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The geologic origin of the ancient, phyllosilicate-bearing bedrock at Oxia Planum, Mars, the ExoMars rover 
landing site, is unknown. The phyllosilicates record ancient aqueous processes, but the processes that 
formed the host bedrock remain elusive. Here, we use high-resolution orbital and topographic datasets 
from the HiRISE, CaSSIS and CTX instruments to investigate and characterize fluvial sinuous ridges (FSRs), 
found across the Oxia Planum region. The FSRs form segments up to 70 km long, are 20-600 m wide, 
and up to 9 m in height, with sub-horizontal layering common in ridge margins. Some FSRs comprise 
multi-story ridge systems; many are embedded within the phyllosilicate-bearing bedrock. We interpret 
the FSRs at Oxia Planum as deposits of ancient, episodically active, alluvial river systems (channel-
belt and overbank deposits). Thus, at least some of the phyllosilicate-bearing bedrock was formed by 
ancient alluvial rivers, active across the wider region, though we do not exclude other processes from 
contributing to its formation as well. The presence of alluvial floodplains at Oxia Planum increases the 
chances of the ExoMars rover detecting signs of ancient life. Future exploration by the ExoMars rover 
can verify the alluvial interpretation and provides an opportunity to investigate some of the oldest river 
deposits in the Solar System.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction and the geology of Oxia Planum

The main objective of the European Space Agency (ESA) Exo-
Mars “Rosalind Franklin” rover mission is to search for evidence of 
past life on Mars (Vago et al., 2017). Noachian-aged, phyllosilicate-
bearing bedrock exposures at Oxia Planum, the landing site for 
the mission (Quantin et al., 2021), forms the main sampling target 
as it provides strong evidence for ancient aqueous processes and 
could potentially preserve organic material (Westall et al., 2015). 
Although the phyllosilicates are widespread across the landing site, 
it is unclear whether they are authigenic and/or detrital, or what 
processes formed the host bedrock (Quantin et al., 2021; Mandon 
et al., 2021). Understanding the depositional process that formed 
these rocks and the paleo-environmental conditions under which 
they were laid down, is critical for mission success. Although land-
ing sites for previous missions have been proposed at the nearby 
and similarly ancient Mawrth Vallis (Grant et al., 2011, 2018), no 
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rover mission has ever visited a region on Mars as old as Oxia 
Planum.

Oxia Planum itself comprises a shallow topographic basin, sit-
uated on the margin of hemispheric dichotomy of Mars, which 
divides the highlands of Arabia Terra to the southeast from the 
Chryse Planitia lowlands to the northwest (Fig. 1). The bound-
aries of the Oxia basin may demarcate an ancient, highly de-
graded impact structure (Fawdon et al., 2021). The depth of the 
phyllosilicate-bearing bedrock basin fill is unknown, but is at least 
100 m in some areas (Quantin et al., 2021). The Oxia Planum 
Fe/Mg phyllosilicates are part of the regionally extensive circum-
Chryse phyllosilicates, which are best exposed at Mawrth Vallis 
(e.g., Noe Dobrea et al., 2010; Loizeau et al., 2007). Sub-horizontal, 
meter-scale layering, exposed in the phyllosilicate-bearing bedrock 
at Oxia Planum generally points to a sedimentary origin, although 
multiple formation hypotheses for the bedrock are also possi-
ble, including: large scale lava flows, volcaniclastic deposits, im-
pactogenic materials, aeolian deposits, or fluvio-lacustrine deposits 
(Quantin et al., 2021; Mandon et al., 2021). Combined observations 
from the High Resolution Imaging Science Experiment (HiRISE; 
McEwen et al., 2007), Colour and Stereo Science Imaging System 
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Fig. 1. (a) MOLA topographic map showing the distribution of fluvial sinuous ridges (FSRs; black solid lines) and fluvial valleys (white lines) in the Oxia Planum region. 
Detections of phyllosilicate minerals are shown in red (modified from Quantin et al., 2021). The ExoMars 2022 landing ellipses are shown in yellow. Contours shown at 100 
m intervals as fine grey lines. (b) CaSSIS image showing the phyllosilicate-bearing bedrock at Oxia Planum. (b) CaSSIS image of dark, crater-retaining unit. (c) CaSSIS image 
of light-toned mounds. Both the dark, crater-retaining unit and the light-toned mounds overlie the phyllosilicate-bearing bedrock. All image IDs for figures are provided in 
Table S2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(CaSSIS; Thomas et al., 2017) and the Compact Reconnaissance 
Imaging Spectrometer for Mars (CRISM; Murchie et al., 2007) di-
vide the phyllosilicate-bearing bedrock at Oxia Planum into at least 
two distinct sub-units, which may reflect compositional variations: 
an underlying, orange-toned unit and an overlying, more olivine-
rich, blue-toned unit (Mandon et al., 2021; Parkes Bowen et al., 
2022).

