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Abstract

The exact relationship between changes in myocardial microstructure as a result of heart

disease and the signal measured using diffusion tensor cardiovascular magnetic reson-

ance (DT-CMR) is currently not well understood. Computational modelling of diffusion

in combination with realistic numerical phantoms offers the unique opportunity to study

effects of pathologies or the efficacy of improvements to acquisition protocols in a controlled

in-silico environment. In this work, Monte Carlo random walk (MCRW) methods are used

to simulate diffusion in a histology-based 3D model of the myocardium. Sensitivity of

typical DT-CMR sequences to changes in tissue properties is assessed.

First, myocardial tissue is analysed to identify important geometric features and diffusion

parameters. A two-compartment model is considered where intra-cellular compartments

with a reduced bulk diffusion coefficient are separated from extra-cellular space by permeable

membranes. Secondary structures like groups of cardiomyocyte (sheetlets) must also

be included, and different methods are developed to automatically generate realistic

histology-based substrates. Next, in-silico simulation of DT-CMR is reviewed and a tool to

generate idealised versions of common pulse sequences is discussed. An efficient GPU-based

numerical scheme for obtaining a continuum solution to the Bloch–Torrey equations is

presented and applied to domains directly extracted from histology images. In order

to verify the numerical methods used throughout this work, an analytical solution to

the diffusion equation in 1D is described. It relies on spectral analysis of the diffusion

operator and requires that all roots of a complex transcendental equation are found. To

facilitate a fast and reliable solution, a novel root finding algorithm based on Chebyshev

polynomial interpolation is proposed. To simulate realistic 3D geometries MCRW methods

are employed. A parallel simulator for both grid-based and surface mesh–based geometries

is presented. The presence of permeable membranes requires special treatment. For this, a

commonly used transit model is analysed. Finally, the methods above are applied to study

the effect of various model and sequence parameters on DT-CMR results. Simulations

with impermeable membranes reveal sequence-specific sensitivity to extra-cellular volume

fraction and diffusion coefficients. By including membrane permeability, DT-CMR results

further approach values expected in vivo.
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Chapter 1

Introduction

Contents

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.1 Background

The heart is responsible for pumping blood through the vasculature of the body, ac-

complished by periodic synchronised contraction and relaxation of the cardiac muscle

cells (cardiomyocytes). This life-critical function is performed continuously from early

gestation, reaching a steady resting rate of 60 to 100 beats per minute in adults. Efficient

function of the heart as a pump is dependent on the complex microstructural arrangement

of the cardiomyocytes (Arts et al., 2003). An understanding of this microstructure and its

function in health and disease will be a powerful tool for discovering new diagnostic and

prognostic markers and developing new treatments.

The human cardiovascular system has been studied since ancient times (Aird, 2011). The

first accurate drawings of human hearts were performed by Leonardo da Vinci (Sterpetti,

2019), but it was not until 1628 that the concept of cardiology was introduced with William

Harvey’s ground-breaking book Exercitatio Anatomica de Motu Cordis et Sanguinis in

Animalibus∗.

Modern cardiology research primarily focuses on prevention and treatment of heart and

circulatory disease, or cardiovascular disease (CVD). According to official estimates (British

Heart Foundation, 2021) CVD is the number one cause of death worldwide and accounts

for 34% of deaths annually. Advanced medical imaging techniques like diffusion tensor

∗Latin for Anatomical Exercise on the Motion of the Heart and Blood in Animals.
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Figure 1.1: Left ventricular cardiomyocyte orientation in a normal (situs solitus, SS) and situs
inversus totalis (SIT) subject measured using DT-CMR. The helix angle (HA) varies from a left-
handed (negative HA) orientation in the epicardium smoothly through to a right-handed (positive
HA) in the endocardium in SS, but transitions between an SS-like arrangement in the apex to a
reversal (right-handed in the epicardium to left-handed in the endocardium) in the base in SIT.
[Reproduced with permission from (Khalique et al., 2018), Copyright American College of Cardiology
Foundation.]

cardiovascular magnetic resonance (DT-CMR) are necessary to better understand the

structure of both healthy and diseased hearts. For example in recent work with situs inversus

subjects Khalique et al. (2018) demonstrated unexpected differences in cardiomyocyte

orientation, shown in figure 1.1.

DT-CMR, or diffusion tensor imaging (DTI) as it is more generally known outside the

heart, is a non-invasive imaging modality that provides information on microstructural

tissue characteristics through macroscopic investigation (Nielles-Vallespin et al., 2020).

The technique is based on measuring the restriction and hindrance of the diffusion of water

molecules as a result of the microscopic structure of the tissue. In each imaging voxel,

which typically has a resolution of millimetres, the apparent diffusion behaviour can be

modelled by a 3 × 3 positive-definite rank-2 diffusion tensor (Basser et al., 1994). It is

commonly visualised as an ellipsoid or superquadric glyph (Ennis et al., 2005), whose
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Figure 1.2: Apparent diffusion of an ensemble of random walkers initially located at the origin.
All parameters have been non-dimensionalised. In the case of unrestricted diffusion (Left), the
mean squared displacement (MSD) can be represented by a circle (green) of unit radius. Next,
the walkers are confined by barriers (red) at x = ±1 and y = ±3. Their MSD is now significantly
reduced in the x-direction and their apparent diffusion is represented by an ellipse (Right) whose
axes align with those of the rectangular box.

shape, size, and orientation are dependent on the tensor’s three orthogonal eigenvectors

and corresponding eigenvalues, respectively. Analysis of the diffusion tensor properties

provides surrogate measures of the tissue microstructure from the measured data, which is

sensitive to changes in factors such as (average) cell size or orientation.

Consider an ensemble of diffusing particles in two dimensions, located initially at the

origin. The diffusive behaviour of these particles may be modelled as a Monte Carlo

random walk† that causes them to spread out randomly as seen in figure 1.2. In the

absence of barriers their distribution of positions or net displacement is isotropic, meaning

displacement is equally likely in every direction, and the mean square displacement (MSD)

is represented by a circle. By confining the walkers to the rectangular shape seen in the

figure their diffusion becomes more restricted in the x-direction than in y and this is

clearly visible from the MSD taking on an elliptical instead of a circular shape. This

two-dimensional example can be trivially extended to 3D, where the circle becomes a

sphere, the rectangular box a cuboid, and the ellipse an ellipsoid.

†Monte Carlo random walks form an integral part of this work and their details will be explained later
in chapter 5.
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The above Gedankenexperiment is the basis of DTI. In biological tissue the restriction is

caused by cell membranes and the MR experiment can be designed to provide a measurable

signal loss relating to the mean squared displacement. In the myocardium, the first

and second eigenvectors‡ of the diffusion tensor are aligned with the directions of least

restriction to diffusion. For myocardial tissue the first eigenvector has been demonstrated

to align with the cardiomyocyte orientation (Scollan et al., 2000), while the angle of the

second eigenvector (E2A) corresponds to that of the dominant direction of shear layers

separating groups of cardiomyocytes known as sheetlets (Nielles-Vallespin et al., 2017;

Smerup et al., 2009).

Current research is focused on investigating further clinical applications of DT-CMR.

These include application as potential biomarkers of disease such as tractography for

myocardial scar delineation (Mekkaoui et al., 2018), identification of disarray (Ariga et

al., 2019), sheetlet dysfunction (Deuster et al., 2016a; Khalique et al., 2020b), and the

investigation of novel congenital heart conditions (Khalique et al., 2018). The use of

diffusion imaging beyond the diffusion tensor model, which assumes Gaussian diffusion,

allows for non-Gaussian models (McClymont et al., 2017), which may provide insights

including into multiple populations of microstructural components within a voxel (Sosnovik

et al., 2009).

DT-CMR has a limited spatial resolution as a result of its low signal-to-noise ratio. This

reduces its usefulness, particularly in patients with a thinned myocardium or where small

regions of focal disease are expected. The use of spiral readouts (Gorodezky et al., 2019)

aims to improve resolution over the conventional single shot echo-planar imaging (EPI)

readout techniques. The need for repeated acquisitions along different diffusion-encoding

directions to bolster signal to noise ratio also leads to long scan times. Research is ongoing

into addressing these shortcomings via compressed sensing (Teh et al., 2020) and deep

learning–based denoising (Phipps et al., 2021). Motion compensated spin-echo approaches

as proposed by Welsh et al. (2015) may provide increased imaging efficiency, but are

less reliable when acquisitions are performed in diastolic cardiac phases. More advanced

approaches, providing both motion compensation and advanced diffusion schemes (b-

tensors), are being investigated (Lasič et al., 2020) for in-vivo cardiac imaging.

While geometric features associated with the eigenvectors are qualitatively understood,

the more subtle relationship between microstructural changes and the resulting diffusion

tensor are not easily quantified. For example, the exact mechanism for abnormal E2A in

hypertrophic cardiomyopathy (HCM) patients (Ferreira et al., 2014) is not clear. Other

microstructural disruptions common in diseases affecting the myocardium include changes

in extra-cellular volume fraction, cellular hypertrophy, and cardiomyocyte disarray. It

is not well understood what changes in DT-CMR parameters should be expected as a

‡The third eigenvector is determined by the cross-product of the first two and thus contains no additional
information.
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consequence of known pathological changes in myocardial microstructure, and hence the

detectability of expected microstructural abnormalities using DT-CMR remains unknown.

Computational modelling offers the unique opportunity to study these effects in a

controlled in-silico environment. With carefully designed simulations and appropriate

numerical phantoms, the sensitivity of DT-CMR to changes in the underlying microstructure

and confounding factors can be investigated deterministically. Lipinski (1990) was the

first to carry out Monte Carlo random walk simulations of extra-cellular diffusion in brain

tissues and biophysical modelling has gained considerable popularity since then (Jelescu

et al., 2020). Despite the potential of such methods, prior works applying computational

simulations of diffusion to the myocardium are few (Bates et al., 2017; Wang et al.,

2014). Models and simulations developed for other anatomical targets, for example in

neuroimaging (Fieremans et al., 2018) and musculoskeletal (Berry et al., 2018) DTI, are not

well-suited for translation to the cardiac microstructure due to different microstructural

features and morphology, and the acquisition methods and protocols typical used in

DT-CMR differ significantly from those used in other disciplines as a result of cardiac

motion.

1.2 Hypothesis

The aim of this project is to develop a computational DT-CMR framework that enables

the study of changes to the cardiac microstructure and acquisition techniques and their

effects on typical measures derived from DT-CMR data. This project will also investigate

the feasibility of and need for a high-fidelity microstructural model that includes hitherto

neglected features of the tissue. This will pave the road for future studies linking in-vivo

DT-CMR parameters to underlying pathological changes on a microscopic scale.

The research hypothesis can thus be formulated as follows:

Using a realistic virtual model (acquisition protocol; voxel size; intrinsic tis-

sue morphology and diffusion parameters) as input for Monte Carlo random

walk simulations allows for more realistic in-silico estimates of the DT-CMR

measures typically found in vivo.

From this hypothesis, the following three research objectives (ROs) are derived:

RO1 Create a virtual geometric model of myocardial microstructure that is based on

histology data of real tissue and contains a realistic representation of cardiomyocyte

shapes and their distribution and organisation in sheetlets.

RO2 Develop a Monte Carlo random walk simulator to solve for the behaviour of spins

undergoing diffusion in arbitrary environments and subject to DT-CMR imaging,

and verify its accuracy using numerical and analytical reference solutions.
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RO3 Study the sensitivity of DT-CMR measures to the underlying in-vivo tissue model

parameters (diffusion coefficient, membrane permeability, morphology of the geo-

metry) for common DT-CMR pulse sequences (spin echo and stimulated echo–based

sequences).§

1.3 Overview

The thesis is structured as follows:

Chapter 2 starts with a review of myocardial tissue geometry and function, followed by a

description of methods to generate a virtual substrate (RO1). This includes the collection

and labelling of microscopy images of histology and is further extended to automatic

synthesis of representative tissue without the requirements for a reference histological

image.

The fundamentals of DT-CMR are explained in chapter 3. The process of solving the

governing equations (RO2) is illustrated through development of a GPU-based algorithm

to efficiently obtain continuum solutions of the Bloch–Torrey equations.

Chapter 4 considers diffusion in 1D. Through spectral analysis of the diffusion operator,

an analytical solution for permeable layered media is derived that can serve as a reference

or ground truth solution to other methods in this work. Additionally, this reduction of the

tissue model to lower dimensions offers new insights into the mechanisms of diffusion and

membrane permeability.

Chapter 5 discusses diffusion as a Monte Carlo random walk. This simulation technique

is commonly used to efficiently model the diffusion of matter in complex environments.

However, the treatment of permeability is not well understood. A considerable part of

the chapter is dedicated to the analysis of membrane transit models to correctly treat

membrane transit.

Finally, chapter 6 addresses the last objective (RO3). By combining the techniques

developed in chapters 2 to 5 several parameter studies are carried out that vary tissue and

sequence parameters.

Conclusions and limitations are summarised and future work is discussed in chapter 7.

A list of publications that emerged from this work can be found in appendix A, while an

overview of available software and data is given in appendix B. Permissions for reproduction

of copyrighted material in this work are attached in appendix C.

§These model parameters and pulse sequences are defined later in this work.
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The Myocardium
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2.1 Introduction

The study of diffusion inside the myocardium requires an understanding of the myocardial

function and structure at a microscopic level. To perform realistic simulations of diffusion

within the myocardial microstructure as done in chapter 6, a substrate (virtual myocardium)

needs to be constructed that represents the true tissue to a sufficient degree.

This chapter first provides an overview of the structure, organisation, and function

of the myocardium (including parameters such as diffusion coefficient and membrane

permeability) in section 2.2. Next, the requirements and considerations for virtual tissue

substrates are discussed in section 2.3. Finally, different ways of generating these substrates

are described: by analysing and segmenting histology images (section 2.4) and from scratch

by synthesis (section 2.5).

2.2 Myocardial tissue

Figure 2.1 illustrates the cross-section of the human heart, cut along the horizontal long

axis through the left and right atria and ventricles. Standard nomenclature (Cerqueira
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Figure 2.1: Cross-section of a normal human
heart showing the atria, ventricles, septum, and
myocardial walls. The left ventricular myocar-
dium, designated as region of interest (ROI), is
the part of the heart considered in this work.
[Diagram modified from (ZooFari, 2010). This
graphic is licensed under the original CC BY-
SA 3.0 license terms.]

Figure 2.2: Helical orientation of cardiomyo-
cytes varies in the transmural direction, from
a −60° left-handed helical angle in the epi-
cardium to +60° in the endocardium. The
coordinate frame explains the definition of
helix angle (HA). [Reproduced with permission
from (Nielles-Vallespin et al., 2017), modified
to include a coordinate frame.]

et al., 2002) is used. This work is limited to considering the left ventricular myocardium at

the mid-ventricular level. While the basal region, apical region, atria, and right ventricle

are also of clinical interest, current in-vivo acquisitions are commonly limited to the

mid-ventricular region due to additional challenges in applying current imaging methods

elsewhere. The left ventricle, which drives oxygenated blood around the body, has the

greatest clinical significance (Khalique et al., 2020a). The myocardium (heart muscle

tissue) is bounded on the “inside” by the endocardium and on the “outside” by the visceral

serous pericardium, also known as epicardium.

As was famously observed by Pettigrew (1864) in his work describing the meticulous

dissection and drawing of cardiac muscle tissue, the long axes of the cardiac muscle

cells (cardiomyocytes) are arranged in a helical pattern around the ventricle—albeit

not in the form of continuous fibres as described in the original work. According to

Streeter et al. (1969) the orientation of the cardiomyocyte long axis varies continuously

in the transmural direction from an approximately −60° left-handed helical angle (HA,

measured relative to the circumferential direction) in the epicardium, smoothly through to a

circumferential orientation (HA = 0°) in the mesocardium, to a right-handed approximately

+60° helical arrangement in the endocardium. A schematic view of this can be seen in

figure 2.2. This arrangement is vital to the normal function of the heart. The distribution

of fibre orientations is responsible for torsion in the heart as it contracts and expands,

and this ensures that cardiomyocytes experience constant force everywhere (Young et al.,

2012).
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Figure 2.3: 3D confocal microscopy images acquired with fluorescent labelling of the cell mem-
branes (red) and nuclei (blue). Data was obtained from sections of porcine myocardium and the
annotations show some key features of myocardial microstructure. [Tissue and confocal images
were kindly provided by P. Sarathchandra and A. Scott.]

2.2.1 Cardiomyocyte morphology

Cardiomyocytes are the building blocks of the myocardium (Barnett, 2009). These cells

contract and relax with local synchrony to enable the heart muscle to pump blood. The

three-dimensional network of cardiomyocytes is best observed through confocal micro-

scopy (Price et al., 2014), as is done in figure 2.3.

A more schematic view is given in figure 2.4 (Braunwald et al., 1967). In the figure, (B–

D) show sketches of the functional composition of a cardiomyocyte, based on electron

micrographs. Actin and myosin filaments provide contractile force along the length of

the cell and are arranged into bundles of myofilaments (fibrils). Cardiomyocytes also

contain organelles and other sub-structures. Figure 2.4 (A) shows cardiomyocyte branching.

One cell may connect to several at the ends, forming a syncytium, with intercalated

discs acting as the cells’ end caps that separate one from the next. In this work only

individual cardiomyocytes are considered and their longitudinal connectivity is ignored,

essentially assuming impermeable intercalated discs. While more sophisticated geometries

with connected networks of cardiomyocytes are required for fully-realistic simulations, this

first-order approximation to the geometry shown in figure 2.4 (A) is deemed sufficient.

With the high spatial resolution of confocal imaging one can observe the size and shape

of the myocytes. Human∗ cardiomyocytes are typically around 120 µm long and 20 µm in

diameter (Campbell et al., 1989; Olivetti et al., 1996; Satoh et al., 1996). While an idealised

∗The cardiomyocytes found in the adult human heart are comparable in size to those of other mammals
often used as animal models: pigs, rabbit, rats, sheep (Bensley et al., 2016).
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Figure 2.4: Detailed sketches of the microscopic structure of cardiomyocytes: (A) Branching
of fibres, each containing a nucleus, separated by intercalated discs; (B) Schematic composition
of a fibre, which is enclosed by sarcolemma and primarily made of fibrils and mitochondria; (C–
D) Fibrils are made up of sarcomeres that in turn consist of myofilaments. [Reproduced with
permission from (Braunwald et al., 1967), Copyright Massachusetts Medical Society.]
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Figure 2.5: Three-dimensional reconstruction of ventricular tissue segmented from a stack of
confocal microscopy images: (a) Individual cardiomyocytes, in total 124; (b–d) Segmentation of
ECS (green), vasculature (red), fibroblasts (blue), and myocytes (black); (e) extra-cellular laminas
perpendicular to the epicardial surface. [Reproduced with permission from (Seidel et al., 2016),
Copyright Springer Nature.]

cell may be modelled as a simple cylinder, either with circular or square cross-section,

their actual shape is more complex (Bensley et al., 2016; Seidel et al., 2016). Recent

work by Seidel et al. (2016) on rabbit hearts has produced the segmented microstructure

seen in figure 2.5, which shows a broad range of cross-sections. The figure also shows

the composition of the extra-cellular space, which serves as a support network for the

myocytes.

The contents of the cardiomyocytes are enclosed by the cell membrane or sarco-

lemma (figure 2.4), which consists of a lipid bilayer containing protein-based channels. The

surface of the cell is dotted with T-tubules, which are regions of membrane diving into the

cell. Water molecules can diffuse through the lipid bilayer and, like other molecules, can

transit through specialised channels. Water passes through a family of channels known as

aquaporins (Rutkovskiy et al., 2013).

2.2.2 Mesostructural arrangement

In addition to the organised structure of cardiomyocytes, they themselves aggregate into

units known as sheets or sheetlets (Smerup et al., 2009). They are clearly visible in

large-scale wide-field microscopy images such as figure 2.6. Sheetlets are typically 8

to 12 cardiomyocytes thick and extend an undetermined distance in the perpendicular
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Figure 2.6: Widefield microscopy image showing the organisation of cardiomyocytes in sheetlets.
One such sheetlet is fully opaque, while the rest of the image is partially transparent. The porcine
histology was prepared with Masson’s trichrome which stains cardiomyocytes red and collagen blue
and is cut perpendicular to the cardiomyocyte long axis. [Original histology image kindly provided
by S. Nielles-Vallespin as part of the data set from (Nielles-Vallespin et al., 2017).]

directions. LeGrice et al. (1995a) report a thickness of 4± 2 cardiomyocytes, which seems

to contradict this observation. However, sheetlet boundaries are difficult to identify in

histology images (the source used in this work) as sectioning in preparation for imaging

tends to distort the structured arrangement.

As shown in figure 2.7 sheetlets are separated by perimysial connective tissue. These

collagen-lined shear layers are filled with extra-cellular fluid, allowing the sheetlets to slip

over each other as the heart contracts. This secondary structure is required in order to

translate the ≈8% radial thickening of cardiomyocytes during systole into the >35% radial

thickening of the myocardium with longitudinal shortening and torsion (Nielles-Vallespin

et al., 2017). Besides this important mechanical function (LeGrice et al., 1995b), the

alignment of sheetlets is also integral to the electrical function of the heart (Hooks et al.,

2007).

Sheetlets (or rather the shear layers separating them) can be observed through direc-

tional information in the plane orthogonal to the primary eigenvector. This is the same

plane as the imaging plane in figure 2.6. For that particular image, the preferred (second-

ary) direction of diffusion is approximately horizontal. This corresponds to the dominant

sheetlet orientation. Kung et al. (2011) observed two populations of sheetlet angles through

DT-CMR imaging, validated by histological analysis. This “two sheet” model warrants
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Figure 2.7: Cross-sectional view of myocardial sheetlets as seen from an electron micrograph.
The sheetlets are separated by perimysial connective tissue. The scale bar (bottom right) has
length 25 µm. [Reproduced with permission from (LeGrice et al., 1995a), Copyright The American
Physiological Society.]

further investigation.

Current research (Deuster et al., 2016a; Ferreira et al., 2014; Khalique et al., 2018) is

particularly interested in detecting changes in sheetlet orientation via the measurement of

E2A (orientation of the second eigenvector) through DT-CMR due to the insights that

it provides on the alteration of cardiac function on a microstructural scale in health and

disease. It is therefore essential to include this sheetlet structure in any model of the

myocardium.

2.3 Constructing a virtual model of the myocardium

Up to now the composition and geometry of the myocardium was described. This section

takes a more pragmatic approach and considers how a virtual model can approximate the

myocardium with sufficient accuracy. The aim of such a virtual model is to serve as an

input substrate for the numerical simulations carried out in this work. Focus is placed on

substrates constructed directly from histology, as this minimises model error and allows

the model substrate to be used for direct validation studies.
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Figure 2.8: Illustration of the bi-compartment model used in this work. Extra-cellular space (ECS)
is the contiguous space represented by ΩECS. Intra-cellular space (ICS) are regions (ΩICS)i embedded
in the ECS and separated by membranes Γi.

2.3.1 Compartment models

Let us consider two distinct compartment types as is commonly done in studies of biological

tissue (Fieremans et al., 2010; Kärger, 1985; Panagiotaki et al., 2012; Snaar et al., 1992;

Stanisz, 2003). A schematic is shown in figure 2.8. Intra-cellular space (ICS) consists of

distinct regions (ΩICS)i with infinitely thin boundaries Γi that separate them from the

extra-cellular space (ECS, ΩECS) that these regions are located in. In this work, all regions

of ICS are assumed to be non-overlapping and separated by ECS. For simulation substrates

in section 5.4.4 this is in fact required.

This two-compartment system is characterised by the shape of the restrictions Γ and

the relative volumes of the two domains. The extra-cellular volume fraction (ECV) is

formally defined as

ρ ≡
∫︁
ΩECS

dv∫︁
ΩICS∪ΩECS

dv
. (2.1)

From MRI measurements, C. Nguyen et al. (2015) and Wu et al. (2018) estimated values

of ECV to be in the range of 20 to 30% in healthy hearts.

Recall the cardiomyocyte morphology from section 2.2. For the purposes of modelling

the cells, the intra-cellular space is considered to be an isotropic homogenous region. This

ignores the intricate details in favour of a more manageable and easier to understand

geometry. In addition, the time scales of interest result in diffusion distances much larger

than these small structures. The diffusion processes may thus be modelled by a single

homogeneous bulk diffusion coefficient DICS. Due to the presence of these additional
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nanostructures, the value of DICS is expected to be less than that of water (DH2O). This

mesoscopic model of a reduced bulk diffusion coefficient accounts for the apparent hindrance

experienced in the compartment.

A similar approach is taken for the ECS, which may be interstitial or intravascular

tissue. The collagen that surrounds the cells is expected to cause hindrance that reduces

the effective bulk diffusion coefficient. Owing to the different levels of sub-microstructural

features, the ECS has a lower degree of restriction than ICS. Therefore:

DICS ≤ DECS ≤ DH2O (2.2)

The underlying diffusion coefficient for water DH2O is only dependent on the vis-

cosity (and thus temperature) of the fluid and is approximately equal to 3 µm2/ms at

body temperature and 2 µm2/ms at room temperature (Mills, 1973). The other two

compartment-specific diffusion coefficients (D0 is used as a placeholder when the type of

compartment is not specified or is otherwise clear from context) need to be estimated. In

ex-vivo MR experiments in rat hearts, Seland et al. (2007) observed two distinct apparent

diffusivities† at very short diffusion times. Because these times are slower than the expected

time needed for water to sense restriction by diffusion, the observed diffusivities can be

attributed to the intra- and extra-cellular diffusion coefficients of DICS = 1.2 µm2/ms

and DECS = 3 µm2/ms. Other authors (Garrido et al., 1994; Safford et al., 1978) have

found values in the range of 0.5 to 2.5 µm2/ms.

2.3.2 Exchange

Regarding the cell barriers Γi, the sarcolemma (recall figure 2.4) is considered to be a

homogeneous smooth (no T-tubules) permeable membrane of negligible thickness. Each is

characterised by a single permeability value κ (often also denoted as P ), which is constant

along Γi. Throughout this work the assumption is made that all cells have the same value

for κ, however this is not strictly necessary.

Membrane permeability has the units of velocity and thus dictates the effective speed

at which water (the permeate) can pass through the porous cell membrane. In this work

only the kinetics of the steady-state (equilibrium) exchange of H2O, which is described

and quantified by diffusional (as opposed to osmotic) permeability, are considered. The

permeability κ is an approximation of

κ ≡ lim
b→0,
Db→0

(︃
Db

b

)︃
, (2.3)

in the limit where both the reduced diffusion coefficient Db inside the membrane and its

thickness b approach zero (Powles et al., 1992).

†As described later in section 3.2.2, the apparent (observed) diffusivity depends on the imaging
parameters, primarily the diffusion time ∆. At short values for ∆, it approaches D0.
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Values for the cell membrane permeability are commonly estimated from the apparent

exchange rate (AXR) or mean intra-cellular lifetime τICS observed using diffusion MRI (Hills

et al., 1989; Lasič et al., 2011). Exchange rates are reported in a range of 6 to 30Hz (Coelho-

Filho et al., 2013; Seland et al., 2007), but have been found as high as 50Hz for healthy

leg muscles of rats (Sobol et al., 1991). For comparison, Landis et al. (1999) reports

κ = 0.013 µm/ms for human thigh muscle. An upper limit on the AXR can be placed as

that of the well-mixed erythrocytes (red blood cells, RBC). Literature values for τ−1
ICS of RBC

are reported to be around 100Hz (Herbst et al., 1989). Most cells have κ > 0.001 µm/ms,

and this value serves as a lower bound for permeable cells (Fieremans et al., 2010).

The exchange time constant τex (its inverse being the exchange rate) is related to the

cell membrane permeability (Reginald Waldeck et al., 1995) via

τex =
ρ

κ

V

S
. (2.4)

Here, the claustrophobia ratio V/S is the characteristic length C that relates the size of the

compartment Ωi (its volume V =
∫︁
Ω dv) to that of its membrane Γi (its surface area S =∮︁

Γ ds). Note that equation (2.4) is only valid for well-mixed cells, which applies to most

cell types (Springer et al., 2014; Strijkers et al., 2009) including cardiomyocytes (Bruvold

et al., 2007). In the limit κ → ∞ however, one must account for the diffusion time

inside the compartment (Meier et al., 2003, eqn. 14). The exchange time is related to the

intra-compartmental lifetimes (τICS and τECS) by volume-weighting with ECV (ρ) through

τex = ρτIC = (1− ρ)τEC . (2.5)

In 3D, the claustrophobia ratio is simply the volume to surface area ratio (V/S). For a

cylinder with radius R and height H, it is given by

C3D =
V

S
=

πR2H

2πRH + 2πR2
=

RH

2 (H +R)
. (2.6)

For lower-dimensional domains, this reduces to a circle with area A and perimeter P in 2D:

C2D =
A

P
=

πR2

2πR
=

R

2
. (2.7)

This is also recovered from C3D in the limit H →∞.

In a domain with multiple compartments of different sizes the values must be averaged

correctly. The mean claustrophobia ratio ⟨C⟩ is the mean of each cell’s C as per

⟨C⟩ = ⟨V
S
⟩ ≠ ⟨V ⟩
⟨S⟩

. (2.8)

2.3.3 Simulation substrates and geometric fidelity

Over the past years, microstructural models used in the literature have become more

accurate to represent either certain specific geometric features or simulate larger domains.
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In early simulation work by Szafer et al. (1995) the substrate was limited to a regular grid

of cuboidal cells. Since then, advances in both simulation hardware and computational

methods have made numerical simulations more practical.

In neuroimaging, white matter consists primarily of tightly-packed myelinated axons.

These are often modelled numerically through their circular cross-section in 2D and are

well-understood by theoretical means (Novikov et al., 2019). However, recent work extended

simulations of axons to 3D to investigate the effect of axonal beading (H.-H. Lee et al.,

2020a; Lundell et al., 2021). Grey matter on the other hand contains a variety of different

cell types that require more accurate 3D modelling (Jelescu et al., 2020). This is the origin

of analytical models such as the ball-and-stick model (Behrens et al., 2003) or neurite

orientation dispersion and density imaging (NODDI) by H. Zhang et al. (2012). Amongst

cells of interest are astrocytic glial cells and some recent work has focused on generating

realistic substrates and simulating their signal contributions (Palombo et al., 2019).

Berry et al. (2021, 2018) simulated a single block of muscle tissue and modified the

substrate to consider different pathologies. Comparison with idealised cylinders was made

and good agreement reported. While musculoskeletal tissue has similar cell sizes and shapes,

the distinct myocardial sheetlet structure is not found here. As noted by Stephenson et

al. (2016), the two (skeletal and cardiac) musculatures should not be treated as analogous.

While simulations of diffusion by means of Monte Carlo random walk or continuum

methods are popular in neuroimaging, there are not many simulation works considering

DT-CMR in the literature. Wang et al. (2011) were the first to create a Monte Carlo

random walk model of the myocardium, using parallel hexagonal myocytes. This was

followed by a model of dispersed circular cylinders (Wang et al., 2012) and a simulation of

voxels in a whole heart model at different stages in the cardiac cycle (Wang et al., 2014).

Bates et al. (2017) built on this to carry out simulations of cuboidal cells with transmural

rotation. Recent work by Moulin et al. (2020b) investigated the sensitivity of diffusion

encoding waveforms to ECV by using a simplified grid of circular cylinders as cells. Below

describes work to generate a more complex and realistic substrate (Rose et al., 2019c).

2.3.4 From histology images to a realistic substrate

Figure 2.9 illustrates the proposed workflow: A block of tissue (A) is cut and subsequently

imaged (B). A representative region is segmented (C) and each cardiomyocyte extruded (D)

into a building block (E). The full substrate (F) is then composed of transformed copies of

this block. Each of these steps is now described in more detail:

A large set of wide-field microscopy images were obtained from the hearts of 30 kg

Yorkshire pigs with ventricular mass of 88 g (Nielles-Vallespin et al., 2017). Prior to

excision, the hearts were arrested in a contracted (systolic-like) state using barium chloride.

A transmural block of tissue from the mid-myocardium was excised and subsequently fixed.

37



CHAPTER 2. THE MYOCARDIUM

Figure 2.9: Proposed workflow for building a virtual model of myocardial tissue. (A–B) A
transmural tissue block is cut from the heart and imaged using wide-field microscopy. (C) Manual
segmentation produces a pixel mask of cardiomyocytes, coloured by sheetlet. (D–E) Each myocyte
is extruded along the image-normal direction (compare a confocal microscopy image) to form a 3D
block. (F) This block is repeated and transformed to fill an imaging voxel. Each purple rectangle
shows the x′z′ plane of the block in (E), with the longer side the x′-axis. Note that the gaps
between blocks have been exaggerated. [Reproduced with permissions from (Rose et al., 2019c).]

The block was cryosectioned while cutting along the short axis, creating non-contiguous

slices of thickness 10mm spaced approximately 100mm apart. The tissue was stained

with Masson’s trichrome, which colours the cardiomyocytes red/purple, collagen blue, and

nuclei black. Imaging was done with a magnification of 20× at a resolution of 456 nm/px

using a Hamamatsu NanoZoomer slide scanner.

