from each of its two κ1 colored neighbors and so
commutes with their product. Thus Zα∩βi is a stabilizer for

this choice of Xβi . Additionally, ig(α∩βi) = 1 (since ig(α∩βi) = 1
when Xβi is an individual cell and cells of the same color are
disjoint). Therefore we have |φ〉 = |φ+

i 〉 for this Xβi as well.
We have recovered the expected result for an isolated mem-

brane: If we measure all stabilizer generators of the code
then stabilizers not on the membrane boundary will return
+1. Stabilizers on the membrane boundary return random ±1
outcomes, but the total parity of −1 stabilizers of any color
will always be even.

2. Linked error membranes in cleanable code regions

Now we consider a pair of membranes of X errors with
one defined on κ1κ2 faces and detected by κ3κ4 faces and
one defined on κ3κ4 faces and detected by κ1κ2 faces as in
Fig. 4(b). We will refer to these as ακ1κ2 and ακ3κ4 respectively.
Following the application of T we have a state

T Xακ1κ2
Xακ3κ4

|ψ〉 = T Xακ1κ2 +ακ3κ4
|ψ〉

= Xακ1κ2 +ακ3κ4
Aακ1κ2 +ακ3κ4

|ψ ′〉. (A16)

by the same reasoning as (A3) and using the fact that the
membranes are individually defined on the supports of Z sta-
bilizers (sets of faces) and so their product is also the support
of a Z stabilizer. Notice that, unlike in the surface code, we
do not observe the emergence of a linking charge string at
this point and in fact we observe no errors on the intersection
at all since ακ1κ2 + ακ3κ4 = ακ1κ2 ∪ ακ3κ4 − ακ1κ2 ∩ ακ3κ4 . The
linking charge string in this case will come from the action
of the Clifford error on the codestate rather than directly from
the commutation of the transversal non-Clifford through the
original X error.

Much of the analysis from above carries over to this case,
and the only difference will be for Xβi partially supported on
the intersection of the two membranes. Note that the same
method used to prove (A12) can equivalently be used to show

ig((ακ1κ2 +ακ3κ4)∩βi) = (−1)g(ακ1κ2 ∩ακ3κ4 ∩βi)ig(ακ1κ2 ∩βi)ig(ακ3κ4 ∩βi).

(A17)
Then we have that

(i) X stabilizers at intersection endpoints: These stabiliz-
ers are on the boundary of one membrane and in the interior of
the other and contain a single qubit in ακ1κ2 ∩ ακ3κ4 . If this cell
has color κ1 then it must meet the κ1κ2 membrane at a set of κ2

colored edges and the κ3κ4 membrane at a κ3κ4 colored face.
Sets of disjoint edges and individual faces both contain equal
numbers of b and w vertices so ig(ακ1κ2 ∩βi) = ig(ακ3κ4 ∩βi) = 1.
ακ1κ2 ∩ ακ3κ4 ∩ βi is a single qubit so ig(α∩βi) = −1 by (A17).

(ii) X stabilizers on the intersection (not endpoints).
Zακ1κ2 ∩βi and Zακ3κ4 ∩βi are both Z stabilizers so ig(ακ1κ2 ∩βi) =
ig(ακ3κ4 ∩βi) = 1. The product of two Z stabilizers is another Z
stabilizer, and all Z stabilizers have even weight so |(ακ1κ2 ∩
βi) + (ακ3κ4 ∩ βi)| is even and so |ακ1κ2 ∩ ακ3κ4 ∩ βi| is also
even and ig(α∩βi) = 1.

For nonendpoint stabilizers everything is as before. For
endpoint stabilizer generators we once again have |φ〉 =

1√
2
(|φ+

i 〉 + |φ−
i 〉) but we have swapped which pairs of states

are in |φ+
i 〉 and |φ−

i 〉 since, e.g., |φ−
i 〉 now contains the pair

|0〉 − Xβi |0〉 whereas previously we had |0〉 + Xβi |0〉 in |φ+
i 〉.

