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Abstract  

The Rorschach offers a unique and interesting paradigm from the perspective of the (Bayesian) brain. 

This contribution to the cross-disciplinary special issue considers the Rorschach from the perspective of 

perceptual inference in the brain and how it might inform subject-specific differences in perceptual 

synthesis. Before doing so, we provide a broad overview of active inference in its various manifestations. 

In brief, active inference supposes that our perceptions are the best hypothesis to explain sensory 

impressions. On a Bayesian account, the requisite belief updating rests sensitively upon the precision or 

confidence ascribed to sensory input, relative to prior beliefs about the causes of sensations. This focus 

– on the balance between sensory and prior precision – has been a useful construct in both cognitive 

science (e.g., as a formal explanation for attention) and neuropsychology (e.g., as a formal explanation 

for aberrant or false inference in hallucinations). In this setting, false inference is generally understood 

as abnormally high precision afforded to high-level hypotheses or explanations for visual input, which 

may compensate for a failure to attenuate sensory precision. On this view, the Rorschach offers an 

interesting paradigm because the amount of precise information about the causes of visual input is 

deliberately minimized — and rendered ambiguous — thereby placing greater emphasis on prior beliefs 

entertained the respondent. We close by exploring this issue and several other areas of intersection 

between Rorschach responding and active inference. 
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The active Bayesian brain and the Rorschach task 

This essay starts off broadly, providing readers with the backdrop for active inference, focusing 

on how active inference is founded on Bayesian probabilities1 and functions as a formal model for how 

human minds work. This part of the exposition draws on Friston (2009, 2013), Friston et al. (2012), and 

particularly Parr et al. (2022). Interested readers will find sources such as Clark (2013, 2016), Hohwy 

(2016), Barrett (2017), Otten et al. (2017), and Weise and Metzinger (2017) to be useful entrées to the 

key ideas. With this review as foundation, we address our ultimate aim, which is to consider how the 

Bayesian brain may evince an understanding of the processes engaged when a person sits with an 

assessor to participate in the inkblot task developed by Hermann Rorschach.  

 

The Bayesian Brain 

The Broad View 

All living organisms face the same challenges: to maintain separateness or boundedness from 

their surrounding environment. Maintaining separateness is essential to permit efforts towards 

sustenance and reproduction, as without separateness organisms would dissolve into their surroundings 

by the forces of entropy (i.e., natural disorder, disorganization, dissipation, and death), per the second 

law of thermodynamics. Further, all organisms evolved to persist in, or exploit, a relatively narrow band 

 
1 Thomas Bayes (~1701-1761) was a British minister and statistician who developed a relatively simple equation to 
convert one’s current belief about an outcome or event (E; called the prior probability) into a revised and updated 
belief (called the posterior probability) after encountering some new piece of information, which can be 
considered a sensory sign or signal (S). The result (i.e., the posterior probability) is a conditional probability 
because it depends on (i.e., is conditioned on) the new piece of information (i.e., it is E given S, or in symbols E | S). 
Although most resources present the calculations for Bayes theorem using proportions, Bayes did not and the 
math is simpler to understand using frequencies (e.g., Gigerenzer & Hoffrage, 1995). To compute the updated 
conditional probability, one needs to know how often the outcome or event occurs in the presence of the signal 
(E&S) and how often the signal shows up naturally (S). With those two pieces of information, the posterior 
probability is simply E&S / S. For instance, say it rains (E) on cloudy days (S) 3 times per month (i.e., E&S = 3) and it 
is cloudy 9 days per month (i.e., S = 9). On any given day, one’s confidence it will rain that day (i.e., prior 
probability) is roughly 10% (i.e., 3 / ~30). However, if it is cloudy that day, one’s confidence it will rain (the 
posterior probability, E | S) is 33% (i.e., 3 / 9). 
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of preferred physiological or characteristic states out of all those available, so that all organisms must 

also avoid those states that are poorly suited to their existential needs (e.g., fish need to live in water, 

but also need to avoid waters beyond their preferred temperature range and salinity).  

According to the model on offer, organisms fulfil their particular aims by actively minimizing the 

likelihood of encountering environmental circumstances that generate unexpected sensory states, 

which are conceptualized as ‘surprising’ sensory observations. Surprise in this context has a technical 

meaning (in information theory it is called self information), in that it indexes the extent to which the 

current sensory input differs from expected or preferred sensory inputs that are conducive to the 

persistence of the organism. Because it is generally impossible for an organism to know the true causes 

of its sensations, minimizing surprise itself is an intractable problem; so instead, organisms minimize an 

approximation to it called free energy. Free energy, like surprise, is an index of entropic mismatch 

between an organism’s preferred states and its current sensory samples of the environment. Crucially, 

free energy is determined just by the organism’s expected or preferred states and their sensory 

experience of the environment at the moment, which, of course, is just a proxy for the actual 

environmental causes of that sensation. 

