
Using Artificial Intelligence for the Specification
of m-Health and e-Health Systems

Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

Abstract Artificial intelligence (AI) techniques such as machine learning (ML)
have wide application in medical informatics systems. In this chapter we employ
AI techniques to assist in deriving software specifications of e-Health and m-Health
systems from informal requirements statements. We use natural language processing
(NLP), optical character recognition (OCR) andmachine learning to identify required
data and behaviour elements of systems from textual and graphical requirements
documents. Heuristic rules are used to extract formal specification models of the
systems from these documents. The extracted specifications can then be used as the
starting point for automated software production using model-driven engineering
(MDE). We illustrate the process using an example of a stroke recovery assistant
app, and evaluate the techniques on several representative systems.

1 Introduction

Health informatics systems (e-health systems) include electronic health record man-
agement and analysis, diagnostic tools for clinicians, patient management systems
for general practitioners and hospitals, and a wide range of mobile health (m-health)
apps for general and specific health purposes. Health applications may need to deal
with very large amounts of data, which may include uncertain information, and often
involve multiple categories of users and stakeholders. The processed information is
usually subject to high confidentiality requirements, eg., due to GDPR and related
legislation.

Kevin Lano, Mohammad Umar, Lyan Alwakeel
Informatics Department, King’s College London, UK e-mail: kevin.lano@kcl.ac.uk,e-mail:
mohammad.umar@kcl.ac.uke-mail: lyan.alwakeel@kcl.ac.uk
Sobhan Y. Tehrani
Dept. of Computer Science, University of Roehampton, UK e-mail: sob-
han.tehrani@roehampton.ac.uk

1

2 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

For each type of health application, software correctness is of high and even
critical importance: incorrect patient information or analysis results can impair
treatment or lead to incorrect and harmful medical interventions. Apps for patient
self-management or health advice must also provide accurate and appropriate infor-
mation (Public Health England, 2017). The well-publicised problems which arose in
the UK in 2020 with the nationally-distributed COVID-19 advisory app highlighted
the particular challenges of implementing m-health apps.
Therefore, rigorous requirements analysis is of key importance for e-health and

m-health applications. In this chapter we address this challenge by providing assis-
tance tools to automate the formalisation of software requirements statements, using
natural language processing (NLP) and machine learning (ML) techniques. NLP
and ML are instances of artificial intelligence (AI) techniques, which are increas-
ingly being applied to support software engineering and development activities, in
addition to widespread use in e-health and m-health applications, for example, to
perform activity classification of mobile users or deducing calorie counts by image
recognition applied to a photograph of a meal.
In an agile development context, parts of a system may be developed in different

iterations, and their requirements are analysed using techniques such as interviews
and exploratory prototyping in close collaboration with customer representatives.
The techniques described in this chapter can be used to support the construction of
models and prototypes from requirements, and enable customers to quickly see the
semantic consequences of different requirements statements. We use the AgileUML
toolset (Eclipse, 2021) to visualise and analyse formalised specifications. The toolset
can be utilised to synthesise code in several 3GLs, including C, Java, Python and
Swift. Mobile apps for the Android and iOS platforms can also be generated (Lano
et al., 2021).
Section 2 describes the stroke recovery assistant case study and highlights some of

the aspects of requirements statements which need to be addressed by a requirements
formalisation approach.
Section 3 describes our requirements formalisation approach, using the case study

to illustrate the process steps. In Sections 3.1, 3.2 and 3.3 we summarise the appli-
cation of NLP, ML and OCR techniques in our process for automated requirements
engineering (RE). In Sections 3.4 and 3.5 we describe specific techniques for the for-
malisation of data and behavioural requirements from natural language statements,
and give examples from the case study.
Section 4 describes how automatedRE can be used in an overall agile development

process.
Section 5 surveys related work, and Section 6 gives conclusions.

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 3

2 Requirements Statement Example: The Stroke Recovery
Assistant Case Study

Requirements statements are typically written in natural language, and usually con-
sist of a combination of text and diagrams, with text predominant. Requirements
statements may include non-technical issues, such as the roles of stakeholders in
the development process (Robertson and Robertson, 2012). In this chapter we only
consider the technical requirements of the data and functionality of the system to be
constructed.
We take as a typical example of a health application the stroke recovery assistant

of (King’s Health Partners, 2011). This involves both in-hospital systems for doctors
and researchers, and a mobile app for patients to track their own progress. The
requirements statement consists of:

• One page of text defining:

1. the high-level goals of the project: “To improve the quality of life of patients
who have suffered a stroke”; “To forecast recovery paths based on historical
data and prediction algorithms”; “To build a data warehouse of clinical data”.

2. The scope of the system, including “A mobile app and web-based interface for
data collection – for use by doctors in hospital”; “A mobile app and web-based
interface for doctors to estimate recovery curves”; “A mobile app and web-
based interface for patients to access information about recovery exercises,
get information about their process, and track their recovery progress”; “An
algorithm to compute recovery curves based on historical data”.

3. Security and infrastructure requirements, eg., the use of secure data connec-
tions, and the use of a single database for internal and external use.

4. Some further objectives and success criteria, which are actually user stories,
eg: “Allow doctors to collect a patient’s data while they are in hospital”.

• One page of informal diagrams showing the expected user interface behaviour of
the doctor’s UI, and a mockup of the mobile UI for doctors (Figure 1).

