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Abstract 

The translaminar fracture toughness reflects the damage tolerance of a fibre-reinforced 

composite under longitudinal tension, which often governs final failure of structures. One of 

the main energy-dissipation mechanisms that contributes to the translaminar toughness of 

composites is the fibre pull-out process. The present study aims to quantify and model the 

statistical distribution of fibre pull-out lengths formed on the translaminar fracture surface of 

composites, for the first time in the literature; this is done under different temperatures, so that 

the relationship between pull-out length distributions, micromechanical properties, and the 

translaminar fracture toughness can be established. The fracture surfaces of cross-ply compact-

tension specimens tested under three different temperatures have been scanned through X-ray 

computed tomography to quantify the extent of fibre pull-out on the fracture surfaces; the 

distribution of pull-out lengths showed a larger average and larger variability with an increase 

in temperature, which also lead to an increase in translaminar fracture toughness. A similar 

trend has been captured by the proposed analytical model, which predicts the pull-out length 

distribution based on the analysis of quasi-fractal idealisations of the fracture surface, yielding 

an overall accuracy of more than 85%.  
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Nomenclature 

Symbol  Description 

𝑐  Coordination number 

𝑖  Hierarchical level 

ℎpo  Pull-out height 

𝑙po  Pull-out length 

ℱpo  Cumulative distribution function (CDF) for pull-out length 

𝐺Ic
lam  Laminate-level translaminar propagation fracture toughness 

𝐺Ic
0   Ply-level translaminar propagation fracture toughness 

𝐺IIc  Mode II fracture toughness 

ℋpo  Stochastic pull-out height 

ℒpo  Stochastic pull-out length 

𝜏SL  Shear strength (yield stress) 

𝜏𝜇  Pull-out frictional stress 

𝜉[𝑖] 

 
 

A binary variable indicating whether or not the hierarchical level 𝑖 
contributes to the pull-out height of the particular fibre analysed 

Ξ  
The combination defining a pull-out height, i.e. the set of binary variables 

[𝜉[𝑖max], 𝜉[𝑖max−1], … , 𝜉[1], 𝜉[0]] for each fibre 

𝑘  
The number of hierarchical levels contributing to the pull-out height in a 

given combination 

𝜈[𝑘]  The frequency of each individual 𝑘 −combination 

𝜂[𝑖]  
The number of times that the pull-out length distribution of an individual 

level 𝑖 needs to be sampled for random pull-out lengths 
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1 Introduction 

Carbon fibre reinforced polymer (CFRP) materials have found increasing applications in 

primary aircraft components. One of the major design considerations is to address the durability 

and damage tolerance requirements to avoid catastrophic failure. Significant efforts have been 

focused on the characterisation of the translaminar fracture toughness of composites (i.e. to 

break the material across the fibres), as this property is a quantitative measure of the damage 

tolerance of fibre-reinforced composites under longitudinal tension [1-6].  

The translaminar fracture toughness of a unidirectional continuous-fibre composite depends on 

constituent properties, especially on the fibre/matrix interface properties. It has been recognised 

that the fracture energy is dissipated by two dominant mechanisms, namely fibre/matrix 

interfacial debonding (corresponding to a debonding component of the work of fracture, 𝑊deb) 

and post-debonding pull-out of fibres and bundles (corresponding to a pull-out component of 

the work of fracture, 𝑊po ) [7]. The latter is strongly related to the pull-out lengths (𝑙po ) 

developed during the fracture process: 

𝑊po =
1

2
∙ 𝐶 ∙ 𝜏𝜇 ∙ 𝑙po

2 , (1) 

where 𝐶 is the perimeter of debonded fibres or bundles, and the in-situ frictional stress 𝜏𝜇 

provides resistance to pull-out.  

Fractographic studies of fracture surfaces have been carried out to observe the crack path in 

translaminar fracture, inspect the bonding quality of fibre/matrix interfaces, and observe the 

degree of fibre pull-out [3-6]. It has been noted that the translaminar fracture surface of CFRPs 

features a statistical distribution of pull-outs across a range of scales, ranging from individual 

fibres to large bundles [1, 8, 9]. These observations were mainly performed by conventional 

2D imaging techniques such as optical microscopy and scanning electron microscopy (SEM). 

However, pull-out length distributions have never been quantified experimentally. 

In comparison to conventional 2D imaging techniques, X-ray computed tomography (xCT) 

offers an advantage: it provides an accurate 3D representation of the material, which enables 

an increasing level of information to be extracted compared to that of a 2D image [10, 11]. 

There are many applications of xCT to the study of composites. In some cases, it has allowed 

a range of measurements of internal microstructures, such as fibre orientation, manufacturing 

defects and extent of damage [12-14]. In other cases, it has been used for monitoring the 

evolution of features of interest (e.g. damage) over time via time-lapse experiments [15]. 

Therefore, it can be anticipated that xCT is well suited for the quantitative analysis of fibre 

pull-out length distributions, although this has never been done. 

Several statistical micromechanical models have been proposed to predict the fracture 

toughness of unidirectional continuous-fibre composites through the prediction of pull-out 

lengths. Most of these models [8, 16, 17] focus on predicting the pull-out length distribution of 

fibres or bundles, by taking into account the stress distribution on debonded fibres and the 

failure probability at given pull-out length; however, these models considered that the pull-out 

process occurred at a single scale (i.e. that of the fibres or that of experimentally-observed 

bundles), meaning that size effects associated with the pull-out features observed across the 

scales were often overlooked. These size effects have been addressed in Pimenta and Pinho’s 

model [9] which describes the translaminar fracture surface as a self-affine hierarchy formed 

by pull-out of individual fibres and bundles. In this model, the debonding and pull-out length 

distributions are derived as a function of fibre/bundle tensile strength distribution and 

interfacial properties. This has led to successfully predicting the translaminar fracture 

toughness for a wide range of material systems, and under different environmental conditions 
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(including different temperatures and moisture levels) [5]; however, the pull-out length 

distributions predicted by the model have never been validated experimentally.  

Previous studies have shown that the translaminar fracture toughness of composites increases 

with increasing temperature, and that this increase is accompanied by an apparent (observed 

qualitatively) increase in fibre pull-out [4,5]; however, the effect of temperature on pull-out 

length distributions has never been quantified.  Such quantification could potentially result in 

two benefits: (i) revealing the relationship between pull-out processes (i.e. an underlying 

damage mechanism on a microscopic level) and fracture toughness (i.e. a macroscopic property 

of the composite); (ii) gaining useful insights into the response of composites to varying 

temperatures, which would inform the design of composite materials and structures for use in 

different service environments. 

Therefore, the objective of this study is to provide a comprehensive investigation into the 

relationship between translaminar fracture toughness and pull-out length distributions under 

different temperatures, based on experimental characterisation and model prediction. 

2 Materials and mechanical testing 

2.1.1 Specimen manufacture 

All composite panels were fabricated from M21/AS7 prepreg with a layup of  [(90/0)-

8/90/(0/90)8], and subsequently cured in an autoclave according to the supplier's recommended 

curing cycle [18].  

2.1.2 Compact tension tests 

Compact tension tests were carried out with a loading speed of 0.5 mm/min at three different 

temperatures, i.e. -55°C, 23°C and 90°C to characterise the translaminar fracture toughness 

𝐺Ic
lam following the test method in [1]. For each temperature, four tests were carried out.  

2.1.3 Data reduction  

The R-curves of translaminar fracture toughness for each temperature were obtained via a data 

reduction technique based on the compliance calibration method [2]. The optically-measured 

crack length 𝑎  and the corresponding compliance 𝐶exp  (determined from the load-

displacement curve) were fitted with the following expression: 

𝐶exp = (𝛼𝑎 + 𝛽)𝜒 . (2) 

The unknown constant parameters 𝛼, 𝛽 and 𝜒 were estimated by a least squares regression. 