Separateness and boundedness are not just requirements of organisms, but also are required 

for any organized, adaptive system. Within an organism there may be many organized systems (e.g., a 

brain encased within a skull, a vascular system throughout the body). For each, there is a boundary 

individuating it from its surroundings. What is on the other side of that boundary is hidden from that 

within the boundary (e.g., the external environment is inaccessible for a brain in a skull). Statistically, the 

boundary functions as what is known as a Markov blanket, which mediates between outer states and 

inner states; namely states that are external to the system and those which are internal to it. From the 

perspective of active inference, the internal system has only two options for inferring what is outside of 

the system, both of which are mediated via the blanket; the blanket can mediate action from within to 
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without (via active states such as muscles and autonomic reflexes) and it can sample the environment 

(via sensory states such as sensory epithelia and receptors) from without to within. However, the 

internal states of the system cannot directly influence the outer states and vice versa; inner influences 

outer only through active states (e.g., actions) and outer influences inner only through sensory states 

(e.g., observations). 2 Together, the active and sensory states constitute blanket states. 

In any adaptive system capable of persisting, active states and sensory states have a reciprocal 

or symmetrical relationship with each other, in that active states influence outer states and outer states 

respond by providing updated sensory states for the organism. This permits the organism (the inner 

state) to update conditional Bayesian probabilities to infer its external states and thus make probabilistic 

inferences about the causes of its sensations (e.g., a finger stroke on an object generates a sensation of 

roughness, increasing the probability of it being a certain type of hidden cause and lowering the 

probability of it being others). Those internal inferences update Bayesian prior probabilities or initial 

expectations that then form the baseline for what to expect from the environment or niche as the 

organism acts to sample it further. Those inferences thus serve to foster what can be understood as a 

model or representation of the external environment, reducing its uncertainty and implicitly, actively 

reducing the unpredictability of the external states of affairs in the niche.  

In short, this reduction helps minimize free energy, which is an index of unexpected 

environmental surprises that generally counter adaptive persistence. For instance, a fish that swims left 

yet senses a large shadow moving similarly overhead may associate that sensation with an increased 

likelihood (i.e., probability) of danger, which should increase in certainty further if it then swims away 

 
2 The term blanket comes from the idea of enclosing or enveloping. In human terms, a Markov blanket would be 
one’s outer surface, which is largely skin, though the term skin is generally not used for the inner parts of the 
mouth, nose, or ears. To know what resides outside oneself, the action options include to look, listen, sniff, taste, 
touch, move (ambulate), or think. The options to sense outside the body are mainly through the eyes, ears, nose, 
mouth, and skin, using sensory mechanisms that have an adaptively limited range of functions to detect what it 
truly external to the self (e.g., people cannot smell like dogs, hear like bats, or use magnetism like birds). 
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and the shadow follows. Thus, although they vary tremendously in their complexity, adaptive systems 

form a type of ‘understanding’ or recognition of their environment through their bounded exchange 

with that environment. From an active inference perspective, this type of recognition unfolds via 

process of Bayesian belief updating, under a generative model.  

Generative models do more than track linked patterns of active and sensory states. They serve 

both as a probabilistic base of inference (i.e., Bayesian prior probability) and as a mechanism to advance 

the needs of the inner state in order for the organism to persist over time. Further, the generative 

model encompasses the intrinsic needs of the organism; in the sense that those intrinsically preferred, 

adaptive states form a core base set of prior probabilities for that organism. These core prior 

probabilities guide the organism to find itself in just that niche, such that it literally perceives itself to be 

in—and acts to get in—environmental states that are conducive to its survival. Doing so reduces the 

mismatch between the organism’s predictions generated by its internal model and its sensations (i.e., it 

minimizes free energy).  

A generative model can be quite simple, or it can be organized into greater degrees of 

complexity, with multiple factors, modules, modalities and domains; each serving distinct subsystems 

for the organism (e.g., temperature regulation versus response to threat). In addition, increasingly 

complex generative models are hierarchically organized to permit organisms to make inferences across 

different timescales and to subserve distinct preferences or expected states. Systems with the capacity 

to model alternative courses of action and their predicted consequences, and to correspondingly be able 

to engage their environments with agency, likely form the foundation for all sentient organisms, 

including people. These systems need not just minimize free energy in the moment (variational free 

energy), but also minimize the free energy associated with different possible courses of action in the 
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future (expected free energy).3  

All life forms—and any adaptive system that actively samples its sensory states to minimize 

variational free energy—entails a generative model. In this formulation a generative model is simply a 

probabilistic representation that can guide some form of action, including something as simple as 

secreting a chemical. Such systems can retain their boundaries, regulate their internal states, and persist 

in an environment suited to their particular life needs. However, the distinction between variational and 

expected free energy offers a ‘bright line’ between simpler life forms, which exist solely in the present 

(even if they have future oriented adaptations, such as trees that drop their leaves annually), and more 

complex life forms that can explicitly plan and select among possible alternative futures. The latter 

permits at least some level of deliberation, agency, and sentience.  