• One page of “supplementary requirements” which details the requirements from
page 1, and number these as REQ-1 to REQ-10.

The document is typical of software requirements documents, in that:

• It is almost completely informal, written at a high level of abstraction.
• Substantial additional background knowledge and information must be obtained
before development can begin – such as the precise definition of the recovery
prediction algorithm to be encoded in software.

• Conflicts exist between different requirements, eg., the requirement to have a
single database potentially conflicts with the requirements to provide both active
data and research data: for confidentiality purposes the research data should be
separate from active data and anonymised.

• Significant details are omitted, such as the design of the patient’s UI, which will
require specialised approaches to achieve usability for this group of patients.

4 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

Fig. 1 Mock-up of doctor’s mobile UI. Source: Authors

Although a requirements engineer will take this requirements statement as their
starting point, substantial additional investigation and requirements elicitation from
the customer and using background documents is necessary. We will also use sup-
plementary documentation (such as (Collin et al., 1988)) in our semi-automated RE
process applied to this case study.

3 Requirements Formalisation Process and Techniques

There are typically four main stages in any requirements engineering (RE) process
(Kotonya and Sommerville, 1996):

1. Domain analysis and requirements elicitation
2. Evaluation and negotiation
3. Requirements specification and formalisation
4. Requirements validation and verification.

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 5

A wide range of RE techniques can be used at these stages, such as document
mining and structured and semi-structured interviews for requirements elicitation,
and experimental prototyping and formal reviews for requirements validation.
In our approach, we focus on requirements formalisation to support the require-

ments specification of technical requirements, and do not address requirements
elicitation. However, the process of formalisation may clarify the understanding of
requirements by the customer and developer by providing a formal model and visu-
alisation of requirements statements (eg., Figure 5 shows a visualisation of a formal
model derived from the stroke recovery assistant requirements). The process could
also contribute to requirements evaluation and validation by detecting potential con-
flicts, redundancy and omissions in the requirements statements, and by providing a
unified technical specification for formal review.
As highlighted above, software requirements statements are typically expressed

in a combination of natural language text and informal diagrams, with text as the
predominant element. Thus we work with text as the input, which may include text
derived from diagrams using OCR. The first stage of requirements formalisation
involves extracting sentences from requirements documents and adding linguistic
and semantic information as annotations to these sentences. In Sections 3.1, 3.2 and
3.3 we describe the application of NLP, ML and OCR for this stage.
Following the extraction of semantic information from requirements statements,

the second stage of the formalisation process builds Unified Modelling Language
(UML) and Object Constraint Language (OCL) models in two successive steps:
extraction of a data model (Section 3.4) and extraction of a behavioural model
(Section 3.5).

3.1 Natural Language Processing

NLP is a collection of techniques for the processing of natural language text, includ-
ing:

• Part-of-speech (POS) tagging/classification: identifying the linguistic category of
words in a text, such as nouns, adjectives, verbs, etc.

• Tokenisation and splitting of text into sentences.
• Lemmatisation: identifying the root forms of verbs, nouns, etc.
• Syntax analysis: construction of a parse tree identifying the subclauses of a
sentence and their hierarchical relationships.

• Dependency analysis: identifying the roles of words in the sentence, ie., that
certain nouns are the subjects and others the objects of the sentence, and that
other words act as adjectival modifiers of nouns.

• Named entity recognition: identifying known terms such as cities, countries, etc.
• Reference correlation: identifying when the same element is referenced from
different sentences.

6 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

NLP tools include Stanford NLP (Stanford University, 2020), Apache OpenNLP
(Apache Software Foundation, 2019), iOS NLP Framework, and WordNet (Fell-
baum, 2010).
The standard parts of speech include (Santorini, 1990):

• Determiners – tagged as DT , eg., “a”, “the”.
• Nouns – NN for singular nouns and NNS for plural.
• Proper nouns – NNP and NNPS.
• Adjectives – JJ, JJR for relative adjectives, JJS for superlatives.
• Possessives – PRP$.
• Modal verbs – MD such as “should”, “must”.
• Verbs – VB for the base form of a verb, VBP for present tense except 3rd person
singular, VBZ for present tense 3rd person singular, VBG for gerunds, VBD for
past tense.

• Adverbs – RB.
• Prepositions/subordinating conjunctions – IN.

Figure 2 shows the metamodel of linguistic information which we use in automated
RE. The information is obtained using NLP tagging, parsing and dependency anal-
ysis.

Fig. 2 NLP metamodel. Source: Authors

NLP techniques are relevant to the automation or semi-automation of require-
ments engineering activities such as extracting requirements from documentation,
or formalisation of requirements as UML models, and they have been used in many
works in these areas (Umar, 2020).