The translaminar fracture toughness of the laminate 𝐺Ic
lam was subsequently calculated as a 

function of the crack length: 

𝐺Ic
lam(𝑎) =

𝑃c
2

2𝑡lam

d𝐶exp

d𝑎
 , (3) 

where  𝑃c is the load corresponding to crack propagation and 𝑡lam is the laminate thickness. 

Assuming the interactions between the different layers are negligible, the translaminar fracture 

toughness of a laminate was related to that of the individual plies by the rule of mixtures 

(assuming that the intralaminar toughness in a 90° ply (dominated by matrix-cracking and/or 

interfacial failure) is negligible compared to the toughness of the 0° ply 𝐺Ic
0 ): 

𝐺Ic
0 (𝑎) =

𝑡lam

𝑡0
𝐺Ic

lam(𝑎). (4) 
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3 X-ray computed tomography data acquisition and image processing 

3.1 X-ray image acquisition  

A simple visual inspection of the photographs in Figure 1 shows that the fracture surfaces of 

the compact tension specimens consist of a collection of pulled-out fibres and bundles whose 

lengths cover multiple length scales. In order to quantify these lengths, xCT scans were carried 

out to achieve a 3D fractographic examination of the fracture surfaces of the compact tension 

specimens. To prepare for the xCT scans, a small specimen with 10 × 10 mm2 in the 𝑥𝑦 plane 

and full thickness was cut out from one compact tension specimen under each temperature. The 

cut-out xCT specimen was centred around the initial 5 mm crack region so as to avoid creating 

any additional damage to the fracture surface. The quantitative analysis of the pull-out length 

development using xCT data will be discussed in the following sections. 

 

 

Figure 1: Photographs of fracture surfaces obtained through compact tension tests under 

different temperatures.  

 

Three fracture surfaces obtained at the three different testing temperatures were xCT scanned 

on a Zeiss Xradia Versa 620 X-ray microscope, with an accelerating voltage of 80 kV and 

power of 10 W. A total of 3142 projections were taken as the specimen was rotated over 360° 

around the longitudinal directional of the specimen ( 𝑥 -direction in Figure 1) in equal 

increments. The exposure time was 4 s. These projections were collected on the 2k × 2k, 16-

bit high-resolution CCD detector. A resolution of 2.5 μm was used, which was adequate to 

resolve the pull-out of individual fibres with a diameter of 7 μm. This setup resulted in a scan 

volume having a circular cross section in the 𝑦𝑧 plane with approximately 5 mm in diameter 

(which is broadly aligned with the fracture plane), and 5 mm along the 𝑥-direction (see Figure 

2). Consequently, each scanned fracture surface included more than 150,000 fibres. 

The projections were reconstructed into 3D greyscale images (as shown in Figure 2 (a)) using 

Zeiss XM Reconstructor. The alignment of the 3D xCT image (i.e. with the 𝑥 -direction 

perfectly aligned with the pull-out direction) was ensured by tilting the 3D volume in the pre-

processing stage. An objective quantification of pull-out length distributions from these X-ray 

images requires overcoming two challenges:  

(i) segmenting the 0° plies (in which fibre pull-out occurs) from the surrounding 90° 

plies. This segmentation is particularly critical because the length of fibre pull-outs 

in a 0° ply tends to be smaller near the interfaces with the neighbouring 90° plies 

than at the mid-thickness of the ply [1, 9]. Therefore, the segmentation should 

include the entirety of the 0° plies to avoid biasing the pull-out length distributions 

towards the longer pull-outs that develop mid-thickness, but exclude the 90° plies 

completely (as these would artificially contribute with (quasi) zero pull-out 

lengths). Unfortunately, it is not possible to separate 0° and 90° plies simply 
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bymanual cropping or automatic thresholding operations, due to the similar xCT 

contrast and similar surface morphology of the 0° and 90° plies (especially at their 

interfaces). 

(ii) establishing a datum plane where fibre pull-out lengths can be assumed zero, which 

provides a reference for measuring the relative pull-out lengths in 0° plies. This is 

complicated by the stochastic and hierarchical nature of the fracture surface, whose 

position along the longitudinal direction (𝑥-direction in Figure 2) oscillates due to 

(i) pull-out of individual fibres and bundles within each 0° ply, and (ii) uneven 

transverse fracture planes amongst all 90° plies. 

 

3.2 Quantification of pull-out distributions 

This section proposes a systematic methodology to overcome the challenges identified in the 

previous section and objectively quantify the pull-out distributions on fracture surfaces. This 

methodology is illustrated in Figure 2, taking the fracture surface of a specimen tested at room 

temperature as an example, and it includes the following steps: 

(i) 3D greyscale data (see Figure 2 (a)). This 3D data is a map of the X-ray attenuation 

within the scanned volume. While there is striking contrast between composite (in 

light grey) and the air (in dark grey), the greyscale intensity is relatively uniform 

within the composite as a result of (i) similar X-ray attenuation coefficients in fibre 

and matrix regions and (ii) a relatively low spatial resolution. 

(ii) 3D binary image (Figure 2 (b)). A binary image was obtained by thresholding the 

3D greyscale data. This binary image is essentially a 3D matrix with the entries 

being set to 0 and 1 for the pixels above and below the fracture surface respectively 

(note that, below the fracture surface both matrix and fibres are represented by 1). 

(iii) Fracture surface height plot. A surface plot (Figure 2 (c)) is created by summing 

all entries of the 3D binary image along the 𝑥-direction and multiplying the result 

by the pixel size (2.5 μm); it displays the height of each point of the fracture surface, 

measured from the bottom surface of the scanned volume. The 2D projection of the 

fracture surface (Figure 2 (d)) reveals that surface heights are distributed almost 

uniformly within each 90° ply (which corresponds to intralaminar fracture), and 

significantly vary within each 0° ply (due to the formation of pull-outs; a full 

statistical analysis of this variability is shown in the Results, particularly Figures 11 

and 12).  

(iv) Clustered fracture surface image: Superpixels (see Figure 14) were generated by 

clustering pixels on the 2D projection of the fracture surface (Figure 2 (d)), based 

on the similarities of pixels in grayscale value and distance. This step was done by 

passing the fracture surface height plot into the Matlab built-in function 

‘superpixels’, which uses the Simple Linear Iterative Clustering (SLIC) 

algorithm [19].  

(v) Segmented 90° plies image: A logical mask (see Figure 14) was manually initialised 

to roughly mark the region of the 90° plies. The mask image was used in 

conjunction with the clustered fracture surface (generated in step (iv)) and the 2D 

projected fracture surface (Figure 2 (d), from step (iii)). By executing the Matlab 

built-in function ‘grabcut’, the 90° plies were segmented from the original image 

through an iterative automatic process (known as the GrabCut algorithm) [20], 

resulting in the segmented 90° plies image as shown in Figure 2 (e) and (f), and the 

complementary segmented 0° plies image. At this stage, the segmented 0° and 90° 

plies should have similar thickness (which is a good high-level check). 
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(vi) Artefact removal. The segmented 90° plies image (Figure 2 (e)) has some large 

spikes close to the boundary between 0° and 90° plies, which indicates that they 

were wrongly segmented (i.e. they actually belong to the 0° plies, which was 

confirmed by visual inspection). Therefore morphological opening and closing [21] 

were performed with a linear structural element, which largely removed the noise 

whilst preserving the boundary of the 90° plies; the resulting corrected segmented 

90° plies image is displayed in Figure 2 (g) and (h). 

(vii) Datum-height of individual 90° plies. The datum height of the fracture surface of 

each segmented 90° ply was determined by averaging the grayscale value of all 

corresponding pixels in the corrected segmented 90° plies image.  

