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Abstract

The wealth of information generated by high-throughput omics technologies in the

context of large-scale epidemiological studies has made a significant contribution to

the identification of factors influencing the onset and progression of common dis-

eases. Advanced computational and statistical modelling techniques are required to

manipulate and extract meaningful biological information from these omics data as

several layers of complexity are associated with them. Recent research efforts have

concentrated in the development of novel statistical and bioinformatic tools; how-

ever, studies thoroughly investigating the applicability and suitability of these novel

methods in real data have often fallen behind.

This thesis focuses in the analyses of proteomics and transcriptomics data from the

EnviroGenoMarker project with the purpose of addressing two main research ob-

jectives: i) to critically appraise established and recently developed statistical ap-

proaches in their ability to appropriately accommodate the inherently complex nature

of real-world omics data and ii) to improve the current understanding of a prevalent

condition by identifying biological markers predictive of disease as well as possible

biological mechanisms leading to its onset. The specific disease endpoint of interest

corresponds to B-cell Lymphoma, a common haematological malignancy for which

many challenges related to its aetiology remain unanswered.

The seven chapters comprising this thesis are structured in the following manner:

the first two correspond to introductory chapters where I describe the main omics

technologies and statistical methods employed for their analyses. The third chapter

provides a description of the epidemiological project giving rise to the study popula-

tion and the disease outcome of interest. These are followed by three results chapters

that address the research aims described above by applying univariate and multivari-

ate statistical approaches for sample classification and data integration purposes. A

summary of findings, concluding general remarks and discussion of open problems

offering potential avenues for future research are presented in the final chapter.
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Notation

Unless otherwise stated, I employ the common notation where column vectors are

denoted by bold lowercase characters and row vectors shown as transposed (e.g. v

and vT , respectively). Upper case letters are used to indicate random variables (e.g.

V ). Bold upper-case characters denote matrices (e.g. X). The superscript T is used to

indicate matrix or vector transpose.

More specifically, throughout the chapters of this thesis the matrices X and Y typ-

ically denote predictor and outcome omics data matrices, respectively. Their corre-

sponding dimensions are n × p and n × q where p indicates the number of predictor

variables and q the number of response variables and n the number of observations.
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1
Omics Technologies

and

the Concept of the Exposome

As the main focus of this this thesis is centred around the application of established

and novel statistical methods to data arisen from omics technologies, in this introduc-

tory chapter I provide a description of the mainstream platforms, namely genomics,

epigenomics, transcriptomics, proteomics and metabolomics, as well as the different

tools employed for their quantification. In addition, I elaborate on the exposome con-

cept which is the overarching theoretical framework motivating the research objective

related to the discovery of relevant biological patterns for the disease endpoint under

study.

1.1 Omics Technologies

Broadly speaking, the term omics can be defined as the quantitative measurement of

global sets of molecules in bio-samples using high-throughput techniques coupled

with the use of advanced biostatistics and bioinformatics tools to characterise them.

In light of recent advancements in this area of research, the term has been expanded

to include a wide range of molecule types; however, here I concentrate in the more

traditional technologies. An schematic summary of these omics data describing the

supporting biological structure they aim to describe and the different platforms em-

1
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Figure 1.1: Graphical and schematic overview of the main omics platforms.
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For each of the omics data, the bottom flow chart specifies the corresponding biological structure being characterised and the
different platforms employed for their quantification.Image taken and modified from Joosten et al. [1].
ncRNA: non-coding RNA, mRNA: messenger RNA, MS: Mass Spectrometry, ELISA: Enzyme-Linked Immunosorbent Assays,
MBA: Multiplexed Bead Assay, LC-MS: Liquid Chromatography-Mass Spectrometry, NMR: Nuclear Magnetic Resonance.

ployed for their quantification is provided in Figure 1.1

1.1.1 Genomics

The genome can be broadly defined as the complete set of the genetic material of an

organism and in this section I provide a brief summary on the human genome and

the genetic variants that give rise to phenotypic variation. The genome in humans is

constituted by 23 chromosome pairs of about three billion base pairs (bps) of DNA

and is stored in the nucleus of the cell. Somatic cells have one copy of chromosomes 1

to 22 from each parent, in addition to an X chromosome from the maternal line and ei-

ther an X or Y chromosome from the paternal line. The human genome also includes

the mitochondrial DNA, a small circular molecule which is present in each mitochon-

drion and that is inherited only from the mother. A gene is a region of the DNA that

encodes for a function and its specific location in a chromosome is known as locus.
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The DNA sequence within a gene can be categorized as exons or introns, depending

whether the section of the gene codes for proteins or not. It is estimated that the to-

tal number of genes is up to 50,000 [2],[3] while the number of protein-coding genes

is about 19,000-20,000 [4]; the latter representing around 1.5% of the whole human

genome. Much of the remaining genetic material has no known biological function

and it is expected to be involved in transcriptional and translational regulatory func-

tions [5].

There are variations in the human genome across individuals that explain the dif-

ferences in phenotypic characters. The genomes of two non-related subjects are es-

timated to differ in around 20 million bps (or 0.6% of the total of three billion bps)

[6]. These variations are called polymorphisms and the different forms they can take in

a given population are known as alleles. Genetic variations occur through two main

processes, namely genetic recombination and mutation. Recombination is a natural

occurring phenomenon through which two homologous chromosomes exchange seg-

ments of DNA sequence (meiotic chromosomal crossover) resulting in the production

of new genetic material; it is therefore the main source of genetic variation. On the

other hand, mutation is the permanent alteration of the nucleotide sequence of the

genome, which results from errors during DNA replication or repair processes. The

majority of mutations do not produce discernible phenotypic changes and when phe-

notypic changes do occur, they are based on the accumulation of multiple mutations

with small effects [7].

Categorization of genetics variants can be done in terms of the frequency they oc-

cur in a specific population. Genetics variants with a Minor Allele Frequency (MAF,

frequency of the second most common allele) of 5% or more are known as common

genetic variants. The most common among these are Single Nucleotide Polymorphisms

(SNPs) which are mutations where a single nucleotide has been substituted by an-

other, with a MAF≥1% in at least one population. It is estimated that they occur at

a rate of one every 100 to 300 bps, which translates to approximately 10 to 11 mil-

lion SNPs in the entire human genome, of which seven million are known to have
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a MAF>5% [8]. Most SNPs do not alter protein function as they are located in non-

coding regions while the ones found within coding or regulatory regions may play a

more direct role in phenotypic variation [9]. However, intragenic and synonymous

SNPs (that is, SNPs located in exons which result in an allele that encodes for the

same amino acid) may still influence the amount and function of gene products, for

example by altering RNA splicing and structure, translation rate and protein folding

[10].

Other type of genetic variations are structural variations, which are large-scale mu-

tations less frequent than SNPs that alter a larger region of the genome (millions to

hundreds of millions of bps). An example of structural variations are chromosomal

rearrangements which includes deletions, duplications, inversions, substitutions and

translocations. Another form of structural variations that has increasingly gained at-

tention in genetic studies are Copy Number Variations (CNVs) in which sections of the

genome are repeated (either duplicated or deleted) and the number of repeats in the

genome varies between individuals; it has been described they play an important role

in generating inter-individual variation as well as disease phenotype [11], [12].

Unlike macromutations that are discernible by optical microscopy, the identification

of SNPs and CNVs relies on sequencing techniques or microarray technology. The

latter is a more affordable tool and therefore more commonly used in large-scale epi-

demiological studies such as Genome-Wide Association Study/Studies (GWAS). By

following an agnostic or hypothesis-free approach, GWAS scan hundreds of thou-

sands of genetic variants across the entire genome of thousands of individuals in

order to identify genetic regions that are associated with a trait of interest and thus

better improving the understanding of the genetic basis of human diseases.

1.1.2 Epigenomics

The use of genetic material in cells is regulated in multiple ways with epigenetic mod-

ifications playing a key role as modulators of transcriptional activity. These biologi-

cal processes are natural occurring phenomena that can be described as “mitotically
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and/or meiotically heritable changes in gene function that cannot be explained by

changes in DNA sequence” [13], [14]. The main epigenetics mechanism discovered

at present are DNA methylation and chromatin modification, and I briefly describe them

in the following sections.

1.1.2.1 DNA methylation

It involves modification of cytosine bases by covalent addition of a methyl group

(CH3) to carbon 5 of the cytosine ring forming 5-methylcytosines (5MeC) through

the action of DNA methyltransferase enzymes. DNA methylation is a vital process

for normal development of mammals because of the key role that plays in processes

such as normal cell development, control of some tissue-specific gene expression,

cellular growth and genomic stability. It is also believed to be a key factor driving

carcinogenesis, as it has been shown that tumour suppressor genes are often silenced

by aberrant methylations and kept off by epigenetic inheritance in that state [15].

Most of the genome is depleted of CpG sites as they occur with less than one quarter

of the expected frequency [16]. However, there are regions where CpG sites clus-

ter together (occur at the expected frequency) which are known as CpG islands; they

typically remain unmethylated in normal cells, are present in roughly 40% of gene

promoters and are associated with active gene expression [17]. CpG island "shores"

(regions located approximately 2 kb from CpG islands with comparatively low CpG

density) display tissue- and cancer-specific differential methylation patterns and are

associated with gene repression [18]. Besides CpG islands and shores, the remainder

of genome presents a lower than expected frequency of CpG sites and is typically

methylated in normal cells [19].

Three main techniques exist to assess DNA methylation levels on a genome-wide

scale based on restriction enzyme digestion, affinity enrichment and bisulphite con-

version [20],[21]. In the first case, DNA is digested with methylation-insensitive re-

striction enzymes, to select genomic regions with moderate to high CpG content (e.g.

CpG islands) which are later sequenced to generate a single-base pair resolution DNA
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methylation map. Enrichment-based technologies are based on the recognition of

5MeC by either monoclonal antibodies (immunoprecipitation) or methyl-DNA bind-

ing protein domain which are later combined with array-based hybridisation or se-

quencing to determine the proportion of methylated DNA. Lastly, in bisulphite con-

version methods DNA is treated with sodium bisulfite to convert cytosine to uracil,

which is converted to thymine after an amplification step, whereas 5MeC residues are

not converted and remain as cytosines. The proportion of cytosines (5MeC that were

not affected by bisulphite conversion) provides an estimate of the DNA methylation

levels.

1.1.2.2 Chromatin modification

Chromatin is the ordered structure in which the genetic material of a cell is organ-

ised. It is comprised by nucleosomes which are formed by an octameric histone pro-

tein complex (two of each core histones: H2A, H2B, H3, and H4) with 145-147 bps of

DNA wound around it, bound to the outside by a linker histone protein (H1). Nucle-

osomes are separated by 40-200 bps and they form a characteristic "beads on a string"

structure with their coating DNA [22].

It has been discovered that nucleosome position and organization play a key role

in the degree of chromatin condensation (heterochromatin) and unfolding (euchro-

matin) which in turn affects the degree in which DNA is accessed to allow transcrip-

tion [23]. Post-translational modifications of histones directly regulate the interac-

tions between nucleosomes which activates or represses transcription (depending on

the type of chemical modification and its location). Most of the modifications discov-

ered so far have been described to occur on the N-terminal sequences of histones (also

known as "tails", a section that project from the nucleosome and are accessible on its

surface) or in the central globular domains (core of the nucleosome). For example,

covalent addition of an acetyl group to the amino acid lysine of histone N-terminal

"tails" reduces chromatin compaction and favours gene transcription while the op-

posite occurs when the amino acid is deacetylated [24],[25],[26]. In addition to the
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"unravelling" effect on the chromatin, covalent modifications of histones also have

an indirect effect on gene expression as they are involved in recruiting effector pro-

teins (known as histone readers) by providing ligands for their specific domains. It

has been observed that such changes play a role in activating downstream signalling,

blocking the access of remodelling complexes, or affecting the recruitment of chro-

matin modifiers and transcription factors [27].

Characterization of this epigenetic changes in chromatin at a genome-wide scale is

hindered by the dynamic location of the histones, in contrast to the fixed and known

location of CpG loci. Despite this fact, there are strategies currently available to anal-

yse post-translation modifications of histones which include antibody-based methods

(such as western blotting, immunofluorescence analysis and chromatin immunopre-

cipitation) and Mass Spectrometry (MS)-based proteomics, which allows untargeted

high-throughput analysis of histone modifications.

1.1.3 Transcriptomics

The transcriptome aims at describing the full information of all RNA transcribed from

the genome in a specific tissue or cell, at a particular developmental stage and un-

der a certain set of conditions, capturing a snapshot in time of the total transcripts

present at that moment [28], [29]. The study of the transcriptome is essential not only

for the understanding of the human genome at the transcription level but also pro-

vides a comprehension of gene structure and function, regulation of gene expression,

genome plasticity and consequently development and disease [30]. The catalogue

of RNA molecules is incredibly diverse: in addition to the protein-coding messenger

RNA (mRNA), a myriad of non-coding RNA (ncRNA) have been described which play

multiple structural and regulatory roles in the molecular biology of the cell [31].

As reported by transcriptomics studies, more than 93% of the human genome is tran-

scribed into RNA where only 2% corresponds to protein-coding mRNA and the re-

maining percentage consists of ncRNA, mostly represented by ribosomal and transfer

RNAs (rRNAs and tRNAs, respectively) [32]. ncRNAs are classified into housekeep-

7



Omics Technologies

ing and regulatory categories based on their functions; the former includes the ones

with structural and catalytic roles such as rRNAs and tRNA for their function in pro-

tein translation and the latter includes micro RNA (miRNA) for their role modulating

mRNA activity [30]. The diversity of RNA molecules is further complicated by alter-

native splicing events affecting both mRNA and ncRNA generating a wide range of

transcripts isoforms, a process considered to play a decisive role in increasing cellular

and functional diversity in the transcriptomes of higher eukaryotes [33].

The first attempts to study the whole transcriptome began in the early 1990s on hu-

man brain tissue [34], [35] and from that point onwards transcriptomics research

has been characterised by the development of new techniques which have redefined

what is possible every decade and rendered previous technologies obsolete [36]. As

for genotyping, there are two key contemporary techniques in the field allowing in-

terrogation of transcripts at a genome-wide scale: microarrays and RNA sequencing

(RNA-Seq). Microarray is a targeted technique that enables expression analysis of a

priori set of genes based on hybridization of fluorescently labelled targets (comple-

mentary DNA (cDNA) chains derived from RNA molecules using reverse transcrip-

tase) to probes that are attached to a solid surface. On the other hand, RNA-seq is

an untargeted method that uses deep-sequencing technologies in combination with

computational algorithms to allow for the reconstruction of the original full-length

sequence of the RNA molecules present in the biological sample [37]. Unlike mi-

croarrays, where the fluorescence intensity at each probe location on the array indi-

cates the transcript abundance, in RNA-seq abundance is directly derived from the

number of counts from each transcript. RNA-seq technologies has recently super-

seded microarray techniques as the method of choice for transcriptome studies due

to the many advantages the single base resolution allows: not limited to detecting

transcripts that correspond to existing genomic sequence, it can reveal the precise lo-

cation of transcription boundaries (i.e. identification of exon and intron boundaries)

and it can detect SNPs and other gene variants within transcripts [38], [37]. In addi-

tion, it presents technical advantages such as low background signal, large dynamic
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range of expression levels as there is not an upper limit for quantification, higher sen-

sitivity and reproducibility and less requirement of RNA sample (nano vs microgram

quantity) [36], [37], [37]. However, hybridization-based microarrays have been used

for more than 15 years and are still extensively employed in the context of large-scale

epidemiological studies as they provide a comparatively inexpensive way to detect

and quantify transcripts at a genome-wide level and since they were the method of

choice for the quantitative and qualitative characterization of the transcriptome in the

EGM project, I provide a more elaborate description of this technology.

The structure of a microarray consists of oligonucleotide sequences (commonly known

as probes) which are several dozen nucleotides long attached to the surface of a glass

slide. Since probes are formed by attaching one nucleotide at a time, it is possible

to construct a microarray with hundreds of thousands of different oligonucleotide

sequences which are complementary to characteristic fragments of known RNA se-

quences [39]. During the experiment, samples containing RNA transcripts are spread

on the surface of a microarray and its components hybridize specifically to their com-

plementary probes, located in repeated copies across the glass slide. Although there

is not a linear association, the fluorescence intensity reflects the amount of material

hybridized to a given probe and therefore the abundance of a given RNA transcript

in the sample [40].

Several companies commercialise microarray platforms (Affymetrix, Agilent, Illu-

mina) and the models they provide differ in aspects such as length of probe se-

quences, number of probes per gene, section of the transcript to which the probe se-

quence has affinity (i.e. hybridization strength), assessment of nonspecific hybridiza-

tion, number of genes to be assayed among other traits. These differences across

platforms contribute to relatively low accuracy and reproducibility of microarrays

and for this reason they are only used to identify potential differentially expressed

genes across samples in the studied experimental conditions. Precise assessment of

these genes needs to be further analysed using techniques such as quantitative re-

verse transcription PCR (qRT-PCR) considered the gold standard method for measur-
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Figure 1.2: Main steps conducted in an RNA microarray experiment (left panel) and
illustration of microarray chips or glass slides (right panel).

Isolation of mRNA and synthesis of cDNA.
Then cDNA is amplified to produce cRNA
which is later labelled and fragmented.

Mix and hybridize to a microarray printed
with thousands of oligonucleotides
probes then wash

Detect signals using a 

fluorescent scanner.

Process output file with signal 

intensity assigned to each probe.

1

2

3

4

Extract & Label RNA

Hybridise & Wash 

Scan

Analise Data

The microarray designs differ in the number of arrays per slide (1,2,4 or 8) and number of probes per array (1 million, 400k, 180k
or 60k). Images taken and modified from www.agilent.com.

ing transcript levels [39]. Despite differences across platforms, the actual procedures

conducted in a microarray experiment are very similar and consist of the following

steps: RNA isolation, cDNA synthesis, amplification and labelling, complementary

RNA (cRNA) fragmentation and hybridization, washing and scanning [41], [42]. A

summary of the main steps involved in an RNA microarray experiment as well as

different types of glass slides commonly employed in RNA microarray studies are

illustrated in Figure 1.2.

In a first step, the quality and quantity of the sample is analysed after RNA is iso-

lated from the cells. In a high-quality sample rRNA constitutes over 80% of the entire

RNA and its concentration is a good indicator of the overall RNA quality, both be-

fore and after the experiment. However, the target of interest in most cases is mRNA

which, unlike rRNA, is characterized by the presence of poly-A tails. The cDNA syn-

thesis from mRNA is performed using oligo-dT (a primer with a short sequence of

deoxy-thymine nucleotides that binds to the poly-A tails) or random primers. The re-
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verse transcription process creates double stranded DNA (dsDNA) sequences which

are later repeatedly replicated in a process of in vitro transcription to obtain a large

quantity of cRNA (at least 100 times the original amount) containing labelled nu-

cleotides. A different oligo-dT primer is used that serves as a promoter for the poly-

merase that creates cRNA labelled with either biotin or cyanine. cRNA molecules are

fragmented to sequences of 50 to 100 nucleotides which are subsequently added to

the microarray slide to initiate the hybridization process. During approximately 17

hours, microarrays are incubated in a hybridization oven set to 65°C in which cRNA

binds to the specific probes attached to the glass surface. A washing step follows in

order to remove cRNA non-specifically bound to the microarray surface during the

hybridisation procedure. Finally, the microarray cartridge is placed in scans where

the fluorescence of either phycoerythrin (complex bound to biotinylated C and U nu-

cleotides) or cyanine is excited using a laser.

After all laboratory procedures have concluded, the final output of the microarray

experiment is a digital file detailing the signal intensity of each probe to which data

pre-process analyses are performed. These pre-processing steps include subtraction

of background signal to reduce the effect of cross-hybridization, normalization to re-

duce the differences that originate from variations in experimental conditions and

summarization in which a single expression estimate is calculated for each probe-set

based on the intensity of the individual probe signals belonging to that set.

1.1.4 Proteomics

Proteomics is the study of the entire protein complement of a cell, tissue or organism

under a specific set of conditions. The measurement and characterisation of protein

levels, post-translational modifications and protein interactions provides a more di-

rect measure of functional changes in comparison to the previous omics described

and it is a well-established tool to assess inflammation, tissue damage, oxidative

stress and signalling in epidemiological research.

Targeted proteomics techniques include enzyme-linked immunosorbent assays (ELISA)
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usually used for the study of a single protein in biomedical research and clinical set-

tings and Multiplexed Bead Assay (MBA) [43], [44]. Both are suitable for high through-

put analyses as they allow to measure more than 50 proteins employing a small

amount of biological material, making them useful in large-scale research laborato-

ries. The two methods work under similar principles whereby an immobilized anti-

body is used to capture a soluble ligand (antigen) with subsequent detection of the

captured ligand by a second detection antibody. A reporter molecule is then added to

the mixture to obtain antigen quantification by measurement of its fluorescent signal.

Unlike ELISA which relies on the use of flat surfaces, MBA is based on fluorescent-

coded magnetic beads which are coated with different capture antibodies allowing

the simultaneous detection of multiple proteins upon addition of the biological sam-

ple. Targeted proteomics can also be performed using protein microarrays [45],[46]

whose main advantage lays on being able to characterise other variables in addition

to quantity such as binding affinity, specificity, post-translational modifications and

protein interactions. However, their use is not as widespread as DNA and RNA mi-

croarrays because of the difficulties associated with their elaboration, the unstable

nature of proteins under different microenvironments and a reduced sensitivity due

to cross-reactivity.

Untargeted proteomic analysis is typically performed using Liquid Chromatography-

Mass Spectrometry (LC-MS) following a bottom-up method where proteins are first

digested into peptides; they are later injected into the mass spectrometer and a pu-

tative list of proteins is constructed by comparing the spectra output against peptide

databases [47]. Top-down proteomics has emerged as an alternative to the previous

approach that forgoes the digestion step and allows the study of the different molecu-

lar forms in which the protein product of a single gene can be found, encompassing all

forms of genetic variation, splice variants and post-translational modifications [48].
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1.1.5 Metabolomics

The characterisation of the full suite of metabolites in a biological sample (cell, tissues,

or fluids) in a physiological or developmental state is known as the metabolome [49].

Metabolites are low molecular weight chemicals (less than 2 kDa in size) that play crit-

ical roles in the correct functioning of the cell, acting as intermediate and final prod-

ucts of all cellular activities. The word metabonomics, although sometimes used in-

terchangeable with the word metabolomics, places a particular emphasis on dynam-

ics and sensitivity, and was coined to refer to the characterisation of the metabolome

in response to a pathophysiological stimuli or genetic modifications (i.e. a particular

disease or changes in diet or environment) [50].

It was recently estimated that the collective spectrum of chemicals in the human

metabolome may include one million or more compounds, which present a wide-

range of physicochemical properties [51]. Two complementary platform are currently

used for the characterization of metabolic profiles, namely Nuclear Magnetic Reso-

nance (NMR) spectroscopy and Mass Spectrometry (MS) [52]. NMR is used to detect

compounds that contain atomic nuclei with an intrinsic angular momentum (atoms

with an odd number of the sum of protons and neutrons); these atomic nuclei spin

when an external magnetic field is applied. The most common atomic nuclei used in

NMR are 1H, 13C and 15N because they are present in nearly all naturally occurring

compounds. MS is an analytical technique based on the principle of ions separation

according to their mass-to-charge ratio. It has a higher sensitivity than NMR and it is

usually the method of choice for the quantification of specific compounds.

These two high-resolution techniques allow the targeted and untargeted characterisa-

tion of metabolic profiles in a biological sample. Untargeted measurement can iden-

tify up to 20,000 chemical signals, covering endogenous metabolites, dietary chem-

icals, microbiome-derived metabolites, environmental chemicals, commercial prod-

ucts, and drugs [53]. These changes in the metabolic level reflect variations at any

level of the biological system (from genotype to environmental exposures); thus, the

13



The Concept of the Exposome

study of the metabolome becomes the most integrative profile for the representation

of a biological state.

1.2 The Concept of the Exposome

The term exposome was proposed in an attempt to draw attention away from the study

of the genetic basis of human diseases and redirect the efforts to the urgent need

for a more complete environmental exposure assessment in epidemiological studies.

It was first defined as “the life-course environmental exposures (including lifestyle

factors) that affect an individual from the prenatal period onwards” [54]. The term

was later broadened from this apparent focus on exposure assessment to a defini-

tion that encompasses not only the study of chemical exposures but also dietary and

behavioural changes and other exogenous and endogenous agents, and the physio-

logical alterations that are induced as a result of these environmental exposures. This

new definition pays additional focus to the summation and integration of external

forces and the way that they act upon the genome throughout the course of our life-

time.

Consequently, the exposome has been formally defined as: “The cumulative measure

of environmental influences and associated biological responses throughout the lifes-

pan, including exposures from the environment, diet, behaviour, and endogenous

processes” [55]. Although the complex set of exposures to which an individual is

subject is still at the heart of the definition, the lingering internal damage they pro-

duce is just as important as the chemicals themselves. These biological responses can

be reflected as metabolic changes, protein modifications, alteration of expression of

genes, epigenetic alterations, DNA mutations and adducts, and perturbations of the

microbiome; they provide evidence of an actual internal effect which can be investi-

gated through the use of high-throughput omics platforms [56], [57]. In fact, the term

exposomics has been coined to refer to the characterisation of this internal biological ef-

fect to endogenous and exogenous exposures based on the use of omics technologies
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Figure 1.3: Graphical representation of the exposome.

Image taken and modified from Niedzwiecki et al.[53].

[58], [59], [60].

Importantly, the concept of the exposome offers a theoretical leap in studying the role

of the environment in human disease. Thus far, omics technologies have been mainly

applied to the understanding of disease mechanisms and diagnosis. The study of the

exposome invites to the application of omics technologies to investigate the relation-

ship between human exposure and diseases that aims at the identification of alter-

ation in omics profiles reflecting i) a direct response to exposures and ii) the charac-

terisation of the downstream biological effects that are produced as a consequence to

that initial response. In addition, it can provide information not only on acute biolog-

ical responses that occur at a biologically relevant dose but also on the possible effect

of long-term alterations in physiology from environmental stressors occurring years

or decades before the clinical onset of a disease. Figure 1.3 exemplifies this interplay

between lifetime external and internal exposures, omics technologies characterising

internal dose and biological response and phenotypic alterations exerted as a result.

Moving away from the theorical concept to more concrete applications, the clearest

example provided at present by the scientific literature has been the research link-
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ing smoking exposure and tobacco-related cancers. Evidence from epidemiological

studies strongly supports the finding that the effect of tobacco smoking on the risk

of developing lung cancer is partially reversible, which has led to suggest that the

mechanisms of carcinogenesis are likely to include epigenetic events (as genetic vari-

ations are fixed after cell replication) [61]. An exposome approach to the study of

this exposure-disease association has been applied to test the plausibility of this hy-

pothesis. On the one hand, epigenome-wide methylation studies have found that

the methylation of certain CpG sites are strongly associated with long term exposure

to smoking. On the other hand, mathematical models derived from observational

study data and experimental work on tobacco-related cancers suggest that epigenetic

alterations lead to the mechanisms driving cancer onset [62], [63], [64]. Although ad-

ditional evidence is needed in order to confirm these findings, this example illustrates

how alteration in omics profiles (changes in DNA methylation) can detect long term

exogenous exposure (tobacco smoking) and how those altered biological responses

induce the onset of the disease endpoint (tobacco-related cancers). A critical compo-

nent of the exposome is therefore to recognise, understand and interpret the interplay

between the exposure, the internal biological responses to that exposure and the fi-

nal disease endpoints that manifest following those responses and omics platforms

are instrumental to address that challenge. As exemplified in the smoking-cancer as-

sociation above, the information gathered through omics technologies can indicate

not only the connexion between an exposure and a disease but also provide insights

into the mechanisms by which an exposure exerts its effects. Such mechanistic in-

sights may contribute to the weight of evidence in assigning causality to a specific

exposure-disease association and open avenues to prevention through modulation of

the identified biological pathways [65].
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Statistical Methods to Analyse Omics Data

Most omics data share a high-dimensional nature in which the number of variables

is large and can exceed the number of observations. This problem is known as the

“small n, large p situation” and parametric inference using classical statistical meth-

ods is either suboptimal or invalid [66]. In addition, variables in this high-dimensional

space are often strongly correlated and these correlation patterns reflect complex in-

teraction that characterise biological regulatory processes. For example, in the case

of transcriptomics, microarray data present a correlation structure that is highly non-

local and reflects expression patterns among sets of genes with similar or comple-

mentary functions. On the other hand, proteomics data present a correlation pat-

tern that partially reflects that of the transcriptome (not all mRNA is translated into

proteins) but that also depends on the complementary functions of the proteins be-

ing expressed. The presence of this multicollinearity between variables also imposes

restrictions to classical methods of statistical inference. Lastly, omics platforms are

characterised by the presence of relatively few features that are of biological rele-

vance which are hidden either by uninformative variables or by technical-induced

artefacts introduced during laboratory procedures. While the effect of technical noise

can be attenuated during the pre-processing steps, statistical methods that are able to

address this low signal-to-noise ratio are needed.

A wide range of statistical approaches have been proposed to tackle the three main

challenges associated with omics data described above and can be broadly divided

into univariate and multivariate approaches. Univariate methods separately assess the
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association between each variable in the predictor matrix and the outcome of interest

and the results are combined and analysed using multiple testing-correction strate-

gies. In contrast, multivariate approach techniques consider all measurements simul-

taneously and the statistical procedure seeks to identify relevant variables that jointly

explain the variation in the data. Multivariate methods have been traditionally clas-

sified into variable selection techniques which apply a penalization to the regression

coefficients thus reducing the effect of irrelevant measurements and Dimension Re-

duction Techniques (DRTs) which introduce artificial variables (also known as latent

variables or component scores) that summarise most of the information contained in

the original data matrices facilitating the identification of the main features driving

the variation. The construction of these latent variables can be accomplished under

a supervised or unsupervised context, that is with or without respect the outcome of

interest, respectively.

Recent developments in this area of research have combined the two approaches,

variable selection and dimensionality reduction, in order to give rise to novel sta-

tistical techniques that allow the construction of parsimonious models that improve

interpretability and ease the extraction of biological relevant information in this high-

dimensional setting. To be more precise, penalization constraints are added in the cre-

ation of the artificial variables which enhances the detection of the main features driv-

ing the variation, a much-needed aim especially in situations where p far exceeds n.

Such methodological combination has also been instrumental to make possible the in-

corporation of prior knowledge related to relevant group structures in blocks of omics

data (i.e. subsets of correlated variables). Biological pathways within gene expression

signals or inflammatory markers with similar biological functions in proteomics data

are common examples of group structures within omics data. Thus, relevant infor-

mation regarding functional groups while typically ignored in traditional univariate

and multivariate approaches can now be incorporated into the construction of the

model, further enhancing statistical performance and biological interpretation.

In the following sections of this chapter, I provide an overview of the main statistical
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techniques under both univariate and multivariate frameworks. There are advan-

tages and disadvantages to each of these statistical approaches which I discuss in the

corresponding sections of the chapter.

2.1 Univariate approaches

2.1.1 Linear and Generalized Linear Models

Let us consider the two data matrices X and Y containing n observations of p pre-

dictor and q response variables, respectively. Univariate approaches typically accom-

modate a situation where q = 1 and the principle behind them is to independently

assess the association between each omics measurement p and the outcome of inter-

est q. The response is then considered to be a one-column matrix or a n-dimensional

vector. The same statistical model is repeatedly applied p times, one model per pre-

dictor variable, in order to obtain values for a test statistic and the corresponding

p-values. For a predictor variable j and for individual i, such statistical model can be

formulated as follows:

yi = β0 + βxij + εi, ε ∼ N
(
0, σ2

)
(2.1)

where yi is the measured outcome for individual i, β0 is the intercept of the model,

β is the regression coefficient, xij is the observed value for predictor j and individual

i and εi is the residual random error. The previous equation can be equivalently

expressed as follows:

E (yi) = β0 + βxij (2.2)

The type of statistical model depends on the nature of the response variable. A contin-

uous y can be accommodated under a classical linear regression model while outcomes

of a different nature can be dealt under a more general regression framework called
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Generalised Linear Models (GLMs) [67], which link different types of responses to linear

combinations of explanatory variables. There are three key components to any GLM:

1.- the probability distribution of the response variable: f (yi| parameters),

2.- the linear combination of predictor variables: β0 +∑p
1=j βjxij and

3.- the link function n or g(µ) specifying how the expected value of the response

relates to the linear predictor of explanatory variables: g (E (yi) |xij).

The probability distribution from which the response variable is assumed to be gen-

erated belongs to the exponential family, a large class of probability distributions

that includes the normal, binomial, Poisson and gamma distributions, among others.

A summary of the most common type of response outcomes alongside their corre-

sponding exponential-family distributions and link functions that are accommodated

under the GLM framework is provided below.

Response Variable Probability Distribution (parameters) Link function

Continuous Gaussian (u) Identity (u)

Dichotomous Bernoulli (p)

Counts Binomial (p)

Multinomial Multinomial (p)

Logit (log
(

u
1−u

)
)

Counts Poisson (λ) Log (log(u))

Regression models that are of routine use in the analysis of omics data such as the lo-

gistic and Poisson regression models, proportional hazard model for time-dependent

outcomes and beta regression for rate outcomes (used for epigenetics data, for ex-

ample) are specific types of GLMs. The classical linear model is also a particular

type of GLM in which the response is assumed to come from a normal distribu-

tion y ∼ N (µ, σ2) and the link function is the identity (no transformation on

g (E (yi) |xij) required).
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2.1.2 Generalised Additive Models

Further extensions to linear and GLMs are the Generalised Additive Models (GAMs)

[68], [69] in which the linearity assumptions are relaxed and the relationship between

predictor(s) and response is decomposed as a mixture of smooth non-linear functions

specific to each feature p. These models can be specified as follows:

yi = β0 +
p∑
j=1

fj (xij) + εi (2.3)

= β0 + f1(xi1) + f2(xi2) + ... + fp(xip) + εi (2.4)

They are called additive because a separate function is calculated for each xj and their

respective contributions are subsequently added. The choice of the parameter that

optimally defines the flexibility of the fitting curve (for example, the effective number

of degrees of freedom in a smoothing spline or the span of neighbouring points used

in a local regression) usually relies on a Cross-Validation (CV) procedure.

2.1.3 Linear and Generalized Linear Mixed Models

In the GLM framework observations are assumed to be independent and to have

equal variances. However, there are many applications where this independence as-

sumption is not appropriate, for example in the case of grouped, multilevel and lon-

gitudinal data. Linear Mixed Models (LMMs) are extensions of classic linear models

that include random effect terms in order to explicitly account for the similarity and

dependency of observations within groups. The inclusion of a random effect term al-

lows a variation in the mean level of the response variable (random intercept) and/or

a variation in the association between the response variable and the predictors (ran-

dom slopes) across groups. The term "mixed" refers to the combination of fixed and

random effects in the model. When both random intercepts and random slopes are
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incorporated, the model for observation j in group i can be specified as follows:

yij = (β0 + ui) + (β1 + wi)xij + εij, (2.5)

where β0 and β1 are the fixed-effect coefficients as included in a linear model and are

identical for all groups while ui and wi are the random-effect coefficients for group i

and are assumed to be multivariate normally distributed with mean 0 and variance-

covariance matrix
(
σ2
u σ2

uw

σ2
uw σ2

w

)
. In contrast to β0 and β1 which are parameters to be

estimated, ui and wi are random variables and the information to fit the multivariate

normal distribution comes from all observations in the data. Therefore, the random

effect terms vary by group and can be viewed as deviations around the value of βs.

For the sake of simplicity, random effects are usually assumed to be independent,

which effectively reduces the variance-covariance matrix to
(
σ2
u 0
0 σ2

w

)
. Lastly, the term

εij is the random error for observation j in group i, assumed to be multivariate nor-

mally distributed. The specific structure of the variance-covariance matrix in this case

depends upon context. For example, when observations are sampled independently

within groups, the covariance between groups is assumed to be 0 and the only param-

eter to be estimated is the common error variance σ2
e . Similarly, if there is dependency

within groups, like in the case of longitudinal data, a specific covariance structure can

be used in the model to capture the autocorrelation among the errors.

Generalised Linear Mixed Models (GLMMs) are a natural extension of mixed models to

accommodate a link function as in Equation 2.2. Since in this case the corresponding

marginal model does not have a closed form, their interpretation is not as straight-

forward as in LMMs: the response variable is modelled as a function of the predictor

variables conditional on the attributes of each individual group. In other words, the

group-specific effect of a predictor cannot be interpreted as the population average

effect.
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2.1.4 Model Fitting and Model Choice

2.1.4.1 Parameters Inference: Maximum Likelihood Estimation

For the models specified above, the form of the equations is fixed while parameters

are unknown and must be estimated from the available data. In classical inference

paradigm (as opposed to Bayesian framework), the most common method used is

Maximum Likelihood Estimation (MLE), which produces estimators with desirable sta-

tistical properties. It is also a general principle that allows to estimate the uncertainty

of each parameter (construct confidence intervals around the estimator). The basic

intuition behind MLE is to find the parameters that make the observed data most

probable, or in other words, to find the parameters such that plugging these esti-

mates into the model yields fitted values as close as possible to the actual observed

values of the response variable.

From a mathematical perspective, MLE seeks to maximize the likelihood function,

which roughly speaking, can be described as the probability density function or prob-

ability mass function of the data seen as a function of the parameters. The log-

likelihood is usually considered instead of the likelihood function because it is nu-

merically more stable and because it is the more fundamental quantity of interest.

More formally, the likelihood function is defined as:

L(θ|x1, ..., xn) =
n∏
i=1

f(xi|θ), (2.6)

where θ is a vector of model parameters, such as β above. The log-likelihood, which

is by construction additive for independent observations, is defined as:

log L(θ|x1, ..., xn) =
n∑
i=1

log f(xi|θ) (2.7)

The method of MLE finds the value of the parameter θ that maximizes the log-

likelihood function:

θ̂MLE = argmax ln(θ) (2.8)

23



Univariate approaches

The longer expression of the log-likelihood is replaced by ln(θ) to simplify notation.

The subscript n is a reminder that the samples are assumed to be independent and

identical distributed (i.i.d.). Further mathematical details about MLE are beyond the

scope of this thesis.

In the classical linear model, parameters are typically inferred using the method of

Ordinary Least Squares (OLS) which minimizes the Residual Sum of the Squares

(RSS) ε2 = ∑n
i=1 (yi − ŷi)2. As it turns out, the log-likelihood is also a function

of the residuals and maximizing the log-likelihood for the parameter µ is identical to

minimizing ε2. Hence, both methods provide identical estimates and OLS is simply

a special case of MLE assuming a normal distribution. For GLM, there is no explicit

expression for the maximum likelihood estimator and the optimisation of the log-

likelihood is done numerically. For LMM and GLMM, the additional variance param-

eters (σ2
u, σ2

w and σ2
uw, see above) are estimated using Restricted Maximum Likelihood

(REML) which is an extension of ordinary MLE that imposes positivity constraints

on the variance estimates (MLE can lead to negative estimates, especially when the

variation between groups is small) and is the preferred method in models including

random effect terms.

2.1.4.2 Hypothesis Testing

After the optimal values of the parameters have been inferred (model fitting), the

step that follows is to decide which and how many predictors to include in the term

of linear predictors (model choice). That research question can be formulated in sta-

tistical terms as assessing whether setting some parameters of interest to the corre-

sponding value under the null hypothesis of no association, leads to a substantial

harm of the model fit. That process is called hypothesis testing and involves testing

the null hypothesis that there is no relationship between the predictors and the re-

sponse variable (H0 : θ = θ0) versus the alternative hypothesis that there is a rela-

tionship (Ha : θ 6= θ0), where θ0 is a fixed value typically set to zero. When testing

whether a single regression coefficient β̂i is significantly different from zero, the sim-
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plest manner to determine if the estimate is significantly far from zero is to compute

the t-statistics which is given by:

t = β̂i − 0
SE(β̂i)

(2.9)

which measures the number of standard deviations that θ̂ is away from the null value.

The sampling distribution of the test statistic under the null hypothesis corresponds

to a t-distribution with n − 2 degrees of freedom. The obtained value of the test

statistics is compared against this sampling distribution to calculate a p-value and the

null hypothesis is rejected if the p-value is smaller than a significance level, usually

set to 5% or 1%.

2.1.4.3 The Wald, Likelihood Ratio and Lagrange Multipliers Tests

In addition to the t-test mentioned above, there are three classical approaches for

testing hypotheses about parameters in a likelihood framework: the Wald test, the

Likelihood Ratio Test (LRT) and the Lagrange Multipliers (LM) (or score) tests. The

Wald test statistics takes the following form:

W = (θ̂ − θ0)T [V ar(θ)]−1(θ̂ − θ0) (2.10)

which under the null hypothesis follows a chi-squared distribution with k degrees of

freedom X2
k ,where k is the number of parameters constrained to take the null value.

The Maximum Likelihood (ML) estimate θ̂ and the value of the model parameter un-

der the null hypothesis θ0 are also referred to as unrestricted and restricted estimates,

respectively. Intuitively, the test measures how far the estimated parameters θ̂ are

from the null value θ0 in relation to the variance: the larger the difference between

θ̂ and θ0 or the smaller the variance in the distribution of the likelihood, the more

likely we are to reject the null hypothesis and to prefer the more complex model in-

stead. Such intuition becomes clearer when testing only one parameter (univariate

25



Univariate approaches

case) as the formula collapses to:

W = (θ̂ − θ0)2

V ar(θ̂)
(2.11)

which is compared against a X2
1 distribution.

The LRT as indicated by its name, is a ratio comparing the maximum of the likelihood

function between two different models, the models fitted with θ̂ and θ0:

λ = L(θ0|y)
L(θ̂|y)

(2.12)

For nested models (two of models of different lengths in which the smaller is a subset

of the longer one) the value of λ ranges between 0 and 1, reflecting how many times

more likely the data are under one model than the other. A value of λ close to 0 indi-

cates that the smaller model is not acceptable compared to the larger model because

it makes the data relatively improbable. Conversely, a value of λ close to 1 indicates

that the larger model is not better than the smaller one. The LRT can also be specified

as the difference in the log-likelihoods as follows:

− 2 ln (λ) = −2 l(θ̂|y) + 2 l(θ0|y) (2.13)

which is equivalent to calculate the difference in the deviance for the two models.

The deviance is a measure of “distance” (similar to the RSS in the linear model) that

compares the log-likelihood of the fitted model with the log-likelihood of the satu-

rated model (i.e. the model where there are as many parameters as data points). LRT

calculates the difference in deviance ignoring the term for the saturated model. As

with the Wald test, the test statistic is distributed as a chi-squared random variable,

with degrees of freedom equal to the difference in the number of parameters between

the two models.

In contrast with the Wald test, which is based on unrestricted estimates, and the LRT,

which requires both restricted and unrestricted estimates, the LM or score test requires

26



Chapter 2

the fitting of the restricted model only. Its computation is based on the score or gra-

dient of the likelihood function evaluated at the observed values of the parameters

in the restricted model (S(θ0)). The form of the score test in the univariate case is

expressed as:

LM = S(θ0)2

V ar(θ0) (2.14)

which is compared against a X2
1 distribution. Note that none of the terms in the

expression above involve the unconstrained maximum likelihood estimate of the pa-

rameter θ̂. The test can be explained by the fact that the score function is exactly zero

when evaluated at θ̂ but not when evaluated at θ0; the closer in value θ̂ and θ0 are,

the closer S(θ0) will be to zero. Thus, larger values of S(θ0) will lead to large values

of test and rejection of the null hypothesis.

As sample size approaches to infinity, the three tests provide equal results, a property

known as asymptotically equivalent. However, for samples of a finite size, the three

tests could disagree enough to lead to different conclusions. For linear models, it has

been observed that the Wald test statistic will always be greater than or equal to the

LRT statistic, which will in turn, always be greater than or equal to the test statistic

from the score test (Wald test ≥ LRT ≥ score test) [70].

2.1.5 Multiple Testing and Correction Strategies

Performing hypothesis testing does not prove that a null hypothesis is either true

or false, it can only provide indication of strength of evidence against it. Thus, the

decision about whether or not to reject a null hypothesis is subject to errors which

can be classified into type I and type II. A type I error occurs when one rejects the

null hypothesis when it is true (false discovery or false positive finding) and a type II

error occurs when one fails to reject the null hypothesis when it is false (false negative

finding). The probabilities of committing type I and II errors are often denoted as α

and β, respectively. The former is also the significance level or size of the test and

the latter is related to the power of the test; that is, the probability of detecting a true
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effect if it exists, given by 1 − β. For any null hypothesis being tested, there is a

trade-off between the probability of making a type I and type II error.

Usually in scientific research the interest lies in false positive findings and the prob-

ability of making a type I one error as the quantity reported in most studies is the

p-value, which explicitly quantifies the probability that the researchers have made a

type I error in reporting their conclusions. The type I error is even more important

in the analysis of omics data under the univariate framework, as such analyses imply

performing multiple testing (simultaneously testing a finite number of null hypothe-

ses) leading to an increased number of associations falsely declared as statistically

significant. To be more precise, assuming all p variables in the predictor matrix are

pairwise independent, the expected number of false positive findings is given p × α.

This situation is known as the multiple comparisons problem. The Family Wise Error

Rate (FWER) and the False Discovery Rate (FDR) are overall error rates that have been

proposed to characterise this increased number of false discoveries. Much of the sci-

entific literature on correction strategies for multiple comparisons describes controlling

one of these two error rates with different levels of stringency.

2.1.5.1 Definitions: Family Wise Error Rate and False Discovery Rate

There are four possible outcomes when testing multiple null hypotheses, which are

commonly tabulated as follows:

Do not reject Reject Total

H0 is true
U

True Negative

V

Type I Error
n0

Ha is true
T

Type II Error

S

True Positive
n − n0

Total n − R R n

The total number of hypothesis being tested is represented by n and the total number

of true null hypotheses by n0, which is an unobserved quantity. V, S, T and U are
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unobserved random variables while R is an observed random variable. The quanti-

ties of interest are V , the total number of false discoveries and R, the total number of

associations declared statistically significant. The FWER is defined as the probability

of making at least one type I error:

FWER = Pr (V ≥ 1) = 1− Pr (V = 0) (2.15)

A more refined definition makes the distinction between the FWER in the strong and

in the weak sense. The former is defined as above, regardless of the configuration of

true and false null hypotheses or partial null hypotheses. The latter assumes that all

null hypotheses being tested are true; that is known as under the complete or global

null:

FWERC = Pr
(
V ≥ 1 | HC

0 true
)

(2.16)

As an example, consider the scenario where we test 2 null hypotheses n = 2, H1
0

and H2
0 . The possible partial null hypotheses are given by 2n as follows: HP1

0 =

[H1
0 , H

2
0], HP2

0 = [H1
0 ], HP3

0 = [H2
0 ], HP4

0 = ∅. Note that HP1
0 is also the complete

null HC
0 . The weak sense definition of FWER is the probability of making at least one

type I error only in configuration HC
0 . The strong sense definition of FWER is the

probability of making at least one type I error in subsets HP1
0 to HP4

0 . This obviously

implies that correction strategies that control the FWER in the strong sense also en-

sure control of the FWER in the weak sense. The term family refers to the collection

of hypotheses H1
0 , ..., H

n
0 that are being considered for joint testing, which tests are to

be treated jointly as a family depends on the definition.

On the other hand, the FDR [71] can be described in its most intuitive definition as

the expected proportion of errors among all associations declared significant:

FDR = E
(
V

R

)
, (2.17)

however, it cannot be applied when Pr(R = 0) > 0. The more extended definition
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that accommodates situations where R = 0 is specified as:

FDR = E (V/R|R > 0)Pr (R > 0) + E (V/R|R = 0)Pr (R = 0) (2.18)

= E (V/R|R > 0)Pr (R > 0) (2.19)

The second term in Equation 2.18 equals zero allowing the reduction of the definition.

Another probabilistic quantity of interest is the positive False Discovery Rate (pFDR)

[72], [73], defined as the conditional FDR given that at least one hypothesis is rejected:

pFDR = E
(
V

R
| R > 0

)
(2.20)

Under the complete null hypothesis the FDR is equal to the FWER weak sense since

V = R gives V/R = 1 if V ≥ 1, and replacing those terms in Equation 2.19 gives

FDR = 1 × Pr (V ≥ 1) = Pr (V ≥ 1) = FWERC . In the situation where not all

hypotheses are true (i.e. V < R), the FDR is less than the FWER, a statement that

implies that FWER-controlling strategies also ensure control of the FDR.

In practice, the researcher choses one of these two probabilistic quantities to control

and defines an arbitrary overall significance level α (usually 5%) which serves as an

upper-bound limit. As an example, if 100 null hypotheses are tested, controlling the

FDR at 5% is equivalent to accepting that on average, the 100 tests will result in fewer

than five false discoveries, while controlling the FWER at the same level ensures less

than five of these tests do not result in any false discoveries. The corrections strate-

gies that can be applied to control either the FDR or FWER have been traditionally

classified in single-step procedures where a single criterion is used to assess the signif-

icance of all test statistics or p-values and step-wise approaches involving ordering test

statistics or p-values and then using a different criterion for each depending on their

rank.
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2.1.5.2 Control of Family Wise Error Rate

The most straightforward and popular method is the Bonferroni correction that re-

jects all H1
0 , ..., H

n
0 for which α′ ≤ α/n, controlling the FWER at level α in the strong

sense. It is a conservative approach that does not rely on any assumption regard-

ing the dependence structure between the tests. If tests are assumed independent,

it is possible to obtain a tighter bound on the FWER by applying a different single-

step correction known as Šidák, which sets the per-test significance level α′ at 1 −

(1 − α)1/n. In practice, even for moderate values of n, the two corrections yield ef-

fectively the same results.

The stepwise approaches to control the FWER are the Holm’s [74] and the Hochberg’s

[75] methods. Both procedures control de FWER in the strong sense and allow more

power than the Bonferroni method. Hochberg’s is more powerful than Holms’ but

requires independence or some form of positive dependence between tests. Both

procedures use the same set of critical values and can be seen as step-down and step-

up version of the Bonferroni test, respectively.

Holms’ procedure operates as follows: the p-values are sorted in increasing order

p(1) ≤ p(2) ... ≤ p(n) with their corresponding hypotheses being H1
0 , ..., H

n
0 . In the

first iteration i = 1, the lowest p-value p(i) is compared to αi = α/(n − i + 1) (the

critical value α1 is equivalent to the Bonferroni threshold α/n). If H1
0 is rejected the

algorithms continues, otherwise no significant findings are declared at a FWER α

level and the algorithm stops. Subsequent p-values pi are contrasted to the critical

value αi = α/(n − i + 1). The procedure stops in the iteration where pi exceeds the

its corresponding cut-off value αi and H1
0 , ..., H

i−1
0 are rejected. On the other hand,

Hochberg’s procedure scans backwards starting with the highest p-value pn and stops

as soon as a p-value pi succeeds in passing its threshold and H1
0 , ..., H

i
0 are rejected.
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2.1.5.3 Control of the False Discovery Rate

There are two step-up approaches to control the FDR, namely the Benjamini and

Hochberg [71] and the Benjamini and Yekutieli [76] adjustments. The first method

controls the FDR under the assumption of independent tests, the second is an adapta-

tion of the original procedure to allow for positive dependence. The algorithm for the

first method operates as follows: as before, the p-values are sorted in increasing order

p(1) ≤ p(2) ... ≤ p(n) with their corresponding hypotheses being H1
0 , ..., H

n
0 . Then, each

p(i) is compared to the critical value q i
n

, where q is the chosen threshold for the FDR.

Finally, we define k = max
{
i : pi ≤ q i

n

}
and reject H1

0 , ..., H
k
0 or do not reject any null

hypothesis if no such i exists. Alternatively, the adjusted p-values can be obtained by

means of padj(i) = p(i)n/i. However, after these adjustments p-values may no longer be

strictly increasing, and reordering is needed to ensure monotonicity. In the Benjamini

and Yekutieli procedure, the adaptation is simple to replace q with q̃ = q/
∑n
i=1 i

−1.

The computation of the FDR also leads to the estimation of the q-values [72] , a mea-

sure of statistical significance analogous to a p-value that is used to control the FDR

rather than the FWER (strictly speaking adjusted p-values control FWER and p-values

control the false positive rate). In contrast to the adjusted p-values obtained from the

step-up procedures explained above, q-values are based on the pFDR and are calcu-

lated as a function of the p-value for each test and the empirical distribution of the

entire set of p-values, which is used to estimate the number of true null hypothesis

n0. The q-value of a particular feature is the expected proportion of false discoveries

when calling that feature significant. As an example, a q-value of 0.017 means that

1.7% of the variables that show q-values at least as small as that are false positives.

2.1.5.4 Resampling-based Approaches

The assumption about independence between tests seldom holds in the case of omics

data as there is an underlying correlation structure between predictors that leads

to dependence among hypotheses. Resampling is a general term that encompasses
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methods such as permutation, bootstrap and parametric simulation-based analyses

[77], [78] and they have become popular in multiple testing applications for omics

data because of their ability to account for the unknown correlation structure without

making assumptions on the distribution of the test statistic. The general principle

behind resampling-based approaches is to take repeated samples from the observed

data to simulate the distribution of the p-values under the complete null hypothe-

sis; the per-test significance levels are then ascertained by comparing the observed

p-value to the empirical distributions under the null.

More specifically, first step of the procedure is to generate a resampled dataset Y∗

in which the values of the response variable are shuffled and randomly reassigned

to observations either using bootstrap or permutation (sampling with and without

replacement, respectively). Secondly, using the same method that produced the orig-

inal p-values from the original data Y, the resampled p-values p∗ are obtained from

Y∗. Thirdly, the observed p-values of each predictor variable pi are compared to the

resampled ones to assess whether pi ≥ min p∗. This is because the minimum value

of the empirical distribution under the complete null hypothesis corresponds to the

maximum significance level that can be considered in order to prevent any false dis-

covery across all tests performed. To put it in other words, any observed p-value

that is above the minimum value of the empirical distribution corresponds to a false

positive discovery. These three steps are repeated a large number of times B and the

adjusted per-test significance levels p̃i are given by the proportion of iterations where

the observed p-value was higher than the minimum resampled p-value across the B

iterations:

p̃i = 1
B

B∑
b=1

I(pi > min p∗(b)), (2.21)

where I is an indicator variable that takes value of 1 if the condition is met and 0 oth-

erwise [77], [78]. The procedure explained above can be written as a function of test

statistics rather than p-values in which case the observed test statistics are contrasted

to the maximum resampled values and the algorithm is modified accordingly.
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2.2 Multivariate Approaches

The univariate techniques discussed in the previous section are commonly applied to

the analysis of omics data as they offer a straightforward way of dealing with situa-

tions where n << p: each predictor is considered one at a time to assess the relation-

ship with the response variable. Such approaches allow to fit computational efficient

and flexible models; although it is worth mentioning that the more flexible the model

is, the more computationally demanding it becomes. Examples of this are the use

of GAMs to model non-linear relationships and LMMs with random effect terms to

assess the effect technical-induced variation. However, exploring the marginal effect

of individual variables only uncovers simple patterns in the relationship between X

and Y and dismisses the joint effect that a subset of relevant variables may have to

predict the outcome of interest. In addition, when one variable is independently con-

sidered in the analysis, one fails to identify correlation patterns among the predictors,

leading to redundancy and unnecessary complexity in the results. Finally, univariate

methods do not take into account the presence of functional groups within the data,

which constitutes relevant information that eases statistical modelling and biological

interpretation if incorporated into the analyses [79]. Multivariate approaches address

these disadvantages and are discussed in the following sections.