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 7

However the trained models available with the existing NLP tools are usually
oriented towards general English text, which differs significantly from the subset
of English typically used in software requirements statements. In particular, re-
quirements statements do not usually use colloquial or casual English, and they use
computing/software terminology.Words such as “track”, “security” and “record” are
used in a more specific way in software descriptions, compared to their use in general
English. The existing models therefore sometimes misclassify words in requirements
statements. For this reasonwe decided to re-train a POS taggingmodel using a corpus
of requirements statements whichwe collected for data and behavioural requirements
analysis (Sections 3.4, 3.5).
Table 1 shows the original POS tagging error rates (for words and for sentences)

on the requirements documents used for training, and Table 2 the original and
revised error rates on test cases after retraining of the Apache OpenNLP maxent
POSmodel with manually-corrected versions of the tagging. In the training set 0.5%
of words are misclassified, and 12.9% of sentences contain a misclassified word,
which significantly affects the accuracy of our formalisation processes.
Retraining of the tagger reduced the error rates on the test cases from 0.4% per

word and 9.4% per sentence, to 0.2% per word and 5.6% per sentence (Table 2).
This process was effective in removing the more serious errors, however tagging and
syntax analysis errors still arise in some cases (Section 4).

Case Tagging word Tagging sentence
(# sentences) errors errors
Stroke assistant (8) 1 1
Trackformer (4) 2 2
g02 (99) 17 16
g03 (60) 11 7
g04 (51) 7 5
g05 (53) 11 10
g08 (66) 2 2
g10 (98) 15 12
g11 (74) 14 12
g12 (53) 3 2
g13 (53) 12 10
g14 (67) 15 13
g16 (66) 8 7
g17 (64) 9 8
g18 (101) 16 15
g19 (138) 26 24
g21 (73) 12 10
g22 (83) 8 5
g23 (56) 3 3
Error rates 0.5% 12.9%

Table 1 POS tagger error rates

8 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

Case Original tagging Retrained tagger
(# sentences) errors (words, errors (words,

sentences) sentences)
g24 (52) 9, 9 3, 3
g25 (100) 3, 3 3, 2
g26 (100) 13, 13 6, 6
g27 (115) 9, 7 4, 4
g28 (60) 9, 8 10, 10
Error rates 0.4%, 9.4% 0.2%, 5.6%

Table 2 Retrained POS tagger error rates

3.2 Machine Learning

Machine learning covers a wide range of techniques by which knowledge about
patterns and relationships between data is gained and represented as implicit or
explicit rules in a software system. ML can be used for classification of inputs (eg.,
to classify the severity of a patient’s condition), translation (as in machine translation
of natural language) or prediction. The techniques include K-nearest neighbours
(KNN), decision trees, inductive logic programming (ILP) and neural nets. In each
case there is typically a training phase, in which known relationships of existing
data are provided to the ML software and rules expressing these relationships are
induced, and a testing phase, to assess the accuracy of the learned rules on new
data. The rules are usually embodied in an ML model file. Given a corpus of data
with known classifications/results, this corpus is partitioned into a training set and a
testing set, normally in a ratio such as 80:20. Only the training set is used to learn
rules and construct an MLmodel. The accuracy of the trained MLmodel is typically
assessed in terms of the level of agreement between its predictions on the test set,
and the correct results.
Toolsets for ML include Google MLKit, Tensorflow, Keras, ScikitLearn and

Theano.
NLP and ML can be usefully combined in requirements formalisation, whereby

detailed linguistic information from NLP analysis can be provided as inputs to an
ML process. Additionally, ML can be used to learn specific POS tagging rules for the
restricted set of natural language texts that arise in software requirements documents,
as described above.

3.3 Requirements Formalisation from Diagrams

Requirements statements often consist of a combination of text and informal dia-
grams, eg., (King’s Health Partners, 2011; Robertson and Robertson, 2012). Apart
from their visual content, such diagrams may also provide additional textual content,
which can be used to identify key background terminology, data and behaviour (eg.,
as in Figure 1).

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 9

To extract the textual content of diagrams, we use optical character recognition
(OCR). We applied the Google MLKit OCR library to example diagrams including
those of (King’s Health Partners, 2011; Robertson and Robertson, 2012) and the
TS33.102 security standard of 3GPP1. While the basic OCR algorithm is able to
recognise individual typed words, it is not effective at recognising blocks of text
spread over successive lines. For example, 59 of 60 individual words in the road
maintenance system context diagram of (Robertson and Robertson, 2012) are cor-
rectly recognised, but only 5 out of 19 blocks of text. To address this issue, we
extend the OCR algorithm to consider two text elements as part of a single block if
they are (approximately) left-aligned or right-aligned and are vertically immediately
adjacent. Text blocks are merged by this process until no further combinations are
possible. This increases the number of correct blocks and removes incomplete and
incorrect blocks.
Accuracy in this chapter is measured by the standard F-measure defined by

F =
2∗p∗r
p+r where precision p =

correct identifications
total identified and recall r =

correct identifications
total correct .

Table 3 shows the F-measure for individual word recognition and for the original and
enhanced text block recognition algorithms. A limitation of this approach is that the
basic OCR algorithm sometimes identifies incorrect bounds for text areas, which is
a factor in case 4 of Table 3.

Case F-measure F-measure F-measure
for word of block for merged
detection detection block detection

1: Road maintenance (Robertson and Robertson, 2012) 0.97 0.38 0.65
2: Stroke assistant (King’s Health Partners, 2011) 0.93 0.59 0.83
3: 3GPP TS33.102 (1) 0.9 0.64 0.88
4: 3GPP TS33.102 (2) 0.91 0.41 0.51

Table 3 Original and enhanced text recognition accuracy

Object recognition and OCR need to be coordinated, and text elements derived
from a sketch image associated with other visual elements from the image (eg., class
rectangles or association lines) if they satisfy relevant spatial conditions (contain-
ment/overlapping or proximity constraints). We provide our enhanced OCR analysis
as an Android app (Figure 3). The app displays the merged text blocks, and also
records these in a file.