 

The Focused View 

Active inference in sentient organisms operates using hierarchical Bayesian predictive coding, 

where specialized neuronal paths send predictions of what to expect from higher cortical levels via 

representation unit neurons to the lower levels, ultimately reaching the sensory epithelia. In this 

hierarchical or deep architecture, each level conveys predictions to the next level down. Return signals 

from the sense receptors then traverse each layer of the hierarchy, but do so using error unit neurons. 

These neurons convey prediction errors or ‘surprising’ information that is not explained by the 

downward flowing predictions. These prediction errors inform top-down cells at their level and at the 

level directly above. (This process of returning residuals [i.e., predicted experience – encountered 

experience = prediction error] rather than already known information is efficient metabolically and 

somewhat analogous to lossless file compression techniques, which discard predictable information 

 
3 The distinction here is between something like determining if you should put another layer of clothing on now to 
counter an emerging chill (minimize variational free energy) and deciding if it is worth the effort to carry an 
umbrella to counter a potential chill from rain later (minimizing expected free energy).  
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[e.g., .png or .zip file formats]). Importantly, predictions or prior beliefs (i.e., Bayesian prior probabilities) 

are themselves probability distributions, not point estimates, meaning for every representation an 

organism has—of the hidden environmental causes of their sensations—there is an expectation (i.e., 

mean) and an associated degree of confidence or precision (i.e., variance) that determines the degree of 

certainty with which they are held. High confidence produces a narrow, tight distribution, while low 

confidence a broad and diffuse distribution. Similarly, sensory inputs, and the degree of prediction error 

they return to trigger a revision of predictions (i.e., Bayesian posterior probabilities) or affirm a match 

with prior predictions, also are probabilistic, with their magnitude (mean) and precision (variance) 

determined by the quality and reliability of the sensory signal. In short, each level in the hierarchy 

encodes the uncertainty or precision associated with its current (Bayesian) beliefs that affects both the 

top down predictions and the bottom up errors. This precision is thought to be mediated by the 

frequency and intensity of the synaptic signals at each juncture. More specifically, precision may be 

encoded by the sensitivity of prediction error units to their inputs; such that a high degree of precision 

at one level of the hierarchy means that the prediction errors have a greater influence on belief 

updating at superior levels. Physiologically, this corresponds to synaptic gain, while psychologically, it 

can be regarded as an implementation of attentional gain—or its attenuation. 

Each level of this hierarchical structure seeks to reconcile or cancel or resolve prediction errors 

to reduce uncertainty and optimize its representation of external states. Note that minimizing prediction 

errors is just the same as minimizing free energy or surprise in our treatment of adaptive exchange with 

the environment above. Importantly, agents can amplify certain prediction errors by focusing attention 

on the signals provided, or they can inhibit that input to attenuate messages. For instance, sensory 

attenuation is required for an agent to take any action, because any effort to move would be countered 

otherwise by error signals conveying that in fact that movement is not taking place. The constant 

interplay of the predictions and prediction errors, up and down the neural hierarchy, leaves 
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considerable room for problems to develop in the sensorium, such that prior beliefs may be 

inappropriately amplified or attenuated (higher or lower prior precision) or held too tentatively or 

confidently (greater and lesser prior variance). The same is true with respect to sensory input, which can 

be inappropriately strong or weak (higher or lower sensory precision) or dismissed or amplified (wide or 

narrow distribution).4  

At the same time, it is quite adaptive, in the right context, to give excess weight to one level of 

hierarchal processing or another. Highly weighted sensory signals can quickly update one’s (Bayesian or 

subpersonal) beliefs about the environment, which can be helpful when in novel or dangerous 

surroundings, changing or chaotic circumstances, or if the signal is particularly strong and precise. Highly 

weighted prior predictions are stubbornly resistant to change and influence, which can be helpful when 

operating under stable and familiar conditions or when the environmental signals are vague, 

contradictory, or confusing. 

Thus, the active inference model, in its broadest form, posits that all creatures seek to find and 

make niches over momentary and lifelong time frames that minimize prediction error about the hidden 

external causes of sensation, as that error is a manifestation of the deleterious and dissipative forces of 

entropy (i.e., unpredictability is a manifestation of disorder or randomness in the life trajectory of the 

organism). They do so by constantly predicting what the agent should experience and sense and 

constantly affirming or updating those predictions based on the error notifications from the senses.  