If Xβi is all cells of one color on one of the membrane

043052-12

NON-PAULI ERRORS IN THE THREE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

boundaries and Xβ j is a single cell on this boundary then as
before Zα∩βi is a stabilizer and as before ig(α∩βi) is the product
of ig(α∩β j) for all individual cells. One of these cells sits at
an intersection endpoint and so has ig(α∩β j) = −1 whereas the
rest have ig(α∩β j) = 1 and so ig(α∩βi) = −1. Thus we now have
|φ〉 = |φ−

i 〉 whereas before we had |φ〉 = |φ+
i 〉. This implies

that when we measure all the stabilizer generators of the code
we will once again get random outcomes from the membrane
boundary stabilizers, but instead of having an even parity of
each color on each boundary we have an odd parity, and this
is consistent with a linking charge string running between the
two membrane boundaries.

3. Error membranes in noncleanable regions

Consider an X error membrane in the color code supported
on a subset of faces of color κ1κ2 and also on the support of a
logical Z operator. As before we have

T Xα|ψ〉 = e−iπNα
w/4e−iπNα

b /4ig(α)XαZαAα|ψ ′〉. (A18)

α is a product of the supports of Z stabilizers and a Z log-
ical. For the former Nw = Nb and for the latter Nw = Nb +
1 so e−iπNα

w/4e−iπNα
b /4 = e−iπ/4. Also g(α) = |α| + 2Nα

b =
Nα

w + Nα
b + 2Nα

b = 4Nα
b + 1 so ig(α) = i. This gives

T Xα|ψ〉 = eiπ/4XαZαAα|ψ ′〉. (A19)

Notice that Zα is a logical Z operator, whereas for cleanable
α it was a stabilizer. Now we want to consider the effect of
Aα on codestates. For |0〉 the analysis is the same as before,
but for |1〉 we must now consider the interaction of logical X
operators with Aα . |1〉 can be written

|1〉 = 1√
n

n∑
i=1

X Xβi |0〉 (A20)

where X is a logical X operator. It does not matter which
implementation of X we choose, so we choose it to be X on
all qubits. We then have that

Aα|1〉 = 1√
n

n∑
i=1

ig(α)X Zαig(α∩βi)Xβi Zα∩βi |0〉

= i√
n

n∑
i=1

ig(α∩βi)X Xβi |0〉 (A21)

where we have used that Zα is a logical Z operator and so
commutes with Xβi , which is a stabilizer. Thus we see that the
action of Aα on |1〉 is the same as in the cleanable case except
for a global factor of i. This is consistent with a logical S error
and so we conclude that in addition to creating distributions
of Z errors Aα also applies a logical S to the codestate. Notice
that in addition to this, commuting T through Xα created a
logical Z error Zα in (A19).

4. CCZ and CS between multiple color codes

We can also apply CCZ between three copies of the 3D
color code and CS between two copies (this follows from
the fact that CNOT and T are transversal in this code and
CCZ/CS can be synthesised exactly using these gates [3,54]).
For CCZ the effect of the resulting CZ errors on terms in the

color code codestates will be identical to (4) as this equa-
tion is not code-specific (provided the code is CSS and so
has codestates, which can be written in this form). Then to
find |φ+

q 〉 and |φ−
q 〉 we can note that the only code properties

we assumed in this calculation for the surface code were (a)
that an X error membrane is detected by Z stabilizers at its
boundary and (b) that the intersection of X stabilizers of codes
i and j is a Z stabilizer of code k. Both of these properties are
true for the color code, so the result is exactly the same as for
the surface code case.

