
Real-Time Source Apportionment of Organic Aerosols in Three
European Cities
Gang Chen, Francesco Canonaco, Jay G. Slowik, Kaspar R. Daellenbach, Anna Tobler, Jean-Eudes Petit,
Olivier Favez, Iasonas Stavroulas, Nikolaos Mihalopoulos, Evangelos Gerasopoulos, Imad El Haddad,
Urs Baltensperger, and André S. H. Prévôt*

Cite This: https://doi.org/10.1021/acs.est.2c02509 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: 97% of the urban population in the EU in 2019
were exposed to an annual fine particulate matter level higher than
the World Health Organization (WHO) guidelines (5 μg/m3).
Organic aerosol (OA) is one of the major air pollutants, and the
knowledge of its sources is crucial for designing cost-effective
mitigation strategies. Positive matrix factorization (PMF) on
aerosol mass spectrometer (AMS) or aerosol chemical speciation
monitor (ACSM) data is the most common method for source
apportionment (SA) analysis on ambient OA. However, conven-
tional PMF requires extensive human labor, preventing the
implementation of SA for routine monitoring applications. This
study proposes the source finder real-time (SoFi RT, Datalystica
Ltd.) approach for efficient retrieval of OA sources. The results
generated by SoFi RT agree remarkably well with the conventional rolling PMF results regarding factor profiles, time series, diurnal
patterns, and yearly relative contributions of OA factor on three year-long ACSM data sets collected in Athens, Paris, and Zurich.
Although the initialization of SoFi RT requires a priori knowledge of OA sources (i.e., the approximate number of factors and
relevant factor profiles) for the sampling site, this technique minimizes user interactions. Eventually, it could provide up-to-date
trustable information on timescales useful to policymakers and air quality modelers.
KEYWORDS: real-time, source apportionment, organic aerosol, urban pollution, SoFi RT

1. INTRODUCTION
Atmospheric aerosols are mixtures of liquid or solid particles
suspended in the air. They strongly affect the climate, the
ecosystem, and public health. The mass concentration of
particulate matter with a diameter smaller than 2.5 μm (PM2.5)
has been associated with oxidative stress in many studies.1−3

The World Health Organization (WHO) updated the air
quality guideline of the annual average of PM2.5 to 5 μg/m3 in
2021,4 an exposure limit exceeded by 99% of the global
population. However, reducing the overall PM levels is
extremely challenging and may not be the most cost-effective
way to reduce the corresponding mortalities because different
sources/compositions of PM have different health impacts.5

Organic aerosol (OA) is a major fraction (20−90%) of fine
PM.6−9 In addition, compared to inorganic aerosol, the sources
and compositions are much more complex. Therefore, it is
more important than ever to quantify OA sources to reduce
aerosol-related premature deaths.
The chemical components of OA are typically identified and

quantified by applying positive matrix factorization (PMF10)
on OA mass spectra collected by aerosol mass spectrometers
(AMS) or aerosol chemical speciation monitors (ACSM)

(both from Aerodyne Research, Inc.).9,11,12 OA chemical
components, commonly refers to as OA sources, are typically
identified by their characteristic mass spectra, which one
commonly refers to as OA sources. Recently, rolling PMF
analysis was shown to be a powerful tool to retrieve more
robust and accurate OA source apportionment (SA) results in
long-term (i.e., multiseason) data sets13−16 by considering
temporal variations of the factor profiles. However, these
analyses remain time-consuming for long-term datasets due to
the complex preprocessing, rolling PMF procedures, and post-
PMF analysis of the data.9 Typically, it takes a well-trained
analyst several months to a year to retrieve high-quality SA
results for a year-long data set from scratch. These require-
ments are difficult to reconcile with the practical constraints
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governing routine monitoring applications, where a single
technician may be responsible for a large number of diverse
instruments and/or lack specialized expertise in source
apportionment. However, the ability of SA to reduce a large
and highly complex input data set to a small number of sources
linked to real-world processes is an optimal output for such
monitoring initiatives, providing valuable information for
timely responses to extreme air quality events, evaluation of
policy initiatives, and development and validation of air quality
forecasts.
In this study, we propose an automated and state-of-the-art

SA technique that can provide robust OA source information
in real-time once 14 days of measurements (typically in 30 min
resolution) have been collected. This technique has been
implemented and validated using data sets collected from three
European cities, including Athens,17 Paris,18 and Zurich.9,19