The gold standard for labelling histology images is manual segmentation. This is a

time-intensive process—other options are discussed below in section 2.4. A small block

of 500× 400 µm2 from the mesocardium in a mid-myocardial slice was selected as region

of interest (ROI). Through inspection this ROI was chosen as being representative of the

surrounding tissue. In total 1182 cardiomyocytes were manually labelled and grouped into

12 sheetlets. The data for this is made available, see appendix B.2.2.

Each segmented cardiomyocyte in the ROI is represented as a polygon. They are

extruded by random lengths perpendicular to the imaging plane. These lengths are drawn

from a normal distribution with mean µL = 120 µm and standard deviation σL equal to

±5% of µL. This results in the 3D tissue block seen in figure 2.9 (E). The entire imaging
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voxel is filled with transformed copies of this block. For a given transmural (y) location,

the blocks are stacked like masonry in the z-direction: every other row along x is offset by

half a block width (block size in x). Every new row of blocks in y is rotated, with respect

to the previous row of blocks, by ≈10 °/mm around the y-axis. This approximates the

continuous transmural rotation found in the myocardium (Streeter et al., 1969).

2.3.5 Differences between ex-vivo histology and in-vivo tissue

The labelling method of choice for the histology images was manual segmentation, which

remains the gold standard for tissue classification. By overlaying the resulting label on

top of the histology image, one can appreciate that the individual cell masks are generally

smaller than the tissue. This is due to several factors, including limited microscope

resolution and user error (conservative manual edge detection), and could be addressed

with additional resources and labour. However, the effect of this is most likely small

compared to the more significant differences between in-vivo tissue and ex-vivo histology:

Fixation, which is essential for preparing the tissue for histological analysis, causes

tissue shrinkage. As a result, the size of cardiomyocytes seen in the microscopy images

is expected to be smaller. However, the exact mechanism of this is unknown. This leads

to an unrealistically high extra-cellular volume fraction. Typical values of ECV should

be 20 to 30% as discussed in section 2.3.1. The initial segmentation on the other hand has

an ECV in excess of 40%. In addition to this, sectioning of the tissue blocks may have

distorted the extra-cellular and especially the intra-sheetlet space. This could have led to

a widening of the shear layers, although the magnitude of this effect is not known at this

point.

Here, a method is proposed to correct for the errors resulting from both conservative

segmentation and tissue shrinkage. It involves morphing the segmentation mask progress-

ively until a desired ECV is achieved. This also allows for the simulation of pathologies

that present with a change in ECV, although this application is not the focus of this

present work.

A custom MATLAB code (appendix B.1.1) operates directly on the binary segmentation

masks. These images have value 1 (true) for ICS and 0 (false) for ECS. Each region of 4-

connected‡ pixels is considered to be an individual cardiomyocyte. This allows neighbouring

cardiomyocytes to touch diagonally at the corners of pixels. Two types of operations can be

performed: morphological thickening and shrinking, executed using the MATLAB routine

bwmorph. They are described in the following. The thickening operations add additional

ICS pixels to the ECS around each existing ICS region until doing so would cause two

regions to become 4-connected. It was chosen to keep the sheetlet boundaries fixed in

this work, but morphing operations for sheetlets can easily be implemented in the existing

‡Only touching at their edges, i.e. direct neighbours in pixel coordinates.
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Figure 2.10: Change in extra-cellular volume fraction (ECV) due to morphing of the cardiomyocyte
segmentation mask. Starting at an ECV of >40%, progressive thickening (A–C) of the intra-cellular
space (ICS) reduces ECV until the minimum is reached after 390 iterations. From here, ECV
increases through shrinking of ICS (D–F). Selected points (purple circles) are used as substrates
for simulations. [Reproduced with permission from (Rose et al., 2019c).]

algorithm. Cardiomyocytes that grow past their assigned sheetlet are truncated to this

boundary. The shrinking operations remove pixels from the outside of each ICS region to

shrink the region towards a point. This is unlike morphological thinning, which reduces

the region to a line, and erosion, which can lead to complete loss of pixels with a sufficient

number of iterations. Before each shrinking operation, the image needs to be split into a

stack of smaller images around each of these individual regions of pixels (cardiomyocytes).

The resulting change in ECV can be seen in figure 2.10. After starting at a high initial

ECV of over 40%, the thickening operations reduce ECV progressively. After 43 iterations

ECV has dropped to below 20%. Morphing of the image continues until reaching the point

of minimum ECV after 390 operations. Here, the gaps between cells are minimal and the

shear layers account for almost all of the ECS.
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Increasing ECV from this point does not invert the operations performed before. The

cardiomyocytes are shrunk using the process described above. It can be observed from

figure 2.10 how the ECV increases rapidly. The extra-cellular space is growing uniformly

everywhere, which leads to a similar ECV but less realistic extra-cellular space without the

characteristic larger and smaller pools of ECS. After 3 iterations the ECV has increased

from the minimum of 15.1% to almost 25%. It only takes a total of 9 iterations to increase

ECV back to 40%.

All morphed binary images (including an animation of the morphing process) and the

corresponding extruded tissue blocks are made available, see appendix B.1.1.

2.4 Segmentation of histology images

Moving from step (B) to (C) in figure 2.9 requires the labelling of the histology image.

Previously manual segmentation was used, which is time consuming and becomes unfeasible

as the size of the ROI increases to more than a few thousand cells. In this section the

focus is on automatic ways to achieve a comparable result. Note that the description of

the methods is kept brief since this is preliminary and ongoing work that is not the focus

of this thesis. The methods are mentioned here for completeness and to encourage future

work, because a successful implementation may allow for histological analysis at a much

larger scale and thus more realistic simulation substrates.

2.4.1 Automatic classification with deep learning

Image labelling or classification is traditionally very suitable for machine learning (ML)

applications, specifically deep learning (DL). For an in-depth review of the theory behind

ML/DL, particularly in the context of (medical) image analysis, the reader is directed to

the book by Zhou et al. (2017). Few references to segmentation of myocardial tissue at a

cellular level can be found in literature. One attempt was by Nirschl et al. (2017), whose

results are encouraging but lack the detailed segmentation of individual cardiomyocytes

that are required as a basis for simulation substrates.

The U-Net (Ronneberger et al., 2015) network architecture, a type of convolutional

neural network (CNN), was implemented in the TensorFlow framework (Google Inc et al.,

2021). The chosen implementation only allows for two classes of objects for segmentation:

ICS and ECS. Through iterative testing, the optimal parameter set for training was

determined: 4 network layers and 16 features. Two networks were trained, one based on

RGB (colour) and one on BW (greyscale) images, and they both used on-the-fly data

augmentation to increase the size of the training data set. After inference, a confidence

map is produced where values from 0 to 1 indicate the likelihood of a given pixel being

ICS. This confidence map is thresholded to a value of 0.95. The individual cardiomyocytes
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Figure 2.11: Result of automatic segmentation with U-Net. Two populations of histology data
were used for inference: The “Old” one stems from the same population as the “Training” data,
while the “New” one uses a slightly different staining and imaging protocol. The segmentation
masks were processed to extract contiguous regions of ICS (cardiomyocytes), whose size and shape
parameters are plotted in the histograms. [Parts of this figure were presented in (Rose et al.,
2018c,f).]

then need to be extracted via post-processing. Objects that are too small and most likely

noise are discarded from the image mask output by U-Net. Furthermore, the image is

cleaned by removing any spurious pixels.

The manual segmentation in figure 2.9 (C) serves as training data. The image was

tiled into 100× 100 px2 blocks with a 10% overlap. For inference, two histology data sets

are used: one from the same set as the training data, whose acquisition was described in

section 2.3.4; the other set was obtained using a similar protocol at a different site. The

unprocessed data set containing raw images and inference results is made available, see

appendix B.1.2. The difference between these, primarily in the staining, can be seen in

figure 2.11. The figure also shows the inferred segmentation overlaid with the histology.

The network performs reasonably well on the original histology data set. It can also

be observed from figure 2.11 that the histograms for cardiomyocyte area and perimeter
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matches well. The trained network does not however transfer to the new histology images.

This is due to the strong difference in underlying image and lack of generality of the trained

network. The histograms show that the tail of the distribution of areas and perimeters

is larger for this new histology data set, which supports the observation that a lot of

neighbouring cells are grouped together. Attempts were made to use additional data

augmentation techniques such as rotation, shear, scaling, and colour changes in the training

data, but at this point the inference only produces a result that is at best as good as a

thresholding result.

In their paper, Ronneberger et al. (2015) report good results based on a small training

data set for touching cells. However, the major difference is that Ronneberger et al. inserted

background pixels between touching objects and implemented a weighted loss function

to penalise undesirable merging of neighbouring objects. So far this has only lead to

anecdotal success, but future investigation is warranted. The lack of a large high-quality

training data set from diverse sources is a big obstacle to successful implementation of a

DL method. A promising area for future investigation may be the use of a region-based

convolutional neural network (R-CNN) (Fujita et al., 2020). One weakness of U-Net is that

it can only identify pixels and assign them to classes, in this case ICS and ECS. R-CNNs

have the capability of identifying individual objects of a given class, which might help with

neighbouring and touching or even overlapping cells.

This work was carried out in collaboration with Wee Zhao Chua Khoo and has been

published (Rose et al., 2018c,f); in this joint work, the methods described above are presented.

The specific contributions to this thesis were the large-scale inference computations, post-

processing of the data, and interpretation of the results.

2.4.2 Labelling through image processing techniques

Due to the unreliable results achieved in section 2.4.1, tools based on classical image

processing techniques were also developed. Image segmentation is a common task when

processing biological images (Semmlow, 2004). Figure 2.12 presents the workflow of

processing steps as a pipeline. Recall that the Masson’s trichrome used for the histology

images stains collagen (blue), nuclei (black), and ICS (red/purple), while the ECS remains

transparent (white). The different colour channels and their intensities contain rich

information that can be extracted through thresholding. Regions of interest are the ICS

and ECS, but also specifically collagen as a subset of ECS since it serves as a barrier

between ICS and ECS, as well as nuclei which are found inside§ the ICS. The thresholded

ICS mask undergoes a series of other operations intended to transform the segmentation

into a binary image of individual cardiomyocytes. Dilation serves the purpose of cleaning

§Some nuclei of other cell types that are not cardiomyocytes exist in ECS, and cardiomyocyte nuclei
may have left the confines of the cells as a result of damage from sectioning.
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Figure 2.12: Image processing pipeline for segmentation of myocardial tissue features. The input
image is first thresholded to obtain four masks based on different combinations of colour channels.
This is followed by a dilation step. A watershed algorithm splits large blocks of contiguous pixels.
Finally, the different masks are combined to create the segmentation result.

up the noisy thresholding result, while the watershed algorithm attempts to find and

enforce cell boundaries based on the shape of the region boundaries.

An example result can be seen in figure 2.13. Overall, the algorithm produces a

result consistent with the appearance of the original histology. Further processing may be

necessary to convert the output to a suitable format for use in a simulation substrate. For

example, holes in myocytes need to be filled and surfaces may require smoothing before

extracting the bounding polygons. In the future, the methods presented here may be

combined with other techniques. The use of structure tensor analysis has shown promising

results for use in edge detection (Khor, 2020; Köthe, 2003).

Figure 2.13: Example result of the image processing pipeline, showing the original image (Left)
and the output masks (Right). Intra-cellular space (ICS) is red, extra-cellular space (ECS) is
white, and collagen is cyan (which may be combined with ECS).
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This work was carried out in collaboration with Lukasz Sliwinski and has been pub-

lished (Rose et al., 2019d); in this joint work, the method presented above is applied and

the output is directly used as a substrate for numerical simulations of diffusion.

2.5 Synthesising a microstructure

The process described in the previous sections involves constructing a substrate directly from

microscopy images, either by manual or automatic segmentation. Using the methods from

section 2.3.5, the resulting cardiomyocyte masks can even be modified by means of morphing

operations to account for e.g. tissue shrinkage or to simulate underlying pathologies.

However, the reliance on a high-quality microscopy image makes this process cumbersome

and slow. If one wanted to investigate a large amount of different microstructures in a

parameter study, the substrates need to be synthesised.

2.5.1 Drawing inspiration from neuroimaging

The recent rise in popularity of diffusion simulations in the field of neuroimaging has

come with advances in the (semi-)automatic generation of models of various brain tissues.

To the knowledge of the author, Panagiotaki et al. (2010) were the first to present 3D

simulations using high-fidelity meshes, which they constructed directly from segmented

tissue samples. This process is very time consuming as it requires acquisition and processing

of confocal microscopy images. Mingasson et al. (2017) solved this problem by introducing

AxonPacking, a tool for simulating the packing of circles into dense arrangements. This

allowed the user to synthesise white matter substrates, which consist primarily of tightly

packed axons that are often modelled as being circular in cross-section. Others (R.

Callaghan et al., 2020, 2019; Ginsburger et al., 2019) generated three-dimensional numerical

phantoms of white matter by “growing” axons in silico. Palombo et al. (2019) have

developed a model to generate various types of brain cells in grey matter, including neurons

and glia, by relying on the tree-like skeletonised structure of such cellular networks.

2.5.2 A new packing algorithm for cardiac cells

Packing objects densely is a difficult optimisation problem and has many applications.

Dense usually means efficient, e.g. filling a cargo container by maximising the number of

objects per space, minimising the material used for construction of cell walls in a honeycomb.

Industrial applications are usually limited to 2D and/or simplified shapes such as cuboids,

which presents a well-defined problem suitable for mathematical analysis (Dyckhoff, 1990).

In general, however, packing arbitrary objects is computationally intensive and has no

guarantee of convergence. Often the best or only suitable algorithm involves rejection

sampling, where objects are placed repeatedly until the space is filled to a sufficient degree.
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This relies on a nearly infinite supply of objects of all sizes and shapes because, otherwise,

the gaps that randomly appear between objects may not be able to accommodate any of

the available shapes in the library.

Section 2.2 has shown that myocardial tissue is well-approximated as being 2.5-D.

Cardiomyocytes are almost cylindrical (compare figure 2.5) and they are packed nearly

parallel and relatively densely. This simplifies the problem to packing cell cross-sections in

2D and extruding them to build the 3D substrate, as was done in section 2.3.4. To achieve

this, a novel method (Rose et al., 2021b) is presented to rigidly pack polygons into a dense

arrangement and allow for additional control of the spacing between them. This improves

upon the work by Mingasson et al. (2017), which only packed circular discs. While the

latter is computationally more efficient, the circular shape that is a good approximation in

neuroimaging fails to represent real myocyte shapes which are circular only in the idealised

case.

Histology-accurate geometries are achieved by taking a hierarchical approach: Instead

of packing the entire ROI with myocytes, the proposed method fills the space with sheetlets,

either deterministically/rule-based or through packing, and then packs these sheetlets with

myocytes. The irregular pools of ECS within sheetlets are modelled by inclusion of “ghost”

cells. These objects are included in the packing simulation but treated as ECS during

post-processing. By choosing an appropriate size and shape, some control is possible over

how many of these pools will likely occur in the final packing. A minimum spacing between

objects is also ensured by assigning a buffer region of width d around their perimeters,

which is done by inflating them before the packing simulation. During post-processing the

objects are reverted to their original shape.

Polygons are represented as a list of vertices, using the Shapely library (Adair et al.,

2021) which provides an extensive set of methods to operate on polygons. At the beginning

of the simulation, the N polygons are placed in a lattice centred around the target region.

The grid spacing is chosen as a multiple of the largest bounding dimension of any polygon.

The grid aspect ratio should match that of the target region to accelerate convergence in the

final stages of the packing simulation. Every time step the objects move towards the origin

with an attraction velocity uatt. If any of them intersect, no attraction takes place for these

objects but instead they repel each other with a repulsion velocity urep. Each object’s

repulsion direction is the normalised sum of the vectors pointing from their intersected

objects’ centres to its own centre. This is illustrated in figure 2.14. The implementation

details of the algorithm can be found in the source code, see appendix B.1.3.

The code is accelerated through the use of bounding circles. At the start the centre

of the polygon x0, defined here as the centre of the axis-aligned bounding box, needs to

be determined. The radius of the bounding circle is the maximum Euclidean distance of

all vertices to this centre. During the simulation, only this position x0 is updated. The
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Figure 2.14: Schematic explanation of the packing algorithm. (Left) Snapshot of a packing
simulation: Purple polygons are cardiomyocytes, the grey regions are the buffer zones, and ghost
cells are also coloured grey. Each polygon has a bounding circle around it to quickly identify if any
pair of polygons may intersect. (Right) All objects converge towards the origin with attraction
velocity uatt, unless they are intersecting with another object. In that case, they repel each other
along the axis connecting their centres with repulsion velocity urep.

pairwise sums of object radii are pre-computed once and used to determine if two objects (i

and j) with centre positions xi
0 and xj

0 are close enough to warrant polygon intersection

checking. This computationally inexpensive method is similar to the implementation in

AxonPacking (Mingasson et al., 2017), based on the original method by Donev et al. (2005).

It allows for an easy and efficient collision rejection check, since it is expected that most

polygons will be too far apart to intersect. The problem of rejecting these is now reduced

to computing the Euclidean norm between the two centres and comparing it to the sum

of (bounding circle) radii.

There is no requirement on the shape or number of vertices for the cells, for example they

may be drawn from a library of cell-like shapes such as the ones obtained in section 2.3.4 or

section 2.4. For simplicity, one could also generate all of them to be of a similar shape with

random parameters, drawn to fit a target distribution. An optional target region (e.g. the

sheetlet that is to be packed) is also specified as a polygon.

Packing simulations can vary widely in runtime depending on many factors. Consider

N objects with each (or an average of) M vertices. The cost of checking which bounding

circles overlap is constant every time step since it relies on the same matrix algebra

irrespective of the positions of the circle centres, but scales with O(N2). Calculating

the intersection between the candidate polygons then scales with O(N2) for a fixed cost

per pair of polygons. The Shapely library calls methods in GEOS (Davis et al., 2021)

internally. A worst case implementation for concave polygons would scale with O(M2) as

more vertices are used. More efficient techniques are possible, but reference to the original
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Figure 2.15: Graphical user interface (GUI) for the packing simulation. The figure on the left
directly plots the polygons at their positions throughout the simulation. On the right side, two plots
show the changing cell density (ECV) in the target region and the number of collisions recorded
during a time step. The “Stop” control buttons allow manual termination if a desirable state is
achieved. Because plotting significantly slows down the simulation, updates can be limited to occur
every n time steps, which can be overridden with the “Update” button.

underlying source code would be needed to determine whether any such techniques have

been implemented.

The state of convergence of the simulation can be assessed based on two metrics: the

density in the target region and the number of collisions. As more cells aggregate near the

origin, the density will increase and eventually reach a plateau. Note that this may not

correspond to the desired (corresponding) ECV, which depends on or may be augmented

by the amount and size of the ghost cells. The collision counter cannot give direct insights

into the state of the simulation but allows estimation of remaining simulation time.

A graphical user interface (GUI) enables the user to interact with the simulation. As

shown in figure 2.15 it allows for passive monitoring of the progress as well as premature

termination if the simulation is deemed to have reached convergence. Future work is

recommended to allow interactive adjustment of the velocity magnitudes uatt and urep. At
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the current stage, these must be determined a-priori. Although they do not need to be

constant throughout the simulation, selecting an appropriate set of parameters and time

points is iterative and inefficient by nature. Additionally, dynamic adjustment based on

certain metrics similar to the convergence criteria may allow for unsupervised simulations.

2.5.3 Applying the packing algorithm

Packing of cardiomyocytes into sheetlets

Cardiomyocytes are generated as ellipses that match the size and shape distributions found

in figure 2.11 and their orientation is uniformly sampled from [0, 2π). Using ellipses has the

advantage of denser packing than with more awkwardly shaped cells that have protruding

edges. Ellipses can also be represented accurately using fewer vertices.

Three regimes are defined: First, a relatively large velocity is prescribed to quickly move

the objects towards the centre. Then, a moderate velocity corresponding to a displacement

of less than 5% of the average bounding radius is used. This allows the objects near the

origin to come close enough to each other to pack effectively. For these two cases the

attraction velocity magnitude is set to be twice the repulsion velocity, i.e. uatt = 2urep.

Finally, when the target ECV has been reached, the attraction velocity is set to zero and

urep is reduced to a very small value that allows the objects to “wiggle” into place and

resolve most remaining intersections.

The resulting packing can be seen in figure 2.16. It shows good visual agreement

between the synthesised sheetlet and the one based on histology, both in terms of ECV

and distribution of ECS. Thanks to the use of a buffer zone around each cell and the final

repulsion steps, the post-processed objects do not overlap.

Packing of sheetlets

To generate a simulation substrate of a size corresponding to an imaging voxel, sheetlet

objects can be packed together using the same algorithm as described above. The sheetlet

objects are constructed randomly as highly eccentric ellipses, however rounded rectangles

would also be appropriate. The simplest and easiest-to-pack configuration consists of

polygons with parallel major axes. Based on histological data, their thickness should equal

several cardiomyocyte diameters. An example tissue is shown in the wide-field microscopy

in figure 2.17. The histology is taken from systolic-like tissue, which shows the shear

layers as large gaps. An example of an automatic packing is also shown in the figure. Due

to the difficulty of packing these rigid objects, the resulting ECV is much larger than

expected. To account for this, the sheetlet objects are thickened using the algorithm from

section 2.3.5.
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Figure 2.16: Myocyte packing result (Top) compared with the histology image of the target
sheetlet (Bottom). Good agreement is found between the two sheetlet geometries in terms of both
overall ECV as well as distribution of ECS.

Figure 2.17: Sheetlet packing result (A–B) compared with a histology image (C) that serves
as the desired outcome. (A) shows the original output of the packing simulation. The resulting
sheetlet polygons were then thickened to create the objects in (B).
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2.6 Discussion

This chapter reviewed the myocardial microstructure and presented methods to construct

a virtual model of myocardial tissue. Key components were identified and the myocardium

subsequently reduced to two distinct compartments: intra-cellular space (ICS) and extra-

cellular space (ECS). These compartments are modelled as regions Ω with respective bulk

diffusion coefficients D0. Their infinitely-thin boundaries Γ represent the cell membranes,

to which a constant permeability κ can be assigned.

An accurate model of the myocardium is essential for numerical simulations of diffu-

sion in silico. The substrate constructed in this chapter is histology-based and several

critical steps were taken to construct a three-dimensional model that includes features like

transmural rotation of fibres and realistic distribution of extra-cellular space (ECS).

However, the model still has some limitations: Due to the size of the ROI of a manually

segmented microscopy image, the substrate at the size of a DT-CMR imaging voxel

is represented by a tissue building block that is replicated and transformed to fill the

domain (see section 2.3.4). The geometry also does not include complex cardiomyocyte

shapes or their branching. These effects are however expected to be small compared to

the prohibitive effort of accounting for such detail at this stage. Instead, cardiomyocytes

are assumed to be cylinders with arbitrary cross-sections. These cylinders, represented as

triangulated polyhedra, are parallel within the ROI and their orientation changes with

every copy of the ROI in the transmural direction.

The deep learning–based methods developed in this work may eventually make possible

the automatic segmentation of cardiomyocytes in large-scale microscopy images. However,

only a small set of manually annotated histology images was available for use as training

data, so the present implementation has shown mixed success. Alternatively, classical

image processing techniques allow for processing of microscopy slices from new data sets

that have not been annotated. Black box approaches using existing automatic tools, such as

ilastik (S. Berg et al., 2019), have been used successfully by Wilson et al. (2021). Finally, a

simulation tool was proposed to synthesise a dense packing of cardiomyocytes, represented

as arbitrary polygons. All of these methods are currently still limited to 2D.

In the future, extension of these automatic methods to 3D is desirable. For example,

the 2D sheetlets can be packed on several parallel planes in the image-normal direction

and lofted together. Generation of three-dimensional cardiomyocytes can then be achieved

through 3D packing. Additionally the distribution of tissue parameters throughout the

voxel and the myocardium needs to be considered. According to Campbell et al. (1987)

and Gerdes et al. (1986), cardiomyocyte sizes differ depending on the location in the heart.

A homogeneous model cannot be used when transitioning from simulations of a single

voxel to many voxels, made necessary when comparison with in-vivo or ex-vivo DT-CMR

imaging is desired for validation.
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Simulating Diffusion Tensor Imaging
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3.1 Introduction

The aim of this chapter is to introduce a method of numerically simulating diffusion tensor

imaging. First, a minimal but essential background of magnetic resonance imaging (MRI)

is provided in section 3.2. Section 3.3 is dedicated to solving the governing equations

efficiently using continuum methods and a GPU-based simulator. Finally, section 3.4

presents results of the simulator’s performance and a simulation of diffusion-weighted

signal.

3.2 Diffusion MRI physics

In this section no attempts are made to explain nuclear magnetic resonance (NMR). The

textbook Principles of Nuclear Magnetic Resonance Microscopy by P. T. Callaghan (1993)

offers an excellent introduction to the topic. Neither will there be any extensive discussions

of the broad fields of diffusion magnetic resonance imaging (MRI) or diffusion tensor

imaging (DTI). Instead, the section is focussed on providing an overview of the relevant

governing equations necessary for developing and interpreting numerical simulations of

diffusion MRI.
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3.2.1 Nuclear magnetic resonance

The behaviour of 1H spins is governed by the laws of quantum mechanics. Fortunately

this description is not necessary to explain NMR and MRI, which are classical phenom-

ena (Hanson, 2008). From here on spins are considered to be magnetisation vectors m.

The forthcoming equations take a macroscopic view and consider an ensemble of spins

with a net magnetisation M = [Mx My Mz] and initial magnitude M0.

The Bloch equations (3.1), developed by Bloch (1946), describe the evolution of

magnetisation M(x, t),

∂M

∂t
= γM ×B −

(︄
Mxı̂+My ȷ̂

T2
+

(Mz −M0) k̂

T1

)︄
, (3.1)

with magnetic field B(x, t) = [Bx(x, t) By(x, t) B0 +Bz(x, t)]. Here B0 is the time-

invariant field of the scanner and the B{x,y,z}(x, t)-terms account for RF pulses and

magnetic field gradients G(t), which are used to interact with the spins. The equations also

account for magnetisation decay due to T1 (transverse) and T2 (longitudinal) relaxation

through their respective time constants T1 and T2. In this work magnetisation decay is not

considered. For that special case of T1, T2 →∞, equation (3.1) recovers Lamor precession,

where the angular velocity of the spins only depends on the local magnetic field strength

and the gyromagnetic ratio γ of 1H. As a result, the dynamics of magnetisation M are

limited to the transverse plane and thus its components Mx and My only. This is often

written in complex notation as Mxy = Mx + iMy.

Torrey (1956) extended equation (3.1) by adding a diffusion term. The resulting

Bloch–Torrey equations

∂M

∂t
= γM ×B −

(︄
Mxı̂+My ȷ̂

T2
+

(Mz −M0) k̂

T1

)︄
+∇ · (D∇M) (3.2)

consist of two parts: the original Bloch equations, which describe the magnetisation

dynamics as a result of external influences; and the diffusion operator ∇ · (D∇), which

models the transport of magnetisation as a result of the diffusion of 1H in H2O. The

Bloch–Torrey equations can either be considered a vector equation∗ or alternatively three

linked scalar equations for the three components of the magnetisation vector. The notation

using M implies that the diffusion term operates on each component of M separately as

it is a scalar operator.

3.2.2 Diffusion encoding

Through application of carefully designed pulse sequences with gradient waveform G(t), it

is possible to make the NMR signal sensitive to intrinsic parameters of equation (3.2). The

∗This requires rewriting of the relaxation terms using matrices.
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shape of the waveform and timings and strengths of the RF pulses depend on the specific

imaging requirements as described by Bernstein et al. (2004). In the absence of relaxation,

equation (3.2) suggests that the only way to observe a loss of magnetisation is through

diffusion. This is the basis for diffusion encoding, or diffusion weighted imaging (DWI).

Stejskal et al. (1965) were the first to propose this. After tipping a component of

magnetisation into the transverse plane, application of two equal gradients separated by a

180° RF pulse causes an echo at time TE whose strength depends on the distance that

spins have displaced between the two gradients. While the magnetic field gradient is active,

the angular velocity of spins depends on their positions along the gradient direction. This

imparts a phase gradient on the spins, which they retain when the gradient is switched

off. For stationary spins, the second gradient reverses the phase offset imparted by the

first gradient when the 180° rotation is accounted for. If a spin has moved during the

diffusion time ∆ between the two gradients, however, it will retain a net phase lag ϕ. The

incoherent nature of diffusion means that the summation of the associated phases accrued

results in a signal attenuation, A, which is measured in relation to the reference signal S0:

A =
S

S0
= |⟨exp(iϕ)⟩| . (3.3)

From this, the apparent diffusion coefficient (ADC, or DADC) in the imaging voxel can be

inferred via

A = exp(−bDADC) , (3.4)

where the b -value is a measure of the amount of diffusion weighting applied by the

sequence (Le Bihan, 2010), defined through the following double-integral:

b = γ2
∫︂ TE

0

[︃∫︂ t

0
G(τ)dτ

]︃
dt (3.5)

The signal can also be interpreted as the Fourier transform of the averaged diffusion

propagator U with wave number/vector q = γδG:

S(t, q) =

∫︂
U(x, t;x0) exp(iq(t) · x(t))dx (3.6)

A more detailed explanation of the Fundamentals of diffusion MRI physics is presented by

Kiselev (2017).

Basser et al. (1994) extended this concept to three dimensions by realising that the

signal can be sensitised to diffusion along different directions inside the imaging voxel.

This allows for the calculation of a diffusion tensor D,

D =

⎡⎢⎣Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤⎥⎦ , (3.7)
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Table 3.1: Components of the normalised magnetic gradient vector G = [Gx Gy Gz] for six
DT-CMR encoding directions. Non-collinearity between the gradient directions is required to
reconstruct a diffusion tensor.

Gx Gy Gz

1 1 0
1 −1 0
1 0 1
1 0 −1
0 1 1
0 1 −1

which quantifies not only the amount of diffusion inside the voxel but also its “shape”

and directionality. Through eigendecomposition, the eigenvalues λ1,2,3 and corresponding

eigenvectors e1,2,3 are found. Common metrics for quantifying the diffusion tensor are the

mean diffusivity (MD),

MD = ⟨λ⟩ = trace(D)/3 =

∑︁
i λi

3
, (3.8)

and the fractional anisotropy (FA),

FA =

√︄
3

2

∑︁
i (λi − ⟨λ⟩)2∑︁

i λ
2
i

. (3.9)

The mathematics of this are reviewed by Kingsley (2006a,b,c). The diffusion tensor is

often visualised using superquadric glyphs (Ennis et al., 2005; Kindlmann, 2004).

The diffusion tensor is symmetric, i.e. Dij = Dji, resulting in 6 unique apparent

diffusivities. Instead of the single b -value in equation (3.4), measuring in at least 6 or-

thogonal directions (plus one reference measurement of S0) is required, resulting in the

b -tensor (Kingsley, 2006a,b,c). Table 3.1 shows the 6 gradient directions used in this work.

By least squares fitting or other inversion methods, equation (3.10)

A = exp(−
∑︂
i

∑︂
j

bijDij) (3.10)

can be solved to provides the diffusion tensor D. This method, diffusion tensor ima-

ging (DTI), has reached maturity in neuroimaging, where it is widely used for determining

white matter pathways (Le Bihan et al., 2012), and has gained recent popularity in the

heart, where it is called diffusion tensor cardiovascular magnetic resonance (DT-CMR).

Please consult the textbook Diffusion MRI by Jones (2010) for an excellent treatment

of DTI.

Three pulse sequences typical for DT-CMR are considered in this work: the classical

Stejskal–Tanner pulse gradient spin echo (PGSE) sequence (Stejskal et al., 1965); the

motion-compensated spin echo (MCSE) sequence, particularly the second-order motion-

compensated sequence (M2-SE) presented by Welsh et al. (2015); and the stimulated echo
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Figure 3.1: Comparison of three actual (“real”) and idealised (“simulated”) pulse sequences
used in this work. The gradient waveform Gx is plotted together with any RF pulses for the
sequence types: PGSE, M2-SE, and STEAM. The single 180° pulse (PGSE, M2-SE) and the
two 90° pulses (STEAM) are simulated by inverting the polarity of the subsequent gradient(s).
[Reproduced with permission from (Rose et al., 2019c).]

acquisition mode (STEAM) sequence (Reese et al., 1995). They are all shown in figure 3.1.

Only idealised sequences, that is sequences without auxiliary gradients (e.g. slice selection),

are simulated. Omitting these gradients has negligible effect on b -value and thus diffusion

weighting. All RF pulses and the readout itself are considered instantaneous. This could be

improved in the future and is not expected to have a large penalty in terms of simulation

time, but again the effect of this assumption is expected to be minimal. The 180° RF
pulse (spin echo sequences) or the pair of 90° RF pulses (stimulated echo sequence) are

equivalently modelled by negating the sign of the subsequent gradients.

3.2.3 Generating an idealised pulse sequence

The sequences in figure 3.1 are simplified versions of the true pulse sequences that are

exported by scanner software. They have been manually reduced to their key timing

parameters. Figure 3.2 shows schematics of the three sequence types.