Active inference itself is the process of resolving discrepancies between one’s model of 

experience (i.e., prior predictions) and the sensations generated by actual but hidden environmental 

signals. One can do this either by taking some action (e.g., allocate attention, step back, shift gaze, smell 

more deeply, turn an ear, touch again) to resample sensory information to confirm the prediction or by 

 
4 For instance, one could feel more or less hungry than is true physiologically (incorrectly high or low signals) and 
one could be uncertain or very confident about that level of hunger (incorrectly wide or narrow signals).  
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letting error signals override and correct the generative model of prediction. Changing one’s mind to 

accommodate updated beliefs is perception. Modifying the environment sensed or sampled is action. 

Active inference thus leads either to affirmation of the prediction via action bringing affirming sensory 

samples with minimal prediction error or to correction to foster a refined prediction that resolves 

prediction errors via perception— and that is now accompanied by new recognition. Both paths serve 

the aim of minimizing the discrepancy between one’s model of the environment and the environment 

itself (i.e., minimize free energy). It is easy to find illustrations of these ideas through common 

expressions that often emerge in conversation using terminology for embodied cognition. For instance, 

a listener may exclaim, “Oh, I see!” as a manifestation of perception (i.e., arriving at a new corrected 

understanding or view) or a speaker may offer guidance for action by saying, “No, look at it this way; …” 

or “Consider it from this perspective; …” directing the listener to mentally move to a different position 

to see their point. 

 

The Conventional View 

Although there is much more that could be said about active inference and the Bayesian brain, 

this overview sketches out its main features. The view that the brain is fundamentally a prediction 

machine dates back to Helmholtz in the 1860s. However, it is worth highlighting how this model of 

minds, brains, and nervous systems is in contrast to the alternative view that has been conventional for 

decades, which is of sensory cells taking in specific features of the environment and using the neural 

hierarchy to build an increasingly complex and accurate understanding of what is being perceived at 

higher cortical levels (e.g., Aggelopoulos, 2015). Rather than viewing perception as a one-way process of 

passively taking in sensory information and then trying to figure it out, the actively inferring Bayesian 

brain begins with a generative model that uses an active, constructive process going from the inside out, 

such that sensations of and from the environment—which are shaped, shifted, and refined by the 
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agent’s actions—serve to affirm or modify the organism’s model of the hidden causes behind those 

sensations. Complex agents infer the source of their experiential sensations, with experiential sensation 

encompassing the world of objects and actions outside oneself and the similarly remote or hidden world 

of processes, impulses, affects, and needs inside one’s own body. 

 

Empirical Grounding and Applications of the Model 

The active inference model encompasses many facets. However, they all are grounded in 

rigorously defined mathematical formalisms that are tightly linked to biologically plausible mechanisms 

of action in the context of evolutionary developments for all living organisms, sentient or not. The 

paradigm has been remarkably heuristic (Clark, 2016; Parr et al., 2022), providing guidelines for more 

advanced robotics and artificial intelligence, as well as explaining brain localization and functions and 

their proclivity for using specific neurotransmitters. Within psychological concerns more specifically, 

these models are being used to conceptualize topics as diverse as psychedelic experiences (Carhart-

Harris, 2018), hypnosis (Martin & Pacherie, 2019), interoception (e.g., Seth, 2013), attention (e.g., Parr & 

Friston, 2017), trauma (e.g., Linson et al., 2020), schizophrenia (e.g., Friston et al., 2016), hallucinations 

(e.g., Benrimoh et al., 2018), delusions (e.g., Adams et al., 2014), autism (e.g., Palmer et al., 2017), 

movement disorders (e.g., Brown et al., 2013), Freud’s unfinished Project for a Scientific Psychology 

(Carhart-Harris & Friston, 2010), and consciousness itself (Solms & Friston, 2018), to name a few. 

  

Links to Engaging with the Rorschach Task 

With this as backdrop, we turn to consider several ways in which active inference can be applied 

to Rorschach’s inkblot task. In particular, we attempt to make links with some of Rorschach’s own views 

of what the task was, how it worked, and, in consequence, what it provided. For those views, we rely 

heavily on the excellent and substantially clearer new English translation of his work by Keddy, Signer, 
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Erdberg, and Schneider-Stocking (Rorschach, 2021).  

 

Key Features of the Task 

As readers of this journal know, the Rorschach is a performance task that relies on visual-spatial 

and lexical-conceptual problem solving, using the standard set of 10 vertically symmetrical inkblot 

designs set on white cardstock. Five are shades of gray, two are shades of gray with prominent bold red 

areas, and three are fully chromatic with elements ranging from pleasing pastels to brightly saturated 

colors. For administration, the assessor hands respondents each card in order, while asking the question 

“What might this be?” Respondents typically reply with two or three responses per card and their 

replies represent their personal solutions to deciphering the problem at hand. Subsequently, the 

assessor goes back through the cards and clarifies where objects reside and what inkblot features 

contributed to that perception. Finally, most assessors then classify each response across multiple 

dimensions (e.g., use of color, envisioning human activity, coherence of thought processes), and 

aggregate the codes across all responses to form summary scores capable of contrasting the respondent 

to what most people see, say, and do when completing the task. 