The case of CS (which can be applied transversally using
the same bicoloring as the T gate) between two color codes is
more interesting. CS has the commutation relations

(CS)(X ⊗ I) = (X ⊗ S)(CZ)(CS),

(CS†)(X ⊗ I) = (X ⊗ S†)(CS). (A22)

If we then consider applying CS to a pair of color codes,
one of which contains an X error X 1

α , then we have

CSX 1
α |ψ〉 = X 1

α A2
αCZ12

α |ψ ′〉 (A23)

and so we obtain both an S error and a CZ error. We have
already examined both of these errors individually so we can
use those results to see that the effect on the terms of the
codestate will be

A2
αCZ12

α |00〉 = 1√
n

∑
i j

ig(α∩β j)(−1)|α∩βi∩β j |X 1
βi

X 2
β j

|0〉.

(A24)
From our previous analysis we know that ig(α∩β j) = −1

when β j contains the support of two neighboring cells on
the membrane boundary while (−1)|α∩βi∩β j | = −1 when βi

contains the support of a cell on the membrane boundary
and β j contains the support of a single neighbor of that cell
(also on the membrane boundary). For a given X stabilizer
generator in code 1 only the latter contribution is relevant
(because the qubits of this code are acted on only by CZ and
not by S) so the argument is identical to the case of errors due
to CCZ . For a given X stabilizer generator in code 2 the former
contribution depends only on β j while the latter depends only
on βi and so the two are independent.

Thus we conclude that application of CS to a pair of codes
containing error X 1

α results in random Z error distributions on
the boundary of α in both codes 1 and 2, with the former
being due just to a CZ error and the latter being a product
of errors produced by CZ and S (but still being identical
to a distribution that could be produced by either of these
errors individually, i.e., a −1 outcome from any given sta-
bilizer with probability p = 0.5 but an even number of −1s
overall).

We can also examine linking charge for the case of CS. The
calculation is simply

CSX 1
α X 2

γ |ψ〉 = X 1
α A2

αCZ12
α X 2

γ A1
γCZ12

γ |ψ ′〉
= X 1

α X 2
γ

(
(−1)Nγ

b i|α∩γ |Z2
α∩γ

)(
Z1

α∩γ

)|ψ ′′〉 (A25)

where the first bracketed linking charge term (in code 2)
comes from the S part of the error and the second one (in code
1) comes from the CZ part. The phases incurred are global
and so not a problem. |ψ ′′〉 is the state |ψ ′〉 multiplied by the
CZ and A Clifford errors.

043052-13

SCRUBY, VASMER, AND BROWNE PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

FIG. 9. (a) Z stabilizer structure in the octahedral lattice. (b) Z
stabilizer structure in the cuboctahedral lattice

APPENDIX B: ALGORITHMS FOR CALCULATING
DIMENSION JUMP CORRECTIONS

In this Appendix we describe the algorithms used in our
simulation for calculating the corrections applied to the 2D
code after the dimension jump. At this point in the procedure
we have measured out all inner qubits of the 3D code in X and
calculated a correction for these qubits. We therefore have a
(corrected) pattern of ±1 outcomes from these measurements,
which should match some Z stabilizer of the 3D code. The aim
of the algorithms in this Appendix is to use these outcomes to
find a correction for any error, which may have arisen in the
2D code due to these projective measurements.

We first discuss the simpler case of the octahedral surface
code. An example is shown in Fig. 9(a). In this code the Z
stabilizer generators are weight-4 (some shown in red) and
we wish to collapse to a half-octahedral boundary (shown in
grey). To calculate a correction we start at the top boundary
(opposite to the boundary we wish to collapse to) and examine
the single-qubit measurement outcomes from qubits on this
boundary. From Fig. 9(a) we can see that the Z stabilizer
generators that touch this boundary are either supported en-
tirely on the boundary or only on a single qubit of it. We
assume that any −1 outcomes on this boundary are due to this
second type of stabilizer, so that even if we obtain four −1
outcomes in the support of a single Z stabilizer generator we
assume that this is due instead to the product of four separate
generators. In this way we obtain one generator for each −1
outcome on this boundary. We then flip the recorded signs of
the measurement outcomes from qubits within the support of
the product of all these generators. This guarantees that the
top boundary now contains only +1s, and also that the plane
of qubits immediately below this will also contain only +1s
since (up to composition with generators supported only on
the top boundary) the pattern of −1s on the top boundary
uniquely specifies a pattern of generators that matches the
−1s on this plane. The only mistake we can have made is
to apply four generators partially supported on the boundary
instead of a single generator fully supported on the boundary,
as mentioned above. The effect of this is to remove these
four −1s from the top plane of qubits but also to flip the
four corresponding outcomes in the plane two layers below.
This plane is identical to the top boundary and so we can
repeat the process, terminating when we arrive at the bottom