(viii) Fibre pull-out heights map. For each 0° ply, the average height of its two 

neighbouring 90° plies (in the corrected segmented 90° plies image) was defined as 

the reference datum for that 0° ply. The height of each pixel in the 0° ply (from the 

segmented 0° plies image) was then offset from this datum, which resulted in the 

relative pull-out height map of all fibres in each 0° ply, shown in Figure 2 (i) and 

(j). 

(ix) Statistical distribution of fibre pull-outs. Having applied the steps above, a 

histogram can now be plotted to reveal the statistical distribution of the absolute 

value of fibre pull-out heights for all 0° plies in the scanned volume (results will be 

shown in Section 5). This distribution characterises objectively the amount of pull-

out in the translaminar fracture surface.  

At this point, we note that the pull-out distributions determined using this methodology 

represent the distance between the fracture surface of individual fibres and an average fracture 

plane of the corresponding ply – hereafter named “pull-out height”. Due to the hierarchical 

nature of a translaminar fracture surface (where an individual fibre protrudes from its 

neighbours within a small bundle, and that small bundle itself may protrude from its neighbours 

within a larger bundle), this pull-out height is different from the length over which individual 

fibres or bundles protrude from their neighbours in the fracture surface; the latter is commonly 

referred to as “pull-out length”. This difference between pull-out heights and pull-out lengths 

will be further explored in the model development presented next, and illustrated in Figure 4.  
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Figure 2: An illustrative workflow showing (a) virtual orthoslices, (b) 3D binary image, (c) fracture surface consisting of both 0° and 90° 

plies, (d) 2D projection of fracture surface, (e) the segmented 90° plies after applying the graph cut algorithm, (f) 2D projection of 

(e), (g) smoothed 90° plies after performing the morphological operations, (h) 2D projection of (g), (i) the segmented 0° plies after 

calibration, and (j) 2D projection of (i). (All dimensions in µm)  
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4 Model development to predict pull-out distributions 

4.1 Model background 

In this section, a brief description of the statistical micromechanical model for the fracture 

toughness of FRPs proposed by Pimenta and Pinho [9] is presented, upon which the present 

study is built. Detailed mathematical derivations and stress analyses can be found in the original 

paper [9]. 

Pimenta and Pinho established an analytical model to predict the translaminar fracture 

toughness with two underlying assumptions [9]: (i) the translaminar fracture surface of a 

composite is developed in a hierarchical failure process, where individual fibres and bundles 

fracture discretely at each hierarchical level (or scale); (ii) the fracture surface has a quasi-

fractal geometry i.e. repeating the same pattern of pull-out features across multiple scales (or 

levels). These assumptions are supported by the experimental evidence found in previous 

fractographic observations [1, 22]. 

Following the assumptions mentioned above, Figure 3 illustrates a schematic representation of 

a multi-level fracture surface; each level [𝑖] is a bundle that consists of a constant number of 

level-[𝑖 − 1] sub-bundles (or individual fibres, if 𝑖 = 1), of which one is pulled-out from the 

fracture plane defined by its neighbours. The constant number of sub-bundles in a bundle 

corresponds to the coordination number 𝑐 [9], which can depend on the fibre packing: for 

instance, 𝑐 = 7  for hexagonal and 𝑐 = 9 for square regular packings, as shown in Figure 3; in 

a real composite with random fibre packing, 𝑐 is considered as a mathematical parameter, and 

Pimenta and Pinho showed that the fracture toughness predicted by their model converged for  

6 ≤ 𝑐 ≤ 9 [9].  

In the quasi-fractal fracture surfaces idealised by Pimenta and Pinho, for each hierarchical level 

[𝑖], only the central bundle or fibre is significantly protruded from the plane formed by its 𝑐 −
1 co-planar neighbours. This gives rise to a distinct pull-out length, which is the distance 

between the fracture surface of the protruded fibre/bundle and that of the remaining (𝑐 − 1) 

neighbours, as shown in Figure 3. For each hierarchical level, this pull-out length, ℒpo
[𝑖]

, is a 

stochastic variable whose Cumulative Distribution Function (CDF) is calculated by Pimenta 

and Pinho’s model, and expressed as follows: 

 

ℱpo
[𝑖]

(𝑙po
[𝑖]

) = Pr (ℒpo
[𝑖]

≤ 𝑙po
[𝑖]

). (5) 

 

Pull-out length distributions were derived [9] by combining (i) a detailed analysis of the 

stress field on a generic level-[𝑖] bundle prior to pull-out with (ii) statistical bundle strength 

distributions calculated through a hierarchical scaling law [23]. In their original model, 

Pimenta and Pinho then use the CDF of pull-out lengths to calculate an average pull-out 

length for each hierarchical level, from which they estimate the frictional energy dissipated 

during the pull-out process, based on Eq. 1. The overall translaminar fracture toughness of 

the composite is then obtained by summing the contributions from pulling-out fibres and 

bundles at all hierarchical levels in the fracture surface, as well as the contributions of energy 

dissipated through debonding (which depends on the mode-II interfacial toughness 𝐺IIc) of 

those fibres and bundles [9]. See Table 1 for all the inputs required by the model.  
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A key feature of Pimenta and Pinho’s translaminar toughness model is the fact that it can 

predict experimentally-observed size effects, i.e. an increase in translaminar fracture toughness 

with increasing ply thickness [17]. This is because distinct ply thicknesses will have distinct 

numbers of fibres across the ply, therefore leading to distinct numbers of hierarchical levels on 

the fracture surface. Assuming a square packing of fibres (as shown in Figure 3 (b)) with a 

diameter 𝜙f and fibre volume fraction 𝑉f, the maximum hierarchical level present in a ply of 

thickness 𝑡ply is estimated as 

𝑖max = log𝑐 [
(𝑡ply)

2

𝜋 ⋅ (𝜙f)2

4 ⋅ 𝑉f

]. (6) 

 

  

(a) Hexagonal fibre packing with 𝑐 = 7. (b) Square fibre packing with 𝑐 = 9. The pull-

out height shown corresponds to the red 

fibre with the fracture surface furthest away 

from the yellow datum surface, i.e. with  

ℋpo = ℒpo
[0]

+ ℒpo
[1]

+ ℒpo
[2]

 

Figure 3: Quasi-fractal idealisations of translaminar fracture surfaces [9]. 

level–[0] bundle

level–[1] bundle

level–[2] bundle

level–[3] bundle
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Table 1: Properties of the fibre and interface (model inputs) used in this study 

 Property Model input 

Geometrical 

Fibre diameter 𝜙f (μm) 7 [24]   

Fibre volume fraction  𝑉f (%) 58.9 [18]   

Cured ply thickness 𝑡ply (mm) 0.184 [18]   

Weibull 

strength 

parameters 

Scale parameter 𝜎0
f(GPa) 4.43 [5]   

Shape parameter 𝑚 3.65 [5]   

Gauge length 𝑙r (mm) 30 [5]   

Interfacial 

Temperature 23°C -55°C 90°C 

Nominal frictional pull-out stress 𝜏𝜇
0 (MPa) 10.0 [9, 25] 15.0a 5.7a 

Interfacial shear strength 𝜏SL (MPa) 109.0 [18] 140.7b 76.8b 

Mode II fracture toughness 𝐺IIc (kJ/m2) 100%c 130%c 67%c
  

a 𝜏𝜇
0 for -55°C and 90°C were predicted based on the analytical solution provided in [5], which 

accounts for the effect of temperature on the interfacial pressure (due to different coefficients 

of thermal expansion of the fibre and matrix). 

b 𝜏SL for -55°C and 90°C were estimated assuming the same proportional effect of temperature 

on the experimentally determined shear strength as reported in [5]. 

c 𝐺IIc was measured in [5] for a similar type of aerospace-grade composite material. Due to the  

commercial sensitivity of the material used in [5], a normalised 𝐺IIc was used here. 