2. METHODS
2.1. Instrumentation and Measurement Sites.

ACSMs20,21 are designed for the quantification of the mass
concentration of nonrefractory constituents of ambient aerosol
particles (NR-PM) (i.e., sulfate, nitrate, ammonium, chloride,
and organics). These instruments are based on AMS
technology, but they are optimized for long-term monitoring
purposes via reduction in both cost and user operation/
maintenance requirements. However, they are less sensitive,
are normally capable of only integer mass resolution, and lack a
measurement of particle size.
PM is sampled through a critical orifice (100 μm inner

diameter) at a flow rate of 1.4 cm3/s (at 1 atm. and 20 °C).
Then, an aerodynamic lens focuses the sampled particles into a
narrow beam to impact them on a tungsten or an iridium
surface (∼600 °C), where the NR-PM is vaporized and ionized
by an electron impact source at 70 eV. The quadrupole ACSM
(Q-ACSM) detects ions up to a mass-to-charge ratio (m/z) of
148 Th,20 while the time-of-flight ACSM (ToF-ACSM)
provides higher mass resolution and detects ions up to m/z
= 300 Th.21,22 In this study, Q-ACSMs were used with a PM1
aerodynamic (standard) lens and the standard vaporizer for all
data sets, which were collected in three European cities
(Athens, Paris, and Zurich), and specifically, the Athens data
range from July 2016 to July 2017, the Paris data range from
January 2016 to May 2017, and the Zurich data range from
August 2016 to July 2017. The sampling sites are described in
more details in previous publications17−19 and are also
presented as part of Chen et al.9

2.2. Receptor Models. PMF and chemical mass balance
(CMB) are two receptor models that have been widely used to
identify OA sources. Specifically, both PMF23 and CMB are
bilinear factor models with non-negativity constraints with the
following mass balance equation:

= × +
=

x g f eij
k

p

ik kj ij
1 (1)

where xij is the measured OA at the ith time point and the jth

variable, while in terms of model outputs, gik represents the
factor time series for the kth factor, f kj represents the factor
profiles, and eij represents the residual. The PMF models
iteratively minimize the following quantity Q:
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Here, σij is the measurement uncertainties, corresponding
point-by-point to xij. However, the PMF is subject to rotational
ambiguity, meaning that different solutions can have similar
values of Q. Although they are of similar quality mathemati-
cally, they may not be of equal environmental relevance. To
address this, the multilinear engine (ME-2)24 has been
demonstrated to be a powerful tool to direct the model
toward environmentally meaningful matrix rotations13,19 by
using the a priori information of corresponding mass spectral
or time series (the a-value approach). The a value determines
the extent to which the final mass spectrum or time series is
allowed to deviate from the anchor (mass spectral/time series)
during the PMF model iteration. The classical CMB is a
simplified version of the PMF model with predetermined
factor profiles and number of factors but with a different cost
function as shown below:

=
+ ( )

Q
e

s gi j

ij

ij k ik f

2

2
2

jk (3)

This cost function distinguishes the classical CMB from the
CMB-like method used here, which is described in Section
2.4.1.
2.3. Rolling PMF with ME-2. While the conventional

PMF only allows having static factor profiles during the PMF
window of analysis, in reality some factor profiles are expected
to vary with time. To take these temporal variations of factor
profiles into account, PMF can be performed over a small time
window (e.g., 14 days).16 Then, this window is moved to the
next position with a step size of one day,16 in which the factor
profiles are allowed to adapt. Canonaco et al. (2021)13 utilized
this technique, the so-called rolling PMF,16,23 to improve the
quality of long-term (multiseason) SA results. At the same
time, the rotational ambiguity of the PMF model can be
minimized using the multilinear engine (ME-2),19 which users
need to provide a priori information of factor profiles/time
series as constraints for the PMF model. Chen et al.9 then
developed a standardized protocol to retrieve robust and
comparable SA results across Europe using the rolling PMF
with the ME-2.
2.4. Real-Time SA Technique. 2.4.1. Overview of