Although likely less well known to many readers, the inkblots are not random designs, despite 

Rorschach referring to them in the subtitle to his text as ‘accidental forms.’ To the contrary, Rorschach 

used his artistic training to carefully create, pilot-test, and artistically refine each card over time to 

ensure they would not simply look like inkblots (Rorschach, 2021; Searls, 2017).5 He appears to have had 

two intertwined aims when developing them, both based on the suggestive ‘critical bits’ (Exner, 1996) 

that encompass the prominent inkblot areas and shapes and also their color, shading, irregular interior 

and exterior contours, and symmetrical features. First, within the designed composition of each card, he 

 
5 The Rorschach Archives contain multiple iterations of each of the 10 cards that are clearly recognizable but differ 
from the final version in their accentuation of features and their overall composition. Of this, Rorschach (2021, p. 
4) said, “The picture series used in the test gradually developed on the basis of empirical observation.” 
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embedded at least one reasonably recognizable object or part of an object to form the commonly 

reported conventional percepts (e.g., the human like figures on Card III and the animal like figures on 

Card VIII). Second, he embedded a textured array of other features that contradict or complicate the 

more recognizable elements (e.g., a part looks pretty clearly like a person’s head, but what would be its 

torso looks more like the head of a horned creature).  

These opposing qualities produce evocative but incomplete or imperfect perceptual likenesses 

that (deliberately and artfully) stimulate uncertainty, ambiguity and imprecision among the competing 

visual impressions that may underwrite potential responses. They also provide a task with considerable 

embedded structure, as well as a wide array of alternative features that idiographically hook perception 

and contribute to personally unique perceptions. The embedded structure provides a mechanism for 

assessing conventionality in the locations selected for percepts (i.e., the focus of one’s attention; Berry 

& Meyer, 2019) and the quality of the fit of objects to those locations (i.e., perceptual accuracy as coded 

by Form Quality). The idiographic diversity provides personally salient, experience-near imagery that can 

richly illustrate the respondent’s psychological processing. Interestingly, even in very large samples, 

unique objects seen by just a single person account for about 70% of all the distinct objects reported 

(Meyer et al., 2011).6 

The task of dealing with imprecision in the provocative and deliberately contradictory stimuli, as 

well as uncertainty regarding the adequacy of one’s responses, occurs in an interpersonal context; while 

the respondent interacts with a relative stranger (sitting adjacent) who is observing and transcribing the 

exchange. These features make the task moderately stressful, and more stressful than assessment by 

self-report methods (e.g., Momenian-Schneider et al., 2009; Newmark et al., 1974, 1975).  

 
6 For instance, Villemor-Amaral and her colleagues (cited in Meyer et al., 2011) identified a total of 6,459 response 
objects in a sample of 600 nonpatients. The most common object was identified by 375 people and just 30 objects 
were seen by 50 or more people; however, 4,538 objects were identified by just one person.  
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For the respondent, solving the problem of what the inkblot might be invokes a series of 

perceptual and problem-solving (belief updating) processes. These include scanning the stimuli, 

selecting locations for potential response objects, comparing potential inkblot images to objects in 

memory, evaluating possible percepts relative to their inconsistencies or contradictions, reformulating 

response options, filtering out those judged less optimal, and articulating a final solution to the assessor 

(Exner, 1974). The respondent’s visual-mnemonic matching of objects in the card to recalled images, 

conceptual processing of the stimuli, and verbal and nonverbal communication engage all brain regions, 

encompassing bilateral activity in the frontal, temporal, parietal, occipital, and limbic lobes (e.g., Asari et 

al., 2008, 2010a, 2010b; Giromini et al., 2017). 

 

Psychological Processes Engaged 

The available neurophysiological data indicate that completing the task engages both the dorsal 

and ventral attentional systems (Giromini et al., 2017). The dorsal system is important for directing 

conceptually guided top-down attentional search processes (i.e., predictions of what it might be) and 

the ventral system is important for recognizing and reorienting to surprising or unexpected bottom-up 

input (e.g., misfits with prediction, alternative possibilities). These two attentional systems are 

negatively correlated with the default mode network (e.g., Zhou et al., 2018), which in humans is 

implicated in self-referential processing, including the introspective attribution of self-reported 

characteristics (e.g., Davey et al., 2016).  