At the eastern margins of the Oxia Planum landing ellipse is 
a 10 km long sediment fan (Fig. 1), previously interpreted as 
a delta, which likely formed in multiple stages (Quantin et al., 
2021; Molina et al., 2017). The fan is sourced from a regional 
highland catchment to the southeast, including the extensive and 
long-lived Coogoon Vallis system (Fawdon et al., 2022; Molina et 
al., 2017). The fan illustrates how fluvial processes might have 
transported detrital phyllosilicates from the highland catchment 
into Oxia Planum, but is interpreted to postdate the formation of 
the phyllosilicate-bearing bedrock (Quantin et al., 2021; Mandon 
et al., 2021). Two additional, geologically younger materials are 
found at Oxia: a dark-toned, crater-retaining unit and a series of 
light-toned mounds. Both were probably once more extensive, sug-
gesting that the entire region has been subject to widespread and 
severe erosion (Quantin et al., 2021; McNeil et al., 2021). The dark 
crater-retaining unit has previously been interpreted as an early 
Amazonian-age volcanic unit (Quantin et al., 2021). The paleo-
surface now represented by the mounds is constrained by regional 

stratigraphic relationships to have formed in the early to middle 
Noachian (McNeil et al., 2021).

Fawdon et al. (2022) identified several fluvial sinuous ridges 
(FSRs) in the Oxia basin, providing further evidence for fluvial ac-
tivity near the landing site. FSRs, or “inverted channels”, are ridges 
of indurated, fluvially deposited sediment exhumed by differential 
erosion (e.g., Burr et al., 2010; Williams et al., 2009; Davis et al., 
2016). Examples on both Earth and Mars demonstrate that FSRs 
may comprise either a single system channel-fill or deposits of mi-
grating and aggrading river channel-belts (e.g., Hayden et al., 2019; 
Davis et al., 2019; Balme et al., 2020; Zaki et al., 2021). The lat-
ter are particularly relevant for understanding paleo-environmental 
conditions as they may record multiphase depositional events over 
geologic timescales. Having testable hypotheses ahead of the Ex-
oMars rover landing is critical for any time-limited investigations 
of the fluvial sinuous ridges performed on the surface. Here, we 
explore the processes that the FSRs may record, their relationship 
to the phyllosilicate-bearing bedrock, and the implications of their 
existence for its origin.