2.2.1 Regularization and Variable Selection

These statistical methods identify the best subset of predictors by fitting a regres-

sion model containing all p variables and then estimating the coefficients under a

constraint that shrinks them towards zero, a process called regularization. If the con-

straint forces some regression coefficients to be exactly zero, variable selection is also

performed. The two best-known techniques for shrinking the coefficient estimates are

ridge regression and the lasso; the latter method also being a variable selection tech-

nique. The name lasso is fact an acronym for Least Absolute Selection and Shrinkage

Operator. Extensions of those approaches have been introduced in the literature that
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improve over the disadvantages of ridge regression and lasso, which constitute valu-

able alternatives to deal with the challenges imposed by the high-dimensional omic

setting. These techniques are the elastic net and the group and the sparse group lasso.

2.2.1.1 Ridge Regression and Lasso

For classical linear models the regularized regression coefficients are found through

the following minimization problem:

β̂ = argmin
β∈Rp

‖Y − Xβ‖2
2, + fpen(β, λ) (2.22)

where the two terms correspond to the loss and penalty functions, respectively. The

regularization or tuning parameter λ ≥ 0 controls the strength of the penalty func-

tion. The term ‖Y − Xβ‖2
2 is the RSS and can also be expressed as

∑n
i=0

(
Yi − (Xβi)

2
)

=∑n
i=1

(
yi − β0 −

∑p
j=1 βjxij

)2
. Naturally, the penalty term is different for ridge regres-

sion and lasso. Ridge regression [80] uses the L2 norm and the penalty term is defined

as the sum of the squared values of the regression parameters, multiplied by the tun-

ing parameter fpen(β, λ) = λ‖β‖2
2 = λ

∑p
j=1 β

2
j . Lasso [81] uses the L1 norm and the

penalty is the sum of the absolute values of the regression parameters, multiplied by

tuning parameter fpen(β, λ) = λ‖β‖1 = λ
∑p
j=1

∣∣∣βj∣∣∣. For the broader case of GLM, the

loss function is replaced by the corresponding negative log-likelihood function.

The non-negative tuning parameter λ is directly related to the bias and variance trade-

off. Small λ gives more weight to the loss function and the resulting model is char-

acterised by presenting high variance but low bias (overfitting) [82]. As λ increases,

the shrinkage of the coefficient estimates leads to a reduction in the variance of the

predictions, at the expense of an increase in bias. In particular, when λ = 0, the

penalty term has no effect and Equation 2.22 will produce the unbiased ML regres-

sion estimators; when λ = ∞, the loss function has no weight and the coefficient

estimates will be equal to zero (intercept only-model with no variance). The aim is

therefore to choose a value that estimates coefficients with a substantial decrease in
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variance but that only introduces a small amount of bias in order to fit a model with

a significant reduction in prediction error. (This is the reasoning that explains why

ridge regression and lasso improve predictive accuracy over OLS). Selecting such an

appropriate value of λ typically proceeds by CV.

It is worth mentioning that the intercept term is usually left unpenalized as it is sim-

ply a measure of the mean value of the response variable when xi1 = xi2 = ... = xip =

0 [82]. For that reason, it is customary to centre the columns of X and Y to have mean

zero before performing ridge regression or lasso, as in that case the estimated inter-

cept is β̂0 = ȳ . In addition, unlike ML coefficient estimates that are scale equivariant,

the regularized coefficients do depend on the scaling of the predictor; therefore, the

columns of X are typically scaled to have sample variance one when performing the

regression shrinkage.

Both ridge regression and lasso perform well in terms of prediction accuracy when

there is a subset of true coefficients that are small or even zero. If all true coefficients

are moderately large, both techniques can still outperform linear regression but only

over a restricted range of λ values. However, neither of the techniques will univer-

sally provide lower prediction error than the other. In a situation where a relatively

small number of predictors have substantial coefficients and the remaining variables

have coefficients that are very small or that equal zero, lasso might perform better

than ridge regression. In contrast, ridge regression is expected to do better when the

response is a function of many predictors with coefficients of similar sizes. The main

advantage of lasso resides in its capacity to perform variable selection and therefore

to ease model interpretability. As the value of λ increases, more coefficients are set to

zero (more sparsity is introduced), and among the non-zero coefficients, more shrink-

age is employed [82].

2.2.1.2 Elastic Net

The lasso penalty has been associated with some limitations: first, for p > n, it will

select at most n variables before the model reaches saturation. Second, in the presence
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of correlated relevant predictors, lasso fails to perform grouped selection as it tends

to select only one variable from the correlated predictors and ignore the others. These

limitations are overcome by the convex combination of the L2 and L1 norms:

β̂ = argmin
β∈Rp

‖Y − Xβ‖2
2 + λ2‖β‖2

2 + λ1‖β‖1 (2.23)

which is known as the elastic net regularization [81]. The L1 part of the penalty intro-

duces sparsity in the model while the L2 part removes the limitation on the number

of selected variables, encourages the grouping effect and stabilizes the L1 regulariza-

tion path. Lasso and ridge regression are special cases of Equation 2.23 when λ2 = 0

and λ1 = 0, respectively. By introducing an additional parameter α = λ2/(λ2 + λ1),

the two-penalty term in Equation 2.23 can be combined into one:

β̂ = argmin
β∈Rp

‖Y − Xβ‖2
2 + λ

[
(1− α)‖β‖2

2 + α‖β‖1

]
, α ∈ [0, 1] (2.24)

When α = 0, the elastic net reduces to ridge regression and when α = 1 it becomes the

lasso. Thus, elastic net compiles numerical stability and sparsity at the cost of an extra

parameter to tune. Tuning of α relies on CV using a two-dimension grid of values,

one dimension for each of the parameters to tune (α and λ); alternatively, it can be

viewed as a higher-level parameter and defined on subjective grounds. The elastic

net regularization has also been extended to accommodate other loss functions.

2.2.1.3 Group and Sparse Group Lasso

Other penalized regression strategies have been proposed by introducing further gen-

eralizations of the lasso penalty. One of those techniques is the group lasso [83] which

offers a better control over the selected variables by allowing predefined groups of co-

variates to be jointly selected into or out of the model using the L2 norm as the penalty

term. It is important to clarify that in this case the constraint is applied group-wise

and involves the sum of the ordinary L2 norms
∑√

β2 as opposed to the squared L2

norms
∑
β2 (as in ridge regression and elastic net). Let us suppose that the p predic-
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tors in the X matrix are divided intoL non-overlapping groups and that Xl represents

the predictors corresponding to the lth group with corresponding coefficient vector

βl, the group lasso solves the following penalized least squares in a linear regression

scenario:

min
β∈Rp

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2
+ λ

L∑
l=1
‖βl‖2, (2.25)

As before, λ is non-negative and depending on its value either the entire vector βl is

zero or all its elements are non-zero. If all the groups are of size one, the optimization

problem reduces to the ordinary lasso since ‖βl‖2 =
√
β2
l = |βl|. It is worth

mentioning that the in original formulation of the group lasso a weighting factor
√
pl

was introduced in the penalty, representing the number of predictors p in group l,

which in this case has been omitted for notational simplicity (if there is no factor

all groups are equally penalized and larger groups are more likely to be selected).

Furthermore, the computation of the original algorithm relied on the assumption of

orthonormality of the predictors within a group (XT
l Xl = I), however, alternative

approaches were subsequently proposed that deemed such assumption unnecessary.

The group lasso has been extended to the logistic regression setting [83] as well as a

multivariate outcome [84].

Because of the L2 norm, the group lasso does not impose sparsity within the selected

groups. That is, when a group of predictors is included in the model, all the coef-

ficients in that group are non-zero. The sparse group lasso [85], [86], [87] has been

proposed as a penalty that yields sparse solutions at both the group and individual

feature levels, and its criterion is defined by augmenting the group lasso problem

with an additional L1 penalty as follows:

min
β∈Rp

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2
+ λ2

L∑
l=1
‖βl‖2 + λ1‖β‖1 (2.26)

Much like the elastic net scenario, the sparse group creates a compromise between

the lasso and group lasso penalties: when λ1 = 0 the criterion reduces to the group

lasso in Equation 2.25. The two-term penalty can also be expressed as function of the
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hyper-parameter α as follows: λ
[
(1− α)‖βl‖

2
2 + α‖β‖1

]
. Setting α = 0 produces

the group lasso fit whereas α = 1 yields the lasso solution. The factor
√
pl has again

been removed for notational simplicity. The sparse-group lasso approach has been

extended to accommodate a multivariate response [88].

Both group and sparse group lasso are convex optimization problems and their op-

tima are specified by zero sub-gradient equations which are solved using a minimiza-

tion tool called coordinate descent [84]. More specifically, the equations are solved

separately for each group of variables βl = (β1l,β2l, ...βpl)
T while holding fixed the

vector of parameters of the other groups.

2.2.2 Dimensionality Reduction

These approaches tackle the n << p problem with methods that involve projecting

the p predictors into a new low-dimensional space where the most relevant charac-

teristics of the original data are preserved. The process is performed by computing

artificial variables (also known as latent variables or component scores), each being

a linear combination of the original predictors which are subsequently used for vi-

sualisation and analytical purposes. As already mentioned in previous sections, in

the context of dimensionality reduction, unsupervised and supervised learning are

the classification names given to the methods where the construction of the latent

variables is conducted without and with respect to the response matrix, respectively.

Principal Component Analysis (PCA) and Partial Least Squares (PLS) are probably

the best-known methods in each of these two learning frameworks. In the original

formulation of the techniques, the resulting components are linear combinations of

all p predictors variables, a condition that hampers interpretability of the results. To

address this disadvantage, sparse versions of these classical multivariate methods

have been introduced by using constraints in the computation of the components, a

process that results in the inclusion of the most relevant variables (signals) and the

exclusion of the irrelevant features (noise). In the remaining sections of this chap-

ter I provide a description on the main methods that fall under the dimensionality
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reduction category.

2.2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) [89] aims at summarising a set of correlated

features into a smaller number of representative variables called principal components

(PCs), that collectively explain most of the variability in the original dataset. Suppose

that we have n observations with measurements on only two variables that are being

visualized in a two-dimensional scatterplot. The first PC is the direction in the feature

space that captures most of the variation in the cloud of data points, or equivalently,

it is the direction that is the closest to the collection of points. The second PC is de-

fined as the direction that captures the remaining variability under the condition that

is uncorrelated (linearly independent, perpendicular or orthogonal) to the first com-

ponent. In a two-dimensional space when p = 2, there is only one possible direction

that satisfies such condition. The components are a linear combination of the two

variables, and the weights associated to the variables in each component are known

as loading vectors. The two components can also be considered as a new coordinates

system onto which the n observations are projected; these projected values are known

as PC scores.

The definition of the loading vectors (finding the direction in the feature space) can

be viewed as an optimization problem that seeks to maximize the sample variance or

to minimize the squared Euclidean distance of the n observations subject to normali-

sation and orthogonality constraints. In practice, standard linear algebra techniques,

namely eigen decomposition and Singular Value Decomposition (SVD), are used to

solve the PCA problem. The former is applied to the variance-covariance matrix of X

(or correlation matrix if X is scaled); however, its direct computation is not feasible

when p is large, therefore SVD is usually preferred. In detail, let X be a matrix of

size n× p whose columns have been centred and scaled. SVD decomposes X into the
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product of three matrices as follows:

X = UDVT (2.27)

where U is an orthogonal matrix (UTU = In) of size n × p, V is also an orthogonal

matrix (VTV = In) of size p × p, and D is a non-negative n × p diagonal matrix. The

diagonal entries of D are known as singular values while the columns of U and V

are called the left and right singular vectors, respectively. The loading vectors of the

PCs are given by the right singular vectors vh and the PCs scores are defined by the

product Xvh. Thus, the first principal component c1 = X1v1 is the projection of

the data X or linear combination of the columns of X with highest sample variance

among all possible choices of unit vectors vh. The second principal component c2 =

X2v2 is the data projection or linear combination with highest sample variance among

the ones that are orthogonal with c1, and so on. Similarly, the principal components

can be expressed in terms of the left singular vector by the product Ch = UhDhh.

Finally, the explained variability by the hth PC is retrieved by D2
hh/n and it is sorted

in increasing order, a property known as successive maximization of variance.

There are some important aspects that are worthy of mention when performing PCA

[82]. First, since the procedure seeks to find directions of maximum variation, the

variables are typically scaled to have standard deviation one before SVD is applied

to X; otherwise, the PCs will be a reflection of the features variances and will unde-

sirably depend on the unit and scales in which they were measured (in setting were

all the variables are measured in the same units scaling may not be necessary). Sec-

ond, since the loading vectors specify directions in the p-dimensional space and the

scores the variances of the projected data points along those directions, the signs as-

signed to the corresponding elements of the vectors can be exchanged. That is, there

is no change in the PCs if the sign is flipped on both the loading and score vectors.

Third, the maximum number of components is given by the min(n − 1, p) and the

user-defined number of dimensions is typically chosen based on the visual inspec-

tion of the curve defined by cumulative proportion of variance explained (detect an

41



Multivariate Approaches

inflection point or elbow in a scree plot). Two or three number of components usually

provide a useful lower dimension space to visualise observations and distinguish in-

teresting patterns. Finally, once a lower-dimensional projection has been selected, the

PCs can be used as predictors in a regression model in place of X, a method called PC

regression (PCR). It presents as obvious advantages that a lower number of variables

are used and that the PCs are uncorrelated, and therefore there are no problems with

collinearity. In this supervised setting the number of components can also be selected

by CV.

2.2.2.2 Sparse Principal Component Analysis

As already mentioned, the PCs are linear combinations of all the original variables

and all the elements of the corresponding loading vectors are typically non-zero. Such

property makes interpretation difficult, and the identification of variables that play a

significant role is usually based on subjective grounds. To make the selection of the

relevant features more robust, several approaches have been proposed in the litera-

ture which produce modified PCs with sparse loadings. Simple thresholding sets the

loadings with absolute values smaller than a certain threshold to zero and is the most

obvious and straightforward approach to introduce sparsity [90]. Another simple

method is to restrict the loading vectors to take values from a small set of allowable

integers such as 0, 1 and −1. More sophisticated methods include Simplified Compo-

nent Technique-LASSO (SCotLASS) [91] which defines the loadings by applying the

lasso penalty on the maximization problem of PCA, Sparse Principal Component Anal-

ysis (SPCA) [92] which reformulates PCA as a regression-type problem and achieves

sparsity by imposing the lasso penalty on the regression coefficients and sparse PCA

via regularized SVD (sPCA-rSVD) [93] which combines the low rank approximation

property of SVD with sequential regularization of the loading vectors 1. Here, I briefly

describe these three approaches.

1Sparse Principal Component Analysis (SPCA) (uppercase) correspond to the specific technique
introduced by Zou et al. [92] while sparse Principal Component Analysis (sPCA) (no uppercase) is a
generic name referring to any PCA method that retrieves PCs with sparse loadings.
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The successive variance maximization problem that defines the loading vectors in

PCA can be expressed as follows:

aTk (XTX)ak, (2.28)

subject to aTk ak = 1 and (for k ≥ 2) aTh ak = 0, h < k;

which correspond to the normalization (unit norm to obtain a bounded solution)

and orthogonality constraints, respectively; the latter is only applied from the sec-

ond loading vector onwards. SCotLASS adds an extra constraint:

p∑
j=1
|akj| ≤ t (2.29)

where t is again a tuning parameter. The L1 constraint encourages some of the ele-

ments of the loadings to be zero and hence a to be sparse, for sufficiently small t. The

major disadvantage associated with this method is that the choice of the appropriate

value for t by CV is computationally expensive. SPCA improves over that difficulty

as it transforms PCA to an elastic net optimization problem as follows:

(
Â, B̂

)
= argmin

A,B

∥∥∥X − ABTX
∥∥∥2

+ λ2

k∑
j=1

∥∥∥βj∥∥∥2

2
+

k∑
j=1

λ1,j

∥∥∥βj∥∥∥1
(2.30)

where both A and B are p×k matrices and k is the number of PCs to be extracted. The

first term is the loss function and is the critical part of the criterion as it corresponds

to the approximation of PCA into a regression-type problem. The ridge penalty is

added in order to handle all kinds of X matrices (p >> n or n > p in the presence of

collinearity); it is not used to penalize the regression coefficients as in Equation 2.23

but to ensure the reconstruction of PCs. The lasso term produces the sparse loadings

for high enough values of λ1. The approximated loading vectors V̂j are given by the

normalized regression coefficients β̂j/
∥∥∥β̂j∥∥∥2

.

Default values are set for the parameter λ2 which depend on the dimensionality of X.

For n > p data λ2 can be zero but usually a small positive number is chosen to over-
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come potential collinearity problems and for p > n a positive λ2 is required in order

to get an exact PCA solution. In the case of λ1, different values are allowed for pe-

nalizing the different PCs and the decision is made based on a compromise between

variance explained and sparsity. Although the algorithm delivers a computationally

efficient solution, the need for accommodating it to different characteristics of the X

matrix adds an extra complexity that can potentially be disadvantageous.

sPCA-rSVD provides a uniform treatment of both n > p and p > n situations based

on the low rank approximation of matrices or deflation property of SVD. Consider

that rank(X) = r, for any value l < r, the closest rank-l matrix approximation to X is

given by:

X(l) =
l∑

k=1
dkukv

T
k (2.31)

The term "closest" means that X(l) minimizes the squared Frobenius norm between

X and an arbitrary rank-l matrix X∗. In approximate terms, the principle behind the

sPCA-rSVD approach is to find the best rank-one approximation of X, which is given

by (u1,d1, v1) and to impose regularization penalties on v in order to obtain sparse

loading vectors. Subsequent sparse loadings vi(i > 1) are obtained sequentially via

rank-one approximation of residual matrices. For example, X′ = X − d1u1v
T
1 with

a best rank-one approximation retrieved by (u2,d2, v2). More precisely, sPCA-rSVD

seeks to optimize the following penalized sum-of-squares criterion:

argmin
‖u‖2,ṽ

∥∥∥X − uṽT
∥∥∥2

F
+ Pλ(ṽ) (2.32)

where ‖.‖2
F is the squared Frobenius norm, Pλ(ṽ) is a penalty function, λ ≥ 0 is again

a tuning parameter, u is a unit-norm vector of length n and ṽ is a vector of length p.

Since the original loading vector v is typically constrained to be unit-norm, the direct

application of a penalty on v is inappropriate. For that reason, the criterion incorpo-

rates the re-scaled versions u and ṽ such that the first has unit length and the second

is free of any scale constraint. The tilde symbol is used to emphasize the fact that

vectors are not normed. The sparse and normalised loading vectors are then given by
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v = ṽ/‖ṽ‖2. Different penalty functions are allowed other than the lasso and simi-

larly to SPCA they can be different for the different PCs. An important observation to

highlight here is the fact that the optimization criterion in Equation 2.32 is connected

to least squares regression: for a fixed u , the optimal solution v is the least squares

coefficient vector of regressing the columns of X on u . Thus, imposing sparsity on v

becomes similar to a variable selection problem.

Finally, it is worth mentioning that for the sPCA methods discussed in this section the

two main properties of PCA, namely orthogonal loading vectors and uncorrelated

PCs are lost. The first property may not be desirable in this setting because enforcing

orthogonality might result in less sparse solutions [94]. However, if the PCs are corre-

lated the total variance explained by each of them contains partial contributions from

previous components, therefore an adjustment is needed to calculate the cumulative

percentage of variance explained and both SPCA and sPCA-rSVD provide different

methods to estimate it.

2.2.2.3 Partial Least Squares

While PCA defines the PCs as linear combinations of the original variables that max-

imise the variance within the X matrix, PLS seeks to construct new variables that

are also meaningful linear combinations of the original X and Y variables but in this

case, the criterion to maximise is the covariance or correlation between the two matri-

ces. These new variables are known as component scores or latent variables and, in

contrast to PCA, they are searched in an iterative manner for both X and Y.

As in introductory background, PLS is a technique that was first originated in 1966 by

Herman Wold [95] to refer to a class of algorithms developed for the analysis of an ar-

bitrary number of blocks of data by means of latent variables and two different modes

were proposed for their computation (Mode A and Mode B) [96]. Since then, several

PLS variants have been introduced in the literature. The particular case of two blocks

of data encompasses the following four variations: PLS-SVD [97], [98], [99], [100],

PLS in mode A (PLS-W2A, for Wold’s Two-Block Mode A PLS) [101], [102], [103] ,
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PLS in mode B (PLS-W2B) [104], [105], and Partial Least Squares Regression (PLS-R)

[106], [107], [108]. PLS-W2B is equivalent to Canonical Correlation Analysis (CCA)

[109] where the objective is to maximise the correlation between scores. In this section

I focus on the other three variations which aim at maximising the covariance. Both

PLS-SVD and PLS-W2A model a symmetric relationship between the two blocks of

data in order to explain the shared information; on the other hand, PLS-R models an

asymmetric relationship where one block is used as predictor to explain the variabil-

ity in the other [101], [110]. Because of the resemblance with CCA and to emphasize

the contrast with PLS-R, the variants PLS-SVD and PLS-W2A are sometimes referred

in the literature as PLS canonical mode [111].

Entering to more technical details, PLS seeks to decompose the centred (and possi-

bly standardized) data matrices X(n × p) and Y(n × q) into latent variables denoted

by ξ1, ..., ξh and ω1, ...,ωh which are n-dimensional vectors associated with X and Y

respectively, where H is a small number specifying the total number of components.

These scores are estimated as linear combinations of the original variables and the

weight associated to each original variable is given by the loading vectors uh and vh

of length p and q for X and Y, respectively. The first pair of latent components is de-

fined as ξ1 = Xu1 and ω1 = Yv 1 and correspond to the score vectors with maximal

covariance. Orthogonality constraints are imposed in the optimization problem and

in order to ensure that solutions meet the required orthogonality, the PLS algorithms

are solved iteratively where a deflation step is performed to remove the information

stored in the previous iteration. Subsequent pairs of latent components are then de-

fined in terms of the deflated matrices as ξh = Xh−1uh and ωh = Yh−1vh where Xh−1

and Yh−1 are the residual matrices. Thus, the vectors uh and vh are the weights of the

original variables that define the component scores in terms of the deflated matrices.

However, the score vectors can also be defined in terms of the original matrices as

ξh = Xhwh and ωh = Yh zh where wh and zh are known as vectors of adjusted weights.

More formally, the optimization criterion for the three two-block PLS methods men-
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tioned above can be specified as follows:

(uh, vh) = argmax
‖u‖2 = ‖v‖2 = 1

Cov(Xh−1,Yh−1) (2.33)

subject to uTuj = vTvj = 0, 1 ≤ j < h, which is the basic orthogonality constraint

common for the three methods. For both PLS-W2A and PLS-R, additional orthogo-

nality constraints are added into the optimization problem. The former searches for

successive X score vectors (resp. Y score vectors) that are orthogonal to the previous

ones:

Cov(ξh, ξj) = Cov(ωh,ωj) = 0, 1 ≤ j < h, (2.34)

whereas PLS-R searches for successive X scores ξh that are orthogonal to the previ-

ous ones (as in Equation 2.34) in addition to Y scores ωh. As already mentioned, a

matrix deflation step is conducted in the computation of the component scores to en-

sure that the orthogonality constraints are satisfied. To guarantee that the additional

constraints imposed in the optimization problems for PLS-W2A and PLS-R are met,

a modification is needed in the deflation steps of those two algorithms; this in turn

means that all three PLS methods conduct the matrices deflation in a different man-

ner. That being said, the deflation is needed only for h > 1; therefore, the solution

for the three PLS approaches is the same for the first iteration h = 1. Alternatively,

the optimization criterion in Equation 2.33 can be formulated in terms of variance-

covariance matrix M = XTY or in terms on the adjusted weight vectors wh and zh

with the corresponding modification in the constraints. Thus, multiple equivalent

objective functions to Equation 2.33 can be encountered in the literature.

The solution for PLS-SVD is the most straightforward of the three approaches and it

is fully given by the SVD of M. That is, the pair of loading vectors (uh, vh) are the h

first columns of the matrices U and V, which are respectively the left and right sin-

gular vectors of M. Since the loading vectors define the component scores in terms

of the residual matrices, an iterative procedure is needed to retrieve them. The de-

flated matrices are specified by Xh = Xh−1 − ξhu
T
h and Yh = Yh−1 − ωhv

T
h
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which in turn define the component scores as ξh = Xh−1uh and ωh = Yh−1vh. A

different approach to find the optimal loadings is to employ the deflation property of

SVD, whereby the cross-product M is directly deflated by its rank-one approximation

Mh = Mh−1 − dhuhv
T
h . SVD is then performed on the delated matrix and the pair

(uh, vh) is given by only the first pair of singular vectors. Thus, in this PLS variant the

SVD of M is either performed only once and the solution is the first h pairs of left and

right singular vectors or applied iteratively on the deflated cross-product where only

the first pair of vectors is stored.

For PLS-W2A, the initial step is to define the first pair of loading vectors u1 and v1,

which are the left and right singular vectors from the SVD of M. Those vectors are

then used to calculate the first pair of component scores ξ1 = X0u1 and ω1 = Y0v1.

Note that the subscript zero is explicitly written to denote the original data matrices

(as opposed to the deflated ones). A regression step follows in which each column

of X0 (resp. Y0) is regressed onto ξ1 (resp. ω1), the regression coefficients of those

local linear regressions are defined as c1 = XT
0 ξ1/ξ

T
1 ξ1 and e1 = YT

0ω1/ω
T
1ω1. The

subsequent matrix deflation step uses c1 and e1 to obtain the residual matrices X1 =

X0 − ξ1c
T
1 and Y1 = Y0 − ω1e

T
1 . Finally, the matrix cross-product is updated using

the deflated matrices M1 = XT
1 Y1 and the procedure is reiterated H times.

For PLS-R (also called PLS1 for q = 1 or PLS2 for q > 1), the aim is to construct la-

tent variables that model X and simultaneously predict Y . For that purpose, several

algorithms have been proposed, the two most well-known are the Nonlinear estima-

tion by Iterative Partial Least Squares (NIPALS) [95], [112], [113] and the Statistically

Inspired Modification of PLS (SIMPLS) [114]. They are characterised by the incorpo-

ration of an extra relationship that explicitly relates the X and Y scores. Such relation-

ship is given by the vectors ωh being regressed onto ξ1 yielding the PLS regression

coefficients βPLSh = ξThωh/ξ
T
hξh, which can be used for predictions given new obser-

vations. The deflation step on the Y matrix is performed as function of this vector of

coefficients Yh = Yh−1 − βhξhω
T
h , ensuring orthogonality of βPLSh . Equivalently, the

deflation of the matrix Y can be expressed as function of the local regression coeffi-
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cients obtained from the linear regressions of the columns of Yh−1 onto the X scores

ξh, dh = YT
h−1ξh/ξ

T
hξh. The residual matrices are then retrieved Yh = Yh−1 − ξhd

T
h .

The main difference between the two PLS-R algorithms is that SIMPLS computes the

scores directly as linear combinations of the original variables without conducting

deflations on the matrices, which provides a computational advantage over NIPLAS;

however, the latter remains the most cited and commonly used of the two.

It is worth to summarise the similarities and difference of the PLS variants discussed

in this section (see also Figure 2.1). The solutions to the optimization problem in

Equation 2.33 are the same for PLS-SVD, PLS-W2A and PLS-R in the first iteration

h = 1 and it is given by the left and right singular vectors associated with the largest

singular value obtained from the SVD of the variance-covariance matrix M. Succes-

sive iterations provide different solutions as a consequence of the way the deflation

of the data matrices is conducted. PLS-SVD deflates the cross-product directly by

subtracting a rank-one estimate from it Mh = Mh−1 − dhuhv
T
h . PLS-W2A subtract

rank-one approximations of the individual data matrices Xh and Yh to obtain Xh+1

and Yh+1 and from these residuals a new cross-product M is computed. PLS-R de-

flates the Y matrix in an asymmetric manner using information content from the X

matrix as in Yh = Yh−1 − βξhω
T
h or Yh = Yh−1 − ξhd

T
h before recalculation of

the cross-product. The decomposition of the original data matrices can be written as

follows:

X = ΞCT + FX Y = ΩET + FY (2.35)

Y = ΩDT + FY = Xβ̂
PLS + FY (2.36)

where Ξ (resp. Ω) is the matrix of X (resp. Y) component scores. The matrices

C = XTΞ,E = YTΩ and D = YTΞ are of dimension p × h and q × h and contain

the regression coefficients ch, eh and dh, respectively. FX and FY are the n × p and

n × q residual matrices. Consequently, the first decomposition of Y corresponds to

PLS-W2A and the second to PLS-R. (The decomposition for PLS-SVD requires a more
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Figure 2.1: Graphical illustration of the PLS algorithm.
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The illustration displays the dimension of the X and Y component score vectors (ξh andωh, respectively), the X and Y loading
coefficient vectors (uh and vh, respectively) and the X and Y local regression coefficients (ch and eh and dh, respectively). The
symmetric and assymmetrix delation steps of the Y matrix are also shown.

elaborate mathematical explanation and is omitted).

As with many techniques discussed in this chapter, the choice of the number of com-

ponents H is a model selection question that usually proceeds by CV (see details in

section 3.6.2.1.1) and the maximum value H can take depends on the PLS variant be-

ing performed. For both PLS-SVD and PLS-W2A the algorithms can run for up to

min(p, q) iterations but in practice the decision depends on the rank of the matrices

[101]. For PLS-SVD, H is given by the rank of M; for iteration beyond that point the

pair of score vectors will have zero covariance. On the other hand, in PLS-W2A the re-

striction is specified by min(rank(X), rank(Y)) because past that iteration XTY = 0.

In PLS-R, in contrast with the other two methods, H is limited by the rank of XTX

because of the asymmetric way in which the deflation process is conducted on the

Y matrix. However, if there is a large number of non-relevant noise predictors, the

algorithm starts to be deviated from the aim of maximising the variance-covariance

between X and Y and the covariance between predictors is optimized instead [115].
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2.2.2.4 PLS Extensions: Regularized Partial Least Squares

The connexion between the low rank approximation property of SVD and least squares

minimisation in linear regression first introduced for sPCA has enabled some authors

to extend the technique variants discussed in the previous section to novel regularized

Partial Least Squares (rPLS) approaches, which include sparse PLS (sPLS) [111], group

(gPLS) and sparse group PLS (sgPLS) [116]. Following a similar principle to the vari-

able selection techniques discussed in section 2.2.1, these methods introduce penalty

terms to the loading vectors resulting in sparse solutions, a process that in turn im-

proves model interpretability and quality of the estimators.

In contrast to sPCA-SVD, the rPLS approaches aim at penalizing both loadings vec-

tors u and v to perform variable selection in both data sets. The procedure is con-

ducted in an iterative manner for each component at a time, in which the value of

one of the loading vectors is fixed while the solution for the other is found. As dis-

cussed previously, a penalty term cannot be applied to a unit-norm vector; therefore,

the solution is found for an unconstrained vector and the fixed vector is restricted to

be unit-norm. After the optimal values have been defined, the solutions are scaled.

This procedure thus leads to normed sparse loading vectors. More precisely, the op-

timization criteria for a fixed unit-norm v (resp. u) are specified as follows:

ũh = argmin
u
{
∥∥∥Mh−1 − ũvT

∥∥∥ + Pλ1(ũ)} (2.37)

ṽh = argmin
v
{
∥∥∥Mh−1 − uṽT

∥∥∥ + Pλ2(ṽ)} (2.38)

then the normed uh and vh are obtained ũh/‖ũh‖2 and ṽh/‖ṽh‖2. Pλ1(ũ) and Pλ2(ṽ)

are the penalty functions with tuning parameters λ1 and λ2. These are both convex

optimization problems and the nature of the penalty terms is modified accordingly.

In the case of sPLS, they are specified as follows:

Pλ1(ũ) =
p∑
i=1

2λ1|ũi| (2.39)
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Pλ2(ṽ) =
q∑
j=1

2λ2|ṽj| (2.40)

This is the L1 or lasso penalty and for λ1 ≥ 0 or λ2 ≥ 0, some elements of the loading

vectors ũ or ṽ will be forced to be zero. When both matrices X and Y are divided

respectively into K and L sub-matrices, the penalty terms for gPLS are specified as

follows:

Pλ1(ũ) = λ1

K∑
k=1

√
pk
∥∥∥ũ (k)

∥∥∥
2

(2.41)

Pλ2(ṽ) = λ2

L∑
l=1

√
ql
∥∥∥ṽ (l)

∥∥∥
2

(2.42)

This is the group lasso penalty and depending on the tuning parameters λ1 ≥ 0 and

λ2 ≥ 0, the entire weight subvector ũ (k) or ṽ (l) will be zero, or non-zero together.

While for sgPLS, the penalty terms are:

Pλ1(ũ) = (1− α1)λ1

K∑
k=1

√
pk
∥∥∥ũ (k)

∥∥∥
2

+ α1λ1‖ũ‖1 (2.43)

Pλ2(ṽ) = (1− α2)λ2

L∑
l=1

√
ql
∥∥∥ṽ (l)

∥∥∥
2

+ α2λ2‖ṽ‖1 (2.44)

where the additional tuning parameters α1 and α2 are introduced. This is the sparse

group lasso penalty and depending on the combination of α1 and λ1 (or α2 and λ2) the

weight sub-vector ũ (k) or ṽ (l) will be eliminated entirely, or sparsely estimated. As a

result of the properties of these penalty functions, sPLS enables individual variable

selection, gPLS performs selection at group level and sgPLS enables selection at both

group and single feature levels simultaneously.

These regularized versions where originally introduced as extensions of the PLS vari-

ants PLS-W2A and PLS-R; however, recent efforts in this area of research have made

possible to perform regularization on all four two-block PLS approaches (including

PLS-W2B or CCA) using an all-encompassing algorithm [110]. In other words, the

deflated matrix Mh−1 can be obtained by means of any of the PLS variants previously

discussed. This iterative procedure that performs all versions of PLS (here I focus on
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PLS-SVD, PLS-W2A and PLS-R) alongside the regularized techniques (sPLS, gPLS,

sgPLS), and which optimizes the criteria stated in Equation 2.33,Equation 2.37 and

Equation 2.38 can be summarised as follows:
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Algorithm 1 Algorithm for regularized versions of PLS-SVD, PLS-W2A and PLS-R
Input: X(n× p),Y(n× q), H, θu, θv.
Output: Ξ(n×H),Ω(n×H),U(p×H),V(q×H),C(p×H),E(q×H),D(q×H).

1: X0 ← X, Y0 ← Y
2: for h = 1, . . . , H do
3: Set Mh−1 ← XT

h−1Yh−1

4: Apply SVD to Mh−1 and extract first pair of singular vectors uold = uh and
vold = vh.

5: Apply the corresponding soft-thresholding penalty function to weight vectors
uold and vold until convergence of unew and vnew followed by vector normalization.

6: while convergence of unew do
7: ũnew ← Su(vold; Mh−1, θu)
8: unew ← ũnew/‖ũnew‖2 . Normalization Step
9: ṽnew ← Sv(uold; Mh−1, θv)

10: vnew ← ṽnew/‖ṽnew‖2 . Normalization Step
11: end while
12: Obtain X and Y scores.
13: ξh ← Xh−1unew
14: ωh ← Yh−1vnew
15: Obtain local regression coefficients.
16: if PLS-SVD then
17: ch ← unew
18: eh ← vnew
19: end if
20: if PLS-W2A then
21: ch ← XT

h−1ξh/ξ
T
hξh

22: eh ← YT
h−1ωh/ω

T
hωh

23: end if
24: if PLS-R then
25: ch ← XT

h−1ξh/ξ
T
hξh

26: dh ← YT
h−1ξh/ξ

T
hξh

27: end if
28: Obtain deflated X and Y matrices.
29: Xh ← Xh−1 − ξhc

T
h

30: if PLS-SVD or PLS-W2A then
31: Yh ← Yh−1 − ωhe

T
h . Symmetric Deflation

32: else
33: Yh ← Yh−1 − ωhd

T
h . Asymmetric Deflation

34: end if
35: end for

Note that Su and Sv are analytical functions introduced to provide the desired sparse
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solution for the weight vectors, which depend on the data M, the fixed weight u

(or v ) and additional penalty-specific parameters θu (or θv). For sPLS θu = λ1 and

θv = λ2, and in the case where there is no sparsity constraint λ1 = λ2 = 0, the same

results as in classical PLS are obtained. In the other two regularized methods the

penalty functions are applied groupwise. Thus, for gPLS these terms are defined as

θu = (p1...pK , λ1) and θv = (q1...qL, λ2), and when λ1 = λ2 = 0 classical PLS results

are also retrieved. While for sgPLS θu = (p1...pK , λ1, α1) and θv = (q1...qL, λ2, α2), and

when α1 = α2 = 0 the group lasso penalty is obtained and the lasso when α1 = α2 = 1.

2.2.2.5 PLS Extensions: Partial Least Squares Discriminant Analysis

Another valuable PLS extension proposed in the literature is Partial Least Squares

Discriminant Analysis (PLS-DA) [117], [118], [119], which has been introduced to ac-

commodate a situation where the response is a categorical variable, in other words,

where y is a vector that takes only one of G possible unordered values y = 0, ...G− 1

representing the different class categories. It is a technique that can be employed

for both exploratory and classification purposes: the former case refers to the iden-

tification of variables that are most likely to be responsible for discrimination (for

example, by means of graphical display) while the latter refers to the construction

of predictive models to determine what class category a sample is most likely to be-

long to from a set of predictor variables. In this classification setting, PLS-DA shares

common attributes with well-known discrimination strategies such as Euclidean Dis-

tance to Centroids (EDC) [120], [121] , Linear Discriminant Analysis (LDA) [122] and

Quadratic Discriminant Analysis (QDA) [123]. In a situation where there are two

groups (G = 2) and two predictors (p = 2), all four of these methods seek to find

a separator or decision function that divides the space into two regions where the

two sample groups are located. Of course, when there are more than two variables,

the separator will be represented by a hyperplane in a multidimensional space. Fur-

thermore, the four approaches are considered to be supervised techniques because

before a decision function is identified and samples assigned to a class, information
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regarding the class labels of the samples must be known a priori.

EDC, LDA and QDA employ the same principle to assign a sample to a group and it

is based on the distance in the variable space between the sample and the centroids of

the group. The group whose distance is smallest is the one that the sample is defined

as belonging to and the discriminatory boundary is demarcated to occur when d2
iA =

d2
iB, that is, the squared distance between sample i and the centroids of group A is

the same to that of group B. (For the sake of brevity, a binary scenario is illustrated).

Naturally, the distance measure used for the three different methods is different. EDC

employs the Euclidian distance while LDA and QDA use the Mahalanobis distance

[124], [125] which uses for its calculation the variance-covariance matrix and different

definitions for it are allowed (see section 3.6.2.3.2 for more details). For example, for

LDA this is the pooled variance-covariance matrix over all groups while for QDA

the variance-covariance matrix is defined for each group and therefore the distance

metric differs for each class to be modelled. Because of this difference, QDA yields

non-linear separation bounds between the groups and it is preferred over LDA when

the variance structure of the groups is different.

In contrast, for PLS-DA the main principle to define a decisions boundary and to

assign samples to classes is based on the predicted values from the PLS regression

model. To be more precise, in a binary scenario the y = 0, 1 vector that specifies class

membership (0 for members of group A and 1 for group B) is considered as a one-

column matrix and the PLS1 algorithm is conducted as if the outcome variable was

continuous. This is a procedure that is referred to in the literature as PLS1-DA. From

the PLS regression coefficients, predicted values ŷ are retrieved either from the same

data used to fit the model (auto prediction) or from a CV procedure. Since PLS is

inherently designed for regression purposes and to deal with continuous variables,

the resulting predicted values take any values between 0 and 1 instead of an integer.

For that reason, a decision rule (DR) must be employed in order to translate ŷ into

meaningful class membership in an accurate manner. The simplest DR is to choose

a value halfway between the numerical class labels, following the examples given
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in this case, an observation is assigned to class A if the predicted value is below 0.5

and to class B if below. Such simple threshold produces accurate results for a binary

classification problem and sample groups of equal size and similar variance; however,

it is not an appropriate separator for groups of unequal sizes. Various other DRs have

been proposed in the literature to accommodate this scenario and they are discussed

in more detail in section 3.6.2.3.2.

When there are more than two groups, it is customary to extend the PLS-DA model so

that the vector indicative of class membership y becomes into a dummy block matrix

Y. This step is made by using a simple transformation method in which G different

indicator variables are created as follows:

yj =


1 if y = j

0 otherwise
(2.45)

In that manner, the response variable is transformed into a qualitative response ma-

trix of 0 and 1 values with G columns representing the outcome categories and with

n rows representing the membership of each observation. For example, if there are

three groups A, B, and C, the second column of Y represents class membership of

group B and for an observation that belongs to that class the row vector takes val-

ues of 0,1 and 0. Following the conversion of y into Y, two different approaches

can be employed to conduct PLS-DA. The first method is to perform three PLS1-DA

models, one for each column, in what is often called a one-versus-all approach. The

second method is to consider the dummy block matrix as a multivariable response

and perform the PLS2 algorithm as described in section 2.1.4.3, an approach known

as PLS2-DA. From the predicted values, class memberships are ascertained but more

elaborate DRs are needed in order to consider the particularities of the data being

analysed (i.e. relative group sizes).

A connection has been made between the discriminant methods discussed in this

section [126],[119]. For two equal class sizes, PLS-DA with one component provides
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equivalent classification performance to EDC and when using two components to

LDA. In contrast to PLS-DA, a common cited disadvantage of both LDA and QDA

is that the number of variables needs to be less than the number of observations

(n > p) as it requires the inversion of the within-in group variance-covariance ma-

trix, in which case it will be singular or close to singular. To circumvent this problem,

PCA can be used to reduce the dimensions of the data after which LDA or QDA is

performed on the PCs. If all non-zero PCs are used in the model, PCA-LDA provides

identical results to PLS-DA. However, the main advantage of the latter is its ability to

provide good insight into the predictor variables that are behind the discrimination

between classes by the examination of the loading vector of the PLS components. The

other approaches do not easily relate the classifier to the underlying variables espe-

cially when used in conjunction with PCA. It is important to state here that there is an-

other route to discrimination analysis using PLS and it involves a two step-procedure

where dimensionality reduction is conducted on the y vector of response values fol-

lowed by the use of the latent components as predictors in a classical discrimination

method [117], [118], [127]. Approaches such as logistic regression, LDA and QDA

have been proposed for that purpose.

Finally, since the algorithm for the computation of PLS-DA is the same to PLS-R (ei-

ther PLS1 or PLS2) sparsity can be imposed as previously described and therefore

the corresponding regularized versions (rPLS-DA) have been introduced in the liter-

ature: sparse PLS-DA (sPLS-DA) [128], group PLS-DA (gPLS-DA) and sparse-group

PLS-DA (sgPLS-DA) [129].
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3
The EnviroGenoMarkers Project,

Disease Endpoint of Interest and

Specifications of Statistical Models

3.1 Study Population

The analysis and results presented in this thesis are based on participants from the En-

viroGenoMarkers (EGM) project (www.envirogenomarkers.net). EGM is a large-

scale EU-funded project aiming at the development of a new generation of biomark-

ers to study the role of environmental agents in human disease; therefore, it is an ex-

posome project. It corresponds to a case-control study nested within two prospective

cohorts: the Italian component of the European Prospective Investigation into Can-

cer and Nutrition (EPIC-Italy) and the Northern Sweden Health and Disease Study

(NSHDS). The main chronic diseases of interest include those where it has been sug-

gested the environment plays an important role in their aetiology, namely breast can-

cer and Non-Hodgkin’s Lymphoma (NHL). The specific disease endpoint of interest

in this thesis is B-cell Lymphoma (BCL), a type of NHL.

3.1.1 EPIC-Italy

European Prospective Investigation into Cancer and Nutrition (EPIC) [130] is a multi-

centre prospective epidemiological cohort study following over half a million healthy

participants from middle age onwards. It was established to investigate the relation-
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ship between nutritional, lifestyle and environmental factors, and cancer and other

chronic diseases. Enrolment of volunteers started in 1992 and a total of 23 centres

from ten European countries are currently included in the cohort: Denmark, France,

Germany, Greece, Italy, The Netherlands, Norway, Spain, Sweden and the United

Kingdom. The Italian sub-cohort, EPIC-Italy, consists of 47,749 volunteers (including

32,157 women) aged 35-70, recruited from five different centres within the country:

Varese, Turin, Florence, Naples, Ragusa, between 1993 and 1998 [131]. A standardised

self-completed questionnaire was used to collect information on diet and lifestyle,

including aspects such as education, socio-economic status, employment, physical

activity, reproductive history, disease history, alcohol consumption and tobacco use.

Anthropometric measurements were also obtained using standardised methods. In

addition, blood samples were extracted in the centres at enrolment and later stored in

0.5ml plastic straws in liquid nitrogen containers at -196°C. More details can be found

in [132].

3.1.2 Northern Sweden Health and Disease Study

It includes participants from three different projects: the Västerbotten Intervention

Program, the Västerbotten Mammary Screening Program and the Northern Sweden

MONICA project [133]. A total of 95,000 healthy individuals aged 40-60 were invited

for inclusion in the project between 1985 and 2008. Subjects were asked to complete

a self-administered questionnaire to collect demographic, medical and lifestyle infor-

mation and a separate self-administered food frequency questionnaire at recruitment

as well as anthropometric measurements. Blood samples within these cohorts were

collected at recruitment in a uniform manner and stored at -80°C within two hours of

collection.

3.1.3 Ethical Approval

The EGM study was approved by the committees on research ethics in Florence

(EPIC-Italy) and in Umea (NSHDS) in accordance with the Declaration of Helsinki
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of the World Medical Association. At recruitment, all participants provided written

consent (using centre-specific forms administered in the local language) to provide

detailed information on their dietary and lifestyle habits and to have their health sta-

tus followed for the rest of their lives.

3.1.4 Selection of Cases and Controls

Incident NHL cases were identified through local Cancer Registries (loss to follow-

up of enrolled individuals was less than 2%) and occurred between 1 and 17 years

after recruitment. For each incident NHL case identified within the two cohorts, one

random control was selected among all cohort members alive and free of cancer at

the time of diagnosis of the index case matched by cohort, centre, gender, date of

blood collection (+/- 6 months), and age at recruitment (+/- 2.5 years). Information

from the two studies was integrated into a single database and standardised. NHL

cases were classified into subtypes according to the SEER ICD-O-3 morphology codes

[133].

The analysis was conducted in two analytical phases: initially 100 case-control pairs

were studied (study phase 1), which were supplemented with an additional 181 case-

control pairs (147 from NSHDS and 34 from EPIC-Italy) to increase the power of the

study (study phase 2). After further subtype characterisation and review, 11 cases

were reclassified (Hodgkin’s lymphoma (n = 6); T-cell lymphoma (n = 1); and un-

known (n = 4)) and excluded from future analysis along with their matched controls.

Moreover, two cases without suitable control samples were excluded. A total num-

ber of 268 BCL case and 268 healthy controls are retained in the study population.

(A descriptive summary of the study population (n = 536) with respect to the main

demographic covariates is provided in chapter 4, Table 4.1).
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3.2 Disease Endpoint of Interest: B-cell Lymphoma

Lymphomas are solid tumours of the immune system which are traditionally clas-

sified as Hodgkin’s and non-Hodgkin lymphomas (HL and NHL) accounting for

about 10% and 90% of all lymphoma cases, respectively. The type of lymphocyte

cell from which they arise is the main characteristic that distinguishes between the

two disease entities: while Hodgkin and Reed/Sternberg cells are the hallmark of

HL, NHLs arise from either B, T or Natural Killer (NK) lymphocytes with B-cell Lym-

phomas (BCLs) representing the vast majority of NHL cases (85-90%). NHL are also

subdivided according to their clinical presentation into indolent (low grade) or ag-

gressive (high grade) which although have a shorter natural history are frequently

curable, unlike the indolent tumours which have a long survival but tend to be ulti-

mately fatal. Since B cell malignancies are overwhelming more frequent than T/NK

cell neoplasms, BCLs are consequently the disease endpoint of interest of this thesis.

NHL was first described as a separate entity in the late 1940s [134]. Advances in

the understanding of biology and genetics as well as the availability of new diagnos-

tic methods and therapies provided a better characterisation of the disease and the

ability to identify different subtypes. Several classification systems were proposed

that grouped these malignancies according to their histological features including the

Rappaport formulation, the Working Formulation, the Kiel classification and the Re-

vised European-American Lymphoma (REAL) classification. In 2001, the WHO pro-

duced for the first time a classification that defined all haematological malignancies in

terms of immunophenotype, genetic abnormalities and clinical characteristics which

was incorporated into the subsequent versions of the International Classification of

Diseases for Oncology (ICD-O3) [135], [136]. The WHO classification of haematolog-

ical malignancies subsequently superseded the previous classification systems and

achieved a much-needed international consensus. The 2016 revision [137] is the latest

update of the WHO classification and defines a total of 65 different NHL subtypes

including 38 BCL subtypes and 27 T- and NK- cell neoplasms.
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Thus, NHLs are a heterogenous group of malignancies and include a diverse spec-

trum of cancers of the immune system. The most common types are Diffuse Large B-

cell Lymphoma (DLBCL), Follicular Lymphoma (FL), Chronic Lymphocytic Leukaemia

(CLL) and (Mucosa-Associated Lymphoid Tissue (MALT) lymphoma representing

30-40%, 20% and 7% of all B cell malignancies, respectively. While DLBCL has an

aggressive presentation causing fulminant symptoms and signs needing prompt as-

sessment and treatment, FL and MALT present an indolent course and can be ob-

served without therapy even for years after first diagnosed; on the other hand, CLL

has an indolent presentation in a third of the cases. Often, both FL and indolent CLL

progress towards transformation into DLBCL leading to a more aggressive clinical

course [138].

3.2.1 Descriptive Epidemiology and Risk Factors

NHL is the most common hematologic malignancy in the world [139]. It is more

common in developed countries with an estimated 70,800 new cases in the USA in

2014 and 13,413 new cases in the UK in 2013 [140], [141], [142]. In both countries,

this malignancy accounts for around 4% of all cancers and it ranks as the 7th most

common cancer among males and the 6th most common cancer among females in the

USA while in the UK it occupies the 7th position for both genders [142]. There is a

large variation in the geographical distribution of NHL subtypes: a higher incidence

of low-grade BCL is seen in high-income regions than in low-income and middle-

income regions. In contrast, low- and middle-income regions have a higher incidence

of aggressive BCL and T- and NK-cell tumours than high-income regions [143], [144].

For example, extranodal NK–T-cell lymphoma and Burkitt’s lymphoma (an aggres-

sive subtype) present a high incidence in east Asia and Africa, respectively and are

strongly associated with Epstein-Barr Virus (EBV) infection (i.e. seropositivity preva-

lence of this virus is high in those regions). On the other hand, a high proportion of

FL is observed in North America and Europe.

A long-term increase in the incidence of NHL was observed between the 1950s and
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1990s in many high-income countries and is well documented in the literature, how-

ever, no further increase has been reported during the last two decades [145]. The

reasons for this pattern are unclear, part of the increase has been attributed to AIDS-

related tumours following the HIV epidemic. Other factors that have been postulated

as potential contributors are changes in classification methods and improvements in

diagnostic technologies and cancer registrations [146], [147]. It has been suggested

that the introduction of the WHO classification played a role in the upward trend as

previously unrecognized lymphoma types were included as NHL subtypes. In addi-

tion, refinements in the histomorphological understanding of HL led to a large num-

ber of cases being reclassified as NHL [148]. The stabilised incidence observed since

early 2000 has been credited to cancer preventative measures and to changes in the

prevalence of putative risk factors, such as restrictions in the use of certain chemical

carcinogens [149], [150] . Whether this trend pattern reflects overall disease incidence

or only changes in specific subtypes remains to be seen as recent evidence shows that

the incidence of indolent BCL and T/NK-cell NHL rose considerably whereas that of

high-grade BCL remained stable [144], [151].

Factors affecting an individual’s risk of developing NHL have been extensively stud-

ied. As this is a malignancy of the immune system, the most consistent and strong

associated risk factor is congenital or acquired immunosuppression. Individuals with

HIV have an increased risk of developing high-grade NHL involving extra nodal

sites, some of which are specific to HIV/AIDs patients (plasmablastic DLBCL) and

other which also manifest in HIV negative patients [143], [152]. Others at increased

risk include organ-transplant recipients, patients who have had high-dose chemother-

apy with stem-cell transplantation, and those with inherited immunodeficiency syn-

dromes. Furthermore, several autoimmune disorders have been associated with in-

creased risk of NHL, including rheumatoid arthritis, celiac disease, systemic lupus

erythematosus and Sjögren’s syndrome; it is unclear whether this increased risk is re-

lated to the autoimmune disorder itself or to the immunosuppressive therapies used

in its management [153].
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Infection also plays a part in development of some lymphomas, either by inhibition

of immune function or by other mechanisms, such as induction of chronic inflamma-

tory response. In addition to the previously mentioned associations between NHL

subtypes and HIV and EBV infections, other infection agents have been closely con-

nected with the development of NHL. Helicobacter pylori causes most gastric MALT

lymphomas [154] while Hepatitis C virus has been implicated with splenic Marginal

Zone B-cell Lymphoma (MZL) and DLBCL [155], [156]. In these cases, patients with

the concomitant infection respond positively (regression of the lymphoma) to the

eradication of the virus. Borrelia burgdorferi (a tick-borne spirochete that causes Lyme

disease) and Chlamydia psittacosis (a bacterium transmitted from pet birds to humans

causing influenza-like symptoms) are thought to be associated with the development

of MZL [157], [158]. Coxiella burnetii (a bacterium that infects animals such as goats,

sheep, and cattle and that in humans causes Q fever) has been proposed as a risk

factor for FL and DLBCL [159].

Other risk factors have been postulated in the literature but either a weak associ-

ation is shown, evidence implicate them in an inconsistent manner or the percent-

age of NHL cases they account for is small. Increased risk among individuals with

relatives previously diagnosed with NHL or any family history of any hematopoi-

etic malignancy has been reported [160], [161], however familial aggregation is rare.

A number of medications including statins, NSAIDs, various antibiotics, phenytoin

(a commonly used anticonvulsant drug), antidepressants and benzodiazepine have

been implicated by some studies [145], [162], although it is difficult to separate their

effects from those of the underlying condition that prompt treatment. Blood trans-

fusion is another medical intervention associated with a higher risk, but evidence

remains inconclusive. The effects of some key risk factors such as hair dyes seem to

be decreasing as a consequence of the changes in the chemicals used in these prod-

ucts [150]. Finally, lifestyle and anthropometric factors such as cigarette smoking and

obesity have been implicated with specific subtypes (FL and DLBCL, respectively)

[163], [164].
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3.2.2 Pathophysiology and Genetics

To understand the cellular origin of human BCL, the mechanisms that drive normal

B cell differentiation and activation should be considered. Normal B cell develop-

ment starts in the bone marrow where multipotent hematopoietic stem cells give rise

to lymphoid precursors that initiate an irreversible differentiation program in order

to express a functional and unique B Cell Receptor (BCR) through a gene remodelling

process known as V(D)J recombination. After a series of selection developments,

only the cells with a positively selected functional BCR leave the bone marrow mi-

croenvironment while the rest undergoes apoptosis. Mature naïve B cells circulate

as small, resting lymphocytes in peripheral blood and secondary lymphoid tissues

(spleen, lymph node and mucosa-associated).