boundary. The final result will be the removal of all Z errors in
the 2D code, which arise due to 3D code stabilizers partially
supported on the outer qubits. Any extra Zs applied due to
“mistakes” of the kind described above will actually be Z
stabilizers of the 2D code.

The cuboctahedral lattices are more complicated. We see
one such lattice and some example Z stabilizers in Fig. 9(b),
where one cell has been removed so that we can see the
interior. The boundary we wish to collapse to is once again
shown in grey, and this time it is a half-cuboctahedral bound-
ary. Once again we start at the boundary opposite the one
we wish to collapse to, which this time is the front-right
boundary. There are no Z stabilizer generators fully supported
on this boundary, and partially supported generators always
meet it at a single qubit (examples shown in red). These
generators come in pairs, so unlike in the octahedral lattice
we cannot uniquely specify a stabilizer generator based on a
−1 outcome of a qubit on this boundary. Instead we choose
one of these two generators at random. Flipping the signs of
the associated measurement outcomes as before means this
boundary now contains only +1s and although we may have
mistakenly chosen the “wrong” generator this will turn out not
to matter.

In the next plane the Z stabilizer generators are supported
on two qubits of the plane rather than one. Notice also that
if we consider only the generators that “lead towards” the
boundary we wish to collapse to (shown in blue) and ignore
the ones that “lead away” (red) then they come in sets of four.
Each blue generator shares qubits (in this plane) only with
other blue generators in this set of four and so each set can
be considered individually. The component of the correction
based on this layer is calculated by proceeding clockwise
around each set of four qubits. If the measurement outcome
from a given qubit is recorded as −1 then we check the
outcomes of the clockwise and anticlockwise neighbors of this
qubit. If exactly one of these two outcomes is −1 then we
identify the generator supported on this pair of qubits and flip
all recorded signs for measurement outcomes in its support.
If both or neither of the neighbors of this qubit have outcome
−1 then we randomly choose one of the two generators with
this qubit in its support and flip the associated measurement
outcomes. Examples are shown in Fig. 10. Once this process
has been completed for all quadruples of qubits in the plane
all recorded outcomes from qubits within this plane will be
+1. The plane below this matches the front boundary plane
and so the process starts again and repeats until we reach the
final boundary where the 2D code is supported.

Now we can consider the effects of making the wrong
selection during the random choices of generator involved
in this algorithm. Firstly, consider the case were we choose
the wrong generator while finding a correction for the front
boundary (or any other matching plane). These are the red
faces in Fig. 9(b), so we can see that the product of the
two generators that share a qubit of this boundary is a four-
qubit operator supported on two different qubit quadruples
on the next plane. This will lead us to flip the outcomes
from qubits associated with two generators (one supported on
each quadruple) that meet at a single qubit in the subsequent
plane. This means that the outcome from this qubit will be
flipped twice, and so not flipped at all and thus the original

043052-14

NON-PAULI ERRORS IN THE THREE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

FIG. 10. Examples of corrections calculated for −1 measure-
ment outcomes from quadruples of qubits in the cuboctahedral
lattice. +1 (−1) outcomes are shown by empty (filled) circles. At
each step we examine the neighbors of the qubit marked with a red
circle and modify the recorded measurement outcomes according to
the algorithm described in the text.