2. Data and methods

We investigated FSRs in Oxia Planum using orbital datasets in-
cluding HiRISE (McEwen et al., 2007), CaSSIS (Thomas et al., 2017), 
and Context Camera (CTX; Malin et al., 2007) image and topo-
graphic datasets. We mapped the distribution of potential FSRs 
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Fig. 2. CTX and HiRISE images of FSR 2, south of the Oxia Planum landing ellipse. (a) CTX image showing ∼10 km section of FSR (highlighted by red arrows). There are several 
examples of smaller ridges partially exhumed from the phyllosilicate-bearing bedrock. (b) Oblique, 3D HiRISE view of FSR (highlighted by red arrows) facing northeast (note 
X and Y are the same as in (a)). PBRs have eroded into both the phyllosilicate-bearing bedrock and the FSR. DEM constructed from ESP_069815_1975 and ESP_072017_1975. 
(c) HiRISE image showing section of FSR with a sharp kink around the impact crater, suggesting paleo-flow conformed to topography.

in the vicinity of Oxia Planum onto a CTX mosaic basemap (6 
m/pix) and accompanying digital elevation model (DEM; 20 m/pix; 
Fawdon et al., 2021). Our mapping was supplemented by georef-
erenced HiRISE and CaSSIS images where available and we built 
on the earlier map of Fawdon et al. (2022). We investigated the 
morphology of the FSRs using a combination of panchromatic CTX 
images, infrared-red-blue (IRB) and red only HiRISE images (0.25 
m/pix), and near infrared-panchromatic-blue (NPB) false color CaS-
SIS images (4.5 m/pix). Where possible, we generated additional 
HiRISE and CTX DEMs using the USGS Integrated Software for Im-
agers and Spectrometers (ISIS) software and the BAE photogram-
metric package SOCET SET (Kirk et al., 2008). In cases where SOCET 
SET failed to produce the DEM, we used the NASA Ames Stereo 
Pipeline (Beyer et al., 2018). DEMs were tied to Mars Orbital Laser 
Altimeter (Zuber et al., 1992) topography and exported with a 
post spacing of 20 m/pixel and 1 m/pixel for CTX and HiRISE, re-
spectively. These DEMs were supplemented with MOLA topography 
(463 m/pix).

3. Observations

3.1. Catchment and morphology of FSR systems

We define four FSR systems (from northeast to southwest, 1-
4; Fig. 1). They each drain a region separate to the larger Coo-
goon Vallis catchment, which connects to the eastern sediment fan 
(Fawdon et al., 2022). FSR system 1 is found within the eastern 
part of the landing ellipse; all other systems occur south or south-
west of the landing site, but in the same assemblage of geologic 
materials. All four FSR systems also share the same morphologic 
characteristics: they are straight to sinuous (sinuosity 1-1.4), tens 

to hundreds of meters wide (range is 20-600 m), and morpholog-
ically highly degraded (Figs. 2, 3). Where suitable CTX or HiRISE 
topography was available, the FSRs were measured to be 1-9 m 
above the adjacent bedrock. The FSRs are mostly found in contigu-
ous to semi-contiguous segments; the longest individual segment 
is ∼70 km. The FSRs are usually set within low relief plains or 
in subtle (meters deep), approximately kilometer-wide valleys, and 
are often found downslope of more well-defined erosional valleys 
(Figs. 2, 3, 4, S1). The ridge trends are perpendicular to contour 
lines, with their upslope ends being 100-200 m higher in ele-
vation than the downslope ends (Fig. 1). The inferred paleoflow 
directions are broadly to the north or northwest, towards Chryse 
Planitia, where the FSRs eventually become unrecognizable. Sub-
horizontal, meter-scale layering is clearly present in the margins of 
the FSRs, and grades into the adjacent and underlying terrain (i.e., 
the phyllosilicate-bearing bedrock; Figs. 2, 3). Beyond this, there is 
no discernable sedimentary architecture recognizable in FSR mar-
gins at the scale of the available data.