 

4.2 Methodology for predicting pull-out distributions 

4.2.1 Challenges and strategy  

The idealised hierarchical fracture surface of a single 0° ply embedded in a laminate (as in the 

compact tension specimens tested experimentally) is formed by fibres broken at different 

heights. For each fibre on the fracture surface, the total pull-out height is the combination of 

stochastic pull-out lengths from several hierarchical levels, as exemplified in Figure 4. 

Predicting the pull-out height distribution of this stochastic hierarchical fracture requires 

overcoming the following challenges, which will be done over the subsequent subsections: 

(i) Systematically identifying the relationship between stochastic pull-out heights and 

the pull-out lengths at the different hierarchical levels, for any value of 𝑐 and 𝑖max; 

(ii) Obtaining stochastic distributions of the pull-out lengths at the different hierarchical 

levels present in the fracture surface (i.e. ℒpo
[0]

, ℒpo
[1]

, … ℒpo
[𝑖max−1]

, ℒpo
[𝑖max]

); 

(iii) Defining a generic algorithm to compute stochastic distributions of pull-out heights 

in a computationally efficient way. 

 

4.2.2  Relationship between pull-out heights and pull-out lengths 

To address the first challenge, let us analyse a fracture surface of level 𝑖max = 3  and 

coordination number 𝑐 = 9, as shown in Figure 4. For this particular case, Figure 4 defines the 
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relationship between (i) the pull-out height (ℋpo) of every fibre in the fracture surface and 

(ii) the pull-out lengths of the individual levels which are present in the fracture surface (i.e. 

ℒpo
[0]

, ℒpo
[1]

, ℒpo
[2]

, and ℒpo
[3]

). Using this particular case as a supporting example, we will now 

generalise the relationship between ℋpo and ℒpo
[𝑖]

 for a generic case. 

For each fibre on a fracture surface, its pull-out height  ℋpo results from a combination of pull-

out lengths of different hierarchical levels; it is then useful to identify whether a given 

hierarchical level 0 ≤ 𝑖 ≤ 𝑖max contributes or not to the pull-out height of a particular fibre. 

This identification can be done by defining a binary variable 𝜉[𝑖] : if 𝜉[𝑖] = 1 , then the 

hierarchical level 𝑖  contributes to the pull-out height of the particular fibre analysed; if  

𝜉[𝑖] = 0, it does not. Therefore, each pull-out height is characterised by a set of 𝑖max + 1 binary 

variables 𝜉[𝑖] , with 𝑖 = {1, 2, … , 𝑖max − 1, 𝑖max} . This allows us to define a relationship 

between pull-out height and pull-out lengths, valid for every fibre on the fracture surface 

regardless of which hierarchical levels contribute to its pull-out height, as follows:  

 

ℋpo

[𝜉[𝑖max],𝜉[𝑖max−1],…,𝜉[1] ,𝜉[0]]
 

= |±𝜉[𝑖max] ⋅ ℒpo
[𝑖max]

± 𝜉[𝑖max−1] ⋅ ℒpo
[𝑖max−1]

± ⋯ ± 𝜉[1] ⋅ ℒpo
[1]

± 𝜉[0] ⋅ ℒpo
[0]

| 

= |∑ ±𝜉[𝑖] ⋅ ℒpo
[𝑖]

𝑖max

𝑖=0

| . 

(7) 

 

We call the set of binary variables Ξ[𝑘] = [𝜉[𝑖max], 𝜉[𝑖max−1], … , 𝜉[1], 𝜉[0]] defining the pull-out 

height ℋpo
Ξ  its “combination” of pull-out lengths. The subscript 𝑘 will be used whenever it is 

necessary to identify the number of hierarchical levels actually contributing to the pull-out 

height in a given combination (and omitted when otherwise), and it can be calculated as  

 

𝑘 = ∑ 𝜉[𝑖]

𝑖max

𝑖=0

 . (8) 

 

One extreme case for a combination is Ξ[0] = [0,0, … ,0,0] and 𝑘 = 0, which corresponds to a 

fibre with no contributions to its (zero) pull-out height; the other extreme case corresponds to 

a combination of Ξ[𝑖max+1] = [1,1, … ,1,1] and 𝑘 = 𝑖max + 1, which represents a fibre with all 

individual hierarchical levels contributing to its pull-out height. In a fracture surface with 

maximum hierarchical level 𝑖max , there will be 𝑖max + 1  binary variables 𝜉[𝑖]  and, 

consequently, a total of 2𝑖max+1 different combinations Ξ[𝑘], with 0 ≤ 𝑘 ≤ 𝑖max + 1; for the 

particular case of 𝑖max = 3, the 16 different combinations are shown in Figure 4. 

While the idealised fracture surface shown in Figure 4 features all pull-outs in the positive 𝑥-

direction, Eq. 7 captures the (statistical) symmetry of real fracture surfaces, where pull-outs at 
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each individual level can occur in the positive or negative directions. This symmetry will not 

affect the energy dissipated in the formation of the fracture surfaces (since both debonding and 

friction areas are not affected by the direction of pull-out, as previously analysed) [5, 9]. 

However, to calculate pull-out height distributions, it is vital to consider that pull-out heights 

result from both the addition and subtraction of pull-out lengths of individual levels, as 

considering additions (or subtractions) only would overestimate pull-out heights (note that both 

ℋpo and ℒpo
[𝑖]

 are defined as always positive, regardless of the direction of pull-out). 

In addition to the relationship between pull-out heights and individual pull-out lengths defined 

in Eq. 7, to generate a statistical distribution of ℋpo it is also necessary to identify the frequency 

of the different combinations Ξ. In total, for a fracture surface of level 𝑖max with coordination 

number 𝑐, all combinations together must contribute with a total of 𝑐𝑖max+1 pull-out heights 

(since that is the number of fibres in the idealised fracture surface of that level, as illustrated in 

Figure 4). According to the Binomial Theorem, this number can be decomposed as follows: 

 

𝑐𝑖max+1 = [(𝑐 − 1) + 1]𝑖max+1 

= (𝑐 − 1)𝑖max+1 + (𝑖max + 1) ⋅ (𝑐 − 1)𝑖max
+ 𝒞𝑖max−1

𝑖max+1 ⋅ (𝑐 − 1)𝑖max−1 + ⋯

+ 𝒞2
𝑖max+1 ⋅ (𝑐 − 1)2 + (𝑖max + 1) ⋅ (𝑐 − 1) + 1 

= ∑ 𝒞𝑘
𝑖max+1 ⋅

𝑖max+1

𝑘=0

 𝜈[𝑘], where 𝜈[𝑘] = (𝑐 − 1)𝑖max+1−𝑘 . 

(9) 

 

In this equation, the coefficient 𝒞𝑘
𝑖max+1 is the binomial coefficient, or the number of distinct 

𝑘 −combinations (in the combinatorics sense, where 𝑘 is the number of levels contributing to 

the pull-out height of a given fibre) from a set with 𝑖max + 1 elements (i.e. the set of binary 

variables 𝜉[𝑖]). The factor 𝜈[𝑘] = (𝑐 − 1)𝑖max+1−𝑘 is the number of fibres which have a unique 

combination Ξ[𝑘], i.e. the frequency of each individual 𝑘 −combination. 

Applying the definition of frequency 𝜈[𝑘]  in Eq. 9 to one extreme case, the combination  

Ξ[𝑖max+1] = [1,1, … ,1,1] occurs (𝑐 − 1)0 = 1 time; this means that there is only one fibre on 

the fracture surface with all individual hierarchical levels contributing to its pull-out height. 