“incorrect” choice of generator causes no problems. For the
random choices involved in finding corrections from the
quadruples, the different choices of generator lead to correc-
tions for the final 2D code that differ only by stabilizers of the
code, and so once again cause no issues.

APPENDIX C: CONSTANT-TIME DECODING
AT THE 2D/3D CODE BOUNDARY

To calculate this correction we assume that all 2D stabilizer
measurement outcomes will return a value of +1. This means
that the measurement outcome we calculate for cells that
are partially supported on the outer qubits is just the product
of all the outcomes of the measured-out qubits of this cell.
To understand why this works we can consider the example
in Fig. 11. In Fig. 11(a) we have a two-qubit Z error on
the marked qubits, for which the correct 3D syndrome would
be a −1 outcome from the cells labeled A and C. We imagine
that the bottom boundary of the figure is the 2D code we wish
to collapse to, so a syndrome calculation that uses only the
inner (nonboundary) qubits will give −1 outcomes for cells
A and B, for which a valid correction would be the qubit in
the intersection of these two cells. In other words, calculating
stabilizer outcomes using only inner qubit measurements
will only give corrections for inner qubit errors. This may
seem like a rather trivial statement, but the fact that it can
be made consistent with the rest of the dimension jump such
that the entire procedure remains fault-tolerant actually relies
on a rather specific feature of the codes we have chosen.
To see this, we can consider Fig. 11(b) where the 4-qubit Z
error is actually a Z stabilizer of the 3D code. In this case,
calculating a 3D X syndrome using only the inner qubits
will give a −1 outcome from cells B and C even though in
reality we should have no syndrome at all. It is important
that we do not try to correct this “error” because it will be

FIG. 11. (a) A two-qubit Z error, which anticommutes with the
X stabilizers on cells labeled A and C. (b) A four-qubit Z stabilizer.

dealt with separately in the next step of the dimension jump
when we find a 3D Z stabilizer that matches the single-qubit
measurement outcomes and apply its restriction to the 2D
code (as described in the previous Appendix). For example,
a decoder given this syndrome would return a correction
supported on the outer qubit that is in the intersection of cells
B and C, and this same correction will be returned in the next
step of the jump when we identify the other three single-qubit
Zs as the restriction of this Z stabilizer to the inner qubits.
As a result, the error in the outer code will be corrected twice
and so will not be corrected at all.

The way around this is to recall that we began by assuming
that all 2D stabilizer measurements would return an outcome
of +1, meaning that there are no Z errors on the outer qubits.
For the code and boundary depicted above all 3D Z stabilizers
are either also 2D Z stabilizers or intersect the 2D code at a
single qubit. As a result, a MWPM decoder given a syndrome
calculated from only the inner qubits will always return a cor-
rection supported on the outer code if the “error” that caused
the syndrome was actually a 3D Z stabilizer [since, e.g., for
the case of Fig. 11(b) a correction supported on the outer
qubits is weight-1 while a correction supported on the inner
qubits is weight-3]. We can therefore add an extra rule to our
3D X decoder, which says that after calculating a correction
we only apply the parts of the correction that are supported on
the inner qubits of the 3D code, and this ensures that “errors”
due to 3D Z stabilizers are left untouched. Notice that for
the other two 3D surface codes (where the Z stabilizers are
supported on the triangular faces of cells A, B, and C) the 3D
Z stabilizers at the boundary shown in Fig. 11 are supported
on two outer qubits and one inner qubit, so this modification
of the decoder would not work if we tried to collapse these
codes to this boundary. Fortunately however, we do not try
to do this. Instead we collapse them to the half-cuboctahedral
boundaries where the Z stabilizers are supported on one outer
qubit and two inner qubits.

