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Abstract
Motivation: Clustering is an unsupervised method for identifying structure in unlabelled data. In the 

context of cytometry, it is typically used to categorise cells into subpopulations of similar phenotypes. 

However, clustering is greatly dependent on hyperparameters and the data to which it is applied as 

each algorithm makes different assumptions and generates a different ‘view’ of the dataset. As such, 

the choice of clustering algorithm can significantly influence results, and there is often not one preferred 

method but different insights to be obtained from different methods. To overcome these limitations, 

consensus approaches are needed that directly address the effect of competing algorithms. To the best 

of our knowledge, consensus clustering algorithms designed specifically for the analysis of cytometry 

data are lacking.

Results: We present a novel ensemble clustering methodology based on geometric median clustering 

with weighted voting (GeoWaVe). Compared to graph ensemble clustering methods that have gained 

popularity in scRNA-seq analysis, GeoWaVe performed favourably on different sets of high-

dimensional mass and flow cytometry data. Our findings provide proof of concept for the power of 

consensus methods to make the analysis, visualisation and interpretation of cytometry data more 

robust and reproducible. The wide availability of ensemble clustering methods is likely to have a 

profound impact on our understanding of cellular responses, clinical conditions, and therapeutic and 

diagnostic options.

Availability: GeoWaVe is available as part of the CytoCluster package 

https://github.com/burtonrj/CytoCluster and published on the Python Package Index 

https://pypi.org/project/cytocluster. Benchmarking data described are available from 

https://doi.org/10.5281/zenodo.7134723.

Contact: burtonrossj@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction 

Clustering is an unsupervised method for identifying structure in 

unlabelled data. In the context of cytometry, the objective is to categorise 

events into groups of similar phenotypes. This technique is increasingly 

being adopted in the field and is widely regarded as an acceptable 

alternative to manual analysis (Aghaeepour et al., 2013; Weber and 

Robinson, 2016; Cheyng et al., 2021). However, the choice of algorithm 

appears to be often driven either by its availability in commercial software 

or ease of its use. In many instances, the reason behind the particular 

choice of algorithm is not discussed at all. Of note, clustering algorithms 

differ in the assumptions made of data, their performance tends to be 

highly data-specific and results can vary widely depending on the chosen 

hyperparameters (Ghosh and Acharya, 2011; Ronan et al., 2016; Pedersen 

and Olsen, 2020). 

Ensemble clustering (also referred to as consensus clustering) offers an 

opportunity to reduce this frequently encountered bias by combining the 

partitions of multiple clustering algorithms run on the same data to 

identify a consensus that is informed by multiple ‘views’, thereby 

reducing the dependence on any individual algorithm. Unlike ensemble 

methods in supervised classification, ensemble clustering has many 

challenges: the number of clusters may differ amongst the base partitions, 

the optimal number of consensus clusters is often unknown, and it is 

necessary to solve the correspondence issue of matching clusters between 

individual partitions (Ghosh and Acharya, 2011; Boongoen and Iam-On, 

2018).

Broadly speaking, ensemble clustering methods can be grouped into 

three categories: co-association methods, feature-based methods and 

methods using graph representations (Ghosh and Acharya, 2011; 

Boongoen and Iam-On, 2018; Vega-Pons and Ruiz-Shulcloper, 2011).

Co-association methods act on the pairwise similarity of clusters 

sourced from different algorithms. Consensus solutions can be derived 

from simple techniques such as agglomerative clustering of the binary co-

association matrix (N × N matrix, where N is the number of events, for 

instance the number of single cells) (Ronan et al., 2016) or the cluster-

based similarity partitioning algorithm (CSPA), that forms partitions on 

the derived similarity graph using the METIS software (Strehl and Ghosh, 

2002). Methods that act on co-association are burdened by space 

complexity and are therefore intractable for large data where such a matrix 

exceeds the available computer memory (Ghosh and Acharya, 2011).

Feature-based methods offer an alternative by presenting the problem 

as a label-association matrix (m × n matrix, where m is the number of 

unique clusters). Consensus solutions can be formulated with iterative 

voting, finite mixture models, pairwise agreement between clusters, or 

agglomerative clustering of this label-association matrix (Boongoen and 

Iam-On, 2018).

Another popular approach for consensus clustering is by using graph-

based methods, where a weighted graph of the clusters contributing to an 

ensemble is generated and then partitioned into k parts using a graph 

partitioning technique (Ghosh and Acharya, 2011; Boongoen and Iam-On, 

2018). Strehl and Ghosh (2002) developed the hyper-graph partitioning 

algorithm (HGPA) and the meta-clustering algorithm (MCLA), both 

heuristics that represent the clustering ensemble as a hypergraph. Later the 

hybrid bipartite graph formulation (HBGF) algorithm was introduced as 

an alternative approach that models clusters and observations in the same 

graph. In each case, consensus partitions are constructed from a 

subsequent bipartite graph (Fern and Brodley, 2004). The advantage of the 

aforementioned graph methods is their heuristic approach that avoids the 

need for a co-association matrix, making them applicable to large data.