To facilitate simulations that involve varying a given parameter, such as a study

involving ∆ or b, a tool to automatically generate pulse sequences is useful. Not only
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Figure 3.2: Schematic diagram describing the three pulse sequences used in this work and shown in
figure 3.1. Only the timing parameters (x-axis) are labelled. The gradient strength of the waveforms
is shown on the y-axis and all non-zero gradients have the same flat-top gradient strength Gmax.
[Reproduced with permission from (Rose et al., 2019c).]

does this accelerate the turn-around time of simulations, it also allows to simulate a wider

space of parameters including unphysical ones that the scanner simulation may report as

incompatible.

For all sequences, the gradients are simulated at the maximum gradient strength Gmax

that is available in the scanner. This also fixes the gradient ramp-up and ramp-down

times ϵ, which are computed based on the hardware-specific slew rate ε = G/ϵ.

For the purpose of sequence generation, the PGSE and STEAM sequence are treated

equally as bipolar gradient sequences. They can be consider as “simple” sequences that have

a pair of opposing trapezoidal gradients. As a result, they only differ by the prescribed

parameters, in particular ϵ and most notably ∆. Both sequences need to satisfy the

following condition:

b = (γG)2
(︁
δ(∆− δ/3) + 1/30ϵ3 − 1/6δϵ2

)︁
(3.11)

This equation can be solved for any of the parameters through rearranging. Some are

more straightforward to evaluate than others, for example solving for δ/ϵ requires the

quadratic/cubic formula. All parameters are limited to the positive value when computing

the square root. Complex numbers that can arise may be reduced to the real part iff
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the complex norm is sufficiently small to suggest that the imaginary part is likely due to

numerical errors.

The advantage of the STEAM sequence is that it allows for long diffusion times ∆.

Varying this parameter is straightforward and only requires finding an appropriate value

for δ given the constant G = Gmax (from which ϵ can also be derived given the scanner

slew rate).

As the diffusion time ∆ becomes shorter (and parameters approach those typical for

PGSE sequences), the target b can often no longer be satisfied with the gradient shape

constraints in place. Then, a different objective for sequence generation needs to be

considered. Consider the relative gradient durations in figure 3.1, where δ and ∆ are of

similar magnitude. Instead of specifying a target ∆, values for δ must be iterated through

to find the combination of parameters that minimises the echo time TE. Another constrain

is that ∆ ≤ 2ϵ+ δ+α180°, where α180° is the minimum duration of a 180° RF pulse. While

this is not simulated in the idealised sequence, the constraint ensures a more realistic

timing of gradients.

The more complicated motion-compensated sequences (MCSE) require a different

treatment. The equation for b -value of the M2-SE sequence that all parameters need to

satisfy is†

b = γ2G2

[︃
δ22(∆ + τ)− δ2τ

2

6
+

49τ3

60
− δ32

3

+
(τ2 −∆τ + 2∆δ2)

3 − 12δ32(∆ + τ)3

12(∆ + 2δ2 − τ)3
· δ

2
2(∆ + τ)2(∆ + 3δ2)

(∆ + 2δ2 − τ)2

− τ2(τ2 −∆τ + 2∆δ2) + 3δ22(∆ + τ)(2∆ + δ2 + 2τ)

3(∆ + 2δ2 − τ)

]︃
.

(3.12)

This corresponds to the M2-SE implementation of constant amplitude and variable pulse

widths, related by

δ2 = δ1
∆− τ

∆− 2δ1 + τ
, (3.13)

as shown in (Welsh et al., 2015, fig. 9). At present, the symbolic mathematics toolbox in

MATLAB is used to solve for the different parameters when generating MCSE sequences.

However, a more iterative approach may be necessary because some combinations of

parameters are not always satisfiable without some tolerances. The goal is to minimise

echo time (TE) in order to reduce motion sensitivity and T2-related signal loss.

3.3 A GPU-accelerated Bloch–Torrey simulator

For complicated domains like a model of cardiac tissue described in chapter 2 the solution

to the Bloch–Torrey equations (3.2) is not trivial. Exact analytical solutions exist (Moutal

†Equation (3.12) is developed in (Welsh et al., 2015, eqn. 16). In the original paper, it contains a
missing closing parenthesis which has been corrected here.
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et al., 2020), but these are limited to special cases. Numerically solving the Bloch–Torrey

equations allows us to simulate for example diffusion-weighted images and compute a

diffusion tensor from the magnetisation vector in the domain. Several approaches exist

and can be grouped into two categories: particle-based methods like the Monte Carlo

random walk (MCRW), which will be discussed later in chapter 5; and continuum solution

methods. The latter are well understood and can be very accurate. As such they provide

a means to verify random walk approaches. Continuum solutions are however relatively

computationally expensive and for large three-dimensional problems the effort required

to obtain a solution that is accurate to within a few percent (random walk) rather than

machine-level precision (continuum solution) makes random walks the method of choice.

To overcome the large computational effort of continuum solutions, acceleration with GPUs

is considered. As shown below, the problem lends itself to parallel processing.

For this work, efficient means to compute continuum solutions are investigated for two

reasons: Firstly, it was considered essential to provide a means to validate the MCRW

simulations with minimal computational effort; Secondly, with continuous improvement in

GPU technology it is not clear where the boundary between choosing a continuum solution

vs a random walk approach will lie in the future.

To solve the governing equations, the domain must first be discretised. The exact

procedure for this depends on the continuum method applied: finite difference (FDM),

finite volume (FVM), or even finite element (FEM) methods all have their unique approach.

However, for the sake of this discussion, they all assume that the solution variable U is

somehow described at discrete locations in space, which will be called cells for generality.

Note that “cell” in the context of continuum methods in this chapter 3 refers to a

discretised node/volume/element in FDM/FVM/FEM and not a biological cell. In fact,

given a discretisation of even modest spatial resolution, a cardiomyocyte is expected to be

divided into multiple of these cells.

Omission of the relaxation terms in equation (3.2) allows for the study of the magnet-

isation Mxy(t) = Mx(t) + iMy(t) only in the transverse xy plane. The use of a complex

variable Mxy only simplifies the notation and not calculation because nonetheless two

solutions to the diffusion equation are required, separately for Mx and My. The method

of updating a generic scalar quantity U (Mi) throughout time will be described in the

remainder of this section.

Before proceeding, the interaction between Mx and My during application of gradients

and RF pulses needs to be briefly covered. The initial 90° pulse provides the initial

condition and can be modelled as Mxy = Mx = 1 (real). A 180° RF pulse is equivalent

to Mn+1
xy = Mn

x − iMn
y , i.e. the flipping of y-magnetisation. Approximating the pulses as

instantaneous is acceptable since for most cases the simulation time step δt is of similar

magnitude as the duration of the RF pulse. As such, the desired change in magnetisation is
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ensured without having to fully resolve the pulse. This trivial treatment of the γM×B term

in equation (3.2) can be implemented efficiently and will not be discussed further in this

work. For the purposes of GPU implementation, the CUDA Thrust library is used for the

magnetisation dynamics, as these are simple transforms of the magnetisation vector. This

high-level library hides the intricate details of the GPU architecture.

3.3.1 Continuum solution to the diffusion equation

The diffusion term of equation (3.2) corresponds to the right-hand side of the diffusion

equation (3.14). The operator ∇ · (D∇) can be expressed as a double summation:

∂U

∂t
= ∇ · (D∇U) =

3∑︂
i=1

3∑︂
j=1

∂

∂xi

(︃
Dij

∂U

∂xj

)︃
. (3.14)

Consider a scalar diffusion coefficient D(x). Note that this is not the apparent diffusivity

in equation (3.4) but the underlying diffusion coefficient D0 from section 2.3.1. In the case

of isotropic but inhomogeneous diffusion, the divergence and gradient operators can be

expanded and thus equation (3.14) for m dimensions becomes

∂U(x, t)

∂t
=

m∑︂
i=1

∂D(x)

∂xi

∂U(x, t)

∂xi
+D(x)

∂2U(x, t)

∂(xi)
2

. (3.15)

The diffusion operator is separable and can be solved for ∂U/∂t in m passes along axis i

of the m-dimensional reference frame. As seen later, this has considerable (positive)

performance implications for the algorithm of choice, especially on GPUs.

At the domain boundaries with normal vector n, isolating (zero-flux) boundary condi-

tions are used:
∂U

∂n
= 0 . (3.16)

The internal boundaries, i.e. cardiomyocyte membranes, need to enforce that the flux

matches the permeability κ:
∂U

∂n
∼ κ . (3.17)

Note that the diffusion equation locally reduces to the heat equation

∂U

∂t
= D0∇2U (3.18)

inside each compartment, where D0 is the local constant scalar diffusion coefficient. This

is a result of the compartment model described in section 2.3.1. The internal boundary

conditions at the compartment barriers then enforce the required flux (permeability of

the membrane). A discretisation of equation (3.18) could be implemented as a special

treatment in the source code, but the additional instructions from equation (3.15) are not
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Figure 3.3: Multi-dimensional data (Left) and its linear layout in computer memory (Right).
Elements of U with coordinates x = [x y z] in a grid of size Nx×Ny×Nz are indexed at integer
multiples i, j, k. Data is stored contiguously (offset of 1) along x and neighbouring elements can
be retrieved by an offset in linear memory of Nx (j → j + 1) and Nx ×Ny (k → k + 1).

a bottleneck. Instead, keeping one discretisation aids readability and maintainability of

the code.

The temporal discretisation and time stepping uses an explicit (Euler) scheme. For a

given time step ∆t, this results in

∂U

∂t
=

Un+1 − Un

∆t
. (3.19)

This simple forward-time scheme is applied for both FDM and FVM described below,

which are concerned with approximating the right-hand side of the diffusion equation.

For the parameters used in this work, the time step is typically small. As such, more

expensive approaches like implicit methods or higher-order schemes are not needed to

ensure numerical stability or accuracy. J.-R. Li et al. (2014) applied an adaptive time-

stepping method to simulations of diffusion MRI, but such methods are more complicated

to implement on the GPU architecture that is targeted here.

3.3.2 Considerations regarding GPU memory access

As with most computer codes running on modern hardware, the main bottleneck is memory

access (Burger et al., 1996). At each time step, the cost of executing the few operations at

each data point is negligible compared to the time it takes to read the data involved in

the calculation and writing the result back into memory. Because computer memory is

linear, another problem occurs. Higher-dimensional operators such as ∇ need to read data

from memory that is many entries away from the centre of the stencil, leading to strided

memory access. This is visualised in figure 3.3.
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The Laplacian operator ∇2 that occurs in equation (3.18) and its finite difference

implementation using a stencil of neighbouring points (section 3.3.3) is similar to image

kernel convolution (Semmlow, 2004). Efficient methods exist in CUDA to carry out these

operations, however this has two problems: it is not available for 3D data, and it is

limited to homogeneous D. Another approach is to use texture memory (Wilt, 2013),

which optimises multi-dimensional memory access for data locality by means of space

filling curves. However this is less optimal than using a custom-designed CUDA kernel,

because texture memory is only available for 1D and 2D operators, requiring significant

refactoring of the instructions. Instead, separate 1D passes along the considered dimensions

as permitted by equation (3.15) are used to optimise linear computer memory access.

Section 3.3.3 considers the numerical schemes to solve the diffusion equation in 1D.

Using the standard memory layout, data for cells in the 3D grid is arranged linearly (fig-

ure 3.3). In the context of GPUs, there are different types of memory that threads have

access to (Wilt, 2013). These are, in increasing order of threads access speeds,

(fastest) registers > shared > device/global≫ host (slowest) . (3.20)

Host memory is very slow to access. It is inaccessible to the threads and needs to be

explicitly copied to device memory. For this reason, operations are solely done on device

memory and data is only copied between device and host when loading from or writing to

disk. Global reads inside a kernel stall the execution and require about 3 to 4 cycles to

execute. It is therefore advantageous to refactor the code to carry out all reads at the start

and all writes at the end in consecutive statements. The following operations should then

be register-only computations that do not depend on the successful fetch of global memory.

Examples of such efficient filler instructions are: kernel logistics and housekeeping that

depend only on the thread index; unpacking and processing of input data structures which

are passed by value into registers on kernel call.

It is important to understand how threads are organised on the GPU. A full explanation

of this can be found in the book by Wilt (2013). Each thread is executed in a kernel grid

whose dimensions need to be provided to CUDA. It is customary to schedule one thread per

data point in a grid with the same dimensions as the data on which it operates. Threads

are grouped together in thread blocks (with a maximum of 1024 threads per block) and

executed in “warps” of 32 threads. These numbers apply to GPU devices with compute

capability 2.0 and larger. On the hardware, blocks are scheduled to run on the streaming

multiprocessors (SM), each of which contains a fast cache called “shared memory” as well

as a certain number of registers for fast local storage.

Each access to global memory loads 32 (equal to the warp size) consecutive values

along the x direction of the memory. When threads operate along the x direction of the

domain, they load data consecutively from memory and thus access is coalesced. This

leads to a high effective memory bandwidth, where threads can load data to fast shared
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Figure 3.4: GPU kernel logistics to optimise memory access along different directions. Each
thread block contains 1024 threads. (Left) Operating on data with (∂/∂x) requires no special
consideration and a one-dimensional thread block is used. For a significantly large x-dimension of
the domain such as in (A), thread blocks can be arranged as 1D pencils. Domains that are shorter
in x than the maximum block size cause the block dimension to “wrap around” (B). (Right) Due
to a warp size of 32, operators (∂/∂y) and (∂/∂z) require a thread block with 32 threads in x. This
results in a block size of 32× 32.

memory. When näıvely operating along the y or z direction however, each thread causes

31 unnecessary memory accesses. This is prevented by organising kernel launches along

these dimensions differently as seen in figure 3.4. Using the described access patterns has

the same effect as (costly) reshaping the data before each pass.

3.3.3 Numerical schemes for the finite difference and volume methods

Finite difference method

The idea behind the finite difference method (FDM) is to approximate derivatives of a quant-

ity, which are its local gradients, using the differences in quantity between neighbouring

nodes:
∂U

∂t
=

∂D

∂x

∂U

∂x
+D

∂2U

∂x2
≈ ∆D

∆x

∆U

∆x
+D

∆2U

∆x2
(3.21)

The set of nodes/cells being used is called the stencil, illustrated in figure 3.5. The

approximation of the derivatives is done using Taylor expansion (Özişik et al., 2017).

Ignoring the truncation error of O(∆x), a finite difference approximation of equation (3.15)

is
∂U

∂t
≈ Di+1 −Di−1

∆x

Ui−1 − Ui+1

∆x
+Di

Ui−1 − 2Ui + Ui+1

∆x2
. (3.22)

The zero-flux boundary condition (equation (3.16), ∂U/∂x = 0) is approximated using
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Figure 3.5: Schematic of the finite difference scheme. The domain is divided into N nodes spaced
∆x apart. The concentration at Ui (red) is updated according to equation (3.22) using the 3-point
stencil {i − 1, i, i + 1}. Ghost nodes (grey) at the domain ends enforce the zero-flux boundary
condition, while barrier nodes (blue) are assigned reduced diffusion coefficient Db to model the
membrane with permeability κ.

a first-order treatment
∂U

∂x
≈ U1 − U0

∆x
. (3.23)

To accommodate this, halo nodes/ghost cells are introduced at i = 0 and i = N + 1 for

N cells in the domain. The boundary condition results in Un
0 = Un−1

1 , and similarly Un
N+1 =

Un−1
N . In other words, the halo nodes are updated to have the same concentration as the

neighbouring (internal) node at the start of the new time step.

Cardiomyocyte membranes are internal interfaces that satisfy equation (3.17). As

with the boundary condition in equation (3.23), the FDM has no natural mechanism

for enforcing these fluxes. Permeability can be introduced through a separate numerical

scheme at the affected nodes in the stencil, however this leads to awkward formulation and

difficult implementation. A more complex algorithm also results in sub-optimal GPU code.

Another (better) option is to use the definition of permeability in equation (2.3):

κ ≡ lim
b→0,
Db→0

(︃
Db

b

)︃
. (2.3 [reproduced])

A consistent interface condition is achieved though a finite approximation to this limit.

The membrane is thus represented not as an interface but as a thin region of thickness b =

∆x (spacing between nodes) and reduced diffusion coefficient Db = κ/b. For a discretised

domain, the outer-most node of each intra-cellular region is designated as the membrane.

This avoids polluting the possibly small gaps of ECS between cardiomyocytes. For a

sufficiently small spatial resolution, the effective reduction of myocyte size is negligible.

Finite volume method

The finite volume method (FVM) has an advantage over the finite difference formulation.

As shown previously, there are limitations in how the FDM applied to the diffusion equation

can represent discontinuities in the diffusion coefficient. The FVM overcomes this naturally
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Figure 3.6: Schematic of the finite volume scheme. The domain is divided into cells of size ∆x,
with their cell centres (C) spaced δx apart (for constant sizes, ∆x = δx). Information with the
neighbouring cells left (W ) and right (E) is exchanged through the cell faces. The flux F at these
faces is either dependent on the diffusion coefficient D0 or prescribed (F = κ, or F = 0).

by dividing the domain into volumes (cells) and equating fluxes through the cell faces.

All information is communicated through the cell faces, which can be made to coincide

with membranes at the cardiomyocyte boundaries leading to infinitely thin membranes.

Figure 3.6 shows a schematic of the FVM in 1D. The current (central) cell is denoted by C

and its neighbours on the left (west) and right (east) use the subscripts W and E.

As with the FDM, the description below only offers a brief explanation of the method

as far as it is relevant to the final implementation in the Bloch–Torrey solver. Anyone

interested in a more detailed treatment, especially the mathematical underpinnings and

derivation of the equations presented below, should consult the book by Versteeg et

al. (2007).

The FVM uses a conservation approach. Instead of calculating the differences ex-

plicitly as was done in the FDM, the change in quantity U inside the finite volume is

considered instead. Through conservation laws, all changes in U (∂U∂t ) must be the result

of concentration exiting and entering the volume‡:(︃
∂U

∂t

)︃
C

= aWUW + aEUE − aCUC (3.24)

where aW |E = DA
∆x . This takes advantage of the constant spacing and size of cells in

the domain and would need to be adjusted to the specific geometry if variable spacing

were used. Setting A = 1 omits the face area, which in 1D equals unity by definition.

Furthermore aC = aW + aE leads to the formulation(︃
∂U

∂t

)︃
C

=
D

∆x⏞⏟⏟⏞
=F

(UW − 2UC + UE) . (3.25)

Note the similarity to the FDM in equation (3.22).

The quantity F in equation (3.25) represents the flux through the cell faces. Due to

the two-compartment model, D is constant between cells except at membranes. This can

‡Source terms that account for concentration being created or destroyed inside a cell are ignored here.
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be used to identify interfaces where κ should be used instead. In the code implementation,

F is not factored out and the formulation is kept closer to equation (3.24). The membrane

permeability can be used as a drop-in replacement for F .

At the boundaries, there is no need for ghost/halo cells. As with the internal boundaries,

the no-flux condition can be imposed directly by setting F = κ = 0. However for ease of

implementation halo cells are used with a special value for the diffusion coefficient, D =

NAN (not-a-number). This has two advantages: it results in a similar domain to the FDM

implementation, thus allowing for re-use of code and interchangeability of the diffusion

operator; it also enables using the value of ∆D to conditionally set the face velocity (=flux)

to zero instead of requiring a different implementation at the boundaries (recall the similar

reasoning in the FDM in the context of GPU optimisation).

3.4 Numerical results

3.4.1 Simulating a 3D stack of confocal microscopy images

An advantage of continuum methods over random walks is that no precise geometries

need be prescribed. FVM can simulate the diffusion/Bloch–Torrey equations directly in a

histology image of low resolution or poor-quality segmentation. For example, individual

membranes need not be identified exactly as would be required for MCRW methods. The

effect of “smeared” membranes inside bulk regions of ICS could for example be modelled

through a reduced DICS.

Here, a segmented stack of confocal microscopy images from figure 2.5 (Seidel et al.,

2016) is used as the domain, seen in figure 3.7. The original image stack has a size of

1024 × 1024 × 293 µm3 and isotropic imaging resolution of 0.2 µm/px. A cube of size

200 × 200 × 200 (= 8 × 106) cells and side length 40 µm is extracted from the centre

of the stack and simulated using the FDM implementation described in section 3.3.3.

Compartment diffusion coefficients were set to DICS = 1 µm2/ms and DECS = 3 µm2/ms

and the interface between ICS and ECS is fully permeable (κ =∞).

Figure 3.7 also shows a volume rendering of the concentration in the domain. It

has been clipped so that it only shows values larger than three standard deviations of a

Gaussian distribution for the same simulation time. Without this post-processing it would

be difficult to view the distribution near the initial spike, where the shape of the PDF has

most relevance. Anisotropic spread of the concentration can be appreciated, caused by

the heterogeneity of the diffusion coefficient. This results in local preferred directions of

diffusion along the cardiomyocytes.
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Figure 3.7: Input geometry for GPU-based Bloch–Torrey simulation (Left) and resulting 3D
distribution of concentration after an initial spike at the centre (Right). The geometry shows the
extra-cellular space (ECS) in black. The volume rendering of concentration is thresholded to a
value of three standard deviations of the corresponding Gaussian distribution. [Input geometry
kindly provided by T. Seidel, part of the data set from (Seidel et al., 2016).]

3.4.2 Accurate representation of discontinuities

Here, a FVM study is carried out to investigate the convergence of one-dimensional solutions

with an increase in number of cells in the domain. Two membranes are present in the domain

and during meshing/discretisation care is taken to place a cell face at these exact locations.

This results in slight differences in ∆x in the regions (compartments) between membranes,

but ensures a consistent membrane location irrespective of discretisation. As the current

GPU implementation does not allow for variable spacing at this time, the MATLAB code

from previous work (Rose et al., 2018e) is used instead. The code (appendix B.2.1) is

based on the finite volume MATLAB toolbox FVTool (Eftekhari, 2021).

A constant diffusion coefficient of unity (all parameters are normalised) and a high

permeability of 0.4 are selected. The simulation is carried out over 100 time steps

until (normalised) time 100, using an implicit time stepping scheme. An initial spike in

concentration is set in the centre of the domain. Due to the irregular mesh, the cell centres

do not all coincide. Since the FVM assumes a constant distribution of the quantity of

interest inside each volume, the cell that contains x0 = 50 is assigned the initial value

of 1/∆x (such that
∫︁
U dx = 1).

Figure 3.8 shows the final distribution of concentration. The overall shape of the

distribution is well captured even for a low number of cells. At the membranes, a “smearing“

of the concentration is observed at low resolutions. This effect is more prominent at the

membrane closer to the initial location of concentration, where the gradient ∂U/∂x and

thus the step change in concentration across the cell face is larger.

A sufficiently converged solution can be assumed at the highest number of points, Nx =
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Figure 3.8: Effect of spatial resolution on location of maximum concentration and accurate
representation of membranes in the finite volume method (FVM). The initial spike in concentration
is in the cell containing x0 = 50.

801. From Nx > 101 the solutions only differ slightly and capture all features of the

distribution. In general, the resolution required for a converged solution is problem

dependent. Based on this study with ∆t ∼ D ∼ O(1), it is suggested to use a cell size

of O(1).

3.4.3 Signal loss along different gradient directions

Until now, the applications of the continuum methods have focused on solutions to

the diffusion equation. This is an important aspect of the Bloch–Torrey equations and

especially diffusion-weighted methods like DT-CMR. However, the magnetisation dynamics

in response to the pulse gradients needs to be considered too. Below, the GPU-based

Bloch–Torrey simulator is applied to a realistic DT-CMR problem. The finite difference

method (FDM) is employed for these simulations, published previously (Rose et al., 2019d).

Using the automatic segmentation techniques described in section 2.4.2, regions of intra-

and extra-cellular space are identified in a wide-field microscopy image of swine histology.

The domain is seen in figure 3.9. The images have resolution ∆x = 0.5 µm/px. A region

of interest of 1760× 1760 px2 is selected as simulation domain. Boundary effects (Hwang

et al., 2003) due to the zero-flux boundaries at the domain ends are mitigated by discarding

the outer-most 10% of the domain on all sides. The boundary pixels of ICS regions are

assigned a reduced diffusion coefficient Db = κ/∆x as required by equation (3.17) to model

the cardiomyocyte membrane with permeability κ = 0.005 µm/ms. Diffusion coefficients in

the ICS and ECS are set to DICS = 1 µm2/ms and DECS = 2 µm2/ms respectively.
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Figure 3.9: Original histology image (Left) and automatically-segmented simulation do-
main (Middle) for simulations with the finite difference method (FDM). A subset of the do-
main (Right) is used to illustrate the three different types of finite difference cells: Extra-cellular
space (ECS, red), intra-cellular space (ICS, grey), and membrane (part of ICS, blue). [Parts of this
figure were presented in (Rose et al., 2019d).]

To model the DT-CMR signal in the domain, a full STEAM sequence with ∆ =

1 s and b -value 450ms/µm2 is simulated. As described in section 3.3, the transverse

magnetisation M = Mxı̂+My ȷ̂ has initial condition M = 1ı̂ everywhere in the domain as

a result of the 90° RF pulse. Three different gradient directions (Gxx = Gı̂, Gyy = Gȷ̂, and

Gxy = G/
√
2(̂ı+ ȷ̂)) are simulated, from which a 2× 2 diffusion tensor can be constructed.

This is further discussed later in section 6.4.1 and instead the qualitative results are

analysed here. Figure 3.10 shows the magnitude of M in the domain at the time of echo.

The effect of microstructure on local signal loss is appreciable. This region of interest was

chosen specifically to contain large shear layers between the sheetlets. It is clear from

figure 3.9 that the orientation of these shear layers have an orientation of less than 45° with
respect to the x-axis. This is corroborated by a high signal loss along the Gxy gradient

direction. Such a signal loss is the result of increased diffusion, in turn caused by reduced

local hindrance in ECS. The minimised signal loss inside the cardiomyocytes as a result of

Figure 3.10: Loss of transverse magnetisation M as a result of different DT-CMR gradient
directions G, indicated by the green arrow in the bottom right corner. The domain is the same as
in figure 3.9. Low values of ∥M∥ indicate a high signal loss, corresponding to low (local) restriction
and thus high apparent diffusion in that gradient direction.
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Figure 3.11: GPU performance results from the NVIDIA profiler. (Left) Pie chart of reasons
for threads to stall during execution. The largest share is labelled “other”, followed by “execution
dependency” and “synchronisation”. (Right) Compute and device memory utilisation.

restricted diffusion can also be observed.

3.4.4 GPU performance

The simulations in section 3.4.1 were profiled to assess the performance and quality of the

GPU code. While the simulations above were executed on a designated remote workstation

fitted with an NVIDIA Quadro P6000 GPU, profiling was done on a local workstation

containing an NVIDIA Quadro M4000. The M4000 was selected as a mid-range professional

desktop graphics card to also demonstrate feasibility of such simulations on non-dedicated

computing hardware like HPC systems or high-end workstations. The operating system

was Linux (Ubuntu 18.04) and code was compiled using the CUDA Toolkit 10. Even

though the precision of variables in the simulation can be selected at compile time, single

precision is used for all data as this is the most supported data type on GPUs. Given

the high performance penalty that comes with performing double precision arithmetic on

modern GPUs§, there is no advantage to be gained from additional precision. In fact,

spatial and temporal resolution are most likely more important for accurate simulations

than the floating point precision of variables.

Figure 3.11 shows the results from the NVIDIA profiler. According to the pie chart in

figure 3.11 (Left) the primary reason for stalling, i.e. when threads must halt and cannot

be utilised 100%, is “other”. This suggests that the kernel is almost fully optimised.

Stalling due to synchronisation is unavoidable to ensure all threads have written to the

shared memory before each thread makes use of the cached information from neighbouring

elements. Figure 3.11 (Right) shows the pipeline utilisation. The compute utilisation

is relatively high for a complex kernel like the one being profiled here. The effective

GPU memory bandwidth of the Quadro M4000 is reported as 93GB/s, compared to its

theoretical peak bandwidth of 192GB/s. This low utilisation of <50% is possibly a result

§The NVIDIA Tesla series (now branded “Data Centre GPUs“) is capable of efficient double precision
calculations.
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of overfull caches. As expected from the discretisation in equation (3.22) a total of 6

variables, namely Di−1,i,i+1 and Ui−1,i,i+1, need to be read to compute a single update to

Ui.

The average kernel runtime amounted to 5ms. This is the time to execute a single

diffusion pass along one of the three dimensions. For this specific case with the given

domain size of 2003 and a resolution of ∆x = 0.2 µm/px, the maximum time step for

numerical stability is bound by ∆t ≤ ∆x2

2max(D) = 0.01ms. Three diffusion passes are

required in 3D, which amounts to a total kernel runtime of 1500 s. Even factoring in other

smaller compute overheads, this is a good result.

Simulations of an initial concentration spike, which computes the diffusion propagator

U(x0 → x; t), only require a relatively small domain around the initial location x0. For

problems like those in section 3.4.3 however, a domain large enough to avoid significant

boundary effects is required. That work was carried out in 2D as a result. If one wanted to

simulate DT-CMR at the scale of a typical imaging voxel, the computational cost quickly

becomes a limiting factor. In 3D, the total memory size becomes a limitation too and the

execution time is no longer feasible. For those cases, it is recommended to limit analysis

to 2D or rely on random walk methods.

3.5 Discussion

This chapter introduced the basic theory and underlying equations for diffusion-weighted

imaging (DWI) and, more specifically, diffusion tensor imaging (DTI) or DT-CMR as

it is called in the context of cardiovascular magnetic resonance. With the exception of

analytical methods that are to be covered in chapter 4, modelling DT-CMR boils down

to numerically solving the Bloch–Torrey equations (3.2). These fundamental equations

govern the dynamics of the magnetisation vector M . For the time being, relaxation effects

are ignored and the Bloch–Torrey equations are reduced to precession in the transverse

plane. Inclusion of relaxation mechanisms would cause the dephasing of spins over time

and lead to a loss of Mxy.

Section 3.3 described a simulator for efficiently carrying out these numerical calcu-

lations using a continuum solution approach. Both finite difference (FDM) and finite

volume methods (FVM) were presented. The use of GPU hardware allows for significant

acceleration of these compute-intensive solution approaches. To harness the available

processing power of such hardware, knowledge of the GPU platform and its limitations is

required. As shown in section 3.3.2, the diffusion operator ∇ · (D∇) requires information

from neighbouring points of the discretised domain. Due to the intricacies of GPU memory

access patterns, the diffusion operator was split into separate passes along the different

Cartesian directions.
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While targeting GPU architecture directly has shown to involve a significant investment

of code development, it offers several benefits. For example, a well-designed parallel

algorithm executed on a GPU will outperform code on a CPU. While modern CPU cores

can have high clock speeds in excess of 4GHz, the large number of (slower) GPU cores

offer superior performance in parallel. In addition, GPUs are easy to retro-fit to existing

workstations to enable even older machines to run simulations where high performance

computing clusters are not available. Such simulations could also be integrated into other

workflows where GPUs are already used, for example the processing of histology images.

In order to simulate realistic DT-CMR acquisitions, the pulse sequences need to be

accurately represented. Section 3.2.3 presents a tool to automatically generate gradient

waveforms for the three common DT-CMR sequence types PGSE, M2-SE, and STEAM.

This allows for rapid turnaround in parameter studies that consider the variation of pulse

sequence parameters.
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4.1 Introduction

Previously in chapter 3, classical techniques from continuum mechanics were employed to

solve the Bloch–Torrey equations (3.2), or more specifically the diffusion equation (3.14),

using finite difference or finite volume methods. These techniques rely on discretisation of

space and time. Highly (spatially and temporally) resolved solutions require a considerable

amount of computational effort to simulate as both the number of degrees of freedom

increases and the time step decreases. Furthermore, care must be taken to discretise the

domain correctly and respect discontinuities at interfaces. In the case of the finite difference

method the treatment of barriers is even more complicated, either through use of (at least)

one interface node or special interface treatment.

Analytical methods are a promising approach to overcome these drawbacks but are

often limited to simplified problems. However, by reducing the complex diffusion in a

microstructure of multiple compartment types to a more elementary form allows us to do

two things: Firstly, the complex interplay of contributions to the diffusion signal can be

detangled by focusing on a domain that is easier to understand. Secondly, it enables the

verification of other, model-based methods, particularly the Monte Carlo random walk

methods discussed later in chapter 5.
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In this chapter, methods are presented to obtain the semi-analytical solution to the

diffusion equation in a 1D layered medium with permeable barriers. First, the domain

properties and limitations as well as the problem definition are described in section 4.2.

The solution involves finding the roots of a complex transcendental equation, which

is accomplished using a novel method presented in section 4.3. Lastly, the numerical

approximation of the semi-analytical solution is compared to known, truly analytical

solutions in section 4.4 to perform a sensitivity study that quantifies errors which may

arise in practice.

4.2 Analytical solutions to diffusion in layered media

The one-dimensional diffusion equation (3.14) applied to layered media, i.e. with piecewise

constant diffusion coefficient D(x), is

∂U

∂t
=

∂

∂x

(︃
D
∂U

∂x

)︃
. (4.1)

The variable U = U(x, t;x0) represents the probability of moving from position x0 to x

during time t. It is often referred to as the diffusion propagator. In this example, the

initial condition is given by

U(x, 0) = δ(x− x0) (4.2)

with δ the Dirac function.