3.4 Deriving Data Model Specifications from Requirements Statements

The data model of an application is the basis for functional and behavioural specifi-
cations, thus we formalise this model prior to formalising functionality. As input to

1 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262.
Retrieved May 15, 2021

10 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

Fig. 3 Extended OCR app. Source: Authors

this step we use the explicit requirements statements of the app, and any necessary
background documents and pre-existing models. In the medical domain there may
already exist detailed specifications of particular hardware to be used. For example,
the diffusion pump controller (Campos and Harrison, 2011) is of this kind. Particular
medical models may also be assumed, such as the Barthel Index model (Collin et al.,
1988) for the performance of daily living activities (ADL), in the case of the stroke
recovery assistant app. Our approach accommodates this situation by integrating the
requirements formalisation approach with the model editor of AgileUML, so that
any prior existing model can be loaded and its elements searched to identify and clas-
sify named terms in the analysed requirements statement. We assume that data and
behaviour requirements are clearly separated, with global behaviour requirements
expressed as user stories.
To assist in statement classification and semantic analysis, we define a knowl-

edge base of software requirements terminology, including parts-of-speech (POS)

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 11

information on words, synonyms, and semantic properties of terms (eg., that “tem-
perature” is likely to denote a real-valued attribute).
For specific domains such as medicine or telecoms, a domain-specific knowledge

base is also necessary, to capture information on terms with a specialised meaning
in the domain, such as “dysphagia”, “intervention”, “consultation” and “out-patient”
in medicine, and “connection” and “cell” in telecoms. A domain-specific knowledge
base will usually take precedence over the general knowledge base.
We use the Stanford NLP toolset (Stanford University, 2020) and Apache

OpenNLP (Apache Software Foundation, 2019) to perform part-of-speech tagging
of English sentences, to construct syntax trees, and to identify dependencies within
sentences. The resulting information is then used as input for a classifier which
identifies sentences as either:

1. Definitions of classes
2. Definitions of specialisation/generalisation relations between classes
3. Definitions of associations
4. Definitions of invariants or other properties of classes.

After classification, a detailed syntactic and semantic analysis can be applied to
extract model content from the text information. Successive sentences are analysed
taking account of the partial models already obtained from preceding sentences, so
that models are progressively elaborated. Contradictions, redundancy and omissions
within requirements statements can also be identified during this process.
The wide variability in expression of data requirements statements in practice can

be seen in Table 4.

Statement Examples
type
Class “Each bond has a unique name, a numeric term,
definition a numeric coupon, and whole-number frequency”

“The app records the weight, age, height
and sex of users”
“The property table holds details
of address, price and vendor”

Specialisation/ “A bond is either a corporate bond
generalisation or government bond”

“A customer is a special case
of a user”

Associations “Each Bond is issued by
one issuer”
“The app records a training
programme for each user”
“Each student attends several courses”

Invariants “Bond durations are never more
than the bond term”
“The sex is either male
or female”

Table 4 Variation in requirements statement sentences

12 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

In order to classify sentences as one of the above four categories, we apply
heuristic rules based on a number of factors: 1) the similarity of the main verb to one
characteristic of the classification category; 2) occurrences of terminology indicating
the classification category; 3) sentence structure and intra-sentence dependencies;
4) classifications of terms from the general knowledge base.
Characteristic features of class definition sentences are:

• Occurrence of verbs synonymous to “have”, “has”, “holds”, “consists”, “speci-
fies”, “comprises”, “is defined by”, “stores”, “records”, “maintains”, etc

• The class being introduced or further defined is the main noun of the sentence
subject, except in cases where the subject denotes the system/app, in which case
the class occurs in the object part

• Terminology such as “each/every X instance ...”/“all X instances ...”/“An X in-
stance” suggesting that X is a class

• Terms denoting attributes occur in the object part.

Characteristics of specialisation/generalisation sentences are:

• Occurrence of verbs synonymous to “specialises”, “generalises”, “inherits”, “ex-
tends”, “abstracts”, “classified”, “derived”, etc, or the sentence structure is similar
to forms such as “... is a special case of ...”; “... is either an X or ...”; “... is an X
[with ...]”

• Adjectival qualifiers applied to already-known classes, suggesting that the quali-
fied term denotes a subclass of the unqualified: “secure channel”

• A conjunctive/disjunctive clause combines two or more known class terms: “pa-
tients and caretakers”; “treatments and exercises”

• Usually the only named elements are classes, not features
• If the left hand side (subject) does denote a known feature, then the sentence is
instead a constraint defining the permitted values of the feature.

Characteristics of association definition sentences are:

• Occurrence of verbs synonymous to “linked to”/“related to”/“associated with”,
etc, or the use of an attribution verb (“has”, “composed of”, etc) with the object
naming classes.

• Alternatively, the main verb may name the association role, with the related class
Y in the sentence object: “Each X role [quantifier] Y(s)”

• Usually the only named elements are role names and classes, not attributes.