Normal B cell activation occurs in these secondary organs where mature cells en-

counter antigen and, with the help of T cells, form primary and subsequently sec-

ondary lymphoid follicles, the latter being characterised by Germinal Centre (GC)s,

which are the histological structures of affinity maturation dedicated to the genera-

tion and the selection of B cells that produce high-affinity antibodies. Two different

functional compartments can be distinguished in the GC: a dark zone mainly con-

sisting of proliferating GC B cells (centroblasts) and a light zone where GC B cells

(centrocytes) are resting. The antibody diversity supported by the GC occurs as a

consequence of two additional gene remodelling processes, known as somatic hyper-

mutation (dark zone) and class-switch recombination (light zone). The outcome of the

GC reaction is the generation of both memory B cells and plasma cells which leave

the GC microenvironment after the differentiation and activation processes have con-

cluded.

Although the gene remodelling processes mentioned above play a central role in nor-

mal B cell development, they are mechanisms prone to errors as breaks in the double-

stranded DNA (dsDNA) are required [165]. Chromosomal translocations and inacti-

vating mutations in tumour suppressor genes arise when failures in the DNA repair
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machinery occur and these genetic aberrations are known to underlie lymphomage-

nesis [138], [166], [167]. Indeed, unlike most solid tumours which typically have sub-

stantial genetic instability, lymphomas generally have a stable genome and several

genetic lesions are well-documented to be hallmarks of specific BCL subtypes. The

translocations typically implicated involve recombination between Immunoglobulin

(Ig) loci on one side and a proto-oncogene locus on the other, with the former be-

ing an actively transcribed gene in B cells since the Ig polypeptides are part of the

BCR structure. As a result, a proto-oncogene is placed under the influence of active

Ig promoters or enhancers deregulating the oncogene expression. Such monotypic

translocation patterns are a footprint characteristic in subtypes such as FL, Burkitt

and mantle cell lymphomas where the vast majority of tumour cases present spe-

cific genetic lesions. For example, over 90% of FLs result from the t(14;18)(q32;q21)

translocation which sustains the continuous expression of the BCL2 oncogene. Other

subtypes such as DLBCL, MALT lymphoma and Multiple Myeloma (MM) exhibit

diverse translocations lesions reflecting a more diverse phenotype of those subtypes.

On the other hand, the GC is known to be the source of many types of lymphoma

including DLBCL, FL and Burkitt lymphoma with malignancies arising from GC B

cells that are “frozen” at a particular stage of differentiation [138], [166], [167]. For

instance, the last subtype mentioned seems to derive from dark zone B cells while in

the case of DLBCL two main biological distinct entities have been identified, a sub-

type resembling light zone GC B cell (Germinal Centre B cell DLBCL (GCB-DLBCL))

and another subtype derived from GC cells arrested during the early stages of post-

GC plasma cell differentiation (Activated B cell DLBCL (ABC-DLBCL)). Entities with

a post-CG origin include CLL and MM which are presumably derived from mem-

ory and plasma cells, respectively. Figure 3.1 provides an illustrative summary of the

cellular origin of the most common human BCLs and the stage of the differentiation

process from which they arise. The finding that the cellular origin of human BCL re-

sides in the GC can be explained by two critical factors: the vigorous proliferation that

B cells undergo during selection and differentiation and the recombination processes
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Figure 3.1: B cell maturation in the germinal centre and cellular origin of the most
common human BCLs.

BCLs originate from cells that are blocked at different stages of maturation: Burkitt lymphomas resemble dark zone B cells; FL
and GCB-DLBCL originate from light zone B cells; and ABC-DLBCL shows characteristics of late GC B cells (plasmablasts) that
are committed to plasma cell differentiation. Two CLL subgroups can be distinguished: one with a unmutated IgV genes and
one with IgV-mutated lesion arising from different cell differentiation states. Illustration taken and modified from Seifert et al.
[167].

of somatic hypermutation and class switching which are mutagenic mechanisms that

strongly increase the risk for a B cell to undergo malignant transformation. The last
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factor could also partly explain why B cells malignancies are more frequent than T

cells [166].

3.3 Omics Measurements in the EGM Project

Fresh blood samples from healthy volunteers were collected using two different anti-

coagulants, citrate (EPIC-Italy) or Ethylene Diamine Tetraacetic Acid (EDTA) (NSHDS)

and processed for fractionation by centrifugation (15 minutes at 1,500g at room tem-

perature) within two hours after collection for the isolation of buffy coats, erythro-

cytes and plasma. Fractions were then aliquoted and immediately stored in liquid

nitrogen at -196°C (EPIC-Italy) or -80°C (NSHDS) to be later transported on dry ice

to the laboratory and stored again for a short period at -80°C before omics analyses.

To reduce the impact of technical-induced variation, matched case-control pairs were

analysed next to each other in the same plate and batch. As matching was performed

by sample date, each case has the same storage time (+/- 6 months) as its matched

control. Furthermore, laboratory personnel were blinded in relation to case-control

status and quality control samples were included in the analysis with the case-control

sets.

From peripheral blood mononuclear cell (PBMC) samples, targeted proteomic, tran-

scriptomic and DNA methylation (DNAm) profiles were acquired; the different plat-

forms used for each of the omics measurements and the number of features they assay

are described as follows:

1.- Targeted proteomics:

– MILLIPLEX®HCYTOMAG-60K and HSCYTMAG-60SK kits.

– A panel of inflammation-related proteins (n = 32).

2.- Gene expression:

– Agilent 4x44K human whole genome microarray.
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– A total of 29,662 transcripts.

3.- DNAm:

– HumanMethylation450 BeadChip (HM450).

– A total of 485,577 CpG sites.

These platforms correspond to a Multiplexed Bead Assay (MBA), an RNA microar-

ray and a DNA bisulphite conversion method, respectively. (See section 1.1 for more

details on the functioning of these platforms). All measurements were conducted

according to the protocol described by the manufacturer. All 268 case-control pairs

have full proteomic measurements while 232 (86.57%) pairs have full-resolution gene

expression data. DNAm profiles were available for a subset of those pair sets: 199

(74.25%) and 176 (75.86%) case-control pairs have complete epigenetics data in ad-

dition to the proteomics and transcriptomics data, respectively. Details of the suc-

cessfully analysed bio-samples of the omics profiles under study by main disease

subtypes are summarised in Table 3.1. In the proteins analyses, four analytes (IL-

12, IL1-RA, sIL2-RA and Flt3ligand) were excluded from further statistical analyses

due to a high rate of non-detects (>75%). The final number of measurements under

study corresponds to 28 immune markers: 10 chemokines, 12 cytokines and 6 growth

factors. Details of the final analytes measured in the assay are presented in Table 3.2.

Appropriate data pre-processing steps were performed to each of these three omics

measurements before analitical research. For proteomics, concentration levels were

log-transformed (log2) to normalise their distributions for all statistical analyses. Mea-

surements out of the range of the calibration curve were imputed based on a Maxi-

mum Likelihood Estimation (MLE) method which was informed by the observed

correlation structure within the data [168]. Imputation of samples with concentration

levels below the Limit of Detection (LOD) (see Table 3.2) was carried out using the

empirical LOD across all plates as the upper bound. Imputation of samples with a

concentration exceeding the calibration curve was carried out using a value of twice

the highest empirical concentration that was not out of range of the calibration curve

70



Chapter 3

Table 3.1: Number of study participants with successfully analysed proteomics and
both proteomics and epigenetics samples and with successfully analysed transcrip-
tomics and both transcriptomics and epigenetics samples.

Disease
Subtype

Proteomics
n (%)

Proteomics
and Epigenetics

n (%)

Transcriptomics
n (%)

Transcriptomics
and Epigenetics

n (%)

CLL 42 (7.84) 24 (6.03) 34 (7.33) 18 (5.11)

DLBCL 44 (8.21) 35 (8.79) 37 (7.97) 30 (8.52)

FL 39 (7.28) 29 (7.29) 37 (7.97) 29 (8.24)

MM 76 (14.18) 62 (15.58) 67 (14.44) 57 (16.19)

Others 67 (12.5) 49 (12.31) 57 (12.28) 42 (11.93)

Controls 268 (50) 199 (50) 232 (50) 176 (50)

Total 536 (100) 398 (100) 464 (100) 352 (100)
As detailed in the following sections, proteomics and transcriptomics measurements are analysed independently in relation to
case-control status while epigenetics measurements are employed to indirectly estimate cell-type composition only. Therefore,
DNAm profiles are used to assess the possible confounding effect that intra-sample variation introduces in the concentration of
inflammatory markers and levels of gene expression signals (see section section 3.4 below).

as the upper bound.

As per transcriptomics, the intensity levels were also log-transformed (log2) to nor-

malise their distributions before conducting statistical analyses. The technical perfor-

mance and quality of the microarrays was assessed by visual evaluation of the scan

images before and after within- and between-array normalisation which was per-

formed using the LOcally WEighted Scatterplot Smoothing (LOESS) and A-quantile

methods, respectively [169]. A description of these approaches is provided in sec-

tion A.1. The missing values of probe intensity were imputed using the k nearest

neighbours approach by which the missing data is replaced by the average value of

the k nearest patterns (k = 15, Euclidian metric) [169].

In contrast to RNA microarray experiments where pre-processing steps are well es-

tablished and documented, there is no clear consensus on how to perform these pro-

cedures in the analysis of DNAm using HM450 bead chip arrays [170], [171], [172],

[173]. Reasons explaining the difficulties associated with pre-processing steps in

DNAm are discussed in section A.1. In the case of the analysis of the DNAm data
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Table 3.2: Panel of the final 28 analytes measured in the MBA kit.

Protein

(abbreviation)

LOD

(pg/mL)
Protein (complete name)

Molecular

Function

EGF 1.73 Epidermal growth factor Growth factor

FGF2 2.21 Fibroblast growth factor 2 Growth factor

GCSF 0.71 Granulocyte colony stimulating factor Growth factor

VEGF 8.83 Vascular endothelial growth factor Growth factor

GMSCF 0.08 Granulocyte-macrophage colony stimulating factor Growth factor

TGFa 0.28 Transforming growth factor alpha Growth factor

Eotaxin 1.20 — Chemokine

Fractalkine 1.30 — Chemokine

GRO 3.80 Growth-related oncogene Chemokine

MCP1 0.73 Monocyte chemotactic protein 1 Chemokine

MCP3 1.79 Monocyte chemotactic protein 3 Chemokine

MDC 2.25 Macrophage derived chemokine Chemokine

MIP1a 0.45 Macrophage inflammatory protein 1 alpha Chemokine

MIP1b 1.75 Macrophage inflammatory protein 1 beta Chemokine

IP10 2.81 Induced protein 10 Chemokine

IL8 0.07 Interleukin 8 Chemokine

IL1b 0.08 interleukin 1 beta Cytokine

IL2 0.09 Interleukin 2 Cytokine

IL4 0.11 Interleukin 4 Cytokine

IL5 0.04 Interleukin 5 Cytokine

IL6 0.02 Interleukin 6 Cytokine

IL7 0.08 Interleukin 7 Cytokine

IL10 0.10 Interleukin 10 Cytokine

IL13 0.04 Interleukin 13 Cytokine

INFa 1.54 Interferon alpha 2 Cytokine

INFg 0.14 Interferon gamma Cytokine

TNFa 0.01 Tumor necrosis factor alpha Cytokine

sCD40L — Soluble CD40 ligand Cytokine
MBA:Multiplex Bead Assay, LOD: Limit of Detection.

used in the EGM project, the specific steps were carried out as follows: i) exclusion of

samples and probes with high rate of non-detected probes and samples (respectively),

ii) dye bias correction, iii) normalisation and iv) Combatting Batch Effects (ComBat)

correction (see section 3.5 for more details).
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Finally, similar to proteins concentration levels the missing values for covariate of in-

terest were also imputed based on a MLE method [168]. These include the following:

Body Mass Index (BMI) (n = 8, 1.5%), smoking status (n = 14, 2.6%), education (n =

16, 2.98%), alcohol intake (n = 41, 7.65%) and physical activity (n = 2, 0.37%).

3.4 Cell-type Heterogeneity: White Blood Composition

Correction

Omics profiles derived from complex tissues such whole blood or solid tumours rep-

resent an average change in concentration or expression over many different cell

types. Importantly, the cell-type composition of complex tissues also varies in re-

sponse to phenotypes such as cancer or age [174]. Cell heterogeneity is thus a con-

founding factor and correcting for this effect becomes crucial if one wishes to identify

potential causal alterations between omics measurements and a specific phenotype of

interest. In the case of the EGM project, omics profiles were generated using PBMC

samples which is a mixture of different cell types, mainly two types T lymphocytes

(CD4 and CD8 cells), B cells, NK cells, monocytes and granulocytes. In addition, the

disease endpoint of interest of this study is lymphoma whose target tissue is blood

with one clinical manifestation being the pathological alteration of the White Blood

Cell (WBC) composition. Therefore, cell-type heterogeneity adjustment is a key step

to be considered in the statistical analyses of proteomic and transcriptomics profiles

in relation to BCL.

Quantification of the WBC composition could be accomplished with the use of freshly

drawn venous blood that is immediately prepared in a specially equipped laboratory

[175]. It requires labour-intensive and expensive steps (flow cytometric measure-

ments based on protein membranes to distinguish specific leukocyte subtypes) that

become impractical to be used in wide-scale epidemiological studies [175]. In the

absent of the actual cell counts for each study sample, the immune cell composition

can be estimated using deconvolution approaches that estimate putative numbers
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and proportions of cell types making use of either DNAm or gene expression pro-

files as surrogate variables. Typically, DNAm provides more reliable estimates than

RNA-based approaches because of the fundamental role this mechanism plays in lin-

eage cell-type differentiation [176]. Deconvolution algorithms can be classified into

reference-based and reference-free depending on whether the statistical approach re-

quires a priori defined reference DNAm profiles of cell types that are present in the

tissue of interest (i.e. regions of the genome known to be differentially methylated

across cell types).

Houseman et al. [175] introduced the first reference-based deconvolution algorithm

which has been demonstrated to perform well on blood (whole and PBMC), a tis-

sue for which the cell-specific composition is well-established and for which reliable

DNAm reference profiles have been generated. For this reason, in this thesis the

Houseman algorithm was employed in conjunction with the DNAm profile reference

database made available by Reinius et al. [177] (purified human leukocytes from six

healthy male blood donors) in order to estimate the proportions of the WBC subpop-

ulation of interest: T lymphocytes CD4 and CD8, B cells, NK cells, monocytes and

granulocytes. (A brief description of the approach is provided in section A.2). These

inferred proportions were then included as additional covariates in the univariate

analyses performed using proteomics and transcriptomics in relation to BCL case-

control status (see section 3.6.1 below). The WBC correction thus allows the identifi-

cation of inflammatory markers or gene transcripts whose changes in concentration

or expression are not driven by underlying changes in cell-type composition.

3.5 Batch Effects: Correction for Technical-induced Vari-

ation

Intra sample heterogeneity is not the only confounding factor that may affect the reli-

ability of omics analysis, systematic variation introduced by technical noise can also

dilute the biological effect of interest. These technical artefacts are known as batch ef-
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fects and arise by differences in the experimental conditions (e.g. atmospheric ozone

levels, temperature, humidity, pH, etc.), reagent quality, laboratory personnel, among

others [178]. In an ideal experimental setting, all samples would be processed in one

go, however due to the large number of samples and the restrictions imposed by the

laboratory equipment, this is seldom the case. For example, in a typical microar-

ray experiment 12 samples are analysed on one chip, eight chips (96 samples) form

one plate, and two plates can be placed in the hybridisation oven at the same time.

Consequently, batch effects cannot be avoided in studies comprising a large number

of subjects and removal of these effects is necessary for a robust analysis. The data

pre-processing steps mentioned previously such as subtraction of background noise

and within- and between-array normalisation techniques do not adjust for inter-batch

variability.

Several approaches have been proposed for batch effect removal, including linear

models [179], Linear Mixed Models (LMM)s [180], [181], [182], ComBat [183], Sur-

rogate Variable Analysis (SVA) [184] and Independent Surrogate Variable Analysis

(ISVA) [185]. The first three methods assume that the variables responsible for the

technical variation are known while the last two approaches model potentially un-

known confounding factors by estimating surrogate variables which are derived from

a residual matrix (a matrix whose signal due to the primary variable(s) of interest has

been removed). The estimated parameters from all these models are used to calculate

new concentration or expression levels that are corrected for batch effect or techni-

cal variation (in other words, to obtain the batch-adjusted or “de-noised” measure-

ments).

Common variables that have been linked to introduce batch effects are processing

groups and dates of the main experimental processes, and their potential impact can

be assessed by performing Principal Component Analysis (PCA), hierarchical clus-

tering or by plotting individual features versus these putative technical confounders

[178]. These identified variables are then employed as standard covariates in a linear

model, random effect terms in a LMM or modelled through ComBat. On the other
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hand, approaches such as SVA or ISVA can be employed when the true sources of

technical variation are unknown or cannot be adequately identified; they aim at the

construction of (independent) surrogate variables responsible for technical induced-

variation which can be later included as covariates in future analyses. More details

on these three methods is provided in section A.3.

Under the assumption that the main drivers of unwanted variation were known, the

method of choice to correct for technical-induced variation in this thesis was LMMs

and the model specifications are described in more details in the following section.

3.6 Statistical Methods to Analyse EGM Data

3.6.1 Linear Mixed Model: Model Specifications

In chapter 4, LMMs including a random intercept term only (see section 2.1.3 for

more details) were applied to proteomics and transcriptomics datasets in order to i)

investigate the relationship between each marker separately and the disease outcome

and ii) attenuate the potential effect of technical-induced noise in omics experiments.

The general formulation of the model for participant j in group i can be described as

follows:

yij = (β0 + uAi) + β1xij + β2FE ij + εij, (3.1)

where yij is a continuous variable representing the immune analyte concentrations

(proteomics) or gene expression levels of probes (transcriptomics), β0 is the inter-

cept of the model, εij is the residual error and xij is the outcome of interest, a binary

variable indicating if individual j is a BCL case or not, with β1 being its associated

regression coefficient. In the case of transcriptomics data, it is common to express β1

as the fold-change (f ) using the transformation f = 2β1 . FE ij is a vector of fixed

effect variables for individual j belonging to group i with the corresponding regres-

sion coefficients compiled in the vector β2. The following variables are included in

the fixed effect term:
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– Matching variables for cases and controls: age, gender and cohort (EPIC-Italy

or NSHDS).

– The experimental study phase (1 or 2).

– Potential confounders observed in previous analyses of BCL within the EPIC

cohort [182], [186], [187], [188]: BMI (continuous variable measured in kg/m2),

education (5 classes: none, primary, technical/professional, secondary, univer-

sity/college), physical activity (4 classes: inactive, moderately inactive, moder-

ately active, active), smoking status at enrolment (3 classes: non-smokers, for-

mer smokers, smokers) and alcohol intake at enrolment (continuous variable

measured in g/day).

Technical variation was modelled through the random intercept term uAi which rep-

resents the shift associated toAi, the value of the random effect variable(s)A observed

for group i. The following variables were included in the random intercept term:

– The analytical plate on which the sample was processed (proteomics analysis).

– The dates in which the three main laboratory steps of the RNA microarray ex-

periment were conducted: RNA isolation, dye labelling and hybridisation (tran-

scriptomics analysis).

For the first objective, investigate the relationship between each individual marker

and BCL status, hypothesis testing was performed using the Likelihood Ratio Test

(LRT, see section 2.1.4.3 for more details) comparing the maximum of likelihood of

the LMM excluding the outcome of interest to the model including that variable. The

test statistics was compared to a chi-squared distribution with one degree of freedom,

which is the difference in number of parameters between the two models. For the sec-

ond objective, reduce the potential effect of technical noise, the estimated parameters

from the full LMM specified in Equation 3.1 were used to calculate concentration and

expression levels adjusted for technical variation (“de-noised” proteomics and tran-

scriptomics data, respectively) by subtracting the estimated random effect term(s)

from the original observed levels.
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As a sensitivity analysis, correction for WBC differentials was conducted in the case-

control pairs for which DNAm profiles were available (in addition to the proteomics

and transcriptomics profiles) by including in the LMM the estimated proportion of

the main cell types that conform PBMC samples. The adjustment was performed in

two different manners:

– Partial WBC adjustment: each cell proportion (continuous variable from 0 to 1)

was included in the fixed effect term along with the covariates described above.

In other words, for each protein and for each transcript a total of six models

with partial adjustment were fitted. The proportions of the following cells were

added in the model: T lymphocytes CD4 and CD8, B cells, NK cells, monocytes

and granulocytes.

– Full WBC adjustment: five cell proportions were jointly added as additional

confounder variables to the fix effect term along with the covariates described

above. Since in this case the proportion of the six cell subpopulations sums to

1, one cell type (here granulocytes) was excluded in order to properly estimate

the regression coefficients.

3.6.2 Partial Least Squares: Model Specifications

Partial Least Squares (PLS) approaches are extensively applied to EGM omics data

in chapters 5 and 6. In particular, in chapter 5 I employ regularized Partial Least

Squares Discriminant Analysis (rPLS-DA) to analyse the proteomics and transcrip-

tomics datasets in order to i) identify proteins and transcripts indicative of future risk

of BCL and its main histological subtypes and to ii) investigate the applicability of

these novel statistical approaches. Subsequently, in chapter 6 I employ regularized

Partial Least Squares (rPLS) to perform two-block integration between the transcrip-

tomics and proteomics datasets in order to i) unravel relevant biological patterns for

the disease outcome under study and to ii) thoroughly compare and contrast the ap-

plied statistical methods.
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The use of these techniques as a statistical methods to analyse high-dimensional data

requires the computation of tuning parameters, a process that is usually referred to

as model selection or model calibration because every value of the parameter cor-

responds to a different statistical model with different predictors variables. As out-

lined in section 2.2.2.3, the number of parameters differs for classical PLS (where no

sparsity is imposed in the construction of the components) and for the regularized

versions. In the first case, there is only one parameter to tune that corresponds to the

number of latent variables, component scores or dimensions H while for the second

case there are additional parameters to select that control the regularization level.

These extra parameters and the model feature they control can be summarised as

follows:

1.- Sparse PLS (sPLS):

– Number of variables (λ1,h, λ2,h).

2.- Group PLS (gPLS):

– Number of functional groups (λ1,h, λ2,h).

3.- Sparse-group PLS (sgPLS):

– Number of functional groups (λ1,h, λ2,h).

– Number of variables included in the selected functional groups (α1,h, α2,h).

In the two-block scenario these model elements must be defined for both the X and

the Y matrices (hence the subscripts 1 and 2); however, if the X (or Y) matrix is not

divided into K (or L) groups, the number of parameters needed is reduced for gPLS

(λ1,h) and for sgPLS (λ1,h, α1,h) but remains the same for sPLS. In contrast, for discrim-

inatory purposes (rPLS-DA) such specifications are only required for the predictor

matrix X. Both two-block PLS and PLS-DA require these additional parameters to be

specified for the H component scores (hence the subscript h). Note that by extension,

if λ and α define the number of elements to include in the corresponding models,

they also determine the degree of sparsity or parsimony; that is, the number of zero
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elements per component.

3.6.2.1 Parameter Tuning

The choice of the optimal values of these three tuning parameters remains an open

question as different approaches and metrics of performance are employed in the lit-

erature. Commonly, Cross-Validation (CV) is used to choose the optimal value of H ,

λ and α by means of a sequential strategy in which the value of H is selected first fol-

lowed by the tuning of λ and α for each latent variable h at a time. In other words, for

the regularized versions the optimal degree of sparsity on a given PLS component is

dependent on the degree of sparsity selected on the previous components. Depend-

ing on the chosen metric of performance, the optimal value of the tuning parameters

H , λ and α is defined as the value that minimises, maximises or meets a certain cri-

terion. Several metrics of performance (also called diagnostic statistics or scores) are

available for this purpose; they depend on both the PLS variant being performed (dis-

criminant analysis versus two-block) and the PLS mode (regression versus canonical).

For the regression case, these can be summarised as follows:

– R2 or proportion of variance explained in the response Y (two-block PLS).

– Q2 statistics (two-block PLS).

– Discriminant Q2 (DQ2) (PLS-DA).

– Root Mean Squared Error of Prediction (RMSEP) (two-block PLS).

– Number of Misclassifications (NMC) (PLS-DA).

– Misclassification Error Rate (ER) (PLS-DA).

– Area Under the Curve (AUC) or Area Under the Receiver Operating Character-

istic (AUROC) (PLS-DA).

The first three metrics are employed to define the optimal number of components (H)

only, either in the classical or the regularized versions. The rest of the statistics have

been employed to ascertain the appropriate number of components and/or optimal

80



Chapter 3

degree of sparsity (λ and α). On the other hand, in PLS canonical mode there is a lack

of robust statistical criteria to evaluate canonical correlation methods and to deter-

mine optimal model specifications; typically, decisions make use of prior biological

knowledge and visual inspection and interpretation of the output. In the following

sections, I describe in more details the sequential strategy used to optimize the model

parameters as well as the metrics of performance used in regression mode (metrics of

performance for canonical mode are described in section A.4).

3.6.2.1.1 Sequential Strategy

A thorough parameter tuning strategy is to first define a sufficiently large number of

components, for example H = 6 and fit six different PLS models with h = 1 to h = 6

dimensions [189]. CV is then performed on those six models; the one optimizing the

value of the chosen diagnostic statistics defines the final number of latent variables.

The second step is to determine the optimal degree of sparsity for the chosen number

of dimensions which is conducted sequentially for each component at a time. For

the particular case of a PLS-DA model, it has been suggested to start the sequential

strategy by defining this sufficiently large number of dimensions as G or G + 2

components, where G is the total number of classes [190]. Of course, computational

constraints must be considered in both scenarios and are of special importance in

setting where n << p (PLS-DA) or n << p + q (two-block PLS). As such, there

are differences in the sequential strategy depending on the specific technique being

applied as well as the way in which sparsity is imposed and they are discussed below.

Imposing sparsity in one block only or PLS-DA : For the sake of simplicity, let ad-

dress first the two-block PLS scenario where one wishes to impose sparsity on the X

matrix only, which is equivalent to a PLS-DA model. For a sPLS(-DA) model where

the aim is to define the optimal number of variables, CV is performed on p different

models retaining 1 to p variables, where p is the total number of variables in the pre-

dictor matrix. For a gPLS(-DA) model where one seeks to define the optimal num-

ber of functional groups, CV is performed on K different models retaining 1 to K
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functional groups, where K is the total number of functional groups in the predictor

matrix. For a sgPLS(-DA) model, a more complex scenario is faced as the number

of different models whose performance is assessed is contingent upon K as well as

the desired degree of sparsity inside the selected functional groups (as discussed in

section 2.2.2.4, the tuning parameters α can take any values between 0 and 1, α = 0

is equivalent to gPLS and α = 1 to sPLS). Once the process is concluded for the first

component, the procedure is repeated for the second component with an optimal de-

gree of sparsity already defined for the first latent variable. Thus, the whole tuning

parameter process finalises with an optimal number of components as well as optimal

degree of sparsity for those chosen dimensions.

Expectedly, in a high dimensional setting assessing the performance by means of CV

on all p or K models becomes impractical, therefore a grid of values can be used

instead. The grid needs to be carefully chosen to achieve a balance between resolution

and computational time [191]. On the one hand, one should consider the minimum

and maximum values of the selection size that can be handled practically for follow-

up analyses. On the other hand, the computational aspect should also be considered

as repeated CV is a time-consuming procedure when dealing with high-dimensional

data. In the particular case of sgPLS(-DA), a two-dimensional grid is employed also

applying a sequential strategy; that is, for any 1 ≤ k ≤ K different values of α1,h are

tested [116].

Imposing sparsity on the two blocks of data : When the aim is to introduce spar-

sity simultaneously on X and Y, a two-dimensional grid must be used for both sPLS

and gPLS while a four-dimensional grid is necessary in the case of sgPLS [116]. Com-

putational practicalities restrict such a search; therefore, a coarse tuning grid can be

assessed first to evaluate the likely boundaries of the values that define the model

specifications before setting a finer grid [190]. It is worth to mention that prior bi-

ological knowledge can also be taken advantaged of to counterbalance these com-

putational limitations and to propose sensible values of the tuning parameters. It
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has also been proposed to choose all hyperparameters (sPLS: λ1,h, λ2,h, gPLS: λ1,h, λ2,h

and sgPLS: λ1,h, λ2,h, α1,h, α2,h) exclusively on subjective grounds making use of the

available biological information to determine model specifications [84], [116], [128].

This alternative approach avoids the restrictions associated to the sequential strategy

previously described, however, it may not be suitable when the prior knowledge is

lacking.

Cross-validation : CV [82] is at the core of any parameter tuning process and corre-

spond to a resampling technique mainly used for the purposes of model assessment

and model selection. The former refers to the evaluation of the prediction perfor-

mance of a statistical method, the latter to the selection of the appropriate level of

complexity (such as the adequate number of predictor variables, as previously men-

tioned). Here, it is important to emphasize the distinction between two different types

of prediction errors, namely, training and test errors. They both quantify the extent to

which the predicted response value differs to the true response value from a given ob-

servation, the difference lies in the set of observations used to fit the statistical model.

The training error is the average error that results from using a method to predict the

response variable on the same observations that were used for its training while test

error results from the predictions made on new observations, that is, measurements

that were not used in fitting the statistical model. The subset of samples that contain

the observation used to fit the statistical method is known as training data and the

subset that is solely used for validation purposes is called test or validation data. CV

is a technique used for estimating the test error using a training data and is one of

the multiple methods available to estimate (either directly or indirectly) the test error

rate in the absence of an independent designated test set. The type of test error rate

estimated depends on the nature of the response, for continuous variables RMSEP is

used while for categorical variables the misclassification ER is calculated.

There are two ways of conducting CV: Leave-one-out CV (LOOCV) and k-fold CV.

Both approaches involve splitting the set of observations into two parts of different
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sizes, where the training set comprises more observations than the test set. In LOOCV

only a single observation is used for the validation set (xi,yi) and the remaining ob-

servations make up the training set. The statistical learning method is fit on the n− 1

training observations, a prediction ŷi is made for the excluded observation based on

its value xi and a prediction error is obtained yi − ŷi. The procedure is repeated n

times where each observation is iteratively excluded from the training set producing

as a result n values of prediction error. The LOOCV test prediction error is the av-

erage across those n values. On the other hand, k-fold CV randomly splits the set

of observations into k groups or folds of approximately equal size. The first fold is

treated as a test set and the statistical method is fit on the remaining k−1 folds. A pre-

diction error is computed for the observations in the held-out-fold and the average

is obtained. This procedure is repeated k times; each time, a different fold is left out

and treated as a test set. The k-fold CV error estimate is computed by averaging the

k mean prediction error. Note that LOOCV can be viewed as a special case of k-fold

CV when k = n.

Unless the number of samples is small, k-fold CV is usually preferred over LOOCV

because it gives more accurate estimates of the test prediction error; the reason for

this advantage is rooted in the bias-variance trade-off. Error due to bias is lower in

LOOCV because the training dataset is larger than in k-fold CV, the corresponding

sizes are n− 1 and (k− 1)n/k, respectively. However, for any k < n LOOCV presents

higher variance because the prediction error is calculated based on only one observa-

tion (for example, for an outlier observation the prediction error will be significantly

different from the other n − 1 estimates). Given these considerations, k-fold CV is

typically performed setting k = 5 or k = 10, as it has been empirically shown that

these values yield test error estimates that suffer neither from excessively high bias

nor from very high variance. In order to obtain more robust estimates, a common

strategy is to perform repeated k-fold CV (or M k-fold CV) where in each repetition,

the folds are split in a different way and the final estimate of the test error is retrieved

by calculating the average over the M replications. Finally, Cross-Model Validation
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(CMV) also corresponds to an extension to the CV method that is commonly applied

in the literature and is described in more details in section A.5.

3.6.2.2 Metrics of Performance for Regression Mode

The diagnostic statistics that have been proposed for model selection in the context

of PLS regression mode are R2, Q2 and RMSEP [107], [111], [192], [193]. These three

scores have been employed to decide the optimal number of components while only

the RMSEP has been additionally implemented to determine the degree of sparsity.

The R2 is a common statistic used to measure model accuracy or goodness of fit in

linear regression, that is, the extent to which the model fits the data. It corresponds to

the proportion of variance explained in the response Y that can be explained by the

predictor variables or equivalently, the amount of variability that is left unexplained

after performing the regression. Its definition is given by:

R2 = TSS − RSS

RSS
= 1− RSS

TSS
(3.2)

where TTS = ∑ (yi − ȳ)2 is the total sum of squares and RSS = ∑n
i=1 (yi − ŷi)2 is

the residual sum of squares. (I discuss in detail how to obtain the predicted values ŷi

from a PLS-R model in section 3.6.2.3.2 below). As it is a proportion, its value lies be-

tween 0 and 1, numbers closer to one indicate better model accuracy. It is somewhat

challenging to decide on a “good” value for R2 as it depends on the particularities

of the data. In addition, R2 is a statistic that measures the training error; therefore, it

will always increase as the model complexity increases and choosing this criterion to

decide the appropriate H of may lead to overfitting. However, despite those short-

comings R2 is used as a criterion to decide the optimal H because of its simplicity

and computationally efficiency. The statistics is calculated for models with increas-

ing number of components and a decision is made based on whether the addition

of an extra dimension substantially increases the proportion of variance explained

in the response variable, following a similar principle behind the choice of principal

components (PCs) in Principal Component Analysis (PCA).
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The cross-validated R2 or Q2 statistics (also known as Q2 criterion) was proposed as

an alternative to overcome potential overfitting problems as it measures the overall

predictive ability of a model while simultaneously assessing the marginal contribu-

tion of the X scores to the predictive power of a PLS-R model. The Q2 is calculated

for each Y variable and for models of increasing sizes (number of dimensions) as

follows:

Algorithm 2 Computation of Q2 statistics

Input: Y(n× q), Ŷ(n× q), H .
Output: Q2.

1: for h = 1, . . . , H do
2: for k = 1, . . . , q do
3: RSSkh ←

∑n
i=1(yi − ŷhi)2

4: PRESSkh ←
∑n
i=1(yi − ŷh(−i))2

5: Store RSSkh and PRESSkh
6: end for
7: PRESSh ←

∑q
k=1 PRESS

k
h

8: RSSh ←
∑q
k=1 RSS

k
h

9: Evaluate Q2 ← 1 − PRESSh
RSSh−1

10: end for

PRESSkh is the Prediction Error Sum of Squares (PRESS) and RSSkh is the RSS both

defined for the variable k and the PLS dimension h. The term ŷh(−i) is the predicted

value for the ith observation estimated from the model fitted to all observations but

the ith. As such, its computation is effectively LOOCV but can be equivalently de-

fined for k-fold CV. The criterion to determine if a new X component is considered

significant for the prediction of Y is:

√
PRESSh ≤ 0.95

√
RSSh−1 ⇐⇒ Q2

h ≥ 0.0975 (3.3)

In other words, it has been suggested to define the optimal number of components

as the first h that Q2
h+1 < 0.0975 [194]. This is because a "good" value for Q2 is a

value that is close to the R2, which reflects a model with good prediction accuracy

independently of the specific data that was used to train it. Note that Q2
h refers to
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the predictive ability of a PLS model including components 1 to h for any h < H ,

where H is the total number of components being explored in the calibration process.

Therefore, in this context it does not refer to the predictive ability of single component

(which is computed as Q2
h = 1− PRESSh/RSSh)

The Q2 is closely related to the RMSEP, the difference being that the former averages

the predictions errors across the variables in Y and thus gives a more general insight

of the model as a whole whereas the latter requires to be computed for each variable

k in Y. The RMSEP is defined as follows:

RMSEP =

√∑n
i=1 (yi − ŷi)2

n
(3.4)

To select the optimal H and/or degree of sparsity a validation or calibration curve

plot can be used, in which the cross-validated RMSEP is plotted against different val-

ues of the tuning parameter [192]. Usually, one takes the first local minimum rather

than the absolute minimum in the curve, to avoid over-fitting and to favour sparsity.

Note that the Mean Squared Error of Prediction (MSEP) is employed interchangeably

with RMSEP.

3.6.2.3 Metrics of Performance for Discrimination

Before describing in more details the different diagnostic statistics used to calibrate

a PLS-DA model, it is important to highlight that it is commonly suggested in the

literature to define the number of dimensions to H = min(p,G − 1) , where p is

the total number of predictor variables and G is the total number of classes [128].

This is given by the resemblance between PLS-DA and Linear Discriminant Analysis

(LDA) as in the latter case the number of discriminant vectors is chosen following

that criterion.

As discussed in section 2.2.2.5, PLS-DA is equivalent to conduct Partial Least Squares

Regression (PLS-R) previous transformation of the response vector followed by the

application of a Decision Rule (DR) to translate the predicted value into meaningful
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class membership. Thus, in theory any of the diagnostic statistics employed in a

regression setting could be used for optimization of a PLS-DA model; however, in

practice adaptations are needed and different scores are employed.

3.6.2.3.1 Discriminant Q2 statistics

Consider the two-class problem where the groups are labelled as 0 and 1 and the

discrimination border is set to 0.5. When a sample of class 1 receives a class prediction

of +1.5, it corresponds to a perfect class prediction, however, it is still considered

as an error if computing the Q2. The Discriminant Q2 (DQ2) statistics [195] is an

adaptation of the original statistics in which the prediction error is disregarded when

the class prediction is beyond the class label. In this manner, correct class predictions

do not contribute to the estimate of prediction error. For its calculation, the PRESS is

redefined to PRESSD and the computation of DQ2 is given as before:

PRESSDh =
∑

−1<ŷi<+1
(yi − ŷh(−i)) (3.5)

DQ2
h = 1 − PRESSDh

RSSh−1
(3.6)

The criterion to determine the appropriate number of components is the same as per

standard Q2.

3.6.2.3.2 Decision Rules

Recall that in PLS-R and PLS-DA the algorithm returns (among other outputs) a ma-

trix of PLS regression coefficients βPLS(p × H) describing the inner extra relationship

between the two matrices in the regression mode. This matrix can be used for predic-

tion purposes given new observations. The predicted values are specified as follows

[111], [190]:

Ŷnew = Xnew ∗U
(
CTU

)−1
D (3.7)

Xnew ∗ βPLS
T

(3.8)
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where U,C,D and βPLS are derived from the X and Y training data sets while Xnew

is derived from the test set (i.e. a CV procedure is conducted) or from an external

validation set. U is a p × H matrix containing the loading vectors associated to X,C

is a p × H matrix containing the local regression coefficients of X on its H latent

components (ξh) and D is a H × G matrix containing the regression coefficients of

the columns of Y on the X scores (ξh). (Details were described in section 2.2.2.3 and

section 2.2.2.4). Finally, Ŷnew is a matrix of size nnew × G containing the predicted

dummy variables.

The predicted values are not bounded to the range of the set of integers [0, ..., G− 1];

instead, they can take any value in the range of [−∞,+∞]. In a binary classification

problem, a classification threshold of 0.5 can be used when the two classes (i.e. 0 and

+1) have similar size and variance [119]; however, other DRs have been proposed for

situations where these conditions are not met. Broadly speaking, the diversity of DRs

can be divided into two major groups: rules that make use of predicted values Ŷnew

or the ones that rely on the predicted X scores Ξpred. In both groups a particular ap-

proach is applied to either Ŷnew or Ξpred in order to determine the class membership

of the test sample. The simplest and most intuitive rule to predict the class of a new

observation sample is the naïve method (also called maximum value or maximum

distance), which is based on Ŷnew. The predicted class is the outcome category whose

predicted dummy value is closest to the class labels (PLS1-DA) or the outcome class

with the largest predicted dummy value (PLS2-DA) [190]. More sophisticated DRs

based on Ŷnew include the identification of either one single fixed point (classification

boundary) or two fixed points (boundary line) [196]. In this case, the optimal point(s)

are determined arbitrarily or according to specific diagnostic tools such as visual in-

spection of the predicted value or Y score plots, Receiver Operating Characteristic

(ROC) curve and probability density function. A simple single fixed-point rule in a

binary problem is to define a cut-off point halfway between the means of the two

groups while the analysis of a ROC curve is better suited for the identification of the

ideal threshold in a multi-class problem.
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On the other hand, the principle behind the second group of DRs is to convert the

predicted X scores into a particular distance metric which is used to assign samples

[190]. The predicted scores are defined as:

Ξpred = Xnew ∗U
(
CTU

)−1
(3.9)

where Ξpred is a matrix of dimensions nnew × H . For the calculation of the distance

metric, it is necessary to first define the centroids CG for all G classes of the observa-

tions belonging to the training set, which is conducted based on the X score matrix

Ξtrain (ntrain × H). Then, the distance between each observation of Ξpred and the cen-

troids of each class is calculated using either the Euclidian distance
√∑H

h=1 (xh − (CG)h)
2

or the Mahalanobis distance
√∑H

h=1 (xh − (CG)h)
T S−1(xh − (CG)h), where S is the

variance-covariance matrix of (xh − (CG)h) [124], [125]. The predicted class of a new

observation is the class for which the distance between its centroid CG and the pre-

dicted scores is minimal.

It has been observed that the naïve method shows good accuracy in a two-class prob-

lem where the groups are of equal size but different variance. In a more complex

scenario (i.e. two groups of imbalanced sizes) an optimized cut-off point is needed

in order to achieve a better performance [196]. In multi-class complex classification

problems, it has been described that the X score approaches (and specifically the Ma-

halanobis distance metric) provide better predictions than the naïve method [190].

It is important to note here that the score-based DRs consider the prediction in the

dimensional space spanned by all H components while the predicted values based

DRs consider a single (or two) point(s) estimate(s) using the predicted dummy vari-

ables on the last dimension of the model only. In addition, all DRs could achieve zero

prediction error if supported by a sufficiently large number of PLS components. The

aim is to identify and employ the DR that produces the best performance with the

minimum number of dimensions.
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3.6.2.3.3 NMC, ERs and AUROC

Once the predicted values of all samples in the dataset have been translated to mean-

ingful class memberships, the assigned class can be compared to the true class mem-

bership and classified either as a True Positive (TP), a True Negative (TN), a False

Positive (FP) or a False Negative (FN). In that manner, a confusion matrix is com-

puted summarising the prediction ability of the model with the true and predicted

classes indicated by the rows and columns, respectively. If there are two classes, the

confusion matrix is of dimension 2 x 2 with the number of correct predictions shown

on the diagonal elements (class 0 correctly predicted as class 0 and class 1 correctly

predicted as class 1; TN and TP, respectively) and the off-diagonal elements are the

misclassifications (class 0 predicted as class 1 and vice versa; FP and FN, respectively).

More precisely:

Predicted Classes

0 1

True Classes
0 True Negative (TN) False Positive (FP)

1 False Negative (FN) True Positive (TP)

The number of Number of Misclassifications (NMC) [197] is the sum of the off-diagonal

elements: NMC=FP+FN; and it is the most intuitive of all metrics of performance as

it simply indicates the number of samples which are wrongly classified by the model.

The overall misclassification ER is the sum of the off-diagonal elements divided by

the total number of samples

ER = (FP + FN)/n ∈ [0, 1] (3.10)

while the Balanced Error Rate (BER) [191] is the average of the proportions of wrongly

classified samples in each class:

BER = (FP/n0 + FN/n1)
2 ∈ [0, 1] (3.11)
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where n0 and n1 are the number of observations in groups 0 and 1, respectively. Nat-

urally, BER is appropriate in cases of an unbalanced number of samples per class.

Apart from these quantities, several other ratios of interest can be derived from the

confusion matrix where the two most commonly used are the sensitivity and speci-

ficity, especially in assessing the performance of diagnostic tests. The sensitivity (or

true positive rate, TPR) of the test is defined as

Sensitivity = TP

TP + FN
∈ [0, 1] (3.12)

The specificity (or true negative rate, TNR) of the test is given by

Specifity = TN

FP + TN
∈ [0, 1] (3.13)

These definitions show that the sensitivity can be increased by reducing the number

of FN and the specificity can be increased by reducing the number of FP. Thus, the

sensitivity is a measure of how well the model is able to correctly classify samples of

the group 1 (i.e cases) while the specificity measures how well the model can predict

samples from the group 0 (i.e controls). Although it would be desirable to maximise

both sensitivity and specificity and thus to reduce the total NMC, there exists a trade-

off between these two ratios. The ROC curve provides an insight to this trade-off by

plotting these two quantities (sensitivity against 1-specificity) for different values of

the classification boundary. It provides an spectrum of performance assessments and

the corresponding AUC can be interpreted as the probability (values range between

0 to 1) that the model will rank a randomly chosen positive instance higher than a

randomly chosen negative one; an AUC of 0.5 (or less) is interpreted as having no

practical utility.

3.6.2.4 Performance Assessment of Final Model

In the previous sections, I have discussed how the selection of the optimal tuning

parameters (number of dimensions and degree of sparsity) is conducted, a process
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that depends on the PLS variant employed to perform the analysis (two-block PLS

versus PLS-DA) and the statistical mode (regression versus canonical). As a result of

the tuning procedure, the optimal PLS model is specified with the appropriate values

of the parameters and the aim then is to assess the performance and interpretability

of the calibrated model. In a regression setting, this goal is achieved by assessing

the prediction error by means of repeated CV conducted on the complete X and Y

datasets; any of the diagnostics statistics detailed above can be used for that purpose.

In classification problems, it has been observed that CV may lead to overoptimistic

result and permutation tests are commonly performed to obtain the distribution of

the statistics under the H0 of no association and thus draw a statistically significance

threshold (for a specific statistics to be considered significant, the results obtained

from the non-permuted set of samples should fall outside the 95 or 99% confidence

bounds of the null distribution obtained from the permuted samples) [197]. Alterna-

tively, when sample size allows CMV can be conducted. On the other hand, when

canonical-based methods are applied CV is employed to assess either the correlation

or covariance as well as the proportion of variability of the pair of omics matrices

explained by the calibrated model.

Furthermore, the relevance of individual features is routinely assessed in order to

gain insight into the validity of the final model and to identify the most significant

variables explaining the variation between the matrices. Different measures can be

used for that purpose, including the standard outputs of the PLS algorithm, namely

loading weight vectors and matrix of PLS regression coefficients as well as a statis-

tic introduced specifically for this purpose named Variable Importance in Projection

(VIP) [198]. As outlined in section 2.2.2.3, the loading vectors are the weights of the

original variables that define the component scores in terms of the deflated matrices,

meaning that they determine the contribution of individual variables in each com-

ponent. Therefore, relevant features are characterised by presenting higher absolute

values of their associated loading weights for a given PLS component. However, the

interpretation of the loading vectors is impaired by the fact that each feature has H
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different weights associated to it. This drawback is avoided when the matrix of PLS

regression coefficients is examined, as in this case the relevance of a variable is judged

on the basis of the last dimension only. The vector of coefficients is a single measure

of association between each predictor and the response and as with the loadings, the

variables having small absolute value can be considered as irrelevant. The VIP statis-

tics has the same advantage over the loading weights as the principle behind it is

to accumulate the importance of each variable (reflected by the loadings) from each

component. For a variable j the VIP score is defined as:

V IP j =

√√√√p H∑
h=1

[
TSSh (uj,h/‖uh‖2)2

]
/

H∑
h=1

(TSSh), (3.14)

where TSSh is the total sum of squares explained by the hth component. Hence,

the VIP is a measure of the contribution of each variable according to the variance

explained by each dimension where uj,h/‖uh‖2 represents the importance of the jth

variable. Note that TSSh = v 2
hξ

T
hξh [199], therefore, Equation 3.14 can be equivalently

expressed by exchanging the terms. The VIP statistic was originally proposed for

the classical PLS variant where the identification of the relevant variables in a high-

dimensional setting is more challenging, however, it has been extended and applied

to the regularized versions of the technique. It is generally accepted that a variable

should be selected if V IP j > 1 [199], [200], [201]. In addition, as per loading weights

and PLS regression coefficients, a user-defined threshold can be used in order to de-

fine a feature as relevant (hard thresholding) and permutation tests can be employed

to draw statistically significant conclusions. Note that the examination of the regres-

sion coefficients and the computation of the VIP score is only used for the regression

mode while assessment of the loading can also be applied on the canonical mode.

For regularized versions, stability frequency analysis can be performed per PLS com-

ponent as a way to assess the reproducibility of a molecular signature. Resampling

techniques are employed for that purpose: the calibrated model is fit on a subset of

the samples (e.g. 80% of the total sample size) and the selected variables are recorded.
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Depending on computational constraints, the resampling procedure is repeated a spe-

cific number of times yielding the stability frequency of the selected features across

models visited. Bootstrap or CV are commonly applied to measure stability fre-

quency [189], [190], in the latter case the output is a by-product of the performance

evaluation process in which the features that were selected across the repeated CV

runs are recorded.

3.6.2.5 Visualisation: Graphical Outputs

Visualisation outputs are important for the analysis of high-dimensional omics in

both two-block and discriminatory contexts as they provide a tool to better unravel

the complex associations between biological entities. Various graphical outputs are

available, including the feature and sample representation plots which are the sim-

plest and easiest to interpret visualisation tools [191], [195]. The former displays the

loading weight of each (selected) variable per dimension, commonly ordered in an

increasing order of importance (according to the absolute value of the loading co-

efficients). Sample representation plots display the component scores and therefore

visualise similarities between samples in the reduced dimensional space spanned by

the first few latent variables of the model. Figure 3.2 provides illustrative examples of

loading coefficient and sample representation plots reproduced on publicly available

data. In PLS-DA, the goal of a sample plot is to reveal how well the calibrated model

differentiates between the sample classes while in two-block PLS the aim is to show

how samples are clustered based on their biological characteristics. In the two-block

setting it is also a common practice to represent the samples in a superimposed man-

ner where the x and y axis simultaneously represent the X and Y scores [202]. These

graphical representations are sometimes referred to as arrow plots as each sample is

indicated using an arrow and are a useful tool to assess if the two datasets agree in

information content according to the calibrated model being examined. The start of

the arrow represents the location of the sample in the X data set and the tip of the

arrow its location in the Y data set. Hence, short arrows indicate a strong agreement
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Figure 3.2: Illustrative examples of common visualisation outputs for the assessment
of discriminant and integrative methods.
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Visualisation outputs obtained from the analysis of the dataset Small Round Blue Cell Tumours (SRBCT) publicly available from
the mixOmics R package, which includes the expression levels of 2,308 genes measured on 63 samples. The samples are classi-
fied into four classes as follows: Burkitt Lymphoma (BL), Ewing Sarcoma (EWS), neuroblastoma (NB) and rhabdomyosarcoma
(RMS). A sPLS-DA model was fitted with two components and 50 signals to retain in each dimension. The sample plot shows
a clear separation of cancer types in the two-dimensional space spanned by the model, the correlation circle plot displays three
subsets of correlated variables with a similar contribution to define each component and the loading plots of each component
easily identifies the highest contributing signals. In this last graphical output, only the first ten contributing variables are named,
and colours of the bars indicate the sample group for which the mean expression level is maximum.
sPLS-DA: sparse Partial Least Squares-Discriminant Analysis.

between the data sets while long arrows a disagreement between the data sets.

While the two plots presented above provide an insight into individual variable con-

tribution and identification of sample clusters, they do not allow for the visualisation

of pair-wise associations between variables from the two datasets. Three graphical
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outputs have been proposed for that purpose, namely relevance networks, Clustered

Image Map (CIM) and correlation circle plots [203]. These are complementary out-

puts that describe co-expression patterns within and between datasets by showing

positive, negative, null correlations and/or displaying strong and weak correlation

coefficients between variables. They are employed in regularized PLS techniques

with a reduced variable selection size as visual interpretation is unfeasible other-

wise; alternatively, pre-specified threshold can be employed to remove weaker as-

sociations.

More specifically, these three plots correspond to graphical representations of a pair-

wise similarity matrix which can be viewed as a robust approximation of a Pearson

correlation matrix (whose intensive computation on a large dataset makes its calcu-

lation prohibitive). The entries of the similarity matrix M of dimension p × q are

the similarity scores between each variable of X and Y; their definition is based on

the decomposition of the original data matrices in component score and regression

coefficient matrices. The similarity scores are thus given by:

Mq
p =

H∑
1=h

u2
hc

h
pd

h
q ≈ cor(X,Y) (3.15)

Mq
p =

H∑
1=h

u2
hσ

2
hc

h
pe

h
q ≈ cor(X,Y) (3.16)

For regression and canonical modes, respectively. The term u2
h (resp. σ2

h) is the vari-

ance of ξh (resp. ωh), the X-score (resp. Y-score) for the h dimension. The terms

chp ,d
h
q and ehq are the local regression coefficients associated to the variable p or q for

dimension h. The matrix M can be factorized as M = X∗Y∗T with the X∗ (p × h)

and Y∗ (q × h) matrices containing the similarities scores for the original variables of

X and Y, respectively. When only two dimensions are chosen, M is represented by

plotting the rows of X∗ and the rows of Y∗ as vectors in a two-dimensional Cartesian

coordinate system, an output that correspond to a correlation circle plot (see below).
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Relevance networks : it is a network where nodes represent variables and edges

represent associations. A connection is drawn between two variables only if a pre-

specified threshold (in absolute value) is exceeded. Positive and negative correlations

can be displayed by assigning different colours to the edges; it is a bipartite network

and thus the edges are drawn only between features of different datasets.

CIM : it is a heatmap representing the relationship between two groups of variables

(selected variables from the X and Y matrices) and the colour inside the graph in-

dicates the correlation between the features, as opposed to a standard heatmap that

displays the relationship between the samples and one set of variables. The M matrix

is graphically displayed as a two-dimensional image where each entry of the matrix is

coloured based on its value and where the rows and columns are reordered according

to a hierarchical clustering method.

Correlation circle plots : It highlights subsets of variables from both datasets that

are important to define each component while simultaneously displaying the corre-

lation between features within and between datasets. In the plane defined by two

chosen dimensions, the coordinates of the features are obtained by calculating (an

approximation) of the Pearson correlation between each original variable and their

associated component. Two circles of radii 0.5 and 1 are drawn which simplifies in-

terpretation in relation to the scores: variables that play a high contribution are close

to the larger circle while variables located close to the origin might not be relevant

for the definition of the component. In that latter case, it is advisable to visualise

the correlation circles plots in subsequent dimensions to better interpret the informa-

tion. Cluster of variables can also be identified, and the nature of the correlation can

be inferred: the cosine of the angle between two points represent positive, negative

or null correlations between features. The correlation is positive if the angle is sharp

cos(α)> 0, negative if the angle is obtuse cos(α)< 0, and null if the vectors are perpen-

dicular cos(α)≈0. Thus, variables or groups of variables strongly positively correlated

are projected closely to each other whereas when the correlation is strongly negative,
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the groups of variables are projected at diametrically opposite places on the graph

(see Figure 3.2 for an example).
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4
Analysis of Proteomics and Transcriptomics

Data Employing Established Univariate

Approaches: Identifying Pre-diagnostic

Markers Predictive of B-cell Lymphoma

This chapter is based in part on the publications:
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Campanella, L. Portengen, R.S. Kelly, I.A. Bergdahl, B. Melin, G. Hall-

mans, D. Palli, V. Krogh, R. Tumino, C. Sacerdote, S. Panico, T.M.C.M.

de Kok, M.T. Smith, J.C.S. Kleinjans, P. Vineis and S.A. Kyrtopoulos.

“Prediagnostic transcriptomic markers of Chronic lymphocytic leukemia

reveal perturbations 10 years before diagnosis”. Annals of Oncology

25.5 (2014), 1065–1072.