These data on Rorschach responding fit nicely with an active Bayesian brain, as the respondent 

is iteratively refining the fit of conceptual priors (beliefs about what it might be, carried by the dorsal 

attention system) to environmental (visual) stimuli with an uncertain or ambiguous cause. Given their 

intentionally contradictory features, the Rorschach images consistently provide the viewer with 

irreducible error signals that the prediction is not quite right and is evincing ill-fitting incongruities 
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(ventral attention system). Respondents reduce this prediction error to modify the initial prediction 

about what is ‘out there’ in the environment (i.e., by changing one’s mind about the percept) or by 

taking actions to sample the environment (e.g., shift gaze, modify location boundaries) and more 

precisely affirm the prediction (i.e., by gathering better evidence). This results in an iterative calibration 

process that ultimately provides the respondent’s error-corrected, personalized perceptual equilibrium 

(i.e., beliefs) about the hidden features of the environment. Of course, here the inkblots are serving as 

analogs to the parallel processes occurring when encountering the many ambiguities of daily life (Clark, 

2016).   

In other words, the Rorschach task presents a carefully designed and special problem for 

perceptual inference; in that there is no single perceptual explanation that fully accounts for the visual 

information at hand. This provides an unprecedented tool to explore the landscape of a subject’s prior 

beliefs about the causes of their sensations. In one sense, the Rorschach’s task is the ultimate tool for 

disclosing prior beliefs. It is reminiscent of how psychophysics reveals prior beliefs through the use of 

illusions: illusory stimuli (e.g., ambiguous figures or stimuli that induce bistable perception) are carefully 

constructed to induce ambiguity; obliging the perceiver to explore and alternate between perceptual 

hypotheses that reveal the kind of hypotheses people use in everyday perceptual synthesis. 

This ambiguity is not an accidental feature of Rorschach’s task. He designed it to engage just this 

form of active inference to allow an assessor to see the meaning-making process in action. Rorschach 

(2021) viewed the task as one of “perception and apperception” (p. 36), not imagination or gaining 

access to unconscious processes per se. He considered perception to be the outcome of an associative 

process between sensation and one’s memory of former sensations, paralleling how that term is used in 

active inference. Apperception was the process of linking sensory perceptions with their prior 

connections in order to understand current sensations based on past experience. This can be viewed as 

the process of getting to perception, which from an active inference account is the process of balancing 



ACTIVE INFERENCE 16 
 

predictions and errors to ‘know’ what is experienced. However, Rorschach (2021) saw one big difference 

between those process in everyday life and those processes when examining his inkblots; in essence, 

the inkblots slowed perception to render it visible.  

If perception [is] an associative integration of present engrams [memory traces] with recent 

complexes of sensations, then the interpretation of accidental [indeterminate] forms can be 

called a perception in which the effort of integration of the sensations and the memory trace is 

so great that it is perceived as an effort of integration. This intrapsychic perception of 

incomplete equality [i.e., discrepancy] between the complexes of sensation and the engram 

gives the perception the character of an interpretation. … Most respondents with either 

schizophrenia, epilepsy, manic-depressive illness, or organic disorders… are not aware of the 

effort of integration. Even many normal respondents are not aware of it. These respondents do 

not interpret the pictures, they name them. They may even be astonished if other respondents 

see something different in them. In these cases, this is not an interpretation but rather a 

perception in the strict sense of the word. They are as unaware of the associative effort of 

integration as a normal person is when recognizing a familiar face or perceiving a tree. 

Therefore, there must be a kind of threshold beyond which perception (the integration without 

awareness of the effort of it) becomes interpretation (perception with awareness of the effort 

of integration). … In summary, we may conclude that the differences between perception and 

interpretation are based on individual and gradational factors, not on general, principal ones; 

thus, interpretation may be a special case of perception. There is, therefore, no doubt that the 

form interpretation experiment [i.e., the inkblot task] can be called an investigation into 

perception. (pp. 36-37, italics in the original) 
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Thus, Rorschach recognized that the task, while one of perception, also helped show the 

iterative cycle of prediction, error correction, active search, revised prediction, further error correction, 

further action, and so on. Of course, this view is quite compatible with the iterative processes 

undertaken by the Bayesian brain. However, Rorschach (2021) provides further elaboration of his views 

on what the task does and does not provide later in the text, when discussing interpretation. He 

considered the extent to which respondents mentally enlivened their perceptions with human activity 

and the extent to which they recognized and incorporated the bright, vibrant coloration of the cards as 

key dimensions that differentiated individuals. However, he was clear that there was not a direct 

correspondence between the nature of one’s perceptions and behavior in everyday life. Thus, after 

quantifying these two dimensions Rorschach concluded that the assessor would “know a lot about the 

respondent” (p. 106). He further clarified that what the task revealed was the sensory-perceptual 

structures of the individual that registers their day to day experiences; revealing their lived experience 

but not the way they live their life.  