Invariants are difficult to characterise, but the occurrence of words synonymous to
“is always”/“are never” or of comparatives/superlatives (JJR, JJS) is one indicator
of this form. The subject may be a feature f of class X in a possessive phrase of
the form “The X’s f” or equivalent. Comparator and mathematical operators may be
used.
In order to detect synonyms, we use a thesaurus and word distance measures of

name edit distance (NSS) (Levenshtein et al., 1966) and name semantic similarity
(NMS) (Lano et al., 2020). Users can set a threshold for the level of similarity which
is to be regarded as significant. We found that the WordNet thesaurus (Fellbaum,

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 13

2010) was too general for practical use, since it covers all possible meanings of a
word in general English, whilst requirements statements use a restricted and usually
technical vocabulary. Thus we developed our own thesaurus.
We use the standard XML thesaurus format of (Rowley, 2007) to define this

thesaurus, and to represent domain and general background knowledge in knowledge
bases. An example from the general requirements knowledge base is:

<CONCEPT>
<DESCRIPTOR>temperature</DESCRIPTOR>
<POS>NN</POS>
<SEM type="double">attribute</SEM>
<PT>temperature</PT>
<NT>heat</NT>
<NT>body-temperature</NT>
<NT>ambient-temperature</NT>
</CONCEPT>

Any preferred term (PT) or non-preferred term (NT) in the concept word group will
be treated as having the same semantics and part-of-speech classification defined in
the SEM and POS clauses. Care should be taken to avoid ambiguity and conflicting
definitions of the same word when designing or extending a knowledge base of this
form.
Subsequent to classification, detailed semantic analysis takes place in three phases

applied over the sequence of sentences in the requirements statement:

1. Recognition of classes:

a. Words identical to the names of classes already existing in the software model
or recognised from a previous sentence;

b. Words denote classes according to background knowledge in the general or
specialised knowledge base (eg, “webpage”, “ward”);

c. Words denote classes according to their role in the sentence (eg., as the subject
of the principal form of class definition sentence);

d. Words are proper nouns (tagged as NNP or NNPS) – the singular form of the
noun is taken as the class name. A more liberal approach could be to also
consider other nouns (NN or NNS) with an initial capital as proper nouns, if
they do not appear as the first word of a sentence.

Inheritance relations are established based on the sentences classified as defining
specialisations.

2. Recognition of attributes:

a. A word is identical to the name of an attribute already known from the pre-
existing software model or from previous sentences;

b. Aword denotes an attribute according to general or specific background knowl-
edge (eg., “age”, “dose”);

c. A word is an attribute according to the role of the word in the sentence (eg., it
occurs in the object of class definition sentences, and it is not a class or role).

14 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

The types, multiplicities and stereotypes of attributes are also extracted.
3. Reference recognition:

a. A word is identical to the name of a reference already known from the pre-
existing software model or from previous sentences;

b. Aword denotes a reference according to background knowledge (eg., “parent”);
c. The word is a reference according to the form of the sentence (eg., “The
monitoring equipment includes a set of movement sensors”);

d. The word has its initial letter in lower case, and the initial uppercased singular
form of the word is the name of a known class (eg, “patients”, “ward”).

Reference types, multiplicities and stereotypes are also extracted (eg., “series”
suggests an {ordered} stereotype on a feature).

In order to validate the data formalisation approach, we compared the result of
formalisation with models manually created from the same requirements statements
by a modelling expert. We used 11 cases, including (Marconi Command and Control
Systems, 1990), (King’s Health Partners, 2011) and three cases from (Kaggle, 2021).
These contain 67 sentences in total. We achieved an average F measure of 0.91 for
the accuracy of sentence classification, and 0.84 for the accuracy of models.
The formalisation process can also assist in requirements validation, by detecting

redundancy, omissions or inconsistencies in requirements statements (Table 5).

Redundancies Inconsistencies Omissions
Two statements both Two statements give A class is
define feature f of conflicting types/multiplicities referenced but
class C. for feature f of C. not defined.
Two statements both Two statements A subclass
express that class D express contradictory relation is
subclasses class C. subclass relationships assumed but

between classes. not declared.
Table 5 Redundancy/conflicts in data requirements statement sentences

Possible quality problems with the synthesised model can be identified, such as
1-1 associations and multiple inheritance. Some potential cases of refactoring can
also be identified, such as multiple subclasses of the same class all possessing copies
of the same feature. Classes which are synonymous or have identical data can be
merged.
Traceability of the specification with respect to the requirements is main-

tained by recording a many-many relation dependsUpon : ModelElement ↔
NLPPhraseElement which identifies which requirements statement elements con-
tributed to the definition of each derived model element. The originating elements
dependsUpon(| {x} |) of a class or use case x (for behaviour analysis) are recorded
as stereotypes of x.

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 15

3.5 Deriving Behavioural Model Specifications from Requirements
Statements

Following data formalisation, behavioural formalisation can be applied, this uses the
extracted data specification.
We assume that behavioural requirements are of two kinds:

• Expected functionalities/services offered by the system, expressed as user stories.
These can be formalised as UML use cases in AgileUML.

• Operation specifications for operations/methods of particular classes, expressed
in terms of the expected inputs and outputs of these operations.

In this chapter we focus upon the first case.
User stories are the principal formof behaviour requirement used in agilemethods.