Ensemble clustering methods have successfully been adopted in the 

field of single-cell RNA sequencing (scRNA-seq) but the methodologies 

chosen usually reflect the size of data generated by this technique and do 

not address the space complexity issues that arise from larger datasets. the 

graph partitioning-based ensemble method for single-cell clustering, Sc-

GPE (Zhu et al., 2020), is an example of a solution deploying co-

association to the problem of ensemble clustering, where a co-association 

matrix is weighted by the similarity (adjusted rand index) of contributing 

clustering methods. However, the dependence on a co-association matrix 

makes this technique intractable for cytometry data. The same limitation 

applies to SC3 (Kiselev et al., 2017), another consensus approach for 

scRNA-seq employing CSPA for ensemble clustering. Single-cell 

aggregated (from ensemble) clustering (SAFE-clustering) (Yang et al., 

2018) avoids the need for generating a co-association matrix by applying 

graph-based methods instead but the implementation only allows a limited 

number of contributing algorithms to the consensus and is exclusively 

designed for scRNA-seq.

In contrast to these advances in scRNA-seq data analysis, ensemble 

clustering methods have yet to be developed specifically for cytometry 

data analysis. Generic techniques from the graph-based ensemble 

clustering family failed to find additional benefits over existing algorithms 

(Weber and Robinson, 2016). However, an ensemble methodology that 

utilises the label-association matrix showed improved performance 

compared to individual algorithms (Aghaeepour et al., 2016). Despite the 

reported improvement, that publication did not disclose a readily available 

implementation of the methodology, thus making it difficult to reproduce 

their approach.

Of note, methods developed for scRNA-seq data analysis may not scale 

to the size of data encountered in cytometry data analysis, which can be 

hundreds of times greater. We here benchmarked a range of graph 

ensemble clustering methods against popular clustering algorithms for 

cytometry data analysis and present a novel ensemble clustering 

methodology based on geometric median clustering with weighted voting 

(GeoWaVe). Unlike previous ensemble clustering techniques, GeoWaVe 

is explicitly designed for cytometry data analysis and offers a 

computationally inexpensive heuristic approach, permitting the analysis 

of large data. Compared to graph ensemble clustering methods that have 

gained popularity in scRNA-seq analysis, GeoWaVe performed 

favourably on different sets of high-dimensional data generated using 

cytometry by time of flight (CyTOF) or multicolour flow cytometry. Our 

findings provide proof of concept for the power of consensus methods to 

make cytometry data analysis more robust and reproducible.

2 Methods

2.1 Benchmarking datasets

Six cytometry datasets were chosen for benchmarking ensemble clustering 

methods (Supplementary Table S1). The public CyTOF datasets ‘Levine-

13’, ‘Levine-32’, and ‘Samusik’ were obtained from open-source 

repositories (Weber et al., 2016) and arc-sinh transformed with a standard 

cofactor of 5. Doublets, debris and dead cells were removed, and ground-

truth labels were taken from the original publications, with manual gating 

by the respective authors (Levine et al., 2015; Samusik et al., 2016). A 28-

colour spectral flow cytometry dataset, ‘OMIP’, was obtained from open-

source repositories (Mair and Prlic, 2018). Data were arc-sinh transformed 

with a standard cofactor of 150 and manually gated according to the gating 

strategy described by the original authors (Mair and Prlic, 2018). The 

following populations were identified and served as a ground-truth for 

comparison of results from the clustering algorithms: CD14+ monocytes; 

CD19+ CD80+ and CD19+ CD80− B cells; CD45RA+ CCR7+ naïve CD3+ 

CD4+ T cells; CD45+ CCR7+ naïve CD3+ CD8+ T cells; CD3+ CD4+ CD8+ 
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GeoWaVe: Ensemble clustering of cytometry data

double positive (DP) and CD3+ CD4− CD8− double negative (DN) T cells; 

CD56+ natural killer (NK) cells; and CD141+ dendritic cells (DCs), CD1c+ 

DCs, CD1c− CD141− (DN) DCs, and CD123+ pDCs. 