Process. To address the challenges mentioned before, a real-
time SA technique is proposed in this study. Generally, the
seasonal PMF pre-tests9 are required to identify the number of
factors and/or representative factor profiles, especially for the
new data set to account for some unknown and/or additional
(primary or secondary) sources are expected. Second, the
rolling PMF (using the a priori information from the last step)
is conducted for the previous 14-day time window to initialize
the source profiles. Finally, assuming that the source profiles
on the current day are consistent with the factor profiles
retrieved from the previous 14-day rolling PMF window, the
real-time SA results are generated through the CMB-like
analysis (i.e., the PMF model with all factors fully constrained
at a value = 0) for the upcoming measured points on the
current day. By advancing the rolling window in 1-day steps,
the source profile will be updated to generate a more robust
real-time SA results. All these processes have been integrated
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into a software application, the source finder real-time (SoFi
RT, Datalystica, Ltd., Switzerland), which is commercially
available and distributed by Datalystica.
2.4.2. Data Preparation and PMF Initialization/Setup.

Several steps are required to prepare the PMF input for real-
time SA. First, the SoFi RT automatically calls the functions
within the ACSM Local software (ACSM Local 1.6.1.3,
Aerodyne, Inc.) to apply correct fragmentation tables and
ion transmission efficiency corrections and to calculate the
error matrix to prepare the PMF input. Then the SoFi RT
automatically applies the collection efficiency (CE) correction
(user-defined, i.e., the constant CE or composition-dependent
CE (CDCE)25), which can be defined in advance.
Moreover, to retrieve robust SA results, a few additional

steps are required in advance. As mentioned above, seasonal
PMF pre-tests9 are normally required to gain some a priori OA
source information of the sampling site. There is a lot of
knowledge on OA sources available from many SA studies
across the world. For Europe, Chen et al.9 performed the

necessary analysis for 22 sites. Therefore, in many data sets it
should be straightforward to define the number of sources and
representative source profiles. For example, the OA sources in
the three data sets used in this work have been well studied. In
addition, since rolling PMF generally yields lot of PMF runs, a
set of criteria and corresponding statistical tests for
probabilistic thresholds should be defined in advance to select
environmentally reasonable solutions by following the stand-
ardized protocol as suggested by Chen et al.9 For criteria based
on external data, like black carbon, NOx, etc., the SoFi RT can
also automatically retrieve and preprocess those data and make
them ready for criterion evaluations.
2.4.3. Automated RT Analysis. As soon as more than a full

time window of data (here 14 days) has been collected with
the above initialization and setup, the SoFi RT is able to
retrieve the robust real-time OA sources automatically. As
shown in Figure 1, a PMF input of a 14-day time window is
created and used to conduct rolling PMF using the specified
timing/repeat parameters, which here follow the 14-day

Figure 1. Schematic flow diagram of the real-time source apportionment. CMB is implemented through the PMF model with all factors fully
constrained at a value = 0.

Figure 2. Yearly averaged source apportionment comparison for Athens data for factor profiles (left, with mirrored y-axis), a time series with a 24 h
resolution (middle), and diurnal cycles (right). The blue color indicates the real-time results and the black color indicates the best-estimate results.
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window, 1-day step, and 50 repeats proposed by Canonaco et
al.13 In addition, the SoFi RT utilizes ME-226,27 to constrain
the primary organic aerosol (POA) factor profiles (to reduce
the rotational ambiguity) based on the profiles previously
identified for the site. The profiles are constrained by a random
a value in a range of 0−0.4.13 By averaging the environmentally
reasonable solutions from this 14-day rolling window, the
source profiles can be generated for the CMB-like analysis on
the upcoming data point (from the current calendar day) to
retrieve real-time SA results. With the 1-day step of the rolling
PMF window, the factor profiles for the CMB-like analysis are

updated on a daily basis. Therefore, the factor profiles used in
the CMB-like analysis can actually adapt by using recent data,
which considerably decreases the uncertainties of this method.
More detailed instructions of the SoFi RT are described in SI
and Figure S1.

3. SOFI RT IMPLEMENTATION AND VALIDATION
In this study, we used year-long ACSM data sets collected from
three European cities (Athens, Paris, and Zurich) to validate
the real-time SA technique. The offline rolling results were
obtained by following the standardized rolling PMF protocol

Figure 3. (Real-time)/(best estimate) vs absolute mass concentration of each OA factor binned in 10 groups based on the best-estimate results.
The markers and the lines represent the medians, and the error bars represent the interquartile ranges.
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developed by Chen et al.,9 which is considered as the most
advanced and robust OA source apportionment (and is,
therefore, referred to as the “best estimate” in the text as
follows). All three sites resolved a hydrocarbon-like OA
(HOA) factor, a biomass burning OA (BBOA) factor, a more-
oxidized oxygenated OA (MO-OOA) factor, and a less-
oxidized oxygenated OA (LO-OOA) factor. In addition, a
cooking-like OA (COA) factor was retrieved in Athens and
Zurich. Moreover, a cigarette smoking OA (CSOA) factor was
identified in the Zurich data set. To validate the real-time
technique, we conducted head-to-head comparisons between
the best-estimate results and the real-time results regarding
source profiles, time series, diurnal cycles, and relative
contributions, as outlined below.