They express some unit of functionality which a user of the system expects from the
system, in other words, the use cases which the system should support. User stories
are typically expressed in the format

[actor identification] goal [justification]

where the actor identification and justification are optional.
For example:

“As an A, I wish to B, in order to C”

The actor identification defines which system actor the use case is for. The goal
describes the intended use case actions, and the justification explains its purpose.
These correspond to the graphical use case form of Figure 4.

Fig. 4 Use case derivation from user stories. Source: Authors

Other alternative formats for user stories are

“The A should be able to B, in order to C”
“The A must be able to B, so that C”

16 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

“The system must allow A to B”
“The system shall provide B”
“A will be able to B”

or simply B by itself, as in the (King’s Health Partners, 2011) patient analysis
behavioural requirements for the doctor’s interface:

Add new user.

Add new patient.

Add new patient data.

Update existing patient data.

Patient-specific numerics.

Patient-specific graphics.

Group-level graphics.

Group-level numerics.

These were extracted from an informal diagram of the system behaviour using the
Google MLKit OCR facilities.
In each format, a reference to any actor A occurs prior to B. A modal verb

(“should”, “must”, etc) identifies the obligation to provide the functionality B. State-
ments B and C typically refer to the classes and features recognised in the data
formalisation stage. B should begin with a verb in infinitive form (the tag VB). In the
absence of a formalised data model, classes are recognised according to background
knowledge and their role in the sentence. For example, User, Patient and Group are
recognised as classes in the above patient analysis requirements.
In addition to the background knowledge file output/background.txt on nouns,

we also provide a knowledge base output/verbs.txt of verbs and their classifications
(read, edit, create, delete, other). This file is in the same thesaurus format as the
background file for nouns, and can be edited by the user to provide further information
on verbs. An example entry is:

<CONCEPT>
<DESCRIPTOR>search</DESCRIPTOR>
<POS>VB</POS>
<SEM>read</SEM>
<PT>search</PT>
<NT>find</NT>
<NT>retrieve</NT>
<NT>extract</NT>
<NT>scan</NT>

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 17

<NT>inspect</NT>
<NT>identify</NT>
<NT>examine</NT>
</CONCEPT>

User stories that represent standard functionalities such as creating, editing, delet-
ing and reading instances of a class, can be classified into these categories based
on the verbs used in the goal part B of the user story. The classified sentence is
then formalised as a UML use case. The semantics of the use case depends on the
classification of the user story. The actor A of a use case is recorded in a stereotype
actor = “A” of the formalised use case. If A is a class name, then an instance of the
actor becomes the first parameter of the use case.
Data dependencies between classes and use cases can then be computed and

shown visually (eg., Figure 5).
We validated the behaviour formalisation process using the 22 requirements

statements of (Mendeley software repository, 2018), 3 cases from (Kaggle, 2021)
and the stroke recovery assistant case. In total there are 2218 user stories in these
cases. The accuracy of use case classification and the accuracy of the formalisedUML
models was measured. In computing the F-measure for formalisation we consider
how many synthesised classes and use cases are semantically valid or invalid wrt
the requirements. The overall average for classification accuracy was 0.97, and for
formalisation 0.94.
The main source of imprecision in behaviour formalisation is due to errors in

tagging, eg., tagging of “And” as a NNP instead of CC. In addition, (i) general
concepts such as “Application”, “UI” or “System” are incorrectly recognised as
classes; (ii) successive nouns in the actor identification part are not combined, but
become separate classes, eg., “Attending Physician” is represented as two separate
classes.
These issues could be corrected by (i) defining a separate list of keywords/blocked

words, which cannot be used as class names; (ii) automatically combining successive
nouns in the actor identification.
We prefer to leave (ii) as a developer choice, so that if they want the combined

term to become a class, they can write it as one word “AttendingPhysician”, etc.
As with the formalisation of data requirements, possible flaws in user stories can

be detected during this analysis process:

• The goal part B does not begin with a verb;
• The formalised use case has multiple possible classifications (eg., create and
delete), indicating a user story that is too complex and should be decomposed;

• A complete requirements statement would be expected to have a createE, editE
or readE use case for each entity E of the system.

Duplicated requirements sentences andmultiple variant versions of the same concept
can also be detected by the user story formalisation process. A useful facility which
could be added would be to group those use cases with a common actor into separate
subsystems. Likewise it would be useful to be able to group together all use cases that

18 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

Fig. 5 Formalised model and dependencies of (King’s Health Partners, 2011) patient analysis
requirements. Source: Authors

refer to a given class or subset of classes. The formalised models contain sufficient
information to perform such modularisations.

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 19

4 Integration of Automated Requirements Engineering into an
Agile MDE Process

In an agile method such as Scrum or XP, parts/subsystems of a system are developed
and delivered within iterations or “sprints”. Lifecycle stages of feasibility analysis,
requirements capture and requirements specification are performed for each sys-
tem part, and themselves may involve iteration. For example, a prototype may be
constructed to demonstrate how the developer intends to implement the subsystem
requirements. This can then be reviewed by the customer representative in order to
check that the intended approach satisfies the customer requirements. Modifications
are made if necessary and the prototype progressed towards a production version.
The automated RE techniques described in Sections 3.4, 3.5 can accelerate this

development iteration cycle, by automating model construction and the synthesis of
prototypes from thesemodels (Figure 6). Traceability is a key facility in this situation,
enabling the developer and customer to identify which requirements statements
contribute to possibly erroneous use cases and executable behaviour.