This decoding strategy is not without cost. We have cre-
ated a large number of new −1 X stabilizer outcomes at
one boundary of the 3D code, and while these can be cor-
rected properly in isolation 3D Z errors, which occur close
to this boundary can interfere with this and the performance
of the MWPM decoder will suffer as a result. Despite this,
we still observe thresholds for the dimension jump in all three
codes.

[1] P. W. Shor, Scheme for reducing decoherence in quantum com-
puter memory, Phys. Rev. A 52, R2493 (1995).

[2] A. Ekert and C. Macchiavello, Quantum Error Correction for
Communication, Phys. Rev. Lett. 77, 2585 (1996).

043052-15

https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevLett.77.2585

SCRUBY, VASMER, AND BROWNE PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge
University Press, New York, 2011).

[4] D. Gottesman, The Heisenberg representation of quantum com-
puters, arXiv:quant-ph/9807006.

[5] C. Wang, J. Harrington, and J. Preskill, Confinement-Higgs
transition in a disordered gauge theory and the accuracy thresh-
old for quantum memory, Ann. Phys. (NY) 303, 31 (2003).

[6] D. K. Tuckett, Tailoring surface codes: Improvements in quan-
tum error correction with biased noise, Ph.D. thesis, University
of Sydney, 2020 (qecsim: https://github.com/qecsim/qecsim).

[7] C. Gidney, Stim: A fast stabilizer circuit simulator, Quantum 5,
497 (2021).

[8] J. Wallman, C. Granade, R. Harper, and S. T. Flammia, Estimat-
ing the coherence of noise, New J. Phys. 17, 113020 (2015).

[9] R. Kueng, D. M. Long, A. C. Doherty, and S. T. Flammia, Com-
paring Experiments to the Fault-Tolerance Threshold, Phys.
Rev. Lett. 117, 170502 (2016).

[10] D. Greenbaum and Z. Dutton, Modeling coherent errors in
quantum error correction, Quantum Sci. Technol. 3, 015007
(2017).

[11] S. Bravyi, M. Englbrecht, R. König, and N. Peard, Correcting
coherent errors with surface codes, npj Quantum Inf. 4, 55
(2018).

[12] S. J. Beale, J. J. Wallman, M. Gutiérrez, K. R. Brown, and R.
Laflamme, Quantum Error Correction Decoheres Noise, Phys.
Rev. Lett. 121, 190501 (2018).

[13] J. K. Iverson and J. Preskill, Coherence in logical quantum
channels, New J. Phys. 22, 073066 (2020).

[14] D. Gottesman and I. L. Chuang, Demonstrating the viability of
universal quantum computation using teleportation and single-
qubit operations, Nature (London) 402, 390 (1999).

[15] B. Yoshida, Topological color code and symmetry-protected
topological phases, Phys. Rev. B 91, 245131 (2015).

[16] H. Bombín, Transversal gates and error propagation in 3D topo-
logical codes, arXiv:1810.09575.

[17] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of univer-
sality: A comparative study of the overhead of state distillation
and code switching with color codes, PRX Quantum 2, 020341
(2021).

[18] C. Chamberland, P. Iyer, and D. Poulin, Fault-tolerant quantum
computing in the Pauli or Clifford frame with slow error diag-
nostics, Quantum 2, 43 (2018).

[19] C. Chamberland, J. J. Wallman, S. Beale, and R. Laflamme,
Hard decoding algorithm for optimizing thresholds under gen-
eral Markovian noise, Phys. Rev. A 95, 042332 (2017).

[20] G. Zhu, T. Jochym-O’Connor, and A. Dua, Topological Order,
Quantum Codes, and Quantum Computation on Fractal Geome-
tries, PRX Quantum 3, 030338 (2022).

[21] H. Bombín and M. A. Martin-Delgado, Topological Computa-
tion without Braiding, Phys. Rev. Lett. 98, 160502 (2007).