3.2. Relationship of FSRs to the surrounding terrain

A comparison of the FSR locations and previous detections of 
phyllosilicates in Oxia Planum (Carter et al., 2015; Quantin et al., 
2021) demonstrates significant overlap (Fig. 1). Most of the main 
and peripheral FSR systems are situated on or near detections of 
phyllosilicates. However, due to the limits of orbital detections, 
phyllosilicates are likely to be more abundant across the region 
than shown in Fig. 1 (Murchie et al., 2007); certainly, the morpho-
logical characteristics of the phyllosilicate-bearing bedrock (e.g., 
light-toned, sub-horizontal layering, fractured) can be seen across 
areas that extend far beyond those with spectral phyllosilicate sig-
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Fig. 3. CaSSIS and HiRISE images of FSR System 3 southwest of Oxia Planum landing ellipse. (a) CaSSIS NPB image showing FSR with multiple branches set within the 
phyllosilicate-bearing bedrock. (b) HiRISE IRB image showing section of FSR. Here, multiple vertically stacked ridges are present and in places, the FSR is not covered by the 
dark crater-retaining unit. (c) HiRISE IRB showing section of FSR covered by dark, crater-retaining unit. However, sub-horizontal layering is still visible in the FSR margins.

natures (Quantin et al., 2021; Mandon et al., 2021). CaSSIS NPB 
and HiRISE IRB images reveal that the FSRs are generally con-
fined to the blue-toned (stratigraphically higher) sub-unit of the 
phyllosilicate-bearing bedrock (Fig. 3). Many FSR systems appear 
partially exhumed from within the phyllosilicate-bearing bedrock 
(Fig. 2, 3). Periodic bedrock ridges (PBRs; Montgomery et al., 2012), 
parallel sets of aeolian-formed ridges eroded into bedrock, pre-
viously identified across large parts of the phyllosilicate-bearing 
bedrock at Oxia Planum (Silvestro et al., 2021; Favaro et al., 2021), 
are also superposed on several FSR systems and the adjacent 
bedrock (e.g., Fig. 2). Recently, bedrock ridges were also observed 
by the Curiosity rover at Glen Torridon in Gale crater, and similarly 
interpreted as PBRs (Stack et al., 2022). FSR system 2, south of the 
landing site is overlain by the eastern sediment fan (Fig. 5).

Generally, FSR pathways conform to the local topography, ex-
cept where they are deformed by tectonic wrinkle ridges; there are 
examples of FSRs converging on degraded impact craters, only to 
be sharply diverted around them on approach (Fig. 2c). Addition-
ally, shallow, degraded, impact craters (typically < 500 m diam-
eter), which have formed into the phyllosilicate-bearing bedrock 
adjacent to the FSRs, are commonly infilled (Fig. 6). In some 
cases, the infill comprises light-toned, concentric layered deposits 
(Figs. 6b, c, e, f); in others, craters have been filled and/or buried 
almost entirely (Fig. 6d). Similar infill is not present in less de-
graded, fresher impact craters (i.e., those with preserved ejecta and 
well-defined rims). Some of the FSR systems appear covered by 

the regionally recurrent, dark crater-retaining unit (Quantin et al., 
2021). However, we note that (1) this coverage is not continuous 
along the entire length of FSRs and (2) in places, the dark crater-
retaining unit has been eroded back, revealing a distinct, underly-
ing ridge structure (Fig. 3). This is particularly apparent in CaSSIS 
and HiRISE images (Fig. 3). Like other examples, these FSRs also 
bear similarities in tone, color, and texture, to the phyllosilicate-
bearing bedrock, while the dark crater-retaining unit generally ap-
pears to be of limited vertical thickness (we estimate ∼1 m or less, 
but this is at the limit of what we can measure vertically using our 
HiRISE DEMs. We note that this is also the case for other regional 
examples of FSRs, outside of Oxia Planum. One example, FSR sys-
tem 3, is superposed by light-toned mounds (McNeil et al., 2021), 
potentially putting a lower age limit on FSR formation (Fig. 3; i.e., 
middle Noachian or younger).