Fig. 6 Automated requirements engineering in the agile MDE process. Source: Authors

The requirements of each system part may consist of a group of related user
stories. These form a work item which will be listed in the product backlog of the
system, and in the iteration backlog of the iteration responsible for its development.
In an agile MDE process, a common class diagrammodel is usually shared by all the
teamworking in an iteration, in order to ensure a consistent data model is used (Lano,
2017). The different groups of use cases will typically form separate work items, but
each group depends upon the common data model. Together with the models and
requirements statements, a project could also maintain a project-specific knowledge
base, which records particular terminologies and word classifications relevant to the
project.
As an example of this process, we consider some further data and behaviour

requirements from (King’s Health Partners, 2011):

20 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

For each patient,
record the BarthelIndex.

Each patient has a name, age,
date admitted, and stay duration.

Each patient has measures of diabetes,
incontinence, dysphagia,
visual field and comorbidity.

Each patient has estimates of mortality
risk and disability risk.

Patients are either inpatients or outpatients.

Comorbidity is either present or absent or
unknown.

As a nurse, I need to process
the admission of a patient to a
ward.

As a doctor, I wish to assess
the condition of a patient.

As a doctor, I need to approve
the discharge of a patient from
hospital.

Part of the formalised model extracted from the above sentences is:

package app {
class BarthelIndex {
stereotype originator="1";
}

class Patient {
stereotype originator="1";
stereotype modifiedBy="1";
stereotype modifiedBy="2";
stereotype modifiedBy="3";
stereotype modifiedBy="4";

attribute name : String;
attribute age : double;
attribute date : String;

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 21

attribute duration : double;
attribute measures : Set(String);
attribute diabetes : String;
attribute incontinence : String;
attribute dysphagia : String;
attribute visualField : String;
attribute comorbidity : ComorbidityTYPE;
attribute estimates : Set(String);
attribute mortalityRisk : double;
attribute disabilityRisk : double;
reference record : BarthelIndex;

}

Review of this model reveals several flaws: “admitted” and “stay” are omitted
from the model, because they were misclassified by the NLP tagger as verbs. The
parse tree of the second sentence is:

(ROOT
(S
(NP (DT Each) (NN patient))
(VP (VBZ has)
(NP
(NP (DT a) (NN name)
(, ,) (NN age)
(, ,) (NN date))

(SBAR
(S
(VP
(VP (VBD admitted))
(, ,)
(CC and)
(VP (VB stay)
(NP (NN duration))))))))

(. .)))

To avoid this problem, we can change the text to “Each patient has a name, age,
admission date and stay duration”.
In addition, spurious attributes measures and estimates have been derived. This

can be remedied by clarifying the third requirements sentence to:

Each patient has a diabetes measure,
incontinence measure, dysphagia measure,
visual field measure and comorbidity.

and similarly for the fourth sentence. The revisedmodel derived from these improved
requirements is shown in Figure 7.
A quality check of this model gives the warning that all subclasses of Patient are

empty, so these could be refactored into an enumeration. Again, the requirements

22 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

Fig. 7 Formalised requirements of stroke assistant (patient analysis and management). Source:
Authors

could be revised (stayDuration could be moved to Inpatient, for example). From this
model Java code can be generated for a prototype app implementation (Lano et al.,
2021), together with a test suite and test harness (Figure 8).

5 Related Work

In (Alwakeel and Lano, 2021) we evaluated 110 m-health apps in the domain of
patient self-managed health-care. This survey identified that there has been increasing
use of ML techniques in such apps, to perform activity detection and behaviour
analysis. However this evaluation also identified that there is a lack of guidelines for
the specification and design of such systems, and in particular for the selection of
ML techniques. An MDE-based approach would therefore appear to be beneficial in
increasing the rigour of m-health app development.
We also carried out a systematic literature review (SLR) of papers in the field

of automated requirements engineering, published between 1996 and 2020 (Umar,
2020). From an original set of 3853 papers, 54 studies were short-listed and analysed
in detail. We found that NLP was the main approach used, with 52% of cases using
some NLP technique, and most approaches were semi-automated rather than fully-
automated. Of NLP techniques, 13 cases used parsing, 11 used POS and 3 used
dependency analysis. 14 cases used a combination of NLP and ML, with naive

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 23

Fig. 8 Stroke assistant app prototype. Source: Authors

Bayes the most common classifier used (4 cases) and neural nets were used in 2
cases.
Subsequent to the SLR, further relevant papers (Saini et al., 2020; Burgueño et al.,

2019; Xu et al., 2020) have been published. Compared to (Saini et al., 2020) we also
use a hybrid NLP/ML approach, and a knowledge base, however we adopt the use
of both a general knowledge base and specialised knowledge bases for particular
domains (finance and telecoms). Our approach is therefore closer to the framework
for using NLP in requirements engineering suggested in (Berzins et al., 2007). With
regard to datasets, (Saini et al., 2020) use a set of student solutions to a particular
coursework problem, whilst we use diverse examples both from student projects and
industrial cases, including the large dataset (Mendeley software repository, 2018) of
user stories. While our accuracy measures are generally lower than those of (Saini
et al., 2020), this may be due to the higher variability in the form of the requirements
in our dataset.