R. Vermeulen, F.S. Hosnijeh, B. Bodinier, L. Portengen, B. Liquet, J.

Garrido-Manríquez, H. Lokhorst, I. A. Bergdahl, S. A. Kyrtopoulos,

A. Johansson, P. Georgiadis, B. Melin, D. Palli, V. Krogh, S. Panico,

C. Sacerdote, R. Tumino, P. Vineis, R. Castagné, M. Chadeau-Hyam,

M. Botsivali, A. Chatziioannou, I. Valavanis, J.C.S. Kleinjans, T.M.C.M.

de Kok, H.C. Keun, T. J. Athersuch, R. Kelly, P. Lenner, G. Hallmans,
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Ruokojarvi, M. Gilthorpe, S. Fleming, T. Fleming, Y. Tu, T. Lundh, K.

Chien, W.J. Chen, W. Lee, C.K. Hsiao, P. Kuo, H. Hung and S. Liao.

“Pre-diagnostic blood immune markers, incidence and progression of

B-cell lymphoma and multiple myeloma: Univariate and functionally

informed multivariate analyses”. International Journal of Cancer 143.6

(2018), 1335–1347.

All the analyses shown here have been independently replicated by me. A descrip-

tion of the overlapping analysis as well as improvements made by this chapter is

provided in section B.1.

4.1 Introduction

In this chapter I apply traditional univariate statistical approaches to analyse Envi-

roGenoMarkers (EGM) proteomics and transcriptomics profiles in order to investi-

gate the relationship between pre-diagnostic blood levels of inflammatory markers

and gene expression signals and future risk of B-cell Lymphoma (BCL) and its main

histological subtypes. The possible confounding effect that an heterogenous White

Blood Cell (WBC) composition of blood samples may introduce to the identification

of predictive disease markers is explored. Furthermore, as omics measurements are

susceptible to systemic variability as a consequence of experimental artefacts, I seek to

characterise and correct for the technical-induced noise affecting the immune marker

concentrations and gene expression levels. Finally, given the prospective nature of the

blood samples, I examine the relationship between these omics profiles and disease

status as a function of Time to Diagnosis (TtD) which could provide information on

biological pathways involved in disease pathogenesis and result in disease biomark-

ers of prediction.
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4.2 Methods

I use the R-statistical package lme4 to fit the Linear Mixed Model (LMM) described

in section 3.6.1. The models were fitted separately on the 28 proteins (inflamma-

tory markers data) and the 29,662 transcripts (gene expression data). Analyses were

performed on the full BCL pooled population and subsequently stratified by ma-

jor histological subtypes: Chronic Lymphocytic Leukaemia (CLL), Diffuse Large B-

cell Lymphoma (DLBCL), Follicular Lymphoma (FL), and Multiple Myeloma (MM).

Since a larger number of controls increases statistical precision in effect size estimates

and tests, disease subtype stratification was conducted including cases of the corre-

sponding subtype and all control subjects (i.e. matched case-controls pairs and the

remaining unmatched controls) 1. The strength of the association between BCL (or

the corresponding subtypes) case-control status and each marker level was inferred

using a Likelihood Ratio Test (LRT) comparing the model without the disease status

variable to the one with it. Multiple testing was accounted for using a stringent Bon-

ferroni correction setting the Family Wise Error Rate (FWER) to 5%. Partial and full

adjustment on leukocytes proportion was performed on the participants for which

epigenetic information was available: 199 (74.25 %) and 176 (75.86 %) case-control

pairs have DNA methylation (DNAm) data in addition to the proteomics and tran-

scriptomics data (268 and 232 case-control pairs), respectively.

The effect of technical-induced noise was assessed by analysing the intercept and

variance of random effect terms (microtiter plate number in proteomics and the dates

of the major experimental steps in transcriptomics: isolation, labelling and hybridisa-

tion). For each of the random effect covariates, I calculate the distribution of the rank

of each intercept estimated over all fitted models (28 and 29,662 for proteomics and

transcriptomics, respectively). In addition, as an indicator of the extent of nuisance

1Improved statistical precision refers to obtaining narrower confidence intervals for a same sam-
ple size. Such situation can occur when two or more cases-control pairs have identical values for the
matching variables, then combining them into a single group produces an estimator with lower vari-
ance. In addition, as a result of increasing statistical precision, power to detect significant associations
is also enhanced. [204], [205]
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variation, I calculate the frequency that each of the corresponding random effect co-

variates was estimated to generate negligible noise across all fitted models (i.e. pro-

portion of null variance). The impact of the nuisance variation was further assessed

by comparing the distributions of p-values (over the 28 and 29,662 tests) obtained

using the LMMs to those obtained under the corresponding linear model (i.e. same

predictor variable and fixed effect covariates but without a random effect term).

Proteins that were found to be differentially expressed between cases and controls

were further investigated through Unconditional Logistic Regression (ULR) and Con-

ditional Logistic Regression (CLR), in which cases were compared to all controls and

to the corresponding matched controls, respectively. Assuming a non-linear rela-

tionship between case-control status (response variable) and protein concentration

(predictor variable), plasma levels of immune markers were included in the model

as categorical predictors and classes were defined according to the quartiles calcu-

lated based on the distribution in control subjects 2.Both ULR and CLR models were

adjusted for age at enrolment, sex, country, study phase (matching variables), Body

Mass Index (BMI), smoking status, education, physical activity and alcohol intake

(confounding factors). Tests for trend were calculated comparing models with and

without the predictor variable and using the quartile number as a continuous vari-

able. To account for nuisance variation, I remove from the raw concentration levels

of each protein the random effect estimates provided by the LMMs. The resulting

“de-noised” proteomics data was used in the logistic regression models.

Transcripts identified by the genome-wide screen were further investigated using

logistic regression models as well as through gene-enrichment analyses using the

openly available Database for Annotation, Visualization and Integrated Discovery

(DAVID v6.8, http://david.abcc.ncifcrf.gov/). Analogously to the proteomics

analysis, noise variance due to the dates of isolation, labelling and hybridisation

2As discussed in section 2.1.1, a logistic regression model assumes that predictors are linearly re-
lated to the log odds of the response variable. However, in this case such assumption is expected to be
violated and instead of employing a non-linear transformation of the dependent variable (such as frac-
tional polynomials or spline functions), a simpler approach was taken by transforming the continuous
predictor into categories [206].
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experimental steps was removed before analyses (i.e. “de-noised” transcriptomics

data).

4.3 Results

The characteristics of the study population with respect to the main demographic

covariates are summarised in Table 4.1. The corresponding distribution of BCL sub-

types and genders across phases and countries are shown in Table B.1 to Table B.4.

Each study phase includes cases with the main four BCL subtypes as well as subjects

from both cohorts and genders.

4.3.1 Proteomics

Table 4.2 shows the median, minimum and maximum concentration levels of all 28

proteins stratified by case-control status, country, phase of study. Table B.5 and Ta-

ble B.6 display the median, minimum and maximum values across the four BCL sub-

types for participants from European Prospective Investigation into Cancer and Nu-

trition - Italy (EPIC-Italy) and Northern Sweden Health and Disease Study (NSHDS),

respectively. As also depicted in Figure B.1 to Figure B.3, the median concentration of

most immune markers was higher among controls, study phase 1 and NSHDS sub-

jects compared with cases, phase 2 and EPIC-Italy subjects, respectively. The distribu-

tion of concentration levels for all inflammatory markers before and after logarithmic

transformation (log2) is graphically displayed in Figure B.4. The skewed distribution

observed in most markers was normalised after transformation which were the val-

ues used for the subsequent analyses. In addition, the correlation structure between

the 28 proteins under study is represented in Figure 4.1 where the vast majority of

pairwise associations displays positive correlation estimates and three groups with a

strong clustering pattern can be distinguished.
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Table 4.1: Characteristics of the study population with respect to the main demo-
graphic variables.

Baseline Variable Cases (n=268) Controls (n=268) p-value
Cohort n (%)

Epic-Italy 84 (31.34) 84 (31.34)
NSHDS 184 (68.66) 184 (68.66)

Phase n (%)
1 96 (35.82) 96 (35.82)
2 172 (64.18) 172 (64.18)

Sex n (%)
Female 136 (50.75) 136 (50.75)
Male 132 (49.25) 132 (49.25)

Age at recruitment (years) 53.1 (7.77) 53.11 (7.75)
Alcohol intake (g/day) 7.05 (12.51) 8.25 (14.68) 0.31
Body Mass Index (kg/m2) 26.36 (3.83) 26.53 (4.14) 0.62
Smoking Status n (%)

Current 55 (20.52) 55 (20.52) 0.87
Former 68 (25.37) 63 (23.51)
Never 145 (54.10) 150 (55.97)

Education level n (%)
None 4 (1.49) 1 (0.37) 0.31

Primary 96 (35.82) 104 (38.81)
Technical/professional 68 (25.37) 56 (20.90)

Secondary 53 (24.25) 65 (24.25)
University College 47 (17.54) 42 (15.67)

Physical Activity n (%)
Inactive 80 (29.85) 76 (28.36) 0.37

Moderately Inactive 106 (39.55) 95 (35.45)
Moderately Active 68 (25.37) 74 (27.61)

Active 14 (5.22) 23 (8.58)
p-value for difference was calculated using the student’s t-test for continuous variables and theX2 test for categorical variables.
Counts and percentages are reported for categorial variables and means and standard deviations for continuous variables.
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Table 4.2: Median (minimum - maximum) values of immune markers stratified by case-control status, study cohort and
experimental phase.

Protein Cases (n=268) Controls (n=268) EPIC (n=168) NSHDS (n=368) Phase 1 (n=192) Phase 2 (n=344)
EGF 22.31 (0.02-1622.54) 24.97 (0.14-1561.89) 20.31 (0.15-1622.54) 24.23 (0.02-842.01) 40.27 (0.25-1622.54) 19.8 (0.02-550.46)
FGF2 15.44 (0.04-1969.88) 27.12 (0.1-1005.98) 25.7 (0.38-1969.88) 18.84 (0.04-1005.98) 42.09 (0.18-1969.88) 13.79 (0.04-410.95)
GCSF 24.47 (0.56-496) 24.73 (0.77-2649.79) 27.89 (0.56-304.12) 23.04 (0.77-2649.79) 28.23 (1.24-496) 22.72 (0.56-2649.79)
VEGF 118.02 (0.46-6938.42) 204.84 (0.47-5644.06) 143.29 (0.81-4204.53) 162.41 (0.46-6938.42) 409.61 (2.98-6938.42) 82.02 (0.46-2549.75)
GMSCF 2.7 (0.02-285.46) 2.8 (0.01-1566.28) 4.91 (0.04-38) 1.44 (0.01-1566.28) 4.81 (0.03-281.84) 1.41 (0.01-1566.28)
TGFa 1.1 (0-1663.43) 2.25 (0.01-842.46) 1.46 (0-1663.43) 1.69 (0-842.46) 9.07 (0.07-1663.43) 0.83 (0-399.24)
Eotaxin 242.2 (8.4-990.58) 239.31 (11.51-1122.54) 48.02 (8.4-319.46) 333.12 (35.34-1122.54) 156.82 (15.64-1122.54) 255.09 (8.4-1093.35)
Fractalkine 36.62 (0.13-3229.59) 56.8 (0.35-4599.65) 82.54 (0.58-1923.42) 30.46 (0.13-4599.6) 118.39 (0.65-4599.65) 23.14 (0.13-3229.59)
GRO 391.31 (27.15-2188.12) 369.11 (44.38-2914.05) 216.5 (27.15-1860.16) 426.08 (69.12-2914.05) 553.45 (54.3-2914.05) 338.73 (27.15-1319.35)
MCP1 279.4 (1.78-787.6) 297.15 (6.2-1085.85) 213.26 (55.08-634.85) 323.49 (1.78-1085.8) 304.35 (55.08-1085.85) 278.89 (1.78-948.07)
MCP3 6 (0.02-1225.93) 13.42 (0.08-1003.8) 8.18 (0.02-1225.93) 9.43 (0.02-1003.8) 18.04 (0.14-1225.93) 4.32 (0.02-914.3)
MDC 705.34 (42.59-8962.26) 731.64 (50.85-7453.92) 335.82 (50.85-3363.32) 870.55 (42.59-8962.26) 758.34 (91.4-8962.26) 690.65 (42.59-4269.19)
MIP1a 7.28 (0.01-398.74) 12.17 (0.01-276.28) 13.83 (0.09-398.74) 8.32 (0.01-276.28) 43.3 (0.69-398.74) 4.49 (0.01-125.18)
MIP1b 30.84 (0.27-843.45) 36.38 (0.28-1112.56) 33.66 (1.99-572.67) 33.12 (0.27-1112.56) 48.03 (2.95-1112.56) 25.16 (0.27-424.76)
IP10 447.71 (15.86-3374.05) 446.74 (8.88-3766.5) 248.47 (59.19-1294.32) 543.6 (8.88-3766.5) 417.1 (81.68-3766.5) 465.8 (8.88-2738.33)
IL8 4.03 (0.59-304.82) 4.53 (0.67-190.86) 9.74 (0.67-304.82) 4 (0.59-167.32) 9.74 (1.1-304.82) 3.25 (0.59-59.12)
IL1b 0.44 (0-435.52) 0.96 (0-350.58) 1.37 (0-254.81) 0.39 (0-435.52) 0.38 (0-435.52) 0.82 (0.01-350.58)
IL2 2.53 (0.03-627.98) 3.04 (0.01-2224.85) 11.54 (0.02-300.87) 1.99 (0.01-2224.85) 10.45 (0.01-300.87) 1.96 (0.02-2224.85)
IL4 3.19 (0.02-564.88) 6.54 (0.01-1627.27) 0.73 (0.04-66.3) 9.96 (0.01-1627.27) 1.06 (0.02-1627.27) 10.49 (0.01-776.61)
IL5 0.86 (0.01-525.55) 0.86 (0.02-332.06) 2.3 (0.04-525.55) 0.62 (0.01-332.06) 2.3 (0.01-525.55) 0.63 (0.01-49.89)
IL6 3.76 (0.04-480.8) 4 (0.04-1314.71) 2.4 (0.12-45.99) 5.09 (0.04-1314.71) 4.77 (0.04-1314.71) 3.53 (0.09-322.65)
IL7 0.64 (0.01-303.91) 0.75 (0.01-417.49) 1.73 (0.14-18.76) 0.36 (0.01-417.49) 1.6 (0.03-417.49) 0.41 (0.01-140.64)
IL10 12.19 (0.1-1322.5) 10.82 (0.07-2635.7) 11.01 (0.07-297.55) 11.66 (0.1-2635.7) 15.5 (0.07-2635.7) 9.21 (0.32-2333.34)
IL13 2.06 (0.01-929.4) 3.98 (0.01-2474.46) 2.72 (0.02-929.4) 4 (0.01-2474.46) 3.77 (0.01-2474.46) 2.09 (0.02-562.68)
INFa 2.06 (0-2569.21) 4.69 (0-1148.8) 3.93 (0-1034.96) 2.59 (0-2569.21) 1.37 (0-2569.21) 3.58 (0-885.96)
INFg 1.36 (0-2069.35) 2.2 (0.01-1591.65) 1.43 (0-2069.35) 1.9 (0-1591.65) 1.7 (0-2069.35) 1.73 (0.02-1591.65)
TNFa 6.02 (0.3-111.78) 5.11 (0.59-854.31) 4.97 (0.81-38) 5.84 (0.3-854.31) 6.62 (0.81-38) 4.96 (0.3-854.31)
sCD40L 689.32 (12.33-7627.75) 579.19 (4.39-5357.61) 404.41 (4.39-2819.65) 775.1 (12.33-7627.75) 723.67 (4.39-7627.75) 593.06 (12.33-3994.34)
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Figure 4.1: Pairwise Spearman correlation coefficients for log-transformed values of
the 28 inflammatory markers under study.
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4.3.1.1 Pooled Population

The univariate analysis pooling all BCL cases together revealed general lower level of

inflammatory markers among cases compared with controls: 20 out of the 28 showed

an inverse association with disease status (Figure 4.2 and Table B.7). Of these, only

FGF2 (β=-0.50, p-value=6.15 x 10−4) and TGFa (β=-0.68, p-value=5.62 x 10−5) reached

statistical significance at Bonferroni 5%.

4.3.1.2 Subtype Stratified Analysis

Stratified analyses by main histological subtypes did not show any statistically signif-

icant associations (FWER<5%) with CLL, DLBCL and FL (Figure 4.2 and Table B.7).
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Figure 4.2: Results of the LMM analyses between log-transformed values of proteins
and case-control status.
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(b) CLL Subtype
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(c) DLBCL Subtype
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(d) FL Subtype
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(e) MM Subtype
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Results are displayed separately for all BCL observations and the four main histological subtypes: CLL (b, n=42 cases and 268
controls), DLBCL (c, n=44 cases and 268 controls), FL (d, n=39 cases and 268 controls) and MM (e, n=76 cases and 268 controls).
Strength of association (Y-axis) is measured by -log10 transformed p-values and the grey horizontal line represents the Bonferroni
corrected per-test significance level ensuring a FWER control at 5%. Direction of the association is represented in red and blue
for the negative and positive regression coefficients, respectively. Results are presented from the WBC unadjusted model (n=536,
triangles), from the WBC unadjusted model using observations with epigenetic data available (n=398 case-control pairs, circles)
and from the full WBC adjustment model (n=398 case-control pairs, diamonds).
LMM: Linear Mixed Model, WBC: White Blood Cells.

In contrast, six inverse associations for MM subtype were identified: lower concen-

tration levels of FGF2 (β=-1.11, p-value=4.85 x 10−7), VEGF (β=-1.00, p-value=4.23 x

10−5), TGFa (β=-1.08, p-value=2.78 x 10−5), Fractalkine (β=-0.72, p-value=9.14 x 10−4)

and MCP3 (β=-0.91, p-value=1.09 x 10−4), MIP1a (β=-0.72, p-value=3.57 x 10−4) were

associated with increased risk of MM. The results from this analysis do not support
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Table 4.3: Number of significant associations identified in the WBC unadjusted LMM,
the six WBC partial adjustment LMMs and the full WBC adjustment LMM catego-
rized by disease type.

Partial WBC Adjustment
Disease Type (n)

Unadjusted
LMM CD8 CD4 NK cells B cells Monocytes Granulocytes

Full WBC
LMM

All BCL (536/398/398) 2 1 1 1 1 1 1 0

CLL (310/223/233) 0 0 0 0 0 0 0 0

DLBCL (312/234/234) 0 0 0 0 0 0 0 0

FL (307/228/228) 0 0 0 0 0 0 0 0

MM (344/261/261) 6 8 6 6 5 7 8 6
Results of the analysis including cases and all controls subjects on the immune markers data.
LMM: Linear Mixed Model, WBC: White Blood Cell, NK: Natural Killer.

the presence of a common inflammatory marker across the main four subtypes under

study.

4.3.1.3 WBC Correction Analysis

Both full and partial adjustment for leukocyte subpopulations provided consistent

results to the unadjusted models. Full WBC adjustment in the analysis where all BCL

cases were pooled together revealed TGFa as the only significant association (β=0.65,

p-value=1.05 x 10−3) (Figure 4.2, Table 4.3 and Table B.8). In analyses stratified by

major histological subtypes, results remained unchanged for CLL, DLBCL and FL as

no significant associations emerged while for MM subtype the same six markers were

significantly associated with disease status. (Figure 4.2 and Table B.8). Replication of

the analysis on the subset of observation with WBC estimates available but without

performing leukocyte correction provided consistent results (Table B.9).

The results from the partial WBC adjustment are summarised in Table 4.3. TGFa was

found to be the only significant association in the analysis of pooled BCL cases across

the six partial WBC correction models and narrow effect size differences were ob-

served (CD8 Lymphocytes: β=-0.65, p-value=7.91 x 10−4; CD4 Lymphocytes: β=-0.66,

p-value=6.50 x 10−4; NK: β=-0.66, p-value=7.05 x 10−4; B cells: β=-0.64, p-value=1.11

x 10−3; Monocytes: β=-0.66, p-value=6.25 x 10−4; Granulocytes: β=-0.66, p-value=7.45
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x 10−4; full WBC adjustment: β=-0.66, p-value=7.21 x 10−4). In addition, as observed

in the unadjusted and in the full WBC adjustment, no significant associations were

found for CLL, DLBCL and FL across the six partial adjustment models performed.

Finally, MM-specific analyses provided two additional associations after adjustment

for CD8 Lymphocytes (IL1b: β=-0.74, p-value=1.18 x 10−3 and INFg: β=-0.96, p-

value=1.58 x 10−3) and Granulocytes (IL1b: β=-0.76, p-value=8.92 x 10−4 and INFg:

β=-0.97, p-value=1.27 x 10−3) proportions, one borderline additional association af-

ter Monocytes estimates adjustment (INFg: β=-0.95, p-value=1.72 x 10−3) and one

less association upon B cells proportion adjustment (MIP1a: β=-0.65, p-value=2.92 x

10−3). Details on the strength of associations and effect sizes of the significant associ-

ations found for the BCL pooled population and the main subtypes are presented in

Table B.10 and Table B.11, respectively.

4.3.1.4 Predictive Performance Assessment

The results from the multivariable ULR models for MM are presented in Table 4.4

and are consistent with the linear regression analyses. These identified an inverse

relationship between risk of MM and plasma levels of FGF2 (OR=0.16, for 4th Q vs.

1st Q, P-trend=0.0001), VEGF (OR=0.16, for 4th Q vs. 1st Q, P-trend=0.0013), TGFa

(OR=0.15, for 4th Q vs. 1st Q, P-trend=0.0011), Fractalkine (OR=0.34, for 4th Q vs.

1st Q, P-trend=0.0069), MCP3 (OR=0.33, for 4th Q vs. 1st Q, P-trend=0.0045), MIP1a

(OR=0.31, for 4th Q vs. 1st Q, P-trend=0.0001).

4.3.1.5 Time to Diagnosis Analysis

Results of the LMM stratified by median time elapsed between blood samples collec-

tion and disease diagnosis (6 years) are shown in Figure 4.3 and Table B.12. Such TtD

stratification was conducted for all BCL and the main histological subtypes and re-

vealed similar associations to the analysis pooling all TtD years: inflammatory mark-

ers that reached statistical significance were identified for all BCL and MM subtype,

the remaining subtype specific analyses did not provide significant findings (results
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Table 4.4: Results of the ULR model relating MM subtype case-control status and
quantile categories of log-transformed protein concentration levels (n=344).

Protein Quantiles Limits Cases/Controls (n) OR Low CI High CI P-trend
FGF2 Q1=< 2.9 34/67 Ref Ref Ref 0.0001

Q2=2.9 - 4.26 25/67 0.73 0.38 1.39
Q3=4.26 - 5.35 11/67 0.32 0.14 0.69

Q4=>5.35 6/67 0.16 0.06 0.39
VEGF Q1=< 4.44 32/67 Ref Ref Ref 0.0013

Q2=4.44 - 6.15 20/67 0.58 0.29 1.14
Q3=6.15 - 7.43 18/67 0.54 0.27 1.07

Q4=>7.43 6/67 0.16 0.06 0.41
TGFa Q1=<1.27 31/67 Ref Ref Ref 0.0011

Q2=1.27 - 2.65 23/67 0.7 0.35 1.38
Q3=2.65 - 3.91 17/67 0.56 0.27 1.11

Q4=>3.91 5/67 0.15 0.05 0.38
Fractalkine Q1=<4.11 28/67 Ref Ref Ref 0.0069

Q2=4.11 - 5.12 27/67 1 0.52 1.95
Q3=5.12 - 6.21 11/67 0.4 0.17 0.89

Q4=>6.21 10/67 0.34 0.14 0.74
MCP3 Q1=<0.97 35/67 Ref Ref Ref 0.0045

Q2=0.97 - 2.48 17/67 0.49 0.24 0.97
Q3=2.48 - 3.7 12/67 0.34 0.15 0.72

Q4=>3.7 12/67 0.33 0.15 0.68
MIP1a Q1=<1.58 27/67 Ref Ref Ref 0.0001

Q2=1.58 - 2.84 32/67 1.27 0.67 2.45
Q3=2.84 - 3.64 8/67 0.29 0.11 0.68

Q4=>3.64 9/67 0.31 0.12 0.7
ULR: Unconditional Logistic Regression, OR: Odds Ratio, CI: Confidence Interval, Ref: Reference Category, ULR: Unconditional
Logistic Regression.

not shown).

An inverse relationship was identified between BCL case-control status and plasma

levels of FGF2 (β=-0.61, p-value=1.11 x 10−3), TGFa (β=-0.77, p-value=4.70 x 10−4)

and MIP1a as one borderline additional finding (β=-0.52, p-value=1.28 x 10−3) for the

TtD<6 strata; for the TtD>6 strata no significant associations were identified.

Similarly, the MM-specific analysis revealed that the same six markers that reached

statistical significance in the pooled TtD analysis were identified as significant asso-

ciations for the TtD<6 strata (FGF2, β=-1.07, p-value=8.21 x 10−5; VEGF, β=-1.06, p-
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Figure 4.3: Results of the LMM analyses between log-transformed values of proteins
and case-control status stratified by median TtD.
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(b) MM Subtype
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Time to Diagnosis (TtD)
 Median TtD = 6 years

Full TtD data Subset TtD < 6 years Subset TtD > 6 years Inverse Association b < 0 Positive Association b > 0

Results are displayed separately for all BCL observations (a, n=268 pairs) and MM subtype (b, n=76 cases and 268 controls).
Strength of association (Y-axis) is measured by -log10 transformed p-values and the grey horizontal line represents the Bonferroni
corrected per-test significance level ensuring a FWER control at 5%. Direction of the association is represented in red and blue for
the negative and positive regression coefficients, respectively. Results are presented for the pooled analysis (n=536, triangles),
for the TtD<6 years strata (n=268, diamond) and for the TtD>6 years strata (n=268, circles). Results for CLL, DLBCL and FL
subtypes did not provide significant findings and are not shown.
LMM: Linear Mixed Model, TtD: Time to Diagnosis.

value=4.17 x 10−4; TGFa, β=-1.28, p-value=7.84 x 10−5; Fractalkine, β=-0.83, p-value=1.52

x 10−3; MCP3, β=-0.95, p-value=7.94 x 10−4; MIP1a, β=-0.95, p-value=1.19 x 10−4).

FGF2 was the only significant finding for the TtD>6 strata (β=-1.18, p-value=2.48 x

10−4).

4.3.1.6 Sensitivity Analysis

Considering that MM subtype is the most frequent sub-entity in the study population

and that the two strongest MM-specific signals correspond to the two associations

found in the analysis of all BCL cases and controls (FGF2 and TGFa), I conducted fur-
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ther analysis in the pooled BCL population excluding MM observations.These results

exposed no significant associations (Figure B.5), a finding that supports the hypoth-

esis that this specific subtype is mainly driving the significant associations found in

the BCL analysis.

In addition, since the study participants come from two independent cohorts and

from two experimental study phases, I also assessed the robustness of the findings

across these two populations (Epic-Italy and NSHDS) and the two analytical phases

(1 and 2). Significant findings were found for all BCL and for MM subtype; weaker

p-values were observed particularly for EPIC-Italy (n = 21 MM cases vs. n = 55 in the

NSHDS cohort) (Table B.13 and Table B.14). There is an overlap of the strongest find-

ings across cohorts and phases (FGF2, VEGF and/or TGFa are consistently found as

significant associations) whereas weaker inflammatory markers do not systematically

replicate in both cohorts or in both phases (Figure B.6).

Results from the ULR were consistent in both cohorts although strength of the asso-

ciations was reduced, especially for EPIC-Italy (Fractalkine and MCP3 did not reach

statistically significance), possibly owing to the lower number of cases, as previously

mentioned (Table B.15). Analysis from the CLR model comparing matched MM case-

control pairs provided weaker p-values and revealed FGF2 (OR=0.19, for 4th Q vs.

1st Q, P-trend=0.0093) and TGFa (OR=0.11, for 4th Q vs. 1st Q, P-trend=0.0028),

as the only two markers that reached statistical significance, which were among the

strongest associations found in the ULR (Table B.16).

4.3.2 Transcriptomics

4.3.2.1 Pooled Population

The LMM fitted to all BCL cases and controls revealed five significant associations

at a Bonferroni 5% which are reported in Table 4.5. The corresponding p-values and

effect size estimates of those signals obtained from the subtype-specific analyses are

also reported in Table 4.5. For CLL, four of those five candidates revealed strong
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Table 4.5: Significant associations between gene expression levels and BCL case-
control status.

All BCL

(n=464)

CLL

(n=266)

DLBCL

(n=269)

FL

(n=269)

MM

(n=299)

All BCL

w/o CLL

(n=434)

Agilent ID Gene Name f p-value f p-value f p-value f p-value f p-value f p-value

1 A_23_P500400 ABCA6 1.68 9.52E-09 17.40 1.04E-62 0.98 0.823 1.31 0.011 0.99 0.855 1.10 0.075

2 A_23_P26854 ARHGAP44 1.86 3.28E-08 24.49 1.30E-43 1.07 0.633 1.18 0.251 1.17 0.136 1.17 0.043

3 A_23_P210581 KCNG1 0.76 4.78E-07 0.66 0.0002 0.95 0.647 0.82 0.029 0.70 2.16E-06 0.78 4.45E-06

4 A_32_P44394 AIM2 1.26 9.36E-07 2.63 3.78E-24 1.15 0.050 1.13 0.082 1.07 0.236 1.11 0.011

5 A_23_P145889 CDK14 1.28 1.54E-06 3.27 6.16E-28 1.08 0.212 1.12 0.089 0.97 0.578 1.08 0.043
Transcripts were declared significant using a Bonferroni corrected per-test significance level ensuring a FWER control at 5%
and are ordered in relation to their corresponding strength of association. The corresponding p-values and effect sizes from
the subtype-analyses are also reported. Fold change (f ) estimates derived from the regression coefficient (β) obtained from the
Linear Mixed Model.

statistical associations and effect sizes while for the other subtypes, the same five

signals showed non-significant p-values at a Bonferroni level 5%. Consistently, when

the LMM is fitted to the pooled population of BCL observations excluding CLL cases,

there are no statistically significant associations and correspondingly the p-values of

those five associations increase to non-significant levels. The results from this analysis

do not support the presence of a common signal across the main four subtypes under

study.

4.3.2.2 Subtype Stratified Analysis

Numerous significant associations were found for CLL subtype (n = 684 at Bonfer-

roni FWER 5%) and the 50 strongest signals are reported in Table 4.6. MM analysis

revealed only two borderline significant associations with weak effect sizes (agilent

ID=A_23_P164773, gene name=FCER2, fold change=0.75, p-value=3.97 x 10−7 and ag-

ilent ID=A_32_P8813, gene name=LOC283663, fold change=0.67, p-value=8.19 x 10−7)

while the remaining subtypes did not provide any realistic candidate signals. For this

reason, subsequent analyses shown in this section are limited to associations found

in the CLL subtype.
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Table 4.6: First 50 strongest significant associations between gene expression levels
and CLL case-control status (n=266).

Agilent ID Gene Name f p-value Agilent ID Gene Name f p-value

1 A_23_P500400 ABCA6 17.39 1.04E-62 26 A_23_P310931 CNR2 2.24 6.71E-26

2 A_32_P53234 — 5.27 1.18E-44 27 A_32_P49854 — 2.03 7.18E-26

3 A_23_P26854 ARHGAP44 24.49 1.30E-43 28 A_24_P319647 FCRL2 3.28 1.76E-25

4 A_23_P27332 TCF4 3.83 7.14E-41 29 A_23_P163697 SYT17 2.62 3.16E-25

5 A_24_P29733 CDK14 3.95 4.43E-39 30 A_23_P31725 BLK 3.01 1.21E-24

6 A_23_P131024 ZBTB32 5.26 5.47E-39 31 A_23_P76402 TCTN1 2.09 1.52E-24

7 A_24_P691826 — 5.83 1.46E-35 32 A_32_P44394 AIM2 2.63 3.78E-24

8 A_23_P130158 WNT3 13.75 5.67E-35 33 A_24_P402588 BCL11A 2.19 4.74E-24

9 A_24_P931428 TCF4 3.79 3.58E-34 34 A_24_P184803 COCH 3.90 6.57E-24

10 A_23_P67529 KCNN4 3.15 3.17E-32 35 A_23_P102113 WNT10A 2.04 1.10E-23

11 A_32_P108156 MIR155HG 3.58 8.20E-31 36 A_23_P164773 FCER2 3.24 2.44E-23

12 A_32_P48054 CNR2 2.76 3.07E-30 37 A_23_P85269 TTN 2.99 2.67E-23

13 A_23_P85250 CD24 3.03 5.25E-29 38 A_32_P2883 — 2.95 6.32E-23

14 A_23_P56553 METTL8 2.71 8.26E-29 39 A_23_P328206 DNMBP 2.62 7.87E-23

15 A_23_P201211 FCRL5 5.19 2.74E-28 40 A_24_P54390 RASGRP3 2.68 1.13E-22

16 A_23_P145889 CDK14 3.26 6.16E-28 41 A_23_P312920 POU2AF1 2.75 1.80E-22

17 A_23_P21758 ADAM28 2.75 1.09E-27 42 A_23_P8961 IL7 2.37 4.83E-22

18 A_24_P376848 FCRL5 4.09 3.18E-27 43 A_23_P39067 SPIB 2.31 5.62E-22

19 A_23_P160751 FCRL2 3.79 3.22E-27 44 A_24_P662636 — 3.64 5.79E-22

20 A_23_P46039 FCRLA 3.32 4.94E-27 45 A_23_P45786 COL9A2 2.22 6.46E-22

21 A_23_P20427 RHOBTB2 2.27 5.35E-27 46 A_32_P72067 — 2.79 9.23E-22

22 A_23_P156907 SOBP 4.12 1.27E-26 47 A_23_P370830 KLHL14 3.87 1.39E-21

23 A_23_P124335 — 2.89 1.63E-26 48 A_23_P4551 SETBP1 2.13 2.09E-21

24 A_23_P17269 CCDC88A 2.07 2.33E-26 49 A_23_P321984 CLECL1 3.08 2.41E-21

25 A_23_P132378 CELSR1 3.61 2.88E-26 50 A_23_P40108 COL9A3 3.62 2.45E-21
Transcripts are ordered in relation to their corresponding strength of association with CLL case-control status. Fold change (f )
estimates derived from the regression coefficient (β) obtained from the Linear Mixed Model.

As illustrate in Figure 4.4, high levels of correlation and strong hierarchical clustering

are observed among the 684 CLL-specific signals. A positive correlation is observed

in the vast majority of the selected probes (79.95%) and the strength of the correlation

is higher in positive compared to negative correlated signals.

The relationship between statistical significant associations and effect size estimates

is illustrated in Figure 4.5. All CLL-specific signals show gene upregulation in cases

(positive fold change), with the 10 strongest associations showing up to 25-fold up-

regulation. Gene expression signals were spread evenly across chromosomes, how-
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Figure 4.4: Pairwise Spearman correlation coefficients for the 684 candidates identi-
fied as differentially expressed in the CLL sub-type analysis.

ever two clusters of three strong signals with large effect sizes can be clearly distin-

guished in chromosome 17 (agilent ID=A_23_P500400, gene name=ABCA6, p-value=1.04

x 10−62, fold change=17.39; agilent ID=A_23_P130158, gene name=WNT3, p-value=5.67

x 10−35, fold change=13.74; agilent ID=A_23_P26854, gene name=ARHGAP44, p-

value=1.3 x 10−43, fold change=24.49) and chromosome 19 (agilant ID=A_23_P67529,

gene name=KCNN4, p-value=3.17 x 10−32, fold change=3.15; agilent ID=A_23_P131024,

gene name=ZBTB32, p-value=5.46 x 10−39, fold change=5.26; agilent ID=A_32_P53234,

p-value=1.17 x 10−44, fold change=5.27).

4.3.2.3 WBC Correction Analysis

As depicted in Table 4.7, full and partial adjustment by leukocyte estimates show

consistent results compared to the WBC unadjusted models: significant associations

were found for the LMM including all BCL cases and controls and for the CLL and

MM subtype-specific analyses. The five significant associations found for the pooled

population model disappear after full WBC correction while partial WBC adjustment
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Figure 4.5: Volcano plot displaying the relationship between the p-values measuring
the strength of the association with disease status and their corresponding effect size
estimate for each of the 684 differentially expressed genes.

0 8 16 24

6

25

43

62

Differentially Expressed Genes

Fold Change (f)

-
lo

g 1
0(
p
)

17

19
17

18
7 19

1718
19

ABCA6

ARHGAP44

TCF4
CDK14ZBTB32

WNT3TCF4
KCNN4

only retains one borderline significant signal for the models adjusted for CD8 Lym-

phocyte, B cell, Granulocyte proportions (agilent ID=A_23_P210581, gene name=KCNG1,

fold change=0.73/0.73/0.73, p-value=1.03 x 10−6/1.49 x 10−6/1.66 x 10−6) and Natu-

ral Killer (NK) cell (agilent ID=A_23_P500400, gene name=ABCA6, fold change=1.53,

p-value=1.64 x 10−6).

Similarly, the two associations found in the MM subtype analysis do not reach signif-

icant levels after full WBC correction while partial correction revealed one borderline

significant candidate for the models corrected after CD8 Lymphocytes, B cells and

Monocytes estimates (agilant ID=A_23_P149368, gene name=FCRL1, fold change=0.70/0.74/0.70,

p-value=7.51 x 10−7/5.87 x 10−7/9.62 x 10−7), and three significant candidates for

the models corrected after Granulocyte proportion (agilant ID=A_23_P149368, gene

name=FCRL1, fold change=0.69, p-value=1.15 x 10−7; agilant ID=A_24_P548060, fold

change=0.76, p-value=1.24 x 10−6; agilant ID=A_32_P8813, gene name=LOC283663,
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Table 4.7: Number of significant associations identified in the WBC unadjusted LMM,
the six WBC partial adjustment LMMs and the full WBC adjustment LMM catego-
rized by disease subtype.

Partial WBC Adjustment
Disease Type (n)

Unadjusted
LMM CD8 CD4 NK cells B cells Monocytes Granulocytes

Full WBC
LMM

All BCL (464/352/352) 5 1 0 1 1 0 1 0

CLL (266/194/194) 684 415 427 400 18 420 258 18

DLBCL (269/206/206) 0 0 0 0 0 0 0 0

FL (269/205/205) 0 0 0 0 0 0 0 0

MM (299/233/233) 2 1 0 0 1 1 3 0
LMM: Linear Mixed Model, WBC: White Blood Cell, NK: Natural Killer.

fold change=0.63, p-value=2.99 x 10−7). None of the probes identified in the MM-

specific partial WBC adjustment matched the associations found in the unadjusted

WBC model.

The number of CLL-specific signals decreases from 684 to 18 upon full WBC correc-

tion, of which 16 are common with the unadjusted LMM (including the strongest 11

significant candidates). Partial WBC adjustment upon B cell proportion cell count

also reveals 18 significant probes, of which 14 are shared with the full WBC ad-

justed model and 17 with the unadjusted model. A total of 13 gene expression signals

are common statistically significant associations across the three models (Table B.17).

WBC adjustment upon the remaining cell proportion estimates reveals a number of

significant transcripts that ranges between 258 and 427 (Granulocytes and CD4 lym-

phocytes, respectively) (Table 4.7).

4.3.2.4 Predictive Performance Assessment

In order to account for the possibility that several of the 684 identified CLL-specific

signals can jointly contribute to predict the future risk of disease onset, the predic-

tive ability was assessed by performing a stepwise logistic regression procedure. The

disease status was considered as the outcome while the expression level of each of

the selected candidates was included sequentially as a predictor variable in order to

maximise the gain in Area Under the Curve (AUC) for the resulting Receiver Oper-
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ating Characteristic (ROC) curve compared to the probe combination retained at the

previous iteration. Specifically, the procedure was conducted following these steps:

1.- Include one additional probe in the model from those that are not already in.

2.- Construct the resulting ROC curve.

3.- Derive and store the AUC.

4.- Repeat step 1 to 3 for all the probes that are not already in the model.

5.- Identify the probe that maximises the AUC.

6.- Retain the probe identified in 5 in the model.

7.- Store the AUC for the model assessed in 6.

Logistic regression models of length 1 to 50 predictor variables were tested. To rule

out potential overfitting, a 5-fold Cross-Validation (CV) procedure (repeated 100 times)

was performed which allowed to derive density estimates of the distribution of the

AUC for the 50 models under study. Results of this iterative procedure are displayed

in Figure 4.6. An excellent predictive performance is shown for model of different

sizes even when a single transcript is used to predict disease status: the maximum

AUC found for a univariate model was based on agilent ID=A_23_P500400, gene

name=ABCA6 and was over 90%. Expectedly, as more transcripts are included in the

model, the predictive ability improves.

4.3.2.5 Time to Diagnosis Analysis

Stratification upon median TtD analysis reveals significant associations in the two

TtD strata for the analysis including all BCL cases and controls as well as for the CLL

and MM subtype specific analysis (Table 4.8). A clear overlap between these gene ex-

pression signals and the ones identified in the pooled TtD analysis can be observed.

For the BCL pooled population, three of the five transcripts identified in the TtD<6

strata were also significant in the analysis including all TtD years; three of the four

transcripts identified in the TtD>6 strata were also significant in the analysis includ-
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Figure 4.6: Quantitative assessment of the predictive abilities of the CLL-specific sig-
nals.
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The plot presents the density estimates of the AUC at different steps of the iterative procedure. Larger model sizes have been
omitted as they provide consistent results.

Table 4.8: Number of significant associations identified in the WBC unadjusted LMM
and the full WBC adjustment LMM categorized by disease subtype for the two TtD
strata under study.

WBC Unadjusted LMM Full WBC Adjustment
Disease Type (n)

TtD< 6 years TtD> 6 years TtD<6 years TtD> 6 years
All BCL (348/348) 5 4 1 0

CLL (247/251) 444 287 26 21

DLBCL (250/251) 1 0 0 0

FL (249/252) 0 0 0 0

MM (270/261) 1 0 1 0
WBC: White Blood Cell; LMM: Linear Mixed Model, TtD: Time to Diagnosis.

ing all TtD years. Only one gene expression signal is consistently selected across the

two TtD strata and the pooled analysis (Table B.18).

Expectedly, a larger overlap is observed in the CLL subtype analysis where the ex-
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Figure 4.7: Venn diagrams representing the overlap of candidate signals whose ex-
pression was found significantly different in CLL cases and controls for different sub-
groups (pooled population, TtD<6 years and TtD>6 years) for the unadjusted WBC
LMM (left panel) and the full WBC adjustment LMM (right panel).
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TtD: Time to Diagnosis, WBC: White Blood Cell, LMM: Linear Mixed Model.

pression of 223 probes was found to be significantly different between cases and con-

trols for the three sub-groups (pooled population, TtD<6 and TtD>6) (Figure 4.7).

Moreover, the effect size and strength of association of the top 10 strongest signals

found in the pooled analysis narrowly change in the two TtD strata (Table B.19).

Upon WBC full correction, the number of common differentially expressed genes is

reduced to six candidates (Figure 4.7). Results from the MM-specific TtD analysis are

not shown.

4.3.2.6 Biological Interpretation of the Findings

The transcripts ABCA6, ARHGAP44, TCF4, CDK14, ZBTB32, WNT3 and KCNN4,

which are among the strongest identified association, correspond to protein-coding

genes [207]. More specifically, the protein encoded by ABCA6 is a membrane-associated

transporter involved in the mobilization of various molecules across extra- and intra-

cellular membranes. Although it presents low lineage specificity, its expression is
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enhanced in the blood cell types Dendritic Cells (DC) and monocytes. WNT3 belongs

to a family of genes which encode for signalling proteins implicated in oncogenesis

and other developmental processes such as regulation of cell fate. CDK14 plays a

role as a regulator of cell cycle progression and cell proliferation and has been impli-

cated in transcriptional misregulation in cancer; its expression is enriched in blood

cells with high specificity for the granulocyte and B cell lineages. TCF4 is an acti-

vating transcription factor with a tissue-specificity expression in blood (b cells and

DC). Finally, both ZBTB32 (DNA-binding protein with transcriptional repressor ef-

fect) and KCNN4 (potassium membrane channel) play a role in the activation of T-

lymphocytes.

Furthermore, results from the gene-enrichment analysis showed that, of the 684 sig-

nificant probes found to be differentially expressed in the CLL population, 574 (83.91%)

were mapped to DAVID’s database for functional annotation which were grouped

into 310 different gene enriched pathways. In order to identify the most relevant to

the disease outcome of interest, enriched pathways were further filtered by setting

the EASE score<0.01, the minimal number of probes per functional group to 5, the

fold enrichment value>3 and the Bonferroni p-value 10−3 (correction according to

the minimum number of probes per group). This selection process identified a to-

tal of 14 gene enriched biological pathways (208 transcripts) which mainly relate to

proliferation and signalling of B cells, Pleckstrin homology domain (intracellular cell

signalling) and immune system regulation (Table 4.9).
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Table 4.9: Summary of the results from the CLL-specific gene-enrichment analysis.

Database Term Count p-value
Fold

Enrichment

Bonferroni

5%

1 INTERPRO IPR011993: Pleckstrin homology-like domain 33 5.07E-09 3.35 4.06E-06

2 INTERPRO IPR001849: Pleckstrin homology domain 24 8.28E-08 3.84 6.63E-05

3 KEGG_PATHWAY hsa04662: B cell receptor signalling pathway 12 4.63E-07 7.38 9.27E-05

4 SMART SM00233:PH 24 6.74E-07 3.36 1.39E-04

5 KEGG_PATHWAY hsa05340: Primary immunodeficiency 9 8.19E-07 11.24 1.64E-04

6 KEGG_PATHWAY hsa04672: Intestinal immune network for IgA production 10 1.07E-06 9.03 2.14E-04

7 GOTERM_BP_DIRECT GO:0030890 positive regulation of B cell proliferation 10 2.44E-07 10.79 4.74E-04

8 UP_KEYWORDS SH2 domain 13 5.05E-06 5.41 1.70E-03

9 UP_SEQ_FEATURE domain:PH 21 1.04E-06 3.73 1.73E-03

10 SMART SM00252:SH2 13 1.98E-05 4.67 4.07E-03

11 KEGG_PATHWAY hsa04064:NF-kappa B signalling pathway 11 3.17E-05 5.37 6.31E-03

12 UP_SEQ_FEATURE short sequence motif:ITIM motif 4 5 3.95E-06 36.27 6.53E-03

13 GOTERM_BP_DIRECT GO:0050853 B cell receptor signalling pathway 10 4.46E-06 7.79 8.65E-03

14 INTERPRO IPR000980:SH2 domain 13 1.14E-05 4.99 9.13E-03
Biological pathways are ordered in relation to their Bonferroni adjusted p-values.
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4.3.2.7 Sensitivity Analysis

Analogously to the analysis conducted on the proteomics dataset, I assessed the con-

sistency of the findings across the two cohort populations (Epic-Italy and NSHDS)

and the two analytical phases (1 and 2). Significant associations were identified in

the analysis including all BCL observations (NSHDS, n = 1 and phase 2, n = 2), MM

(phase 1, n = 2) and CLL subtypes (Epic-Italy, n = 99; NSHDS, n = 461; phase 1, n =

112 and phase 2, n = 560).

Focusing on the CLL-specific signals, weaker p-values and effect sizes were observed

in the transcripts found in the different sub-groups comparing to the ones obtained

in the pooled analysis (results not shown). This is particularly true for EPIC-Italy and

analytical phase 1, possible to the lower number of observations (11 cases and 76 con-

trols for EPIC-Italy and 9 cases and 107 controls for phase 1). There is an overlap of

the strongest CLL-specific gene expression signals across the two study populations

(n = 62) and the two experimental phases (n = 92). A total of 46 are significantly differ-

ently expressed across the four sub-groups, including the 20 strongest probes found

in the pooled analysis. Expectedly, weaker signals do not systematically replicate

in the four sub-groups. The findings obtained from this sensitivity analysis provide

technical replication of the results as well as validation of the epidemiological study

design.

4.3.3 Assessment of Technical-induced Noise

For proteomics and transcriptomics, the analysis of the ranking distribution (over the

28 and 29,662 models, respectively) for each of the levels of the random effect vari-

ables clearly shows some plates and dates that were consistently found to generate

higher variances and therefore more noise. For example, it seems that samples that

were analysed in plate numbers 102, 205, 208, 209 and 210 (five out of the 16 plates)

are associated to generate higher noise (Figure 4.8), which is a consistent finding con-

sidering the 3.57% percentage of null variance. For transcriptomics, only two RNA
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Figure 4.8: Ranking distribution (over the 28 LMM models) of the estimated random
intercept for each of the micro titer plate numbers in the proteomics analysis.
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isolation dates were estimated to produce marginal noise (2010-12-13 and 2011-02-08)

while such experimental dates are more numerous for array hybridisation where 10

analytic days seemed to have been associated with higher variance (Figure 4.9).
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Figure 4.9: Ranking distribution (over the 29,662 LMM models) of the estimated random intercept for each of the experi-
mental dates in the transcriptomics analysis.
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Figure 4.10: Density distribution of p-values for the LMM and the corresponding
linear model without the random effect term for the proteomics (panel a) and tran-
scriptomics datasets (panel b).
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The comparison of p-value distributions obtained from the LMM to those obtained

under the corresponding linear model (setting the random intercept to zero, not ac-

counting for nuisance variation) for the proteomics and transcriptomics data is il-

lustrated in Figure 4.10. Linear models exhibit a more typical null p-value distribu-

tion while the inclusion of a random effect term sharpens the distribution for smaller

p-values, providing a stronger support for the alternative hypothesis. This finding

suggests that random effects successfully estimated technical-induced variation and

limited the subsequent dilution effect of nuisance variance, yielding better power to

detect significant associations.
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4.4 Discussion

In the analyses presented in this chapter, I used blood samples collected years before

clinical diagnosis to interrogate the relationship between pre-diagnostic blood levels

of immune and transcriptomic markers and future risk of BCL and its main histologi-

cal subtypes using established univariate statistical approaches. As expected from the

biological heterogeneity of BCLs, the results do not support the existence of markers

whose change in concentration or expression is common to the pathogenesis of all

or multiple histological subtypes of BCL. Instead, and despite the limited number of

cases available per disease subtype, the analyses led to the identification of several

strong signals associated with prospective MM risk in proteomics and CLL subtype

in transcriptomics. In particular, the following immune markers were found con-

sistently inversely associated with MM incidence: FGF2, VEGF, TGFa, Fractalkine,

MCP3 and MIP1a while the expression of the following genes was shown to be as-

sociated to CLL incidence: ABCA6, ARHGAP44, TCF4, CDK14, ZBTB32, WNT3 and

KCNN4 (strongest findings). The strongest associations seem to persist among cases

sampled more than six years before clinical diagnosis.

4.4.1 Precursor States

The two BCL subtype for which positive association were found are preceded by

asymptomatic pre-malignant precursor states, namely Monoclonal Gammopathy of

Uncertain Significance (MGUS) and Monoclonal B Lymphocytosis (MBL) for MM and

CLL, respectively. MGUS is characterised by the proliferation of monoclonal plasma

cells derived from post-germinal-centre (GC) B cells and is a condition with an inci-

dence of 1% in the population older than 50 years (and up to 10% older than 75 years)

[208]. Evidence suggests that most cases of MM are preceded by MGUS whose trans-

formation rate is 1% to 2% per year [209]. On the other hand, MBL is characterised by

the presence of circulating monoclonal B cells and no other signs of a lymphoprolif-

erative disorder and is found in approximately 3% of normal people; CLL is always
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preceded by MBL [210]. It has also been shown that MBL may progress into CLL

with a frequency of 1% to 2% per year but it is not understood whether individual

subjects with MBL will or will not progress into CLL or when this event will occur

[210]. Thus, the biological alterations found in the analysis conducted in this chapter

may be a reflection of these two pre-clinical conditions and these two entities can par-

tially explain why significant associations were not identified for the other subtypes

under study as no precursor states are described for DLBCL and FL.

More specifically, gene expression profiles conducted on MBL support the possibil-

ity that the CLL-related signals observed in this analysis may arise, at least to some

extent, from its pre-clinical condition. This hypothesis is supported by the fact that

a number of genes related to WNT signalling (e.g. WNT3, WNT10A, ARHGAP44,

TCF4, CDK14, and ZBTB32) have been reported to be activated in MBL [211] which

are among the differentially expressed genes with the largest effect sizes observed

in this chapter. In addition, of 20 genes reported as being differentially expressed in

MBL [211], four (PRKCB, PAG1, TCL1A, ROR1) fall among the CLL-related genes

identified in the current analysis. On the other hand, biological pathways reported

to be activated in MBL cells (e.g. the MAPKinase and protein kinase A pathways)

were not among those indicated by the CLL-related profile observed here. As such,

the identified profile seems to be driven only partially by MBL. This is strengthened

by the observation that the identified CLL-transcriptomic profile predicts more than

90% of the cases, whereas only ∼5%-10% of subjects of the MBL phenotype would

be expected to progress to CLL over the six-year average follow-up period of this

study. These observations are compatible with the possibility that the CLL differ-

ential expression profile detected is due to clones of malignant or premalignant cells,

including MBL cells, present at low concentrations in the blood samples several years

before clinical onset, which evolve toward CLL via specific transcriptomic signals in

an indolent manner at a slow progression rate.

In contrast, the suggestion that the changes in immune marker levels in the MM

subtype-specific analyses may partially arise from MGUS seems to be more difficult
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to support as the markers revealed in this chapter are inversely related to long-term

risk of MM. Although these markers have been reported previously in clinical stud-

ies of MM or MGUS [212], [213], [214], [215], [215], the direction of findings reported

here is in general opposite to the results found among subjects diagnosed with MM,

where higher concentrations seem to be related to generally poorer disease outcome.

The reason for this difference in direction of the effect is not known but may direct

towards a preclinical deregulation of these important biological systems in individ-

uals developing MM later in life which at the time of clinical manifestation reverse

in overexpression. Therefore, external replication of this study is needed either in

healthy individuals in an epidemiological setting or in individuals with the precur-

sor condition in clinical studies in order to further clarify these findings. This may be

of importance as this disease has a low survival rate (average survival rate is 5 years)

[216] and confirmation of the results could lead to the identification of patients at

higher risk of progressing to MM and in the long-term could improve individualized

surveillance strategies.

4.4.2 Biological Relevance of Findings

For CLL subtype in the transcriptomics analysis, a substantial overexpression (up

to 25-fold) was found for the strongest signals in cases compared to controls in addi-

tion to a trend towards increased expression while approaching clinical onset demon-

strated by the TtD analyses. These two observations suggest that the CLL-related pro-

file reflect to some extent markers of disease progression arising from subpopulations

of cells in which disease initiation has occurred long before diagnosis. This is fur-

ther supported by the fact that some of the strongest associations (e.g. ARHGAP44,

ABCA6, and WNT3) are highly overexpressed in CLL malignant cells [217], [218].

This premise is consistent with the clinical progression of the disease as CLL patients

present an insidious and indolent course for a third of cases with signs and symptoms

taking years to arise.

Several genetics lesions have been reported to play a role in the pathogenesis of
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CLL which have been identified using molecular or conventional cytogenetics in case

samples and include mainly tumour suppressor gene deletions as a consequence of

specific chromosome regions being deleted. The genes involved are ATM and TP53

whose deletion or mutation are found in 30% and 15% of patients (respectively) [167]

while the chromosomal abnormalities commonly found are deletion of 13q or trisomy

12, del(13)(q14), del(11)(q22–23), del(17)(p13) and del(6)(q21); these genetic lesions

can be acquired during the course of the disease. The findings revealed by the anal-

ysis conducted in this chapter do not support strong evidence of chromosome speci-

ficity for the signals, except possibly for chromosomes 17, 18, and 19. However, the

identified transcripts point toward an important contribution of B-cell signalling, and

B-cell activation and proliferation in the aetiology of CLL. For example, the nuclear

factor-kappa B (NF-κB) is essential at different stages during mature B cell differenti-

ation in the GC reaction and its activation has been previously reported to be related

to the pathogenesis of BCL [138].