 

We do not know what this respondent experiences, but, rather, how this respondent 

experiences. We know a large part of the characteristics and dispositions with which the 

respondent goes through life, be they of an associative or affective nature or a mixture of the 

two. We do not know their experiences, but we do know the experience apparatus [also 

psychical apparatus] with which they receive experiences from the inside and from the outside, 

and to which the respondents initially subject their experiences to processing. (p. 106, italics in 

the original) 

The experience apparatus with which the individual experiences is a much broader, more 

extensive structure than the apparatus with which the individual lives. To experience, a person 

has a number of registers but only uses a few for the actions of life – often so few that it ends in 
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stereotypy. The experience type [balance of movement to color] reveals how broad the 

apparatus is with which the respondent could live. It cannot reveal, however, actually – except 

under very favorable circumstances – what parts of the apparatus the respondent activates for 

active living. (p. 108) 

 

Envisioning Human Action 

Another domain in which the actively inferring Bayesian brain manifests in Rorschach 

responding is with respect to envisioning human activity. The mirror neuron system is activated when a 

person engages in a particular course of action and similarly activated when observing another person 

engaging in that particular course of action. It is viewed as the neuronal representation of understanding 

what others are doing (proprioceptive and exteroceptive) and why (goals and intentions) when we 

observe their behavior and actions in a particular context (e.g., Friston et al., 2011; Kilner et al., 2007). In 

essence, we use our experience of a movement or activity in context to understand another’s 

movement or activity in that context, and this is done through active inference, mentally anticipating 

(predicting) the act and modifying the mental prediction based on mismatches (errors) between the 

observed and internally enacted action. On this basis, one could anticipate how seeing human activity in 

inkblot imagery would similarly activate the mirror neurons.  

Indeed, Rorschach (2021) anticipated as much when describing the human Movement code, M. 

“Movement responses (M) are those interpretations which are determined by form perception plus 

kinesthetic factors. The respondent imagines the object interpreted to be in motion” (p. 45, italics in the 

original). Thus, Rorschach was identifying an empathic, enactive internal response to the action 

perceived. Subsequent neurophysiological research using multiple methods (EEG, TMS, MRI) has 

affirmed these views, with clear evidentiary support that the mirror neuron system is activated when 
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respondents produce responses coded M, but not when simply seeing static human figures or animals in 

action (see e.g., Giromini et al., 2019). 

 

Introversiveness and Motility: An Open Question 

Rorschach was fascinated with movement, including its artistic depiction, its consequences for 

mental life, its manifestations in culture and cults, and, of course, in responses to his inkblots (Akavia, 

2013). For the latter, he used his considerable skills depicting action in drawings and paintings to provide 

movement-suggestive stimuli in the inkblots in order to understand the type of person who responded 

to it. Rorschach (2021) believed M responses required a degree of delay and reflection to formulate, 

reflecting a style of processing that was ideational and introversive (i.e., “capable of introversion”; p. 

97). In contrast to the zeitgeist at the time (Akavia), he also believed there was an inverse relationship 

between physical movement and perceiving human movement in the inkblots. 

 

“The measure of the manifest motility in a respondent is not the measure of the kinesthesias 

[responses with M] influencing the respondent during the perception process. On the contrary, 

the kinesthetic individual is motorically stable; the lively person is poor in kinesthesias.” (p. 45, 

italics in the original) 

And further, “Introversion … is increased by an active shutting down of the factors that inhibit it 

and decreased by restarting the function of adaptation” (p. 97).  

 

Indeed, among patients with schizophrenia, Rorschach (2021) concluded that those with 

catatonia produced the highest number of responses coded M (Table 2, p. 42). Rorschach had extensive 

experience with patients who had schizophrenia and he wrote a lengthy unpublished case study of 

Theodor Niehans, a patient he assessed and treated at the Münsingen asylum, with a well-documented 
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20-year history at the asylum (Akavia, 2013). Over the years, Niehans went from profound paranoia to 

profound catatonia and back again. Akavia notes the following, “Rorschach ultimately conceptualized 

the catatonic form of schizophrenia, ostensibly a state of extreme stasis, as manifesting an intense 

internal dynamism of ‘fettered movement’” (p. 6), which Niehans himself characterized as a period of 

“compulsive thought” (p. 121). In the case study, Rorschach contrasted paranoia and catatonia, saying, 

“the catatonic renounced the outside world and abandoned himself to introversion, while the paranoid 

resisted introversion by desperately cleaving to the outside world” (p. 106). Akavia concluded 

“Rorschach… saw catatonia and its concomitant physical immobility as a mode of utmost mental 

excitability, whereby—at least in the case of Niehans—schizophrenic psychological activity found its 

consummate inward form, giving rise to an active, ongoing development of florid delusions.” (p. 123). 