24 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

In (Xu et al., 2020), a customised NLP approach is applied to formalise statements
regarding physical construction layouts from textual requirements, and to express
these in an extended OCL. The approach could have more general potential for
formalising application invariants or standards documentation in OCL, however our
preference is for the use of established NLP tools where possible, with customisation
of the language models via retraining to specialised domains.
NLP techniques also have relevance for text mining tasks such as extraction of

information from medical reports, to support analysis and prediction processes. In
general, text mining is more effectively performed upon more highly structured and
semantically coded documentation, rather than upon less structured source material.
National guidelines for health apps have been published in the UK (Public Health

England, 2017). These emphasise the critical importance of the correctness in health
apps. Our iterative approach can help to assure correctness by providing a resolution
of ambiguities and errors in software requirements at an early development stage.

6 Conclusions

In summary, our requirements formalisation approach for health applications pro-
vides an effective means for extracting specifications from natural language re-
quirements. Integration with an existing MDE toolset provides a direct means of
visualising, analysing and prototyping formalised requirements.
In future work, we aim to:

• Extend the data and behaviour requirements formalisation techniques to encom-
pass a wider range of input texts and diagrams, in particular to formalise detailed
constraints and operation definitions;

• Investigate the production of other models from formalised requirements, such as
activity models/workflows, identify use case relationships, and implement further
quality checks/analysis on formalised requirements;

• Investigate the formalisation of models from sketches.

Acknowledgements Lyan Alwakeel acknowledges the funding support of University of Tabuk,
Saudi Arabia.
Muhammad Aminu Umar acknowledges the funding support of the Petroleum Technology

Development Fund (PTDF), the Federal Government of Nigeria.
The authors declare no potential conflicts of interest.

References

Alwakeel, L. and Lano, K. (2021). Functional and technical aspects of mobile
health applications: A systematic literature review, King’s College London.

Using Artificial Intelligence for the Specification of m-Health and e-Health Systems 25

Apache Software Foundation (2019). Apache OpenNLP Toolkit.
https://opennlp.apache.org/.

Berzins, V., Martell, C., and Adams, P. e. a. (2007). Innovations in natural language
document processing for requirements engineering. In Monterey Workshop,
pages 125–146. Springer.

Burgueño, L., Cabot, J., and Gérard, S. (2019). An LSTM-based neural network
architecture for model transformations. In 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems (MODELS),
pages 294–299. IEEE.

Campos, J. C. and Harrison, M. (2011). Modelling and analysing the interactive
behaviour of an infusion pump. Electronic Communications of the EASST, 45.

Collin, C., Wade, D., Davies, S., and Horne, V. (1988). The barthel adl index: a
reliability study. International disability studies, 10(2):61–63.

Eclipse (2021). Eclipse AgileUML project.
https://projects.eclipse.org/projects/modeling.agileuml.

Fellbaum, C. (2010). WordNet. In Theory and applications of ontology: computer
applications, pages 231–243. Springer.

Kaggle (2021). Software requirements dataset.
www.kaggle.com/iamsouvik/software-requirements-dataset.

King’s Health Partners (2011). Stroke recovery assistant project brief, version 1.0.
Kotonya, G. and Sommerville, I. (1996). Requirements engineering with
viewpoints. Software Engineering Journal, 11(1):5–18.

Lano, K. (2017). Agile model-based development using UML-RSDS. CRC Press.
Lano, K., Alwakeel, L., Rahimi, S. K., and Haughton, H. (2021). Synthesis of
mobile applications using AgileUML. In 14th Innovations in Software
Engineering Conference (formerly known as India Software Engineering
Conference), pages 1–10.

Lano, K., Fang, S., Umar, M., and Yassipour-Tehrani, S. (2020). Enhancing model
transformation synthesis using natural language processing. In Proceedings of
the 23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, pages 1–10.

Levenshtein, V. I. et al. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

Marconi Command and Control Systems (1990). A requirement specification for a
simple track former.

Mendeley software repository (2018). Mendeley user story dataset. accessed
January 5th, 2021, https://data.mendeley.com/dataset/7zbk8zsd8y/1.

Public Health England (2017). Criteria for health app assessment. accessed May
20th, 2021,
https://www.gov.uk/government/publications/health-app-assessment-criteria.

Robertson, S. and Robertson, J. (2012). Volere requirements specification template.
Rowley, J. (2007). Bs 8723 structured vocabularies for information retrieval: Part 1:
Definitions, symbols and abbreviations, and part 2: Thesauri. Journal of
Documentation.

26 Kevin Lano, Sobhan Y. Tehrani, Mohammad Umar and Lyan Alwakeel

Saini, R., Mussbacher, G., Guo, J. L., and Kienzle, J. (2020). DoMoBOT: a bot for
automated and interactive domain modelling. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, pages 1–10.

Santorini, B. (1990). Part-of-speech tagging guidelines for the Penn Treebank
Project.

Stanford University (2020). Stanford nlp. accessed May 20th, 2021,
https://nlp.stanford.edu/software.

Umar, M. A. (2020). Automated Requirements Engineering Framework for Agile
Development. ICSEA 2020, page 157.

Xu, X., Chen, K., and Cai, H. (2020). Automating Utility Permitting within
Highway Right-of-Way via a Generic UML/OCL Model and Natural Language
Processing. Journal of Construction Engineering and Management,
146(12):04020135.