The other extreme case, with Ξ[0] = [0,0, … ,0,0], occurs (𝑐 − 1)𝑖max+1 times; this means that 

there is a fraction of [(𝑐 − 1) 𝑐⁄ ]𝑖max+1 fibres with zero pull-out height on the fracture surface. 

Table 2 defines the different combinations and their frequency for a generic fracture surface 

with maximum hierarchical level 𝑖max and coordination number 𝑐; for the particular case of 

𝑖max = 3 and 𝑐 = 9, the frequencies of the different combinations are shown in Figure 4.  
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Figure 4: Idealised hierarchical fracture surface of a single 0° ply embedded in a laminate, with 𝑐 = 9 and 𝑖max = 3, thus with a total of 

𝑐𝑖max+1 = 94 fibres. There are 2𝑖max+1 = 16 distinct expressions to calculate the pull-out height ℋpo
Ξ , and the same number of 

corresponding combinations Ξ = [𝜉[3], 𝜉[2], 𝜉[1], 𝜉[0]]. There is a single (𝒞0
4 = 1) combination with no contributing individual levels 

(i.e. 𝑘 = 0 and Ξ[0] = [0000]), 𝒞1
4 = 4 distinct combinations with 𝑘 = 1 contributing individual levels, 𝒞2

4 = 6 distinct 

combinations with 𝑘 = 2 contributing individual levels, 𝒞3
4 = 4 distinct combinations with 𝑘 = 3 contributing individual levels, 

and a single (𝒞4
4 = 1) combination with all contributing individual levels (i.e. 𝑘 = 4 and Ξ[4] = [1111]). The frequency of each 

𝑘 −combination Ξ[𝑘] is shown as 𝜈[𝑘]. Note that all fibres with 𝜉[0] = 0 are surrounded by matrix fractured at the same height and 

thus represented by the same colour as the fibre itself.  
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Table 2: Definition of the relationship between pull-out lengths and pull-out heights, for an idealised fracture surface with generic maximum 

level 𝑖max + 1 and coordination number 𝑐.  

Number of levels contributing 

to the pull-out height, 𝑘 

No. distinct combinations 

( 𝒞𝑘
𝑖max+1  represents the 

binomial coefficient) 

Combination Ξ[𝑘] of pull-out lengths Expression to calculate pull-out height  

from individual-level pull-out lengths 

Frequency  

(no. fibres within 

total of 𝑐𝑖max+1) 
𝜉[𝑖max] 𝜉[𝑖max−1] … 𝜉[1] 𝜉[0] 

𝑘 = 0 𝒞0
𝑖max+1 = 1 0 0 … 0 0 ℋpo

[00…00]
= 0 (𝑐 − 1)𝑖max+1 

𝑘 = 1 𝒞1
𝑖max+1 = 𝑖max + 1 0 0 … 0 1 ℋpo

[00…01]
= ℒpo

[0]
 (𝑐 − 1)𝑖max

 

0 0 … 1 0 ℋpo
[00…10]

= ℒpo
[1]

 (𝑐 − 1)𝑖max
 

0 1 … 0 0 ℋpo
[01…00]

= ℒpo
[𝑖max−1]

 (𝑐 − 1)𝑖max
 

1 0 … 0 0 ℋpo
[10…00]

= ℒpo
[𝑖max]

 (𝑐 − 1)𝑖max
 

𝑘 = 2 𝒞2
𝑖max+1 0 0 … 1 1 ℋpo

[00…11]
= |     ℒpo

[1]
     ±      ℒpo

[0]
     | (𝑐 − 1)𝑖max-1

 

0 1 … 0 1 ℋpo
[01…01]

= |ℒpo
[𝑖max−1]

±      ℒpo
[0]

     | (𝑐 − 1)𝑖max-1
 

1 0 … 0 1 ℋpo
[10…01]

= |  ℒpo
[𝑖max]

  ±      ℒpo
[0]

     | (𝑐 − 1)𝑖max-1
 

0 1 … 1 0 ℋpo
[01…10]

= |ℒpo
[𝑖max−1]

±      ℒpo
[1]

     | (𝑐 − 1)𝑖max-1
 

1 0 … 1 0 ℋpo
[10…10]

= |  ℒpo
[𝑖max]

  ±      ℒpo
[1]

     | (𝑐 − 1)𝑖max-1
 

1 1 … 0 0 ℋpo
[11…00]

= |  ℒpo
[𝑖max]

  ± ℒpo
[𝑖max−1]

| (𝑐 − 1)𝑖max-1
 

𝑘 𝒞𝑘
𝑖max+1       (𝑐 − 1)𝑖max+1−𝑘 

𝑘 = 𝑖max 𝒞𝑖max
𝑖max+1 = 𝑖max + 1 1 1 … 1 0 ℋpo

[11…01]
= |ℒpo

[𝑖max]
± ℒpo

[𝑖max−1]
± ⋯ ± ℒpo

[1]
±   0  | (𝑐 − 1)1 

1 1 … 0 1 ℋpo
[11…01]

= |ℒpo
[𝑖max]

± ℒpo
[𝑖max−1]

± ⋯ ±   0  ± ℒpo
[0]

| (𝑐 − 1)1 

1 0 … 1 1 ℋpo
[10…11]

= |ℒpo
[𝑖max]

±        0       ± ⋯ ± ℒpo
[1]

± ℒpo
[0]

| (𝑐 − 1)1 

0 1 … 1 1 ℋpo
[01…11]

= |     0     ± ℒpo

[𝑖max−1]
± ⋯ ± ℒpo

[1]
± ℒpo

[0]
| (𝑐 − 1)1 

𝑘 = 𝑖max + 1 

 
𝒞𝑖max+1

𝑖max+1 = 1 1 1 … 1 1 ℋpo
[11…11]

= |ℒpo
[𝑖max]

± ℒpo
[𝑖max−1]

± ⋯ ± ℒpo
[1]

± ℒpo
[0]

| (𝑐 − 1)0 = 1 
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4.2.3 Stochastic distributions of pull-out lengths  

The second challenge identified in Section 4.2.1 will be addressed by performing an inverse 

transform sampling method on the cumulative distribution functions of pull-out lengths 

ℱpo
[𝑖]

(𝑙po
[𝑖]

)  predicted by Pimenta and Pinho’s original toughness model [9]. This method 

requires the following steps: 

(i) Implementing Pimenta and Pinho’s model to compute the numerical cumulative 

distribution function for pull-out length ℱpo
[𝑖]

(𝑙po
[𝑖]

) for each level-[𝑖] (see Figure 

5 (a)). 

 

(ii) For each hierarchical level 0 ≤ 𝑖 ≤ 𝑖max , calculate a set of 𝜂[𝑖]  uniformly 

distributed random variables in the interval [0,1], i.e. 𝒰~Unif[0,1], where 𝜂[𝑖] is the 

number of stochastic pull-out lengths to be sampled according to ℱpo
[𝑖]

(𝑙po
[𝑖]

) (which 

will be defined in the next paragraph). 

 

(iii) Use the numerical definition of ℱpo
[𝑖]

(𝑙po
[𝑖]

) calculated in (i) to map from the 𝜂[𝑖] 

uniform random variables 𝒰  to 𝜂[𝑖] stochastic pull-out lengths ℒpo
[𝑖]

, as ℒpo
[𝑖]

=

ℱpo
[𝑖]−1

(𝒰) (as illustrated in Figure 5(b)).  