4.2.1 Description of the 1D domain

As described in chapter 2, the myocardium like other biological tissue is often modelled as a

bi-compartmental system with two distinct types of compartments (intra- and extra-cellular

space) and their respective diffusion coefficients DICS and DECS, as well as membranes

with a fixed permeability κ that separate these compartments. While this model is followed

for applications to DT-CMR in this work, such limitations are not imposed by the method

in this chapter and an arbitrary choice of D and κ for each compartment/membrane is

allowed.

For typical diffusion length scales, diffusion in the direction parallel to the cardiomyo-

cytes is much less restricted than in the perpendicular direction. As a result, useful

information can be extracted from 2D simulations. By constructing a domain from char-

acteristic compartment length scales, 1D analysis may also provide new insights into the

diffusion processes of the tissue under consideration, especially in studying the effect of

permeability. For example, later in chapter 5 the analytical solution developed in this

chapter is used to verify random walk models for membrane transit. Simulations in 1D can

also be used to quantify restriction along specific directions in tissue, for example the slight

restriction introduced by intercalated discs along the long axis of the cardiomyocytes.
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Figure 4.1: Schematic of an example domain of a 1D layered medium. There are m = 4 com-
partments with indices k, separated by m + 1 barriers. Index k refers to the left barrier of a
compartment. Uniquely defining parameters are the barrier locations bk, starting at b0 = 0, and
corresponding compartment lengths Lk = bk+1− bk, diffusion coefficients Dk, and permeabilities κj .
At the domain ends, zero-flux boundary conditions (κ0 = κm = 0) are enforced.

Figure 4.1 shows an example 1D domain. It can be used to explain the nomenclature

used throughout chapter 4. The compartment barrier locations bk and corresponding

sizes Lk, diffusion coefficients Dk, and barrier permeabilities κk uniquely define the problem.

It is possible to specify non-zero permeabilities at the domain ends. This is rarely done in

practice however, because for most applications the concentration should not disappear

from the domain. Setting ∇U = κ at the domain ends corresponds to a solution in a small

region of interest, a finite interrogation window [b0, bm] inside an infinite domain. However,

as shown later, doing so prohibits any meaningful steady-state analysis. As a result, a

zero-flux Neumann boundary condition (∇U = 0) is imposed for all practical applications

in this work.

4.2.2 Spectral analysis of the diffusion operator

As a result of the wide range of applications of diffusion simulations, one-dimensional

diffusion in heterogeneous domains has been studied extensively in the literature. Common

techniques involving Green’s function, Laplace transforms, or spectral decomposition are

summarised by Hahn et al. (2012, ch. 10).

The solution assumes that space and time in equation (3.14) are separable, thus

resulting in the ansatz

U(x, t) = u(x)e−λt . (4.3)

Spectral decomposition is used to find the eigenvalues λn and eigenmodes νn(x) of the

diffusion operator (Tanner, 1978). With them the diffusion propagator can be calculated

by summation:

U(x, t;x0) ≈
N∑︂

n=1

e−λntνn(x)νn(x0) . (4.4)

The piece-wise constant diffusion coefficient Dk allows to assert that the diffusion op-

erator ∇(D∇) is self-adjoint. The orthogonality that follows from it guarantees that
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the solution is the sum of all weighted modes. The eigenvalue problem is reduced to a

Helmholtz equation

Dk u
′′ + λu = 0 ∀x ∈ [bk, bk+1] (4.5)

whose general solution is

u(x) = C1 sin(
√︁
λ/Dkx) + C2 cos(

√︁
λk/Dkx) . (4.6)

Moutal et al. (2019) present an elegant approach to this. The original derivation can

be found in Sec. 2.1 of their paper, but a summary is outlined here which adheres to the

notation in the rest of this work. It involves the complex transcendental equation

F (λ) :=
[︂
κm/

√︁
λDm−1 1

]︂
T (λ)

[︄
1

κ0/
√
λD0

]︄
= 0 , (4.7)

whose roots are defined as the eigenvalues λ in equation (4.4). The term T (λ) represents a
matrix (defined below). Through right- and left-multiplication with the column and row

vectors, which introduce the domain boundary conditions at boundaries b0,m the scalar F

is obtained. The equation for T (λ) with auxiliary matrices R and T is

T (λ) = Rm−1(λ)

(︄
m−2∏︂
k=0

Mk,k+1(λ)Rk(λ)

)︄
, (4.8a)

Rk(λ) =

[︄
cos(Lk

√︁
λ/Dk) sin(Lk

√︁
λ/Dk)

− sin(Lk

√︁
λ/Dk) cos(Lk

√︁
λ/Dk)

]︄
, (4.8b)

Mk,k+1(λ) =

[︄
1
√
λDk/κk,k+1

0
√︁
Dk/Dk+1

]︄
. (4.8c)

For all the compartments k ∈ {0, ...,m− 1}, each R(λ) matrix ensures that the solution

is satisfied throughout the entire domain. While R appears like a rotation matrix, it

actually originates from equation (4.6) with respect to either side of compartment k. The

matrix M serves to satisfy the flux conditions at the internal barriers with membrane

permeabilities κk,k+1. This notation involving the indices k from both compartments that

the barrier separates is copied from Moutal et al. (2019) only in this instance, in order to

keep equation (4.8c) similar to that in (Moutal et al., 2019, eqn. 15). Elsewhere in this

work, κk is used to mean the boundary on the left of compartment k.

Only non-trivial cases are considered. As such, the permeability values are required to

be in the range 0 < κk <∞. In that case, there exist a countably infinite number of real,

non-negative, and simple eigenvalues (Moutal et al., 2019), which are ordered:

0 ≤ λ1 < λ2 < . . . , λn →∞ (4.9)

All these need to be found to recover the exact solution through the eigenfunction expansion

in equation (4.4). From a practical perspective, the solution will therefore always be an
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Figure 4.2: Effect of domain boundary conditions (BCs) on the behaviour of F (λ) from equa-
tion (4.7) near zero. An arbitrary domain with two types of barriers at the domain ends is used:
impermeable (κ = 0, as used throughout this work) and permeable (κ > 0, labelled “non-zero
flux”). The running variable λ⋆ is used instead of λ, which is reserved for the roots of F . In the
impermeable case dF/dλ⋆ = 0 at the origin, but in the permeable case a discontinuity dF/dλ⋆ →∞
develops as λ⋆ → 0.

approximation as one cannot take an infinite number of eigenvalues. As shown later in

section 4.4.1 the relative importance of higher eigenvalues in the summation in equation (4.4)

reduces with increasing solution time t. A sensible truncation point is problem-specific

and needs to be chosen based on experience. For the domains in this work, nmax is

usually O(103). Note that due to the first eigenvalue λ1 = 0 ⇐⇒ κ0 = κm = 0. This

eigenvalue corresponds to a constant eigenmode that describes the steady-state solution.

The effect of domain boundary conditions κ{0,m} is illustrated in figure 4.2. It plots F (λ⋆)

near zero for a case with impermeable domain ends (κ = 0) and with finite, non-zero

permeability. In the former case the function approaches F = 0 with dF/dλ⋆ → 0, while

the latter case results in a discontinuity of dF/dλ⋆ →∞.

As shown later, calculating the eigenvalues is computationally expensive. However, for

a given domain with fixed parameters this only needs to be done once. The eigenvalues

then fully characterise the solution. Evaluation of the solution requires the eigenmodes to

be evaluated at the desired locations inside the domain. A high number of linearly-spaced

query points xq ∈ [0, bm] is used to discretise the domain and obtain the eigenmodes ν(xq)

by solving equation (4.5) as done by Moutal et al. (2019).

4.2.3 Behaviour of the transcendental equation

The eigenvalues λ of the diffusion operator are the roots of F (λ⋆) in equation (4.7). The

auxiliary variable λ⋆ is used when F is evaluated on a continuous range to differentiate

the running variable from the distinct eigenvalues. There is a singularity in equation (4.7)
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Figure 4.3: Function F (λ⋆) plotted for two different domains. Each plot shows F (λ⋆) until λ⋆
max =

103 and zooms in on regions near zero (red) and at high values of λ⋆ (green). These inset axes
highlight the high oscillations that this function exhibits at different scales and the overall difference
in magnitude that make root finding difficult.

at λ⋆ = 0 for κ = 0. This can cause numerical problems when attempting to find the roots

located very close to the origin.

A small modification to equation (4.7) is made in an attempt to improve the behaviour

in the vicinity of λ⋆ = 0. Only considering the cases λ⋆ > 0 would result in failing to find

all other eigenvalues 0 < λ2 ≪ 1. This requires the evaluation of F in the range λ⋆ ∈ [ε,∞]

for some arbitrary ε, usually machine precision O(10−16). An alternative approach is as

follows:

Since F (λ1) = F (0) := 0 holds for the chosen boundary conditions, the roots of an

alternative function, F̂ (λ⋆) = λ⋆ ·F (λ⋆), are found instead. This does not alter the location

of the roots λn and has little effect on the root finding process. To improve readability,

the “hat” is dropped and F used to mean F̂ henceforth.

Figure 4.3 shows F (λ⋆) for two domains: A simple three-compartment system resembling

a cell surrounded by small extra-cellular gaps; and a larger domain representing an array

of neighbouring cells with more arbitrary lengths and different membrane permeabilities.

For the first case, the oscillatory, periodic nature of the function becomes apparent. As

the domain becomes more complex and more unique values of Lk, Dk, and κk are used,

more frequencies appear in F . The added domain complexity also increases the amplitude

of the function significantly.
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Moutal et al. (2019) observed an apparent behaviour of F (λ⋆), namely that there are no

double roots (F ′(λ) ̸= 0), no saddle points, and that (at the extrema) F ′′(λ) ·F (λ) < 0 (all

minima [F ′′ > 0] on one side [−F ], all maxima [F ′′ < 0] on the other side [+F ] of the x-axis).

This conjecture observed by Moutal et al. (2019, pp. 16–17) was also confirmed numerically

in this investigation. Attempts to prove this analytically by induction, starting with a

simple two-compartment case, have failed to offer a definitive proof for this behaviour.

The large magnitudes and gradients of F (λ⋆) may pose problems with root finding.

The use of transforms to scale equation (4.7) was investigated in an attempt to mediate

some of the issues encountered. The “logicle” transform (Parks et al., 2006) was ruled

out because it relies on too many parameters that need to be carefully selected on a

case-by-case basis. Linear transformation in x (stretching) and/or y (scaling), meaning the

domain and range of the function F (λ⋆), is possible but not very useful due to the nature

of floating point numbers. Anecdotally, scaling in x helps in certain circumstances when

numerical error at large λ⋆ values causes problems locating the exact root. However, these

numerical phenomena need to be accepted since transforming back to the original x-scale

will introduce similar problems. Likewise, Moutal et al. (2019) observed that two roots

may numerically collapse to the same root due to numerical(in)accuracy. Therefore, while

scaling may help with robustness of the algorithm, it does not help with overall accuracy.

Non-linear transformations of F into F̄ like clipping to a threshold, i.e. F̄ = sign(F ) ·
min(Fmax, |F |), or normalising the function, i.e. F̄ = sign(F ) · 1, are other possible

approaches. They both help avoid the large vertical scales, but introduce discontinuities.

These prevent methods relying on the derivative of F and the smoothness of the function,

which helps approach and find the small extrema near F ≈ 0. These methods also mean

that the roots are now dependent on the interrogation window/step size. Overall, the

global shape of F is too dependent on parameters to find something else. As a result, it

was decided to not make use of transformations.

4.3 An efficient and convergent root finding algorithm

Considering the highly non-linear nature of equation (4.7), it quickly becomes apparent

that no closed-form expression for the eigenvalues exists. The roots of the transcendental

equation must therefore be found numerically, making the approach semi-analytical.

Inspecting the behaviour of F (λ⋆) even for simple domains as shown in figure 4.3 also

suggests that traditional root finding techniques may not be suitable. Besides, evaluating F

can be computationally expensive as the number of layers in the domain increases, due to

the need for repeated matrix multiplication involving λ. As such, an efficient algorithm

was developed without sacrificing accuracy and robustness in finding the roots.

In their paper, Moutal et al. (2019) find the roots of F using a novel and efficient
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algorithm specifically tailored to the problems they considered. It marches along λ⋆ with a

variable step size and looks for sign changes in F to determine an approximate root location

in the given interval. The algorithm relies on the apparent property of F (λ⋆), also described

above, that any two roots are separated by a local extremum (F ′ = 0, obtained numerically

by evaluating F at λ⋆ ± ϵ) in order to locally refine the function. While their method

is very fast, investigations performed as part of this work have found that the approach

can sometimes lead to missing (and occasional duplicate) roots, primarily in regions with

many closely-spaced roots and roots between extrema of low relative magnitude (compared

to max(|F |) in the surrounding region). Furthermore, the dependence on user-defined

tolerances and an initial guess for the step length also makes the approach by Moutal

et al. (2019) error-prone and not suitable for parameter studies, where manual input for

each choice of parameters is cumbersome.

4.3.1 Chebyshev interpolation

The problem requires that all roots of the function up to λ⋆
max be found. To achieve this, a

viable approach is to fit F with a function whose roots can be computed reliably.

Initially, attempts were made to evaluate the function at different levels of refinement

and perform piece-wise fitting using simple polynomials of varying degrees whose roots are

easily calculable. However, the fit is often poor and not guaranteed to converge. This may

be explained by the fact that the polynomial degree of the fit depends on the number of

roots in the (sub)domain, something that is not known a priori.

Given that the function is smooth and continuously differentiable, it lends itself to

interpolation with Chebyshev polynomials. In fact, convergence is guaranteed for Lipschitz

continuous functions (Aurentz et al., 2017). This solves the problem of the function being

highly oscillatory and having a much larger vertical than horizontal scale.

In this work ChebPy (Richardson et al., 2021) is used. It is a Python implementation

of the popular MATLAB package Chebfun (Battles et al., 2004; Driscoll et al., 2014), is

used. To improve reproducibility, the decision was taken to not rely on the proprietary

software MATLAB, because Chebfun does not work in Octave due to lack of support for

MATLAB-style classes and object-orientated programming in general. Instead Python

was used, which is easily and freely available. Through code inspection (both ChebPy and

Chebfun are open-source), contribution to the ChebPy source code, and comparison with

a custom MATLAB version that utilises the same algorithm but with Chebfun as backend,

it was ensured that the crucial parts of Chebfun were present and reliably implemented.

Using ChebPy, F (λ⋆) can be interpolated with Chebyshev polynomials C(λ⋆). For

a given interval in λ⋆, the number of Chebyshev coefficients is determined automatic-

ally (Aurentz et al., 2017). After a fit has been obtained for the interval, the extrema of

the newly obtained Chebyshev polynomial are computed. These extrema then serve as
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Figure 4.4: Graphical explanation of the recursive Chebyshev interpolation algorithm. Consider
an arbitrary smooth function y(x). Its initial interpolation approximates the extrema of larger
magnitude well, but fails to recognise the two low-magnitude extrema near y = 0. The next
iteration operates on intervals defined by the previously-found extrema.

initial condition for the next step of the iteration. Figure 4.4 illustrates this refinement

algorithm.

Figure 4.5 shows the Chebyshev coefficients and function values for C(λ⋆), λ⋆ ∈ [0, 104].

The initial global fit of λ⋆ over the entire λ⋆-range shows a poor fit near zero. The fact that F

Figure 4.5: Interpolation of F (λ⋆) on the “Complex” domain from figure 4.3 using Chebyshev
polynomials C(λ⋆). (Left): The global fit over the entire range [0, 104] shows large oscillations and
a poor fit for λ⋆ < 5. Splitting the function into subintervals (each shown in a different colour)
bounded by the extrema of Cglobal allows for a more accurate fit. (Right): Chebyshev coefficients
of C. The global approximation requires a large polynomial degree with a late drop in coefficient
magnitude, while the local approximations converge much faster. The first interval near λ⋆ = 0
shows a slow but steady drop in magnitude, but the coefficients of the other 1643 intervals converge
quickly. The solid line represents the median, while the shaded region is bound by the minima and
maxima of all local fits. The spike near the tail occurs because most coefficients end at 20.
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is composed of trigonometric functions may be the reason why initial attempts to interpolate

were relatively unsuccessful. When interpolating on subintervals of [0, λ⋆
max] (split at the

extrema of the global approximation), there is a significant reduction in polynomial degree

and an improved fit. The poor convergence in the first subinterval [0, 0.00346] is due to the

careful chopping algorithm of the automatic constructor, which does not find a suitable

numerical plateau despite the low absolute magnitude of the coefficients (Aurentz et al.,

2017). This could be mediated by choosing a lower tolerance.

4.3.2 Recursive root finder

Any well-behaved function without repeated roots, as considered in this work, has at

most one root between subsequent local extrema. This forms the basis of the root finding

algorithm. It is similar to the observation by Moutal et al. (2019) that there is exactly

one extremum between roots, but the presented algorithm does not rely on a function to

have such a property. In fact, the algorithm is suitable for any function f(x) provided it is

smooth and has simple roots. Three requirements to a good root finder are:

R1. It has to be fast and scale well with xmax (in this case λ⋆
max),

R2. It must find all roots (to a given tolerance ε),

R3. It should not rely on a-priori parameter selection (except ε).

As stated previously, an initial global interpolation C is obtained and divided into

smaller subintervals by splitting at the extrema of C. This procedure is done recursively,

providing a convergence mechanism. In addition, as seen in figure 4.4, this avoids missing

features by subdividing the function into more manageable chunks. It also has the added

benefit that it is computationally less expensive to operate on many small interpolations

than on one big function, especially if the algorithm were to be parallelized. Figure 4.5 gives

an indication of the size of the global and local polynomials. The procedure introduced

here is described in algorithm 4.1. The recursive component can be found in line 10, while

the Chebyshev interpolation is carried out in line 17.

The algorithm is implemented as a wrapper around the chebfun function in ChebPy.

In theory it is possible to implement this closer to the spirit of Chebfun, i.e. use internal

breakpoints to partition the domain (Driscoll et al., 2014) and employ the roots routine

to find the zeros of C(λ⋆). However, it was found that more stringent checks are needed

to save extra work and avoid re-computing intervals, and to ensure no gaps in the

domain occur where roots could hide. The latter is particularly important when roots are

closely spaced. This additional logic is not described here, but can be seen in the source

code (appendix B.2.3).
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Algorithm 4.1: Core procedures of the root finding algorithm. The function subdivide in
algorithm 4.1 serves as the entry point and is recursively called in algorithm 4.1. The function
find extrema performs the Chebyshev interpolation in algorithm 4.1. For all other functions that
are not listed here, a trivial implementation is assumed.

Input: A function F (λ⋆); an initial set of breakpoints [λ⋆
min, λ

⋆
max]

Output: A new set of breakpoints where the intervals contains no additional extrema

1: subdivide(F (λ⋆), [0, 104]) ▷ Entry point with a common value for λ⋆
max

2: function subdivide(F , oldpoints)
3: intervals ← pairs(oldpoints) ▷ Convert into list of interval end point pairs
4: newpoints ← ∅ ▷ Initially empty
5: for [left, right] in intervals do ▷ Operate on one pair at a time
6: extrema ← find extrema(F , left, right)
7: if extrema equal to [left, right] then ▷ Exit condition
8: append(newpoints, extrema) ▷ Store this interval
9: else

10: listofpoints ← subdivide(F , extrema) ▷ Recurse
11: extend(newpoints, listofpoints) ▷ Store the list of intervals
12: end if
13: end for
14: return newpoints ▷ A new list of interval end point pairs
15: end function

16: function find extrema(F , a, b)
17: C ← chebfun(F, [a, b]) ▷ Adaptive construction of chebfun
18: C ′ ← dC/dx ▷ Compute the derivative of chebfun
19: extrema← x ∀ C ′(x) = 0 ▷ Extrema are the roots of C ′

20: return unique([a, extrema, b]) ▷ Consider end points as extrema, too!
21: end function

Once all intervals of interest are found, the single root is computed in each inter-

val [λ⋆
L, λ

⋆
R]j (if one exists, as determined by F (λ⋆

L,j) · F (λ⋆
R,j) < 0) using Brent’s al-

gorithm∗ (Brent, 1971). Double roots cannot be found using this method, but as discussed

earlier the eigenvalues are simple. In addition λ1 = 0 needs to be enforced in the first inter-

val, where the algorithm otherwise would not search for a root since F (λ⋆
L,1) = F (λ1) = 0.

An example of the resulting root locations is given in figure 4.6, which compares the initial

estimation based on Cglobal and after convergence of the root finding algorithm. The

histogram indicates, for this specific F , the density of extrema and roots. It is observed

that F has the same number of extrema as roots. The figure also shows where the global

fit Cglobal fails to find the roots (and extrema). Most roots are missed in [0, 500] and the

number decreases as λ⋆ increases.

∗The SciPy (Virtanen et al., 2020) implementation of Brent’s algorithm, brentq, was used.
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Figure 4.6: Different iterations of the root finding algorithm. Shown are the initial guess based
on the global Chebyshev interpolation and the final locations after convergence. (Left): Histogram
of extrema and roots of F . The initial global fit Cglobal is insufficient to represent the function and
find all of its roots. The recursive element in the root finder finds additional extrema and roots
until convergence. Regions where the initial global fit fails to find roots are indicated. A large
number of roots (and missed ones) are located at λ⋆ < 103. (Right): Behaviour of F (λ⋆) and
locations of roots near 0, showing that many roots are missed in [0, 1] initially.

To avoid problems with what was describe in figure 4.4 a final splitting and interpolation

of the subdomains could be implemented. This would ensure that the algorithm has in

fact converged for intervals of large horizontal scale between extrema.

4.4 Verification of the analytical solution

As described above, the eigenvalues (roots of equation (4.7)) are found numerically up

to λmax. The solution U(xq, t) is then evaluated by summation of the series in equation (4.4)

and is therefore semi-analytical. As a consequence, numerical errors introduced by the

root finding procedure manifest themselves as errors in the solution. Here, these errors

are quantified using two approaches: comparison with a known solution and sensitivity

analysis.

4.4.1 Known solutions

Consider diffusion in a single compartment, defined by the (non-dimensional) parameters

D0 = 0.5, L = 2, and x0 = 1. For this case of parallel plates (Tanner et al., 1968), the

eigenvalues are known to be

λn =
(︂nπ
L

)︂2
D0 (4.10)

and the eigenmodes are

νn(x) =
√
an cos

(︂nπ
L

x
)︂

(4.11)

with a0 =
1
L and an>0 =

2
L . This is used to verify that the root finding algorithm returns

all roots and to test the accuracy of those roots. With strict tolerances, L∞ and L2 norms
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Figure 4.7: Verification cases of diffusion between plates at different times and with different
number of eigenvalues. Conversion from number of eigenvalues to λ⋆

max is trivially done with
equation (4.10). Left: Short-time solutions show oscillations at lower (insufficient) number of
eigenvalues. At longer times, the tail of the distribution deviates from the Gaussian due to the
zero-flux condition at the plates. Right: Heat map of the error, calculated as the area between the
curves U and G = UGauss. Since

∫︁
U dx = 1, an error ≪ 1 is required for an acceptable solution.

Note that the time on the y-axis is increasing from top to bottom to match the plots on the left.

have values of 10−17 for the error of all λn up to n = 91. The difference is larger than zero

for most roots, because F (λn) itself does not evaluate to zero due to numerical error (of

the order of 10−10, increasing with λ).

At short times, when the concentration has not reached the barriers at x = x0 ± 1,

the solution should match a Gaussian (normal) distribution with mean µ = x0 and

variance σ2 = 2D0t (or simply σ2 = t since D0 = 0.5). Recall the definition of the

diffusion propagator. For a homogeneous medium without barriers, it satisfies the Gaussian

distribution

U(x, t > 0) =
1

σ
√
2π

exp

(︄
−1

2

(︃
x− x0

σ

)︃2
)︄
. (4.12)

This occurs until time t = T where T ≪ (x−x0)2

2D0
= 1. At very short times t ≪ T , the

solution U(xq, t) displays oscillations as seen in figure 4.7. For cases like this, a larger

number of roots is typically required to remove the artefactual oscillations.

The relationship between time t and the number of eigenvalues required to accurately

represent the solution at t is complicated as can be observed in the heat map in figure 4.7.
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For very short times t < 10−7, this requires Nλ ≫ 104 eigenvalues for an acceptable error.

As t is increased, large eigenvalues become less important to the solution. Compared to

a solution with Nλ → ∞, this would continue until a steady-state is reached and only

the first eigenvalue/mode is necessary to represent the solution. However, comparison to

the Gaussian reference solution instead reveals that the effective T occurs near t > 10−2

when the error increases irrespective of the number of eigenvalues used. This is due to

the Gaussian approximation based on free diffusion diverging from the true solution for

diffusion between parallel plates as described in equations (4.10) and (4.11). The time at

which the error becomes unacceptable may be estimated using the error function (erf).

The solution at short times displays negative values for U(x, t). An attempt to solve

this by Fejér summation (Fejér, 1903) corrects the negative values but leads to poor

convergence overall and a much lower peak at xq,0.

4.4.2 Sensitivity analysis

In section 4.4.1 it was shown that a large number of eigenvalues are needed to accurately

represent a solution, especially at shorter times. Here, the effects that numerical error in

the root finding has on the accuracy of the diffusion solution are investigated by means of

a sensitivity study. Two types of error are considered: inaccuracies in the root locations

and missed roots. The results are shown in figure 4.8.

All 3021 eigenvalues in λ⋆ ∈ [0, 105] are modified by multiplying them with random

perturbations of order O(ϵ) in the range 0 to 0.5%. For each value of ϵmax 10 repetitions are

performed, each time drawing all perturbations to the eigenvalues randomly from [0, ϵmax].

The resulting solutions U are plotted in figure 4.8 at different time points. Large fluctuations

in U (including unphysical negative values) can be observed for t = 10−4 and t = 10−3 in

the tail of the distribution. At t = 10−2 the error also manifests itself as a flattening of the

peak at x0 and a slight asymmetric shift away from the reference solution. In all cases the

discontinuity at the barriers is respected and the error is not symmetric about x0.

The right half of figure 4.8 shows the effect of missing roots altogether. For each

eigenvalue i, λi and νi are removed from the series solution in equation (4.4). Here, only

the first 100 eigenvalues are considered, since higher eigenvalues have diminishing influence.

A similar behaviour to figure 4.7 can be observed regarding the relationship between time t

and eigenvalues. In the heat map the error magnitudes vary periodically with eigenvalue

index. This is most likely explained by the eigenfunction for this specific F (λ), which

contains periodic elements similar to those in equation (4.7).

4.4.3 Error guarantees

One can verify that all roots have been found within a given range by checking the sign

change of the eigenmodes. It is important to use a large number of query points to capture

86



CHAPTER 4. ANALYTICAL METHODS

Figure 4.8: Sensitivity of analytical solution U to errors in the eigenvalues. The considered domain
has three compartments with parameters L = 10, D = 1, and κ = 0.1. In total, 3021 eigenvalues
are found in λ⋆ ∈ [0, 105]. (Left): All eigenvalues were perturbed with random errors (uniform
between 0 and O(ϵ)). Shown are 6 different values of ϵmax in the range 0 to 0.5%. The plotted
solutions for each ϵ-value are the maximum extent and median of U of each 10 random repetitions.
(Right): Sensitivity of the solution at different time points to a single eigenvalue i missing. The
error is the area (integral) between the reference and modified solution and

∫︁
U dx = 1.

the sign change accurately. Alternatively, applying Chebyshev interpolation and finding

the roots of the interpolant using the same method as used in section 4.3 might provide

more reliable results. Throughout this work, checks were always performed to ensure that

all roots are found and the solver tolerances have been adjusted if necessary.

4.5 Discussion

An analytical solution for diffusion in one-dimensional arbitrary layered media was presented.

This approach is based on the spectral decomposition of the diffusion operator, for which

the eigenvalues need to be determined numerically from equation (4.7). By means of a

novel root finding algorithm that uses recursive Chebyshev polynomial interpolation it is

possible to efficiently find all these eigenvalues up to machine accuracy. A rigorous analysis

was carried out to study the errors in the solution which is semi-analytical by nature.

The analytical solution can be used as reference solution for other methods, for example

to verify statistical models in Monte Carlo random walk simulations. In this work, this
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is done later in section 6.3. Note also that recently Moutal et al. (2020) extended their

method to diffusion MRI in periodic media.

The results of this chapter have implications beyond application to diffusion in biological

tissue. For example, diffusion of colloidal fluids in porous media (Kärger, 1985, 2012)

shares similarity with biological tissue. Additionally, heat transfer problems can often be

reduced to 1D. The root finding algorithm presented here is novel and may find universal

application to general root finding procedures.
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Chapter 5

Diffusion as a Random Walk Process
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5.1 Introduction

Random walks are widely used to model the underlying stochastic processes in a range of

applications, such as astrophysics (Chandrasekhar, 1949), diffusion in porous media (Kärger

et al., 2012), and statistical finance (Scalas, 2006). Their validity and mathematical

underpinning are well-explained in the review by Chandrasekhar (1943). Regarding

the context of modelling diffusion in biological tissue, the textbook Random Walks in

Biology (H. C. Berg, 1993) offers a good description of the basic concepts of a random

walk.

Section 5.2 presents a general description of the approach, first in free diffusion and

then near barriers. A thorough derivation for the correct treatment of walker-barrier

interactions is then discussed in section 5.3. The numerical implementation is finally

presented in section 5.4.
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5.2 General approach

Consider a heterogeneous layered medium with scalar compartment-specific diffusion

coefficient D(x). The diffusion equation in equation (3.14) becomes

∂U

∂t
= ∇ · (D∇U) . (5.1)

Its solution with initial condition δ(x− x0) may be obtained by considering an ensemble

of Np massless, non-interacting particles∗ initially located at x0 performing a (discrete

time) random walk. Again, equation (3.14) can be reduced locally to the heat equation

∂U

∂t
= D0∇2U (3.18 [reproduced])

inside each compartment with local diffusion coefficient D0. The boundary conditions

at the compartment barriers enforce the permeability of these membranes through an

appropriate flux D∇U to “link” the solutions from separate compartments.

Unlike previously in chapters 3 and 4, where the solution U(x, t) described the concen-

tration density in space and time, U now equivalently denotes the probability of finding

a particle at a given position and time. Each walker, initially located at x(0), moves

according to

x(Nt δt) = x(0) +

Nt∑︂
n=1

δx(D(x), δt) (5.2)

where the Nt random steps δx of duration δt are statistically independent and scale

with
√︁

D(x)δt.

5.2.1 Stepping in time and space

Let us limit ourselves briefly to homogeneous media with constant diffusion coefficient D0

everywhere. This describes the behaviour of walkers away from barriers. In this case, the

most basic example of a random walk is a one-dimensional walker originally located at the

origin moving by either +1 or −1 every time step. Eventually, the walker will have covered

every position in Z. The unit step length implies Dδt = 0.5, because |δx| =
√
2D0 δt. This

elementary example of “walking on a grid” uses constant stepping without resting.

Another approach is to draw the step length δx directly from the diffusion propagator,

i.e. a normal distribution with variance σ2 = 2D0 δt. This results in a walk in R. The

advantage is obvious and clearly visible in figure 5.1: Fewer walkers and steps are needed

to recover the propagator, because each step already satisfies the solution. As the number

of steps is increased for the same diffusion time, the random walk that uses constant steps

∗The choice of Np is problem-specific and needs to be large enough to achieve a converged result. This
will be addressed in section 6.2.2.
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Figure 5.1: Effect of the different choices of random step length in 1D. All walkers were initially
located at the origin and stepped with either normally-distributed or fixed step lengths. The
histograms show final walker positions, compared with a Gaussian distribution. As expected, the
normally-distributed steps match the target distribution well. Using (too few) constant steps causes
a non-smooth histogram due to the finite number of positions. Increasing the temporal resolution
results in convergence.

converges to the Gaussian distribution. As shown later, stepping with constant length and

random direction is necessary in the presence of permeable barriers.

In higher dimensions the elementary random walk with constant steps results in 4 (2D) or

8 (3D) unique step vectors. These stencil points are all equally likely to occur. Alternatively,

one may consider a circle or sphere of radius R =
√
2nD0 δt for an n-dimensional random

walk. The two-dimensional case is shown in figure 5.2. Given a random step direction, each

Figure 5.2: Different ways to draw random steps. (Left) In 1D, using a constant step length of
σ1D results in two steps ±σ1D. Steps can also be drawn from a normal distribution. (Right) In 2D,
the constant step length is σ2D. It can be drawn either with a uniformly-distributed orientation θ
or by randomly selecting from 4 points on a grid. Alternatively, normally-distributed lengths are
possible too by drawing the two step vector components from a Gaussian.
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point is equally probable. In 2D the random orientation of the step needs to be uniformly

distributed in [0, 2π). In 3D a correct choice of random variables is required to ensure

uniform sampling of the sphere’s surface. Instead of (maybe intuitively) sampling the

spherical coordinates θ (polar angle) and φ (azimuth angle) in their respective ranges [0, π]

and [0, 2π), they must instead be drawn from two uniform random variables u and v both

in [0, 1) and computed as θ = cos−1(2u − 1) and φ = 2πv (Fieremans et al., 2008). In

an extension to the 1D case, all 2 or 3 Cartesian step vector components can also be

drawn from independent Gaussian distributions. In summary, the following step types are

possible:

• Fixed step length and random orientation, generated by

– randomly sampling a circle/sphere in 2D/3D, or

– randomly drawing each step vector component as ±1 and scaling;

• Gaussian step length and orientation, generated by

– randomly drawing normally-distributed step vector components.