For MM subtype in the proteomics analysis, the findings provide evidence for a

strong link between FGF2, VEGF, TGFa levels and incidence of this particular sub-

entity; these three inflammatory markers correspond to growth factors. Several clin-

ical studies have reported that the plasma concentrations of FGF2 were elevated

in patients with active MM compared to patients with inactive disease, and this

correlates with increased bone marrow angiogenesis and lymphangiogenesis [219],

[220], [221],[222]. In addition, it has been shown that MM patients who respond

to chemotherapy (an immunosuppressed condition) show a significant decrease in

serum FGF2 levels, whereas non-responders do not [222]. Similarly, clinical stud-

ies have reported that increased serum levels of VEGF are associated with more ad-

vanced disease stages and with poor prognosis in BCL and MM cases [219], [220],

[222]. It is known that VEGF and its ligands and receptors play a central role in phys-

iological regulation of angiogenesis as well other nonvascular roles including recruit-

ment of inflammatory cells and autocrine and intracrine production of hematopoietic

stem cells [223]. Finally, TGFa is an important mitogen that binds to the EGF recep-
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tor and has been studied in many other malignancies, but data on MM are limited

and no prospective data are available [224],[225], [226]. These observations support

a possible role of the growth factors in the pathogenesis of MM. Given their interre-

lationship and cyclic response, more in-depth monitoring of the FGF2, VEGF, TGFa

and its soluble receptors is needed to clarify their possible pre-diagnostic role in this

BCL subtype.

4.4.3 WBC Correction Analyses

Both proteomics and transcriptomics analyses correcting for intra sample heterogene-

ity provided consistent results in comparison to the unadjusted LMMs in the sense

that significant associations were found only for MM and CLL subtypes, respectively.

For MM, the strongest associations consistently replicate across all models performed.

However, the CLL-specific signals show to be more affected by both partial and full

WBC adjustment as the number of positive findings was greatly reduced with B cell

proportion mainly driven the difference. This suggests that the alteration in B-cell

counts as a result of the disease phenotype may have been confounding and driving

most of the identified associations with only 18 transcripts surviving the adjustment.

As these signals were also the ones showing the strongest associations in the unad-

justed model, they may reflect the key genes and relevant biological pathways that

are behind the B-cell malignancy process. Moreover, one could argue that this is an

expected finding as the pathogenesis of the disease (dysfunctional activation and dif-

ferentiation of B cells) and its clinical presentation (lymphocytosis) reflect alterations

in the normal expression patterns of B cells, in contrast to MM, for example, which

affects plasma cells.

4.4.4 Assessment of Technical-induced Noise

The analysis using LMMs suggests that the inclusion of random effect terms effec-

tively restricts the dilution effect of nuisance variation. As discussed in section 3.5,

micro titer plate number and experimental dates act as surrogate or proxy variables
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for other sources of variation. In the case of proteomics where a higher percentage

of null variance is observed, these sources of variation may be partially explained by

the use of different blood sample anticoagulants in the two study cohorts (citrate in

EPIC-Italy and Ethylene Diamine Tetraacetic Acid (EDTA) in NSHDS) as it is known

that different media results in absolute differences in levels of immune markers. On

the other hand, in the case of transcriptomics, of the three experimental dates in-

cluded as random effects, array hybridisation appears to have been associated with

higher variance which is, to some extent, an expected output as hybridization is the

most time-consuming step of the entire RNA microarray procedure (approximately

17 hours). The dynamics of this process relies on many factors depending on both

the reaction conditions and structural properties of the individual RNA molecules

which may significantly affect the experimental outcomes. For example, evaporation

of some of the water can change the salt concentration in the buffers and significantly

affect the efficiency of the process [39].

4.4.5 Study Design Implications

The epidemiological study design employed in this chapter has a number of strengths,

including its prospective nature, which limits reverse causation bias that may occur

when variation in blood level of circulating levels of biological markers is induced

by the disease itself, cancer treatments or lifestyle changes after cancer diagnosis.

The availability of two different cohorts allowed for independent confirmation of

the observed associations which were consistent for both the proteomics and tran-

scriptomics analyses. In addition, in the specific case of proteomics, a larger panel

of immune markers was simultaneously measured which constitutes an advantage

in comparison to most previous prospective studies where individual markers are

assessed independently.

On the other hand, the study design may be associated with some limitations. Bias

may arise from omics profiles measurements of study subjects in two analytical phases

despite adjustment in the LMM. However, stratified analyses by cohort and phase
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showed overall similar trends for the identified signals despite the associated reduced

power. Moreover, omics profiles were measured at a single time point to determine

future risk of BCL which may not accurately reflect the long-term immune status and

gene expression profile of an individual. Nevertheless, several studies have provided

evidence of a reasonable between-to-within person variability ratio suggesting tem-

poral stability for panels of both proteomics and transcriptomics profiles [227], [228],

[229]. Finally, it cannot be ruled out that some of the results identified in this chap-

ter such as the inverse association between significant immune markers and disease

status or the lack of significant signals for other subtypes, may be explained by the

reduced sample size.

4.5 Conclusion

The relationship between EGM omics markers and future risk of BCL was assessed

by employing established univariate statistical methods. In particular, LMMs were

preferred for their ability to correct for technical-induced variation, a recognized fac-

tor to affect the reliability of omics experiments. The results presented in this chap-

ter showed that the proteins FGF2, VEGF and TGFa are inversely associated with

MM incidence while the transcripts ABCA6, ARHGAP44, TCF4, CDK14, ZBTB32,

WNT3 and KCNN4 are among the strongest signals positively associated with CLL

risk. Consequently, LMMs proved to be successful in disclosing relevant associations

in the investigated real-world omics data; however, as these statistical approaches

model individual markers separately, interesting biological patterns may have been

overlooked. In the following chapter I examine this hypothesis by analysing the pro-

teomics and transcriptomics datasets under a dimension-reduction and supervised-

learning statistical framework.
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5
Application of Partial Least Squares

Techniques to the Proteomics and

Transcriptomics Datasets: Moving from

Univariate towards Multivariate Approaches

This chapter is based in part on the publication:

R. Vermeulen, F.S. Hosnijeh, B. Bodinier, L. Portengen, B. Liquet, J.

Garrido-Manriquez, H. Lokhorst, I. A. Bergdahl, S. A. Kyrtopoulos,

A. Johansson, P. Georgiadis, B. Melin, D. Palli, V. Krogh, S. Panico,

C. Sacerdote, R. Tumino, P. Vineis, R. Castagné, M. Chadeau-Hyam,

M. Botsivali, A. Chatziioannou, I. Valavanis, J.C.S. Kleinjans, T.M.C.M.

de Kok, H.C. Keun, T. J. Athersuch, R. Kelly, P. Lenner, G. Hallmans,

E.G. Stephanou, A. Myridakis, M. Kogevinas, L. Fazzo, M. De Santis,

P. Comba, B. Bendinelli, H. Kiviranta, P. Rantakokko, R. Airaksinen, P.

Ruokojarvi, M. Gilthorpe, S. Fleming, T. Fleming, Y. Tu, T. Lundh, K.

Chien, W.J. Chen, W. Lee, C.K. Hsiao, P. Kuo, H. Hung and S. Liao.

“Pre-diagnostic blood immune markers, incidence and progression of

B-cell lymphoma and multiple myeloma: Univariate and functionally

informed multivariate analyses”. International Journal of Cancer 143.6

(2018), 1335–1347.

All the analyses shown here have been independently replicated by me. A descrip-
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tion of the overlapping analysis as well as improvements made by this chapter is

provided in section C.1.

5.1 Introduction

Building upon the findings described previously where established univariate meth-

ods were employed for the analyses of omics profiles, in this chapter I use supervised

Dimension Reduction Techniques (DRTs) to analyse the proteomics and transcrip-

tomics datasets from the EnviroGenoMarkers (EGM) study. As before, the overarch-

ing aim is to identify inflammatory markers and gene expression signals indicative

of future risk of B-cell Lymphoma (BCL) and its main histological subtypes; however,

here special emphasis is placed on investigating the usability and scalability of the

applied statistical approaches. The specific techniques employed are the regularized

versions of Partial Least Squares (rPLS) which are used in a discriminatory analy-

sis context in order to identify the markers that best differentiate between the sample

groups. Therefore, the process of selecting the most relevant features driving the vari-

ation as well as the incorporation of meaningful information related to pre-existing

groups of features with a similar biological function are included in the statistical

analyses. The strengths and limitations of introducing sparsity at different levels of

the feature hierarchy are explored and assessed in terms of interpretability, statistical

performance, robustness and biological relevance.

5.2 Methods

The supervised multivariate approaches sparse, group and sparse-group Partial Least

Squares-Discriminant Analysis ([s][g][sg]PLS-DA, respectively) were applied sepa-

rately on the immune markers and gene expression datasets. The predictor matrices

employed for the statistical analyses correspond to the “de-noised” immune marker

concentration and gene expression level estimates obtained by subtracting the ran-
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dom effect term(s) from the original raw levels from the results of the Linear Mixed

Model (LMM) described previously (see section 3.5). The outcome matrix employed

was a two-column dummy matrix indicating whether each individual observation

was a lymphoma case or a control (i.e. binary classification problem, G = 2). Statisti-

cal analyses were conducted on the full BCL pooled population and stratified by ma-

jor histological subtypes: Chronic Lymphocytic Leukaemia (CLL), Diffuse Large B-

cell Lymphoma (DLBCL), Follicular Lymphoma (FL), and Multiple Myeloma (MM).

Disease subtype stratification was performed including cases of the corresponding

subtype and its paired control subjects (i.e. there is an equal number of cases and

controls in all stratified analyses). In proteomics, the total number of case-control

pairs included in the study populations correspond to 536, 84, 88, 78 and 152 for all

BCL, CLL, DLBCL, FL and MM, respectively; while for transcriptomics, these num-

bers correspond to 464, 68, 74, 74 and 134. I use the R-statistical package mixOmics

to fit the sPLS-DA statistical models and the sgPLS package to fit the gPLS-DA and

sgPLS-DA models.

For the group and sparse-group analyses, individual variables were grouped by the

similarity of their molecular and biological functions. For the proteomics analy-

ses, the 28 immune markers were classified into three different functional modules:

growth factors, chemokines and cytokines including 6, 10 and 12 proteins, respec-

tively (see Table 3.2 for details). In the case of the gene expression dataset, transcripts

were allocated to biological pathways using the online bioinformatics tool Database

for Annotation, Visualization and Integrated Discovery (DAVID v6.8, http://david.

abcc.ncifcrf.gov/). The grouping procedure was conducted ensuring that tran-

scripts were solely allocated to a single pathway, thus avoiding the possibility of

overlap of probes across pathways. Of the 29,662 transcripts, a total of 14,925 were

recognized as being part of a relevant biological pathway accounting for 50.32% of

the probes assayed and a total of 849 different groups were identified; 174 of them

(0.59%) constitute pathways containing only a single variable. In order to minimise

information loss, the remaining 14,737 probes (49.68%) were grouped into a single bi-
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ological pathway of non-annotated features. More details on the biological pathways

to which individual transcripts were grouped are provided on Table C.1.

5.2.1 Calibration Procedure: Defining the Optimal Value of Pa-

rameters

For the three regularized PLS-DA techniques, a model calibration procedure was con-

ducted to optimize the corresponding tuning parameters by means of a sequential

strategy where we first seek to determine the optimal number of dimensions fol-

lowed by the optimization of the parameters defining the degree of sparsity (see sec-

tion 3.6.2.1.1). Considering that the research question poses a binary classification

problem and under the assumption that the inclusion of additional latent variables

mainly accounts for variation within the predictor matrix, the total number of com-

ponents explored was two (H = 2). The R2 or percentage of explained variation in the

outcome matrix and the Discriminant Q2 (DQ2) value were the explored diagnostic

statistics to determine the optimal number of PLS dimensions.

Once the optimal number of latent variables was defined, the additional model pa-

rameters were tuned using M -k-fold Cross Validation (CV, k=5 and M=100) and the

overall misclassification Error Rate (ER) averaged across the 100 repetitions was com-

puted for each component as the chosen metric of performance. To avoid the possi-

ble introduction of bias, the CV procedure was conducted ensuring that cases-control

pairs were allocated to the same fold in each of the iterations. Predictions of new

observations were made using the maximum value (or maximum distance) as the

Decision Rule (DR) to translate the predicted values into meaningful class member-

ships; a choice made considering the sample groups were of equal size and to allow

for the possibility of unequal variance. One-dimensional grids of values of the tuning

parameters were employed for both sPLS-DA and gPLS-DA while a two-dimensional

grid was used for sgPLS-DA as the optimal degree of sparsity in the predictor matrix

depends on two parameters. The specific additional model parameters required to be

calibrated for each of the three statistical methods are detailed as follows:
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– sPLS-DA: number of individual variables to retain in the predictor matrix (in-

flammatory markers in proteomics and gene expression signals in transcrip-

tomics).

– gPLS-DA: number of modules to retain in the predictor matrix (functional groups

in proteomics and biological pathways in transcriptomics).

– sgPLS-DA: number of modules to retain in the predictor matrix (functional

groups in proteomics and biological pathways in transcriptomics) and degree

of sparsity within the groups (mixing parameter α1).

The reduced size of the proteomics matrix in terms of both individual features and

functional groups allows for the complete range of values to be explored during the

calibration procedure. Therefore, the specific values examined were:

– sPLS-DA: models retaining 1 to 28 proteins (grid resolution of 28 values).

– gPLS-DA: models retaining 1 to 3 functional groups (grid resolution of 3 values).

– sgPLS-DA: models retaining 1 to 3 functional groups (grid resolution of 3 val-

ues) and a within-group degree of sparsity (α1) ranging from 0.05 to 0.95 (grid

resolution of 11 values).

On the other hand, the high-dimensional nature of the gene expression data con-

strains the possible space of model parameters that can be investigated. Thus, the

following values were tested:

– sPLS-DA: models retaining 2 to 1000 transcripts (grid resolution of 40 values).

– gPLS-DA: models retaining 1 to 150 biological pathways (grid resolution of 28

values).

– sgPLS-DA: models retaining 1 to 150 biological pathways (grid resolution of

28 values) and a within-group degree of sparsity (α1) ranging from 0.05 to 0.95

(grid resolution of 11 values).

These sequences were defined under the main assumptions that the inclusion of ad-
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ditional variables or modules produce minimal reductions of the ER, models with an

excessive number of features have a reduced capacity to extract information of bio-

logical relevance and the retention of more variables produce unnecessary high com-

putational costs. It is worth to point out that the grid employed for the calibration

of the number of modules in gPLS-DA is the same as the one employed in sgPLS-

DA (for both the proteomics and transcriptomics analyses); likewise, the same grid

of values of the mixing parameter α1 was used in the proteomics and transcriptomics

sgPLS-DA analyses.

5.2.2 Assessment of Calibrated Models

Once the corresponding optimal parameters were tuned for the three PLS-DA vari-

ants, the classification performance of the models was evaluated by CV under the

same criteria applied in the calibration procedure (k=5,M=100 and paired case-control

subjects being included in the same fold). The computation of the overall misclassi-

fication ER, ER per observation type and the Area Under the Curve (AUC) averaged

across CV folds were the metrics of performance of choice to compare the classifica-

tion abilities of the models for the pooled BCL population and the stratified popula-

tions by major histological subtypes.

The relevant graphical outputs that could be displayed in this discriminatory anal-

ysis context were assessed. Sample representation plots were employed to examine

the classification capacity of optimized models with more than one PLS dimension

in a graphical manner. The contribution of individual variables was assessed by the

inspection of the loading coefficient plots. Moreover, the stability frequency of the

selected features was examined in order to verify the results are consistent within the

population and not driven by outlier study participants. The graphical representation

of the stability frequency was obtained by repeatedly fitting the regularized models

in subsets of the original datasets and recording the frequency the features were se-

lected across the models visited. More specifically, the model fitting procedure was

repeated 500 times in 80% of the study population; in each iteration a different pop-
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ulation subset was employed. The entire process was applied for different values of

the corresponding model parameters. In order words, the stability frequency output

was obtained as a by-product of the calibration procedure (see also section 3.6.2.4). In

addition, it is important to mention that for models selecting more than one compo-

nent, the stability frequency of the second component was computed retaining in the

first dimension the number of features or modules reported as optimal.

Finally, and when appropriate in the case of the (s)(g)(sg)PLS-DA transcriptomics

analyses, the selected gene expression signals were further investigated through gene-

enrichment analyses using DAVID.

5.3 Results

5.3.1 Proteomics

5.3.1.1 Calibration Procedure and Assessment of Calibrated Models

The values of R2 and DQ2 statistics obtained from a classical PLS-DA model fitted

with up to two latent variables are shown in Table C.2. Figure C.1 and Figure C.2

display the calibration curves representing the average overall misclassification ER

for all the values of the parameters tested for the sPLS-DA and sgPLS-DA models,

respectively. Table C.3 shows the ER obtained from the gPLS-DA model retaining

one to three functional groups. Based on these results, a decision was made to de-

fine both the optimal number of components and the optimal value of the additional

parameters determining model sparsity. Table 5.1 details the values of the optimal pa-

rameters employed in the calibrated models, the resulting number of inflammatory

markers and functional groups selected per component as well as the total number of

unique proteins and modules selected across components. Such information is pre-

sented for the three statistical methods being applied and for both the pooled BCL

analysis and the four stratified analyses by major disease subtype.
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Table 5.1: Parameters used in the calibrated model, number of unique inflamma-
tory markers and functional groups selected per component and total number of
unique proteins and modules selected across components for the three regularized
approaches and for the five study populations.

All BCL CLL DLBCL FL MM
sparse PLS-DA

N Components 2 2 1 1 2
N Variables 1st component 12 3 4 1 2
N Groups 1st component 3 2 2 1 1
N Variables 2nd component 3 4 — — 1
N Groups 2nd component 2 3 — — 1
Total N Variables 13 7 4 1 3
Total N Groups 3 3 2 1 2

group PLS-DA
N Components 1 1 1 1 1
N Variables 1st component 28 28 10 6 28
N Groups 1st component 3 3 1 1 3

sparse group PLS-DA
N Components 2 1 1 1 1
N Variables 1st component 26 2 9 4 10
N Groups 1st component 3 1 2 1 3
α1 1st component 0.3 0.9 0.9 0.7 0.95
N Variables 2nd component 4 — — — —
N Groups 2nd component 1 — — — —
α1 2nd component 0.9 — — — —
Total N Variables 26 2 9 4 10
Total N Groups 3 1 2 1 3

Cell colours indicate the functional group(s) which was (were) selected in the component or final model: orange for growth
factor, blue for chemokine and yellow for cytokine.
PLS-DA: Partial Least Squares-Discriminant Analysis.

5.3.1.1.1 Pooled Population

The multivariate sPLS-DA analysis pooling all BCL cases together retained two PLS

dimensions with 12 and three proteins being selected in each component. The first

component selected the proteins TGFa, FGF2, VEGF and EGF which belong to the
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growth factor category; MDC, MIP1a, MCP3 and Fractalkine which belong to the

chemokine group and sCD40L, IL1b, TNFa and INFg which are part of the cytokine

module. On the other hand, the three inflammatory markers selected in the second

component correspond to two cytokines (sCD40L and TNFa) and one chemokine (Eo-

taxin). Since the cytokines sCD40L and TNFa overlap between components, a total of

13 unique proteins were selected in the calibrated sPLS-DA model.

The gPLS-DA analysis selected the model with one component and with the three

functional groups being retained in it; therefore, all proteins were selected, and no

sparsity was effectively imposed in the calibrated model.

Two components were chosen in the sgPLS-DA model with the three functional groups

being retained in the first dimension and one in the second, the cytokine group was

selected in the latter. As a result of including the optimized value of the mixing pa-

rameter α1, 26 proteins were retained in the first component and four in the second.

All features but MCP1 (a chemokine) and IL13 (a cytokine) were kept in the first com-

ponent while in the second latent variable the cytokines sCD40L, TNFa, IL7 and IL10

were retained, which comprise four of the 12 markers that are part of the mentioned

functional group. A complete overlap of features is observed between components;

thus, 26 unique proteins are part of the optimized sgPLS-DA model.

5.3.1.1.2 Subtype Stratified Analysis

The sPLS-DA subtype-specific analyses selected two components for the CLL and

MM sub-entities and one for the DLBCL and FL. Seven unique proteins were re-

tained in the CLL model, three kept in the first dimension and four in the second,

which are part of the three functional groups. sCD40L, IL4 (cytokines) and Eotaxin

(chemokine) were selected in the first component while TGFa, GCSF (growth fac-

tors), TNFa (cytokine) and IL8 (chemokine) were selected in the second component.

The MM-specific sparse model selected three variables in total: two in the first di-

mension (the growth factors TGFa and FGF2) and one in the second (the chemokine

IP10). For the disease entities DLBCL and FL the variables MDC, Eotaxin (growth
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factors) and sCD40L, IL13 (cytokines) are part of the first subtype sparse model while

EGF (growth factor) is part of the second subtype sparse model.

Comparable to what was found in the analysis pooling all BCL cases, the gPLS-DA

calibrated model in all four subtype-specific analyses selected only one component.

The three functional groups were retained in the CLL and MM analyses and one in

the DLBCL and FL analyses (chemokine and growth factor, respectively).

Similarly, one latent variable was chosen in all four stratified sgPLS-DA models with

one functional group being retained in the CLL- and FL-, two in DLBCL- and three in

the MM-specific analyses. In the CLL model, the cytokine group was selected in the

model and as a result of imposing within-group sparsity two variables were retained

which correspond to sCD40L and IL4. The FL model retained four out the six growth

factors while the DLBCL model kept proteins from the chemokine (four markers) and

cytokine (five markers) groups. Finally, 12 proteins were selected in the MM-specific

analysis comprising three growth factors (TGFa, FGF2 and VEGF), four chemokines

(MCP3, Fractalkine, MIP1a and MIP1b) and three cytokines (IL1b, IL13 and INFg).

5.3.1.2 Model Performance

The classification abilities of the three optimized models for both the BCL pooled

population and subtype stratified study populations are shown in Table 5.2. For the

disease subtypes DLBCL and FL, the overall misclassification ER and the ER per ob-

servation type is equal or above the threshold value of 0.5, which implies that models

perform no better than chance to correctly classify observations. Given those results,

subsequent analyses focus on the BCL pooled population and the CLL and MM ob-

servation types (n = 536, n = 84 and n = 152 case-control pairs, respectively). In terms

of both overall misclassification ER and AUC, the CLL-specific analysis exhibits the

best classification performance followed by the pooled and MM-specific analyses.

This observation holds for the three regularized models, with the exception of the

gPLS-DA model where the overall ER is lowest for the pooled population followed

by CLL and MM subtypes. Moreover, it is noted that the ER is consistently lower
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Table 5.2: Classification performances of the three calibrated PLS-DA models for the
five study populations (proteomics dataset).

sparse PLS-DA group PLS-DA sparse group PLS-DA

Overall

ER

ER

Control

ER

Cases
AUC

Overall

ER

ER

Control

ER

Cases
AUC

Overall

ER

ER

Control

ER

Cases
AUC

All BCL 0.406 0.419 0.393 0.594 0.414 0.426 0.402 0.587 0.394 0.402 0.387 0.606

CLL 0.368 0.425 0.311 0.646 0.456 0.501 0.411 0.588 0.357 0.380 0.334 0.668

DLBCL 0.530 0.503 0.557 0.574 0.525 0.522 0.529 0.579 0.523 0.498 0.548 0.574

FL 0.542 0.532 0.552 0.559 0.534 0.547 0.521 0.565 0.531 0.537 0.524 0.569

MM 0.440 0.428 0.452 0.576 0.421 0.464 0.377 0.586 0.413 0.413 0.413 0.593
PLS-DA: Partial Least Squares-Discriminant Analysis, ER: Error Rate; AUC: Area Under the Curve.

for cases in comparison to controls in the pooled population and the CLL subtype

across the three regularized models, with more marginal differences in the sgPLS-DA

model. For the MM subtype, there seems to exist a similar classification ability for the

two sample types. Lastly, when comparing the classification abilities across statisti-

cal methods, it is observed that sgPLS-DA shows the best model performance of the

three approaches followed by sPLS-DA and gPLS-DA in the third place, a statement

that holds for the three study populations.

5.3.1.3 Assessment of Visualization Tools

5.3.1.3.1 Loading Coefficients Plots

Figure 5.1 exhibits the individual contribution of the selected variables in terms of

the loading values for each of the regularized optimized PLS-DA models for the BCL

pooled study population and the CLL and MM subtype-specific analyses. The three

models consistently agree in identifying the most significant variables as (at least) the

first two variables with the highest absolute loading values are the same across statis-

tical methods. There is also an agreement in relation to the sign associated to the cor-

responding coefficients. These observations seem to hold for the three observation-

specific analyses. In addition, it is noticed that i) opposite signs are assigned to coeffi-

cients of a given variable when an overlapping is observed between components and
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Figure 5.1: Loading coefficients of the selected variables for the three regularized
PLS-DA and for the pooled BCL population and the CLL and MM disease subtypes
(proteomics dataset).
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PLS-DA: Partial Least Squares-Discriminant Analysis.

ii) the more proteins are attained in the calibrated models, the lower their individual

contribution are.

The analysis including all BCL case-control pairs shows that the growth factors TGFa,

FGF2 and VEGF, the chemokines MDC and MIP1a and the cytokines sCD40L and

TNFa are the most important variables for the correct separation of samples. For

the subtype-specific analyses, these variables correspond to the cytokines sCD40L

and IL4 and the chemokine Eotaxin for CLL and the growth factors TGFa, FGF2 and
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VEGF and the chemokines Fractalkine and MCP3 for the MM subtype.

5.3.1.3.2 Stability Frequency Plots

The results of the stability frequency analyses from the sPLS-DA and sgPLS-DA mod-

els are shown in Figure 5.2 and Figure 5.3, respectively. As discussed in the method

section, different values of the model parameters were tested; however, to ease in-

terpretation the specific frequencies reported in here correspond to those retrieved

by the optimal values of the model parameters. Overall, the stability results validate

those obtained in the assessment of the loading coefficients. In the sPLS-DA pooled

BCL analysis, the proteins FGF2, TGFa, VEGF, MCP3, MDC, MIP1a, Fractalkine and

sCD40L present the highest stability frequency for a sparse model retaining one com-

ponent and 12 variables, which correspond to 1.0, 1.0, 0.99, 0.99, 0.99, 0.98, 0.95

and 0.90, respectively. The sparse BCL model retaining two components and three

variables displays high frequencies for two proteins: sCD40L and TNFa (0.99 and

0.90, respectively). On the other hand, the subtype-specific stability analyses show

an elevated frequency for the proteins sCD40L and IL4 (0.98 and 0.76, respectively)

in a model of one component and TGFa (0.79) in a model of two components for

the CLL observations, and FGF2 and TGFa (0.96 and 0.63, respectively) in the one-

component model and GRO, TNFa and IP10 (0.24, 0.23 and 0.20, respectively) in the

two-component model for the MM observations.

The stability frequency analysis of sgPLS-DA facilitates the identification of the most

relevant functional groups as well as the most significant proteins within the groups.

The analysis on the BCL pooled population reveals the growth factor module as the

most important, followed by the chemokine and the cytokine categories. The most

stable variables within groups largely agree with those reported in the sPLS-DA anal-

ysis: the growth factors FGF2, TGFa and VEGF, the chemokines MCP3, MDC, MIP1a,

Fractalkine and the cytokines sCD40L and INFg present the highest stability frequen-

cies. The analyses on the CLL and MM disease subtypes reveal that the most im-

portant groups are cytokine and growth factor, respectively; sCD40L and IL4 stand
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Figure 5.2: Stability frequency plots from the sPLS-DA models for the pooled BCL
population and the CLL and MM disease subtypes (proteomics dataset).
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Figure 5.2: Stability frequency plots from the sPLS-DA models for the pooled BCL
population and the CLL and MM disease subtypes (proteomics dataset) (cont.).
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The stability frequency of sPLS-DA models retaining 1 to 28 variables was assessed. The analysis of the second component was
conducted retaining in the first dimension the number of features previously reported as optimal, which is specified in the title
of the top panel plot.
sPLS-DA: sparse Partial Least Squares-Discriminant Analysis.

out as the most relevant cytokines and FGF2, TGFa and VEGF as the most relevant

growth factors.

5.3.1.3.3 Sample Representation Plot

Figure 5.4 exhibits the sample representation plots for the four models for which

two components were considered as optimal, which include the pooled BCL analyses

(both sPLS-DA and sgPLS-DA) and the CLL- and MM- specific analyses (only sPLS-

DA). The best separation of observation types in the two-dimensional space spanned

by the components is appreciated for CLL as case samples cluster in a more con-

strained area than their matched controls. This finding agrees with those described

in the model performance section as the ER in cases is substantially different to the

151



Results

Figure 5.3: Stability frequency plots from the sgPLS-DA models for the pooled BCL
population and the CLL and MM disease subtypes (proteomics dataset).
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Figure 5.3: Stability frequency plots from the sgPLS-DA models for the pooled BCL
population and the CLL and MM disease subtypes (proteomics dataset).(cont.)
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Stability frequency analysis of the sgPLS-DA models simultaneously assessing the two tuning parameters controlling model
sparsity: a grid of 11 different values of the mixing parameter α1 was tested for models retaining 1 to 3 functional groups. For
each study population, only results from the first component are displayed.
sgPLS-DA: sparse group Partial Least Squares-Discriminant Analysis.

ER in controls (0.31 vs. 0.43). A less clear separation of samples is observed for MM

observation as controls are mainly spanned in the first component while cases cover

a greater area in the second dimension. Finally, distinction of cases and controls is

more challenging when all BCL cases are pooled together and a marginal distinction

is observed between CLL and MM sample types.

5.3.1.4 Sensitivity Analysis

Considering that the results described so far expose positive findings for the disease

subtypes CLL and MM, a sensitive analysis was conducted whereby these particu-

lar sub-entities (and their matched controls) were independently excluded from the

pooled analysis. The classification performance of the optimized models is shown in
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Figure 5.4: Sample representation plots displaying the location of the observations on
the spaces spanned by the first and second X components of the regularized PLS-DA
models (proteomics dataset).
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Sample representation for the four models for which two components were included in the optimized models. For the pooled
BCL study population, a distinction is made between case types. For each sample group, ellipses of the confidence region were
drawn employing the R package ellipse based on the variance and mean of the matrix of X components (the mean defines
the location of the ellipse centre). The confidence level controlling the ellipse size was 0.95 and a total of 100 points were used.
PLS-DA: Partial Least Squares-Discriminant Analysis.

Table C.4. Model performance decreases as a result of removing CLL observations

for all statistical approaches and metric of performance tested, whereas marginal and

inconsistent changes are observed when MM samples are excluded. In addition, and

following the same methodology described above, all analyses were replicated on

the proteomics dataset after correction for WBC differentials (see section 3.4). The

classification abilities of the models are summarised in Table C.5. As observed in the
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WBC unadjusted analyses, satisfactory classification abilities are observed for CLL

and MM and deficient performances for DLBCL and FL; in addition, sgPLS-DA ap-

proach tend to outperform both gPLS-DA and sPLS-DA. Lower ER and higher AUC

are described for the four subtypes stratified analyses, which is not the case for the

BCL pooled population. (For these two sensitivity analyses, the results from the cali-

bration procedure for the regularized models and the details on model parameters of

the calibrated models are not shown).

5.3.2 Transcriptomics

5.3.2.1 Calibration Procedure and Assessment of Calibrated Models

The outputs from the model calibration process are presented in Table C.6 and Fig-

ure C.3 to Figure C.5, which correspond to the R2 and DQ2 statistics and the set of

calibration curves, respectively. Table 5.3 shows the values of the model parameters

employed in the optimized models, the number of gene expression signals and bio-

logical pathways retained per component and the overall number of unique features

and modules retained in the complete optimized model for the three PLS-DA ap-

proaches and for the analyses including all BCL case-control pairs and stratified by

the four main histological subtypes.

5.3.2.1.1 Pooled Population

The sPLS-DA model selected one component and seven transcripts which are part

of five different biological pathways, with the group of un-annotated probes being

the most frequent (three signals). In contrast, the gPLS-DA model selected a model

with two dimensions, 35 pathways were retained in the first and 25 in the second

accounting for a total of 96 unique signals and 57 pathways; there is an overlap of

seven transcripts and three pathways between components. The majority of those

pathways (n = 30, 52.63%) are constituted by only one probe while the remaining

groups are comprised of two up to four signals. Lastly, two components were also

chosen in the sgPLS-DA model, with nine and 20 pathways retained in each. As a

155



Results

Table 5.3: Parameters used in the calibrated model, number of unique gene expres-
sion signals and biological pathways selected per component and total number of
unique transcripts and pathways selected across components for the three regular-
ized approaches and for the five study populations.

All BCL CLL DLBCL FL MM
sparse PLS-DA

N Components 1 1 2 1 2
N Variables 1st component 7 6 90 20 7
N Groups 1st component 5 4 37 8 2
N Variables 2nd component — — 25 — 7
N Groups 2nd component — — 8 — 3
Total N Variables 7 6 115 20 14
Total N Groups 5 4 42 8 4

group PLS-DA
N Components 2 1 1 1 1
N Variables 1st component 64 5 22 67 128
N Groups 1st component 35 4 15 35 50
N Variables 2nd component 29 — — — —
N Groups 2nd component 25 — — — —
Total N Variables 96 5 22 67 128
Total N Groups 57 4 15 35 50

sparse group PLS-DA
N Components 2 2 1 2 2
N Variables 1st component 15 36 15 56 55
N Groups 1st component 9 25 9 30 35
α1 1st component 0.95 0.95 0.1 0.1 0.95
N Variables 2nd component 34 71 — 2 5
N Groups 2nd component 20 35 — 2 5
α1 2nd component 0.95 0.05 — 0.95 0.9
Total N Variables 48 107 15 58 60
Total N Groups 28 60 9 32 40

PLS-DA: Partial Least Squares-Discriminant Analysis.
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result of imposing within-group sparsity, 28 pathways and 48 individual signals are

part of the calibrated model, a one-probe module overlaps between dimensions. Four

of the selected modules are one-probe pathways and the rest of the chosen pathways

are constituted by two up to 57 individual signals; the relative frequency of selected

signals per pathway for these 24 modules ranges from 5.56% to 66.67%. A descriptive

summary of the selected gene expression signals in terms of the most frequent biolog-

ical pathways to which they belong for the three regularized approaches is presented

in Table C.7.

5.3.2.1.2 Subtype Stratified Analysis

The sPLS-DA models performed on the study populations stratified by major his-

tological subtypes selected one component for CLL and FL and two dimensions for

DLBCL and MM. For the two subtypes retaining one component, six and 20 signals

were selected which comprise four and eight pathways, respectively. For DLBCL, 90

and 25 variables were selected in the first and second dimensions, respectively, ac-

counting for a total of 115 unique signals and 42 unique pathways (three modules

overlap between components). For MM, seven signals were chosen in each compo-

nent accounting for a total 14 and four unique variables and modules, respectively.

The four stratified gPLS-DA models selected only one dimension, with CLL yielding

the most parsimonious model and MM the most abundant one. A total of four path-

ways were selected in the former sub-entity which account for five different signals,

while the latter subtype selected 50 pathways which translate to 128 different tran-

scripts. The models for DLBCL and FL retained 15 and 35 pathways accounting for

22 and 67 transcripts, respectively.

Finally, and with the exception of DLBCL, two dimensions were selected in the strat-

ified sgPLS-DA models. For CLL, a total of 107 and 60 unique signals and pathways

were retained in the optimized model and no overlap is seen between components;

27 of the modules are constituted by only one probe and the remaining 33 pathways

are comprised by two up to 57 signals with a within-group relative frequency of se-
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lection ranging from 5.56% to 100%. Sparser models are observed for FL and MM

sub-entities as 58 and 32 and 60 and 40 gene expression signals and biological path-

ways are included in the calibrated models, respectively; similar to CLL, there is no

overlap of features between dimensions. Nine pathways were selected in the sole

dimension for DLBCL which translates to 15 different transcripts.

5.3.2.2 Model Performance

Table 5.4 shows the classification performance of the three optimized models for the

analyses including all BCL cases and for the stratified study populations. The results

on CLL observation substantially outperforms those conducted on the other popu-

lations. In contrast, the abilities of the models to correctly separate DLBCL samples

is poor, with an overall misclassification ER and ER per observation type equal or

above 0.5 in all statistical approaches. On the other hand, similar metric values are ob-

served for the all BCL, FL and MM populations with overall ER of about 0.4 and AUC

below 0.6. In addition, it is noticed a difference in ER per observation type as con-

trol samples are consistently classified better than their counterparts across the five

study populations and PLS-DA models (exceptions to this are FL subtype gPLS-DA

model and DLBCL subtype all PLS-DA approaches); a more accentuated difference

in ER per sample type is observed in the CLL and pooled analyses. Finally, and with

the exception of FL, a comparison between regularized statistical methods reveals

that sPLS-DA yields the best model performance of the three approaches followed by

sgPLS-DA and gPLS-DA. Given that CLL steadily shows the best classification per-

formance, subsequent analyses are focused on this particular observation type (n =

68 case-control pairs) and outputs for the rest of the study populations are described

only when relevant findings are observed.
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Table 5.4: Classification performances of the three calibrated PLS-DA models for the
five study populations (transcriptomics dataset).

sparse PLS-DA group PLS-DA sparse group PLS-DA

Overall

ER

ER

Control

ER

Cases
AUC

Overall

ER

ER

Control

ER

Cases
AUC

Overall

ER

ER

Control

ER

Cases
AUC

All BCL 0.400 0.259 0.541 0.601 0.463 0.403 0.524 0.541 0.430 0.346 0.513 0.572

CLL 0.107 0.001 0.215 0.896 0.214 0.131 0.296 0.787 0.159 0.042 0.276 0.847

DLBCL 0.530 0.568 0.492 0.561 0.556 0.567 0.545 0.563 0.546 0.564 0.529 0.566

FL 0.456 0.448 0.465 0.592 0.453 0.467 0.439 0.586 0.401 0.384 0.418 0.634

MM 0.412 0.388 0.436 0.600 0.524 0.462 0.585 0.545 0.466 0.453 0.480 0.564
PLS-DA: Partial Least Squares-Discriminant Analysis, ER: Error Rate, AUC: Area Under the Curve.

5.3.2.3 Assessment of Visualisation Tools

5.3.2.3.1 Loading Coefficients Plots

Figure 5.5 displays the loading coefficients associated to the selected variables in the

three statistical models for the CLL study population. Most of the loading coeffi-

cients are of negative value: only six of the 40 different signals selected in the first

component and 14 of the 71 signals selected in the second component have a posi-

tive coefficient. Despite the difference in number of selected features across statistical

approaches, a greater congruence is seen between the gPLS-DA and sgPLS-DA mod-

els since i) a complete overlap of selected features is observed (the five transcripts

selected in gPLS-DA) and ii) similar loading values were assigned to the retained

transcripts. In contrast, for the sPLS-DA model, two of the six variables (WNT3

and ZBTB32) overlap with the sgPLS-DA model only and the respective loading co-

efficient values differ considerably. By visual inspection of the loading plot it can

noticed that the highest contributing variables in terms of absolute value of the co-

efficients are STAP1, A_23_P500400 (ABCA6), A_23_P26854 (ARHGAP44), DNM3,

WNT3, ZBTB32. On the other hand, none of the variables selected in the second

component stand out as a substantially relevant as all the loading coefficients were a

assigned a similar value.
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Figure 5.5: Loading coefficients of the selected variables for the three regularized
PLS-DA for the CLL study population (transcriptomics dataset).
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The loading coefficients of the variables retained in the three PLS-DA models are shown simultaneously. The left panel displays
the coefficients of the variables retained in the first component and the right panel of the variables retained in the second
component. The sgPLS-DA model was the only to select two dimensions.
PLS-DA: Partial Least Squares-Discriminant Analysis, sPLS-DA: sparse Partial Least Squares-Discriminant Analysis, gPLS-DA:
group Partial Least Squares-Discriminant Analysis, sgPLS-DA: sparse group Partial Least Squares-Discriminant Analysis.

5.3.2.3.2 Stability Frequency Plots

Figure 5.6 shows the results of the stability frequency analyses from the three regular-

ized models for the CLL study population. The most conspicuous finding is that the

sPLS-DA model yields the highest stability frequencies for all the variables selected

in the model; in particular, there are two signals (A_23_P26854 [ARHGAP44] and

A_23_P500400 [ABCA6]) which present a stability of one for all different values of the
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model parameters visited. The six transcripts reach the highest frequency when the

sparse model is set to retain 60 variables. In contrast, the output from both gPLS-DA

and sgPLS-DA provide low stability frequencies, with some of the selected variables

presenting a frequency of zero. For gPLS-DA, only two of the five retained variables

present a frequency higher than zero, which correspond to ARHGAP6 and STAP1;

the highest achieved frequencies are 0.16 and 0.09, respectively. For sgPLS-DA, seven

of the 36 and 16 of the 71 selected transcripts present frequencies higher than 0. In

the first component, the highest observed frequencies are for the transcripts DNMBP,

DNM3 and ARHGAP6 which correspond to 0.85, 0.76, 0.66, respectively; while in the

second component the most stable transcripts are DRP2, SLC25A36, SLC25A36 with

frequencies of 0.59, 0.45, 0.34, respectively.

Upon inspection of the stability outputs from the rest of the study populations, sim-

ilar findings are obtained as relatively high frequencies are observed for the selected

variables of sPLS-DA, which is not the case for the gPLS-DA and sgPLS-DA mod-

els. The MM stratified analyses yield the highest frequencies in comparison with the

other two subtypes, while the pooled BCL analyses largely resemble those described

for CLL as transcripts such as A_23_P500400 (ABCA6), A_23_P26854 (ARHGAP44),

DNM3 are among the most stable ones (results not shown).

5.3.2.3.3 Sample Representation Plot

The sample representation plots for the regularized PLS-DA models for which two

components were selected are displayed in Figure 5.7. Two dimensions were cho-

sen for at least one statistical method in the four subtypes and the pooled population

analyses; therefore, the five observation types are represented in the two-dimensional

space spanned by the latent variables. Apart from FL and MM (sgPLS-DA), a notice-

able finding is that control observations cluster closer together than their matched

cases across all representations. This discovery is more conspicuous in the CLL sub-

type analyses as control samples mainly span a reduced area alongside the second

component. As such, a plausible explanation is offered as to why the ER for controls
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Figure 5.6: Stability frequency plots from the three regularized PLS-DA models for
the CLL study population (transcriptomics dataset).
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The sPLS-DA stability frequency analysis was conducted with models retaining 2 to 1000 transcripts (grid resolution of 40
values) while the gPLS-DA and sgPLS-DA analyses were conducted with models retaining 1 to 150 biological pathways (grid
resolution of 28 values). In the latter case, the plots exhibit results for a fixed value of the mixing parameter α1 which correspond
to the value employed in the optimized sgPLS-DA model (specified in the title). For the gPLS-DA and sgPLS-DA models, only
the transcripts showing a stability frequency greater than zero are displayed.
PLS-DA: Partial Least Squares-Discriminant Analysis, sPLS-DA: sparse Partial Least Squares-Discriminant Analysis, gPLS-DA:
group Partial Least Squares-Discriminant Analysis, sgPLS-DA: sparse group Partial Least Squares-Discriminant Analysis.

is significantly lower than for case samples (as shown in Table 5.4). The represen-

tation of the pooled population seem to be partially driven by what is observed in

the CLL samples. Lastly, given the results described in the model performance sec-

tion, a greater overlap of samples is observed for the rest of the disease subtype study

populations, which makes a visual distinction between cases and controls more chal-

lenging.
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Figure 5.7: Sample representation plots displaying the location of the observations on
the spaces spanned by the first and second X components of the regularized PLS-DA
models (transcriptomics dataset).
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Sample representation for the seven models for which two components were included in the optimized models. For each sample
group, ellipses of the confidence region were drawn employing the R package ellipse based on the variance and mean of the
matrix of X components (the mean defines the location of the ellipse centre). The confidence level controlling the ellipse size
was 0.95 and a total of 100 points were used.
PLS-DA: Partial Least Squares-Discriminant Analysis, sPLS-DA: sparse Partial Least Squares-Discriminant Analysis, gPLS-DA:
group Partial Least Squares-Discriminant Analysis, sgPLS-DA: sparse group Partial Least Squares-Discriminant Analysis.

5.3.2.4 Biological Interpretation of the Findings

Since individual regularized PLS-DA models yielded sparse results, functional anno-

tation with DAVID on the CLL-specific analysis was conducted pooling together the

selected gene expression signals from the three regularized models. The 111 unique

transcripts were mapped to 78 (86.58%) different DAVID IDs which were grouped
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into 72 different gene enriched biological pathways. This number was reduced to

three after more stringent filtering (EASE score<0.01, setting the minimal number of

probes per functional group to 5 and fold enrichment value>3); these enriched path-

ways relate to mitochondrion and transit peptide.

5.3.2.5 Sensitivity Analysis

As in the proteomics analyses, two types of sensitivity analyses were performed: i)

the subtype for which the best classification performance was observed was excluded

from the pooled analysis including all BCL case-control pairs and ii) the statistical

analyses were conducted on the transcriptomics data after expression levels were ad-

justed for WBC sub-populations. Table C.8 shows the statistical performance of the

calibrated models performed on the pooled study population removing CLL case-

control pairs and a significant decline in all assessed metric of performance is ob-

served (except ER in cases). On the other hand, correction for WBC differentials does

not improve statistical performances (Table C.9). More specifically, for the CLL sub-

entity the three regularized models produce higher ER and lower AUC estimates,

which is particularly true for the gPLS-DA and sgPLS-DA models as the overall ER

is close to 0.5 and the ability to correctly classify cases and controls is approximately

the same. For DLBCL, the WBC corrected analyses confirm what was observed in the

unadjusted models as the statistical methods are unable to correctly separate sample

types, while for the remaining of the study populations a marginal statistical wors-

ening is observed (with the exception FL sPLS-DA model). Finally, and similar to

the WCB unadjusted models, a comparison between regularized statistical methods

shows that sPLS-DA tends to outperform the other two approaches. (As in the pro-

teomics sensitivity analyses, the results from the calibration procedure for the reg-

ularized models and the details on model parameters of the calibrated models are

omitted).
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5.3.3 Comparative Assessment of Univariate and Multivariate Sta-

tistical Approaches

The univariate analyses on the proteomics and transcriptomics datasets were con-

ducted on chapter 4. As a brief summary, the most relevant results were observed

for MM in proteomics and CLL in transcriptomics as six proteins and 684 transcripts

show statistically significant associations with the respective disease outcome of in-

terest. Thus, the most evident difference between the results obtained from the uni-

variate and multivariate approaches is in relation to the CLL subtype and inflamma-

tory markers: while the LMM analyses failed to identify proteins predictive of CLL,

the regularized PLS-DA models were able to find a subset of proteins that separate

CLL cases from their paired controls with a satisfactory classification performance;

in fact multivariate approaches show a better statistical performance for CLL than

for MM observations. Another noticeable difference between univariate and multi-

variate methods refers to the parsimony of the gene expression findings for CLL: the

(s)(g)(sg)PLS-DA models selected 6,5 and 107 transcripts (respectively) as opposed to

the 684 significant associations described in the LMM.

On the other hand, overlapping findings are observed for the two main disease sub-

types across univariate and multivariate approaches. Figure 5.8 corresponds to the

Venn diagrams illustrating the proteins and functional groups shared across approaches

for MM and the transcripts and biological pathways shared across approaches for

CLL. For MM and proteomics, the growth factors FGF2 and TGFa are common to

all four statistical approaches, while four markers are shared across all models but

sPLS-DA which are the growth factor VEGF and the chemokines Fractalkine, MCP3

and MIP1a. Consequently, the growth factor and the chemokine groups are common

to the four statistical methods while the cytokine group is additionally selected by

the gPLS-DA and sgPLS-DA models. Furthermore, for CLL and transcriptomics, as

it was already discussed in previous sections, an intersection of individual signals is

observed between sgPLS-DA and gPLS-DA with five common features and sgPLS-
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Table 5.5: Biological pathways that are common across the univariate approach and
the three regularized models for the CLL study population.

gPLS-DA and sgPLS-DA (n=4)

Biological pathway Total Selected sgPLS-DA (%)

Regulation of organelle organization 2 2 (100)

Membrane fusion 1 1 (100)

Negative regulation of cell-matrix adhesion 1 1 (100)

Synaptogenesis 1 1 (100)

sPLS-DA and sgPLS-DA (n=2)

Biological pathway Total Selected sPLS-DA (%) Selected sgPLSDA (%)

Cell activation 57 1 (1.754) 4 (7.018)

Mesoderm formation 18 1 (5.556) 1 (5.556)

sPLS-DA and LMM (n=4)

Biological pathway Total Selected sPLS-DA (%) Selected LMM (%)

Non-annotated probes 14737 3 (0.020) 307 (2.083)

Phosphorus metabolic process 426 1 (0.235) 19 (4.460)

Cell activation 57 1 (1.754) 10 (17.544)

Mesoderm formation 18 1 (5.556) 1 (5.556)

DA and sPLS-DA with only two; similar numbers are observed in terms of biological

pathways with four and two common modules, respectively. When incorporating the

results from the univariate approaches, a greater overlap is seen between the results

from the LMM and sgPLS-DA with 30 individual transcripts and 20 biological path-

ways shared between the two methods. Marginal intersections are noticed between

the results from the LMM and sPLS-DA and gPLS-DA: six and two transcripts and

four and two pathways, respectively. A descriptive summary of the gene expression

signals in terms of the selected biological pathways that are common across the four

CLL statistical approaches is presented in Table 5.5.
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Table 5.5: Biological pathways that are common across the univariate approach and
the three regularized PLS-DA models for the CLL study population (cont.).

gPLS-DA and LMM (n=2)

Biological pathway Total Selected LMM (%)

Membrane fusion 1 1 (100)

Synaptogenesis 1 1 (100)

sgPLS-DA and LMM (n=22)

Biological pathway Total Selected sgPLSDA (%) Selected LMM (%)

Cell activation 57 4 (7.018) 10 (17.544)

Inflammatory response 31 2 (6.452) 2 (6.452)

Mesoderm formation 18 1 (5.556) 1 (5.556)

Regulation of phosphate metabolic process 11 1 (9.091) 2 (18.182)

Sensory perception of sound 10 2 (20) 2 (20)

Membrane protein ectodomain proteolysis 9 2 (22.222) 3 (33.333)

Immune response-activating cell surface receptor
signaling pathway

8 1 (12.5) 1 (12.5)

Antigen processing and presentation of peptide
antigen via MHC class II

7 3 (42.857) 4 (57.143)

Somatic diversification of immune receptors 7 2 (28.571) 2 (28.571)

Regulation of immune effector process 6 1 (16.667) 1 (16.667)

Cell recognition 5 1 (20) 1 (20)

Morphogenesis of a polarized epithelium 5 1 (20) 1 (20)

Vesicle docking during exocytosis 5 1 (20) 1 (20)

Collagen catabolic process 4 1 (25) 1 (25)

Phosphagen metabolic process 4 1 (25) 1 (25)

Regulation of cell-matrix adhesion 4 2 (50) 2 (50)

Regulation of Rho protein signal transduction 4 1 (25) 1 (25)

RNA localization 3 1 (33.333) 1 (33.333)

Iron-sulfur cluster assembly 2 1 (50) 1 (50)

Plasma membrane organization 2 1 (50) 1 (50)

Membrane fusion 1 1 (100) 1 (100)

Synaptogenesis 1 1 (100) 1 (100)
For each biological pathway, the total number of probes per pathway and the absolute and relative frequencies of probes selected
per statistical approach are specified (apart from gPLS-DA where all the signals in the selected group are retained). Biological
pathways that are shared across three different approaches are written in bold (common to sPLS-DA, sgPLS-DA and LMM) or
cursive (common to gPLS-DA, sgPLS-DA and LMM).
sPLS: sparse Partial Least Square-Discriminant Analysis, gPLS: group Partial Least Square-Discriminant Analysis, sgPLS: sparse
group Partial Least Square-Discriminant Analysis, LMM: Linear Mixed Model.
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Figure 5.8: Venn diagrams representing the overlap of features and modules across
the univariate and multivariate approaches for the MM (panel a) and CLL (panel b)
subtypes.
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5.4 Discussion

The results from the regularized PLS-DA models in the proteomics dataset disclose

relevant findings for the CLL and MM disease subtypes. The correct classification

of samples in these sub-entities mainly relies on the cytokines sCD40L, IL4 and the

chemokine Eotaxin for CLL and the growth factors TGFa, FGF2 and VEGF and the

chemokines Fractalkine and MCP3 for the MM subtype. The investigated PLS-DA

models failed to reveal proteins yielding an acceptable classification performance

for the DLBCL and FL subtypes. On the other hand, the application of these three

multivariate approaches on the transcriptomics data reveals positive results for the

CLL sub-entity with a reduced set of gene expression signals driving the superior

classification abilities of the statistical models. In particular, the transcripts STAP1,

A_23_P500400 (ABCA6), A_23_P26854 (ARHGAP44), DNM3, WNT3, ZBTB32 are

consistently highlighted as the most important to detect CLL samples. The transcripts

selected for DLBCL, FL and MM subtypes were unable to yield a satisfactory classi-

fication ability. Furthermore, the analyses conducted in this chapter do not support

the presence of inflammatory markers or gene expression signatures common to the

four main histological subtypes being analysed, rather the findings observed for the

pooled BCL study population appear to be a reflection of the favourable statistical

performance for CLL and MM in proteomics and CLL only in transcriptomics.

5.4.1 Technical Assessment and Comparison of Statistical Approaches

From a methodological perspective, the analyses performed in this chapter allow for

a comparative technical assessment between different statistical approaches. On the

one hand, these findings shed light on the applicability and usability of the three reg-

ularized versions of PLS-DA on real-world data under different circumstances. On

the other hand, a robust and detailed comparison between univariate and multivari-

ate methods could be conducted.

In the former situation, different scenarios were contrasted: first, one where the num-
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ber of observations is larger than the number of predictor variables (n > p, pro-

teomics) and another where the number of features greatly exceeds the number of

observations (n << p, transcriptomics). Second, information related to pre-existing

groups of predictor variables with a similar biological function was incorporated into

the analyses and systematically compared to a scenario where such information was

disregarded (gPLS-DA and sgPLS-DA vs. sPLS-DA). Third, the aggregation of indi-

vidual variables into groups or modules with a similar biological function was con-

ducted in two contrasting manners, as in proteomics the grouping was performed

on the basis of the information provided by the manufacturer of the omics platform

(growth factors, chemokines and cytokines) while in transcriptomics such procedure

was done independently by the researcher for each individual signal (using DAVID

for functional annotation of probes).