 

To generate an entire fracture surface of maximum level 𝑖max + 1, the number of times that the 

pull-out length distribution of an individual level 𝑖 needs to be sampled for random pull-out 

lengths (𝜂[𝑖]) is the sum of the frequencies of all combinations including the contribution of 

that level, i.e. with 𝜉[𝑖] = 1. According to the following considerations, 

- the frequency of each combination Ξ[𝑘] is equal to 𝜈[𝑘] = (𝑐 − 1)𝑖max+1−𝑘, as defined 

in Eq. 9, 

- these frequencies must be summed for all combinations with 1 ≤ 𝑘 ≤ 𝑖max + 1, (i.e. 

excluding 𝑘 = 0, since there is no need to sample pull-out lengths for the all-zeros 

combination, which has a zero pull-out height ℋpo
[0,0,…,0,0]

= 0), 

- the number of 𝑘 −combinations containing 𝜉[𝑖] = 1  is 𝒞𝑘−1
𝑖max

, corresponding to the 

selection of the remaining 𝑘 − 1 contributing levels (in addition to level 𝑖) from the set 

of 𝑖max available levels, 

then 𝜂[𝑖] is independent of 𝑖, and can be defined as 

 

𝜂 = ∑ 𝒞𝑘−1
𝑖max

⋅

𝑖max+1

𝑘=1

 (𝑐 − 1)𝑖max+1−𝑘 and, replacing 𝑘′ = 𝑘 − 1, 

= ∑ 𝒞𝑘′
𝑖max

⋅

𝑖max

𝑘′=0

 (𝑐 − 1)𝑖max−𝑘′
 which, according to the Binomial Theorem, 

= 𝑐𝑖max
. 

(10) 
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Figure 5: Generation of stochastic distributions of pull-out lengths as explained in Section 

4.2.3.  

(a, left) Cumulative distribution functions of pull-out length for distinct 

hierarchical levels, calculated as explained in Point (i). 

(b, right) Inverse transform sampling method for a single hierarchical level as 

explained in Points (ii)-(iii).    

 

4.2.4 Calculation of pull-out height distributions and model implementation 

Sections 4.2.2 and 4.2.3 describe the methodology to generate a set of 𝑐𝑖max+1 stochastic values 

of pull-out heights ℋpo; this set corresponds to the statistical cumulative distribution function 

predicted by the model, which can be represented as   

 

ℍ(ℎpo) = Pr(ℋpo ≤ ℎpo). (11) 

 

This methodology can be implemented efficiently with the algorithm shown in Figure 6, thus 

addressing the third challenge identified in Section 4.2.1. 
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Figure 6: Flowchart with the algorithm implementation of the model to predict pull-out 

distributions described in Section 4. 

 

  

IV. Generation of stochastic distributions of pull-out heights (Section 4.2.2)

IV.1: Initialisation

I. Definition of input variables

I.1: Fibre strength

II. Preliminary calculations

III. Generation of stochastic distributions of pull-out lengths (Section 4.2.3)

Frequency of given combination : 

Binary variables in given combination : 

IV.2: For all combinations: 

Number of levels contributing to given : 

End point for given in : 

For all hierarchical levels contributing to given : , if 

End point for given in :

Random numbers in : 

Range for given in : 

Range for given in : 

Adding to :

Start point for next in : 

Start point for next in : 

I.2: Interfacial properties I.3: Quasi-fractal surface

II.1: Maximum hierarchical level 

II.3: Number of pull-out lengths for each level: 

III.1: Pull-out length distributions (Pimenta and Pinho, 2014)

II.2: Vector of hierarchical levels: 

III.2: Inverse transform sampling (ITS)

Generation of random numbers in : 

ITS of stochastic pull-out lengths: 

Start point for : Start point for non-zero :Zeros pull-out heights vector:
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4.3 Predicting temperature’s effect on the translaminar fracture toughness and pull-out height 

distributions 

Pimenta and Pinho’s model assumes that stresses are constantly redistributed on the fibres and 

bundles bridging the crack front during the translaminar failure process, as the failure evolves 

down the hierarchical levels (i.e. from level-[𝑖 + 1] to level-[𝑖] and then level-[𝑖 − 1]). Stress 

analyses [9] have shown that the interfacial properties (including shear strength 𝜏SL, mode-II 

toughness 𝐺IIc , and frictional stress 𝜏𝜇 ) are key parameters in determining how stresses 

redistribute around broken fibres and bundles, which consequently influence the model 

prediction of the energy dissipated through debonding and pull-out. Given that these interfacial 

properties are substantially affected by variations in temperature [5], using temperature-

dependent values of 𝜏Sl , 𝐺IIc , and 𝜏𝜇  as model inputs will generate temperature-dependent 

values of the translaminar fracture toughness and pull-out length distributions, as model 

outputs.  

The relationship between interfacial properties and temperature has been derived in our 

previous study [5] on a similar type of aerospace CFRP composite, through a combination of 

experiments and micromechanical models. We assume that the same proportional effect 

previously verified for interfacial properties as a function of temperature also applies to the 

current material studied in this present paper. Table 1 has listed the corresponding values of 

𝜏Sl, 𝐺IIc, and 𝜏𝜇 for the three testing temperatures considered here, which are used as inputs to 

account for the temperature’s effect on the translaminar fracture toughness and pull-out 

height distributions.  

 

5 Results  

5.1 Effect of temperature on translaminar fracture toughness 

Representative load-displacement curves from the compact tension tests at three different 

temperatures (Figure 7) clearly show increasing nonlinearity with rising temperature.  

The translaminar fracture toughness of the laminate measured at different temperatures is 

shown in Figure 8, which indicates a strong R-curve effect for all conditions. The propagation 

translaminar toughness was estimated by averaging the peak points of each short segment in 

the plateaued region of the R-curves for the -55°C and 23°C tests. At 90°C, the R-curves 

exhibited a continuous rising trend up to a crack growth of approximately 4 mm, after which 

there were no valid data points due to compressive failure at the unnotched region; therefore, 

the maximum observed value for toughness (represented as a propagation line in Figure 8 (c)) 

indicates a lower bound for the propagation translaminar toughness at 90°C. 

The 0°-ply-level translaminar fracture toughness for crack propagation was calculated based 

on the rule of mixtures in Eq. 4 and is presented in Table 3. The results show that elevated 

temperature leads to an increase in translaminar fracture toughness. The translaminar fracture 

toughness exhibited an almost threefold increase with temperature from -55°C to 90°C. 
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Figure 7: Representative load-displacement curves for compact-tension testing under each 

temperature.  

 

 

 

Figure 8: R-curves obtained under each temperature. The horizontal line indicates the 

estimated average propagation toughness.  

 

Table 3. Summary of 0°-ply-level translaminar toughness, 𝐺Ic
0 , at different temperatures (the 

value for 90°C represents a lower bound of the apparent experimental value 

associated with this compact tension specimen geometry). 

Temperature -55°C 23°C 90°C 

0°-ply-level translaminar toughness (kJ/m2) 271 ± 18 411 ± 35 788 

 

Figure 9 shows the comparison between the experimentally determined translaminar fracture 

toughness and the corresponding model predictions for each temperature. While the model 

prediction is in good agreement with the experimental results at 23°C, it slightly overestimates 

and considerably underestimates the translaminar fracture toughness at -55°C and 90°C 

respectively. These differences will be discussed in Section 6.3. 
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Figure 9: Comparison between model predictions and experimental results of 𝐺I
0 for each 

temperature.  

5.2 3D visualization of fracture surfaces and quantification of pull-out heights 

Figure 10 shows the pull-out height mapped on the fracture surfaces created under three 

different temperatures, following the computed-tomography scanning and post-processing 

methodology detailed in Section 3.2. The fracture surfaces clearly show that, under elevated 

temperature, fibre pull-out becomes significantly more extensive. 