All these approaches have different rates of convergence as the number of walkers and

time steps increases. Not only must the random walk recover the underlying diffusion coef-

ficient D0 from the mean squared displacement (MSD) at time t in isotropic, homogeneous

media via ensemble averaging

MSD = ⟨|x(t)− x(0)|2⟩ = 1

Np

Np∑︂
p=1

|xp(t)− xp(0)|2 ≡ 2nD0t , (5.3)

but it also has to sample inhomogeneous spaces effectively and uniformly. For example,

constant stepping quickly recovers the MSD as the number of walkers increases even with

a relatively low number of steps, but suffers from only sampling a (small) finite set of

points. This is especially true if walkers are initially located at a common origin or seeded

in a grid. In such a case an initial transient phase of the walker dynamics needs to be

simulated. This can be avoided by true random seeding, i.e. drawing positions from a

uniform distribution.

Furthermore, Powles et al. (1992) suggest a step limit of δx≪ L for some character-

istic geometric length scale L. However, this can still lead to bias in the results if the

characteristic length (for example the cell diameter) is much larger than other features

that the simulation is supposed to sense like irregular membrane shapes Γ.

A hybrid treatment may be possible where only walkers that are sufficiently far away

from barriers execute Gaussian steps, thereby improving convergence while enabling
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Figure 5.3: Convergence of apparent diffusion parameters for different thresholds for a truncated
Gaussian step length. Both free (unrestricted) and restricted (histology-based) geometries are
considered. FA is not shown for free diffusion as it is ill-defined. [Reproduced with permission
from (Rose et al., 2019c).]

permeable membranes. If a maximum length for the step of e.g. 5 standard deviations† of

the distribution is chosen, all walkers within that distance of the barrier carry out uniform

steps. During the simulation the random walk may also be arbitrarily paused to coarsen

or refine the time step δt. This is advantageous if the temporal resolution needs to be

varied during some time interval, for example due to the application of very short magnetic

gradients in the otherwise long STEAM sequence. In any case, conditional sub-stepping is

prohibited. Changing between step types has to be determined before the step is drawn

and cannot be done only if a step is found to intersect the barrier. Since substeps must

not be forced to follow the bulk direction of the original step, conditional sub-stepping

would introduce a conditional probability that biases the random walk against walking

towards barriers.

In figure 5.3 the effect of drawing step lengths from a truncated normal distribution

with increasing bounds is studied. Both free diffusion and diffusion in a histology-like (sec-

tion 2.3.4) domain are simulated. For a truncation to a short maximum step length of ±3σ
significant errors are observed in the random walk and resulting DT-CMR parameters. As

a result, truncation should be done such that δx ≥ 4σ even though ±3σ already contains

99.7% of step lengths.

†This corresponds to 1 in 1 744 278 steps being rejected. As shown in figure 5.3, this results in negligible
bias in the random walk.
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5.2.2 Distinction between walkers and spins

It is important to correctly define what a walker is. While the analogy is often found in

MRI literature, random walkers are not directly equivalent to water molecules or spins.

There are O(1025) H2O-molecules in a litre of fluid. For common imaging voxel sizes

of 1mm3, this would require simulating O(1016) walkers. Given the Boltzmann distribution

N+

N− = exp(−∆E

kT
) (5.4)

and the Zeeman effect

∆E = γℏB0 (5.5)

the net number of spins in the voxel can be estimated. For a 3T field at room temperature,

this results in N+/N− = 1− 2.1× 10−5. While this is almost unity, the large number of

H2O-molecules still means that there are O(1011) measurable spins—an unmanageable

amount for directly simulating each spin.

The random walk models Brownian motion as a solution to the diffusion equation.

In fact, the random walk is simply another approach to solving the diffusion equation.

For example, the jump probabilities in the random walk using constant step lengths find

analogy in the 3-point stencil used in the finite difference scheme in section 3.3.3. Like in

the continuum approach, where space is discretised into cells, magnetisation can be assigned

to an ensemble of spins represented by a single walker. In reality each water molecule

on average experiences O(1014) collisions per second (Feynman et al., 1964, sec. 41-1),

which is neglected by assuming their statistical independence. Further, simulation of

the complex molecular interaction with the tissue such as lipid bilayers (cell membranes)

requires modelling molecular dynamics with software such as Smoldyn (Andrews et al.,

2010) or MCell (Kerr et al., 2008; Stiles et al., 2001).

For the purposes of MR simulations, a walker represents a spin ensemble that contributes

with equal weight to the diffusion signal. During the experiment, each walker collects

phase ϕ as a result of the magnetic gradients (time-discretised intoNt intervals of duration δt

and strength G):

ϕ(Nt δt) = γ

Nt∑︂
n=1

G(nδt) · x(nδt)δt . (5.6)

The resulting signal magnitude at readout is then computed by combining the phase ϕp of

each of the Np walkers with index p via

S =
1

Np

⃓⃓⃓⃓
⃓⃓ Np∑︂

p

e−iϕp

⃓⃓⃓⃓
⃓⃓ (5.7)

where i =
√
−1. Note that equation (5.7) is a discretised versions of equation (3.3). To

accurately reflect the image acquisition, only walkers that are inside the imaging voxel
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at the time of echo are included. To account for this loss of concentration over diffusion

time T , additional walkers need to be seeded in a buffer zone of size
√
2nDT around the

imaging voxel.

In the narrow pulse approximation (NPA) (P. T. Callaghan, 2010), co-simulation of

the phase is not required. Instead, pure diffusion simulations can be carried out and

post-processing based on the distances that the walkers have diffused. Equation (5.6) can

be replaced with

ϕ(∆) = qĝ ·
(︁
xp(∆)− xp(0)

)︁
(5.8)

and the phase corresponding to instantaneous gradients with direction ĝ and wave number

q can be calculated. Care must be taken to ensure the simulated time is not the full

sequence from RF pulse to echo, but that diffusion happens only for a duration of ∆ to

comply with the NPA.

5.2.3 Stepping in the presence of barriers

Equation (5.2) describes a general random walk. Previously section 5.2.1 discussed stepping

in regions where the diffusion propagator is Gaussian. Barriers such as cell membranes

hinder or restrict diffusion, leading to non-Gaussian effects such as kurtosis and other

deviations from the Gaussian distribution. When interacting with a barrier, each time step

the net displacement vector δx is composed of a series of sub-steps δxm that depend on

the local environment and together make up the full step

δx =
∑︂
m

δxm . (5.9)

This ensures that even complex interactions are handled correctly. For example, a walker

located inside an impermeable cube near one of its corners may reflect off multiple faces in

succession during the same time step. Later in section 5.4 a numerical implementation of

this substepping is described.

In general, the interaction is resolved by first computing a probability of transit pt,

whose value is constant and deterministic, and then drawing a random number U ∈ [0, 1)

to compare to pt:

δxm+1 =

⎧⎨⎩transit if U < pt,

reflection otherwise.
(5.10)

While specular reflection is used in this work, other interactions are also possible. In

particular, random scattering warrants further investigation given the imperfect membrane

surface in real tissue.

For ease of explanation, let us introduce the one-dimensional simple single-barrier

encounter shown in figure 5.4. Extension to higher dimensions is trivial and will be
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Figure 5.4: Illustration of the behaviour of a single walker at xp performing a random step δx
towards a barrier at xb. Initially, the step is divided into δxi and δxj . Depending on the
transit decision, the walker is either reflected elastically (x = xp + δxi − δxj) or enters the new
compartment with Dj < Di. In the latter case, the remaining step after transit is modified to δx′

j

following equation (5.12) such that entering a compartment with lower/higher diffusion coefficient
decreases/increases δxj .

discussed later. If a walker currently residing in compartment i attempts to cross into

compartment j through a barrier at xb, the step is divided into

δx = δxi + δxj (5.11)

such that δxi = xb − xp. Upon entering the new compartment with a different diffusion

coefficient Dj ̸= Di, the remaining step length δxj over the duration δtj =
δxj

δx δt needs to be

adjusted to preserve a constant step size
√
2δt normalised by the diffusion coefficient (Szafer

et al., 1995):

δx′j = δxj

√︃
Dj

Di
. (5.12)

An alternative but equivalent formulation of this condition is√︁
δtj =

√
δt−

√︁
δti , (5.13)

which relates the times spent on each sub-step by

δxi√
2Di δt

+
δxj√︁
2Dj δt

= 1 . (5.14)

In addition to the step modification in equation (5.12), another condition needs to be

satisfied. The probabilities of crossing from either side to the other, i.e. pt,(i→j) and pt,(j→i),

must be augmented by the relative compartment diffusion coefficients, even in the absence

of a membrane, via
pt,(i→j)

pt,(j→i)
=

√︃
Dj

Di
. (5.15)

As noted by Szafer et al. (1995), this “interface reflection” is required even as κ→∞.
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5.3 Analysis of membrane transit models

A number of different methods have been proposed in literature to calculate the probability

of transit pt in equation (5.10) based on some or all of the membrane and tissue properties:

pt,(i→j) = f (δxi, δxj , Di, Dj , κi,j) . (5.16)

In this work these are referred to as transit models, represented by some to-be-determined

function f in equation (5.16). This rather long section is devoted to an analysis of existing

models and their validity.

The ultimate aim of any such transit model is to accurately represent the leather bound-

ary condition in equation (5.17), which Powles et al. (1992) named after Tanner (1978):

Di
∂U

∂x

⃓⃓⃓⃓
L

= κi,j (U |R − U |L) . (5.17)

Here, U is the particle density and the evaluation limits L and R indicate that the

concentration and its gradient should be evaluated infinitesimally to the left (on the side

of compartment i) or right (compartment j) of the interface. Fick’s first law (Fick, 1855)

states that the flux J is related to the gradient in concentration by

J = −D∇U , (5.18)

where the sign indicates the direction of the flux vector with magnitude J . Since there

is no accumulation of concentration/walkers inside the barrier, the flux must remain the

same on either side, i.e.

Di
∂U

∂x

⃓⃓⃓⃓
L

= Dj
∂U

∂x

⃓⃓⃓⃓
R

. (5.19)

These two relations above (equations (5.17) and (5.19)) are illustrated in figure 5.5

by considering the concentration distribution U(x) across a permeable membrane. In

this example, the membrane is described as having small but finite width b and reduced

diffusion coefficient Db (such that it satisfies equation (2.3) for a given κ). On the left and

right sides of the membrane are compartments with respective diffusion coefficients DL

and DR. The concentration on the left side is higher than on the right. This can be seen

from the slopes of the two curves at xb ± b
2 . According to equation (5.19) the fluxes into

and out of the membrane have to be equal, and thus the lower gradient dU/dx on the

left is compensated for by a larger DL. Within the membrane, the concentration gradient

is assumed constant. As b→∞, the finite membrane becomes a discontinuity in U seen

in the top right smaller plot. This step change in U across the membrane disappears as

κ → ∞ and the boundary condition in equation (5.17) becomes trivial (Moutal et al.,

2019).

97



CHAPTER 5. DIFFUSION AS A RANDOM WALK PROCESS

Figure 5.5: Discontinuity of concentration U across a permeable membrane. Inside it, the
concentration gradient is constant over its fixed width b. When representing the membrane as
infinitesimally thin, this gradient reduces to a discontinuity in concentration across it.

5.3.1 Models found in literature

Besides models where a constant probability of transit is prescribed based on experience or

calibration, such as in the work by Hall et al. (2016), the general approach is to derive pt

from first principles.

First, consider the case of a fully permeable barrier which often appears in heat transfer

problems when two materials of different conductivities (or thermal diffusivities) Di and

Dj , are in contact. In this case, Maruyama (2017) presents an elegant interpretation of the

behaviour of random walkers, likened to transitioning between media of different viscosities.

The expression for the probability of transmission from region i to region j,

pt,(i→j) = min

(︄
1,

√︃
Dj

Di

)︄
, (5.20)

was first derived by Bechtold et al. (2011) and corresponds to a one-sided step rejection

that satisfies equation (5.15).

The case of a finite membrane permeability was well-studied by Powles et al. (1992).

The authors consider a constant diffusion coefficient D (i.e. Di = Dj) and a discrete lattice

of equidistant points to derive pt for a barrier located on a grid point. Note that Powles

et al. use permeability coefficient P = κ/D. Fieremans et al. (2010) extended this approach

to walkers performing uniform steps located at arbitrary positions xp in the vicinity of

the boundary. By neglecting higher-order terms in the derivation (compare to the Taylor

expansion in section 5.3.2), Fieremans et al. present a transit probability

pt,(i→j) =
2κi,j δxi

Di + 2κi,j δxi
(5.21)
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Figure 5.6: A grid of walker positions x and jump probabilities p near a permeable barrier located
at xp. The concentration at xp, i.e. U(xp, t+2δt), is composed of the contribution of three different
walker positions at time t (two time steps prior) through four different paths. The green path
reflects at the barrier with probability 1− pt,L→R, while the orange path passes through the barrier
with transit probability pt,R→L.

for different diffusion coefficients (Di ̸= Dj) on either side of the barrier, where δxi is the

distance from xp to the barrier xb. The authors note a limit on δt such that pt ≪ 1. In

numerical simulations, a value of pt = 0.01 is used (Fieremans et al., 2010).

5.3.2 Transit model derivation

The work by Powles et al. (1992) presents a derivation of the transit probability pt for

walker positions on a lattice based on a constant step length in the entire domain. Here,

domains are considered where the diffusion coefficient may differ between compartments.

As such, the probability of transit is re-derived for the domain in figure 5.6 considering the

different step lengths.

Consider the probability of finding a walker at xp as the sum of probabilities of

neighbouring walkers jumping to xp. Away from interfaces, this results in

U(xp, t+ δt) =
1

2
U(xp − δx, t) +

1

2
U(xp + δx, t) (5.22)

and can be visualised by Pascal’s triangle. Selecting xp to be near a barrier at xb (see

figure 5.6 for the possible paths of walkers to reach this position) results in additional

terms involving pt (both pt,L→R and pt,R→L). In the limit of fully -permeable membranes

with κ→∞, these pt terms would tend to 0.5 iff Di = Dj . The barrier location is chosen

to coincide with a grid point. A walker located here will proceed left/right according

to the appropriate probability of transit. The contributions of different U(x, t) terms
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to U(xp, t+ 2δt) in figure 5.6 (with the path colour indicated) are

U(xp, t+ 2δt) =
1

4
U(xp − 2δxL, t)⏞ ⏟⏟ ⏞

free (red)

+
1

4
U(xp, t)⏞ ⏟⏟ ⏞

free (blue)

+
1− pt,L→R

2
U(xp, t)⏞ ⏟⏟ ⏞

reflection (green)

+
pt,R→L

2
U(xp + δxL + δxR, t)⏞ ⏟⏟ ⏞
transit (orange)

.

(5.23)

One may now express xp relative to xb, e.g. the contribution of the orange path from

the right side of the barrier is reformulated as

U(xp + δxL + δxR, t) = U(xb + δxR, t) . (5.24)

Applying this to all terms results in

U(xb − δxL, t+ 2δt) =
1

4
U(xb − 3δxL, t) +

1

4
U(xb − δxL, t)

+
1− pt,L→R

2
U(xb − δxL, t) +

pt,R→L

2
U(xb + δxR, t) .

(5.25)

This allows us to perform a Taylor series expansion of every term U , namely

U(x+ a, t+ b) = U(x, t) +
∂U

∂x

a1

1!
+

∂2U

∂x2
a2

2!
+

∂U

∂t

b1

1!
+ H.O.T. . (5.26)

The expansion is carried out in time t, with ∂U/∂t = U̇ , and around the barrier location xb,

where care is taken to expand infinitesimally to the left and right of the barrier as

appropriate. This yields

U |L − δxL
∂U

∂x

⃓⃓⃓⃓
L

+
δx2L
2

∂2U

∂x2

⃓⃓⃓⃓
L

+ 2δtU̇L

=
1

4

(︃
U |L − 3δxL

∂U

∂x

⃓⃓⃓⃓
L

+
9δx2L
2

∂2U

∂x2

⃓⃓⃓⃓
L

)︃
+

1

4

(︃
U |L − δxL

∂U

∂x

⃓⃓⃓⃓
L

+
δx2L
2

∂2U

∂x2

⃓⃓⃓⃓
L

)︃
+

1− pt,L→R

2

(︃
U |L − δxL

∂U

∂x

⃓⃓⃓⃓
L

+
δx2L
2

∂2U

∂x2

⃓⃓⃓⃓
L

)︃
+

pt,R→L

2

(︃
U |R + δxR

∂U

∂x

⃓⃓⃓⃓
R

+
δx2R
2

∂2U

∂x2

⃓⃓⃓⃓
R

)︃
.

(5.27)

Higher-order terms (H.O.T.) resulting from the Taylor expansion can be omitted, but their

significance should be remembered as δx increases. Grouping the elements of equation (5.27)

by terms of U and its derivatives gives

U̇L (2δt) = U |L
(︃
−1 + 1

4
+

1

4
+

1

2
−

pt,L→R

2

)︃
+ U |R

(︂pt,R→L

2

)︂
+

∂U

∂x

⃓⃓⃓⃓
L

δxL

(︃
1− 3

4
− 1

4
− 1

2
+

pt,L→R

2

)︃
+

∂U

∂x

⃓⃓⃓⃓
R

δxR

(︂pt,R→L

2

)︂
+

∂2U

∂x2

⃓⃓⃓⃓
L

δx2L

(︃
−1

2
+

9

8
+

1

8
+

1

4
−

pt,L→R

4

)︃
+

∂2U

∂x2

⃓⃓⃓⃓
R

δx2R

(︂pt,R→L

4

)︂
.

(5.28)
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This can be further simplified to

U̇L (2δt) = U |L
(︂pt,L→R

2

)︂
+ U |R

(︂pt,R→L

2

)︂
+

∂U

∂x

⃓⃓⃓⃓
L

δxL

(︃
−1

2
+

pt,L→R

2

)︃
+

∂U

∂x

⃓⃓⃓⃓
R

δxR

(︂pt,R→L

2

)︂
+

∂2U

∂x2

⃓⃓⃓⃓
L

δx2L

(︂
1−

pt,L→R

4

)︂
+

∂2U

∂x2

⃓⃓⃓⃓
R

δx2R

(︂pt,R→L

4

)︂
.

(5.29)

The heat equation (3.18), expressed in 1D as

U̇ =
δx2

2δt

∂2U

∂x2
, (5.30)

is subsequently applied in L to remove the time derivative:

�����
U̇L (2δt) = U |L

(︂pt,L→R

2

)︂
+ U |R

(︂pt,R→L

2

)︂
+

∂U

∂x

⃓⃓⃓⃓
L

δxL

(︃
−1

2
+

pt,L→R

2

)︃
+

∂U

∂x

⃓⃓⃓⃓
R

δxR

(︂pt,R→L

2

)︂
+

∂2U

∂x2

⃓⃓⃓⃓
L

δx2L

(︂
◁1−

pt,L→R

4

)︂
+

∂2U

∂x2

⃓⃓⃓⃓
R

δx2R

(︂pt,R→L

4

)︂
.

(5.31)

Equations (5.17) and (5.19) can be combined to form

DL
∂U

∂x

⃓⃓⃓⃓
L

= DR
∂U

∂x

⃓⃓⃓⃓
R

= κ(U |R − U |L) . (5.32)

By differentiating equation (5.19) one more time with respect to x while noting that

∂U/∂x = 0 (only non-zero across the barrier), the following additional relation is obtained:

DL
∂2U

∂x2

⃓⃓⃓⃓
L

= DR
∂2U

∂x2

⃓⃓⃓⃓
R

. (5.33)

Next, equation (5.15) relates the two probabilities pt,L→R and pt,R→L as a ratio
√︁
DL/DR.

These three relations, namely equations (5.15), (5.32) and (5.33), are substituted into

equation (5.31). Appreciating that the step lengths are δx =
√
2Dδt allows switching from

δxR to δxL through multiplication with
√︁
DL/DR. With these techniques, everything can

be expressed in terms of U |L, (∂U/∂x)L, and (∂2U/∂x2)L as well as pt,L→R and δxL.

Equations (5.32) and (5.33) introduced the permeability κ, originally from equa-

tion (5.17), into the resulting equation involving pt. The final rearranged expression

0 = 2pt

(︄
1−

√︃
DL

DR

)︄
U |L

+ 2

(︄(︃
1−

(︃
1 +

DL

DR

)︃
pt

)︃
δxL − pt

√︃
DL

DR

DL

κ

)︄
∂U

∂x

⃓⃓⃓⃓
L

+ pt

(︄
1−

√︃
DL

DR

)︄
δx2L

∂2U

∂x2

⃓⃓⃓⃓
L

(5.34)
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Figure 5.7: A graphical explanation of the flux analysis around two compartments (DL > DR)
separated by a permeable barrier with asymmetric transit probabilities pt,L→R and pt,R→L. The
control volume is bounded by the step lengths δx on either side. Walkers located inside this volume
at a point with concentration/density U(x) add to the flux component J with their weighted
contribution ±U(x)pt(x), provided they step towards the barrier (accounted for by the factor 1

2 ).

thus needs to be solved for pt as a function of D, κ, and δx to obtain the transit model

that equation (5.16) postulates. The model in equation (5.21) as derived by Fieremans

et al. (2010) relies on ignoring the terms associated with U and ∂2U/∂x2. However,

in the general case no statements about the magnitude of these terms can be made.

The former omission of U -terms is only valid provided pt → 0 or DL/DR → 1, while

ignoring the ∂2U/∂x2-terms additionally requires δx → 0. It is important to recognise

that equation (5.34) recovers

pt =
2κδx

D + 2κδx
(5.35)

in the case of equal diffusion coefficients DL = DR. Equation (5.35) is an alternative but

equivalent formulation of the expression derived by Powles et al. (1992).

5.3.3 Flux analysis

As will be demonstrated numerically later in section 6.3, the transit model formulation

in equation (5.21) is inconsistent and causes errors at large δt. For now, a theoretical

approach is taken and this error is analysed by considering the flux at any given point in

time.

Figure 5.7 shows the control volume around a barrier bounded by the maximum step

length δx on either side. Note the difference between the running variable x (and its

differential dx) and the finite step length δx.

The net flux J = −D∇U in equation (5.18) can be split into its individual bidirec-

tional (or opposing) components, i.e. the amount of walkers/concentration crossing from
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left to right and from right to left, whose signed sum equals J along the unit vector Ĵ .

Their magnitudes are given by

JL→R =
1

δt

∫︂ 0

−δxL

+
U(x)

2
pt,L→R(x)dx , (5.36a)

JR→L =
1

δt

∫︂ δxR

0
−U(x)

2
pt,R→L(x)dx . (5.36b)

The integral bounds on the two sides cover the farthest that a walker can be located away

from the boundary on either side in order for its step δx to interact with the barrier. While

the concentration density U(x) in general depends on position x, this dependency is ignored

here because of the assumption that U is constant in the domain for the steady-state

case. The factor 1
2 accounts for the fact that only half the walkers are expected to step

towards the barrier. The ± signs are included to designate the directionality of the flux

components J such that (loosely speaking)
∑︁

J = J . For simplicity, this is omitted and

only magnitudes are used. The terms U and δt are also cancelled and henceforth the

probability integrals F is used, shown here for an arbitrary transition between regions with

placeholder indices A and B:

FA→B =

∫︂
pt,A→B(x)dx . (5.37)

The steady-state solution requires the net flux
∑︁

J = 0, i.e. FL→R = FR→L. If

not, an imbalance in U(x) will develop. If the diffusion coefficients on both sides are

equal (DL = DR = D), the models considered in this work reduce to pt,L→R = pt,R→L.

Furthermore, by definition δxL = δxR and hence
∑︁

J = 0 follows from equation (5.36a)

being equal to equation (5.36b). Next, the different models for the non-trivial caseDL ̸= DR

are considered.

Interface model

In the case of an infinitely permeable membrane, consider the interface model in equa-

tion (5.20). The asymmetric transit probability was first mentioned by Szafer et al. (1995)

for the limit κ → ∞ and explicitly derived for any interface by Maruyama (2017). The

probability of transit for interfaces with discontinuous diffusion coefficient D is thus given

by

pt,L→R = min

(︄
1,

√︃
DR

DL

)︄
, (5.38a)

pt,R→L = min

(︄
1,

√︃
DL

DR

)︄
. (5.38b)

For this interface model, the probabilities pt do not depend on x but only on D as seen

from equation (5.38). As a result, pt can be removed from the integral in equation (5.36)
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Table 5.1: The two cases of unequal diffusion coefficients DL and DR across an interface, as
considered in equation (5.38), and their corresponding probabilities of transit pt and resulting
fluxes F .

Diffusion coefficients pt,L→R pt,R→L F = FL→R = FR→L

DL > DR

√︂
DR
DL

1
√
2DR δt

DL < DR 1
√︂

DL
DR

√
2DL δt

and the result is then simplified to

FL→R = pt,L→R

∫︂ 0

−δxL

dx = pt,L→R δxL = pt,L→R

√︁
2DL δt , (5.39a)

FR→L = pt,R→L

∫︂ δxR

0
dx = pt,R→L δxR = pt,R→L

√︁
2DR δt . (5.39b)

To remove the awkward min-operator for pt in equation (5.38), consider the two distinct

cases in table 5.1 separately. For both combinations of pt values it is clear that FL→R =

FR→L = F . In fact, F =
√
2Dmin δt where Dmin = min(DL, DR) which can also be

observed in numerical simulations with κ =∞.

Membrane model

Fieremans et al. (2010) introduce two probabilities of transit pt, going from L to R and

from R to L, as

pt,L→R =
2κsL

DL + 2κsL
≈ 2κsL

DL
, (5.40a)

pt,R→L =
2κsR

DR + 2κsR
≈ 2κsR

DR
. (5.40b)

Each pt depends on the diffusion coefficient D0 of the original compartment that the

attempted transit originated from, and the distance s from the step origin to the barrier at xb.

Since xb = 0, this results in sL ∈ [−δxL, 0] and sR ∈ [0, δxR] respectively. The (signed)

value of s is therefore equal to ∓x. Note that the simplification (≈) on the right-hand

sides of equation (5.40) only applies if 2κs≪ D.

General case Using the full, non-approximated term for pt from equation (5.40) and

substituting it into equation (5.37) results in

FL→R =

∫︂ 0

−δxL

pt,L→R(x)dx =

∫︂ 0

−δxL

x

x− DL
2κ

dx , (5.41a)

FR→L =

∫︂ δxR

0
pt,R→L(x)dx =

∫︂ δxR

0

x

x+ DR
2κ

dx . (5.41b)
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These integrals can be solved by a change of variables, i.e. x = ζ± D
2κ , turning equation (5.41)

into

FL→R =

∫︂ b

a

ζ + DL
2κ

ζ
dζ =

[︃
ζ +

DL

2κ
ln (ζ)

]︃b
a

, (5.42a)

FR→L =

∫︂ b

a

ζ − DR
2κ

ζ
dζ =

[︃
ζ − DR

2κ
ln (ζ)

]︃b
a

. (5.42b)

Changing variables back to x gives

FL→R =

[︃
x− DL

2κ
+

DL

2κ
ln

(︃
x− DL

2κ

)︃]︃0
−δxL

= δxL +
DL

2κ

(︃
ln

(︃
−DL

2κ

)︃
− ln

(︃
−δxL −

DL

2κ

)︃)︃
,

(5.43a)

FR→L =

[︃
x+

DR

2κ
− DR

2κ
ln

(︃
x+

DR

2κ

)︃]︃δxR

0

= δxR +
DR

2κ

(︃
ln

(︃
DR

2κ

)︃
− ln

(︃
δxR +

DR

2κ

)︃)︃
.

(5.43b)

Since FL→R and FR→L here depend on DL and DR respectively, and because F cannot be

reduced further, it is concluded that FL→R ̸= FR→L and thus
∑︁

J ̸= 0. This means that

the step is not balanced and the model is invalid in the general case.

Special case A sufficiently small time step δt permits solving for the simplified expression

of pt. The integrals in equation (5.41) now become trivial to solve and one gets

FL→R =

∫︂ 0

−δxL

pt,L→R(x)dx =
2κ

DL

∫︂ 0

−δxL

−xdx

=
2κ

DL

[︃
−1

2
x2
]︃0
−δxL

=
κδx2L
DL

= 2κδt ,

(5.44a)

FR→L =

∫︂ δxR

0
pt,R→L(x)dx =

2κ

DR

∫︂ δxR

0
xdx

=
2κ

DR

[︃
1

2
x2
]︃ δxR

0

=
κδx2R
DR

= 2κδt .

(5.44b)

Hence, FL→R = FR→L = F = 2κδt (this was also confirmed in simulations with small

δt) and the model will retain the steady-state solution. Recall that the simplification in

equation (5.40) above requires that 2κδs≪ D. This requirement can be recast to

1≪ 2κ
√
2Dδt

D
=

√︃
8κ2 δt

D
. (5.45)

This shows that the threshold at which a significant error in the fluxes occurs increases

with κ and δt and decreases with D. This is in line with observations in figure 6.11 later

on.
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Asymmetric interface reflection

As originally stated by Szafer et al. (1995), the interface reflection condition in equa-

tion (5.15) must be respected even as κ → ∞. This is satisfied intrinsically in equa-

tion (5.38). Following from equation (5.40), the ratio of probabilities

pt,L→R

pt,R→L
=

2κδxi,L
DL + 2κδxi,L

÷
2κδxi,R

DR + 2κδxi,R
=

δxi,L
δxi,R

DR + 2κδxi,R
DL + 2κδxi,L

(5.46)

is undefined in the limit

lim
κ→∞

pt,L→R

pt,R→L
=

δxi,L
δxi,R

lim
κ→∞

DR + 2κδxi,R
DL + 2κδxi,L

→ ∞
∞

. (5.47)

Following L’Hôpital’s rule yields

d
dκ(DR + 2κsR→L)
d
dκ(DL + 2κsL→R)

=
2sR→L

2sL→R
, (5.48)

which means that the ratio of probabilities

lim
κ→∞

pt,L→R

pt,R→L
→

δxi,L
δxi,R

sR→L

sL→R
= 1 (5.49)

approaches unity in the limit of κ → ∞ instead of
√︁
DR/DL as required. This might

explain why the model appears to break down as the time step restriction is exceeded

either by increasing δt or κ as done in figure 6.11.

Another observation regarding equation (5.21) is that it does not handle the extreme

case of Dj = 0 appropriately (pt should also be zero in that case). Such a situation

may be visualised as the limit case of a very viscous medium, the analogy proposed by

Maruyama (2017). Since walkers are permitted to enter compartments with diffusion

coefficient of zero, they will undoubtedly become trapped there. While equation (5.15)

causes the remaining step length in the new compartment to be δx′j = 0 and thus places it

infinitesimally to the other side of the barrier, the walker has nonetheless entered a region

where every subsequent step has length zero.

5.3.4 Alternative ways to model membranes

As shown previously, modelling an infinitesimally thin permeable interface with a step

change in diffusion coefficient can be challenging. The discontinuity in the random walk

requires correct treatment and not all choices of model or model parameter are always

appropriate. When considering compartments with differing diffusion coefficients DL ̸= DR,

no consistent closed-form expression was found to represent the membrane with a correct

permeability. Here, different and perhaps more pragmatic approaches to modelling such

a membrane for random walk simulations are presented. The two types are shown in

figure 5.8 and explained below.
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Figure 5.8: Alternative ways to model a membrane. (Left) As a highly viscous layer: The
thickness b and diffusion coefficient Db need to be chosen to satisfy equation (2.3). (Right) As a
buffer region: The membrane between two compartments is represented as a buffer region

Membrane as a highly viscous layer

Biological membranes have a negligible thickness of two lipid molecules (section 2.2).

Similar to what was implemented for the FDM simulations in section 3.3.3, the membrane

can be approximated as a region of finite thickness and reduced diffusion coefficient. An

illustration of the membrane model is shown in figure 5.8 (Left). Following the interpretation

of Maruyama (2017), the region is a highly viscous layer that impedes motion similar to

how a cell membrane may impede transit.

Care needs to be taken to correctly account for the modification to the domain. The size

of the ECS and ICS must not be affected by this additional third region. One would need

to decide on the treatment of walkers when diffusion gradients are applied, in particular

the global position of the walker needs to be considered. Immediately it seems that the

walker position needs to be fixed to the membrane position until it exits the region. In

the case of 2D/3D simulations, more needs to be considered. To accelerate simulations

and avoid transverse motion during the transit, a co-simulation might be a good idea.

Then, walkers would need to perform a 1D random walk in the membrane-perpendicular

direction.