Taking into consideration the points mentioned above, there seems to be a certain

set of conditions that exploit the statistical performance of the investigated PLS-DA

approaches. As the analyses performed on the proteomics data added valuable dis-

coveries in relation to the CLL subtype which were undetected by the established

univariate methods, it appears that the n > p situation and the clear distinction of

biological functions across individual features maximise the classification abilities of

the models. The first point may not have played a direct role as multivariate ap-

proaches such as PLS are known to successfully accommodate the n < p scenario but

indirectly through the calibration procedure. The low dimension of the proteomics

data may have allowed for a more precise optimization of models as opposed to the

transcriptomics analysis where a limited space of parameters was assessed in the

calibration process in order to reduce computational cost. This may have an im-

pact in the final observed results: a satisfactory classification performance for FL,

DLBCL and MM in transcriptomics could be possible if more complex models were

explored (e.g. models with more latent variables). The second point may be responsi-

ble for the observed difference in statistical performances across regularized models:

while in the proteomics analyses we consistently see the gPLS-DA and sgPLS-DA
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approaches outperforming sPLS-DA, in the transcriptomics analyses the incorpora-

tion of pre-existing information regarding features with similar biological function

does not yield a meaningful improvement of performance as sPLS-DA systemati-

cally outperforms the other two statistical methods. The inflammatory marker data

is constituted by three clear functional groups with a comparable number of proteins

per module, an attribute that is not seen in the gene expression data as most of the

transcripts do not count with information about biological pathways. Furthermore,

pathways are not of comparable sizes and correction for overlapping modules was

needed.

In theory, the mathematical properties of the PLS technique are accommodated to ad-

just for potential differences in group sizes; however, in practice the application of

these methods in real-world data shows they are unable to successfully incorporate

information regarding biological groups under the conditions previously discussed.

Consequently, these observations can lead to the recommendation that sPLS-DA may

be preferred over gPLS-DA and/or sgPLS-DA where well-defined divisions of bio-

logical functions among predictor variables is unavailable. As an alternative, differ-

ent functional groups of variables can be explored for gPLS-DA and sgPLS-DA at the

expense of an increased computational burden. These aspects are of particular sig-

nificance when considering the use of sgPLS-DA in high-dimensional data as a thor-

ough application of the technique involves a calibration procedure where two model

parameters must be optimized (in addition to the number of components). Further

studies aiming at systematically comparing the three regularized methods applied

on real-world data under different circumstances to the ones investigated here are

required to corroborate or challenge these premises.

When comparing univariate and multivariate statistical approaches, the discoveries

showcased in this chapter strongly support the use of the latter methods over the

former ones with two main observations leading to such conclusion. Firstly, the reg-

ularized PLS-DA approaches were able to identify findings overlooked by the LMM

(CLL subtype in proteomics) as well as to detect in a more efficient manner the most
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relevant set of variables for the correct classification of samples (CLL subtype in tran-

scriptomics). Secondly, the results from the sensitivity analysis comparing the WBC

adjusted and unadjusted models reveals a substantial difference in the LMM results

after WBC correction (684 vs 18 significant transcripts for the CLL subtype) which

is not seen in the regularized PLS-DA; in other words, the studied multivariate ap-

proaches appear to be less sensitive to possible confounding factors. Although statis-

tical performance and biological relevance appear to favour multivariate techniques,

aspects such as computational efficiency and ability to adjust for technical-induced

variability must be considered when applying these regularized PLS-DA methods.

5.4.2 Biological Relevance of Findings

For transcriptomics, the most relevant gene expression signals related to CLL also

correspond to significant associations found in the LMM analyses and their biological

pertinence was discussed in chapter 4. Similarly, for proteomics the possible roles of

the growth factors TGFa, FGF2 and VEGF into the pathogenesis of MM were also

discussed in chapter 4.

In relation to the chemokines Fractalkine and MCP3, previous studies have also shown

an association between these markers and the development of this BCL subtype ei-

ther in clinical or experimental settings. The former protein has been implicated in

a number of pathological conditions including rheumatoid arthritis, diabetes, and

some cancers where it shows pro-angiogenic and pro-inflammatory effects, which are

exerted by its chemotactic activity for Natural Killer (NK) cells, Dendritic Cells (DCs)

and monocytes, and mature osteoclasts [230]. Recent evidence suggests that plasma

levels of Fractalkine are increased in MM patients as well as its precursor state (mon-

oclonal gammopathy of undetermined significance [MGUS]) and the study of the

concentration of this protein has been proposed as a possible new biomarker for the

disease progression [230]. It is thought that its role in bone marrow vascularization

is mediated through the involvement of the pro-inflammatory cytokine TNFa [230],

[231], a marker that was also highlighted as a potential relevant feature by the mod-
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els examined here (specifically, stability frequency analysis of sPLS-DA). On the other

hand, MCP3, also known as chemokine (C-C motif) ligand 7 (CCL7), is expressed in

various types of cells under physiological conditions and tumour cells under patho-

logical conditions. It is known for being a potent chemoattractant for a variety of

leukocytes and to be highly expressed in a variety of cancers including renal, gas-

tric and colorectal [232]. It can bind to multiple transmembrane receptors and the

downstream actions it exerts depend on what receptor it binds. In the particular case

of MM, it has been observed that MCP3 produced by stromal cells (connective tis-

sue cells neighbouring tumour cells) can act as a chemoattractant for human multiple

myeloid cells via the interaction to the receptor CCR2 [233].

For the CLL subtype, there is some experimental evidence linking the cytokines IL4

and sCD40L with this particular BCL sub-entity [234]. As previously discussed, the

phenotypic presentation of CLL is characterised by the accumulation of malignant B

cells in the blood, bone marrow and secondary lymphoid organs due to the ability of

the cells to escape apoptosis and it has been observed that tumour microenvironment

plays a key role in the pro-survival capabilities of these malignant cells. More specif-

ically, the tumour cells that are part of the CLL microenvironment secret several sol-

uble factors that boost biological pathways that either activate anti-apoptosis genes

or circumvent apoptotic signalling. The cytokines IL4 and sCD40L have been previ-

ously identified as most relevant secreted factors deregulating CLL pathways related

to disease phenotype in terms of prolonged survival of malignant B lymphocytes. As

such, the findings presented in this chapter provide some potential meta-analytical

support for previously reported associations involving blood levels of inflammatory

markers and specific BCL subtypes.

5.5 Conclusion

The use of multivariate techniques for sample classification purposes both confirm

and improve the results obtained from the univariate statistical approaches. Com-
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parable to the LMM analysis, biological markers indicative of BCL incidence were

identified for MM in proteomics and CLL in transcriptomics. However, novel find-

ings are observed as the PLS-DA analysis was successful in detecting inflammatory

markers with an appropriate classification performance for CLL as well as identify-

ing the most relevant transcripts indicative of CLL and therefore enhance sparsity

in a high-dimensional setting. The exhaustive comparison between regularized ap-

proaches allows to hypothesise that the incorporation of prior biological knowledge

in the form of functional groups and biological pathways introduce a valuable im-

provement in statistical performance and predictive accuracy, especially when a clear

division between modules is available. In the following chapter I explore the inter-

play between transcripts and proteins by means of a two-block omics data integration

approach in an attempt to unravel the biological mechanisms by which the studied

molecules exert their effects.
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Proteomics and Transcriptomics Data

Integration Employing Regularized Partial

Least Squares Techniques:

Unravelling Complex Associations between

the Two Biological Entities

6.1 Introduction

Following the results observed in the previous chapters where proteomics and tran-

scriptomics datasets were independently analysed to identify biological markers pre-

dictive of B-cell Lymphoma (BCL), in this chapter I move towards the integration of

the two omics blocks in order to identify biologically relevant information for the

disease outcome under study. The same supervised Dimension Reduction Technique

(DRT) previously employed in a discriminant analysis context are now used in a two-

block setting whereby gene expression signals are regressed against inflammatory

markers to identify co-expression patterns of interest in the two biological entities.

Since the three regularized extensions of Partial Least Squares (PLS) are applied, I

compare the outcome obtained from each of the statistical methods in terms of spar-

sity and interpretability, model performance as well as biological relevance. The con-

sistency and robustness of the findings across techniques is also assessed. Special
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emphasis is placed on the visualisation tools available for the discovery of associa-

tions between the paired omics data sets. This simultaneous analytical framework

on both real-world omics datasets attempts to decipher mechanistic details in the in-

formation flow within cells that can ultimately uncover perturbations underlying the

phenotype of interest. As such, the identification of alterations in the molecular bi-

ology of cells at the transcriptome and proteome levels constitute one of the many

information layers needed to be explored for a comprehensive understanding of hu-

man health and disease and thus contribute to bridging the gap from environmental

exposure to appearance of clinical manifestations.

6.2 Methods

The statistical methods sparse PLS (sPLS), group PLS (gPLS) and sparse group PLS

(sgPLS) were applied using the “de-noised” gene expression levels as the predictor

matrix and the “de-noised” immune marker concentration levels as the outcome ma-

trix. Therefore, an asymmetric relation between datasets was assumed whereby tran-

scripts were considered to be predictive of proteins (i.e. PLS Regression (PLS-R) was

performed as opposed to the canonical mode). Statistical analyses were restricted to

Chronic Lymphocytic Leukaemia (CLL) and Multiple Myeloma (MM) cases which

were the two major disease subtypes for which relevant findings were identified

in previous chapters (transcriptomics analyses identified signals for CLL and pro-

teomics analyses identified markers for CLL and MM) alongside their corresponding

paired control subjects. Thus, a total of 202 observations were included in the study

population comprising 67 MM subtypes, 34 CLL subtypes (a total of 101 cases) and

their 101 matched control individuals. The R-statistical package mixOmics was em-

ployed to fit the sPLS statistical model while the gPLS and sgPLS models were fitted

with the R package sgPLS.

The definition of biological pathways and functional groups required for the gPLS

and sgPLS analyses was conducted following the same criteria used in the discrim-
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inant analyses context: the 29,662 individual transcripts were grouped into 850 bi-

ological pathways employing the online bioinformatics tool Database for Annota-

tion, Visualization and Integrated Discovery (DAVID v6.8, http://david.abcc.

ncifcrf.gov/) and the 28 proteins were classified into three functional groups

(growth factors, chemokines and cytokines) following the information provided by

the kit manufacturer. More details on the grouping of features into modules were

provided in section 5.2.

6.2.1 Calibration Procedure: Defining the Optimal Value of Pa-

rameters

For the three PLS variants being conducted, the sequential strategy described in sec-

tion 3.6.2.1.1 was employed to optimize the corresponding tuning parameters whereby

the aim is first to define an optimal number of components followed by the optimiza-

tion of the parameters defining the appropriate degree of sparsity within dimensions.

In a classical PLS model (i.e. where sparsity is not imposed), the R2 or percentage of

explained variation in the outcome matrix and the Q2 statistics were calculated to

determine the optimal number of dimensions where models of up to six latent vari-

ables were explored. Taking into consideration computational cost, ability to handle

the selected variables in upstream analyses and the total number of components with

which the model may be fitted (which in PLS-R is determined by the total number of

features in the Y matrix), six dimensions was deemed as an appropriate number of

components to be examined.

After the appropriate number of components was determined, the additional model

parameters were optimized by M -k-fold Cross Validation (CV, k = 5 and M = 50).

As conducted in the previous chapter, the procedure was performed ensuring that

case-control pairs were allocated to the same fold in each of the iterations in order

to reduce unwanted sources of variation. The chosen metric of performance was the

minimisation of the Mean Squared Error of Prediction (MSEP) averaged across the 50

CV repetitions which in turn is averaged across the 28 proteins since a prediction is
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obtained for each individual feature of the outcome matrix. In the case of sPLS and

gPLS, two-dimensional grids of possible values of the model parameters were inves-

tigated with each dimension seeking to define the optimal degree of sparsity in each

omics matrix. On the other hand, in sgPLS a four-dimensional grid was examined as

the optimal degree of sparsity in each omics matrix depends on two parameters. The

specific additional tuning parameters required to be calibrated for each of the three

integrative approaches are detailed as follows:

– sPLS: number of gene expression signals to retain in the predictor matrix and

number of proteins to retain in the outcome matrix.

– gPLS: number of biological pathways to retain in the predictor matrix and num-

ber of functional groups to retain in the outcome matrix.

– sgPLS: number of biological pathways to retain in the predictor matrix and the

degree of sparsity within the pathways (mixing parameter α1) and number of

functional groups to retain in the outcome matrix and the degree of sparsity

within the groups (mixing parameter α2).

The high-dimensional nature of the gene expression data requires a reduced sequence

of values to be investigated; therefore, the same grid of values to the ones employed

in the discriminant analyses situation are explored:

– sPLS: models retaining 2 to 1000 transcripts (grid resolution of 40 values).

– gPLS: models retaining 1 to 150 biological pathways (grid resolution of 28 val-

ues).

– sgPLS: models retaining 1 to 150 biological pathways (grid resolution of 28 val-

ues) and a within-group degree of sparsity (α1) ranging from 0.05 to 0.95 (grid

resolution of 11 values).

As discussed in section 5.2, the grids specified above were defined under the main

assumption that the inclusion of additional transcripts or pathways would produce

negligible reduction of the error of prediction and high computational cost of the
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calibration procedure. In addition, it was also assumed that the ability to manage the

selected variables in following analyses and extract relevant biological information

would be diminished if more features were included in the models. On the other

hand, given the proteomics dataset has a lower dimension, the complete model space

was investigated for the calibration process of the outcome matrix:

– sPLS: models retaining 1 to 28 markers (grid resolution of 28 values).

– gPLS: models retaining 1 to 3 functional groups (grid resolution of 3 values).

– sgPLS: models retaining 1 to 3 functional groups (grid resolution of 3 values)

and a within-group degree of sparsity ranging (α2) from 0.05 to 0.95 (grid reso-

lution of 11 values).

It is important to highlight that the grid used for the calibration of the number of

modules in gPLS is the same as the one used in sgPLS (for both the predictor and

outcome matrices); likewise, the same grid was employed for the mixing parameters

α1 and α2.

6.2.2 Assessment of Calibrated Models

Once the corresponding optimal parameters were tuned for the three PLS variants

and for both the predictor and outcome matrices, the prediction performance of the

optimized models was evaluated by CV under the same criteria applied in the cali-

bration procedure (k=5, M=50 and paired case-control subjects being included in the

same fold). The computation of MSEP averaged across CV folds was the metric of

performance of choice to compare the predictive ability of the models for each of the

28 proteins.

Pair-wise associations within and between omics datasets were investigated by exam-

ination of the visualisation outputs available for that purpose: relevance networks,

Clustered Image Map (CIM)s and correlation circle plots. These tools correspond to

graphical representations of a similarity matrix which is a robust approximation of

the Pearson correlation coefficients of the X and Y features. In the case of correla-
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tion circle plots, new coordinates of the selected features are obtained by calculat-

ing the correlation between each original variable and their associated component

which allows the identification of correlated features and the direction of the asso-

ciation as well as subsets of variables that are important to define each component.

Superimposed sample plots were also inspected to assess the possible resemblance

or distinction that the three observation types being included in the study popula-

tion may show in the lower dimension space spanned by the PLS components. The

contribution of individual variables to the overall predictive model performance was

explored by assessment of the loading coefficients of the features that were selected in

the calibrated models within each component and within each omics dataset. (Details

on the graphical outputs discussed here were presented in section 3.6.2.5)

Gene expression signals selected by the integrative approaches were further investi-

gated through gene-enrichment analyses using the openly available DAVID v6.8. Fi-

nally, a quantitative and a qualitative assessment is made by comparing the findings

obtained from the three PLS models at each of step of the analyses being conducted.

6.3 Results

6.3.1 Calibration Procedure

The classical PLS model fitted with up to six components shows a limited percentage

of variance explained in the Y matrix in all models visited and a Q2 statistics be-

low the threshold of 0.0975 in all the situations (see Table D.1). These results support

fitting the PLS regularized versions with only one dimension; however, it was consid-

ered unlikely that out of the 28 possible components only one was enough to produce

models with high predictive accuracy. Therefore, three dimensions was judged as a

more suitable number of latent variables to fit the regularized models as it represents

a trade-off between model complexity, interpretability and computational efficiency.

Figure D.1 to Figure D.3 represent the calibration curves with the average MSEP for
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all the values of the parameters tested for the three regularized models. In relation to

the outcome matrix, a clear pattern can be observed for both sPLS and gPLS where

the error of prediction increases as more proteins and functional groups (respectively)

are included in the model for all three components. A similar pattern is observed for

sgPLS as models retaining one functional group show better performance (except-

ing for the third component where the model with two modules yields lower error);

however, the within-module sparsity of the outcome matrix does not consistently

favour the model with less proteins (more specifically, the optimal vale of α2 for the

third component selecting two groups was 0.1). On the other hand, the behaviour of

the prediction error in relation to the inclusion of X variables is consistent across all

approaches and components. Low estimates of the average MSEP are observed for

the first values, the highest average MSEP is seen for middle values followed by a

decrease and plateau of the curves for the final set of values of the grid of parameters.

For all PLS models, the decision to define the optimal degree of sparsity was based on

both the parameter value yielding the lowest average MSEP as well as visual inspec-

tion of the calibration curves in order to produce a balance between predictive power

and interpretability. The final values of the tuning parameters determining the opti-

mal degree of sparsity in both the X and Y matrices for the three dimensions and for

the three regularized PLS methods as well as the corresponding number of features

and/or modules selected per component are presented in Table 6.1. The retrieved

cross-validated MSEP averaged across the 28 proteins is also presented in Table 6.1.

6.3.2 Assessment of Calibrated Models

The total number of features and modules selected in both the X and Y matrices

across components in the final calibrated model for each of the three integrative ap-

proaches are provided in Table 6.2.

The optimized sPLS model selected 150,80 and 9 gene expression signals (X matrix)

and two, two and three (Y matrix) proteins in its first, second and third components,

respectively. One feature in each omics block was jointly selected across dimensions.
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Table 6.1: Model parameters defining optimal degree of sparsity and number of vari-
ables and/or modules selected in both the X and Y matrices for the three dimensions
and for each of the three integrative approaches.

1st Component 2nd Component 3rd Component

sparse PLS

N Variables X (transcripts) 150 80 9

N Modules X (biological pathways) 44 34 4

N Variables Y (proteins) 2 2 3

N Modules Y (functional groups) 2 1 2

Average MSEP 2.09 2.17 2.23

group PLS

N Variables X (transcripts) 27 1 1

N Modules X (biological pathways) 20 1 1

N Variables Y (proteins) 6 18 6

N Modules Y 1 2 1

Average MSEP 2.06 2.11 2.17

sparse group PLS

N Variables X (transcripts) 48 1 1

N Modules X (biological pathways) 25 1 1

N Variables Y (proteins) 3 5 16

N Modules Y (functional groups) 1 1 2

Mixing Parameter α1 0.05 0.6 0.05

Mixing Parameter α2 0.95 0.9 0.1

Average MSEP 2.06 2.11 2.15
The resulting cross-validated MSEP averaged across the 28 proteins is also reported.
PLS: Partial Least Squares, MSEP: Mean Squared Error of Prediction.

Thus, a total of 238 unique transcripts and six unique immune markers were selected

in the calibrated sPLS model which belong to 70 biological pathways and two func-

tional groups. The vast majority of the selected transcripts (n = 138) belong to the

group for which information on biological pathways was unavailable (n = 14,737);

on the other hand, 54 of the chosen signals correspond to pathways containing only

one transcript (i.e. one transcript correspond to an independent biological pathway).

Table 6.3 shows details of the selected gene expression signals in terms of the most
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Table 6.2: Total number of unique features and modules selected in both the X and
Y matrices for each of the three integrative approaches.

Transcriptomics matrix Proteomics matrix

Model type Transcripts Biological Pathways Proteins Functional Groups

sparse PLS 238 70 6 2

group PLS 29 22 18 2

sparse group PLS 50 27 16 2
PLS: Partial Least Squares.

frequent biological pathways to which they belong. In the case of the outcome matrix,

the proteins retained in the calibrated model correspond to the growth factors EGF,

FGF2 and VEGF which are three out of the six markers that fall into the mentioned

functional group and the chemokines MCP3, MIP1a and MIP1b which are three out

of the 10 markers that belong to that module. The protein MIP1a was simultaneously

selected in the second and third components.

A total of 22 biological pathways were retained in the calibrated gPLS model of which

20 were selected in the first component, and one in the second and third components.

These selected modules account for 29 different transcripts of which 18 correspond to

one-probe pathways, as is the case for the groups chosen in the second and third com-

ponents (see Table 6.3 for details). In the proteomics dataset, a total of four functional

groups were selected from the calibration procedure: one group in the first and third

components and two in the second component. These corresponds to the growth fac-

tor and cytokine categories accounting for a total of 18 different proteins, six of which

belong to the first functional module and 12 to the second one. The growth factor

markers were chosen in the first and third components while the second component

selected the cytokine group in addition to the growth factor category. Consequently,

an overlap of features can be observed across the Y components (18 unique features

versus the total of 30 chosen proteins) which contrasts with the findings obtained in

the predictor matrix where no overlap of transcripts across the X dimensions was

detected.
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The optimized sgPLS model produced similar outputs to the gPLS model as 27 dif-

ferent biological pathways were chosen of which 18 correspond to one-transcript

groups, with the second and third components also selecting one pathway, each of

only one probe. The mixing parameter controlling the within-group sparsity in the

predictor matrix (α1) favours a full model as all the transcripts belonging to the se-

lected groups were retained (i.e. no within-group sparsity was effectively imposed

on X). The retained modules account for a total of 50 different transcripts selected in

the predictor matrix (see Table 6.3 for details). In the case of the outcome matrix, as

observed in the gPLS model, the chosen functional groups were four, one in the first

(growth factors) and second components (chemokines) and two in the third dimen-

sion (growth factors and chemokines). As a result of imposing within-group sparsity,

the first component selected three out of the six proteins that are part of the growth

factor category (FGF2, VEGF and TGFa), the second component chose five out the

10 immune markers that are part of the chemokine module (IL8, Fractalkine, MCP3,

MIP1a and MIP1b) and 16 markers were retained in the final component which are

the entirety of the features that belong to the chosen groups. Consequently, an over-

lap is observed across de Y components because of the 24 proteins retained in the

model, 16 correspond to unique markers with the reaming eight being included in

at least two components. On the other hand, there is no intersection of transcripts

across the X components selected in the calibrated sgPLS model.
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Table 6.3: Biological pathways to which the selected gene expression signals belong, total number of probes in the
selected pathway and absolute and relative frequencies of the selected signals per pathway for each of the three
integrative approaches.

sPLS gPLS sgPLS
Biological pathway Total Selected (%) Biological pathway Total Biological pathway Total Selected (%)

Non-annotated probes 14737 138 (0.93)
Regulation of DNA
repair

4 Female pregnancy 7 7 (100)

Regulation of transcription 1254 6 (0.48) Secretion 3 Respiratory gaseous exchange 6 6 (100)

Cation transport 240 6 (2.50)
Glial cell
differentiation

2
Cytoskeletal anchoring at
plasma membrane

4 4 (100)

Transcription 527 5 (0.95) Urea transport 2 Regulation of DNA repair 4 4 (100)
G-protein coupled receptor
protein signalling pathway

274 4 (1.46)
Embryonic development
ending in birth or egg hatching

3 3 (100)

Phosphorus metabolic
process

426 3 (0.70) Gas transport 2 2 (100)

Gamete generation 40 3 (7.50) Glial cell differentiation 2 2 (100)

Cell-cell adhesion 17 3 (17.65)
Positive regulation of
macromolecule biosynthetic process

2 2 (100)

Macromolecule catabolic process 224 2 (0.89) Urea transport 2 2 (100)
Cell surface receptor linked
signal transduction

140 2 (1.43)

Intracellular signalling
cascade

120 2 (1.67)

Immune response 102 2 (1.96)
Biological adhesion 91 2 (2.20)
Defense response 75 2 (2.67)
Protein amino acid
phosphorylation

67 2 (2.99)

RNA export from nucleus 18 2 (11.11)
For the three models, only the pathways containing two or more selected signals are shown corresponding to 16,4 and 9 for the sPLS, gPLS and sgPLS models, respectively. Thus,
selected pathways of one probe are not displayed corresponding to 54,18 and 18 for the sPLS, gPLS and sgPLS models, respectively.
sPLS: sparse Partial Least Squares, gPLS: group Partial Least Squares, sgPLS: sparse group Partial Least Squares.
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Figure 6.1: Model performance assessment for the three calibrated PLS approaches.
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sPLS: sparse Partial Least Squares, gPLS: group Partial Least Squares, sgPLS: sparse group Partial Least Squares, MSEP: Mean
Squared Error of Prediction, CV: Cross-Validation.

6.3.3 Model Performance

The predictive ability of the three optimized models is shown in Figure 6.1 where the

MSEP is displayed per each protein. The average MSEP per component and across

component is also presented. Although the three calibrated models yield similar error

of prediction, it can be noticed that sPLS is marginally outperformed by both gPLS

and sgPLS in the three dimensions explored while the error from sgPLS was slightly
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lower than gPLS for the models with one and three dimensions. Upon examination of

each individual feature of the outcome matrix, it can be observed that some proteins

consistently show a lower average MSEP across CV folds with Eotaxin, GRO, MCP1,

MDC, IP10 (chemokines) and TNFa and sCD40L (cytokines) presenting the lowest

error of prediction in the optimized PLS models.

6.3.4 Assessment of Visualisation Tools

6.3.4.1 Superimposed Plots

The projection of the samples in the lower dimensional space spanned by the cali-

brated PLS models is displayed in Figure 6.2, Figure D.4 and Figure D.5. The three

PLS models show comparable results with similar clustering patterns of samples

across the combination of two dimensions used for the representation (1st vs 2nd,

1st vs 3rd and 2nd vs 3rd components). All models were unable to produce a clear

distinction between the three types of observations (MM and CLL subtypes and con-

trol individuals) included in the study population across all two-dimensional spaces

being examined. A marginal separation of samples can be detected in the sPLS model

(2nd vs 3rd component) where the pair of second dimensions (from the X and Y ma-

trices) tends to separate the MM observations from the other individuals as most of

those samples are spread across the horizontal line (see Figure 6.2 top panel third

plot from left to right). Other variables of possible biological importance (gender,

smoking status, level of physical activity, median time to diagnosis) and technical in-

fluence (study of cohort) were also investigated, but a clear clustering pattern of sam-

ples did not emerge as a result (results not shown). These findings suggest that the

pair-wise associations independently identified by the calibrated models between the

transcriptomics and proteomics datasets are shared across the two disease subtypes

as well as the control subjects. In addition, the visual representation of the samples

in the lower-dimensional space allows for an assessment of the level of agreement

between the two data sets according to the applied approaches. The graphics from

the three PLS models show that both data sets are only slightly related as for the
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vast majority of samples long arrows are generated, indicating that the position of

the samples in the reduced space spanned by the X matrix differs considerably from

their corresponding position in the Y matrix.
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Figure 6.2: Sample representation plots displaying the location of the observations on the X and Y spaces spanned by the
calibrated sPLS model (superimposed plots).

-22 -11 0 11 22

-12

-6

0

6

12

1st Component (X & Y)

2n
d

 C
o

m
p

o
n

en
t 

(X
 &

 Y
)

X Components

CLL Subtype
MM Subtype
Controls

-22 -11 0 11 22

-4

-2

0

2

4

1st Component (X & Y)

3r
d

 C
o

m
p

o
n

en
t 

(X
 &

 Y
)

-12 -6 0 6 12

-4

-2

0

2

4

2nd Component (X & Y)

3r
d

 C
o

m
p

o
n

en
t 

(X
 &

 Y
)

Y Components

CLL Subtype
MM Subtype
Controls

-22 -11 0 11 22

-12

-6

0

6

12

1st Component (X)

2n
d

 C
o

m
p

o
n

en
t 

(X
)

-3 -2 0 2 3

-4

-2

0

2

4

1st Component (Y)

2n
d

 C
o

m
p

o
n

en
t 

(Y
)

-22 -11 0 11 22

-4

-2

0

2

4

1st Component (X)

3r
d

 C
o

m
p

o
n

en
t 

(X
)

-3 -2 0 2 3

-4

-2

0

2

4

1st Component (Y)

3r
d

 C
o

m
p

o
n

en
t 

(Y
)

-12 -6 0 6 12

-4

-2

0

2

4

2nd Component (X)

3r
d

 C
o

m
p

o
n

en
t 

(X
)

-4 -2 0 2 4

-4

-2

0

2

4

2nd Component (Y)

3r
d

 C
o

m
p

o
n

en
t 

(Y
)

Transcripts=150, 80 & 9 - Proteins=2, 2 & 3

The three possible two-dimensional spaces are exhibited. The lower space spanned by the Y components is coloured on grey. The separate sample plots are also displayed. For each
sample group, ellipses of the confidence region were drawn employing the R package ellipse based on the variance and mean of the matrix of the corresponding pair of components
(the mean defines the location of the ellipse centre). The confidence level controlling the ellipse size was 0.95 and a total of 100 points were used. A similar output is obtained for the
superimposed plots of the gPLS and sgPLS models, therefore, they are shown in the Appendix section.
sPLS: sparse Partial Least Squares, gPLS: group Partial Least Squares, sgPLS: sparse group Partial Least Squares.
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6.3.4.2 Relevance Network

The visual representation of the correlation between the selected X and Y features

in the form of bipartite graphs from the three PLS approaches is displayed in Fig-

ure 6.3. Edges between nodes were drawn if the estimated correlation surpassed the

3rd quantile of the correlation distribution (in absolute value) in order to favour in-

terpretability and remove weaker associations. In addition, in an attempt to identify

possible clusters or sub-networks of subsets of variables the nodes were coloured by

the biological pathway (predictor matrix) or functional group (outcome matrix) to

which they belong.

Of the six immune markers selected in the sPLS approach, FGF2 (growth factor)

stands out as the protein with the highest number of connections (n=115, 32.21%)

followed by MCP3, MIP1b and MIP1a (chemokines) with similar number of links

(n=73, 20.45%; n=68,19.05%, and n=59, 16.53%, respectively). On the other hand, con-

sidering that variables with similar connections have a close position in the network

structure, inspection of the selected gene expression signals does not reveal a clear

pattern of the biological pathways with the unannotated probes (n=138) dominating

the graphic.

Expectedly, a more parsimonious display is exhibited by the relevance network of the

gPLS model. Despite a total of 18 different proteins being selected belonging to the

growth factor and cytokine categories, the majority of connections are made to the for-

mer functional group. As per sPLS, the growth factor FGF2 presents the highest num-

ber of edges drawn to it (n=23, 17.56%) followed by TGFa and VEGF (n=19,14.50%

and n=18, 13.74%, respectively). The marker IL13 is highlighted as the cytokine with

the most links among the other markers of its same functional group (n=15, 11.45%).

In relation to the transcripts, and although most of the selected biological pathways

only contain one probe (four of the 22 retained pathways correspond to modules with

more than one variable), it seems that signals belonging to the same pathway display

a similar connectivity pattern.
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Figure 6.3: Relevance networks from the three integrative approaches.
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Colours of the nodes are determined by the biological pathway or functional group to which transcripts or proteins belong
(referring to the predictor and outcome matrices, respectively). All the transcripts that also constitute a single pathway (i.e.
one-probe modules) are coloured in grey corresponding to 54,18 and 18 for the sPLS, gPLS and sgPLS models, respectively.
Pathways containing two or more transcripts correspond to 16,4 and 9 for the sPLS, gPLS and sgPLS models, respectively. Size of
the protein nodes is given by the number of connections. For the gPLS and sgPLS graphics, proteins with number of connections
above the average are named. In relation to the network edges, colours are dictated by the protein to which transcripts connect
and edges between nodes were drawn only if the estimated correlation exceeds the 3rd quantile of the correlation distribution
(in absolute value).
PLS: Partial Least Squares.

The findings of the relevance network of the sgPLS model represent a compromise

between what was observed in the sPLS and gPLS approaches. The growth factor

FGF2 stands out as the protein with the greatest number of connections with the se-

lected gene transcripts (n=39, 19.5%), similarly to the sPLS and gPLS bipartite graphs.

VEGF and TGFa are growth factors that also present a substantial number of edges

(n=34, 17% and n=27, 13.5%, respectively) (which is comparable to the gPLS network)
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followed by the chemokines MCP3 and MIP1b (n=26, 13%, and n=23, 11.5%, respec-

tively) (which is comparable to the sPLS network). In terms of the gene expression

signals, it is observed that transcripts belonging to the same biological pathway (nine

of the 27 retained modules contain more than one transcript) exhibit an equivalent

connectivity with signals of a group having links to the same group of proteins.

6.3.4.3 Clustered Image Maps

The CIMs produced by the three integrative approaches are shown in Figure 6.4.

The visual inspection of the heatmaps reveals that negative pair-wise associations

between the X and Y features are more common and stronger than the positive cor-

relations, which is the most apparent finding shared by the three PLS models. Of the

three approaches, sPLS displays the highest relative number of negative and strong

correlations followed by the sgPLS and gPLS models, with the latter showing a more

balanced number of negative and positive correlation as well as weaker correlation

estimates. An additional discovery shared across the all heatmaps is that the growth

factor FGF2 is the marker presenting the strongest correlations (both positive and neg-

ative) with the corresponding selected gene expression signals (i.e. darkest coloured

column).

When inspecting the dendrograms, the reordering of the variables given by the hier-

archical clustering provide a cluster structure comparable to what was revealed in the

relevance network display. The CIM from the sPLS approach shows that the proteins

MIP1a, MIP1b, FGF2 and MCP3 present a high degree of similarity while the mark-

ers VEGF and EGF form another group with low dissimilarity; thus, two possible

cluster of variables can be distinguished. The Y matrix dendrogram of gPLS shows

four possible clusters containing three, two, three and 10 proteins. The first cluster

(from left to right in Figure 6.4 panel b) consists of the variables with the strongest

correlation estimates while the remaining clusters show weaker coefficients, with the

fourth cluster mainly grouping positive weak pair-wise associations. From the im-

mune markers dendrogram of the sgPLS model, four possible clusters can also be
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Figure 6.4: Clustered Image Maps (CIMs) from the three integrative approaches.
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identified of nine, two, three and two variables; the first one (from left to right in

Figure 6.4 panel c) showing the strongest correlation coefficients and third one with

mainly positive estimates. On the other hand, subsets of variables can be identified

from the gene expression signal dendrograms: five clusters in sPLS, two plus one

outlier transcript in gPLS and three plus two outlier transcripts in sgPLS. In each of

the PLS models, only one of the clusters is comprised by positive associations.
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6.3.4.4 Correlation Circle Plots

The graphic illustrating the correlation circle plots of the three PLS approaches for

all two-dimensional space combinations is displayed in Figure 6.5. In the three in-

tegrative approaches explored, the selected proteins are closely located to the origin

(within or near the circle of radius 0.5), which is an indicator that more dimensions

are needed to better visualise Y variable associations by means of this graphical out-

put. Nonetheless, subsets of gene expression variables can be identified. The 1st vs

2nd component plot of the sPLS model reveals two subgroups of variables located to

some extent perpendicular to each other, which suggests that variables within sub-

groups are highly correlated with each other while correlation between the subsets

is weak or close to null. The following correlation circle plots (1st vs 3rd and 2nd

vs 3rd dimensions) show one significant subset of transcripts each, mostly belonging

to the group of non-annotated probes. Subsets of correlated transcripts can also be

observed in the gPLS plots; however, they appear to be sparser and more disperse

as well as closer to the origin, suggesting only a weak correlation pattern between

variables and within groups of variables. As with the findings described in the rel-

evance network analyses, the sgPLS model appears to offer a compromise between

the sPLS and gPLS correlation circle plots as the identified subsets of variables are

either denser and more compact or more spread and farther away from the origin.

Finally, features within the sgPLS subgroups seem to respect the biological pathway

classification as variables that belong to a given pathway are highly correlated to one

another (i.e. transcripts of the same pathway are also part of the same subset).

6.3.4.5 Loading Coefficient Plots

The graphical display of the loading coefficients of the selected features in both the

predictor and outcome matrices for the sgPLS model is presented in Figure 6.6 (re-

sults from the other two methods are not shown). The illustration shows that most of

the retained transcripts present positive coefficients (n = 34, 68%) and the top 10 gene

expression signals with the highest absolute value of loading coefficient are explicitly
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Figure 6.5: Correlation circle plots from the three integrative approaches.
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(a) sPLS= 3 Components
Transcripts=150, 80 & 9 - Proteins=2, 2 & 3
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(b) gPLS= 3 Components
Transcripts=27, 1 & 1 - Proteins=6, 18 & 6
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(c) sgPLS= 3 Components
Transcripts=48, 1 & 1 - Proteins=3, 5 & 16

The three possible two-dimensional spaces are exhibited. Triangles represent gene expression signals and crossed circles rep-
resent proteins. Colours of the triangles and circles are determined by the biological pathway or functional group to which
transcripts or proteins belong, respectively. All the transcripts that constitute a single pathway (i.e. one-probe modules) are
coloured in grey. Two circles of radii 0.5 and 1 are drawn to better detect relevant subgroups of variables.
sPLS: sparse Partial Least Squares, gPLS: group Partial Least Squares, sgPLS: sparse group Partial Least Squares.
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indicated. Among them, we find the single transcript retained in all three models

(AQP8), the two common selected transcripts between sPLS and sgPLS (SHANK1

and PSG7) and five of the 21 common transcripts selected between gPLS and sgPLS

are included (UBE2V1, GALR2, EPB41L5, UBE2V1 and DCUN1D3). More specif-

ically, the signal AQP8 stands out as the highest contributing variable of the first

component.

In relation to the proteomics data, the retained features display negative, positive,

and mostly negative (n = 15, 93.75%) loading coefficients for the first, second and

third components, respectively. It can be observed that the most significant variable

is the growth factor FGF2 as it presents the highest absolute value in loading coeffi-

cient followed by the markers VEGF and TGFa, also growth factors. The chemokines

IL8, Fractalkine and MCP3 are the proteins driving most of the variation in the sec-

ond dimension while a relative even contribution is made by the 16 variables of the

third component. In addition, the chosen markers retained in the calibrated sgPLS

model appear to be reflection of variation patterns within MM cases and to a lesser

extent CLL as these are the sample groups with the highest mean protein concentra-

tion value.

6.3.5 Biological Interpretation of the Findings

Results from the gene-enrichment analysis showed that, of the 238 different gene ex-

pression signals retained in the calibrated sPLS model, 166 (69.75%) were mapped

to DAVID’s database for functional annotation which were grouped into 24 differ-

ent gene enriched pathways. As per gPLS and sgPLS, 24 of the 29 (82.76%) and 38

of the 50 (76%) selected transcripts were mapped to DAVID IDs being clustered in

three and seven pathways, respectively. Upon further filtering (EASE score<0.01,

setting the minimal number of probes per functional group to 5 and fold enrichment

value>3), six, one and one biological pathways were retained. Furthermore, gene-

enrichment analysis pooling all unique probes from the three integrative approaches

(n=270) were matched to 209 DAVID IDs (77.41%) forming 32 functional annotation

196



Chapter 6

Figure 6.6: Loading coefficients of the selected variables in both the predictor and
outcome matrices for the sgPLS model.
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clusters which after the more stringent filtering were reduced to 17. The summary of

the functional annotation process from the three PLS models as well as the combined

selected transcripts is detailed in Table 6.4. Most of the enriched pathways relate

to immune system regulation, recognition system for cell adhesion, protein transit

through the cell and peptide structure, function and stability.
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Table 6.4: Summary of the results from the gene-enrichment analysis from the transcripts independently selected in each
of the three integrative approaches and from all unique transcripts jointly selected across the three approaches (pooled
analyses).

sparse PLS

Database Term Count p-value Fold Enrichment Bonferroni

1 GOTERM_MF_DIRECT GO:0031625 ubiquitin protein ligase binding 9 0.002 4.010 0.368

2 UP_SEQ_FEATURE domain:Ig-like C2-type 3 6 0.003 6.187 0.839

3 GOTERM_BP_DIRECT GO:0007155 cell adhesion 11 0.003 3.049 0.935

4 UP_SEQ_FEATURE domain:Ig-like C2-type 1 7 0.004 4.574 0.937

5 UP_SEQ_FEATURE domain:Ig-like C2-type 2 7 0.004 4.551 0.942

6 UP_SEQ_FEATURE short sequence motif:Cell attachment site 5 0.005 7.252 0.959

group PLS

Database Term Count p-value Fold Enrichment Bonferroni

1 GOTERM_CC_DIRECT GO:0005887 integral component of plasma membrane 7 0.007 3.756 0.390

sparse group PLS

Database Term Count p-value Fold Enrichment Bonferroni

1 GOTERM_BP_DIRECT GO:0007565 female pregnancy 5 3.405E-05 26.2 7.564E-03*
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Table 6.4: Summary of the results from the gene-enrichment analysis from the transcripts selected independently in each
of the three integrative approaches and from all unique transcripts jointly selected across the three PLS approaches (pooled
analyses) (cont.).

Pooled analysis

Database Term Count p-value Fold Enrichment Bonferroni

1 UP_SEQ_FEATURE domain:Ig-like C2-type 1 10 1.59E-04 5.093 0.114

2 UP_SEQ_FEATURE domain:Ig-like C2-type 2 10 1.65E-04 5.068 0.118

3 UP_SEQ_FEATURE domain:Ig-like C2-type 3 8 2.50E-04 6.430 0.174

4 UP_SEQ_FEATURE short sequence motif:Cell attachment site 7 2.55E-04 7.914 0.177

5 GOTERM_MF_DIRECT GO:0031625 ubiquitin protein ligase binding 11 6.98E-04 3.762 0.206

6 UP_KEYWORDS Immunoglobulin domain 14 0.002 2.749 0.363

7 UP_KEYWORDS Disulfide bond 49 0.002 1.530 0.365

8 UP_SEQ_FEATURE signal peptide 49 0.003 1.507 0.857

9 UP_SEQ_FEATURE disulfide bond 44 0.003 1.552 0.874

10 INTERPRO IPR003598: Immunoglobulin subtype 2 9 0.003 3.754 0.719

11 GOTERM_BP_DIRECT GO:0007155 cell adhesion 13 0.003 2.733 0.953

12 GOTERM_BP_DIRECT GO:0007268 chemical synaptic transmission 9 0.003 3.619 0.975

13 SMART SM00408:IGc2 9 0.005 3.416 0.406

14 UP_KEYWORDS Signal 55 0.005 1.417 0.681

15 UP_KEYWORDS Glycoprotein 58 0.008 1.366 0.848

16 UP_SEQ_FEATURE metal ion-binding site:Zinc; catalytic 6 0.008 4.785 0.998

17 INTERPRO IPR013783: Immunoglobulin-like fold 18 0.010 1.973 0.987
Biological pathways are ordered in relation to their Bonferroni adjusted p-values. Only one pathway reached Bonferroni significance and it is mark with a (*).
PLS: Partial Least Squares.
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6.3.6 Comparative Assessment of Integrative Approaches

The overlap in terms of number of individual variables and modules shared across

the three calibrated PLS models for both the X and Y matrices is displayed in Fig-

ure 6.7. Only one gene expression signal is common across the three statistical mod-

els (AQP8), two additional transcripts are common between the sPLS and the sgPLS

models (SHANK1 and PSG7) and 20 additional probes are jointly selected in the gPLS

and sgPLS methods. Inspection of the selected biological pathways reveals a similar

overlapping pattern, possible because the majority of them correspond to one-feature

modules. The gene AQP8 matches a single pathway and so do the two additional

signals that were commonly selected by sPLS and sgPLS. As with individual probes,

a greater intersection is seen between the group approaches where 16 pathways are

shared between the gPLS and the sgPLS models of which 13 are composed by only

one transcript. Details on the transcripts and biological pathways that are common

to at least 2 of the regularized PLS models are shown in Table D.2. On the other hand,

three immune markers are commonly retained across the three regularized models

which correspond to EGF, FGF2 and VEGF belonging to the growth factor category.

The main divergence is presented by the gPLS model which selected the cytokine

group unlike the other two methods; therefore, a greater overlap is seen between sPLS

and sgPLS in terms of both individual markers (six) and functional groups (two).

6.4 Discussion

The analyses conducted in this chapter constitute a comprehensive and exhaustive

effort to unravel the complex associations and co-expression patters between gene

expression signals and inflammatory markers that may be altered in individuals pre-

senting BCL. Despite the limited sample size, clear findings emerge which were con-

sistent across the three integrative approaches. The growth factors FGF2 and VEFG

were consistently selected as being associated to the studied transcripts, with the for-

mer showing the strongest correlation estimates. Although less regularly across PLS
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Figure 6.7: Venn diagrams representing the overlap of transcripts and biological path-
ways (panel a) and proteins and functional groups (panel b) shared across the three
integrative approaches.
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models and presenting comparatively lower statistical power, the growth factor TGFa

and the chemokines MCP3 and MIP1b also seem to be related to relevant gene expres-

sion signals. On the other hand, functional annotation analyses of the selected tran-
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scripts exposed mainly three different group of pathways driving the connectivity

pattern with the mentioned proteins, which can be categorized into intracellular and

extracellular signalling, immune response and peptide signalling. Given the fact that

the statistical approaches were unable to yield a clear separation between the sample

types being included in the analyses (CLL and MM subtypes and control individuals),

the identified pair-wise associations can be viewed as altered co-expression patterns

that are commonly present in the three observation types.

6.4.1 Technical Assessment and Comparison of Integrative Approaches

The calibration process necessary to optimize a PLS model is an essential procedure

for the successful application of this statistical method as aspects such as predictive

accuracy, feature selection and interpretability depend on it. Despite the associated

computational challenges, a through calibration procedure was conducted in this

chapter to define the optimal models for the three integrative approaches and for both

the predictor and outcome matrices and several observations can be drawn from this

process. First, as revealed by the set of calibration curves, only marginal differences

in error of prediction are observed for the different values of the model parameters

being tested; a finding that is shared across the three PLS dimensions and across the

three statistical methods. A possible explanation for this observation may be related

to the high-dimensional nature of both the X and Y matrices and a comparatively

restricted number of samples (n <<< p+ q), which may lead to a more difficult iden-

tification of the relevant features driving the variation and to marginal differences

in prediction error within dimensions. Second, for all regularized PLS models the

predictive accuracy differences between components are greater to the ones observed

within components, a statement that supports the exploration and optimization of

models with more than one latent variable. Third, the calibration process of each ap-

proach clearly highlights which model parameters yield a better predictive accuracy,

for example in sPLS this correspond to models retaining one to three proteins, in gPLS

to models retaining one functional groups and in sgPLS lower values of the mixing
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parameter α1. Four, the choice to define the final model parameters invariably re-

lies on subjective grounds as the observed minimum seldom provides an appropriate

balance between statistical performance and sparsity.

In relation to the calibrated models, small differences in statistical performance can be

seen across the three regularized PLS approaches. Similar to what has been demon-

strated on simulated data where sPLS is outperformed by both gPLS and sgPLS, with

the latter presenting the best statistical performance of the three [116], the same over-

all trend is viewed in this real data application; however, narrower variations in er-

ror of prediction are observed. Expectedly, marginal differences in prediction error

for individual proteins are also detected across integrative approaches. As previ-

ously discussed, these differences may be limited in absolute value possibly due to

the reduced number of components being explored, but they can still be significant

in relative terms as they provide a clear pattern in relation to which approach pro-

vides the best model performance. Furthermore, as it was mentioned in chapter 5,

the restricted improvement upon inclusion of pre-existing functional modules on the

examined matrices can be explained by the grouping structure of the transcriptomics

data (the majority of transcripts do not present group-annotation information, signif-

icant differences in group sizes and transcripts commonly belong to more than one

pathway) as this is in attribute that only affects the gPLS and sgPLS methods. This as-

pect may also give explanation as to why the incorporation of the mixing parameter

α1 did not effectively impose within group sparsity in the optimized sgPLS model.

In terms of interpretability and sparsity of the optimized models, it can be observed

that the sgPLS approach yields a more balanced output in comparison to those ob-

tained from the sPLS and gPLS models as the number of features and modules se-

lected in the predictor matrix was higher than in gPLS and lower than sPLS. Fur-

thermore, and possibly because of the point just stated, the three main visualization

tools (relevance networks, CIMs and correlation circle plots) obtained from the sgPLS

model offer a compromise between those obtained from the other two approaches.

These attributes facilitate the extraction of the most relevant biological features within
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and between the two blocks of omics data. In contrast, the functional annotation anal-

yses conducted on the selected gene expression signals are more informative in the

case of the sPLS approach as the six selected enriched pathways appear to be more

pertinent to the disease endpoint under study as opposed to the case of the group

approaches were only one pathway of unspecific biological function was selected. In

addition, the retained biological pathways of the sPLS model also appear to be more

specific to the BCL phenotype and more aligned to the protein selection than the other

integrative approaches. Thus, in terms of biological relevance the findings revealed

here support a more significant contribution of the sparse statistical method over its

counterparts.

As such, clear benefits and some challenging difficulties are associated with the as-

sessed integrative methods in this real data application. Statistical performance, in-

terpretability and sparsity are enhanced by the inclusion of pre-existing functional

groups of variables with similar functions, while biological pertinence does not ap-

pear to be particularly improved.

6.4.2 Biological Relevance of Findings

Most of the selected gene expression signals and the corresponding enriched biolog-

ical pathways relate to signal peptide and cell adhesion, which are molecules known

to be implicated in the transportation of proteins from the cytoplasm into the extra-

cellular space across the plasma membrane. It is an established fact in molecular

biology that secretion of proteins into the extracellular space occurs when they are

transported from the Endoplasmic Reticulum (ER) to the Golgi apparatus and subse-

quently to the plasma membrane via secretory vesicles or secretory granules, a pro-

cess that depends on signal peptide-mediated translocations and molecules adhered

to the plasma membrane. Once proteins are outside the cell, they exert defined extra-

cellular functions [235]. As such, part of the biological output revealed in this chapter

are indicative of this conventional protein secretion trafficking route by which the

markers identified as relevant leave the cell to exert their tumour-induced angiogen-
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esis and inflammatory functions.

Furthermore, it has been discovered that some growth factors and cytokines such as

FGF2 and IL1b lack peptide signalling and their transportation is based on uncon-

ventional secretory pathways (i.e. ER/Golgi independent mechanisms). More specif-

ically, in the case of the protein FGF2 there is some recent experimental evidence sug-

gesting that the formation of disulfide bond bridges drive plasma membrane pore

formation allowing the translocation of FGF2 to the cell surface [236], [237]. Judging

by the findings from the functional annotation analyses and considering that FGF2

was found as the most relevant marker, the results presented in this chapter are also

supportive of this unconventional mechanism for protein secretion.

Another relationship of biological significance identified in this chapter is the one es-

tablished by the chemokines MCP3 and MIP1b. As discussed in chapter 5, these are

proteins known to play a major role in the regulation of inflammatory processes by

selectively recruiting White Blood Cells (WBCs), particularly monocytes and Natural

Killer (NK) cells. Migration of these leukocyte types from the blood stream across the

vascular endothelium is required for routine immunological surveillance of tissues,

response to inflammation (recruitment of leukocytes to sites where an inflammation

response is required) and proper functioning of the tumour microenvironment [232],

[238]. More specifically, it has been described that the chemokines MCP3 and MIP1b

bind to specific cell surface transmembrane receptors whose activation leads to the ac-

tivation of intracellular signalling cascades that prompt migration of WBCs towards

the chemokine source [232],[238]. These plasma membrane receptors are known as

transmembrane domain G protein coupled receptors and the signalling cascades ac-

tivated as consequence of the binding chemokine-chemokine receptors have been de-

scribed to modulate not only cellular migration but also other functions such as cell

survival, adhesion, invasion and proliferation. A significant group of biological path-

ways uncovered by the analyses conducted here are precisely related to those cellular

mechanisms.

Altogether, the identified transcripts and proteins point towards two main biological
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functions and the specific mechanism by which those functions are exerted, namely

tumour-induced angiogenesis and inflammation. The extent to which these co-expression

patterns reflect altered mechanisms leading to clinical manifestations and disease

progression or biological processes occurring in circumstances where disease status

is yet present remains to be investigated and constitute an unanswered interrogation

opening avenues for future analyses. In particular, considering that the inflammatory

markers identified in this integrative setting were also found as the most important

proteins in the classification analysis for the MM subtype, it is possible that the find-

ings discovered in this chapter are mainly driven by this specific sub-entity. There-

fore, one immediate analytical step to be taken following what was revealed and

discussed here is to restrict the cross-omics profiling to MM observations to confirm

or refute this hypothesis.

6.5 Conclusion

The integration of the transcriptomics and proteomics EGM data by application of

regularized PLS methods uncovered valuable co-expression patterns describing the

interplay of the involved biomolecules and their functions. The results establish a re-

lationship between the proteins FGF2, VEGF, TGFa, MCP3 and MIP1b and transcripts

related to biological pathways such as to intracellular and extracellular signalling, cell

adhesion and migration as well as peptide signalling. Such patterns appear to pro-

vide insights into the functioning of two complex biological process, namely tumour-

induced angiogenesis and inflammation, which are mechanisms known to play a key

role in the pathogenesis of BCL. From a methodological standpoint, most of the as-

sessed aspects point towards a better performance of the sgPLS method over the other

two integrative approaches.
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Conclusions

Encouraged by the challenges associated to the analyses of high-throughput omics

technologies and the role of environmental agents in the development human disease

under the concept of the exposome, this thesis contributes to the scientific literature

in the field by addressing two important research objectives: i) to assess and contrast

univariate and multivariate statistical approaches on real-world omics data under

different circumstances in terms of aspects such as applicability, suitability and inter-

pretability and biological relevance of findings and ii) to identify possible biological

markers indicative of B-cell Lymphoma (BCL) risk and potential underlying mecha-

nisms leading to its onset. These two main aims were simultaneously addressed in

three results chapters where the mentioned statistical approaches where applied with

a focus on sample classification and omics data integration.

7.1 Summary of Findings

In chapter 4 I independently analyse proteomics and transcriptomics data from the

EnviroGenoMarkers (EGM) project by means of univariate approaches to discover

markers for BCL and its main histological subtypes. More specifically, consider-

ing that omics platforms are susceptible to unwanted sources of variation, I em-

ploy Linear Mixed Model (LMM)s as these are recognized statistical methods to cor-

rect for potential technical-induced noise. Predictive disease markers were identi-

fied for the subtypes Multiple Myeloma (MM) and Chronic Lymphocytic Leukaemia
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(CLL) where six inflammatory markers and 684 gene expression signals respectively

demonstrated to be significantly associated with disease status. For each subtype,

stronger associations were consistently replicated when assessing possible limitations

associated to the epidemiological study design (stratification by study cohort and

analytical phase) as well as the effect of confounding factors (correction for White

Blood Cell (WBC) subpopulations). Furthermore, these stronger markers showed to

be statistically significant more than six years before individuals were diagnosed, a

discovery suggestive of long term sub-clinical perturbations. On the other hand, re-

sults demonstrate that LMMs were efficient to characterise and correct for the main

sources of technical noise and as a result to increase statistical power to detect positive

associations.

The research focus shifts towards multivariate statistical approaches in chapter 5

where regularized PLS techniques are employed in a discriminant analysis context for

the identification of subset of biological features able to accurately separate case and

control observations. In particular, the techniques sparse, group and sparse-group

Partial Least Squares Discriminant Analysis (PLS-DA) were independently applied

to the proteomics and transcriptomics datasets following the same methodology un-

dertaken in the previous chapter in order to allow for a comparative assessment be-

tween the univariate and multivariate methods. As with established statistical ap-

proaches, relevant findings were detected for the disease subtypes MM and CLL in

the inflammatory marker and gene expression datasets, respectively, however, sev-

eral improvements over the output from the LMM analysis emerge. First, regularized

PLS methods were able to find a set of proteins displaying an optimal classification

performance for CLL observations. Second, when there is a biological variability of

interest the PLS methods perform better to identify the most relevant features in the

corresponding predictor matrix thus enhancing sparsity when needed. Third, analyt-

ical outputs proved to be less sensitive to possible confounding factors as correction

for WBC differentials did not alter findings substantially. In addition, the application

of these three PLS-DA methods under different circumstances sheds light on what
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conditions improve statistical performance and feature selection. It is demonstrated

that the aggrupation of individual features by the similarities of their biological func-

tion does strengthen efficacy when a clear distinction between biological modules is

available.