 

 

Figure 10: 3D visualization of pulled-out fibres and bundles developed on 0° plies for 

each temperature. (All dimensions in µm) 

 

 

5.3 Comparison of model predicted and experimentally measured pull-out height distributions  

The absolute values of the surface heights in Figure 10 were translated into the cumulative 

probability curves in Figure 11, where experimental and predicted results are compared for all 

three temperatures. The experimentally measured pull-out heights were distributed within a 

range of pull-out heights up to 1.2 mm for -55°C, 1.6 mm for 23°C, and 2.5 mm for 90°C. In 

comparison, the model predicts that 89.0% of pull-out heights are below 1.2 mm for -55°C, 

85.3% below 1.6 mm for 23 °C, and 85.2% below 2.5mm for 90 °C respectively, therefore 
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resulting in an overall accuracy of more than 85%. The model captures the trend of increasing 

pull-out heights with increasing temperature, and it also predicts pull-out heights in the same 

order of magnitude as observed in the experiments; however, the distributions predicted by the 

model have a tail with larger pull-out heights than those observed in the experiments, and also 

a different shape (these differences will be discussed in Section 6.2).  

 

 

Figure 11: Comparison between model prediction and experimental measurements of 

cumulative probability for pull-out lengths at each temperature.  

  

Considering that the experimentally-measured pull-out heights range between 0 and 3 mm in 

Figure 11, it would be interesting to show the relative probability of pull-out heights in that 

range. To this end, histograms in Figure 12 are plotted by grouping experimental/predicted data 

into bins of equal width (10 μm); each bin is plotted as a bar with its height corresponding to 

the percentage of data that falls in that range, thus indicating the frequency of certain pull-out 

heights. The experimental histograms are characterised by a peak located around relatively 

shorter pull-out heights followed by a tail that expands to longer pull-out heights; the height of 

the peak reduces while the length of the tail increases as the temperature increases. A similar 

trend can be observed in the model predictions, although some differences can be noted: 

- The predicted histograms have a vertical spike at ℎpo = 0; this corresponds to the large 

percentage of zero pull-out height predicted by the model (corresponding to the 

combination Ξ[0] = [0,0,0,0] ), which is also shown in the cumulative probability 

curves in Figure 11; 

- The predicted histograms have two peaks: a more prominent one at small pull-out 

heights (below 100 μm for all temperatures), and a less prominent one at larger pull-

out heights (between 0.8 and 2.6 mm).  
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Figure 12: Histograms of pull-out height distributions, which show the frequency of each pull-out height in the experimental measurements 

and model predictions for the three temperatures.   
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5.4 Effect of interfacial properties on the prediction of pull-out length distribution 

The model inputs associated with temperature-dependent interfacial properties (i.e. mode-II 

interlaminar toughness 𝐺IIc, pull-out frictional stress 𝜏𝜇, and interfacial shear strength 𝜏SL) are 

difficult to estimate, but they have a significant impact on the predictions not only for the 

propagation toughness [5], but also for pull-out height distributions. Therefore, Figure 13 is a 

sensitivity study showing the effect of the three interfacial properties on the predicted pull-out 

height distribution for specimens tested under 23°C. Figure 13 (a) shows that, with an 

increasing 𝐺IIc, both the first peak and the second peak become increasingly prominent, and 

closer to each other, with a smaller upper tail. As shown in Figure 13 (b), while 𝜏𝜇  has a 

relatively minor effect on the first peak, it strongly influences the second peak, which becomes 

more prominent and moves towards shorter pull-outs with increasing 𝜏𝜇. The opposite effect 

can be seen in Figure 13 (c), where the second peak moves into larger pull-out heights as 𝜏SL 

increases. 

 

 

 

Figure 13: Effect of interfacial properties on the predicted pull-out length distribution. The 

nominal interfacial properties used in this study correspond to the inputs for the 

23°C case. 

 

6 Discussion  

6.1 Methodology proposed to measure pull-out heights and experimental results 

This study has proposed a comprehensive approach to imaging and quantifying the fracture 

surfaces of compact tension specimens using high-resolution 3D images obtained by xCT. Such 

a quantitative analysis of fibre pull-out is implemented for the first time and gives more insights 

than the 2D analyses previously carried out in the literature [1, 4, 8, 9] in several aspects:  

(i) The pull-outs of fibres/bundles are stochastic, multiscale and hierarchical in nature. 

While local inspection of small regions by 2D imaging could potentially introduce 

statistical and scale biases, the global and 3D nature of xCT imaging, together with 

the objective data-processing methodology proposed in Section 3.2, address this 

difficulty by extracting the full 3D morphological information of a representative 

fracture surface.  

(ii) The quantitative analysis of xCT images provides an accurate map of the varying 

pull-out heights across the scanned fracture surface and reveals the effect of 

temperature on the pull-out height distributions.  

(iii) This approach could be applied to other studies: for instance, it would be useful to 

do a comparative study on the pull-out height distributions in FRPs with different 

fibres, matrices, or interfaces. This would provide quantitative knowledge of the 
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pull-out toughening mechanism, which is fundamental to the design of tougher 

composites. 

The distributions of pull-out heights in Figure 11 show much longer pull-outs than those 

predicted in the literature [7], which is probably because most of the models [8, 16, 17] were 

proposed by considering the pull-out of individual fibres only, which tend to occur with short 

lengths. However, it is clearly shown in Figure 2 that bundles with various sizes are pulled-out. 

This highlights the importance of considering the entire range of pulled-out bundles in the 

present model, as their heights can potentially cover multiple length scales. 

It is worth mentioning that, due to the lack of image contrast and morphological features, pixels 

at the 0° and 90° plies interfaces are easily mislabelled as belonging to the wrong ply, as shown 

in Figure 2(e). This clearly exemplifies why simple segmentation algorithms cannot accurately 

define the boundaries between 0° and 90° plies. Although it is inevitable to introduce errors, 

the method proposed in Section 3.2 gives the best possible estimates of the distribution of pull-

out heights and offers a consistent way of data processing without manual (and, therefore, 

potentially biased) interventions. As the field of characterising the micro- and meso-structure 

of FRPs with xCT progresses further, this method can be benchmarked against others, in terms 

of computational efficiency and accuracy. 

As mentioned in Section 3.1, in total there are more than 150,000 individual fibres in the 

scanned volume, which is equivalent to more than 300 level-[3] bundles (the largest bundle 

size considered in the model as indicated by Equation 6 and Figure 4).  Therefore, such large 

number of fibres in the scanned volume provides statistical significance to the present 

experimental observations. 

 

6.2  Methodology proposed to predict pull-out heights 

The present study has proposed a model to predict pull-out height distributions based on the 

analysis of quasi-fractal fracture surfaces. It is the first model that considers not only the 

stochastic pull-out length of individual fibres but also that of bundles with various sizes. The 

comparisons between the experimental data and model predictions indicate several important 

implications: 

(i) As shown in Figure 11, the cumulative probability curves for the experimentally 

measured pull-out heights increase smoothly for all three temperatures. By contrast, 

the model overpredicts both tails of the cumulative probability curves: it predicts a 

vertical increase at zero pull-out height up to nearly 60% probability (corresponding 

to the combination Ξ[0] = [0,0,0,0]  and a fraction of [(𝑐 − 1) 𝑐⁄ ]𝑖max+1  as 

explained in Section 4.2.2), whereas the rest of the curves follow a distribution with 

two peaks over a wider range of pull-out heights. This can be attributed to the 

model’s assumption of discrete hierarchical levels of pull-out across the range of 

scales in the fracture surface (see Figure 4), where only one out of 𝑐  fibres or 

bundles pull out from their neighbours; on the contrary, the experimental fracture 

surfaces feature pull-outs distributed continuously over the range of scales. 

Nevertheless, the effects of temperature observed experimentally – namely the 

increase in both average and variability of pull-out heights – is captured correctly 

by the model.  