Finally, two in-house generated flow cytometry datasets were used, 

‘Sepsis’ and ‘Peritoneal Dialysis’ (PD). Both datasets were acquired using 

a 16 colour BD LSR Fortessa. Sepsis data were derived from nine acute 

sepsis patients (see Supplementary Methods; Supplementary Table S2), 

were arc-sinh transformed (standard cofactor of 150) and batch effect 

corrected using the Harmony algorithm (Burton et al., 2021). Each sample 

was manually gated for single live CD4+ and CD8+ T cells, Vδ2+ γδ T cells 

and CD161+ Vα7.2+ mucosal-associated invariant T (MAIT) cells. The 

identified lymphocyte populations then served as a ground-truth for 

comparison of results from the clustering algorithms. Peritoneal Dialysis 

(PD) data were derived from a single adult receiving peritoneal dialysis 

with no previous infections for at least three months prior to sampling 

(Burton et al. 2021). Leukocyte populations in peritoneal effluent were 

identified as live CD45+ immune cells and manually gated for CD3+ T 

cells, CD19+ B cells, CD15− CD14+ monocytes/macrophages, CD15+ 

neutrophils, CD15− CD14+/− CD1c+ DCs, and CD15− SIGLEC-8+ 

eosinophils. The identified populations then served as a ground-truth for 

comparison of results from the clustering algorithms.

Base clustering and graph ensemble methods, and the metrics used to 

evaluate their performance against ground-truth labels are described in 

Supplementary Methods. To make analysis manageable, where data 

exceeded 300,000 observations (which was the case for the Samusik, 

OMIP, Sepsis and PD data), down-sampling was performed. To 

demonstrate the computational efficiency of GeoWaVe, additional 

experiments were performed using synthetic data (see Supplementary 

Methods).

2.2 Geometric median clustering with weighted voting

Graph ensemble methods address issues of computational complexity by 

using a heuristic, deriving the consensus from graph representations of the 

label-association matrix, rather than from the unmanageable co-

association matrix. Taking inspiration from this approach, we propose a 

novel alternative heuristic ensemble clustering method that incorporates 

information about the original feature space: geometric median clustering 

with weighted voting (GeoWaVe), where the clusters generated by base 

clustering algorithms contributing to an ensemble are summarised by their 

geometric median. The geometric median (implemented with the 

hdmedians package; Roberts et al., 2017) was chosen over other measures 

of central tendency because it is robust to outliers, is not necessarily a 

point from the original data, can handle negative values, and is defined in 

any dimension. 

Using this approach, a summary of the expression profile of all clusters 

contributing to the consensus is generated, which can subsequently be 

clustered into consensus clusters (Figure 1 heatmap); a consensus cluster 

being a collection of clusters of similar phenotype. Since each cluster is 

treated as an individual contribution, differences in the number of clusters 

provided by each input algorithm is not consequential, meaning GeoWaVe 

can accept the outputs of any combination of clustering algorithms.

The clusters that contribute to a consensus are overlapping sets, given 

that each base clustering algorithm is exposed to the same data. Therefore, 

it is possible that an event can be assigned to more than one consensus 

cluster. This will occur more frequently for events that sit on the boundary 

between clusters. To solve this problem, where an event is assigned to 

multiple consensus clusters a score is calculated for each consensus cluster 

and the event assigned to the consensus with the maximum score.

Fig. 1.  Schematic diagram of the GeoWaVe algorithm. (A) Clusters generated by 

multiple clustering algorithms are pooled, and (B) the geometric median for each cluster is 

calculated to create a matrix of c clusters. (C) This matrix of cluster geometric medians 

(clusters of the Levine-13 data shown here as an example) is clustered into consensus 

clusters; groups of clusters within similar expression profiles. Consensus cluster labels are 

then assigned to individual events and overlapping consensus assignments handled with a 

score that accounts for the distance of the event to the members of each consensus cluster.

Given that a consensus cluster can be defined as a set of clusters c ∈ C, 

and a single cluster c is a finite set of n-dimensional vectors, the geometric 

median  of each cluster c can be calculated according to Equation 1 𝑢
(Roberts et al., 2017):

(1)𝑢 =  argmin 𝑥 ∈  ℝ ‖𝑥 ―  𝑥𝑖‖2

For each event t assigned to more than one consensus cluster C, the 

Manhattan distance between the event and the geometric median of each 

member cluster of C is computed. The sum of these distances normalised 

by the size of the consensus  (i.e. the number of clusters within the |𝐶|

consensus) gives a weighting factor p for the consensus cluster C relative 

to the event t (Equation 2):

(2)𝑝 =
∑𝑐 ∈ 𝐶‖𝑡 ―  𝑢(𝑐)‖1

|𝐶|

The consensus cluster score for C relative to an event t is then calculated 

as the size of the consensus  divided by the weighting factor p (Equation |𝐶|

3):

(3)score =  |𝐶|𝑝
The motivation for the consensus cluster score is derived from the fact 

that not all clusters are equally defined, and some may be a poor fit for a 

given event. To account for this possibility, the majority voting algorithm 

is weighted by the distance from an event to the centre of each cluster that 

contributes to a consensus. This method ensures that the consensus an 
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R.J. Burton et al.

event is assigned to was informed by both the number of supporting 

algorithms (described by the term  in Equation 3) but also the quality |𝐶|

of the clusters in that consensus (described by the term p in Equation 3).