The values of Db and b need to be chosen somewhat arbitrarily provided they satisfy

the value of κ. One may attempt to construct the layer to ensure minimal disruption and

thus reduce b as much as possible. However, no choice of parameters can yield a buffer

region that can be crossed in a single step. For a sensible choice of Db and b, the value of

Db will be significantly less than DL and DR. As a result of the ratio between these values

and equation (5.20), reflection can only occur when entering the buffer region but never
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when exiting. The remaining step δx′j inside the barrier is required to equal b:

δx′j = b = δxj

√︃
Db

Di
(5.50a)

δxj = (1− t)
√︁

2Di δt (5.50b)

b =
Db

κ
= (1− t)

√︁
2Db δt (5.50c)

1− t =
1

b

√︃
Db

2δt
(5.50d)

It is therefore not possible to satisfy this for all walkers with arbitrary intersection point t.

Due to the linear relation between b and Db but the non-linear relation between Db

and δx, the smaller b is the more steps of duration δt it takes to cross the region. This

means walkers effectively become trapped in the region for longer. If sufficiently many

walkers are available, this is not a problem. However, if the proportion of trapped walkers

becomes significant compared to the total number of walkers (for example if a lot of barriers

are present or N is generally low), this can cause problems.

Membrane as a double-interface buffer region

Another approach altogether is to rely on the two functioning models presented previously

in combination with a buffer region that separates the interface between the two regions

with differing diffusion coefficients from the permeable membrane. This considers the two

types of restriction that the walker experiences when crossing a membrane, separately.

Figure 5.8 (Right) illustrates the approach.

Previously in sections 5.3.2 and 5.3.3 it was shown that the transit model for a permeable

membrane separating compartments with equal diffusion coefficients (DL = DR) can be

accurately represented by equation (5.21) as described by Powles et al. (1992). Under these

conditions, the expression is well-behaved since it correctly respects κ = 0 (impermeable)

as well as κ → ∞ (p = 1, fully permeable, i.e. no barrier). On the other hand, the

transit through a membrane-free interface between compartments of different diffusion

coefficients can be accurately represented with the model by Maruyama (2017), given in

equation (5.20), as it satisfies the asymmetric interface condition in equation (5.15).

For the double-interface model, the buffer zone should be the size of one step, equal to

δxmax = b =
√
2Db δtmax. Hence δtmax = b2

2Db
= b

2κ and thus bmin = 2κδt. This minimum

value for the buffer width ensures that walkers only cross a single interface per time step.

Similar to the case of a more viscous membrane region, it is important to realise the

effect of this domain modification. The addition of a buffer zone alters the geometry

slightly, and care must be taken for how walkers inside that zone are treated. However,

due to the fact that the buffer region has a similar diffusion coefficient, it is possible to

incorporate this region as a sub-set of either ECS or ICS. Representing the transit as a
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1D co-simulations is also possible, as was previously discussed for the model of a viscous

layer.

5.4 Monte Carlo random walk simulator

Previously, the mathematical aspects of the random walk process were described for a single

walker, which is executed Np times per experiment. In particular, it was discussed how

random steps are drawn and what the probability of transit is for a given walker-membrane

interaction. This section now focuses on the numerical implementation and its application

to Monte Carlo random walk (MCRW) simulations. After introducing the algorithm in

section 5.4.2, the specific software implementations that were written in this project are

described in sections 5.4.3 and 5.4.4.

We will find that many of the employed techniques are similar to those used in computer

graphics. For example, determining the path of a walker during a time step is almost

equivalent to the ray tracing problem. The textbooks Real Time Rendering (Akenine-

Möller et al., 2008) and Graphics Gems IV (Heckbert, 1994) are great starting points for

readers interested in the algorithms.

5.4.1 A brief review of existing simulators

The toolbox Camino (P. A. Cook et al., 2006) is a popular software in neuroimaging.

Besides many advanced tools for image reconstruction and data processing it offers data

synthesis through random walk simulations (Hall et al., 2009). It is capable of simulating

simple analytical shapes as well as arbitrary, mesh-based geometries (Panagiotaki et al.,

2010). This makes it a good reference tool that is often used in benchmarks. However, the

generality means it is not always the optimal tool of choice.

Other groups (K.-V. Nguyen et al., 2018; Rafael-Patino et al., 2020; Yeh et al., 2013)

have presented custom simulators with varying aims, advantages, and limitations. For

example, K.-V. Nguyen et al. (2018) present a GPU-accelerated random walk simulator that

is claimed as highly efficient, but the source code has not been made available. The recently

released code by Rafael-Patino et al. (2020) is targeted at highly-realistic mesh substrates,

focussed on microstructural features of brain white matter. H.-H. Lee et al. (2021) use a

custom GPU code for random walks in voxelised domains representative of axonal cells.

The decision was taken to develop an in-house solver in order to target it at cardiac

tissues and in general DT-CMR. Through increased control over the source code of the

simulation, different biophysical models and other adjustments can be made.

Another approach for DWI simulations is to use existing particle/molecular simulators

to solve the diffusion of spins and then apply the pulse sequence as a post-processing

step. For example, Bates et al. (2017) used Smoldyn (Andrews et al., 2010) and Berry
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Algorithm 5.1: Basic procedure of any Monte Carlo random walk implementation. The outer
for-loop (algorithm 5.1) iterates over the Np walkers. The inner while-loop (algorithm 5.1) marches
through time. The procedure in algorithm 5.1 is implementation-specific.

1: procedure RandomWalk
2: for i ∈ {1, ..., Np} do ▷ Walker loop
3: xi ← x(0) ▷ Initial seeding
4: while t < T do ▷ Time loop
5: δx← random step(D) ▷ Random stepping
6: xi ← xi + resolve step(δx) ▷ Interaction with the substrate
7: end while
8: end for
9: end procedure

et al. (2018) used MCell (Kerr et al., 2008). The implications of this are twofold: A

clear advantage is that reliable diffusion solutions can be obtained without major software

development effort, while the major disadvantage is the reliance on general code that may

not support MR co-simulation or suffer a performance penalty.

5.4.2 Algorithm and parallelisation

In general the MCRW algorithm follows the pseudo-code in algorithm 5.1. At the beginning

of the simulation, walkers are seeded inside the domain. This can be done randomly using a

uniform distribution over the extent of the domain or at a given spatial point if comparison

to reference solutions from chapters 3 and 4 is desired. Every walker then has to execute a

series of time steps, each of which needs to be resolved to account for the interaction of

the walker with the features of the substrate. Converting algorithm 5.1 into real code for

cases beyond free diffusion requires consideration of possible numerical inaccuracies. The

details of this are discussed for two substrate types in section 5.4.3 (voxelised domain) and

section 5.4.4 (surface mesh domain). If a large number of walkers Np is to be simulated,

an efficient implementation is also required.

At every time step, a random step is drawn and the resulting path is resolved as a series

of sub-steps (compare equation (5.9)) if one or more membranes are encountered in the

substrate. The random generation of this step requires special consideration. The type of

step and its random distribution is described in section 5.2.1. Computers “draw” random

numbers using a pseudo-random number generator that generates a series of seemingly

random values on demand (Knuth, 2011a). A sufficiently “random” algorithm is required

to ensure statistical independence between walkers (J. D. Cook, 2010). Furthermore, it

is recommended to use a single random seed for a given experiment, with statistically

independent streams for each realisation of a Monte Carlo simulation (Gentle, 2003). This

can be achieved by series splitting or a leap-frog scheme: Either, each walker is assigned
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a certain section of the random number stream up-front by splitting, which requires

knowledge of the number of random variables that will be consumed. The other option is

to advance the random number stream by Np every time (leap-frog).

Owing to the intrinsic parallelism of the random walk where each walker is considered

fully independent, the algorithm is trivially parallelised. Different parallelisation options

exist: The most trivial is to split off each walker separately at the beginning of the

simulation and combine the results at the end. This is what is implemented in the

code (appendix B.2.2). The work in the outer loop (algorithm 5.1) can be efficiently

distributed among all available compute threads. The current implementation only supports

CPU code. While GPUs offer superior parallel performance, this is limited to simple

instructions. Rose (2015) found that GPUs are not particularly suited for handling

complex walker-substrate interactions. Fortunately, different sub-sets of all Np walkers

can be scheduled separately, in parallel, and executed in a distributed system such as a

high-performance compute cluster.

Another approach could have reversed the loop order in algorithm 5.1 and looped

over all walkers at every time step. In fact this would lead to identical results‡. However,

communication overhead associated with the parallel protocol then becomes significant

as the number of time steps increases. If solutions at specific time points are required,

it is recommended to break or pause the simulation sequence at times of interest. It is

also possible to store a time history of positions (and other variables) during the whole

simulation, however care must be taken that this does not exceed the available memory

for large Np and Nt.

5.4.3 Walking in a structured grid

Consider the domain in figure 5.9. The left image shows a pixelated 2D substrate composed

of cardiomyocyte cross-sections. They are colour-coded to ensure that myocytes that are

touching are identified as distinct objects. A simpler model is seen in the right image of

figure 5.9. This chequerboard pattern has ECS (red) and ICS (white) in an alternating

arrangement.

It should be clear that these domains are similar to what was described for the

FDM/FVM methods in section 3.3.3. Instead of the continuum methods that consider

the pixels/cells as part of the problem formulation and discretisation, walkers are now

allowed to move arbitrarily in the domain. The approach described here is an efficient

model for n-dimensional random walk simulations in voxelised domains. It is implemented

in C++ using linked lists to handle the transit between neighbouring cells. For each

of its faces, every voxel stores the pointer (memory address) to its neighbour and the

‡One needs to ensure that each walker draws the same sequence of pseudo-random numbers in both
formats.
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Figure 5.9: Possible voxelised domains for a grid-based random walk. (Left) 2D arrangement of
individual, colour-coded cardiomyocytes. (Right) 3D chequerboard pattern with alternating ECS
and ICS of equal size.

membrane permeability (if any). The implementation uses the efficient and parallel-

compliant TRNG (Bauke, 2021, 2007) random number generator. The code is to be

published at a later time.

The only concern regarding accuracy is the calculation of intersections of the step

vector with the cell that the walker resides in. The implementation relies on An Efficient

and Robust Ray-Box Intersection Algorithm by Williams et al. (2005).

An example of how a step vector interacts with the substrate is illustrated in figure 5.10.

Initially, the walker is located inside the blue cell and attempts to move in the positive y

and negative x direction. The first intersection test determines an intersection with the

W-face of the current cell. The decision of the transit algorithm is to reflect the step, which

happens elastically. Due to the remaining step length the next sub-step would put the

walker outside the blue cell again, this time in the positive y direction through face N. The

Figure 5.10: Random walk sub-stepping inside a 2D grid-based domain. From left to right: The
grey cube on the left shows an individual voxel with its local xy coordinate frame and faces to
neighbouring cells. The encounter of one selected step vector near a corner is described in the next
four graphics.
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transit decision allows the walker to transit and thus the compartment index is updated

to place the walker in the orange cell. However, due to the higher diffusion coefficient

inside the newly-entered cell the remaining step length is increased. The final sub-step

encounters no further intersections and places the walker at its final position.

The grid implementation discussed above is an alternative to the 1D random walk

code in appendix B.2.3. The ray-box algorithm is three-dimensional, and reduction of step

dimension allows for 1D and 2D simulations using the same single codebase.

5.4.4 Walking in surface mesh geometries

Complex, arbitrary myocardial geometries cannot be efficiently represented by the methods

described in section 5.4.3. Cardiomyocyte boundaries that are not aligned with the

Cartesian frame are poorly resolved when voxelising the domain and require higher spatial

resolution and thus increased computational effort. As an alternative, focus is now put on

random walks in the presence of surface meshes.

Geometry data structures

Each modelled cardiomyocyte is tessellated and stored as a polyhedron. This is much less

memory intensive, because only the representation needs to be stored instead of a grid of

voxelised cells throughout the whole domain. The implementation is limited to polyhedra

with triangular faces only. Triangles are the basic building blocks in computer graphics as

they can efficiently represent arbitrary objects and because three points unambiguously

define a plane. Many efficient algorithms exist to compute the intersection of lines with

triangles in 3D. A triangulation consists of

• A list of Vertices, i.e. (x, y, z) coordinates; and

• A list of Faces, i.e. connectivities that determine which vertices correspond to which

triangle. It is important to follow correct ordering to ensure the orientation of

all normal vector is consistent (outward-pointing). That way, information about

entering/exiting an object is encoded automatically.

Figure 5.11 illustrates the triangulation of a myocyte. For a detailed description of

polygonal meshes, the reader is kindly directed to Polygon Mesh Processing (Botsch et al.,

2010).

The simulation substrate is constructed from the tissue block that was segmented

in section 2.3.4. To fill an entire imaging voxel, which is much larger than the block, a

transform is used to map the global position of the walker inside the voxel to the local

coordinate frame of the building block (Rose et al., 2019c). At the start of the simulation,

given each walker’s position, the compartment (polyhedron) that the walker is located
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Figure 5.11: Triangulation and ray-triangle intersection explained. (Left) A single cardiomyocyte
is represented as a polyhedron with triangular faces. The outline of a manually-segmented cell serves
as the base polygon, which is triangulated using a Delaunay triangulation. The base is extruded by
adding triangle strips to the sides of the cylinder. (Right) Barycentric coordinates are used to
define the intersection location xint on the triangle plane and subsequently at proportion tint ∈ [0, 1]
along the step vector.

inside is identified and this compartment index is stored. Walkers in extra-cellular space

are assigned a special value to identify this. For every time step, the walker uses its stored

index to determine the step length based on the compartment’s diffusion coefficient D0.

Interaction with the substrate barriers is described below.

Description of the software

The simulator described in this section was first presented by Rose et al. (2019c). It has

now been made available, see appendix B.2.2. The code is written in MATLAB with

performance-critical parts written in C and compiled with mex.

For each polyhedron, a loose bounding box is defined. It contains all vertices, with its

size inflated by 1% to prevent numerical inaccuracies around the extreme vertices. This ac-

celerates the intersection search considerably, because it quickly eliminates bounding boxes

from the more detailed and computationally involved intersection checking. Figure 5.12

explains how a single walker step is resolved in the presence of a mesh with bounding

boxes. The actual ray-triangle intersections for polyhedra under consideration are then

computed using the Fast, Minimum Storage Ray-Triangle Intersection (Möller–Trumbore)

algorithm (Möller et al., 1997). A conservative approach is taken to ensure water-tightness

of the geometry. The intersection point on the triangle is given in Barycentric coordinates

as seen in figure 5.11. If one of these coordinates is deemed too close to an edge, this step

is rejected and a new one is drawn. Without this, a walker might otherwise leave or enter

a cell undetected. Also, walkers that have their initial position too close to the face are

flagged due to possible ambiguity of compartment index. Investigations showed that these
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Figure 5.12: Resolving a random walk step inside a surface mesh–based domain. The bounding
boxes Bi surround compartments Ωi with barriers Γi. The steps of the algorithm are: (1) The
walker is initially located at the circle in extra-cellular space inside B2. The dotted line shows the
initially-drawn random step vector. (2) Both Γ2 (originating in B2) and Γ1 (entering B1) need to
be checked. An intersection point (cross) is found. The transit decision is to reflect the walker.
(3) Sub-step S1 is performed and now S2 needs to be checked using the same procedure. Both Γ1

and Γ3 are checked this time but no intersection is found and the step terminates at the square.
[Reproduced with permission from (Rose et al., 2019c).]

exceptions do not occur often and thus do not lead to substantial bias.

An improved version, written entirely in C++ and following the same approach as that

in section 5.4.3, is currently being developed and requires future work. It takes advantage of

advanced algorithms provided by the CGAL library (The CGAL Project, 2020) for accurate

and efficient geometry handling. The primary performance gain originates from the use of

an axis-aligned bounding box (AABB) tree (Alliez et al., 2020), illustrated in figure 5.13.

For each triangular face, an AABB is constructed. These boxes are hierarchically grouped

together to allow for efficient intersection queries.

Performance

Since it is trivial and efficient to parallelise the Monte Carlo random walk, parameters that

determine the runtime of the simulation are: the number of walkers Np, the computational

cost per walker, and the available hardware like processor speed or number of available

threads (Hall et al., 2009; Rafael-Patino et al., 2020). As shown in figure 5.14, the per-

walker computational cost scales with both Nt and the number of faces (Nf ) that are used
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Figure 5.13: Triangulated surface mesh and corresponding axis-aligned bounding box (AABB)
tree. The examples, extracted from the CGAL documentation (The CGAL Project, 2020), represent
mechanical part but nonetheless serve to illustrate the capability of the library. (Left) CGAL
supports efficient ray-triangle intersection. (Right) A hierarchical AABB tree accelerates queries.
[Reproduced with permission from (Alliez et al., 2020). The authors have dedicated this image to
the public domain (CC0 1.0 license).]

to represent the polyhedral cardiomyocyte geometries.

The impact of number of cardiomyocytes in the domain was not studied here. The

current implementation does not use smart hierarchical structures to query only the local

environment. As a result, increasing the size of the ROI is likely going to increase the

runtime significantly.

5.5 Discussion

In this chapter, Monte Carlo random walk methods were discussed. This technique samples

the underlying solution U with Np walkers, and thus convergence is rapid and requires

significantly less computational effort than traditional continuum-based methods such as

those in chapter 3. Additionally, surface mesh–based implementations such as the one

presented in section 5.4.4 allow for a more accurate and efficient representation of the

substrate compared to a voxelised domain.

A significant portion of this chapter was spent analysing transit models. These models

Figure 5.14: Scaling of simulation runtime of the mesh-based random walk simulator with number
of time steps and faces. (Left) A realistic histology-based substrate is used for profiling. (Right) A
simplified domain consisting of regular cuboids is progressively sub-divided to create an increasing
number of triangular faces. [Reproduced with permission from (Rose et al., 2019c).]
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are used to handle discontinuity in the random walk, for example when passing interfaces

or membranes. It was determined that the model for interfaces by Maruyama (2017), given

in equation (5.20), accurately captures a discontinuity in diffusion coefficient between two

compartments. The commonly used model by Fieremans et al. (2010) in equation (5.21)

is based on the membrane model by Powles et al. (1992), which handles a barrier with

permeability κ. However, an investigation into the derivation of the model revealed error

terms that cause a substantial bias beyond a certain critical time step in the case of different

diffusion coefficients. Confirmed through flux analysis in section 5.3.3, an imbalance will

develop that effectively traps walkers in regions of lower diffusion coefficient.

Note that due to the requirement that all geometric objects must be non-intersecting

polyhedra, implementation of long fibres of cardiomyocytes is difficult. Two polyhedra

can be made to almost touch at their end caps, however this would require the walker to

pass through two permeable membranes with a κ that does not match that of intercalated

discs (ICD). Additionally, the walker would briefly enter ECS which can be problematic.

One solution is to represent ICDs as floating discs inside the ICS. These discs could be

modelled similar to “force fields” at arbitrary planes, for which computational overhead

would be low.

The MCRW simulator developed here will next be used to investigate realistic geometries

in a parameter study.
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6.1 Introduction

Chapters 3 to 5 described different numerical techniques for solving the diffusion equation

and simulating DT-CMR. These methods are now applied to realistic myocardial tissue

models developed in chapter 2.

First, this chapter presents results for impermeable membranes in section 6.2. Then,

the suitability of the transit model that was analysed in section 5.3 is assessed numerically

in section 6.3. Finally, a study of the effect of membrane permeability and its importance

for realistic DT-CMR simulations is carried out in section 6.4.

6.2 Effect of microstructure on DT-CMR parameters

6.2.1 A histology-based microstructure with impermeable membranes

This section presents DT-CMR simulations in a realistic microstructure, based on previously

published work (Rose et al., 2019c). For this initial study the cell membranes are considered

impermeable. The purpose of these simulations is to obtain insights into the diffusion

behaviour within a complex microstructure without the confounding effect of membrane

permeability, which will be addressed later in section 6.4. Parameters intrinsic to the
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Table 6.1: Sequence parameters for the three sequences shown in figure 3.1. The target gradient
strength is 40mT/m per axis with a b -value of 450ms/µm2. The individual parameters are defined
in figure 3.2.

Sequence parameter PGSE M2-SE STEAM
Gmax (mT/m) 40.572 39.478 35.690
∆ (ms) 20.547 n/a1 1000
TE (ms) 39.332 70.757 23.824
TM (ms) n/a n/a 988.088
ϵ (ms) 0.676 0.661 0.595
δ (ms) 9.921 n/a 0.977
δ1 (ms) n/a 7.819 n/a
δ2 (ms) n/a 16.299 n/a
1 The diffusion time ∆ is not defined for the M2-SE sequence.

substrate tissue model (diffusion coefficient, ECV) as well as parameters external to the

simulation (pulse sequence) are studied.

The substrate geometry is based on swine histology (Nielles-Vallespin et al., 2017). As

described in section 2.3.4, it is constructed based on a ROI that fills the entire imaging

voxel of size 2.8× 2.8× 8.0mm3. This model includes sheetlet structures and accounts for

transmural rotation. The compartment-specific diffusion coefficients D0 within the two

compartments and the ECV of the substrate are varied in several experiments described

below, where their choice is motivated further. The knowledge gained on the sensitivity of

the diffusion signal with respect to these parameters will allow for more educated decisions

on model parameter choices in future simulations.

The three typical DT-CMR sequences PGSE, M2-SE, and STEAM (recall these from

section 3.2.2) are simulated. Their gradient waveforms are shown in figure 3.1 while the

specific timing parameters are given in table 6.1. These parameters have a target gradient

strength Gmax of 40mT/m and their b -value is 450ms/µm2, based on typical clinical MRI

scanners and in-vivo studies.

As a result of the use of impermeable membranes, the random walk simulations can use

Gaussian stepping to accelerate convergence. The normal distribution for the Cartesian

step vector components is truncated to ±5σ as permitted by section 5.2.1. Additionally,

no restriction on the time step is necessary. Nonetheless, a maximum time step of 1ms

is imposed. During gradients, a lower maximum δt of 0.1ms is enforced to increase

accuracy. These time steps, respectively, correspond to (3D) step lengths of 3 and 0.95 µm
for D0 = 1.5 µm2/ms.

6.2.2 Convergence of simulations

Before carrying out meaningful simulations that study the effect of microstructural and

imaging parameters, the choices of statistical (Monte Carlo) parameters must be verified
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first. The appropriate simulation parameters and the resulting convergence behaviour

are dependent on the specific problem that is being considered, particularly the degree of

geometric complexity at various scales and the imaging voxel size (which relates to the local

walker density). It is thus wise to carry out such convergence checks whenever a significant

change is made to the setup of the simulations (Hall et al., 2009). Particularly, the number

of walkers Np and time steps Nt required for sufficiently precise simulations of realistic

histology are determined here. The choice of Nt is especially relevant because simulation

runtime scales linearly with the number of time steps as demonstrated in figure 5.14. A

trade-off is thus required to ensure the right balance is struck between computational

effort and accuracy, with the ultimate goal of carrying out more simulations of different

parameters within an acceptable time frame.

Random walk convergence study

Convergence with respect to Np and Nt is studied similar to figure 5.3, where the optimal

truncation point for the Gaussian step distribution was determined. A substrate from

section 2.3.4 with a realistic ECV of 25% is selected for the benchmark convergence

study. Intra- and extra-cellular diffusion coefficients are set to DICS = 1.5 µm2/ms and

DECS = 3 µm2/ms respectively.

Two values of Nt (10
3 and 104) and three values of Np (10

3, 104, and 105) are considered.

Each simulation is repeated 10 times per combination of parameters, each with different

random seeds to allow an assessment of the inter-simulation variability. The diffusion

tensor is then calculated for each data point and post-processed to obtain the mean

diffusivity (MD) and fractional anisotropy (FA) as the integral quantities of interest.

Figure 6.1 shows how both these variables converge with an increase in number of walkers.

The highest resolution was Np = 106 (combining all 10 runs with each Np = 105) and

Nt = 104, and its diffusion tensor is used as the fully-converged reference. In the figure,

relative errors are reported with respect to this reference value.

As expected, the variance of tensor parameters for repeated experiments decreases with

an increase in the number of walkers. While the spread of the 10 values is considerable

at Np = 103, their median value is already close to 0. The maximum absolute deviation of

MD and FA is generally less than 5% for NP = 104 and NT = 103. Similar values were

observed for the individual eigenvalues (not shown here). The difference between using 103

and 104 time steps is negligible as a finer time step of NT = 104 only slightly reduces the

maximum error per Np.

Similar behaviour is observed for all three sequences. However, at a low resolution (Np =

103, Nt = 103) the STEAM sequence reports the highest variance in MD but smallest in

FA. This may be explained by a constant absolute error that the insufficient sampling

introduces and a relatively high FA and low MD as a result of the long diffusion time in
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Figure 6.1: Convergence of mean diffusivity (MD) and fractional anisotropy (FA) with increasing
number of walkers Np and time steps Nt for all three pulse sequences, using Np = 106 and Nt = 104

as a reference. Based on these results, Np = 104 and Nt = 103 are considered sufficiently converged
for use in the following studies. [Reproduced with permission from (Rose et al., 2019c).]

the STEAM sequence. Other factors may also play a role, such as the larger step length

associated with STEAM for a constant Nt. In future work, setting a constant δt rather

than constant Nt would allow for fairer comparison between sequences at the expense of

longer simulation times for STEAM.

Assessing convergence by comparison with a continuum solution

The Monte Carlo random walk simulations are also compared with a reference solution,

obtained from a finite volume method (FVM) in two dimensions (Rose et al., 2018e). The

interested reader is directed back to section 3.3.3, where the techniques were described

in detail. A description of the software and data is given in appendix B.2.1. At the time

of these simulations, the GPU-based solver from section 3.3 had not been developed yet.

The FVM code used here is thus based on the MATLAB project FVTool (Eftekhari, 2021)

and uses implicit time stepping to ensure stability irrespective of time step. This allows

synchronisation of the finite volume simulation with the random walk solution, which has

no intrinsic time step limit, irrespective of image resolution.

An image-based (pixelised) domain is used where intra- and extra-cellular space corres-

ponds directly to the manual segmentation mask from figure 2.9. Because the restricted

intra-cellular diffusion is expected to converge quickly due to the limited geometric com-

plexity of the random walk inside cells, diffusion is only modelled in extra-cellular space
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Figure 6.2: Qualitative comparison of random walk (Left) and finite volume (Right) simulations
of diffusion in extra-cellular space. Walkers/concentration were initially located in ECS (with
DECS = 3 µm2/ms) at the centre of a 100× 100µm2 square containing impermeable cells. There is
good visual agreement between the two methods.

at this stage. For a given initial condition U(x, 0) = δ(x − x0), a square sub-domain

centred around x0 is extracted with sufficiently large side lengths such that (a significant

amount of) concentration is not expected to reach the domain bounds and thus boundary

effects (Hwang et al., 2003) are avoided. Figure 6.2 shows a qualitative comparison between

the random walk and finite volume solutions for one of these sub-domains, simulated with

Nt = 104 time steps and an extra-cellular diffusion coefficient of DECS = 3 µm2/ms. Two

time points (2 and 18ms) are chosen. Overall, there is good agreement between the two

methods. The Np = 104 random walkers are visualised by a 2D histogram calculated for

bins corresponding to the individual pixels and normalised to match the FVM, which
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satisfies
∫︁
Ω U dx = 1.

From figure 6.2 it is apparent that a large number of walkers would be needed to

precisely recover the PDF (or distribution of concentration as provided by the FVM) at

every pixel. This is especially true at higher times t where multiple peaks of maximum

concentration appear in the MCRW results. Alternatively, larger histogram bins could

help reduce the fluctuations intrinsic to the random walk. However, the primary focus

of investigations in this chapter remains to simulate the integral diffusion quantities in a

large DT-CMR voxel.

To quantify the amount of walkers needed to sufficiently sample restriction in the entire

domain, 105 points in the ECS are randomly selected as individual seed points. For each

point the MCRW simulation is run with a single walker. This returns one trajectory that

samples the local PDF.

With the FVM, on the other hand, a single simulation returns the entire PDF. A large

number of these local solutions are calculated to obtain the reference solution. In the limit

of sampling the entire space, their convolution yields the underlying steady-state solution

of constant concentration in the domain.

The apparent diffusion coefficients along the two Cartesian directions, Dx and Dy,

as well as the mean (Euclidean) diffusivity MD = ⟨D⟩ are calculated from the mean

squared displacement (MSD). For processing the random walk, equation (5.3) can be

used. The continuum approach however does not contain a mechanism for tracking the

migration of individual particles. Instead, the concentration at the discretised positions x

is volume-averaged using

⟨δx⟩ =
∫︂
Ω
U(x)(x− x0)

2dv . (6.1)

The apparent diffusion coefficients after diffusion time ∆ are then calculated via

Dx = |⟨δx⟩2x|/(2∆) (6.2a)

Dy = |⟨δx⟩2y|/(2∆) , (6.2b)

⟨D⟩ = ∥⟨δx⟩2∥/(4∆) . (6.2c)

These values are plotted in figure 6.3 for an increasing number of walkers, compared to the

finite volume reference solution.

Similar to what was observed in figure 6.1, using Np = 104 is sufficient for repeatable

simulations, resulting in errors of <4%. The mean value for ADC at the lower Np = 103

is within the range of the maximum extent of values at Np = 104 which suggests their

deviation from the reference solution is due to random noise and not bias at low Nt. While

the computational effort for computing all PDFs in the domain is large, especially with the

finite volume method, it was shown here that sampling both the spatial component (which

PDF to include, based on x0) and the PDFs themselves (as each walker only represents one
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Figure 6.3: Apparent diffusivities calculated from the mean square displacement of walk-
ers/concentration by random walk and finite volume method. Dx and Dy are only considering the
component along the two respective Cartesian axes while MD is derived based on the Euclidean
distance. FA is not calculated because no diffusion tensor is obtained from the data.

realisation) is an elegant and efficient way to obtain integral quantities such as apparent

diffusion coefficients.

Conclusions about what constitutes a converged result

Due to the nature of Monte Carlo simulations, each data point is subject to random

noise. Repeated simulations and in fact separate random walks of individual walkers in

the same experiment differ only in and are fully determined by the initial random seed or

(sub)sequence of the pseudo-random number generator (pRNG). In the limit of Np →∞
the MCRW converges to the true analytical diffusion solution. For a finite number of

walkers, a threshold needs to be determined where the difference from this true solution is

minimal.

In this section, convergence of random walk simulations was studied by two means:

First, random walk solutions of DT-CMR simulations were performed with increasingly

more walkers and time steps. Second, a simulation of diffusion without diffusion-encoding

gradients was verified by comparison to a continuum (FVM) solution in 2D.

Both methods independently suggest that using Np = 104 walkers with Nt = 103 time

steps per simulation provides sufficiently converged results. This recommendation is based

on simulations of DT-CMR in histology-based domains and agrees with observations by

Hall et al. (2009), who studied convergence for 3D simulations in domains of randomly

packed circular cylinders. Further investigation is needed to make general statements
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Figure 6.4: Sensitivity of DT-CMR parameters to compartment-specific diffusion coefficients. A
histology-based simulation substrate with an ECV of 25% is used. For each data point 10 random
repetitions are performed and their median values are plotted with error bars to signal the two-sided
95% confidence interval. [Reproduced with permission from (Rose et al., 2019c).]

about these numbers regarding geometric complexity; The number and size of features of

interest, voxel size and particle density, and other factors are all expected to impact the

rate of convergence.

Comparison with a continuum solution has demonstrated that integral quantities

such as mean apparent diffusion coefficients are reliably calculated using few walkers,

even though a considerably larger number may be necessary to accurately capture the

probability density function U(x, t;x0) for certain points x0. The use of Gaussian steps

accelerates convergence as explained in section 5.2.1 but is permitted only for impermeable

barriers (recall section 5.3), which are used in this section 6.2. Due to the relatively low

number of random number draws (Np ·Nt = O(107)) it is nonetheless recommended to

perform multiple repetitions of the experiment to obtain a distribution of values per set

of input parameters. Reporting their median value alongside some measure of variance

increases confidence in the results, especially if other parameters are varied and a priori

knowledge is limited. In this work, 10 repetitions together with a 95% two-sided confidence

interval are used.

6.2.3 Model parameter study

A large-scale parameter study was carried out using a realistic 3D histology-based geo-

metry (Rose et al., 2019c). The most relevant results from the study are shown here.

Diffusion coefficient

Figure 6.4 shows the sensitivity of DT-CMR parameters to DICS and DECS. The spin
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Figure 6.5: Sensitivity of DT-CMR parameters to extra-cellular volume fraction. Two histology-
based substrates (thickening, shrinking) and one geometry based on regular cuboids (idealised)
are simulated. For each data point 10 random repetitions are performed and their median values
are plotted with error bars to signal the two-sided 95% confidence interval. [Reproduced with
permission from (Rose et al., 2019c).]

echo sequences show a strong dependence on intra-cellular diffusion coefficient. The MD is

slightly reduced in the case of a lower DECS as expected due to slower diffusion overall.

However, the FA is unaffected by this change in D0.

The STEAM sequences shows an almost constant FA irrespective of D0. This suggests

that the shape of the restrictions is more important than the underlying diffusion coefficient,

as the long mixing time of ∆ = 1 s fully senses the boundaries. STEAM is, however, most

sensitive to DICS when looking at the MD value.