[22] H. Bombín and M. A. Martin-Delgado, Topological Quantum
Distillation, Phys. Rev. Lett. 97, 180501 (2006).

[23] A. Kubica and M. E. Beverland, Universal transversal gates
with color codes—A simplified approach, Phys. Rev. A 91,
032330 (2015).

[24] M. Vasmer and D. E. Browne, Three-dimensional surface
codes: Transversal gates and fault-tolerant architectures, Phys.
Rev. A 100, 012312 (2019).

[25] H. Bombín, Dimensional jump in quantum error correction,
New J. Phys. 18, 043038 (2016).

[26] A. Yu. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (NY) 303, 2 (2003).

[27] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Topological quantum memory, J. Math. Phys. 43, 4452
(2002).

[28] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, Surface
code quantum computing by lattice surgery, New J. Phys. 14,
123011 (2012).

[29] A. Kubica, B. Yoshida, and F. Pastawski, Unfolding the color
code, New J. Phys. 17, 083026 (2015).

[30] H. Bombín, Gauge color codes: Optimal transversal gates and
gauge fixing in topological stabilizer codes, New J. Phys. 17,
083002 (2015).

[31] This membrane of qubits also supports a logical X operator. We
can see that this configuration of S and S† should implement
transversal S because it will be created by applying transversal
T to a code in the logical |1〉 state, and in the logical space we
should have T XT

† = e−iπ/4SX .
[32] B. Brown and M. Kesselring (unpublished).
[33] S. Bravyi and B. Terhal, A no-go theorem for a two-dimensional

self-correcting quantum memory based on stabilizer codes,
New J. Phys. 11, 043029 (2009).

[34] https://github.com/tRowans/clifford-errors.
[35] A. Agresti and B. A. Coull, Approximate is better than “exact”

for interval estimation of binomial proportions, Am. Stat. 52,
119 (1998).

[36] A. DasGupta, T. Tony Cai, and L. D. Brown, Interval estimation
for a binomial proportion, Stat. Sci. 16, 101 (2001).

[37] H. Bombin, C. Dawson, R. V. Mishmash, N. Nickerson, F.
Pastawski, and S. Roberts, Logical blocks for fault-tolerant
topological quantum computation, arXiv:2112.12160.

[38] P. Aliferis, F. Brito, D. P. DiVincenzo, J. Preskill, M. Steffen,
and B. M. Terhal, Fault-tolerant computing with biased-noise
superconducting qubits: A case study, New J. Phys. 11, 013061
(2009).

[39] M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V.
Umansky, and A. Yacoby, Demonstration of entanglement of
electrostatically coupled singlet-triplet qubits, Science 336, 202
(2012).

[40] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich,
T. Monz, M. A. Martin-Delgado, and R. Blatt, Quantum com-
putations on a topologically encoded qubit, Science 345, 302
(2014).

[41] R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M. Delbecq,
B. Huard, T. Kontos, M. Mirrahimi, and Z. Leghtas, Exponen-
tial suppression of bit-flips in a qubit encoded in an oscillator,
Nat. Phys. 16, 509 (2020).

[42] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard,
M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H. Devoret,
Stabilization and operation of a Kerr-cat qubit, Nature (London)
584, 205 (2020).

[43] P. Panteleev and G. Kalachev, Degenerate quantum LDPC
codes with good finite length performance, Quantum 5, 585
(2021).

[44] J. Roffe, D. R. White, S. Burton, and E. Campbell, Decoding
across the quantum low-density parity-check code landscape,
Phys. Rev. Res. 2, 043423 (2020).