4. RESULTS AND DISCUSSION
Figure 2 compares Athens’ yearly averaged factor profiles,
diurnal cycles, and time series (24 h average) between the best-
estimate results and the real-time results. It clearly shows a
high consistency between these two methods. The same
conclusions were drawn from the comparisons of the Paris and
Zurich data sets (Figures S2 and S3). The linear regression
between the time series of each factor retrieved from the two
methods was conducted using a 30 min time resolution
(Figure S4). We found that the factors of all stations generally
show a very good agreement (with R2Pearson > 0.94 except LO-
OOA from the Paris data set with an R2Pearson of 0.89) and
biases <10%. The POA factors generally show better
agreements with the higher R2Pearson and slopes closer to 1
than the OOA factors. This is expected since the POA factor
profiles are constrained during the offline rolling PMF.
Similarly, we also compared the relative contributions of
each factor (with 30 min resolution) between the two
methods, as shown in Figure S5. It shows good consistencies
(with the R2Pearson > 0.73 except the LO-OOA in Paris with
R2Pearson = 0.59) and <10.6% differences from the 1:1 line. This
agreement is not as good as for the absolute concentrations,
but this is expected since the correlation coefficient for the
fraction comparisons can be affected considerably by the low
mass concentration points (often with large uncertainty),
which eventually results in relatively worse agreements
between these two methods.
In addition, the agreement between the real-time results and

the best-estimated results is better for total OOA (MO-OOA +
LO-OOA) than for either MO-OOA or LO-OOA alone in
terms of mass concentration and relative contribution (Figures
S4 and S5). This means that the separation of OOA into its
subfractions is somewhat less robust than the separation of the
POAs and total OOA. This is expected since the separation
between MO-OOA and LO-OOA is often based on gradients
in photochemical age, volatility, etc. instead of discrete
sources.6,11,28 Thus, it has more cross-talk between the vectors
in response to perturbations of the OOA fraction.6,11,28 The
disagreement in LO-OOA in Paris during the warm periods
(yellow points in Figure S4) is most likely caused by this
reason. Nevertheless, this technique still shows satisfactory
agreement when separating OOA into LO-OOA and MO-
OOA as discussed in the previous paragraph.
To understand the causes of these discrepancies in the

abovementioned comparisons, we divided the data into 10 bins
based on the percentile absolute mass concentration of each
OA factor retrieved from the best-estimate results (x-axis of
Figure 3). Then we investigated how the mass concentration of

the OA factor affects the differences between the two methods
(Figure 3). In general, the real-time to best-estimate ratio
approaches 1 (with smaller standard deviations) as the mass
concentration of OA factor increases. Also, the bottom 10% of
the mass concentrations of each OA factor shows the largest
discrepancies (median) and the largest interquartile range.
When the mass concentration of the OA factor gets too small,
it approaches the detection limit of the ACSM, which leads to
a high measurement uncertainty. As shown in Figure S6, when
we group the data based on the mass fraction of each OA
factor, the bottom 10% bin exhibits the largest discrepancies,
except for the LO-OOA in Paris (due to the inherent
inseparability between the LO-OOA and the MO-OOA as
discussed above). It suggests that when the contribution of key
ions for the corresponding OA factors is low, it results in larger
uncertainties of both the PMF and the real-time model.
Therefore, the discrepancies at a low factor mass concen-
trations/fractions between the two methods are most likely
caused by a combination of the high uncertainties of the
measurements and/or PMF/real-time models.
Since the CMB-like profiles are taken from the previous 14-