Interestingly, Brown et al. (2013) used active inference to model the consequences of a 

compromised ability in the typical requirement to attenuate sensory signals during self-generated 

movement. This attenuation is required to initiate action and it is commonly compromised in patients 

with schizophrenia. Failing to attenuate those sensory signals leaves sensory signals stronger and more 

precise than one’s predictions of movement; as such, sensory prediction errors predominated over top-

down projections. Under these conditions, they observed profound impairment of movement, 

reminiscent of the psychomotor symptoms of catatonia. Although their modeling did not encompass 

ideational activity, it is a fascinating open question about whether these conditions would lead to an 

increased number of ideationally active human movement responses on the inkblot task, as Rorschach’s 

observations suggest. 

Rorschach’s (2021) notion that inkblots ‘slowed perception to render it visible’ is exactly 

congruent with the definitive role of precision or uncertainty coding in the covert action associated with 

sensory attention and attenuation. This follows because the precision determines the rate of belief 

updating. In other words, assigning a greater weight to certain prediction errors means they have a 
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greater influence on neural populations encoding expectations and subsequent predictions higher in the 

hierarchy. Precluding a precise, high level prior explanation for sensory input will therefore preclude 

precise prediction errors higher in the visual (or more generally perceptual) hierarchies—and thereby 

attenuate the rate of belief updating or assimilation of prediction errors from lower levels. This 

corresponds exactly with the notion of slowing perceptual synthesis so that its architecture and 

fundament’s can be disclosed through responses reported to the assessor. 

 

Perceptual Distortions 

Finally, we consider perceptual distortions, which from a Bayesian brain perspective may 

emerge from either end of the neural hierarchy, such that hallucinations and perceptual distortions may 

occur when sensory signals fail to be attenuated or perceptual priors are underweighted (e.g., Adams et 

al., 2013) or, more typically, when prior beliefs are over-weighted and corrective sensory input is under-

weighted during percept formation (Benrimoh et al., 2018; Corlett et al., 2019; Parr et al., 2018). When 

coding Rorschach responses most contemporary systems for use differentiate several levels to designate 

the quality with which percepts fit the inkblots at the location being used, known as Form Quality, 

including conventional or ordinary, unusual or idiosyncratic, and distorted or minus (e.g., Meyer & 

Mihura, 2021). Rorschach (2021) noted that to produce responses with good form quality, respondents 

needed stable attention, clarity in their efforts at perceptual and associative integration, and self-

control. As such, among his patients with schizophrenia, only those with paranoia produced reasonably 

conventional responses, while those with disorganized symptoms had a higher frequency of distorted or 

idiosyncratic perceptions. These observations by Rorschach have received consistent support in the 

subsequent research literature, indicating Form Quality is an excellent marker of perceptual deviance 

and one of the best validated measures derived from the Rorschach (Meyer & Mihura, 2021; Mihura et 

al., 2013). 
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Rorschach research bearing on these issues that could inform an active inference model of 

perception support the notion that unique perceptions can be associated with unduly weighted priors 

and insufficient regard for corrective environmental sensory feedback. Asari and colleagues (2008, 

2010a, 2010b) conducted three interrelated studies of Form Quality scores that provide an 

understanding of the psychological operations active when a respondent is generating a response with 

particular types of Form Quality. The authors used functional and structural MRI to examine the 

neurophysiological features associated with atypical and distorted perceptions, uncommon perceptions, 

and conventional perceptions. A key finding was that amygdala activity in people giving atypical and 

distorted perceptions generated a positive, excitatory link between the right temporal pole and the left 

anterior prefrontal cortex, while simultaneously generating a negative, inhibitory effective connectivity 

from the right temporopolar region to the bilateral occipitotemporal regions.  

Thus, atypical and distorted perceptions in this study involved instances when internal processes 

triggered by something in the inkblots activated affectively charged brain structures to turn off the 

typical process of reciprocal visual calibration between ideas and perceptual stimuli in favor of 

idiosyncratic, nonconsensual top-down views. In essence, sensory signals were shut down in favor of 

overly precise charged beliefs. Rather than taking in the visual cues the environment was providing, 

personally relevant, emotionally salient unique perceptions forced themselves into an inkblot 

representation, overriding the respondent’s ability to perceive experiences in a conventional manner. 

 

Concluding Comments 

With this essay, we hope to have interested readers in the richly productive and increasingly 

broad literature on active inference and the Bayesian brain. In some depth, we outlined aspects of the 

evolutionary, biological, and neurophysiological foundation for this mathematically inspired model of 

functioning. We also identified psychologically relevant areas of active research that readers my find 



ACTIVE INFERENCE 23 
 

useful for further exploration and we closed by offering a handful of ways that Rorschach responding 

appears to fit seamlessly and meaningfully within an actively inferring Bayesian brain.  
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