Under a regression framework, omics data integration between gene expression sig-

nals and inflammatory markers is conducted in chapter 6 using the same regularized

PLS methods employed in the previous chapter but in two-block scenario. An asym-

metric relationship between datasets was assumed where the purposes were to de-

tect transcript levels predictive of protein concentration and co-expression patterns

between feature types. Analyses were limited to MM and CLL subtypes as these

were the observations driving the main findings in the independent omics analyses,

and their corresponding matched control individuals. The identified co-expression

patterns uncover two main biological mechanisms between gene expression signals

and inflammatory markers, one related to tumour-induced angiogenesis and another

to inflammation; the growth factors FGF2, VEGF and TGFa are linked to the first

while the chemokines MCP3 and MIP1b are linked to the second. The identified tran-

scripts are related to enriched biological pathways such as peptide signalling, cell ad-

hesion, survival and invasion which have been proposed as the possible mechanisms

by which the mentioned proteins exert their functions. From a statistical perspective,

these real-world data applications show that model performance, interpretability and

sparsity are superior for the sgPLS integrative approach while biological relevance

appear to be enhanced in the sPLS method as more transcripts were retained in the

optimized model which favours the selection of more informative enriched pathways

from the functional annotation analyses.

7.2 Contribution to the State of the Art

The outputs of this thesis extend beyond the scope of each chapter and are expected

to add value to the current scientific knowledge both from an epidemiological and a

209



Limitations

statistical perspective. On the one hand, the characteristics of the EGM project allow

for a valuable way of studying BCL and its main histological subtypes as most of the

existing literature on this disease refers to tumour or blood samples in individuals

already undergoing clinical manifestations of the disease. The prospective nature of

the epidemiological studies of the EGM project allows for the discovery of biological

perturbations before the onset of the clinical presentation, which avoids some of the

drawbacks associated with retrospective epidemiological study designs.

On the other hand, to the best of my knowledge and apart from some of the results

presented in this thesis, there is no published material known to have employed the

group regularized versions of PLS in real and high-dimensional data either in a dis-

criminatory analysis context or in a integration setting. As discussed in chapter 2, the

group and sparse-group PLS methods were introduced to accommodate a disadvan-

tage previous statistical approaches were unable to address, namely incorporation

of pre-existing information in the form of group of highly correlated variables. In

this regard the analyses presented in this thesis represent a valuable contribution to

the existing scientific literature as two novel statistical methods were applied under

different set of circumstances allowing for a comprehensive assessment of their ap-

plicability and suitability. As mentioned in the section above, it was observed that

accounting for correlation structures within omics blocks does indeed reinforce and

refine the results. Furthermore, the exhaustive application of sparse PLS in this the-

sis also constitutes a significant contribution to the literature as the widespread use

of this technique to analyse omics data either with a classification purposes or in

a two-block context is limited, probably because simpler univariate approaches are

preferred.

7.3 Limitations

As mentioned in chapter 3, BCL is a cancer type characterised by presenting a high

degree of histological heterogeneity where a substantial number of subtypes have
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even been described to present sub-entities with distinguishable clinical and biolog-

ical marker attributes. Thus, the reduced sample size of the study populations in-

cluded here may have hindered the possibility of detecting inflammatory markers

or gene expression signals that are commonly altered across the main disease sub-

types as well as in individual subtypes where the analyses failed to detect markers

of prediction. Furthermore, the EGM project and related studies have commonly

considered MM as a type of Non-Hodgkin’s Lymphoma (NHL) because it shares the

cellular origin with the most common BCL subtypes (i.e. from the Germinal Cen-

tre (GC)); however, standard ICD-10 classification does not categorize it as such. As

a plasma cell neoplasm, its main clinical manifestations (e.g. multiple bone lesions,

production of monoclonal antibodies, hypercalcemia) differ to those seen in CLL, DL-

BCL and FL where painless lymphadenopathy is a common presentation across the

three disorders. Considering that MM observations are the most numerous samples

among all subtypes both in the proteomics and transcriptomics datasets, it is possible

that the discussed findings are influenced to a certain extend by the consideration

made about this plasma cell disorder.

From a statistical standpoint, it is reasonable to state that the methodologies inves-

tigated in this thesis were all applied in a thorough and exhaustive fashion. The

potential drawback of multivariate approaches like PLS of them being unable to cor-

rect for technical-induced noise was overcome by means of the two-step procedure

conducted in chapter 4. The other known limitation of the regularized versions of

PLS is the high computational cost associated to the calibration procedure to define

the model parameters. Performing this process constituted one of the biggest chal-

lenges of this PhD project, especially in a stratified analysis where statistical models

are repeated over observation types (chapter 5) or in a multivariate setting (chapter

6) where the optimization of up to four different parameters was required. Although

the authors of the PLS techniques employed in this thesis support the definition of

the corresponding tuning parameters entirely based on subjective grounds (i.e. cir-

cumventing the calibration process), such approach may not be adequate when prior
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biological knowledge is lacking or when novel findings and hypothesis-generating

results are sought.

7.4 Future directions

The findings described in this thesis may serve as a foundation for further devel-

opments within the research area of statistical modelling of high-dimensional omics

data for an enhancement of the biological understanding of multifactorial and com-

plex diseases. First, as it is standard practice in epidemiological research, external

validation of the observed findings in an independent population is required before

they can be reliably employed in extended settings. This aspect is especially interest-

ing for MM as the discovered biological markers seem to convert the expression levels

from low to high levels when clinical presentation of the disease begins. Second, al-

though explored in this thesis, a more robust and in-depth analysis in relation to Time

to Diagnosis (TtD) is desired for a further exploitation of the prospective nature of the

epidemiological study design; for example, stratification of observations per year of

TtD or identifying inflammatory markers, gene expression signals or co-expression

patterns predictive of TtD.

As previously discussed, PLS and its regularized extensions are not exempt of weak-

ness, which can potentially open avenues for future work. The limitation related to

their inability to accommodate categorical variables either as predictor or outcome

features are commonly overcome in a two-step procedure like the one employed

here: estimate the effect of a categorical variable by means of univariate methods

and construct a new matrix from the residuals to which the PLS techniques are ap-

plied. However, this procedure considers the categorical variable(s) independently

and their contribution cannot be measured and compared in relation to rest of the

omics features. Undergoing research efforts are attempting to reduce this two-step

method into one and thus to allow the modelling of categorical variables in the same

manner as continuous features. Furthermore, the trade-off between orthogonality
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and sparsity in the creation of the latent variables in regularized PLS methods espe-

cially in a regression setting has not been fully addressed yet, which is a factor that

may have important subsequent implications in aspects such as model construction,

complexity, statistical performance and ultimately biological significance.
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[197] Ewa Szymańska, Edoardo Saccenti, Age K. Smilde, and Johan A. Westerhuis. “Double-

check: Validation of diagnostic statistics for PLS-DA models in metabolomics stud-

ies”. Metabolomics 8.1 (2012), 3–16.

[198] Tahir Mehmood, Kristian Hovde Liland, Lars Snipen, and Solve Sæbø. “A review

of variable selection methods in Partial Least Squares Regression”. Chemometrics and

Intelligent Laboratory Systems 118 (2012), 62–69.

[199] L. Eriksson, E. Johansson, N. Kettaneh-Wold, and S. Wold. “Multi-and megavariate

data analysis” ().

[200] Il Gyo Chong and Chi Hyuck Jun. “Performance of some variable selection methods

when multicollinearity is present”. Chemometrics and Intelligent Laboratory Systems 78.1

(2005), 103–112.

[201] Ryan Gosselin, Denis Rodrigue, and Carl Duchesne. “A Bootstrap-VIP approach for

selecting wavelength intervals in spectral imaging applications”. Chemometrics and

Intelligent Laboratory Systems 100.1 (2010), 12–21.



[202] Kim Anh Lê Cao, Pascal G.P. Martin, Christèle Robert-Granié, and Philippe Besse.

“Sparse canonical methods for biological data integration: Application to a cross-

platform study”. BMC Bioinformatics 10.34 (2009), 1–17.

[203] Ignacio González, Kim Anh Lê Cao, Melissa J. Davis, and Sébastien Déjean. “Visu-

alising associations between paired ’omics’ data sets”. BioData Mining 5.1 (2012), 1–

23.

[204] Neil Pearce. “Analysis of matched case-control studies”. BMJ (Online) 352 (2016), 1–4.

[205] Chia-Ling Kuo, Yinghui Duan, and James Grady. “Unconditional or Conditional Lo-

gistic Regression Model for Age-Matched Case–Control Data?” Frontiers in Public Health

6.March (2018), 6–8.

[206] DW Hosmer, S Lemeshow, and RX Sturdivant. “Applied Logistic Regression”. In: 3rd.

2013. Chap. 4th, pp. 89 –153.

[207] Mathias Uhlén et al. “Tissue-based map of the human proteome”. Science 347.6220

(2015).

[208] Neha Korde, Sigurdur Y. Kristinsson, and Ola Landgren. “Monoclonal gammopa-

thy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM):

Novel biological insights and development of early treatment strategies”. Blood 117.21

(2011), 5573–5581.

[209] RA Kyle, TM Therneau, SV Rajkumar, DR Larson, MF Plevak, JR Offord, A Dispen-

zieri, JA Katzmann, and LJ Melton. “Prevalence of monoclonal gammopathy of unde-

termined significance”. The New England Journal of Medicine 354.13 (2006), 1362–1369.

[210] Paolo Ghia and Federico Caligaris-Cappio. “Monoclonal B-cell lymphocytosis: Right

track or red herring?” Blood 119.19 (2012), 4358–4362.

[211] MC Lanasa et al. “Immunophenotypic and gene expression analysis of monoclonal

B-cell lymphocytosis shows biologic characteristics associated with good prognosis

CLL”. Leukemia 25.9 (2011), 1459–1466.



[212] M Gkotzamanidou, D Christoulas, VL Souliotis, A Papatheodorou, MA Dimopoulos,

and E Terpos. “Angiogenic cytokines profile in smoldering multiple myeloma: No dif-

ference compared to MGUS but altered compared to symptomatic myeloma”. Medical

Science Monitor 19 (2013), 1188–1194.

[213] C Greco, G Vitelli, G Vercillo, R Vona, D Giannarelli, I Sperduti, F Pisani, E Capolu-

ongo, MC Petti, and F Ameglio. “Reduction of serum IGF-I levels in patients affected

with monoclonal gammopathies of undetermined significance or multiple myeloma.

Comparison with bFGF, VEGF and K-ras gene mutation”. Journal of Experimental and

Clinical Cancer Research 28.1 (2009), 28–35.

[214] AC Ng et al. “Bone microstructural changes revealed by high-resolution peripheral

quantitative computed tomography imaging and elevated DKK1 and MIP-1α levels

in patients with MGUS”. Blood 118.25 (2011), 6529–6534.

[215] V. Scudla, T. Pika, M. Budikova, J. Petrova, J. Minarik, J. Bacovsky, K. Langova, and

Zivna J. “The importance of serum levels of selected biological parameters in the di-

agnosis, staging and prognosis of multiple myeloma”. Neoplasma 57.2 (2010), 102–110.

[216] D Pulte, MT Redaniel, H Brenner, L Jansen, and M Jeffreys. “Recent improvement

in survival of patients with multiple myeloma: variation by ethnicity”. Leukemia &

Lymphoma 55.5 (2014), 1083–1089.

[217] DF Jelinek, RC Tschumper, GA Stolovitzky, SJ Iturria, Y Tu, J Lepre, N Shah, and NE

Kay. “Identification of a global gene expression signature of B-chronic lymphocytic

leukemia.” Molecular Cancer Research 1.5 (2003), 346–361.

[218] Daruka Mahadevan et al. “Gene expression and serum cytokine profiling of low stage

CLL identify WNT/PCP, Flt-3L/Flt-3 and CXCL9/CXCR3 as regulators of cell prolif-

eration, survival and migration.” Human Genomics and Proteomics 2009: 453634 (2009),

doi: 10.4061/2009/453634.

[219] P Salven, A Orpana, L Teerenhovi, and H Joensuu. “Simultaneous elevation in the

serum concentrations of the angiogenic growth factors VEGF and bFGF is an inde-

pendent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution

study of 200 patients.” Blood 96.12 (2000), 3712–3718.



[220] P Salven, L Teerenhovi, and H Joensuu. “A high pretreatment serum basic fibroblast

growth factor concentration is an independent predictor of poor prognosis in non-

Hodgkin’s lymphoma.” Blood 94.10 (1999), 3334–3339.

[221] N Sato et al. “Elevated Level of Plasma Basic Fibroblast Growth Factor in Multiple

Myeloma Correlates with Increased Disease Activity”. Japanese Journal of Cancer Re-

search 93 (2002), 459–466.

[222] O Sezer, C Jakob, J Eucker, K Niemöller, F Gatz, K Wernecke, and K Possinger. “Serum

levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular en-

dothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma.”

European Journal of Haematology 66.2 (2001), 83–88.

[223] FT Wu, MO Stefanini, F Mac Gabhann, CD Kontos, BH Annex, and AS Popel. “A

systems biology perspective on sVEGFR1: its biological function, pathogenic role and

therapeutic use.” Journal of Cellular and Molecular Medicine 14.3 (2010), 528–552.

[224] E Balcan, F Demirkiran, Y Aydin, C Sanioglu, T Bese, M Arvas, T Akçay, and T Cift.

“Serum levels of epidermal growth factor, transforming growth factor, and c-erbB2 in

ovarian cancer”. International Journal of Gynecological Cancer 22.7 (2012), 1138–1142.

[225] IO Kara, B Sahin, R Gunesacar, and C Unsal. “Clinical significance of hepatocyte

growth factor, plateletderived growth factor-AB, and transforming growth factor-

alpha in bone marrow and peripheral blood of patients with multiple myeloma.”

Advances in Therapy 23.4 (2006), 635–645.

[226] VL Pannain, JR Morais, and V Damasceno-Ribeiro, O Avancini-Alves. “Transforming

growth factor α immunoreactivity. A study in hepatocellular carcinoma and in non-

neoplastic liver tissue”. Annals of Hepatology 11.4 (2012), 495–499.

[227] Patrick De Boever, Britt Wens, Anyiawung Chiara Forcheh, Hans Reynders, Vera Ne-

len, Jos Kleinjans, Nicolas Van Larebeke, Geert Verbeke, Dirk Valkenborg, and Greet

Schoeters. “Characterization of the peripheral blood transcriptome in a repeated mea-

sures design using a panel of healthy individuals”. Genomics 103.1 (2014), 31–39.

[228] HL Wong, RM Pfeiffer, TR Fears, R Vermeulen, S Ji, and CS Rabkin. “Reproducibil-

ity and correlations of multiplex cytokine levels in asymptomatic persons.” Cancer

Epidemiology, Biomarkers & Prevention 17.12 (2008), 3450–3456.



[229] SL Navarro, TM Brasky, Y Schwarz, X Song, CY Wang, AR Kristal, M Kratz, E White,

and JW Lampe. “Reliability of Serum Biomarkers of Inflammation from Repeated

Measures in Healthy Individuals”. Cancer Epidemiology, Biomarkers & Prevention 21.7

(2012), 1167–70.

[230] Valentina Marchica et al. “Bone marrow CX3CL1/Fractalkine is a new player of the

pro-angiogenic microenvironment in multiple myeloma patients”. Cancers 11.3 (2019).

[231] J Delgado-Calle et al. “Bidirectional Notch signaling and osteocyte-derived factors

in the bone marrow microenvironment promote tumor cell proliferation and bone

destruction in multiple myeloma”. Cancer Research 76.5 (2016), 1089–1100.

[232] YS Lee and YB Cho. Tumor Microenvironment: The Role of Chemokines - Part A. 2020,

pp. 33–43.

[233] I. Vande Broek, K. Asosingh, K. Vanderkerken, N. Straetmans, B. Van Camp, and I.

Van Riet. “Chemokine receptor CCR2 is expressed by human multiple myeloma cells

and mediates migration to bone marrow stromal cell-produced monocyte chemotactic

proteins MCP-1, -2 and -3”. British Journal of Cancer 88.6 (2003), 855–862.

[234] Nupur Bhattacharya et al. “Loss of cooperativity of secreted CD40L and increased

dose-response to IL4 on CLL cell viability correlates with enhanced activation of NF-

kB and STAT6”. International Journal of Cancer 136.1 (2015), 65–73.

[235] TA Rapoport. “Protein translocation across the eukaryotic endoplasmic reticulum and

bacterial plasma membranes”. Nature 450.663-669 (2007).

[236] Giuseppe La Venuta, Marcel Zeitler, Julia P. Steringer, Hans Michael Müller, and Wal-

ter Nickel. “The startling properties of fibroblast growth factor 2: How to exit mam-

malian cells without a signal peptide at hand”. Journal of Biological Chemistry 290.45

(2015), 27015–27020.

[237] Hans Michael Müller et al. “Formation of disulfide bridges drives oligomerization,

membrane pore formation, and translocation of fibroblast growth factor 2 to cell sur-

faces”. Journal of Biological Chemistry 290.14 (2015), 8925–8937.

[238] N Mukaida, S Sasaki, and T Baba. CCL4 Signaling in the Tumor Microenvironment. 2020,

pp. 23–32.



[239] BM Bolstad, RA Irizarry, M. Astrand, and TP Speed. “A comparison of normalization

methods for high density oligonucleotide array data based on variance and bias”.

Bioinformatics 19.2 (2003), 185–193.

[240] Pierre Comon. “Independent Component Analysis , a new concept?” Signal Processing

36.94 (1994), 287–314.

[241] Aapo Hyvarinen, Erkki Oja, and Karhunen Juha. Independent Component Analysis. Wi-

ley. New York, 2001.

[242] Sandra Waaijenborg, Philip C. Verselewel De Witt Hamer, and Aeilko H. Zwinder-

man. “Quantifying the association between gene expressions and DNA-markers by

penalized canonical correlation analysis”. Statistical Applications in Genetics and Molec-

ular Biology 7.1 (2008).

[243] Elena Parkhomenko, David Tritchler, and Joseph Beyene. “Sparse canonical correla-

tion analysis with application to genomic data integration”. Statistical Applications in

Genetics and Molecular Biology 8.1 (2009).

[244] Anastasia Lykou and Joe Whittaker. “Sparse CCA using a lasso with positivity con-

straints”. Computational Statistics and Data Analysis 54.12 (2010), 3144–3157.

[245] Endre Anderssen, Knut Dyrstad, Frank Westad, and Harald Martens. “Reducing over-

optimism in variable selection by cross-model validation”. Chemometrics and Intelligent

Laboratory Systems 84.1-2 (2006), 69–74.

[246] Richard G. Brereton. “Consequences of sample size, variable selection, and model

validation and optimisation, for predicting classification ability from analytical data”.

Trends in Analytical Chemistry 25.11 (2006), 1103–1111.



Appendices

238



A
Supplementary Material for Chapter 3

A.1 Omics Data Pre-processing Steps

LOcally WEighted Scatterplot Smoothing (LOESS) and A-quantile methods are within-

and between-array normalization approaches (respectively) commonly applied to

gene expression data from RNA microarray platforms. The former employs a locally

weighted polynomial regression of the intensity scatterplot of each array in order to

obtain a calibration factor while the later seeks to make the empirical distribution of

probe intensities for each array in a set of arrays the same. In LOESS the smoothing

curve is fitted to the M versus A plot, where M is the difference in log expression

values and A is the average of the log expression values. On the other hand, the A-

quantile method ensures that the A-values have the same distribution across arrays

leaving the M-values unchanged [239].

As discussed in section 3.3, pre-processing steps are not as well-established for DNA

methylation (DNAm) as for RNA microarray data [170], [171], [172], [173]. The proce-

dure is hindered by several factors, mainly driven by the nature and the construction

of the microarray chips which include: the use of two different probe types (Infinium

I and Infinium II), the presence of non-specific probes (oligonucleotides that ambigu-

ously map multiple genomic locations) and SNPs probes (HM450 arrays are based

on Cytosine/Thymine SNPs introduced after bisulfite conversion, thus if a SNP is

present it may be possible that the array measures a difference in genotype rather

than a difference in DNAm).
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A.2 Reference-based Deconvolution Algorithm

Broadly speaking, the Houseman algorithm estimates proportions of cell types present

in the reference DNAm database using a technique known as linear constrained pro-

jection, a method that assumes that the methylation profile of a given sample is a

weighted linear sum of the reference profiles present in the database. The infer-

ence of the weights proceeds by means of least-squares minimization subject to non-

negativity and normalization constraints. That is, the sum of inferred weights must

add to 1 or to a number that is less than or equal to 1 (in order to allow for the pos-

sibility that the reference database does not contain all relevant cell subtypes). The

reference DNAm database employed for the analysis was made available by Reinius

et al. [177].

A.3 Approaches for Batch Effect Removal

In this section I provide a brief description on three standard statistical methods for

the removal of batch effects: Combatting Batch Effects (ComBat), SVA and ISVA. As

discussed in section 3.5, the first approach assumes that the main sources responsible

for the technical variation are known while the last two approaches model potentially

unknown confounding variables. In the former case, the general formulation of the

model is as follows:

yijg = β0g + Xβg + γig + δigεijg, (A.1)

where yijg represents the expression value for feature g for sample j from batch i, β0g

is the overall feature expression level, X is a design matrix for variables and covari-

ates of interest, βg is the vector of regression coefficients associated to X and εijg is the

error term assumed to be normally distributed. The terms γig and δig represent the

additive and multiplicative batch effects of batch i for feature g, respectively. These

batch effect parameters (also referred to as location and scale parameters representing
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mean and variance) are estimated by the empirical Bayes method.

SVA or ISVA are more appropriate to account for technically induced variation [178]

in situations where the true sources of technical variation are unknown or cannot

be adequately identified or modelled. Briefly, the predictor matrix Xij , with i (i =

1, . . . , p) labelling the predictor variables and j (j = 1, . . . , n) labelling the samples,

is modelled as a function of the vector y = (y1, ...,yn) representing the phenotype of

interest

Xij = fi(yj) + εij, (A.2)

from which the residual matrix is obtained

Rij = Xij − fiyj, (A.3)

This residual matrix is decomposed using SVD/PCA in the case of SVA or Indepen-

dent Component Analysis (ICA) [240], [241] in the case of ISVA. The aim is then to

identify subset of features driving this orthogonal residual variation which are used

to construct (independent) surrogate variables; the significant (independent) surro-

gate variables can be included as covariates in subsequent regression analyses. The

use of ICA allows the technical confounders to be uncorrelated in a non-linear fashion

and thus to be modelled as statistically independent variables (a stronger condition

than the linear uncorrelatedness imposed by an SVD/PCA in SVA).

A.4 Metrics of Performance for Canonical Mode

To the best of my knowledge, the overwhelming majority of literature in which Partial

Least Squares (PLS) methods are applied to the analysis of high dimensional data fo-

cuses on regression and prediction where biological information indicates one omics

data is expected to explain the other. However, when the purpose is to conduct an

exploratory analysis where there is no assumption on the relationship between the

two sets of variables or when a reciprocal relationship between the two data sets is
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expected, the analysis relies on canonical correlation-based methods [202]. In that

scenario, Canonical Correlation Analysis (CCA) and its regularized version (rCCA)

are usually preferred over PLS canonical mode. These approaches are statistically

difficult to assess mainly because they do not fit into a regression and prediction

framework where the estimation of the prediction error is employed as a metric of

performance to evaluate the quality of the model.

One adopted approach is to arbitrarily determine the model specifications: for exam-

ple, number of dimensions H = 3 and number of selected variables per component

to 100 [202]. A higher H makes the visual representation of the results more cumber-

some while the selection size of 100 has been deemed as small enough to allow for

the identification of individual relevant features and large enough to reveal impor-

tant functional categories or pathways. After the value of the parameters has been

pre-specified, the biological applications of the results are examined and the model

parameters are modified accordingly (e.g. if a clustering effect is lost as the model is

made more complex, the simpler model is preferred).

For CCA and its regularized versions, the choice of the optimal parameters has been

primarily based on the estimation of either the correlation between latent variables or

the proportion of variance in X and Y that can be explained by the latent variables.

(In CCA the components are more commonly known as canonical variates). In the

former case, a CV1 procedure is conducted and the optimal parameters are chosen on

the grounds of the computation of the test sample correlation; two criteria have been

proposed that are calculated for different combinations of sparseness parameters, the

first one being [242]:

1
k

k∑
j=1

∣∣∣∣∣∣Cor(X−ju−j,Y−jv−j) ∣∣∣ − ∣∣∣Cor(Xju
−j,Yjv

−j)
∣∣∣ ∣∣∣ , (A.4)

1As described in section 3.6.2.1.1, CV is normally considered as a procedure employed in regression
(i.e. for prediction purposes); however, the authors proposing the metrics of performance for canonical
mode discussed in this chapter also refer to CV as a method to estimate correlation or covariance.
Therefore, in this thesis the concept CV is employed in both regression and canonical contexts.
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where k is the number of folds while u−j (resp. v−j) are the canonical loading vectors

estimated from the training set X−j (resp. Y−j) in which subset j was removed. Thus,

this criterion seeks to minimize the mean difference between canonical correlation

in the training and test sets. A simplified measure is to maximize the test sample

correlation [243]:
1
k

k∑
j=1

∣∣∣Cor(Xju
−j,Yjv

−j)
∣∣∣ (A.5)

On the other hand, the measure of explained variability in each data set is the diag-

nostic statistics employed to tune the optimal parameters in CCA and rCCA, which

can be estimated in relation to the “same” or “opposite” canonical variates (ξ1, ..., ξh)

and (ω1, ...,ωh) [244].The Redundacy (Rd) criterion, or part of explained variance by

each component in relation with its associated data set, is computed as follows:

Rd(X|ξh) = tr [var(E(X|ξh))]
tr [var(X)] = 1

p

p∑
j=1

cor2(xj, ξh) (A.6)

where cor2(xj, ξh) is the vector of the correlations between the hth X variate and the

jth column of X and the term E(X|ξh) denotes the regression coefficients from the

linear regression of each column of X on ξh. The corresponding proportions for the

dataset Y in relation to ωh of are computed likewise. Similarly, Rd can be computed

in relation to the “opposite” variate:

Rd(X|ωh) = tr [var(E(X|ωh))]
tr [var(X)] (A.7)

Again, the corresponding proportions for the dataset Y in relation to ξh are computed

likewise. Equation A.6 and Equation A.7 can be employed to determine the optimal

number of dimensions in CCA and rCCA; however, when the aim is to introduce

sparsity in the canonical loading vectors, these expressions can only be used to define

the optimal tuning parameters for the first dimension. As discussed in section 2.2.2.4,

the regularized versions of dimension reduction techniques lose the orthogonality

property of the loading weights, meaning that information contained in dimension
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h+ 1 is partially shared by dimension h. Thus, for dimensions h = 2 in rCCA, the Rd

criteria to compute proportion of variability in the matrix X in relation to its “same”

and “opposite” canonical variate is adapted as follows (equations for the Y matrix

set follow likewise and are therefore omitted):

Rd(X|ξ2) = tr [var(E(X − E(X|ξ1,ω1)|ξ2]))
tr [var(X)] (A.8)

Rd(X|ω2) = tr [var(E(X − E(X|ξ1,ω1)|ω2]))
tr [var(X)] (A.9)

Following a similar principle, it has been suggested to extend the criteria discussed

above for CCA to PLS canonical mode and base the selection of both the number of

dimensions and the parsimony per dimension on the computation of the covariance

between the X and Y scores (as opposed to the correlation), which is the optimization

criterion maximized in two-block PLS Cov(Xh−1uh,Yh−1vh) [116]. It is worth high-

lighting that correlation is defined as

Cor(Xh−1uh,Yh−1vh) = Cov(Xh−1uh,Yh−1vh)/
√
V ar(Xh−1uh)

√
V arYh−1vh; there-

fore, the aim of CCA is to maximize the covariance between X and Y variates while

simultaneously minimizing the individual variances of the latent variables.

A.5 Cross-model Validation

It has been observed that for a CV procedure to give reliable error rate estimates, the

complete optimization modelling process must be cross-validated [245], [246]. That

is, the predicted observation should in no way be used in the development of the

model. To circumvent this issue, Cross-Model Validation (CMV), also known as Dou-

ble Cross-Validation (2CV) can be conducted [245]. As done in a single CV approach,

CMV divides the complete data set into 2 parts, namely test set and rest set. The test

set is set aside and repeated CV is performed using the rest set: the data is split into

training and validation (sometimes called optimization) sets. This is the inner CV

loop (CV1) and it is used to select the optimal value of a tuning parameter based on
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the performance of a chosen diagnostic statistics. After the calibrated model has been

defined, all observation in the rest set are used to fit a model with the optimal param-

eters and the performance is assessed by means of the test set that was initially left

aside. This is referred as the outer CV loop (CV2). Typically, both CV1 and CV2 pro-

cedures are repeated until each sample has been included in the validation set (and

test set) once and only once. Thus, CMV simultaneously optimize model complexity

(CV1) while assessing final model quality (CV2). However, computational aspects

and sample size restrict the wide application of this approach.
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B
Supplementary Material for Chapter 4

B.1 Overlapping and Improvements in Relation to Cited

Papers

The analysis of gene expression data employing univariate statistical approaches was

originally published in “Prediagnostic transcriptomic markers of Chronic lymphocytic leukemia

reveal perturbations 10 years before diagnosis” [181] while the analysis of inflammatory

markers data employing univariate statistical approaches was originally published

in “Pre-diagnostic blood immune markers, incidence and progression of B-cell lymphoma

and multiple myeloma: Univariate and functionally informed multivariate analyses” [182].

Therefore, there is a partial overlap between the results presented in chapter 4 and

the ones published in these articles, which include the following:

– Assessment of significant associations between biological markers and disease

status stratified by the major four histological subtypes using Linear Mixed

Models (LMM)s (for both transcriptomics and proteomics).

– Predictive performance assessment of the statistically significant variables from

the LMM by logistic regression conducted on the “de-noised” concentration lev-

els (for both transcriptomics and proteomics).

– Time to Diagnosis (TtD) analysis stratified by median time elapsed between re-

cruitment of cohort participants and clinical diagnosis (6 years) (transcriptomics
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only).

– Functional annotation analyses using the openly available Database for Anno-

tation, Visualization and Integrated Discovery (DAVID v6.8, http://david.

abcc.ncifcrf.gov/) (transcriptomics only, it does not apply to proteomics).

– Study design validation and technical replication of the results in terms of epi-

demiological cohorts (EPIC-Italy and NSHDS) and experimental analytical phase

(phase 1 and 2) (for both transcriptomics and proteomics).

– Assessment of technical-induced noise (transcriptomics only).

– Full adjustment for White Blood Cell (WBC) differentials in the LMMs (pro-

teomics only).

Overall, the overlapping results between chapter 4 and the cited papers show small

variations in the final outputs which may come down to differences in population

sizes. The remaining of analyses presented in the chapter which were not listed above

correspond to novel incorporation introduced in this thesis.
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Supplementary Figures
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Figure B.1: Box-and-whisker plot summarizing the concentration levels for inflammatory markers stratified by case-
control status, study cohort and experimental phase for proteins belonging to the group growth factors (n=6).
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Phase 1, P2: Study Phase 2.
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Figure B.2: Box-and-whisker plot summarizing the concentration levels for inflammatory markers stratified by case-
control status, study cohort and experimental phase for proteins belonging to the group chemokines (n=10).
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Figure B.3: Box-and-whisker plot summarizing the concentration levels for inflammatory markers stratified by case-
control status, study cohort and experimental phase for proteins belonging to the group cytokines (n=12).
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Figure B.4: Histograms displaying the relative frequency distribution of the concen-
tration levels of the 28 proteins under study before and after logarithmic transforma-
tion (top and bottom panel, respectively).
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Figure B.5: Results of the LMM analyses between log-transformed values of proteins
and BCL case-control status.
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negative and positive regression coefficients, respectively. Results are presented for the pooled BCL population (triangles), for
the population subset excluding MM cases (diamonds) and for the population subset excluding MM cases-control pairs (circles).
LMM: Linear Mixed Model.
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Figure B.6: Results of the LMM analyses between log-transformed values of proteins
and MM case–control status stratified by study cohort and analytical phase.
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Table B.1: Distribution of BCL subtypes and genders across phases and cohorts with
successfully analysed proteomics samples.

Phase 1 Phase 2 Total

Disease Subtype Epic-Italy n (%) NHSDS n (%) Epic-Italy n (%) NHSDS n (%) Epic-Italy n (%) NHSDS n (%)

CLL 5 (10) 7 (15.22) 6 (17.65) 24 (17.39) 11 (13.10) 31 (16.85)

DLBCL 10 (20) 9 (19.57) 1 (2.94) 24 (17.39) 11 (13.10) 33 (17.93)

FL 14 (28) 5 (10.87) 6 (17.65) 14 (10.14) 20 (23.80) 19 (10.33)

MM 10 (20) 18 (39.13) 11 (32.35) 37 (26.81) 21 (25) 55 (29.89)

Others 11 (22) 7 (15.22) 10 (29.41) 39 (28.26) 21 (25) 46 (25)

Total 50 (100) 46 (100) 34 (100) 138 (100) 84 (100) 184 (100)

Sex

Female 60 (60) 38 (41.30) 40 (58.82) 134 (48.55) 100 (59.52) 172 (46.74)

Male 40 (40) 54 (58.70) 28 (41.18) 142 (51.45) 68 (40.48) 196 (53.26)

Total 100 (100) 92 (100) 68 (100) 276 (100) 168 (100) 368 (100)
Numbers refer to only cases in the top panel and cases plus controls in the bottom panel.

Table B.2: Distribution of BCL subtypes and genders across phases and cohorts with
successfully analysed proteomics and epigenetics samples.

Phase 1 Phase 2 Total

Disease Subtype Epic-Italy n (%) NHSDS n (%) Epic-Italy n (%) NHSDS n (%) Epic-Italy n (%) NHSDS n (%)

CLL 4 (8.89) 5 (11.90) 3 (10.71) 12 (14.29) 7 (9.59) 17 (13.49)

DLBCL 9 (20) 9 (21.43) 1 (3.57) 16 (19.05) 10 (13.70) 25 (19.84)

FL 12 (26.67) 5 (11.90) 5 (17.86) 7 (8.33) 17 (23.29) 12 (9.52)

MM 10 (22.22) 17 (40.48) 11 (39.29) 24 (28.57) 21 (28.77) 41 (32.54)

Others 10 (22.22) 6 (14.29) 8 (28.57) 25 (29.76) 18 (24.66) 31 (24.60)

Total 45 (100) 42 (100) 28 (100) 84 (100) 73 (100) 126 (100)

Sex

Female 52 (57.78) 38 (45.24) 30 (53.57) 72 (42.86) 82 (56.16) 110 (43.65)

Male 38 (42.22) 46 (54.76) 26 (46.43) 96 (57.14) 64 (43.84) 142 (56.35)

Total 90 (100) 84 (100) 56 (100) 168 (100) 146 (100) 252 (100)
Numbers refer to only cases in the top panel and cases plus controls in the bottom panel.
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Table B.3: Distribution of BCL subtypes and genders across phases and cohorts with
successfully analysed transcriptomics samples.

Phase 1 Phase 2 Total

Disease Subtype Epic-Italy n (%) NHSDS n (%) Epic-Italy n (%) NHSDS n (%) Epic-Italy n (%) NHSDS n (%)

CLL 5 (10.64) 4 (10) 6 (20.69) 19 (16.38) 11 (14.47) 23 (14.74)

DLBCL 8 (17.02) 8 (20) 0 (0) 21 (18.1) 8 (10.53) 29 (18.59)

FL 14 (29.79) 5 (12.5) 5 (17.24) 13 (11.21) 19 (25) 18 (11.54)

MM 10 (21.28) 17 (42.5) 10 (34.48) 30 (25.86) 20 (26.32) 47 (30.13)

Others 10 (21.28) 6 (15) 8 (27.59) 33 (28.45) 18 (23.68) 39 (25)

Total 47 (100) 40 (100) 29 (100) 116 (100) 76 (100) 156 (100)

Sex

Female 56 (59.57) 32 (40) 32 (55.17) 104 (44.83) 88 (57.89) 136 (43.59)

Male 38 (40.43) 48 (60) 26 (44.83) 128 (55.17) 64 (42.11) 176 (56.41)

Total 94 (100) 80 (100) 58 (100) 232 (100) 152 (100) 312 (100)
Numbers refer to only cases in the top panel and cases plus controls in the bottom panel.

Table B.4: Distribution of BCL subtypes and genders across phases and cohorts with
successfully analysed transcriptomics and epigenetics samples.

Phase 1 Phase 2 Total

Disease Subtype Epic-Italy n (%) NHSDS n (%) Epic-Italy n (%) NHSDS n (%) Epic-Italy n (%) NHSDS n (%)

CLL 4 (9.3) 4 (10.26) 3 (12) 7 (10.14) 7 (10.29) 11 (10.19)

DLBCL 8 (18.6) 8 (20.51) 0 (0) 14 (20.29) 8 (11.76) 22 (20.37)

FL 12 (27.91) 5 (12.82) 5 (20) 7 (10.14) 17 (25) 12 (11.11)

MM 10 (23.26) 17 (43.59) 10 (40) 20 (28.99) 20 (29.41) 37 (34.26)

Others 9 (20.93) 5 (12.82) 7 (28) 21 (30.43) 16 (23.53) 26 (24.07)

Total 43 (100) 39 (100) 25 (100) 69 (100) 68 (100) 108 (100)

Sex

Female 50 (58.14) 32 (41.03) 26 (52) 52 (37.68) 76 (55.88) 84 (38.89)

Male 36 (41.86) 46 (58.97) 24 (48) 86 (62.32) 60 (44.12) 132 (61.11)

Total 86 (100) 78 (100) 50 (100) 138 (100) 136 (100) 216 (100)
Numbers refer to only cases in the top panel and cases plus controls in the bottom panel.

257



Supplementary Tables

Table B.5: Median (minimum - maximum) values of immune markers stratified by
BCL subtypes for participants of the EPIC-Italy cohort.

Protein CLL (n=11) DLBL (n=11) FL (n=20) MM (n=21)

EGF 25.95 (1.47-265.24) 27.58 (0.35-305.56) 28.25 (0.25-211.41) 11.57 (0.15-338.79)

FGF2 23.76 (1-836.47) 73.94 (4.27-222.42) 19.95 (0.91-359.63) 8.83 (0.99-390.82)

GCSF 31.99 (6.61-101.51) 31.1 (18.17-54.55) 30.09 (4.2-304.12) 28.29 (0.56-104.8)

VEGF 240.55 (3.27-1245.17) 203.09 (8.33-2875.48) 231.38 (1.76-2346.19) 23.37 (0.81-2578.85)

GMSCF 1.91 (0.11-10.47) 4.71 (0.81-12.18) 5.32 (0.15-20.45) 5.96 (0.19-24.01)

TGFa 0.39 (0.06-17.06) 2.55 (0.6-81.12) 2.46 (0-1663.43) 0.78 (0.04-185.92)

Eotaxin 42.22 (35.96-114.76) 53.16 (17.28-241.08) 54.15 (8.4-118.72) 46.51 (22.17-111.48)

Fractalkine 71.64 (12.16-373.32) 117.74 (39.75-870.06) 100.41 (6.69-525.23) 71.38 (0.98-1564.23)

GRO 145.04 (27.15-1789.58) 313.71 (115.07-524.73) 269.72 (81.05-1343.18) 199.54 (61.54-569.37)

MCP1 216.8 (154.03-454.23) 184.53 (127.87-634.85) 197.22 (98.66-351.39) 223.55 (140.45-549.76)

MCP3 5.27 (0.6-734.54) 39.28 (1.79-192.25) 10.47 (0.14-165.72) 5.86 (0.09-83.15)

MDC 232.3 (94.77-1252.65) 355.73 (91.4-2142.34) 328.66 (80.47-1065.02) 245.16 (103.41-2570.29)

MIP1a 8.72 (0.27-82.86) 20.31 (1.25-398.74) 26.55 (0.27-140.62) 2.64 (0.14-210.96)

MIP1b 26.73 (2.61-336.15) 31.5 (20.67-58.48) 37.45 (10.57-174.02) 23.18 (1.99-119.93)

IP10 231.11 (195.79-818.51) 395.74 (111.74-1294.32) 237 (74.09-449.82) 231.22 (86.73-459.02)

IL8 2.93 (0.72-123.57) 16.34 (1.5-304.82) 11.18 (1.12-162.49) 4.01 (1.51-120.25)

IL1b 0.37 (0.02-10.24) 4.34 (0.03-163.78) 1.33 (0-17.46) 1.35 (0.05-7.73)

IL2 1.07 (0.09-166.8) 16.67 (1.2-69.11) 19.63 (0.13-224.77) 3.44 (0.09-83.17)

IL4 0.47 (0.23-4.23) 0.38 (0.08-3.16) 0.75 (0.07-22.22) 1.07 (0.17-59.3)

IL5 0.33 (0.08-525.55) 3.19 (0.17-75.84) 4.91 (0.1-39.69) 1.34 (0.11-49.96)

IL6 1.22 (0.28-27.67) 2.26 (0.19-45.99) 3.31 (0.23-29.17) 2.1 (0.13-10.44)

IL7 1.21 (0.22-18.76) 1.94 (0.74-4.86) 2.21 (0.14-6.46) 1.4 (0.34-5.5)

IL10 9.24 (0.86-297.55) 4.7 (0.18-266.23) 13.39 (0.18-161.99) 11.39 (0.26-88.63)

IL13 1.57 (0.23-929.4) 10.61 (0.53-33.85) 3.48 (0.02-140.31) 1.52 (0.07-44.11)

INFa 13.9 (0.25-362.53) 0.28 (0-394.49) 3.95 (0-673.94) 3.79 (0.01-81.92)

INFg 0.54 (0.11-2069.35) 1.99 (0.04-57.33) 1.48 (0-34.1) 0.86 (0.01-25.99)

TNFa 6.2 (2.44-12.44) 4.71 (0.81-12.18) 6.02 (1.64-20.45) 5.56 (1.33-10.18)

sCD40L 383.16 (110.35-1429.72) 398.44 (143.41-2819.65) 390.52 (282.82-2339.77) 431.83 (155.27-2027.04)
EPIC: European Prospective Investigation into Cancer and Nutrition.
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Table B.6: Median (minimum - maximum) values of immune markers stratified by
BCL subtypes for participants of the NSHDS cohort.

Protein CLL (n=31) DLBL (n=33) FL (n=19) MM (n=55)

EGF 23.16 (1.24-275.71) 18.42 (0.02-129.72) 23.32 (0.67-241.93) 19.24 (0.25-842.01)

FGF2 21.9 (0.58-195.91) 20.08 (0.39-236.19) 23.59 (0.3-309.99) 7.6 (0.04-483.71)

GCSF 23.77 (1.45-363.57) 17.79 (1.08-496) 23.23 (2.96-57.51) 24.4 (1.16-303)

VEGF 261.49 (4.98-2520.86) 118.53 (2.99-2218.52) 234.04 (5.37-5962.78) 84.1 (0.46-6938.42)

GMSCF 0.64 (0.05-281.84) 3.13 (0.11-265.24) 1.12 (0.07-44.77) 1.48 (0.02-33.61)

TGFa 1.16 (0.06-100.19) 0.85 (0-290.88) 2.23 (0.01-267.82) 0.98 (0-254.11)

Eotaxin 373.04 (192.63-813.23) 351.77 (142.96-985.52) 329.76 (152.89-990.58) 341.53 (95.61-944.76)

Fractalkine 22.85 (2.15-2927) 35.54 (0.58-1260.43) 42.9 (0.66-1347.33) 19.22 (0.13-3229.59)

GRO 442.67 (138.76-1534.08) 435.02 (134.68-2188.12) 358.68 (102.64-1782.63) 475.63 (78.81-1748.74)

MCP1 355.69 (70.58-787.6) 325.7 (17.17-689.56) 306.84 (2.2-747.54) 346.09 (1.78-786.86)

MCP3 7.92 (0.37-121.48) 9.43 (0.08-914.3) 10.69 (0.36-70.88) 2.3 (0.02-312.82)

MDC 904.71 (160.02-8962.26) 921.91 (42.59-2493.68) 873.91 (214.98-5878.03) 889.71 (170.88-6259.24)

MIP1a 10.83 (0.2-100.73) 8.87 (0.05-124.7) 7.66 (0.01-230.61) 5.88 (0.01-207.93)

MIP1b 36.69 (2.53-285.75) 37 (2.52-273.28) 28.61 (1.07-702.97) 30.85 (0.27-843.45)

IP10 535.4 (192.06-1648.62) 532.43 (151-2021.13) 534.5 (38.07-1959.53) 588.06 (15.86-3374.05)

IL8 3.1 (0.59-29.57) 4.22 (0.89-59.12) 2.81 (0.69-9.8) 3.83 (0.64-41.85)

IL1b 0.18 (0.01-435.52) 0.41 (0.01-199.02) 0.24 (0.01-14.17) 0.28 (0-21.24)

IL2 0.85 (0.04-201.86) 1.96 (0.24-282.42) 2.33 (0.2-47.92) 1.04 (0.07-123.28)

IL4 1.19 (0.12-435.84) 9.14 (0.02-274.25) 6.7 (0.53-184.39) 8.67 (0.02-372.43)

IL5 0.25 (0.03-49.89) 0.72 (0.03-40.95) 0.27 (0.06-35.55) 0.63 (0.01-29.25)

IL6 2.33 (0.09-350.99) 4.93 (0.04-133.18) 2.63 (0.38-480.8) 4.64 (0.04-46.45)

IL7 0.29 (0.03-81.26) 0.36 (0.01-64.42) 0.51 (0.02-303.91) 0.35 (0.05-39.07)

IL10 7.44 (0.1-479.88) 13.59 (1.5-1322.5) 11.57 (2.15-688.93) 10.61 (0.26-130.1)

IL13 1.19 (0.09-669.04) 4.05 (0.12-204.7) 0.88 (0.02-178.38) 1.09 (0.01-173.84)

INFa 2.39 (0-670.65) 2.67 (0-778.15) 2.97 (0.01-2569.21) 1.54 (0-645.33)

INFg 1.87 (0.02-281.84) 2.37 (0.02-619.75) 1.74 (0.28-106.09) 1.26 (0-168.82)

TNFa 7.44 (1-35.58) 6.56 (0.85-81.53) 4.98 (0.96-34.57) 6.9 (1.22-24.74)

sCD40L 937.92 (189.09-3994.34) 709.77 (22.96-6393.33) 859.35 (92.92-1857.87) 858.07 (32.53-3807.63)
NSHDS: Northern Sweden Health and Disease Study.
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Table B.7: Results of the LMM analyses between log-transformed values of proteins
and case-control status.

All BCL (n=536) CLL (n=310) DLBCL (n=312) FL (n=307) MM (n=344)
Protein

β p-value β p-value β p-value β p-value β p-value

EGF -0 .28 5 .16 E-02 -0 .05 8 .51 E-01 -0 .55 4 .96 E-02 -0 .19 5 .18 E-01 -0 .53 1 .66 E-02

FGF2 -0 .5 6 .15 E-04 -0 .19 5 .06 E-01 -0 .10 7 .22 E-01 -0 .31 2 .61 E-01 -1 .11 4 .85 E-07

GCSF -0 .10 2 .42 E-01 -0 .15 3 .97 E-01 -0 .08 6 .44 E-01 0 .03 8 .62 E-01 -0 .13 3 .20 E-01

VEGF -0 .42 8 .60 E-03 0 .12 6 .86 E-01 -0 .33 2 .72 E-01 -0 .09 7 .81 E-01 -1 .00 4 .23 E-05

GMSCF -0 .07 5 .50 E-01 -0 .32 1 .85 E-01 0 .23 3 .44 E-01 0 .08 7 .41 E-01 -0 .22 2 .56 E-01

TGFa -0 .68 5 .62 E-05 -0 .68 3 .08 E-02 -0 .5 1 .43 E-01 -0 .43 2 .02 E-01 -1 .08 2 .78 E-05

Eotaxin 0 .05 2 .64 E-01 0 .12 1 .57 E-01 0 .13 1 .46 E-01 0 .02 8 .41 E-01 0 .03 n6 .59 E-01

Fractalkine -0 .31 2 .62 E-02 -0 .20 4 .60 E-01 -0 .03 9 .43 E-01 0 .03 9 .31 E-01 -0 .72 9 .14 E-04

GRO 0 .03 5 .11 E-01 0 .02 8 .46 E-01 0 .07 4 .11 E-01 -0 .04 6 .51 E-01 0 .02 7 .29 E-01

MCP1 -0 .01 8 .90 E-01 0 .14 1 .60 E-01 0 .04 7 .30 E-01 -0 .09 3 .92 E-01 0 .01 8 .57 E-01

MCP3 -0 .4 1 .03 E-02 -0 .33 2 .46 E-01 -0 .07 8 .55 E-01 -0 .26 3 .73 E-01 -0 .91 1 .09 E-04

MDC -0 .16 2 .78 E-03 -0 .08 3 .89 E-01 -0 .26 1 .44 E-02 -0 .08 4 .43 E-01 -0 .18 1 .66 E-02

MIP1a -0 .35 7 .48 E-03 0 .09 7 .04 E-01 -0 .16 5 .53 E-01 -0 .28 2 .71 E-01 -0 .72 3 .57 E-04

MIP1b -0 .16 1 .09 E-01 0 .03 8 .75 E-01 -0 .13 5 .30 E-01 -0 .02 9 .21 E-01 -0 .44 5 .25 E-03

IP10 0 .03 6 .43 E-01 0 .12 2 .46 E-01 0 .04 6 .71 E-01 -0 .03 7 .24 E-01 0 .05 5 .68 E-01

IL8 -0 .08 2 .28 E-01 -0 .15 2 .22 E-01 -0 .02 8 .81 E-01 -0 .08 5 .52 E-01 -0 .12 2 .24 E-01

IL1b -0 .27 5 .38 E-02 -0 .50 5 .50 E-02 0 .31 2 .27 E-01 -0 .27 3 .26 E-01 -0 .59 3 .88 E-03

IL2 -0 .05 6 .59 E-01 -0 .09 6 .92 E-01 0 .02 9 .42 E-01 0 .23 3 .43 E-01 -0 .23 2 .12 E-01

IL4 -0 .15 2 .26 E-01 -0 .70 7 .04 E-03 -0 .36 1 .77 E-01 0 .07 8 .02 E-01 -0 .01 9 .45 E-01

IL5 -0 .10 3 .46 E-01 -0 .24 2 .21 E-01 0 .11 5 .91 E-01 0 .01 9 .94 E-01 -0 .09 5 .78 E-01

IL6 -0 .03 7 .64 E-01 -0 .15 4 .66 E-01 -0 .19 4 .06 E-01 0 .01 9 .83 E-01 -0 .22 1 .98 E-01

IL7 0 .07 5 .38 E-01 -0 .22 3 .46 E-01 0 .08 7 .51 E-01 0 .31 2 .26 E-01 -0 .07 7 .27 E-01

IL10 0 .12 3 .03 E-01 -0 .10 6 .75 E-01 0 .25 3 .07 E-01 0 .30 2 .41 E-01 -0 .06 7 .49 E-01

IL13 -0 .03 8 .15 E-01 -0 .16 5 .82 E-01 0 .17 5 .38 E-01 0 .18 5 .55 E-01 -0 .53 2 .79 E-02

INFa -0 .41 8 .23 E-02 -0 .07 8 .75 E-01 -0 .81 8 .92 E-02 0 .08 8 .67 E-01 -0 .68 6 .10 E-02

INFg -0 .32 7 .56 E-02 -0 .18 5 .81 E-01 -0 .01 9 .97 E-01 0 .02 9 .65 E-01 -0 .74 6 .39 E-03

TNFa 0 .12 6 .43 E-02 0 .13 3 .02 E-01 0 .12 3 .30 E-01 0 .10 4 .53 E-01 0 .12 1 .79 E-01

sCD40L 0 .19 8 .88 E-03 0 .35 1 .42 E-02 0 .19 1 .86 E-01 0 .25 7 .27 E-02 0 .11 3 .32 E-01
Results are displayed separately for all BCL observations and the four main histological subtypes including cases and all controls
subjects.
LMM: Linear Mixed Model
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Table B.8: Results of the LMM analyses between log-transformed values of proteins
and case-control status adjusted for the estimated WBC (n=199 case-control pairs).

All BCL (n=398) CLL (n=223) DLBCL (n=234) FL (n=228) MM (n=261)
Protein

β p-value β p-value β p-value β p-value β p-value

EGF -0.29 9.19 E-02 -0.04 9.03 E-01 -0.36 2.49 E-01 -0.09 7.85 E-01 -0.58 2.10 E-02

FGF2 -0.49 3.56 E-03 0.28 5.04 E-01 0.02 9.29 E-01 -0.22 4.74 E-01 -1.12 3.91 E-06

GCSF -0.12 2.11 E-01 -0.28 2.93 E-01 -0.04 8.53 E-01 0.07 7.52 E-01 -0.20 1.79 E-01

VEGF -0.43 1.84 E-02 0.63 1.86 E-01 -0.22 5.31 E-01 -0.02 9.53 E-01 -1.16 2.27 E-05

GMSCF -0.09 5.20 E-01 0.24 5.50 E-01 0.27 3.30 E-01 0.13 6.65 E-01 -0.33 1.20 E-01

TGFa -0.65 1.05 E-03 -0.86 8.50 E-02 -0.16 6.68 E-01 -0.52 1.80 E-01 -1.03 2.54 E-04

Eotaxin 0.03 5.70 E-01 0.12 3.76 E-01 0.14 1.34 E-01 -0.02 8.23 E-01 0.03 6.85 E-01

Fractalkine -0.49 3.01 E-03 -0.3 4.93 E-01 -0.04 9.25 E-01 0.17 6.12 E-01 -1.07 7.34 E-06

GRO 0.05 4.06 E-01 0.09 5.81 E-01 0.15 1.35 E-01 -0.01 9.15 E-01 0.05 5.33 E-01

MCP1 0.1 7.97 E-02 0.15 3.74 E-01 0.18 1.37 E-01 0.03 8.47 E-01 0.15 1.12 E-01

MCP3 -0.41 1.97 E-02 -0.24 6.14 E-01 0.21 4.91 E-01 -0.29 3.90 E-01 -1.06 3.98 E-05

MDC -0.15 1.94 E-02 -0.03 8.68 E-01 -0.15 2.33 E-01 -0.10 4.20 E-01 -0.20 2.62 E-02

MIP1a -0.34 2.18 E-02 0.07 8.63 E-01 0.02 9.25 E-01 -0.14 6.18 E-01 -0.69 1.75 E-03

MIP1b -0.13 2.53 E-01 0.24 4.66 E-01 -0.05 8.27 E-01 0.03 9.15 E-01 -0.45 1.19 E-02

IP10 0.05 3.83 E-01 0.01 9.70 E-01 0.04 7.27 E-01 0.02 8.58 E-01 0.11 2.38 E-01

IL8 -0.08 3.10 E-01 -0.22 2.74 E-01 0.07 6.29 E-01 -0.10 5.54 E-01 -0.08 4.71 E-01

IL1b -0.39 2.64 E-02 -0.32 4.68 E-01 0.38 1.87 E-01 -0.54 1.05 E-01 -0.67 3.07 E-03

IL2 -0.22 1.25 E-01 -0.11 7.70 E-01 -0.06 8.41 E-01 0.12 6.67 E-01 -0.43 4.28 E-02

IL4 -0.22 1.29 E-01 -1.07 9.71 E-03 -0.34 2.53 E-01 0.04 9.09 E-01 -0.14 5.41 E-01

IL5 -0.12 3.25 E-01 -0.49 1.30 E-01 0.33 1.57 E-01 -0.08 7.47 E-01 -0.19 2.74 E-01

IL6 -0.06 6.59 E-01 -0.58 9.62 E-02 -0.07 7.96 E-01 0.13 6.52 E-01 -0.30 1.22 E-01

IL7 0.09 5.02 E-01 -0.23 5.26 E-01 0.30 2.43 E-01 0.56 5.31 E-02 -0.35 7.25 E-02

IL10 0.08 5.67 E-01 -0.43 2.52 E-01 0.33 2.18 E-01 0.34 2.51 E-01 -0.08 7.26 E-01

IL13 -0.15 4.13 E-01 -0.3 5.47 E-01 0.26 4.15 E-01 0.10 7.85 E-01 -0.76 5.95 E-03

INFa -0.52 7.42 E-02 -0.16 8.38 E-01 -0.83 1.42 E-01 0.20 7.33 E-01 -0.90 3.65 E-02

INFg -0.44 3.53 E-02 0.08 8.84 E-01 0.21 5.27 E-01 -0.08 7.86 E-01 -0.83 5.90 E-03

TNFa 0.12 1.03 E-01 -0.18 3.25 E-01 0.2 1.40 E-01 0.09 5.80 E-01 0.11 2.96 E-01

sCD40L 0.23 9.65 E-03 0.43 7.46 E-02 0.37 2.49 E-02 0.31 8.77 E-02 0.04 7.10 E-01
Results are displayed separately for all BCL observations and the four main histological subtypes including cases and all controls
subjects. Models are adjusted for estimated blood proportions of CD8, CD4, NK cells, B cells, and monocytes.
LMM: Linear Mixed Model, WBC: White Blood Cell, NK: Natural Killer.
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Table B.9: Results of the LMM analyses between log-transformed values of proteins
and case-control status for the participants with WBC estimates available (n=199 case-
control pairs).