4. Discussion

4.1. Interpretation of the fluvial sinuous ridges

We interpret the FSRs as exhumed fluvial deposits. The FSRs are 
morphologically distinct from large-scale tectonic wrinkle ridges 
(e.g., Andrews-Hanna, 2020), which have deformed the region and 
do not generally conform to regional topographic trends. Also, 
there are no recognizable glacial landforms associated with the 
FSRs, making an esker interpretation unlikely (Butcher et al., 2021). 
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Fig. 4. Planview CaSSIS NPB mosaic showing part of FSR System 4, approximately 160 km southwest of the Oxia Planum landing site. Like FSR System 3, the ridge is covered 
by the dark, crater-retaining unit.

Fig. 5. (a) CTX mosaic showing the delta-like sediment fan at the eastern margin of Oxia Planum. The inferred paleo-flow direction of FSR system 2 contrasts with that of 
the delta-like sediment fan. Negative relief channels are shown by white lines, FSRs are shown by black lines. (b) HiRISE image showing that FSR system 2 (yellow arrows) 
disappears as it approaches the distal margin of the sediment fan, suggesting it is buried by the fan. (c) CTX image showing a channel (yellow arrows) emerging at the NW 
margin of the sediment fan, possible a continuation of FSR system 2.

We note that no FSRs are set within deep, erosional valleys; 
instead, they are found on low-relief plains (the phyllosilicate-
bearing bedrock; Figs. 2, 3, 4, S1a) or set within or downslope of 
shallow valleys (Figure S1b). The FSRs therefore likely represent 
the deposits of ancient, alluvial river systems that traversed the 
plains at and around Oxia Planum (e.g., Hayden et al., 2019; Davis 
et al., 2019; Balme et al., 2020; Zaki et al., 2021), rather than ero-
sive rivers incised into bedrock. Secondary ridges associated with 

and converging on the main systems could be either tributaries 
or earlier generations of rivers which are in different states of ex-
humation, or both.

The sub-horizontal layering in the FSRs (Figs. 2, 3) and ex-
amples of both partially exhumed and superposing ridge systems 
(i.e., ridge stacking; Fig. 3b) argues against simple channel-fill, de-
posited in a single event, composing the ridges. These characteris-
tics instead support an interpretation of the FSRs as the remains 
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Fig. 6. (a) MOLA topographic map showing distribution of degraded craters within the phyllosilicate-rich bedrock that have been infilled with light-toned layered deposit, 
and in some cases, buried almost entirely (yellow circles). We mapped the distribution of these features across 13 select HiRISE images of the phyllosilicate-rich bedrock. 
Detections of phyllosilicate minerals are shown in red (modified from Quantin et al., 2021). Higher concentrations of infilled craters generally occur in proximity to the FSRs 
(black lines). (b - f) HiRISE and CTX images showing light-toned layered material in degraded impact craters, which may represent sediment deposits formed in an alluvial 
or shallow lacustrine setting. (g) CaSSIS NPB image showing inverted crater composed of the dark, crater-retaining unit. Note we did not include these features in (a) as the 
formation of the dark, crater-retaining unit postdates the formation of the phyllosilicate-rich bedrock.

of channel-belt and floodplain deposits. The concentric layered de-
posits in impact craters adjacent to the FSRs may record overbank 
deposition and/or ponding in local accommodation (Fig. 6). Some 
of the FSRs have previously been interpreted as erosional channels 
that were later and exclusively filled by the dark crater-retaining 
unit (i.e., non-fluvially deposited material; Quantin et al., 2021). 
However, the observations that this material is generally thin (∼1 
m or less) and, in places, has been eroded back to reveal a distinct, 
underlying, layered ridge structure, invalidates this interpretation 
in at least these examples (Fig. 3). Instead, most of the ridge struc-
ture of the FSRs appears to be embedded within and exhumed 
from the phyllosilicate-bearing bedrock itself (Figs. 2, 3).