day rolling window while the offline rolling PMF from the
best-estimate solution keeps updating its profiles, the
discrepancies between the CMB-like factor profiles (used to
generate real-time SA results) and the factor profiles for the
offline rolling PMF are expected for a given time point.
Therefore, we compared the CMB-like factor profiles with the
offline rolling PMF factor profiles at each time point using the
uncentered correlation (R)29 (Figure S7) to validate the
assumption that the source profiles for the current day are
basically identical to the source profile from the real-time
approach. Figure S7 shows high values for the averaged
uncentered correlation, generally with R > 0.92. In addition,
the POA (except CSOA in Zurich, with a maximum and a
minimum R of 0.92 and 0.42, respectively) and the MO-OOA
factor profiles are almost constant over time, with an average R
greater than 0.99. The low correlation of CSOA is explained by
the fact that cigarettes’ smoke is not continuously present,
which leads to large uncertainties when the source is absent.
LO-OOA shows relatively larger discrepancies but still with an
average R greater than 0.95. This is expected by the fact that
the LO-OOA factor profile from the rolling analysis often has a
larger temporal variation than the one of MO-OOA.9 Also,
LO-OOA could be quite sensitive to pollution episodes since it
is a rather ″fresh″ and unconstrained factor. Nevertheless, the
comparison in Figure S7 demonstrates that the assumption of
this technique is valid.
Overall, these two techniques provide very similar yearly

averaged OA factor contributions for all three data sets, with
differences smaller than 2.7 percentage points (Figure 4). The
POA contributions appear to be generally more consistent (0.1
< Δ < 0.9) than those of the OOA factors (0.5 < Δ < 2.7).
This is expected since the OOA factors were unconstrained for
the best-estimate model (offline rolling PMF) but fully
constrained in the real-time approach. As shown in Figure
S8, the real-time results have similar or slightly larger-scaled
residuals than the best-estimate results. In all cases, the
distributions of scaled residuals meet the expectations.
In this study, we have developed a state-of-the-art source

apportionment technique that can minimize human inter-
actions once the model has been initialized and allowing us to
efficiently retrieve robust OA sources in real-time, i.e., minutes
after the data is collected. The technique was validated using
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three year-long Q-ACSM data sets collected in three European
cities. We found very high consistencies between the real-time
results and the best-estimate results for the factor profiles
(uncentered correlation >0.92), the time series (R2Pearson > 0.89
and bias <12.5%), the diurnal patterns, and the yearly relative
contributions (Δ < 2.7 percentage points). The discrepancies
between the two methods were found at low factor mass
concentrations and are mainly due to a combination of the
high uncertainties of the measurements and/or the PMF/real-
time model. Even though this technique requires some a priori
knowledge of OA sources (i.e., the number of factors and the
relevant factor profiles as constraints, which can be done by
conducting seasonal pre-tests9 ) for the sampling site, the
robustness of this technique is remarkable. For appropriate
ACSM/AMS data sets and corresponding OA source
apportionment studies, which are already available worldwide,
this technique could ideally be implemented and start
generating robust SA results instantly in a real-time manner.
However, this method may still suffer from a changing
number/type of factors during the analysis. Therefore, more
work should be invested to allow the software to automatically
adjust the constraints of rolling PMF accordingly. For instance,
integrating clustering algorithms (e.g., k-means and hierarch-
ical clustering30 ,31) into SoFi RT could potentially contribute
in this respect and might be investigated further. Currently,
SoFi RT is also applicable of handling online metal (i.e., Xact,
Cooper Environmental Inc.) and black carbon (e.g., AE33,
Magee Scientific Corp.) data. More efforts should be put in
coupling the ACSM, Xact, and AE33 data to improve the SA
results in real-time. Finally, these more timely and high-quality
OA source information in real-time could help policymakers
design and validate mitigation strategies. These results could
also improve air quality models by providing extra inputs and
eventually pave the way for a next-generation air quality
forecast, especially relevant for safeguarding public health in
megacities.
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Rózȧnśki, K.; Baltensperger, U.; Slowik, J. G.; Prevot, A. S. H.
Characterization of Non-Refractory (NR) PM1 and Source
Apportionment of Organic Aerosol in Krakoẃ. Atmos. Chem. Phys.
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(30) Äijälä, M.; Heikkinen, L.; Fröhlich, R.; Canonaco, F.; Prévôt, A.
S. H.; Junninen, H.; Petäjä, T.; Kulmala, M.; Worsnop, D.; Ehn, M.
Resolving Anthropogenic Aerosol Pollution Types − Deconvolution
and Exploratory Classification of Pollution Events. Atmos. Chem. Phys.
2017, 17, 3165−3197.
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