Substrate type and ECV

Figure 6.5 plots the DT-CMR parameters as a function of ECV (modified via morphing,

see section 2.3.5). Three different substrates are simulated: Thickening and shrinking

were described and are plotted in figure 2.10. The idealised geometry consists of cuboidal

cardiomyocytes in an arrangement that matches the ECV and average cell shape of the

realistic histology-based domain, but lacks the sheetlet structure characteristic of the

myocardium.
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Figure 6.6: Cone of uncertainty analysis of DT-CMR parameters, sensitive to extra-cellular volume
fraction. The same data points from figure 6.5 are processed to obtain the 95% one-sided confidence
interval of the error in the eigenvector orientations. [Reproduced with permission from (Rose et al.,
2019c).]

Figure 6.5 shows that the spin echo sequences report an almost constant FA with

change in ECV. The STEAM sequence shows much more sensitivity, with FA reducing for

larger ECV. However, values of FA for STEAM are significantly larger than expected from

in-vivo DT-CMR data. The almost pencil-like shape of the diffusion tensor is likely due

to the lack of membrane permeability. Sensitivity of MD to ECV is similar for all three

sequences.

Additionally, the cone of uncertainty (Jones, 2002) is calculated for all data points in

figure 6.5. The uncertainty of the first and second eigenvector is plotted in figure 6.6. The

STEAM sequences reports the lowest uncertainty of the first eigenvector, which makes

sense given that its long ∆ causes walkers to sense the pencil-like shape of the impermeable

cardiomyocytes very well. More interesting is the uncertainty of the second eigenvector.

Particularly, the difference between idealised and realistic geometry. The idealised cuboidal

substrate lacks the preferred secondary direction of diffusion that real tissue shows as a

result of the sheetlet structure. This shows that simplified geometries such as those used

in literature (Bates et al., 2017; Wang et al., 2012) are insufficient in modelling realistic

DT-CMR tensor shapes.

6.2.4 Discussion

The simulations of DT-CMR in a realistic, histology-based model of the myocardium

have provided novel insights into the relationship between tissue model parameters and

the diffusion tensor that characterises the diffusion within the substrate. Based on a

convergence study, each simulation used Np = 104 walkers and Nt = 103 time steps.
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These Monte Carlo parameters result in accurate and reproducible DT-CMR measures

while keeping the simulation time at an acceptable level. For example, simulations in

section 6.2.3 required a total of 114 different combinations of input parameters. Simulations

were run on the Imperial College High Performance Computing (HPC) cluster, where the

computational effort of one data point using a modern CPU with 20 cores was recorded at

≈2000 s. Because each experiment was repeated 10 times, the total runtime was ≈650 h.
Multiple compute nodes on the HPC system were used in parallel for a faster overall

turnaround time.

Parameter studies varying model parameters like the diffusion coefficients and ECV

were performed. In this initial investigation, membranes were considered impermeable

in order to investigate the effects of intra- and extra-cellular compartments separately.

Major findings include the different sensitivities of different pulse sequences to different

tissue parameters and the need for accurate distribution of extra-cellular space to capture

sheetlet objects.

The scale of the tissue model was limited to the ROI considered in section 2.3.4,

chosen from histology images as being representative of the surrounding tissue in the

mid-myocardium. This “building block” was replicated to fill a large imaging voxel, while

applying the transmural rotation seen in the myocardium. The image region contains a

predominant (horizontal) direction of extra-cellular space due to the shear layers between

sheetlets, but a second population of vertically orientated sheetlets is present too. This

is explained by the “two sheet” model (Kung et al., 2011). Additional processing and

simulations would be necessary to compare and validate the findings by Kung et al.

using a substrate with more well-defined sheetlet orientations and (initially) without the

confounding effect of transmural rotation.

6.3 Incorporating the transit model for permeable

membranes

Simulations in section 6.2 reported higher-than-expected values for the fractional aniso-

tropy (FA), especially for the long diffusion times of the STEAM sequence. A hypothesis

for explaining this observation is the assumption of impermeable membranes, which may

not be appropriate for cardiomyocytes. Before repeating these previous simulations with

permeable membranes later in section 6.4, the transit model that is to be used needs to be

tested and verified.

Section 5.3 discussed in length the use of transit models for Monte Carlo random walk

simulations as well as their mathematical underpinning. The popular model by Fieremans

et al. (2010), given in equation (5.21), was found to contain an intrinsic error beyond a

certain critical value of the time step. Here, this is evaluated numerically to assess the
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model’s suitability for simulations with parameters typical for DT-CMR. The study is

carried out in 1D, where the analytical solution from chapter 4 can serve as the ground

truth and where visualisation and interpretation of results is most intuitive. The method

can then be trivially extended to higher dimensions.

6.3.1 Analysis of the steady-state solution

The steady-state solution to permeable media with varying diffusion coefficients is a

constant concentration throughout the domain, as supported by the analytical solution in

chapter 4. Flux analysis in section 5.3.3 showed that the transit model in equation (5.21)

does not have such a balanced steady-state solution. For membranes with a step change in

diffusion coefficient across it, there is a net flux in the direction of lower D0.

Model domain and parameter choice

Consider a domain with a single permeable barrier separating two compartments of different

diffusion coefficients. This isolates a single interface and avoids confounding effects from

other compartments. Diffusion coefficients are chosen to be DL = 0.5 µm2/ms and DR =

2.5 µm2/ms, representing intra- and extra-cellular space respectively (section 2.3.1). The

membrane permeability is set to κ = 0.05 µm/ms, calculated using equation (2.4) based

on an estimated τ−1
ex = 30Hz. For myocardial tissue this assumes an ECV of ρ = 25%

based on Kellman et al. (2012). The claustrophobia ratio in equation (2.6) is calculated

for cylindrical cardiomyocytes with radius R = 15 µm and height H = 110 µm based on

Tracy et al. (2011).

To achieve an initially constant concentration density throughout the domain, walkers

are seeded randomly inside the domain by drawing positions xp(0) from a uniform distribu-

tion. As shown in figure 6.7, using 106 walkers is sufficient for a smooth solution with an

acceptable (random) error compared to the true steady-state. In the figure, histograms il-

lustrate the random walk solution, density-normalised such that the bin density ρbin (which

corresponds to a constant U in the bin) is ρbin = cbin/Np/wbin where cbin and wbin are the

bin count and width respectively.

Error at moderate time steps

The time step dependence of the membrane transit model is now investigated. Figure 6.8

shows histograms of the random walk solutions for different time steps δt (20, 4, 1, and

0.05ms) and two solution times (20 and 1000ms). The figure 6.8 also shows the results for

the interface model in equation (5.20), which corresponds to a fully-permeable barrier. For

the short-time solution at 20ms, the membrane transit model fails to preserve the initial
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Figure 6.7: Convergence of random walk for membrane (red) and interface (blue) transit models.
Using Np = 106 random walkers is sufficient to reduce fluctuations due to randomness to an
acceptable level for all time steps δt.

steady-state solution near the barrier at large time steps. As the time increases to 1000ms,

a visible concentration imbalance between the two compartments develops.

The difference in compartment density ∆U across the membrane increases with δt and

appears to stabilise at some value as t→∞: For a solution time t = 1000ms and a time

step δt = 0.05ms, figure 6.8 shows an excess of concentration in the left compartment

of 0.88%, for δt = 20ms this increases to 10.2%. The interface model on the other hand

represents the expected solution with a constant U . A maximum of ∆U = 0.18% is

reported between all values of t and δt, suggesting that there is no accumulation of walkers

for any time step when permeability is infinite. The variation in bin densities for the

interface model can be attributed to randomness of the simulation. At t = 1000ms the

difference between observed ρbin values relative to the expected ρ∗bin = 1/
∑︁

L = 0.025 has

a median (among δt) standard deviation of 0.0013 (or 5% relative to ρ∗bin).
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Figure 6.8: Histograms of walker positions after random walk simulations of the steady state for
membrane (Top) and interface (Bottom) transit models. Initial positions were sampled from a
uniform distribution to seed walkers with a constant density throughout the domain. Simulations
were performed with varying step sizes δt for a short and a long simulation time t. The membrane
model described in equation (5.21), with permeability κ = 0.05 µm/ms, shows a concentration
imbalance develop with increased time step δt and duration t. The interface model (Bottom)
from equation (5.20), which considers κ→∞, retains a constant concentration for all parameters.
Noticing the difference between y-axis scales between the two rows of plots makes it clear that
variations of histogram counts are the result of random fluctuations.

6.3.2 Analysis of the initial transient response

Histograms in figure 6.8 showed that the membrane transit model develops a concentration

imbalance in the steady-state case for large time steps, which is consistent with the flux

analysis in section 5.3.3. Here, the transient behaviour of U(x, t;x0) after an initial spike in

concentration is investigated and the flux through the membrane is computed. Analysing

the fluxes offers more insights into the exchange process, which is modelled as a random

process, than looking at concentrations on either side of the interface. Additionally, the

flux as an integral quantity can be compared easily with the analytical solution and does

not rely on histogram binning, which is prone to noise.

Recall that equation (5.17) represents the flux boundary condition across the barrier(s)

in the domain. Its left-hand side matches the definition of flux J in Fick’s first law (recall

equation (5.18)), while the right-hand side relates it to the permeability and difference in

concentration across the barrier. The units of J are concentration (fraction of walkers)

per unit time and unit area, but the latter is omitted such that [J ] = 1/ms. The flux

in the analytical solution is calculated through the right-hand side of equation (5.17),

evaluating U on either side of the discontinuity. In the case of the random walk, the net
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Figure 6.9: Instantaneous and time-averaged (plotted as the average of every interval with
∆t = 20ms) fluxes J(t) through the membrane as a function of simulation time. Results are
given for four different step sizes δt: 4, 1, 0.5, and 0.05ms. Domain and simulation parameters:
DL = 0.5µm2/ms, DR = 2.5 µm2/ms, κ = 0.05 µm/ms, L = 20µm, x0 = 10µm, Np = 106.

fraction of walkers (normalised by 1/Np) crossing the barrier is counted every time step.

This integral flux is divided by δt to obtain the instantaneous flux.

The influence of step size

The same domain as in section 6.3.1 is considered. All Np = 106 walkers are seeded in

the centre of the left compartment at x0 = 10 µm. To prevent walker positions coinciding

with the barrier location at xb = 20 µm, the walkers are offset by ϵ = 10−10. As a result of

integer step lengths for some δt, walker positions will otherwise have one of their steps land

on the barrier resulting in pt = 0 according to equation (5.21). Simulations are performed

up to t = 1000ms using four different time steps δt: 4, 1, 0.5, and 0.05ms. Figure 6.9

shows the instantaneous fluxes obtained from the random walk simulation at every time

step alongside the analytical solution. For the random walk solution, a time-averaged flux

is also plotted over fixed intervals of ∆t = 20ms to allow for comparison between plots

with different δt.

The (analytical) flux J rapidly increases early in the simulation and reaches a maximum
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Figure 6.10: (Left) Net cumulative flux J (t) =
∫︁ t

0
J(τ)dτ , i.e. the net migration of concentration

across the membrane at xb = 20 µm, plotted as a function of simulation time for both the analytical
solution and numerical results using time steps 4 and 0.05ms. Domain and simulation parameters:
DL = 0.5 µm2/ms, DR = 2.5 µm2/ms, κ = 0.05 µm/ms, L = 20µm, x0 = 10 µm, Np = 106.
(Right) Walker concentration at t = 1000ms for the same simulations. The random walk results
are shown as histograms.

at t = 58.53ms. As t increases, walkers continue to cross the membrane towards the initially

empty compartment (J > 0 always). The numerical, time-averaged flux approximates the

analytical solution well at the finest time step δt = 0.05ms. At δt = 0.5ms the initial

peak is underestimated but the tail of J(t) is well represented. As the time step increases

further, the time-averaged flux over-estimates the initial peak in magnitude and then

underestimates the tail. At t = 4ms oscillations can be observed. These may be attributed

to poor sampling of the averaging window size ∆t = 20ms. The instantaneous numerical

flux Jnum, i.e. the amount of concentration (walkers) crossing every time step, does not

match the analytical solution. At δt = 4ms the instantaneous values of Jnum fluctuate

around the analytical solution every time step, alternately over- and then underestimating

the flux. As the time step is decreased, the amplitude of the fluctuation decreases. It may

be possible to reduce this to near-zero with a significantly higher resolution, both through

an increase in number of walkers and a decrease in time step.

In order to quantify the error between the numerical and analytical flux in figure 6.9, the

cumulative flux J (t) =
∫︁ t
0 J(τ)dτ is computed. Plotted in figure 6.10, this represents the

net concentration that has crossed the membrane up until t and is required to approach 0.5

as t→∞ to match the steady-state solution in section 6.3.1. The two extreme δt values

used in figure 6.9 are shown. The line for δt = 0.05ms closely matches the analytical

solution with only a small difference ∆J = Jnum − Jana and a global error
∫︁
|∆J |dt

of 2.497 (0.8% relative to
∫︁
Janadt). When increasing the time step to 4ms, the cumulative

flux of the random walk significantly deviates from the analytical solution. The flux is first

overestimated (until t = 321.57ms) and then underestimated as t→∞, similar to what is

observed in figure 6.9. The global error is 24.11 (7.56%). At t = 1000ms the difference

between cumulative fluxes ∆J suggests that insufficient concentration has crossed the
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Figure 6.11: Errors in the random walk for different time steps δt and permeabilities κ in
four different domains (the left-most domain is the model domain used in figures 6.8 and 6.9).
Simulations were run until t = 1000ms with Np = 106 walkers seeded at x0 = 10µm. (Top) The
global error (relative to

∫︁
Janadt) quantifies the degree to which the solution fluctuates around

the analytical solution during the simulation. (Bottom) The cumulative error (relative to Jana)
represents the error in net flux at the end of the simulation.

membrane at the end the simulation. For δt = 0.05ms the error is ∆J = −0.005 (−1.1%
with respect to Jana), while for δt = 4ms it is −0.046 (−9.82%). This is consistent with

the observation in figure 6.8 where the transit model causes accumulation of walkers in

compartments of lower diffusion coefficient. The histogram in figure 6.10 directly illustrates

the distribution of concentration (analytical) and walkers (numerical) at t = 1000ms. This

supports the results shown in the cumulative flux plot in figure 6.10 and suggests the

largest deficiency of walkers is at the far end of the right compartment.

The influence of diffusion coefficient and permeability

As shown in section 5.3.3, the membrane transit model from equation (5.21) has negligible

error only for sufficiently small time steps. According to equation (5.45), the error depends

on both the membrane permeability κ and the compartment diffusion coefficient D. In

order to study the effects of these parameters numerically, four domains are used: the model

domain used previously, as well as with the diffusion coefficients swapped such that DL >

DR, and two additional domains with different magnitudes and intra-compartment ratios

of diffusion coefficients. The domain parameters are indicated in figure 6.11. A range

of permeabilities is considered: they increase from 0.05 µm/ms (cardiomyocytes) up to

what may be expected in erythrocytes, where exchange times can be of the order of 50 to

100Hz (Gianolio et al., 2016). Simulations are performed up to t = 1000ms for five different
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time steps δt: 10, 1, 0.5, 0.05, and 0.002ms. Figure 6.11 reports the same error metrics

considered in equation (5.45) in the form of heatmaps.

Both global and cumulative error have similar magnitude. The flux analysis in sec-

tion 5.3.3 shows via equation (5.45) that for DL ̸= DR the transit model requires a time

step that scales with δt ∼ κ−2. For a fixed δt an increase in error is observed as the

permeability increases. At low δt this increase is almost linear with κ. This may be

explained by the terms in equation (5.45). For a fixed κ there is a substantial increase in

the error with increasing δt that appears most drastic between δt = 0.05ms and δt = 1ms

but also depends on the domain. In general, small relative errors (≤ 1%) are found for

low permeabilities (κ ≤ 0.1 µm/ms) and small step sizes (δt ≤ 0.002ms). This time step

corresponds to max(pt) ≈ 0.01 as suggested by Fieremans et al. (2010) for κ = 0.05 µm/ms

only. As a result, higher values of κ do not satisfy the condition. Note that the required

time step for κ = 1 µm/ms would be 6× 10−6ms.

6.3.3 Application to DWI and a histology-based domain

Now that the necessary parameter choices for the permeable membrane transit model

have been established via 1D simulations, the model can be applied to more interesting

higher-dimensional problems. As a precursor to full 3D simulations of DT-CMR in realistic

domains (section 6.4), the findings above are now translated to a histology-based domain.

A 1D domain is constructed where the 2D morphology is collapsed into an equivalent 1D

geometry with a similar distribution of compartments. Additionally, through the narrow

pulse approximation (NPA) the analytical solution can be applied to model a DWI signal.

Synthesised domain

The domain is based on a histology-image from swine myocardium (section 2.3.4). An

example is shown in figure 6.12 (Top Left). Through the automatic segmentation method

described in section 2.4 the distribution of cardiomyocyte sizes shown in figure 6.12 (Top

Right) is obtained. From the data, a mean cell cross-sectional area of µ = 120 µm2 and

a standard deviation of σ = 40 µm2 are estimated. To create a synthesised histology-

based domain, normally-distributed values in the range µ ± 2σ are drawn. Assuming a

circular cross-section for cardiomyocytes (Tracy et al., 2011), the cell areas are converted

to diameters which are use as intra-cellular compartment length in the 1D domain. The

extra-cellular space is drawn from a uniform distribution in the interval [2, 4]. This

results in an extra-cellular volume fraction (ECV) of 20%. The resulting domain can

be seen in figure 6.12 (Bottom). Diffusion coefficients are set to DICS = 0.5 µm2/ms

and DECS = 2.0 µm2/ms. A permeability of κ = 0.05 µm/ms is used for all cell membranes.
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Figure 6.12: Illustration of the process of synthesising a 1D domain from histology data. (Top
Left) An example of a region of histology from a wide-field microscopy image. This is part of a large
vertical stack of histological slices obtained from the mesocardium of swine. Cardiomyocytes (red-
purple) are cut perpendicular to the imaging plane. Extra-cellular space is white, while collagen
is stained blue. (Top Right) Distribution of cell sizes from automatic segmentation for the
entire stack of images as well as manual labelling of a small representative region. (Bottom)
Intra-cellular compartment lengths are based on (circular) cell areas drawn from a distribution
matching the histogram. The extra-cellular gaps are drawn from a uniform distribution and result
in an extra-cellular volume fraction of 20%.

Transient and steady-state solutions in the histology-based domain

Simulations use Np = 107 walkers and a time step of δt = 0.5ms. This intentionally

exceeds the small time step required for accurate handling of transit using the model in

equation (5.21), while still limiting walkers to a single barrier interaction per step (since

min(LECS) ≥ 2 µm and DECS = 0.5 µm2/ms). The random walk is run for t = 1000ms

and the analytical solution is evaluated for the same space and time parameters. The

algorithm described in chapter 4 is used to obtain 2645 eigenvalues with λ⋆ ∈ [0, 500].

From this, the analytical solution is calculated. The transient solution U(x, t;x0) of the

random walk is obtained for x0 located at the centre of the domain, while the steady-state

solution is initialised by seeding the walkers uniformly in the domain. Results are plotted in

figure 6.13. Overall a good agreement can be observed between the random walk solution

and analytical solutions, despite the relatively large time step. In the steady-state there is

an accumulation of walkers in ICS, which has a lower value for D than the ECS. This is

consistent with findings in section 6.3.1.
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Figure 6.13: Analytical and random walk solutions (using Np = 107 walkers and a time step
of δt = 0.5ms) at t = 1000ms. (Top) Transient solution U(x, t;x0) for initial concentration at
x0 located in the centre of the domain (figure 6.12), showing good agreement between the two
methods. (Bottom) Steady-state solution after uniform seeding of walkers in the domain. The
random walk method results in accumulation of walkers in compartments with lower diffusion
coefficient. Note that this effect is visually amplified by the choice of axis data range.

Narrow pulse approximation

Recall from section 5.2.2 that walkers acquire phase ϕ during DWI experiments. At

readout/time of echo, the resulting signal S is the Fourier transform of the medium average

diffusion propagator and is thus related to the distances that the spins have diffused during

diffusion time ∆.

The methods presented in chapters 4 and 5 allow solving for the diffusion propag-

ator U(x, t;x0). By means of the narrow pulse approximation (NPA) (P. T. Callaghan,

2010; Grebenkov et al., 2014) it is possible to estimate the DWI signal directly. This

assumes that the gradients are applied instantaneously, i.e. δ → 0 as the wave number

q(t) = γ
∫︁ t
0 G(τ)dτ remains finite (= γGδ).

Solutions are obtained for diffusion times ∆ in the range 100 to 1000ms and the walker

positions xp(t) are stored for each of the time points t = ∆ as well as at t = 0. Due to the

NPA the effect of b -values can be evaluated, calculated as b = q2(∆− δ/3), in the range 0.1
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Figure 6.14: Diffusion signal S (Top) and apparent diffusion coefficient ADC (Bottom) computed
based on a narrow pulse approximation with different b -values and diffusion times ∆. Plotted
are the analytical solution (Left) and the error of the random walk solution with respect to the
analytical (Right). Simulations were performed in the domain from figure 6.12 with δt = 0.5ms
and Np = 107.

to 10ms/µm2 without additional simulations. The signal magnitude S is computed as

Srw(∆, q) =
1

Np

⃓⃓⃓⃓
⃓⃓ Np∑︂

p

e−i q (xp(∆)−xp(0))

⃓⃓⃓⃓
⃓⃓ . (6.3)

Here, i denotes the imaginary unit
√
−1. The analytical diffusion signal is calculated using

an expression derived for uniform initial seeding (Moutal et al., 2019, SM. I.2):

Sana(∆, q) =
1∑︁
k Lk

∑︂
n

e−λn∆

⃓⃓⃓⃓∫︂
Ω
νn(x)e

iqxdx

⃓⃓⃓⃓2
. (6.4)

The integral is approximated numerically using trapezoidal integration over the finely-

discretised domain. Finally, the apparent diffusion coefficient (ADC) is derived from the

signal attenuation through ADC = − ln(S/S0)/b, assuming S0 = 1.

Figure 6.14 shows the signal and ADC for the analytical solution for all combinations

of b and ∆. As expected, S reduces (and ADC increases) with higher b -value and diffusion

time. For S the effect of ∆ is much smaller than that of b. The effect of increasing b is

stronger for low diffusion times. The accuracy of the random walk solution is evaluated

via the error/difference with respect to the analytical solution. Overall the error in ADC

between the two solutions does not exceed ±0.08 µm2/ms and shows no distinct pattern

with ∆ or b. The relative error is largest for high b -values and high ∆, where ADC is

lower. For the short diffusion time ∆ = 100ms the error is positive. As ∆ increases and
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the accumulation of walkers in the “slower” intra-cellular compartments increases, the

ADC becomes underestimated for all ∆ > 121ms. While the error in signal S increases

with both b and ∆, ADC shows an almost constant error at sufficiently large ∆.

Recall the mean squared displacement (MSD) from equation (5.3). It is interesting to

consider q going to zero, as this corresponds to the case where Srw approaches the bulk

diffusion coefficient

D(t) = 1

2t

⟨︁
δx2
⟩︁

(6.5)

with MSD ⟨︁
δx2
⟩︁
=

∫︂
Ω
δx2U(x, t)dx . (6.6)

Considering b = 0.1ms/µm2, the baseline error in ADC can be verified due to the errors

in the random walk.

6.3.4 Discussion

The purpose of this section was to investigate the suitability of applying the transit model

in equation (5.21) to simulations of DWI/DT-CMR in histology-like 1D domains. First,

a model domain composed of two compartments separated by a barrier is used to study

the intrinsic bias of the transit model. Accumulation of walkers in the compartment with

lower diffusion coefficient is reported in the steady-state case, consistent with section 5.3.3.

The transient evolution of membrane flux was then studied and the errors quantified.

Finally, a 1D domain is constructed based on histological data (figure 6.12). Using the

narrow-pulse approximation, the DWI signal and resulting ADC are computed from the

analytical and random walk solutions. The model error is acceptable if a moderate time

step is used. The transit model is thus deemed suitable for DT-CMR simulations.

6.4 Effect of permeability on DT-CMR parameters

Simulations of impermeable cardiomyocyte membranes in section 6.2 resulted in an overes-

timation of the fractional anisotropy (FA) and underestimation of mean diffusivity (MD)

compared to literature values for in-vivo DT-CMR. This was most noticeable for long

diffusion times ∆ in the STEAM sequence. While MD strongly correlates to the intrinsic

diffusion coefficients and ECV used in the simulations and may thus be calibrated by

careful choice of model parameter, FA is less sensitive to such changes. It was hypothesised

that the lack of exchange in the model may be the reason for high FA reported in previous

simulations.
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Figure 6.15: Simulation of the spread of concentration in a 2D histology-based domain using a
finite difference method (FDM). A diffusion time of ∆ = 1000ms was used to model diffusion during
a STEAM sequence. Membrane permeabilities κ were set to 0, 0.002, 0.02, and 0.2 µm/ms (from
left to right), while the diffusion coefficients in ECS and ICS were 3 and 1 µm2/ms.

6.4.1 The need for permeability

Initially, the impact of membrane permeability on the diffusion propagator and DT-CMR

results is assessed. The approach taken is based on previous work (Rose et al., 2019d)

using the GPU-based Bloch–Torrey simulator described in section 3.3 and appendix B.2.4.

The two-dimensional domain from figure 3.9 is used as input for simulations with the finite

difference method (FDM). Extra- and intra-cellular diffusion coefficients DECS and DICS

were set to 3 and 1 µm2/ms. The FDM treatment of membranes in equation (3.22) requires

the outer-most pixels of any ICS region to take on a value for the diffusion coefficient

of Dm = κ∆x, where the resolution is ∆x = 0.5 µm. A STEAM sequence with parameters

from table 6.1 is simulated, as this sequence type with the long diffusion time of ∆ = 1000ms

is expected to be affected the most by permeability.

For initial, quantitative assessment of the impact of permeability the spread of con-

centration after an initial spike at x0 is simulated. A point inside a cardiomyocyte is

chosen and the domain is limited to a length of 3
√
2DECS∆ in each direction to reduce the

computational effort. The permeability is decreased from 0.2 µm/ms by one order of mag-

nitude at a time until κ = 0.002 µm/ms. The impermeable case (κ = 0) is also simulated

to demonstrate watertightness of the membrane boundary condition. The distribution of

concentration U(x,∆) is shown in figure 6.15. It depicts the effect that permeability has

on the diffusion of spins. At low κ significant anisotropy can be observed by imagining

isocontours of constant concentration. The slow exchange between compartments together

with a higher diffusion coefficient in the extra-cellular space causes the concentration to

spread much farther in ECS than even in neighbouring cardiomyocytes. As κ increases, the

distribution of concentration becomes more isotropic and the distinction between cell mem-

branes becomes less observable leading to a coarse-graining of the microstructure (Novikov

et al., 2019).

To quantify these observations, DT-CMR simulations of the magnetisation vector M

are carried out as explained in section 3.3. Three different gradient directions are simulated
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Figure 6.16: Change in DT-CMR parameters (FA and MD) as a function of membrane permeability.
The plot uses a symmetric logarithmic scale (linear in the range 0 to 10−4) to display the κ = 0
value. 2D values correspond directly to the simulation result, whereas the 3D values are based on
an estimated primary eigenvalue λ1 = 1.2µm2/ms (normal to the image).

and a 2× 2 diffusion tensor is constructed that represents the apparent diffusion inside the

domain. Five different permeabilities (2× 10−3, 2× 10−2, 2× 10−1, and 2 µm/ms as well

as the impermeable case) are applied. The resulting MD and FA are plotted in figure 6.16.

The formula for FA2D is the same as for FA3D given in equation (3.9) with the exception

of a different scaling factor, which becomes 2 instead of 3
2 .

FA strongly dependent on the permeability κ. It decreases from approximately 0.75

at κ = 2 × 10−3 µm/ms to almost 0.1 at κ = 2 µm/ms. Similarly, MD increases from

0.35 µm2/ms to 1.2 µm2/ms over the same range. This is in line with qualitative observations

from figure 6.15. The impermeable case only has a slightly higher/lower FA/MD than the

case of κ = 2× 10−3 µm/ms.

Figure 6.16 also shows an estimation of MD and FA in 3D simulations. This FDM

simulation is based on the fact that the 2D slice of histology was cut and imaged perpen-

dicular to the cardiomyocyte longitudinal axis. It is well documented that the primary

eigenvector e1 is aligned parallel to this axis. By definition of the diffusion tensor and

its eigendecomposition, the second and third eigenvectors lie in the plane that these

simulations are carried out in. Here, the assumption is made that diffusion along the

first eigenvector is unrestricted. This serves as a good first approximation based on the

findings in figure 6.5, where only a small reduction in λ1 due to the cardiomyocyte end caps

was observed. Consequently, λ1,3D = ⟨D0⟩ where ⟨D0⟩ is the volume-averaged diffusion

coefficient. Furthermore, λi+1,3D = λi,2D for the remaining two eigenvalues. For each

simulated 2D tensor, an equivalent 3D tensor is thus extrapolated and plotted in figure 6.16.

The MD of the 3D tensor is higher as expected by virtue of eigenvalue ordering. The FA
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for both 2D and 3D tensors almost exactly matches. At present time, no explanation for

this exists and it is likely due to a fortuitous combination of 2D tensor and ⟨D0⟩.
Overall, FDM simulations of DT-CMR in a realistic, histology-based domain have

successfully reduced the FA of the observed diffusion tensor. For a physiological range of

membrane permeabilities in the order of 10−2 to 10−3 µm/ms, the apparent diffusion over

long times ∆ = 1000ms is significantly dependent on permeability. The resulting FA and

MD values have changed in the direction towards what would be expected from in-vivo

and ex-vivo studies (Deuster et al., 2016b; Kim et al., 2005; McGill et al., 2015a,b; Moulin

et al., 2020a; Scott et al., 2018b; Stoeck et al., 2018).

6.4.2 Extending previous simulations by adding permeable membranes

The need for permeability was demonstrated above using a finite difference method. To

build upon the MCRW simulations in section 6.2 and allow walkers to exchange between

compartments, a transit model is required. The model by Fieremans et al. (2010) was

previously studied numerically in section 6.3 and its limitations determined. Here, some of

the work from section 6.2 is repeated for the same set of simulation inputs but with the

addition of a realistic membrane permeability as opposed to impermeable barriers. The

results of this come from recently published work (Rose et al., 2021a).

The simulation substrate from section 6.2 with ECV = 25% is used. This is a realistic

ECV and is located near the centre of the range of ECV values considered in section 6.2.

Diffusion coefficients DICS and DECS are set to 1.5 and 3.0 µm2/ms, which matches what

was used in section 6.4.1.

The membrane permeability κ is varied from 0 µm/ms (impermeable, to compare with

section 6.2) to 0.05 µm/ms (fast exchange, erythrocytes). Realistic values for myocardial

tissue are most likely in the range 0.01 to 0.02 µm/ms (section 2.3.2). The PGSE and

STEAM sequences from table 6.1 are simulated in a 2.8×2.8×8.0mm3 voxel with Np = 104

walkers. The transit probability pt, calculated by equation (5.21), is required to be less

than 0.01 which is enforced depending on κ. This greatly increases the number of time

steps, but the number of walkers Np cannot be reduced to compensate for this. As a result

longer simulation runtimes are encountered, especially for the STEAM sequence.

The results are plotted in figure 6.17. Two clear trends are visible: FA decreases and

MD increases with increasing κ for both sequences. For FA this appears to happen linearly,

with a steeper slope for the STEAM sequence than PGSE. The longer diffusion time is

thus more sensitive to permeability, as could be expected. The increase of MD with an

increase in κ is again almost linear for PGSE, but the slope for STEAM appears to reduce

with larger κ values.

Until this point, simulations were limited to realistic in-vivo DT-CMR sequences. Due

to the nature of the beating heart, the diffusion time is therefore either kept as short as
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Figure 6.17: Effect of membrane permeability on DT-CMR parameters for a short (PGSE) and
long (STEAM) pulse sequence. Plotted are median values obtained from 10 repetitions.

possible (PGSE and M2-SE) or synchronised to the ≈1 s long cardiac period (STEAM).

This results in two distinct diffusion regimes that can be investigated with DT-CMR. To

bridge the gap between these two extremes, simulations of varying ∆ are performed. Using

the sequence generation tool in section 3.2.3, STEAM sequence profiles are generated in

the range of 100 to 2000ms. Compare to this ∆ = 20ms for PGSE. The resulting data

may be compared to ex-vivo DT-CMR data, where no limitation on the diffusion time

exists.

Figure 6.18 shows FA and MD as a function of ∆. For both values of permeability κ, 0

and 0.05 µm/ms, a similar behaviour of FA is observed. Until ∆ = 300ms FA increases

with ∆, but then approximately plateaus. The permeable simulations report a lower FA

than the impermeable case, consistent with figure 6.17. The mean diffusivity continuously

decreases with an increase in ∆ for the impermeable case. This is an expected result for

longer diffusion times in restricted and hindered environments. The difference between MD

for permeable and impermeable simulations, however, is interesting. After ∆ = 200ms, MD

for κ = 0.05 µm/ms remains constant. A similar plateau in apparent diffusion coefficients
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Figure 6.18: Effect of diffusion time on DT-CMR parameters for both impermeable and permeable
membranes. All simulations were computed using a STEAM sequence with varying ∆.

with ∆ increasing beyond 300ms was reported by Kim et al. (2005).