4.2. Constraints on phyllosilicate-bearing bedrock formation

We note that most of the FSRs are found outside the landing 
ellipse (Fig. 1). However, due to the inherent nature of migra-
tory river systems and the erosional processes that expose them 
in the rock record, it is unlikely that the FSRs as they are cur-
rently exposed represent the full extent of alluvial river systems 
at Oxia Planum, both spatially and vertically within the stratig-
raphy. Furthermore, the similar morphological characteristics on 
the phyllosilicate-bearing bedrock throughout the region points 
to common formational processes. Thus, we suggest that at least 
some of the phyllosilicate-bearing bedrock comprises alluvial (both 
channel-belt and floodplain) deposits, which developed as self-
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formed alluvial plains; this may be the case throughout the land-
ing ellipse and the wider region. The low relief (<10 m) and poor 
exposure of the FSRs across the Oxia Planum landscape may be 
due to a high mudstone fraction in the bedrock, which led to 
moderate differential erosion producing more subdued topography 
than is typical of other landscapes containing FSRs (e.g., Davis et 
al., 2019; Zaki et al., 2021). The FSR height (1-9 m) reveals the 
minimum vertical thickness of alluvial deposits at Oxia Planum; 
the true thickness of alluvial deposits is likely be greater. These 
ancient rivers provide one mechanism for the erosion, transport, 
and deposition of sediment in Oxia Planum. The upland catch-
ment from which these rivers seem to originate (Fawdon et al., 
2022), and the presence of impact craters which have altered their 
pathways within Oxia Planum, suggest that sediment was sourced 
both regionally in the highlands and locally from the phyllosilicate-
bearing bedrock itself, before being deposited elsewhere.

The presence of embedded and partially filled impact craters 
in the phyllosilicate-bearing bedrock (Fig. 6) points to substantive 
hiatuses in bedrock deposition and the formation of paleo-surfaces 
(e.g., Kite et al., 2017), followed by a later resumption in deposi-
tional processes. Thus, if alluvial river systems were responsible for 
the deposition of sedimentary bedrock here, they were probably 
episodically active, although the presence of stacked channel de-
posits (e.g., Fig. 3) suggests these episodes consisted of sustained 
aggradation (Colombera et al., 2015). The association of the FSRs 
with the blue-toned sub-unit of the phyllosilicate-bearing bedrock, 
is consistent with episodic activity, where the presence of olivine 
points to limited aqueous alteration (Mandon et al., 2021). Fur-
thermore, Fawdon et al. (2022) identified two major phases of 
fluvial activity separated by a substantial hiatus in the regional 
Coogoon Vallis system. Our interpretation does not constrain the 
origin of the phyllosilicates themselves as detrital or authigenic. 
If phyllosilicate-bearing sediments were present when these an-
cient river systems were active, the phyllosilicate minerals might 
have contributed to the stability of their banks (e.g., Lapôtre et al., 
2019). Our alluvial hypothesis does not exclude other sources of 
sediment playing a role in building the terrain as well (e.g., vol-
caniclastic, aeolian, impactogenic; Quantin et al., 2021; Mandon et 
al., 2021). If this is the case, the phyllosilicate-bearing bedrock may 
comprise alluvial deposits interbedded with other facies. It is pos-
sible that the wider, regional phyllosilicate-bearing bedrock across 
Chryse Planitia and Mawrth Vallis (e.g., Noe Dobrea et al., 2010; 
Loizeau et al., 2007) may also have had an alluvial origin; the pres-
ence of FSRs in these regions would help constrain this hypothesis.