043052-16

http://arxiv.org/abs/arXiv:quant-ph/9807006
https://doi.org/10.1016/S0003-4916(02)00019-2
https://github.com/qecsim/qecsim
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.1088/1367-2630/17/11/113020
https://doi.org/10.1103/PhysRevLett.117.170502
https://doi.org/10.1088/2058-9565/aa9a06
https://doi.org/10.1038/s41534-018-0106-y
https://doi.org/10.1103/PhysRevLett.121.190501
https://doi.org/10.1088/1367-2630/ab8e5c
https://doi.org/10.1038/46503
https://doi.org/10.1103/PhysRevB.91.245131
http://arxiv.org/abs/arXiv:1810.09575
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.22331/q-2018-01-04-43
https://doi.org/10.1103/PhysRevA.95.042332
https://doi.org/10.1103/PRXQuantum.3.030338
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PhysRevA.100.012312
https://doi.org/10.1088/1367-2630/18/4/043038
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1499754
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1088/1367-2630/11/4/043029
https://github.com/tRowans/clifford-errors
https://doi.org/10.2307/2685469
https://doi.org/10.1214/ss/1009213286
http://arxiv.org/abs/arXiv:2112.12160
https://doi.org/10.1088/1367-2630/11/1/013061
https://doi.org/10.1126/science.1217692
https://doi.org/10.1126/science.1253742
https://doi.org/10.1038/s41567-020-0824-x
https://doi.org/10.1038/s41586-020-2587-z
https://doi.org/10.22331/q-2021-11-22-585
https://doi.org/10.1103/PhysRevResearch.2.043423

NON-PAULI ERRORS IN THE THREE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 4, 043052 (2022)

[45] A. O. Quintavalle, M. Vasmer, J. Roffe, and E. T.
Campbell, Single-shot error correction of three-dimensional
homological product codes, PRX Quantum 2, 020340
(2021).

[46] Of course, it technically differs from all terms of the superposi-
tion by errors on a subset of qubits, but one (or perhaps a small
number) of the terms will be the closest in terms of Hamming
distance.

[47] B. J. Brown, A fault-tolerant non-Clifford gate for the surface
code in two dimensions, Sci. Adv. 6, aay4929 (2020).

[48] T. R. Scruby, D. E. Browne, P. Webster, and M. Vasmer, Nu-
merical implementation of just-in-time decoding in novel lattice
slices through the three-dimensional surface code, Quantum 6,
721 (2021).

[49] A. M. Kubica, The ABCs of the color code: A study of topo-
logical quantum codes as toy models for fault-tolerant quantum
computation and quantum phases of matter, Ph.D. thesis,

California Institute of Technology, 2018, http://dx.doi.org/10.
7907/059V-MG69.

[50] M. Vasmer and A. Kubica, Morphing quantum codes, PRX
Quantum 3, 030319 (2021).

[51] T. Jochym-O’Connor and T. J. Yoder, Four-dimensional toric
code with non-Clifford transversal gates, Phys. Rev. Res. 3,
013118 (2021).

[52] T. R. Scruby, Logical gates by code deformation in topological
quantum codes, Ph.d. thesis, University College London, 2021,
https://discovery.ucl.ac.uk/id/eprint/10135040.

[53] N. Rengaswamy, R. Calderbank, M. Newman, and H. D. Pfister,
On optimality of CSS codes for transversal T , IEEE J. Sel.
Areas Inf. Theory 1, 499 (2020).

[54] M. Beverland, E. Campbell, M. Howard, and V.
Kliuchnikov, Lower bounds on the non-Clifford resources
for quantum computations, Quantum Sci. Technol. 5, 035009
(2020).

043052-17

https://doi.org/10.1103/PRXQuantum.2.020340
https://doi.org/10.1126/sciadv.aay4929
https://doi.org/10.22331/q-2022-05-24-721
http://dx.doi.org/10.7907/059V-MG69
https://doi.org/10.1103/PRXQuantum.3.030319
https://doi.org/10.1103/PhysRevResearch.3.013118
https://discovery.ucl.ac.uk/id/eprint/10135040
https://doi.org/10.1109/JSAIT.2020.3012914
https://doi.org/10.1088/2058-9565/ab8963