6.4.3 Discussion

The inclusion of membrane permeability in the model of the myocardium has lead to a

reduction in FA to levels closer to what is expected from DT-CMR acquisitions in vivo and

ex vivo studies. Future simulation work will require the inclusion of membrane permeability

in in-silico models of DT-CMR. Limitations of this work are that only the PGSE and

STEAM sequences and not the M2-SE sequence were considered, and that the value of κ

remains an unknown input parameter.
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7.1 Key findings

There is a need for accurate simulations of DT-CMR in realistic models of myocardial

tissue to enable investigation of the effects that microstructural changes due to disease

have on the DT-CMR results. In this project, a computational modelling framework for

DT-CMR was developed that enables such simulations to be carried out effectively and

reliably. The major findings, related to the research objectives (ROs) defined in section 1.2,

are summarised below. Afterwards, the central hypothesis is revisited.

RO1: Realistic model of myocardial tissue

High-fidelity 3D numerical phantoms are necessary for DT-CMR simulations in order to

accurately capture the microstructural features found in the myocardium.

The workflow proposed in this project considers large domains of realistic DT-CMR

voxel size. Both transmural rotation of cardiomyocytes is considered as well as the sheetlet

structure, which is of strong clinical interest (Nielles-Vallespin et al., 2017). Simulations in

section 6.2 have shown that such realistic geometrical models are required to accurately

capture DT-CMR parameters. In particular, measures relating to the second eigenvector of

the diffusion tensor, like E2A or the eigenvector uncertainty, were shown. Using idealised

cardiomyocyte shapes in regular arrangement as often found in literature result in DT-CMR

measures that lack the prominent secondary eigenvector.
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In order to assist with the generation of such complex substrate geometries, two sets of

tools were developed: Image processing and deep learning–based methods for automatic

segmentation of histology images, and a cell packing algorithm that can synthesise a

substrate to match target statistics. Both sets of tools will be vital in future studies to

increase the accuracy of the simulated microstructure over large voxel sizes.

RO2: Efficient and accurate numerical techniques

In order to efficiently simulate diffusion in large complex domains, Monte Carlo random

walk (MCRW) simulations are preferred. A parallelised simulator was developed in this

work that can operate on both voxelised and surface mesh–based domains.

While MCRW methods are superior to continuum solutions in terms of performance,

a set of continuum solution–based techniques were also developed in this work. These

methods directly solve the governing equations without need for statistical models and

can thus be used to verify and assess accuracy of MCRW solutions. A GPU-based

implementation of the finite difference and finite volume method provides a fast means to

obtain such reference solutions. For example, 2D problems can be solved within minutes.

Additionally, an analytical solution in 1D was developed to better understand the effect

that membrane permeability has on the diffusion process. It was also used to study the

accuracy of transit models typically used in MCRW by comparing the membrane fluxes

measured with the MCRW and ground truth analytical solutions. Using this approach, the

critical maximum time step limit for the transit models was determined and the suitability

for DT-CMR simulations was confirmed.

RO3: Sensitivity of pulse sequences to tissue parameters

To gain insights into the specific sensitivity of DT-CMR pulse sequences to pathological

changes in the cardiac microstructure, parameter studies were performed. Both spin

echo (PGSE, M2-SE) and stimulated echo (STEAM) sequences were simulated.

Initial simulations of impermeable membranes in a realistic microstructure demonstrated

that spin echo sequences are more sensitive to changes in underlying compartment-specific

diffusion coefficients than STEAM. The STEAM sequence on the other hands shows a

stronger dependence on ECV.

Subsequent simulations addressed the effect of membrane permeability. The inclusion

of transmembrane exchange via a transit model leads to walkers diffusing further, thus

increasing MD and reducing FA. This effect is stronger for the long diffusion times associated

with the STEAM sequence.

These findings have important clinical relevance: In future, modelling pathological

changes like hypertrophy (increases in ECV, cardiomyocyte diameter, or cardiomyocyte

length), disarray (disruption of normal cardiomyocyte orientation), and changes to diffusion
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and permeability coefficients, will allow the appropriate sequence to be selected or designed

to provide maximum sensitivity to the desired changes based on findings from in-silico

simulation studies.

Hypothesis

The central hypothesis (page 25) stated that using a realistic virtual model as input for

MCRW simulations allows for more realistic in-silico estimates of the DT-CMR measures

typically found in vivo. Simulations in section 6.2 confirmed that the use of histology-

derived features like the organisation of cardiomyocytes into sheetlets is necessary to obtain

realistic estimates of FA and a distinct second eigenvector. The addition of membrane

permeability to these simulations brought the DT-CMR measures closer to what is typically

observed in vivo.

Novelty

The validated simulations of DT-CMR presented in this work are unique in using a histology-

based microstructure with permeable membranes, differences in diffusion coefficient between

compartments, whilst allowing large voxel sizes and long diffusion times. A number of

previous studies have included one or a subset of these features, but this is the first work to

address all of these challenges, providing a framework suitable for simulation of DT-CMR

data in the myocardium acquired with typical sequences used in in-vivo imaging.

7.2 Limitations and suggested future work

Geometric fidelity and scale

The histology-based substrate was constructed from a single ROI, a 400× 500 µm2 block

of tissue, which was replicated to fill a typical imaging voxel volume. Even though the

ROI was taken from a representative region of the mid-myocardium, this is significantly

smaller than the 3× 3× 8mm3 voxel size of DT-CMR. In the future, the techniques in

sections 2.4 and 2.5 for automatically segmenting or synthesising substrate geometries

should be explored further and applied to filling an entire voxel. Rule-based methods for

cardiomyocyte fibre orientation (Doste et al., 2019) may be of assistance when attempting

to expand the work beyond the mid-myocardium of the left ventricle.

Additionally, comparison with in-vivo or ex-vivo DT-CMR measurements such as from

the recently performed Langendorff experiment by Scott et al. (2019) will require modelling

of multiple voxels throughout the myocardium.
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Bloch–Torrey equations and tissue properties

The Bloch–Torrey equations (3.2) were simplified to exclude relaxation effects and, instead,

magnetisation was only considered in the transverse plane. In reality T1, T2, and T2*

decay cause signal loss and this influences pulse sequence design. If included, the T1 and

T2 relaxation time constants would need to be different for the two compartments ICS and

ECS (Bruvold et al., 2007). This will lead to differently-weighted signal contributions from

these compartments.

Regarding the diffusion term of the Bloch–Torrey equations, a scalar diffusion coef-

ficient was used instead of a tensor. Studies of the internal micro- or nanostructure of

cardiomyocytes in figure 2.4 revealed that cell features are primarily aligned with the

longitudinal axis of the cardiomyocytes. As such, the assumption of isotropic free diffusion

may need to be reconsidered. This has implications both for the continuum solutions whose

numerical schemes would need to be reformulated, and for the random walk where a biased

stepping protocol needs to be implemented. Note that this change in diffusion behaviour

will most likely increase the FA in both spin echo and stimulated echo sequences.

Permeation and Perfusion

The transit model was shown to contain a fundamental bias that results in errors at

moderate time steps in the case of a difference in diffusion coefficient across the membrane.

The solution to this is a sufficiently small time step, which is computationally expensive

and can become the prohibiting factor for large-scale simulations. To address this, it is

recommended to investigate the membrane models proposed in section 5.3.4. Eliminating

the time step restriction through a self-consistent model will be invaluable to accelerating

Monte Carlo random walk simulations. The analytical methods developed in chapter 4

can be used for verification similar to how they were applied in section 5.3.

Furthermore, studies of permeability were done using a value of κ estimated based on

τex and equation (2.4). A logical next step is to carry out simulations where the mean

residence time τ is measured in silico to allow comparison and validation with apparent

exchange rates (AXR) measured in vivo (Coelho-Filho et al., 2013).

Only diffusive processes were modelled in this work, where transport of magnetisation

is solely accomplished through the diffusion of water molecules. This includes modelling

of exchange through membranes via diffusional permeability. In real biological tissue,

however, other exchange processes like osmotic permeability need to be considered. In

order to include this in a future model, these processes would need to be reviewed first.

One way of implementing this in the random walk simulations is through asymmetric

boundaries, where the probabilities of transit are asymmetric to account for a net flux in

concentration as a result of osmotic pressure. The analytical framework developed in this

148



CHAPTER 7. CONCLUSIONS

work will be a crucial part in understanding and verifying such models. Methods like skew

Brownian motion (SBM) may also be suited for this (Lejay, 2018, 2012).

Another limitation is that perfusion was not considered. There is a significant amount

of (micro)vasculature in the extra-cellular space (Lapierre-Landry et al., 2020; Seidel et al.,

2016). Perfusion is of interest to DT-CMR (Callot et al., 2003; Spinner et al., 2019). To

build a perfusion model, a capillary network is needed. A multi-scale approach may be

required (J. Lee et al., 2015). This could be constructed using recent work by R. Callaghan

et al. (2020). Other approaches are capillary trees/networks (Palombo et al., 2019).

Other sources of motion

The motion of spins in the tissue was limited to diffusion in a static environment. However,

the main challenge in DT-CMR is due to the beating of the heart muscle during the

experiment. While imaging techniques like M2-SE and STEAM are designed to compensate

for this, residual motion exists that can affect the signal (Stoeck et al., 2020). Modelling

of bulk motion of the heart is straightforward from a walker perspective as it only requires

an additional velocity term to be added at any given time step. What is more complicated

is to develop a model for the motion of the cellular environment itself. Bulk motion of the

heart during the cardiac cycle has been studied extensively and computational models for

this exist (Young et al., 1994). However, this does not translate directly to the changes in

cardiomyocyte shape. Additionally, strain-induced effects need to be considered as well,

which will primarily affect intra-cellular water (Reese et al., 1995).

Computational considerations

Simulation methods are limited by their computational demand. Monte Carlo random

walks require large numbers of walkers and, for permeable membranes, a small time

step (section 6.3). The existing simulator code base does support parallelisation as stated

in section 5.4.4, but performance is limited due to the use of MATLAB and lack of support

for distributed computing on HPC systems.

Continuum methods do not scale well to 3D even for optimised algorithms on GPU

hardware. One possible approach is to use an implicit time scheme, whose suitability

would need to be investigated based on the provided accuracy. One promising use for

FDM/FVM, besides verification of MCRW, is to generate a large number of local PDFs.

An advantage is that these methods do not require an accurate geometry like MCRW

does. By processing a large number of small sections of histology images, automatically

segmented via the methods in section 2.4, a large library of high-quality training data

may be built. This can be used for deep learning to directly analyse histology images and

obtain the PDF or even integral quantities like ADC.
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Verification and Validation

Verification of membrane exchange with analytical methods could only be performed

in 1D due to the inherent limitation of the spectral analysis performed in chapter 4.

While extension of random walk methods is trivial to higher dimensions, the resulting

change in topology has implications for the error. For example, extra-cellular space is no

longer confined to the gap between two intra-cellular spaces but extends much farther.

Additionally, the ratio of membrane surface area to compartment volume and the anisotropy

of the geometry in 3D are both not accurately represented in 1D. To address this limitation,

higher-dimensional analytical solutions should be sought. For example, a 2D solution exists

in radial coordinates (Singh et al., 2008). Highly resolved continuum solutions may also be

used.

The parameter studies in chapter 6 are only qualitatively compared to in-vivo results.

A future study should attempt to replicate specific data points through variation of model

parameters. The most important of these were identified in this work. A recent experiment

with a Langendorff-perfused porcine heart (Scott et al., 2019) obtained in-vivo and ex-vivo

DT-CMR data. Tissue blocks were excised and imaged using confocal and wide-field

microscopy. Using the techniques described in sections 2.4 and 2.5 it is possible to generate

a subject-specific geometry. Through co-location of histology and DT-CMR images,

quantitative comparison could be performed between the MCRW in the histology-based

domain and the corresponding DT-CMR results from the in vivo and ex vivo acquisitions.

7.3 Concluding remarks

In this work, computational modelling was used to study the effects of changes to the

myocardial microstructure on DT-CMR parameters. A realistic virtual model of the

myocardium was constructed to serve as substrate for Monte Carlo random walk simulations

of DT-CMR. A workflow was devised to generate such models directly from histology,

which includes realistic geometric features not found in prior models. A parallelised

simulator was developed to assess DT-CMR in high-fidelity mesh-based substrates, and

results were verified using both analytical and reference solutions. The central hypothesis

of the work, namely that the combination of a realistic virtual model and simulations using

Monte Carlo random walk methods allows for more realistic in-silico estimates of DT-CMR

parameters, was shown to hold. In the future, the simulation capabilities developed here

will enable optimisation of DT-CMR acquisition methods for maximal sensitivity to the

microstructural parameters of interest. The simulation results will also provide vital

insights into the sensitivity of DT-CMR measures to pathological changes in the underlying

microstructure.
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Burger, Doug, James R Goodman and Alain Kägi (1996). ‘Memory bandwidth limitations of

future microprocessors’. In: Proceedings of the 23rd Annual International Symposium on

Computer Architecture. International Conference on Computer Architecture – ISCA ‘96

(Philadelphia, PA, USA, 22nd–24th May 1996). Association for Computing Machinery,

pp. 78–89. doi: 10.1145/232973.232983. (Cited on page 61)

Callaghan, Paul T (1993). Principles of Nuclear Magnetic Resonance Microscopy. Clarendon

Press. (Cited on page 52)

— (Nov. 2010). ‘Physics of Diffusion’. In: Diffusion MRI: Theory, Methods, and Applica-

tions. Ed. by Derek K Jones. Oxford University Press. Chap. 4. doi: 10.1093/med/

9780195369779.003.0004. (Cited on pages 95, 137)

Callaghan, Ross, Daniel C Alexander, Marco Palombo and Hui Zhang (2020). ‘ConFiG:

Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI sim-

ulation’. In: NeuroImage 220. doi: 10.1016/j.neuroimage.2020.117107. (Cited on

pages 45, 149)

Callaghan, Ross, Daniel C Alexander, Hui Zhang and Marco Palombo (2019). ‘Contextual

Fibre Growth to Generate Realistic Axonal Packing for Diffusion MRI Simulation’. In:

Information Processing in Medical Imaging. 26th International Conference – IPMI 2019

(Hong Kong, China, 2nd–7th June 2019). Ed. by Albert C S Chung, James C Gee,

Paul A Yushkevich and Siqi Bao. Vol. 11492. LNCS, pp. 429–440. doi: 10.1007/978-

3-030-20351-1_33. (Cited on page 45)

Callot, Virginie, Eric Bennett, Ulrich K M Decking, Robert S Balaban and Han Wen (2003).

‘In vivo study of microcirculation in canine myocardium using the IVIM method’. In:

Magnetic Resonance in Medicine 50 (3), pp. 531–540. doi: 10.1002/mrm.10568. (Cited

on page 149)

Campbell, Scott E, A Martin Gerdes and Teri D Smith (1987). ‘Comparison of regional

differences in cardiac myocyte dimensions in rats, hamsters, and guinea pigs’. In: The

Anatomical Record 219 (1), pp. 53–59. doi: 10.1002/ar.1092190110. (Cited on

page 51)

Campbell, Scott E, K Rakusan and A Martin Gerdes (1989). ‘Change in cardiac myocyte

size distribution in aortic-constricted neonatal rats’. In: Basic Research in Cardiology

84 (3), pp. 247–258. doi: 10.1007/BF01907972. (Cited on page 29)

154

https://www.bhf.org.uk/-/media/files/research/heart-statistics/bhf-cvd-statistics-global-factsheet.pdf
https://www.bhf.org.uk/-/media/files/research/heart-statistics/bhf-cvd-statistics-global-factsheet.pdf
https://www.bhf.org.uk/-/media/files/research/heart-statistics/bhf-cvd-statistics-global-factsheet.pdf
https://doi.org/10.1002/mrm.21340
https://doi.org/10.1145/232973.232983
https://doi.org/10.1093/med/9780195369779.003.0004
https://doi.org/10.1093/med/9780195369779.003.0004
https://doi.org/10.1016/j.neuroimage.2020.117107
https://doi.org/10.1007/978-3-030-20351-1_33
https://doi.org/10.1007/978-3-030-20351-1_33
https://doi.org/10.1002/mrm.10568
https://doi.org/10.1002/ar.1092190110
https://doi.org/10.1007/BF01907972


BIBLIOGRAPHY

Carslaw, H S and J C Jaeger (1986). Conduction of Heat in Solids. 2nd ed. Oxford

University Press.

Cerqueira, Manuel D, Neil J Weissman, Vasken Dilsizian, Alice K Jacobs, Sanjiv Kaul, War-

ren K Laskey, Dudley J Pennell, John A Rumberger, Thomas Ryan and Mario S Verani

(2002). ‘Standardized Myocardial Segmentation and Nomenclature for Tomographic Ima-

ging of the Heart’. In: Circulation 105 (4), pp. 539–542. doi: 10.1161/hc0402.102975.

(Cited on page 27)

Chandrasekhar, Subrahmanyan (1943). ‘Stochastic Problems in Physics and Astronomy’.

In: Reviews of Modern Physics 15 (1), pp. 1–89. doi: 10.1103/RevModPhys.15.1.

(Cited on page 89)

— (1949). ‘Brownian Motion, Dynamical Friction, and Stellar Dynamics’. In: Reviews of

Modern Physics 21 (3), pp. 383–388. doi: 10.1103/RevModPhys.21.383. (Cited on

page 89)

Chung, Albert C S, James C Gee, Paul A Yushkevich and Siqi Bao, eds. (2019). Information

Processing in Medical Imaging. 26th International Conference – IPMI 2019 (Hong Kong,

China, 2nd–7th June 2019). Vol. 11492. LNCS. doi: 10.1007/978-3-030-20351-1.

Coelho-Filho, Otavio R, Ravi V Shah, Richard Mitchell, Tomas G Neilan, Heitor Moreno,

Bridget Simonson, Raymond Kwong, Anthony Rosenzweig, Saumya Das and Michael

Jerosch-Herold (2013). ‘Quantification of Cardiomyocyte Hypertrophy by Cardiac

Magnetic Resonance: Implications for Early Cardiac Remodeling’. In: Circulation 128

(11), pp. 1225–1233. doi: 10.1161/CIRCULATIONAHA.112.000438. (Cited on pages 36,

148)

Cook, John D (2010). ‘Testing a Random Number Generator’. In: Beautiful Testing: Leading

Professionals Reveal How They Improve Software. Ed. by Tim Riley and Adam Goucher.

2nd ed. O’Reilly. Chap. 10. (Cited on page 110)

Cook, P A, Y Bai, S Nedjati-Gilani, K K Seunarine, Matt G Hall, G J Parker and

Daniel C Alexander (2006). ‘Camino: Open-Source Diffusion-MRI Reconstruction and

Processing’. In: Proceedings of the ISMRM 14th Annual Meeting & Exhibition. ISMRM

14th Scientific Meeting & Exhibition (Washington State Convention & Trade Center,

Seattle, WA, USA, 6th–12th May 2006). International Society for Magnetic Resonance

in Medicine, 2759. (Cited on page 109)

Crank, John (1975). The Mathematics of Diffusion. 2nd ed. Clarendon Press.

Davis, Martin et al. (2021). GEOS – Geometry Engine, Open Source. url: https://

github.com/libgeos/geos. (Cited on page 47)

De Schutter, Erik, ed. (2001). Computational Neuroscience: Realistic Modeling for Experi-

mentalists. CRC Press. doi: 10.1201/9781420039290.

155

https://doi.org/10.1161/hc0402.102975
https://doi.org/10.1103/RevModPhys.15.1
https://doi.org/10.1103/RevModPhys.21.383
https://doi.org/10.1007/978-3-030-20351-1
https://doi.org/10.1161/CIRCULATIONAHA.112.000438
https://github.com/libgeos/geos
https://github.com/libgeos/geos
https://doi.org/10.1201/9781420039290


BIBLIOGRAPHY

Decamps, Marc, Ann De Schepper and Marc Goovaerts (2004). ‘Applications of δ-function

perturbation to the pricing of derivative securities’. In: Physica A: Statistical Mechanics

and its Applications 342 (3–4), pp. 677–692. doi: 10.1016/j.physa.2004.05.035.

Deussen, Oliver, Charles Hansen, Daniel Keim and Dietmar Saupe, eds. (2004). Joint

Eurographics & IEEE VGTC Symposium on Visualization (Konstanz, Germany, 19th–

21st May 2004). The Eurographics Association.

Deuster, Constantin von, Eva Sammut, Liya Asner, David Nordsletten, Pablo Lamata,

Christian T Stoeck, Sebastian Kozerke and Reza Razavi (2016a). ‘Studying Dynamic

Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic

Resonance Diffusion Tensor Imaging’. In: Circulation: Cardiovascular Imaging 9 (10).

doi: 10.1161/CIRCIMAGING.116.005018. (Cited on pages 24, 33)

Deuster, Constantin von, Christian T Stoeck, Martin Genet, David Atkinson and Sebastian

Kozerke (2016b). ‘Spin echo versus stimulated echo diffusion tensor imaging of the

in vivo human heart’. In: Magnetic Resonance in Medicine 76 (3), pp. 862–872. doi:

10.1002/mrm.25998. (Cited on page 142)

Donev, Aleksandar, Salvatore Torquato and Frank H Stillinger (2005). ‘Neighbor list

collision-driven molecular dynamics simulation for nonspherical hard particles. I. Al-

gorithmic details’. In: Journal of Computational Physics 202 (2), pp. 737–764. doi:

10.1016/j.jcp.2004.08.014. (Cited on page 47)

Doste, Ruben, David Soto-Iglesias, Gabriel Bernardino, Alejandro Alcaine, Rafael Se-

bastian, Sophie Giffard-Roisin, Maxime Sermesant, Antonio Berruezo, Damian Sanchez-

Quintana and Oscar Camara (2019). ‘A rule-based method to model myocardial fiber

orientation in cardiac biventricular geometries with outflow tracts’. In: International

Journal for Numerical Methods in Biomedical Engineering 35 (4). doi: 10.1002/cnm.

3185. (Cited on page 147)

Driscoll, Tobin A, Nicholas Hale and Lloyd N Trefethen, eds. (2014). Chebfun Guide.

Pafnuty Publications. url: http://www.chebfun.org/docs/guide/ (visited on

10/03/2021). (Cited on pages 80, 82)

Dyckhoff, Harald (1990). ‘A typology of cutting and packing problems’. In: European

Journal of Operational Research 44 (2), pp. 145–159. doi: 10.1016/0377-2217(90)

90350-K. (Cited on page 45)

Eftekhari, Ali Akbar (2021). FVTool: Finite volume toolbox for MATLAB. doi: 10.5281/

zenodo.593691. url: https://github.com/simulkade/FVTool. (Cited on pages 67,

121)

Ennis, Daniel B, Gordon Kindlmann, Ignacio Rodriguez, Patrick A Helm and Elliot R

McVeigh (2005). ‘Visualization of tensor fields using superquadric glyphs’. In: Magnetic

Resonance in Medicine 53 (1), pp. 169–176. doi: 10.1002/mrm.20318. (Cited on

pages 22, 55)

156

https://doi.org/10.1016/j.physa.2004.05.035
https://doi.org/10.1161/CIRCIMAGING.116.005018
https://doi.org/10.1002/mrm.25998
https://doi.org/10.1016/j.jcp.2004.08.014
https://doi.org/10.1002/cnm.3185
https://doi.org/10.1002/cnm.3185
http://www.chebfun.org/docs/guide/
https://doi.org/10.1016/0377-2217(90)90350-K
https://doi.org/10.1016/0377-2217(90)90350-K
https://doi.org/10.5281/zenodo.593691
https://doi.org/10.5281/zenodo.593691
https://github.com/simulkade/FVTool
https://doi.org/10.1002/mrm.20318


BIBLIOGRAPHY

Fejér, Leopold (1903). ‘Untersuchungen über Fouriersche Reihen’. German. In: Mathemat-

ische Annalen 58 (1), pp. 51–69. doi: 10.1007/BF01447779. (Cited on page 86)

Ferreira, Pedro F, Philip J Kilner, Laura-Ann McGill, Sonia Nielles-Vallespin, Andrew D

Scott, Siew Y Ho, Karen P McCarthy, Margarita M Haba, Tevfik F Ismail, Peter D

Gatehouse, Ranil de Silva, Alexander R Lyon, Sanjay K Prasad, David N Firmin and

Dudley J Pennell (2014). ‘In vivo cardiovascular magnetic resonance diffusion tensor

imaging shows evidence of abnormal myocardial laminar orientations and mobility in

hypertrophic cardiomyopathy’. In: Journal of Cardiovascular Magnetic Resonance 16

(1). doi: 10.1186/s12968-014-0087-8. (Cited on pages 24, 33)

Feynman, Richard, Robert Leighton and Matthew Sands (1964). The Feynman Lectures on

Physics: Mainly Mechanics, Radiation, and Heat. Lecture notes. California Institute of

Technology. url: https://www.feynmanlectures.caltech.edu/I_toc.html (visited

on 09/09/2021). (Cited on page 94)

Fick, Adolf (1855). ‘Ueber Diffusion’. German. In: Annalen der Physik 170 (1), pp. 59–86.

doi: 10.1002/andp.18551700105. (Cited on page 97)

Fieremans, Els, Yves De Deene, Steven Delputte, Mahir S Özdemir, Yves D’Asseler, Jelle
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Ginsburger, Kévin, Felix Matuschke, Fabrice Poupon, Jean-François Mangin, Markus Axer

and Cyril Poupon (2019). ‘MEDUSA: A GPU-based tool to create realistic phantoms

of the brain microstructure using tiny spheres’. In: NeuroImage 193, pp. 10–24. doi:

10.1016/j.neuroimage.2019.02.055. (Cited on page 45)

Google Inc et al. (2021). TensorFlow. doi: 10.5281/zenodo.4724125. url: https:

//github.com/tensorflow/tensorflow. (Cited on page 41)

Gorodezky, Margarita, Pedro F Ferreira, Sonia Nielles-Vallespin, Peter D Gatehouse,

Dudley J Pennell, Andrew D Scott and David N Firmin (2019). ‘High resolution in-vivo

DT-CMR using an interleaved variable density spiral STEAM sequence’. In: Magnetic

Resonance in Medicine 81 (3), pp. 1580–1594. doi: 10.1002/mrm.27504. (Cited on

page 24)

Grebenkov, Denis S, Dang Van Nguyen and Jing-Rebecca Li (2014). ‘Exploring diffusion

across permeable barriers at high gradients. I. Narrow pulse approximation’. In: Journal

of Magnetic Resonance 248, pp. 153–163. doi: 10.1016/j.jmr.2014.07.013. (Cited

on page 137)
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Ureña, José R Solera, Salvador Olmos and Valerij G Kiselev (2011). ‘Tissue–blood ex-

change of extravascular longitudinal magnetization with account of intracompart-

mental diffusion’. In: Magnetic Resonance in Medicine 66 (5), pp. 1445–1455. doi:

10.1002/mrm.22919.

Versteeg, Henk Kaarle and Weeratunge Malalasekera (2007). An Introduction to Com-

putational Fluid Dynamics: The Finite Volume Method. 2nd ed. Pearson. (Cited on

page 65)

Vignoles, Gerard L (2016). ‘A hybrid random walk method for the simulation of coupled

conduction and linearized radiation transfer at local scale in porous media with opaque

solid phases’. In: International Journal of Heat and Mass Transfer 93, pp. 707–719.

doi: 10.1016/j.ijheatmasstransfer.2015.10.056.

Virtanen, Pauli et al. (2020). ‘SciPy 1.0: Fundamental Algorithms for Scientific Computing

in Python’. In: Nature Methods 17 (3), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

(Cited on page 83)

Wang, Li-Hui (2013). ‘Modeling and simulation of diffusion magnetic resonance imaging

for cardiac fibers’. Ph.D. thesis.

Wang, Li-Hui, Yue-Min Zhu, Hongying Li, Wan-Yu Liu and Isabelle E Magnin (2012).

‘Multiscale Modeling and Simulation of the Cardiac Fiber Architecture for DMRI’. In:

IEEE Transactions on Biomedical Engineering 59 (1), pp. 16–19. doi: 10.1109/TBME.

2011.2166265. (Cited on pages 37, 127)

— (2011). ‘Simulation of Diffusion Anisotropy in DTI for Virtual Cardiac Fiber Structure’.

In: Functional Imaging and Modeling of the Heart. 6th International Conference – FIMH

2011 (New York City, NY, USA, 25th–27th May 2011). Ed. by Dimitris N Metaxas

and Leon Axel. Vol. 6666. LNCS, pp. 95–104. doi: 10.1007/978-3-642-21028-0_12.

(Cited on page 37)

Wang, Li-Hui, Yue-Min Zhu, Feng Yang, Wan-Yu Liu and Isabelle E Magnin (2014).

‘Simulation of dynamic DTI of 3D cardiac fiber structures’. In: Proceedings of ISBI.

IEEE 11th International Symposium on Biomedical Imaging (Beijing, China, 29th Apr.–

175

https://doc.cgal.org/5.2/Manual/packages.html
https://doi.org/10.1103/PhysRev.104.563
https://doi.org/10.4061/2011/658958
https://doi.org/10.1002/mrm.22919
https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.056
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/TBME.2011.2166265
https://doi.org/10.1109/TBME.2011.2166265
https://doi.org/10.1007/978-3-642-21028-0_12


BIBLIOGRAPHY

2nd May 2014). Institute of Electrical and Electronics Engineers, pp. 714–717. doi:

10.1109/ISBI.2014.6867970. (Cited on pages 25, 37)

Welsh, C L, E V R DiBella and E W Hsu (2015). ‘Higher-Order Motion-Compensation for

In Vivo Cardiac Diffusion Tensor Imaging in Rats’. In: IEEE Transactions on Medical

Imaging 34 (9), pp. 1843–1853. doi: 10.1109/TMI.2015.2411571. (Cited on pages 24,

55, 58)

Williams, Amy, Steve Barrus, R Keith Morley and Peter Shirley (2005). ‘An Efficient and

Robust Ray-Box Intersection Algorithm’. In: ACM SIGGRAPH 2005 Courses. SIG-

GRAPH (Los Angeles, CA, USA, 31st July–4th Aug. 2005). Association for Computing

Machinery, 9–es. doi: 10.1145/1198555.1198748. (Cited on page 112)

Williamson, Nathan H, Rea Ravin, Dan Benjamini, Hellmut Merkle, Melanie Falgairolle,

Michael James O’Donovan, Dvir Blivis, Dave Ide, Teddy X Cai, Nima S Ghorashi,

Ruiliang Bai and Peter J Basser (2019). ‘Magnetic resonance measurements of cellular

and sub-cellular membrane structures in live and fixed neural tissue’. In: eLife 8. doi:

10.7554/eLife.51101.
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Software & Data

(Oh, ooh oh, ooh oh, oh)

I think there’s a flaw in my code

(Oh, ooh oh, ooh oh, oh)

These voices won’t leave me alone

Halsey (2015), Gasoline

This appendix contains a non-extensive list of all software tools developed in this project.

For the full documentation (if available), please refer to source code in the individual

software repositories. Some of these tools may not have been made public yet by the time

this document is published.
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B.1 Tissue modelling

B.1.1 cell-morphing

Source (repository) https://github.com/janniklasrose/cell-morphing

Source (archived) n/a
Data doi:10.5281/zenodo.3925757
Published Rose et al. (2019c)

B.1.2 MyoSeg

Source (repository) n/a
Source (archived) n/a
Data doi:10.5281/zenodo.3925498
Published Rose et al. (2018c,f)

B.1.3 cell-packing

Source (repository) https://github.com/janniklasrose/cell-packing

Source (archived) n/a
Data doi:10.5281/zenodo.3925757
Published Rose et al. (2021b)

B.2 Numerical simulations

B.2.1 FV-RW-verification

Source (repository) https://github.com/janniklasrose/FV-RW-verification

Source (archived) n/a
Data doi:10.5281/zenodo.4495729
Published Rose et al. (2018g)

B.2.2 RWcDTI

Source (repository) https://github.com/janniklasrose/RWcDTI

Source (archived) doi:10.5281/zenodo.4506756
Data doi:10.5281/zenodo.3925757
Published Rose et al. (2019c)
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B.2.3 diffusion-models

Source (repository) https://github.com/janniklasrose/diffusion-models

Source (archived) doi:10.5281/zenodo.4447328
Data n/a
Published Rose et al. (n.d., 2019b)

B.2.4 GPU-BT-sim

Source (repository) https://github.com/janniklasrose/GPU-BT-sim

Source (archived) n/a
Data doi:10.5281/zenodo.4309718
Published Rose et al. (2019d)
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This appendix contains license agreements made with publishers of copyrighted materials

used in this thesis, granting permission for their reproduction. They are summarised in

table C.1.

Table C.1: Index of copyrighted material.

Location Originally published Attached
Figure 1.1 Khalique et al. (2018) pages 187 to 190
Figure 2.7 LeGrice et al. (1995a) pages 191 to 192
Figure 2.5 Seidel et al. (2016) pages 193 to 196
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