4.3. Testing the alluvial hypothesis with the ExoMars rover

Our interpretation of an ancient alluvial environment can be 
reconciled with the former presence of a standing body of wa-
ter at Oxia Planum, previously interpreted from the presence of 
a delta-like sediment fan at the end of Coogoon Vallis (Quantin 
et al., 2021; Molina et al., 2017). It is likely that these differ-
ent paleo-environments existed at separate times; indeed, Quantin 
et al. (2021) suggest the delta-like sediment fan formed after the 
phyllosilicate-bearing bedrock (which contains the FSRs). Further-
more, investigations of terrestrial FSRs have shown that they can 
record multiple paleo-environments not apparent in planimetric 
pattern. For example, in the Californian Mojave Desert, Miller et 
al. (2018) document multiple examples of lake-rise pulses con-
tained within inverted paleochannels (i.e., FSRs) associated with 
the southern Lake Coyote in the late Quaternary. The lake-rise 
pulses cover a period of ∼10 ka and were identified from ra-
diocarbon dating of lacustrine fossils, but importantly were not 
recognizable in the ridge structure from orbital data (Miller et al., 
2018). A similar scenario at Oxia Planum is possible and evidence 

for lacustrine episodes recorded within the FSRs might only be re-
vealed by in situ investigations.

Our predictions of an ancient alluvial landscape in Oxia Planum 
can be readily tested by the ExoMars rover. If widespread alluvial 
plains are present at Oxia Planum, diagnostic outcrops and litholo-
gies such as conglomerates may be present. This is the case in the 
plains surrounding Mount Sharp in Gale crater, as imaged by the 
Curiosity rover (Williams et al., 2013; Grotzinger et al., 2014), de-
spite there being little evidence of an ancient alluvial environment 
from orbital data. If, for example, similar fine-pebble conglomer-
ates (2-40 mm coarse grain size range) occur at the Oxia Planum 
landing site, they would be identifiable at working distances of up 
to 50 m by ExoMars’ Panoramic Camera instrument, using its High 
Resolution Camera (Coates et al., 2017). Grain sizes measured from 
such outcrops could be used for paleo-hydrologic reconstructions 
(Williams et al., 2013), potentially revealing Noachian surface flow 
conditions. Additionally, the capability of the ExoMars rover to drill 
to 2 m depth into bedrock (Vago et al., 2017) would potentially 
allow the rover to investigate facies variation with depth, testing 
our alluvial interpretation of the bedrock. Sub-surface investiga-
tions could be supported by the rover’s ground penetrating radar, 
the Water Ice Subsurface Deposit Observation on Mars instrument 
(Ciarletti et al., 2017).

An ancient alluvial environment would provide the opportunity 
for the ExoMars rover to investigate the development of apparent 
bank-stable rivers in the absence of vegetation, a major outstand-
ing question in pre-Cambrian geology (e.g., Lapôtre et al., 2019). 
Due to the rapid burial of sediment, alluvial floodplains and la-
custrine environments are considered to have moderate to high 
preservation potential for organic matter (Summons et al., 2011). 
Thus, as phyllosilicate-bearing bedrock with morphology identi-
cal to the FSR-bearing surface shown here is widespread in the 
landing ellipse, our interpretation increases the likelihood that the 
ExoMars rover will encounter habitable paleoenvironments and 
meet its main mission objective of detecting ancient life. Finally, 
given the ancient age of the phyllosilicate-bearing bedrock (∼4 Ga; 
Quantin et al., 2021), if the alluvial hypothesis is correct, the Exo-
Mars rover may provide the opportunity to investigate in situ some 
of the oldest preserved river deposits in the Solar System.
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pds .lpl .arizona .edu /PDS/; (McEwen, 2006). (2) CTX: https://pds -
imaging .jpl .nasa .gov /volumes /mro .html; (Malin, 2007). (3) MOLA: 
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mann et al., 2003). CaSSIS data are available through the ESA 
Planetary Science Archive (http://archives .esac .esa .int /psa /# !Table %
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20View /CaSSIS =instrument). The CTX DEM mosaic of Oxia Planum 
is available at https://doi .org /10 .21954 /ou .rd .16451220 .v1. One 
HiRISE DEM used is available on the HiRISE PDS. All other CTX 
and HiRISE Digital Elevation Models and shapefiles created for 
this project are available at https://doi .org /10 .6084 /m9 .figshare .c .
6011638 .v2.
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