All BCL (n =398) CLL (n =223) DLBCL (n =234) FL (n =228) MM (n =261)
Protein

β p-value β p-value β p-value β p-value β p-value

EGF -0.31 6.79 E-02 0.03 9.44 E-01 -0.36 2.38 E-01 -0.05 8.76 E-01 -0.63 1.09 E-02

FGF2 -0.47 4.09 E-03 -0.06 8.88 E-01 0.06 8.47 E-01 -0.18 5.31 E-01 -1.14 2.05 E-06

GCSF -0.12 1.96 E-01 -0.27 2.15 E-01 -0.03 8.63 E-01 0.07 7.33 E-01 -0.16 2.69 E-01

VEGF -0.42 2.12 E-02 0.37 3.53 E-01 -0.21 5.37 E-01 0.01 9.77 E-01 -1.12 3.51 E-05

GMSCF -0.07 5.97 E-01 0.05 8.86 E-01 0.33 2.37 E-01 0.11 7.09 E-01 -0.35 9.71 E-02

TGFa -0.66 7.21 E-04 -1.02 1.29 E-02 -0.12 7.53 E-01 -0.44 2.48 E-01 -1.06 1.40 E-04

Eotaxin 0.02 6.08 E-01 0.03 7.95 E-01 0.15 1.15 E-01 -0.06 5.67 E-01 0.02 6.93 E-01

Fractalkine -0.47 3.63 E-03 -0.3 4.04 E-01 -0.02 9.83 E-01 0.14 6.83 E-01 -1.00 2.55 E-05

GRO 0.03 6.20 E-01 -0.01 9.32 E-01 0.14 1.65 E-01 -0.04 7.54 E-01 0.04 6.28 E-01

MCP1 0.09 1.29 E-01 0.15 2.94 E-01 0.18 1.42 E-01 0.05 6.89 E-01 0.17 6.38 E-02

MCP3 -0.36 4.01 E-02 -0.27 4.87 E-01 0.32 3.18 E-01 -0.21 5.15 E-01 -1.09 2.14 E-05

MDC -0.16 9.50 E-03 -0.12 3.69 E-01 -0.14 2.55 E-01 -0.08 4.89 E-01 -0.20 2.17 E-02

MIP1a -0.33 2.64 E-02 -0.01 9.64 E-01 0.05 8.62 E-01 -0.13 6.40 E-01 -0.68 1.88 E-03

MIP1b -0.13 2.36 E-01 0.02 9.13 E-01 -0.04 8.64 E-01 0.03 9.21 E-01 -0.43 1.46 E-02

IP10 0.04 5.61 E-01 0.03 8.21 E-01 0.04 7.08 E-01 0.03 8.26 E-01 0.12 1.60 E-01

IL8 -0.05 5.39 E-01 -0.08 6.16 E-01 0.11 4.44 E-01 -0.06 7.03 E-01 -0.11 3.13 E-01

IL1b -0.36 3.77 E-02 -0.34 3.39 E-01 0.48 1.07 E-01 -0.5 1.29 E-01 -0.74 1.23 E-03

IL2 -0.15 2.83 E-01 0.12 7.21 E-01 0.04 8.75 E-01 0.12 6.81 E-01 -0.41 5.00 E-02

IL4 -0.23 1.15 E-01 -0.94 5.98 E-03 -0.3 3.13 E-01 -0.03 9.08 E-01 -0.15 5.06 E-01

IL5 -0.1 4.28 E-01 -0.27 3.12 E-01 0.4 9.73 E-02 -0.03 9.01 E-01 -0.24 1.69 E-01

IL6 -0.02 8.96 E-01 -0.26 3.65 E-01 0.01 9.65 E-01 0.09 7.34 E-01 -0.32 9.24 E-02

IL7 0.11 4.22 E-01 -0.25 4.09 E-01 0.35 1.95 E-01 0.54 5.94 E-02 -0.26 1.81 E-01

IL10 0.11 4.39 E-01 -0.31 3.17 E-01 0.4 1.56 E-01 0.29 3.41 E-01 -0.09 7.03 E-01

IL13 -0.06 7.47 E-01 0.03 9.42 E-01 0.38 2.50 E-01 0.09 8.03 E-01 -0.77 4.95 E-03

INFa -0.44 1.25 E-01 0.15 8.32 E-01 -0.63 2.80 E-01 0.26 6.57 E-01 -0.92 3.04 E-02

INFg -0.39 5.84 E-02 -0.06 9.10 E-01 0.27 4.24 E-01 0.03 9.86 E-01 -0.95 1.74 E-03

TNFa 0.14 6.35 E-02 0.08 6.82 E-01 0.24 1.00 E-01 0.15 3.58 E-01 0.09 4.10 E-01

sCD40L 0.22 1.36 E-02 0.43 3.30 E-02 0.37 2.85 E-02 0.3 8.32 E-02 0.08 4.85 E-01
Results are displayed separately for all BCL observations and the four main histological subtypes including cases and all controls
subjects.
LMM: Linear Mixed Model, WBC: White Blood Cell.
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Table B.10: Strength of association and effect size of the significant association identified in the partial WBC adjustment
from the LMM including all BCL cases and controls (n=398).

Partial WBC AdjustmentUnadjusted

LMM CD8 CD4 NK cells B cells Monocytes Granulocytes

Full WBC

LMM

Protein β p-value β p-value β p-value β p-value β p-value β p-value β p-value β p-value

TGFa 0.68 5.62E-05 0.65 7.91E-04 0.66 6.50E-04 0.66 7.05E-04 0.64 1.11E-03 0.66 6.25E-04 0.66 7.45E-04 -0.65 1.05E-03
The corresponding results from the WBC unadjusted LMM (n=398) and full WBC adjustment model (n=536) are also displayed.
WBC: White Blood Cell, LMM: Linear Mixed Model.

Table B.11: Strength of association and effect size of the significant associations identified in the partial WBC adjustment
from the LMM including MM cases and all controls (n=261).

Partial WBC AdjustmentUnadjusted

LMM CD8 CD4 NK cells B cells Monocytes Granulocytes

Full WBC

LMM

Protein β p-value β p-value β p-value β p-value β p-value β p-value β p-value β p-value

FGF2 1 .11 4 .85 E-07 1 .16 1 .56E-06 1 .11 3 .68E-06 1 .16 2 .10E-06 1 .11 4 .11E-06 1 .14 2 .07E-06 1 .18 8 .58E-07 1 .12 3 .91 E-06

VEGF -1 4 .23 E-05 1 .15 2 .13E-05 1 .08 6 .15E-05 1 .19 1 .58E-05 1 .09 5 .40E-05 1 .12 3 .55E-05 1 .17 1 .24E-05 1 .16 2 .27 E-05

TGFa 1 .08 2 .78 E-05 1 .07 1 .16E-04 1 .04 1 .90E-04 1 .07 1 .67E-04 1 .01 2 .46E-04 1 .06 1 .40E-04 1 .09 8 .66E-05 1 .03 2 .54 E-04

Fractalkine 0 .72 9 .14 E-04 1 .03 1 .22E-05 -1 2 .95E-05 1 .09 6 .97E-06 0 .97 4 .18E-05 -1 2 .53E-05 1 .04 9 .46E-06 1 .07 7 .34 E-06

MCP3 0 .91 1 .09 E-04 1 .09 2 .19E-05 1 .06 3 .31E-05 1 .11 2 .16E-05 1 .04 4 .64E-05 -1 .1 1 .92E-05 1 .12 1 .13E-05 1 .06 3 .98 E-05

MIP1a 0 .72 3 .57 E-04 -0 .7 1 .49E-03 — — 0 .72 1 .21E-03 — — — — 0 .71 1 .03E-03 0 .69 1 .75 E-03

IL1b — — 0 .74 1 .18E-03 0 .73 1 .46E-03 — — — — 0 .74 1 .13E-03 0 .76 8 .92E-04 — —

INFg — — 0 .96 1 .58E-03 — — — — — — 0 .95 1 .72E-03 0 .97 1 .27E-03 — —
The corresponding results from the WBC unadjusted LMM (n=344) and full WBC adjustment model (n=261) are also displayed. Proteins are ordered in relation to their corresponding
strength of association with MM case/control status from the results of the WBC unadjusted model. Strength of association and effect size of the proteins that did not reach statistical
significance in the corresponding models are not shown.
LMM: Linear Mixed Model, WBC: White Blood Cell, NK: Natural Killer.
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Table B.12: Results of the LMM analyses between log-transformed values of proteins
and case-control status for all BCL and MM observations stratified by median TtD.

All BCL (n=536) MM Subtype (n=344)

TtD<6 years (n=402) TtD>6years (n=402) TtD<6 years (n=313) TtD>6years (n=299)Protein

β p-value β p-value β p-value β p-value

EGF -0.46 1.29 E-02 -0.14 4.02 E-01 -0.72 9.40 E-03 -0.29 3.54 E-01

FGF2 -0.61 1.11 E-03 -0.44 1.33 E-02 -1.07 8.21 E-05 -1.18 2.48 E-04

GCSF -0.18 8.98 E-02 -0.02 8.05 E-01 -0.15 3.63 E-01 -0.11 5.75 E-01

VEGF -0.52 8.36 E-03 -0.38 5.27 E-02 -1.06 4.17 E-04 -0.93 8.85 E-03

GMSCF 0.18 2.31 E-01 -0.31 4.11 E-02 -0.09 6.89 E-01 -0.35 2.24 E-01

TGFa -0.77 4.70 E-04 -0.63 2.09 E-03 -1.28 7.84 E-05 -0.72 5.24 E-02

Eotaxin 0.04 5.14 E-01 0.06 2.67 E-01 0.05 4.99 E-01 -0.02 8.60 E-01

Fractalkine -0.44 1.26 E-02 -0.21 2.17 E-01 -0.83 1.52 E-03 -0.60 6.19 E-02

GRO 0.05 4.29 E-01 0.00 9.47 E-01 0.07 3.96 E-01 -0.04 6.75 E-01

MCP1 -0.04 5.69 E-01 0.01 8.90 E-01 -0.02 8.47 E-01 0.06 6.11 E-01

MCP3 -0.54 4.81 E-03 -0.32 9.75 E-02 -0.95 7.94 E-04 -0.94 6.69 E-03

MDC -0.20 2.66 E-03 -0.13 3.74 E-02 -0.23 1.94 E-02 -0.12 2.87 E-01

MIP1a -0.52 1.28 E-03 -0.24 1.33 E-01 -0.95 1.19 E-04 -0.38 1.95 E-01

MIP1b -0.13 3.06 E-01 -0.24 5.53 E-02 -0.51 1.02 E-02 -0.36 1.11 E-01

IP10 0.07 2.75 E-01 -0.01 8.40 E-01 0.07 4.35 E-01 0.01 9.26 E-01

IL8 -0.09 2.69 E-01 -0.07 4.09 E-01 -0.23 5.85 E-02 0.06 6.89 E-01

IL1b -0.26 1.44 E-01 -0.27 1.02 E-01 -0.54 2.90 E-02 -0.66 3.00 E-02

IL2 -0.02 8.72 E-01 -0.06 6.80 E-01 -0.31 1.82 E-01 -0.06 8.30 E-01

IL4 -0.07 6.95 E-01 -0.20 2.14 E-01 -0.01 9.67 E-01 0.04 9.14 E-01

IL5 -0.06 6.34 E-01 -0.11 3.82 E-01 -0.08 6.85 E-01 -0.08 7.27 E-01

IL6 0.01 9.22 E-01 -0.08 5.59 E-01 -0.18 3.91 E-01 -0.26 2.87 E-01

IL7 0.14 3.50 E-01 0.01 9.27 E-01 -0.09 7.02 E-01 -0.02 9.53 E-01

IL10 0.12 4.46 E-01 0.17 2.35 E-01 -0.17 4.64 E-01 0.17 5.23 E-01

IL13 0.07 7.14 E-01 -0.12 4.98 E-01 -0.53 7.15 E-02 -0.48 1.61 E-01

INFa -0.51 9.26 E-02 -0.42 1.49 E-01 -0.96 3.78 E-02 -0.33 5.23 E-01

INFg -0.39 6.85 E-02 -0.26 2.27 E-01 -0.62 5.37 E-02 -0.91 2.09 E-02

TNFa 0.13 8.48 E-02 0.07 3.42 E-01 0.04 7.37 E-01 0.24 7.98 E-02

sCD40L 0.18 4.00 E-02 0.19 3.72 E-02 0.04 7.43 E-01 0.20 2.10 E-01
Results for CLL, DLBCL and FL subtypes did not provide significant findings and are not shown.
LMM: Linear Mixed Model, TtD: Time to Diagnosis.
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Table B.13: Results of the LMM analyses between log-transformed values of proteins
and case-control status for all BCL and MM observations stratified by study cohort.

Epic-Italy NSHDS

All BCL (n=168) MM (n=105) All BCL (n=368) MM (n=239)Protein

β p-value β p-value β p-value β p-value

EGF -0.62 1.9 E-02 -0.68 1.3 E-01 -0.10 5.3 E-01 -0.43 9.3 E-02

FGF2 -0.73 2.1 E-03 -0.90 2.2 E-02 -0.41 2.0 E-02 -1.19 4.1 E-06

GCSF 0.02 8.2 E-01 -0.15 3.9 E-01 -0.13 2.3 E-01 -0.12 4.9 E-01

VEGF -0.80 2.4 E-03 -1.49 9.5 E-04 -0.27 1.7 E-01 -0.82 4.5 E-03

GMSCF -0.08 5.3 E-01 0.02 9.4 E-01 -0.12 4.7 E-01 -0.35 1.5 E-01

TGFa -1.16 1.3 E-04 -1.12 1.8 E-02 -0.48 1.9 E-02 -1.09 2.9 E-04

Eotaxin -0.02 8.4 E-01 -0.08 5.6 E-01 0.07 1.5 E-01 0.04 6.2 E-01

Fractalkine -0.28 1.1 E-01 -0.51 8.2 E-02 -0.35 6.3 E-02 -0.75 6.1 E-03

GRO -0.04 7.0 E-01 -0.12 4.5 E-01 0.05 2.9 E-01 0.04 5.5 E-01

MCP1 0.00 9.8 E-01 0.12 1.4 E-01 0.00 9.8 E-01 -0.03 8.1 E-01

MCP3 -0.59 1.7 E-02 -0.82 3.9 E-02 -0.35 7.8 E-02 -0.94 1.1 E-03

MDC -0.25 1.3 E-02 -0.37 1.8 E-02 -0.12 5.3 E-02 -0.11 1.6 E-01

MIP1a -0.70 3.9 E-04 -0.96 3.2 E-03 -0.17 2.9 E-01 -0.59 1.5 E-02

MIP1b -0.06 6.2 E-01 -0.24 2.9 E-01 -0.18 1.7 E-01 -0.49 1.3 E-02

IP10 0.04 5.8 E-01 -0.09 4.5 E-01 0.03 7.2 E-01 0.09 4.3 E-01

IL8 0.17 1.8 E-01 0.08 6.3 E-01 -0.21 5.8 E-03 -0.20 7.8 E-02

IL1b -0.36 1.9 E-01 -0.37 3.2 E-01 -0.27 9.1 E-02 -0.70 3.7 E-03

IL2 -0.18 3.7 E-01 -0.40 2.4 E-01 -0.04 7.9 E-01 -0.18 4.2 E-01

IL4 -0.09 6.1 E-01 0.14 6.3 E-01 -0.22 1.8 E-01 -0.14 5.7 E-01

IL5 0.06 7.1 E-01 0.10 6.9 E-01 -0.19 1.7 E-01 -0.15 4.5 E-01

IL6 0.14 4.2 E-01 0.00 1.0 E+00 -0.13 3.5 E-01 -0.30 1.4 E-01

IL7 0.03 7.7 E-01 0.07 6.6 E-01 0.09 6.1 E-01 -0.13 6.0 E-01

IL10 0.07 7.7 E-01 -0.16 6.5 E-01 0.12 3.5 E-01 -0.08 7.1 E-01

IL13 0.44 8.3 E-02 0.12 7.7 E-01 -0.27 1.4 E-01 -0.76 7.2 E-03

INFa -0.46 2.9 E-01 -0.83 2.4 E-01 -0.39 1.6 E-01 -0.56 1.8 E-01

INFg -0.50 1.2 E-01 -0.98 4.7 E-02 -0.25 2.3 E-01 -0.70 2.8 E-02

TNFa 0.10 1.8 E-01 0.03 8.1 E-01 0.10 2.2 E-01 0.14 2.3 E-01

sCD40L 0.11 3.3 E-01 0.12 5.0 E-01 0.23 1.3 E-02 0.07 5.5 E-01
Results for CLL, DLBCL and FL subtypes did not provide significant findings and are not shown.
LMM: Linear Mixed Model, EPIC: European Prospective Investigation into Cancer and Nutrition, NSHDS: Northern Sweden
Health and Disease Study.
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Table B.14: Results of the LMM analyses between log-transformed values of pro-
teins and case-control status for all BCL and MM observations stratified by analytical
phase.

Phase 1 Phase 2

All BCL (n=192) MM (n=124) All BCL (n=344) MM (n=220)Protein

β p-value β p-value β p-value β p-value

EGF -0.63 1.25 E-02 -0.86 2.92 E-02 -0.11 5.45 E-01 -0.32 2.61 E-01

FGF2 -0.69 2.52 E-03 -1.23 7.16 E-04 -0.41 3.08 E-02 -1.05 2.82 E-04

GCSF 0.07 5.12 E-01 0.12 5.06 E-01 -0.19 1.14 E-01 -0.24 2.11 E-01

VEGF -0.57 2.95 E-02 -1.13 7.68 E-03 -0.38 5.92 E-02 -1.07 6.20 E-04

GMSCF 0.04 8.24 E-01 -0.56 7.36 E-02 -0.12 4.46 E-01 0.05 8.27 E-01

TGFa -1.17 4.62 E-05 -1.73 1.41 E-04 -0.44 3.80 E-02 -0.89 6.04 E-03

Eotaxin 0.01 8.67 E-01 -0.04 7.26 E-01 0.06 2.38 E-01 0.02 7.29 E-01

Fractalkine -0.25 2.09 E-01 -0.49 1.20 E-01 -0.37 4.89 E-02 -0.83 5.07 E-03

GRO 0.01 9.91 E-01 -0.15 2.33 E-01 0.03 5.74 E-01 0.08 3.15 E-01

MCP1 0.05 3.68 E-01 0.16 5.78 E-02 -0.04 5.84 E-01 -0.08 5.57 E-01

MCP3 -0.61 8.13 E-03 -1.00 5.70 E-03 -0.30 1.51 E-01 -0.79 1.37 E-02

MDC -0.23 1.93 E-02 -0.28 6.22 E-02 -0.13 3.86 E-02 -0.15 8.38 E-02

MIP1a -0.64 4.24 E-04 -0.90 1.26 E-03 -0.20 2.39 E-01 -0.63 2.35 E-02

MIP1b -0.17 2.45 E-01 -0.50 4.52 E-02 -0.17 2.00 E-01 -0.42 5.10 E-02

IP10 0.10 2.01 E-01 0.26 2.96 E-02 -0.03 7.03 E-01 -0.06 6.36 E-01

IL8 0.02 8.96 E-01 -0.28 1.53 E-01 -0.15 3.55 E-02 -0.08 4.76 E-01

IL1b -0.49 1.17 E-01 -1.53 4.05 E-04 -0.14 2.86 E-01 0.02 9.17 E-01

IL2 -0.01 9.59 E-01 -0.71 3.34 E-02 -0.10 4.65 E-01 0.13 5.41 E-01

IL4 -0.36 1.24 E-01 -0.53 1.49 E-01 -0.06 7.06 E-01 0.26 2.99 E-01

IL5 -0.13 5.24 E-01 -0.67 2.78 E-02 -0.10 3.74 E-01 0.17 3.37 E-01

IL6 -0.09 7.01 E-01 -0.82 2.19 E-02 -0.04 7.30 E-01 0.07 6.63 E-01

IL7 0.10 6.36 E-01 -0.52 8.14 E-02 0.05 7.25 E-01 0.15 5.22 E-01

IL10 0.22 4.05 E-01 -0.55 1.46 E-01 0.07 5.07 E-01 0.15 4.10 E-01

IL13 -0.01 9.79 E-01 -1.62 1.85 E-03 -0.09 4.89 E-01 0.15 5.12 E-01

INFa -0.66 1.72 E-01 -1.71 2.65 E-02 -0.28 2.43 E-01 -0.20 5.96 E-01

INFg -0.54 1.51 E-01 -1.81 2.89 E-03 -0.21 2.24 E-01 -0.12 6.54 E-01

TNFa 0.13 1.12 E-01 -0.07 5.28 E-01 0.12 1.46 E-01 0.29 2.34 E-02

sCD40L 0.27 3.19 E-02 -0.06 8.02 E-01 0.16 7.72 E-02 0.12 3.44 E-01
Results for CLL, DLBCL and FL subtypes did not provide significant findings and are not shown.
LMM: Linear Mixed Model.
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Table B.15: Results of the ULR model relating MM subtype case-control status and quantile categories of log-transformed
protein concentration levels stratified by study cohort.

EPIC-Italy (n=105) NSHDS (n=239)

Protein Quantiles Limits Cases/Controls (n) OR low CI High CI P-trend Quantiles Limits Cases/Controls (n) OR low CI High CI P-trend

FGF2 Q1=< 2.9 8/23 Ref Ref Ref 0.001 Q1=< 2.9 26/44 Ref Ref Ref 0.0015

Q2=2.9 - 4.26 9/13 3.82 0.8 21.29 Q2=2.9 - 4.26 16/54 0.45 0.2 0.96

Q3=4.26 - 5.35 2/27 0.14 0.01 0.99 Q3=4.26 - 5.35 9/40 0.36 0.14 0.86

Q4=> 5.35 2/21 0.21 0.02 1.27 Q4=> 5.35 4/46 0.14 0.04 0.4

VEGF Q1=< 4.44 10/18 Ref Ref Ref 0.0255 Q1=< 4.44 22/49 Ref Ref Ref 0.0206

Q2=4.44 - 6.15 7/22 0.6 0.15 2.32 Q2=4.44 - 6.15 13/45 0.54 0.23 1.24

Q3=6.15 - 7.43 2/20 0.16 0.02 0.83 Q3=6.15 - 7.43 16/47 0.71 0.32 1.55

Q4=> 7.43 2/24 0.11 0.01 0.58 Q4=> 7.43 4/43 0.18 0.05 0.52

TGFa Q1=< 1.27 8/17 Ref Ref Ref 0.0312 Q1=< 1.27 23/50 Ref Ref Ref 0.0113

Q2=1.27 - 2.65 7/27 0.23 0.04 1.07 Q2=1.27 - 2.65 16/40 0.77 0.33 1.73

Q3=2.65 - 3.91 5/19 0.43 0.08 2.07 Q3=2.65 - 3.91 12/48 0.51 0.22 1.16

Q4=> 3.91 1/21 0.05 0 0.38 Q4=> 3.91 4/46 0.17 0.05 0.5

Fractalkine Q1=< 4.11 4/16 Ref Ref Ref 0.1087 Q1=< 4.11 24/51 Ref Ref Ref 0.0462

Q2= 4.11 - 5.12 12/27 2.41 0.54 12.93 Q2= 4.11 - 5.12 15/40 0.75 0.33 1.66

Q3= 5.12 - 6.21 3/27 0.42 0.06 2.78 Q3=5.12 - 6.21 8/40 0.43 0.16 1.09

Q4=> 6.21 2/14 0.61 0.05 5.75 Q4=> 6.21 8/53 0.31 0.12 0.75

MCP3 Q1=< 0.97 7/16 Ref Ref Ref 0.2103 Q1=< 0.97 28/51 Ref Ref Ref 0.0118

Q2=0.97 - 2.48 7/26 0.76 0.18 3.26 Q2=0.97 - 2.48 10/41 0.4 0.16 0.93

Q3=2.48 - 3.7 5/27 0.31 0.06 1.47 Q3=2.48 - 3.7 7/40 0.29 0.1 0.73

Q4=> 3.7 2/15 0.15 0.01 1.1 Q4=> 3.7 10/52 0.36 0.15 0.81

MIP1a Q1=< 1.58 8/17 Ref Ref Ref 0.0088 Q1=< 1.58 19/50 Ref Ref Ref 0.0186

Q2= 1.58 - 2.84 11/24 1.09 0.28 4.26 Q2= 1.58 - 2.84 21/43 1.25 0.57 2.77

Q3= 2.84 - 3.64 0/20 Q3=2.84 - 3.64 8/47 0.41 0.15 1.04

Q4=> 3.64 2/23 0.16 0.02 0.89 Q4=> 3.64 7/44 0.36 0.12 0.94
OR: Odds Ratio, CI: Confidence Interval, ULR: Unconditional Logistic Regression, EPIC: European Prospective Investigation into Cancer and Nutrition, NSHDS: Northern Sweden
Health and Disease Study.
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Table B.16: Results of the CLR model relating MM subtype case-control status and
quantile categories of log-transformed protein concentration levels.

Protein Quantiles Limits Cases/Controls (n) OR low CI High CI P-trend

FGF2 Q1=< 2.67 33/19 Ref Ref Ref 0.0093*
Q2=2.67 - 4.23 25/19 0.78 0.32 1.9
Q3=4.23 - 5.29 12/19 0.36 0.14 0.94

Q4=> 5.29 6/19 0.19 0.06 0.56
VEGF Q1=< 4.25 30/19 Ref Ref Ref 0.0917

Q2=4.25 - 5.92 21/19 0.66 0.26 1.67
Q3=5.92 - 7.38 17/19 0.59 0.23 1.53

Q4=> 7.38 8/19 0.26 0.09 0.74
TGFa Q1=< 1.27 31/19 Ref Ref Ref 0.0028*

Q2=1.27 - 2.75 26/19 0.68 0.27 1.72
Q3=2.75 - 3.96 15/19 0.43 0.16 1.1

Q4=> 3.96 4/19 0.11 0.03 0.36
Fractalkine Q1=< 4.07 28/19 Ref Ref Ref 0.0581

Q2=4.07 - 5.16 27/19 1.1 0.45 2.72
Q3=5.16 - 6.28 12/19 0.42 0.15 1.15

Q4=> 6.28 9/19 0.36 0.12 0.97
MCP3 Q1=< 0.88 33/19 Ref Ref Ref 0.1341

Q2=0.88 - 2.44 19/19 0.55 0.21 1.41
Q3=2.44 - 3.47 11/19 0.33 0.12 0.88

Q4=> 3.47 13/19 0.45 0.17 1.16
MIP1a Q1=< 1.6 28/19 Ref Ref Ref 0.0521

Q2=1.6 - 2.73 28/19 1.1 0.46 2.63
Q3=2.73 - 3.59 9/19 0.35 0.11 1

Q4=> 3.59 11/19 0.4 0.14 1.08
(*) represents statistically significant associations.
OR: Odds Ratio, CI: Confidence Interval, CLR: Conditional Logistic Regression.
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Table B.17: Common transcripts differentially expressed between the WBC unadjusted LMM (n=266), the B-cells propor-
tion adjusted LMM (n=194) and the full WBC adjustment LMM (n=194) from the CLL-specific analysis.

WBC Unadjusted LMM B cells Adjustment Full WBC Adjustment
Agilent ID Gene Name f p-value f p-value f p-value

1 A_23_P500400 ABCA6 17.40 1.04E-62 6.92 4.57E-24 6.45 3.65E-22

2 A_32_P53234 — 5.28 1.18E-44 2.11 7.65E-12 2.09 1.45E-11

3 A_23_P26854 ARHGAP44 24.49 1.30E-43 6.94 2.38E-13 6.54 2.99E-12

4 A_23_P27332 TCF4 3.83 7.14E-41 2.08 1.35E-12 2.08 1.72E-12

5 A_24_P29733 CDK14 3.96 4.43E-39 2.16 1.40E-10 2.04 2.37E-09

6 A_23_P131024 ZBTB32 5.27 5.47E-39 2.58 2.81E-10 2.85 9.28E-12

7 A_24_P691826 — 5.84 1.46E-35 2.63 4.72E-09 2.72 2.64E-09

8 A_23_P130158 WNT3 13.75 5.67E-35 5.06 7.37E-11 4.45 2.29E-09

9 A_24_P931428 TCF4 3.79 3.58E-34 1.94 1.08E-07 1.94 2.36E-07

10 A_23_P56553 METTL8 2.71 8.26E-29 1.65 9.88E-07 1.69 4.74E-07

11 A_23_P201211 FCRL5 5.20 2.74E-28 2.45 1.64E-06 2.55 8.92E-07

12 A_32_P44394 AIM2 2.63 3.78E-24 1.97 2.07E-07 1.96 4.59E-07

13 A_24_P184803 COCH 3.91 6.57E-24 2.32 2.21E-07 2.42 1.32E-07
Gene expression signals are ordered in relation to their corresponding strength of association with CLL case/control status from the WBC unadjusted LMM. Fold change (f ) estimates
derived from the regression coefficient (β) obtained from the LMM.
LMM: Linear Mixed Model, WBC: White Blood Cell.
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Table B.18: Significant associations identified in the analysis stratified by median TtD for the population including all BCL
cases and controls.

Pooled Analysis (n=464) TtD<6 years (n=348) TtD>6 years (n=348)

Agilent ID Gene Name f p-value Agilent ID Gene Name f p-value Agilent ID Gene Name f p-value

1 A_23_P500400 ABCA6 1.68 9.52E-09 1 A_23_P26854 ARHGAP44 2.00 9.36E-08 1 A_23_P500400 ABCA6 1.67 8.96E-09

2 A_23_P26854 ARHGAP44 1.86 3.28E-08 2 A_24_P204574 — 0.71 6.49E-07 2 A_23_P310931 CNR2 1.22 8.63E-07

3 A_23_P210581 KCNG1 0.76 4.78E-07 3 A_23_P500400 ABCA6 1.69 3.33E-07 3 A_23_P145889 CDK14 1.32 6.39E-07

4 A_32_P44394 AIM2 1.26 9.36E-07 4 A_24_P484904 — 0.74 3.16E-07 4 A_32_P44394 AIM2 1.32 3.08E-07

5 A_23_P145889 CDK14 1.28 1.54E-06 5 A_23_P210581 KCNG1 0.71 2.03E-07
The corresponding results of the pooled analysis are also displayed. Transcripts are ordered in relation to their corresponding strength of association with BCL case/control status
from the results of the TtD pooled analysis. Fold change (f ) estimates derived from the regression coefficient (β) obtained from the Linear Mixed Model.
TtD: Time to Diagnosis.

Table B.19: Significant associations identified in the analysis stratified by median TtD for the population including CLL
cases and all controls.

Pooled Analysis (n=464) TtD<6 years (n=348) TtD>6 years (n=348)

Agilent ID Gene Name f p-value Agilent ID Gene Name f p-value Agilent ID Gene Name f p-value

1 A_23_P500400 ABCA6 1.68 9.52E-09 1 A_23_P26854 ARHGAP44 2.00 9.36E-08 1 A_23_P500400 ABCA6 1.67 8.96E-09

2 A_23_P26854 ARHGAP44 1.86 3.28E-08 2 A_24_P204574 — 0.71 6.49E-07 2 A_23_P310931 CNR2 1.22 8.63E-07

3 A_23_P210581 KCNG1 0.76 4.78E-07 3 A_23_P500400 ABCA6 1.69 3.33E-07 3 A_23_P145889 CDK14 1.32 6.39E-07

4 A_32_P44394 AIM2 1.26 9.36E-07 4 A_24_P484904 — 0.74 3.16E-07 4 A_32_P44394 AIM2 1.32 3.08E-07

5 A_23_P145889 CDK14 1.28 1.54E-06 5 A_23_P210581 KCNG1 0.71 2.03E-07
Transcripts are ordered in relation to their corresponding strength of association with MM case/control status from the results of the TtD pooled analysis. Fold change (f ) estimates
derived from the regression coefficient (β) obtained from the Linear Mixed Model.
TtD: Time to Diagnosis.
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Supplementary Material for Chapter 5

C.1 Overlapping and Improvements in Relation to Cited

Papers

The analysis of inflammatory markers data employing multivariate statistical ap-

proaches was originally published in “Pre-diagnostic blood immune markers, incidence

and progression of B-cell lymphoma and multiple myeloma: Univariate and functionally in-

formed multivariate analyses” [182]. Therefore, there is a partial overlap between the

results presented in chapter 5 and the ones published in this article, which include

the following:

– Identification of proteins indicative of future risk of B-cell Lymphoma (BCL)

and its main histological subtypes employing sparse and sparse group Partial

Least Squares- Discriminant Analysis (sPLS-DA and sgPLS-DA).

The overlapping results between chapter 5 and the cited paper show significant vari-

ations in the final outputs which may come down to differences in the approach taken

for the calibration procedure. The paper explored only one dimension for the model

fitting procedure of sPLS-DA and sgPLS-DA following theH = min(p,G− 1) criteria,

where p is the total number of predictor variables and G is the total number of classes

[128]. As a consequence, visualization tools such as sample representation plots were

not investigated in the paper and correspond to valuable incorporations added in this

thesis. This methodological difference between the two works can also be responsi-
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ble for the positive finding identified for the Chronic Lymphocytic Leukaemia (CLL)

subtype and proteomics in chapter 5 which were not discovered in the published

article.

The remaining of analyses presented in this chapter which were not listed above cor-

respond to novel incorporation introduced in this thesis.
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Supplementary Figures

Figure C.1: Average overall misclassification ER from the calibration procedure of
the sPLS-DA model for the two dimensions and for the five study populations (pro-
teomics dataset).
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In each graphic, calibration curves represent models fitted with 1 to 28 proteins to retain in the predictor matrix and the two
dimensions are shown simultaneously. For each component, the observed minimum value and the chosen value to retain in the
model are represented by a cross and a dashed vertical line, respectively. Calibration of the second component was conducted
retaining in the previous dimension the chosen number of variables.
ER: Error Rate; sPLS-DA: sparse Partial Least Squares-Discriminant Analysis.
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Figure C.2: Average overall misclassification ER from the calibration procedure of
the sgPLS-DA model for the two dimensions and for the five study populations (pro-
teomics dataset).

(a) All BCL 

0.418

0.432

0.447

0.394

0.403

0.413

0.
95 0.

9

0.
3

0.
1

0.
05

Degree of Sparsity (a)

(b) CLL Subtype

0.357

0.411

0.465

0.379

0.39

0.401

0.
95 0.

9

0.
05

(c) DLBCL Subtype

0.523

0.53

0.536

0.511

0.519

0.527

0.
95 0.

9

0.
1

0.
05

(d) FL Subtype

0.53

0.544

0.559

0.544

0.56

0.576

0.
95 0.

7

0.
6

0.
05

(e) MM Subtype

0.413

0.428

0.443

0.441

0.451

0.461

0.
95 0.

2

0.
05

Left Y Axis
First Component ER

Minimum Value

Chosen Value

Number of Groups=1

Number of Groups=2

Number of Groups=3

Right Y Axis
Second Component ER

Minimum Value

Chosen Value

Number of Groups=1

Number of Groups=2

Number of Groups=3

A single calibration curve represents models fitted with 11 different values of the mixing parameter α1 defining the within-
group sparsity for models retaining either 1, 2 or 3 functional groups (blue, light orange and pink, respectively). Since the two
PLS dimensions are represented simultaneously, each graphic contains six calibration curves representing models retaining 1
to 3 functional groups for the first and second component (solid and dashed lines, left and right axes, respectively). For each
component, the observed minimum value and the chosen value of the model parameters are represented by a cross and a vertical
line, respectively; colours are given by the number of groups yielding the lowest ER. Calibration of the second component was
conducted retaining in the previous dimension the chosen number of functional groups and α1.
ER: Error Rate; sgPLS-DA: sparse group Partial Least Squares-Discriminant Analysis.
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Figure C.3: Average overall misclassification ER from the calibration procedure of
the sPLS-DA model for the two dimensions and for the five study populations (tran-
scriptomics dataset).
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In each graphic, calibration curves represent models fitted with 2 to 1000 transcripts (grid resolution of 40 values) to retain in
the predictor matrix and the two dimensions are shown simultaneously. For each component, the observed minimum value
and the chosen value to retain in the model are represented by a cross and a dashed vertical line, respectively. Calibration of the
second component was conducted retaining in the previous dimension the chosen number of variables.
ER: Error Rate; sPLS-DA: sparse Partial Least Squares-Discriminant Analysis.
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Figure C.4: Average overall misclassification ER from the calibration procedure of
the gPLS-DA model for the two dimensions and for the five study populations (tran-
scriptomics dataset).
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In each graphic, calibration curves represent models fitted with 1 to 150 biological pathways (grid resolution of 28 values) to
retain in the predictor matrix and the two dimensions are shown simultaneously. For each component, the observed minimum
value and the chosen value to retain in the model are represented by a cross and a dashed vertical line, respectively. Calibration
of the second component was conducted retaining in the previous dimension the chosen number of biological pathways.
ER: Error Rate; gPLS-DA: group Partial Least Squares-Discriminant Analysis.
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Figure C.5: Average overall misclassification ER from the calibration procedure of the
sgPLS-DA model for the two dimensions and for the five study populations (tran-
scriptomics dataset).
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Figure C.5: Average overall misclassification ER from the calibration procedure of the
sgPLS-DA model for the two dimensions and for the five study populations (tran-
scriptomics dataset) (cont.).
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Figure C.5: Average overall misclassification ER from the calibration procedure of the
sgPLS-DA model for the two dimensions and for the five study populations (tran-
scriptomics dataset) (cont.).
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A single calibration curve represents models fitted with 28 different numbers of biological pathways to retain in the predictor
matrix. In each plot, the set of calibration curves represents models fitted with 11 different values of the mixing parameter
α1 defining the within-group sparsity. For each component, the observed minimum value and the chosen value of the model
parameters are represented by a cross and a dashed vertical line, respectively; colours are given by the value of α1 yielding
the lowest ER. Calibration of the second component was conducted retaining in the previous dimension the chosen number of
biological pathways and α1.
ER: Error Rate; sgPLS-DA: sparse group Partial Least Squares-Discriminant Analysis.
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Table C.1: Most common biological pathways to which individual transcripts were
allocated.

Biological Pathway N Probes %

1 Non-annotated 14737 49.683

2 Regulation of transcription 1254 4.228

3 Transcription 527 1.777

4 Phosphorus metabolic process 426 1.436

5 G-protein coupled receptor protein signalling pathway 274 0.924

6 Cation transport 240 0.809

7 Mitotic cell cycle 236 0.796

8 Macromolecule catabolic process 224 0.755

9 Via transesterification reactions 198 0.668

10 DNA-dependent 184 0.620
Of the 29,662 transcripts, 14,925 have information related to biological pathways and were grouped into a total of 849 different
modules. The top 10 pathways containing the highest number of probes are reported.

Table C.2: Percentage of variance explained in the outcome matrix (R2) and mean and
standard deviation of the Discriminant Q2 (DQ2) statistics of PLS-DA models fitted
with one to two dimensions for the five study populations (proteomics dataset).

R2 DQ2

1 Component 2 Components 1 Component 2 Components
All BCL 1.994 4.030 0.304 (0.009) 0.248 (0.007)

CLL 11.530 17.080 0.444 (0.060) 0.273 (0.061)

DLBCL 4.428 6.877 0.365 (0.076) 0.243 (0.036)

FL 2.451 6.979 0.444 (0.055) 0.365 (0.040)

MM 3.603 8.103 0.463 (0.016) 0.316 (0.029)
Results of the calibration procedure for the number of components. R2 refers to the cumulative percentage of Y variance
explained by the X components.
PLS-DA: Partial Least Squares-Discriminant Analysis.
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Table C.3: Average overall missclassification ER from the calibration procedure of
the gPLS-DA model for the two dimensions and for the five study populations (pro-
teomics dataset).

1st Component 2nd Component
N Group=1 N Group=2 N Group=3 N Group=1 N Group=2 N Group=3

All BCL 0.445 0.435 0.414 0.401 0.407 0.405

CLL 0.463 0.462 0.456 0.419 0.409 0.408

DLBCL 0.525 0.535 0.525 0.515 0.506 0.505

FL 0.534 0.549 0.550 0.549 0.560 0.581

MM 0.443 0.438 0.421 0.415 0.433 0.445
Calibration of the second component was conducted retaining in the previous dimension the number of functional groups
yielding the minimum ER (see Table 5.1).
ER: Error Rate; gPLS-DA: group Partial Least Squares-Discriminant Analysis.

Table C.4: Classification performances of the three calibrated PLS-DA models for the
BCL pooled populations excluding CLL and MM observations (proteomics dataset).

sparse PLS-DA group PLS-DA sparse group PLS-DA

Overall

ER

ER

Controls

ER

Cases
AUC

Overall

ER

ER

Controls

ER

Cases
AUC

Overall

ER

ER

Controls

ER

Cases
AUC

All BCL 0.406 0.419 0.393 0.594 0.414 0.426 0.402 0.587 0.394 0.402 0.387 0.606

w/o CLL 0.429 0.428 0.431 0.572 0.424 0.430 0.418 0.577 0.407 0.403 0.411 0.593

w/o MM 0.398 0.403 0.392 0.604 0.424 0.428 0.420 0.578 0.398 0.401 0.394 0.603
The classification performance of the population pooling all BCL case-control pairs is shown to facilitate comparison. These
results are part of the sensitivity analysis process.
PLS-DA: Partial Least Squares-Discriminant Analysis, ER: Error Rate, AUC: Area Under the Curve.
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Table C.5: Classification performances of the three calibrated PLS-DA models for the
for the five study populations conducted on the proteomics dataset after correction
for WBC populations.

sparse PLS-DA group PLS-DA sparse group PLS-DA

Overall

ER

ER

Control

ER

Cases
AUC

Overall

ER

ER

Control

ER

Cases
AUC

Overall

ER

ER

Control

ER

Cases
AUC

All BCL 0.413 0.427 0.399 0.588 0.403 0.422 0.383 0.597 0.380 0.400 0.360 0.620

CLL 0.348 0.413 0.284 0.685 0.424 0.460 0.388 0.647 0.319 0.338 0.300 0.721

DLBCL 0.500 0.491 0.509 0.585 0.473 0.474 0.472 0.594 0.477 0.472 0.483 0.591

FL 0.500 0.460 0.540 0.580 0.538 0.539 0.538 0.585 0.483 0.447 0.518 0.587

MM 0.412 0.451 0.372 0.599 0.415 0.469 0.360 0.593 0.417 0.459 0.376 0.594
These results are part of the sensitivity analysis process.
PLS-DA: Partial Least Square-Discriminant Analysis, WBC: White Blood Cells; ER: Error Rate; AUC: Area Under the Curve.

Table C.6: Percentage of variance explained in the outcome matrix (R2) and mean and
standard deviation of the Discriminant Q2 (DQ2) statistics of PLS-DA models fitted
with one to two dimensions for the five study populations (transcriptomics dataset).

R2 DQ2

1 component 2 components 1 component 2 components
All BCL 4.206 7.858 0.365 (0.034) 0.267 (0.005)

CLL 23.441 33.964 0.547 (0.051) -0.029 (0.099)

DLBCL 9.447 20.231 0.405 (0.079) 0.459 (0.022)

FL 5.801 20.632 0.454 (0.022) 0.458 (0.040)

MM 2.888 17.291 0.419 (0.032) 0.559 (0.023)
Results of the calibration procedure for the number of components. R2 refers to the cumulative percentage of Y variance
explained by the X components.
PLS-DA: Partial Least Squares-Discriminant Analysis.
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Table C.7: Biological pathways to which the selected gene expression signals belong,
total number of probes in those selected pathway and absolute and relative frequen-
cies of the selected signals per pathway for the study population including all BCL
case-control pairs and for each of the three regularized approaches.

sparse PLS-DA

Biological Pathways Total Selected (%)

Non-annotated probes 14737 3 (0.020)

Phosphorus metabolic process 426 1 (0.235)

Cation transport 240 1 (0.417)

Cell activation 57 1 (1.754)

Mesoderm formation 18 1 (5.556)

group PLS-DA

Biological Pathways Total

Lymphocyte homeostasis 4

Regulation of DNA repair 4

Regulation of Rho protein signal transduction 4

Acute inflammatory response 3

Myeloid dendritic cell activation 3

Positive regulation of neurotransmitter secretion 3

RNA localization 3

Telomere maintenance 3

Water transport 3

Cell-cell junction assembly 2

sparse group PLS-DA

Biological Pathways Total Selected (%)

Immune system development 46 7 (15.217)

Cell activation 57 5 (8.772)

Protein amino acid dephosphorylation 21 3 (14.286)

Proline biosynthetic process 9 3 (33.333)

Inflammatory response 31 2 (6.451)

DNA modification 12 2 (16.667)

Kidney development 6 2 (33.333)

Negative regulation of macromolecule biosynthetic process 6 2 (33.333)

Regulation of Rho protein signal transduction 4 2 (50)

Positive regulation of cell death 3 2 (66.667)
For the sparse PLS-DA model, the total number of chosen biological pathways are displayed (five) while for group and sparse
group models the first 10 pathways are displayed, which are ordered in terms of number of total probes per module and number
of selected probes per module, respectively.
PLS-DA: Partial Least Squares-Discriminant Analysis
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Table C.8: Classification performances of the three calibrated PLS-DA models for the
BCL pooled populations excluding CLL observations (transcriptomics dataset).

sparse PLS-DA group PLS-DA sparse group PLS-DA

Overall

ER

ER

Control

ER

Cases
AUC

Overall

ER

ER

Control

ER

Cases
AUC

Overall

ER

ER

Control

ER

Cases
AUC

All BCL 0.400 0.259 0.541 0.601 0.463 0.403 0.524 0.541 0.430 0.346 0.513 0.572

w/o CLL 0.417 0.396 0.438 0.584 0.496 0.472 0.519 0.530 0.447 0.439 0.455 0.557
The classification performance of the population pooling all BCL case-control pairs is shown to facilitate comparison. These
results are part of the sensitivity analysis process.
PLS-DA: Partial Least Squares-Discriminant Analysis, ER: Error Rate; AUC: Area Under the Curve.

Table C.9: Classification performances of the three calibrated PLS-DA models for the
five study populations conducted on the transcriptomics dataset after correction for
WBC populations.

sparse PLS-DA group PLS-DA sparse group PLS-DA

Overall

ER

ER

Control

ER

Cases
AUC

Overall

ER

ER

Control

ER

Cases
AUC

Overall

ER

ER

Control

ER

Cases
AUC

All BCL 0.422 0.392 0.451 0.581 0.430 0.414 0.445 0.573 0.418 0.398 0.437 0.585

CLL 0.209 0.196 0.222 0.818 0.467 0.474 0.460 0.625 0.459 0.483 0.436 0.631

DLBCL 0.491 0.509 0.473 0.584 0.506 0.479 0.533 0.592 0.504 0.485 0.523 0.597

FL 0.413 0.415 0.411 0.618 0.482 0.493 0.471 0.592 0.475 0.482 0.468 0.585

MM 0.454 0.436 0.472 0.575 0.458 0.423 0.493 0.568 0.453 0.420 0.486 0.574
These results are part of the sensitivity analysis process.
PLS-DA: Partial Least Squares-Discriminant Analysis, WBC: White Blood Cells; ER: Error Rate; AUC: Area Under the Curve.
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Supplementary Figures

Figure D.1: Average MSEP from the calibration procedure of the sPLS model for each
of the three dimensions.
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In each graphic, calibration curves represent models fitted with 1 to 28 proteins to retain in the outcome matrix. Solid and
dashed lines represent the number of variables yielding the minimum average MSEP and the chosen number of variables
(vertical lines), respectively and their corresponding MSEP (horizontal lines). Colour of the lines is dictated by the number of
Y variables. Calibration of the second and third components was conducted retaining in the previous dimension(s) the chosen
number of variables.
MSEP: Mean Squared Error of Prediction; sPLS: sparse Partial Least Squares.
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Figure D.2: Average MSEP from the calibration procedure of the gPLS model for each
of the three dimensions.
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(b) Second Component
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In each graphic, calibration curves represent models fitted with 1 to 3 functional group to retain in the outcome matrix. Solid
and dashed lines represent the number of modules yielding the minimum average MSEP and the chosen number of modules
(vertical lines), respectively and their corresponding MSEP (horizontal lines). Colour of the lines is dictated by the number of
Y modules. Calibration of the second and third components was conducted retaining in the previous dimension(s) the chosen
number of modules.
MSEP: Mean Squared Error of Prediction; gPLS: group Partial Least Squares.
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Figure D.3: Average MSEP from the calibration procedure of the sgPLS model for
each of the three dimensions.
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In each graphic, calibration curves represent models fitted with 11 different values of the mixing parameter α1 defining the
degree of sparsity of the predictor matrix. Solid and dashed lines represent the value of the model parameters of X yielding the
minimum MSEP and the chosen value of model parameters of X (vertical lines), respectively and their corresponding average
MSEP (horizontal lines). Colour of the lines is dictated by the value of the mixing parameter α1. Calibration of the second
and third components was conducted retaining in the previous dimension(s) the chosen number of functional groups and the
chosen value of α1. Each panel displays the calibration curves for one value of number of functional groups to keep in Y and
for one value of the mixing parameter α2 defining the degree of sparsity of the outcome matrix. The values of these model
parameters are specified in the title of each panel and were defined based on the minimization of the average MSEP. Thus, the
set of calibration curves for the other possible values of number of groups to keep in Y and the other possible values of α2 are
not shown.
MSEP: Mean Squared Error of Prediction; sgPLS: sparse group Partial Least Squares.
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Figure D.4: Sample representation plots displaying the location of the observations on the X and Y spaces spanned by the
calibrated gPLS model (superimposed plots).
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Transcripts=27, 1 & 1 - Proteins=6, 18 & 6

The three possible two-dimensional spaces are exhibited. The lower sample space is coloured on grey. The separate sample plots are also displayed. For each sample group, ellipses of
the confidence region were drawn employing the R package ellipse based on the variance and mean of the matrix of the corresponding pair of components (the mean defines the
location of the ellipse centre). The confidence level controlling the ellipse size was 0.95 and a total of 100 points were used.
gPLS: group Partial Least Squares.
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Figure D.5: Sample representation plots displaying the location of the observations on the X and Y spaces spanned by the
calibrated sgPLS model (superimposed plots).
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Transcripts=48, 1 & 1 - Proteins=3, 5 & 16

The three possible two-dimensional spaces are exhibited. The lower sample space is coloured on grey. The separate sample plots are also displayed. For each sample group, ellipses of
the confidence region were drawn employing the R package ellipse based on the variance and mean of the matrix of the corresponding pair of components (the mean defines the
location of the ellipse centre). The confidence level controlling the ellipse size was 0.95 and a total of 100 points were used.
sgPLS: sparse group Partial Least Square.

289



Supplementary Tables

Supplementary Tables

Table D.1: Percentage of variance explained in the outcome matrix (R2) and mean and
standard deviation of the Q2 statistics of PLS models fitted with one to six dimensions.

Model Size R2 Q2

1 component 0.214 -0.023 (-0.009)

2 components 0.858 0.004 (0.004)

3 components 1.594 -0.022 (0.008)

4 components 2.643 0.002 (0.007)

5 components 3.670 0.005 (0.007)

6 component 4.521 0.005 (0.005)
Results of the calibration procedure for the number of components. R2 refers to the cumulative percentage of Y variance
explained by the X components.
PLS: Partial Least Squares.
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Table D.2: Transcripts and biological pathways that are common to at least two of
three integrative approaches.

sparse PLS and group PLS

Agilent ID Gene Name Biological Pathway

1 A_23_P26522 AQP8 monocarboxylic acid transport

sparse PLS and sparse group PLS

Agilent ID Gene Name Biological Pathway

1 A_23_P208636 SHANK1 cytoskeletal anchoring at plasma membrane *

2 A_24_P331761 PSG7 female pregnancy *

3 A_23_P26522 AQP8 monocarboxylic acid transport

group PLS and sparse group PLS

Agilent ID Gene Name Biological Pathway

1 A_24_P944640 EPB41L5 axial mesoderm development

2 A_23_P68998 MIOX carbohydrate catabolic process

3 A_23_P127002 THNSL1 cellular amino acid biosynthetic process

4 A_23_P60016 PTTG3P chromosome organization

5 A_23_P104323 MGMT DNA ligation

6 A_23_P77756 GALR2 inositol metabolic process

7 A_23_P8754 AASS lysine metabolic process

8 A_23_P26522 AQP8 monocarboxylic acid transport

9 A_24_P227927 IL21R natural killer cell activation

10 A_23_P3274 IGDCC3 neuromuscular process controlling balance

11 A_24_P115183 CLDN4 pathogenesis

12 A_32_P104000 DCUN1D3 regulation of S phase of mitotic cell cycle

13 A_23_P104819 TREH trehalose metabolic process

14 A_23_P23966 ZNF488 glial cell differentiation

15 A_24_P398210 ZNF488 glial cell differentiation

16 A_23_P55616 SLC14A1 urea transport

17 A_24_P926507 SLC14A1 urea transport

18 A_23_P11461 UBE2V1 regulation of DNA repair

19 A_23_P218685 UBE2V1 regulation of DNA repair

20 A_23_P501996 UBE2V1 regulation of DNA repair

21 A_24_P5935 UBE2V1 regulation of DNA repair

Across 3 models

Agilent ID Gene Name Biological Pathway

1 A_23_P26522 AQP8 monocarboxylic acid transport
The two pathways marked with (*) correspond to modules containing seven and four transcripts, respectively (in order of
appearance). The sPLS model selected one transcript in each of those while the sgPLS selected all signals. For the rest of the
pathways, the totality of the transcripts that belong to that module were retained in the models being compared.
PLS: Partial Least Squares
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