(ii) The experimental cumulative probability curves in Figure 11 show that an increase 

in temperature has caused a larger average and larger variability for experimentally 

measured pull-out heights; this temperature dependence has been successfully 

predicted by the model, which suggests that the model captures the main 



26 

 

mechanisms governing the failure and pull-out processes. This effect of temperature 

on pull-out height distributions may be explained by the fact that interfacial 

properties vary with temperature – the shear strength 𝜏SL, the mode-II toughness 

𝐺IIc, and the frictional stress 𝜏𝜇 all decrease with increasing temperature [9] – which 

consequently affects the stress field during the debonding and pull-out process.  

(iii) The effect of each interfacial property on pull-out height distributions is further 

detailed in Figure 13. 

a. Pull-out heights are necessarily bound by debonding heights, which are largely 

dependent on 𝐺IIc. As 𝐺IIc increases, debonding is arrested, which subsequently 

restricts the development of pull-out, as shown in Figure 13(a).  

b. Once debonding has occurred, stress concentrations in bridging bundles (which will 

eventually form pull-outs) develop through friction. A large 𝜏𝜇  would impose a 

large stress gradient, and thus a small stress concentration length in the bridging 

bundle, within the debonded region [9]. Therefore, the debonded bridging bundles, 

which are likely to break in the region of stress concentrations, would fail with 

minimal pull-out lengths, if 𝜏𝜇  is large. Evidence for this can be seen in Figure 

13(b), where the second peak of pull-out heights moves to smaller values as 𝜏𝜇 

increases, while the first peak remains unaffected; this difference indicates that 

failure of the bridging fibres and bundles happens before debonding for small 

hierarchical levels (when stress gradients are affected by 𝜏SL rather than by 𝜏𝜇), but 

after debonding for large hierarchical levels. 

c. The increase in pull-out heights with increasing 𝜏SL  shown in Figure 13(c) is 

opposite to what would be expected just from a shear-lag analysis: a larger 𝜏SL 

would decrease the stress concentration length in bridging fibres and bundles before 

debonding, which should promote smaller pull-out heights. Instead, the governing 

effect is that an increase in 𝜏SL  leads to an increase in the average strength 

distributions of fibres and bundles [23], which promotes failure of bridging fibres 

and bundles at higher loads (when extensive debonds can be formed), consequently 

leading to longer pull-outs.  

These effects highlight the complex role of the fibre/matrix interface in controlling 

the pull-out height distribution.  

 

6.3 Model validation for translaminar fracture toughness 

As seen in Figure 9, the increasing trend of translaminar fracture toughness with temperature 

has been successfully captured by the model. A good agreement was found between the 

predicted and experimentally measured translaminar fracture toughness for 23°C, whereas 

there was a significant mismatch for 90°C (and, to a smaller extent, for -55°C). These 

differences may be explained by several reasons:  

(i)  There is a scarcity of available interfacial property data (including 𝜏SL and 𝐺IIc) for 

the studied material, especially at -55°C and 90°C, in the literature, which 

inevitably constrains the accuracy of the model predictions. The influence of 

interfacial properties has been quantified and discussed through a sensitivity 

analysis presented in our previous work [5]. 

(ii)  As discussed in [5], cross-ply compact tension specimens tested under high 

temperatures (e.g. 90°C) are susceptible to large-scale energy-dissipation 

mechanisms, such as shear non-linearity at the loading arms, and premature failure 

under compression at the back of the specimen. Consequently, the apparent fracture 
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toughness measured under those conditions is an overestimation of the actual 

translaminar fracture toughness of the composite (because it includes the energy 

dissipated by the shear non-linearity at the arms, which does not contribute to the 

translaminar fracture process). Conversely, the lack of a stable plateau in the R-

curves shown in Figure 8c indicates that the maximum energy release rate reached 

in the tests at 90°C is a lower bound of the apparent toughness (as indicated in the 

caption of Table 3). While it is impossible to know which of these two opposite 

effects is dominant, the very strong non-linearity shown in the load-displacement 

curve for the 90°C specimen suggests that the value of fracture toughness indicated 

in Table 3 and Figure 9 for 90°C testing is actually an overestimation of the real 

translaminar toughness of the material. 

(iii)  The present model considers debonding and pull-out as the main toughening 

mechanisms, while neglecting the presence of other energy-dissipation 

mechanisms associated with translaminar fracture (such as non-linear deformation 

of the matrix, fibre fracture, and stress redistribution near the crack tip). 

Nevertheless, the role of these other energy-dissipation mechanisms could become 

more significant with increasing temperature, giving rise to extra energy 

dissipation and therefore increasing the translaminar toughness. These 

unaccounted mechanisms could be additional reasons why the model 

underestimates the translaminar fracture toughness at 90°C. 

 

6.4 Relationship between the extent of fibre pull-out and translaminar fracture toughness 

The 3D fracture surfaces visualised in Figure 10, together with the fibre pull-out height 

distributions shown in Figure 11 and Figure 12, show that higher testing temperature led to a 

more extensive development of fibre pull-out, with more fibres protruded from the global crack 

plane and larger pull-out heights. The larger heights are consistent with the increasing trend of 

translaminar fracture toughness, and the mechanism can be explained as follows: (i) the 

exposure of composites to elevated temperatures can severely undermine the fibre/matrix 

interface (as evidenced by SEM images of the fibre/matrix interface [4, 26, 27]); (ii) weaker 

interfaces in turn provide less resistance to the interfacial debonding and subsequent pull-out 

process; (iii) therefore, longer pull-out lengths develop on the fracture surfaces formed under 

higher temperatures, which ultimately leads to a higher energy dissipation.  

It is interesting to note that, although the interfacial properties that govern energy dissipation 

(𝐺IIc and 𝜏𝜇) decrease with increasing temperature, they actually generate an increase in the 

translaminar fracture toughness of composites, due to the increase in pull-out (and debonding) 

heights. 

 

7 Conclusion 

The presented work provides a comprehensive study to understand the relationship between 

translaminar fracture toughness and pull-out height distribution based on the following 

experimental and modelling methodologies: 

• xCT was performed to obtain a detailed 3D image of the fracture surface, which 

accurately maps the stochastic pull-out heights over the scanned surface. An image 

processing method is proposed to quantify the pull-out height distributions using 

the tomography images. Such analysis is performed here for the first time and can 
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be exploited for future studies on the toughening mechanisms of different material 

systems. 

• This study presents the first analytical approach to predict the distribution of pull-

out heights accounting for the wide range of scales observed in fracture surfaces. 

By using the analogy of quasi-fractal fracture surfaces and applying the inverse 

transform sampling method, the stochastic pull-out lengths were generated for each 

hierarchical level, which were later combined in a computationally-efficient 

algorithm to compute the pull-out heights of individual fibres and bundles with 

various sizes. 

In order to validate model predictions against experimental measurements, cross-ply compact-

tension experiments were carried out under three temperatures: −55 °C, 23 °C, and 90 °C, 

which were followed by quantitative analysis of pull-out height distributions. The following 

concluding remarks can be drawn:  

• The model has successfully captured the trend of increasing pull-out lengths with 

increasing temperature (and, consequently, of translaminar fracture toughness) 

observed in the experiments.  

• The increase in the translaminar fracture toughness observed with increasing 

temperatures is strongly related to the more extensive fibre pull-out.  

• Compared to the cumulative probability of pull-out heights obtained from 

experiments, the model predictions resulted in accuracies of 89.0%, 85.3% and 

85.2% at −55 °C, 23 °C, and 90 °C respectively. 
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Appendix 

 

Figure 14: (a) a section of the 2D projection of fracture surface; (b) Superpixels generated 

after applying Simple Linear Iterative Clustering (SLIC) algorithm [19]; (c) An 

initial mask defined for the GrabCut algorithm [20]; (d) the segmented 0° plies 

and (e) the complementary segmented 90° plies.   

 

 