The choice of clustering algorithm applied to the geometric medians of 

clusters is ambiguous in that any number of existing methods may be 

suitable to the task. The advantage of geometric medians as a heuristic is 

that the expression profile can be visualised easily as a heatmap (Figure 

1), and different clustering methods can be applied and critiqued. This 

allows the investigator to introduce prior knowledge, such as known 

phenotypes expected to occur in the data. The ambiguity of the clustering 

algorithm applied to the geometric median matrix allows for the use of 

methods such as the ConsensusClusterPlus method (Wilkerson and Hayes, 

2010), choosing an optimal number of clusters from a given range. 

Therefore, an investigator can visualise the geometric medians and choose 

a range of clusters based on an intuition driven by the biological question. 

GeoWaVe is available as part of the CytoCluster package, developed 

for Python version 3.8 or greater. The CytoCluster package is available on 

the Python Package Index (PyPI) and offers popular cytometry clustering 

algorithms, graph ensemble clustering and GeoWaVe ensemble 

clustering, as well as numerous utilities and plotting tools, delivered 

through a simple object-orientated application programming interface

3 Results

3.1 Graph ensemble clustering methods fail to outperform 

individual clustering algorithms for cytometry data 

analysis

Diversity among the members of an ensemble can enhance results 

(Boongoen and Iam-On, 2018). Ensemble clustering solutions should also 

take input from informative algorithms suited to the analytical task in 

question. Therefore, we chose algorithms that have reported good 

performance for cytometry data analysis, are well understood, have 

differing underlying methodologies, and are computationally efficient.

We here sought to benchmark ensemble methods from the literature 

using externally and internally generated data, in particular ensemble 

methods that scale to large cytometry data (greater than 100,000 data 

points), namely graph-based methods. Base clustering algorithms and 

ensemble methods were tasked with clustering three CyTOF datasets with 

available ground-truth labels. The Levine-13 data describe a total of 

265,627 bone marrow cells from two healthy human donors and include 

13 parameters (Supplementary Figure S1) (Levine et al., 2015). Levine-32 

describes 167,044 bone marrow cells from a single healthy human donor 

but at higher resolution with 32 CyTOF parameters (Supplementary 

Figure S2) (Levine et al., 2015). Some examples of challenges presented 

by these two datasets include overlapping monocyte subsets differentiated 

by CD11b expression in the Levine-13 data, and small subsets of B-cells 

differentiated by IgM and IgD expression in the Levine-32 data. The 

Samusik data describe bone marrow samples with a total of 841,644 cells 

from 10 C57BL/6J mice and identified 24 populations using 39 CyTOF 

parameters (Supplementary Figure S3) (Samusik et al., 2016); the 

branching topology of which offers a unique challenge to any clustering 

algorithm aiming to partition data in meaningful ways (Figure 2). 

In addition to these three CyTOF datasets, we included the OMIP-44 

28-colour spectral flow cytometry dataset for the identification of human 

dendritic cell compartments (Mair and and Prlic, 2018). Of the 28 

parameters, 15 were retained for the identification of the main subsets 

described by the original authors (Supplementary Figure S4). To examine 

the performance on traditional flow cytometry data, two in-house datasets 

acquired with a 16-colour BD LSR Fortessa were included. The first was 

for the identification of conventional and non-conventional T cell subsets 

from peripheral blood mononuclear cells (PBMCs) from patients 

diagnosed with sepsis (Supplementary Figure S5A) and the second, for 

identification of leukocyte populations in peritoneal effluent from a 

patient undergoing peritoneal dialysis (PD) (Supplementary Figure S5B). 

Both the Sepsis and PD data offer unique challenges because of relatively 

small and ambiguous populations being present amongst a backdrop of 

more predominant cell types (Figure 2).

Fig. 2. UMAP density plots of the Levine-13, Levine-32, Samusik, Sepsis, OMIP and 

Peritoneal Dialysis (PD) data. Colour intensity corresponds to the density of observations 

in a region of events.

Figure 3 shows the performance of the base clustering algorithms (the 

algorithms that were used to contribute to ensemble clustering), graph 

ensemble clustering algorithms, and the GeoWaVe variants, measured by 

adjusted rand index (ARI). In most cases, MCLA offered greater 

performance compared to the other graph ensemble methods, a finding 

corroborated by Fowlkes-Mallows index (FMI; Supplementary Figure 

S6A) and adjusted mutual information (AMI; Supplementary Figure 

S6B). Although in the Levine-13 and Levine-32 data graph ensemble 

methods improved on the performance of algorithms such as SPADE or 

FlowSOM, in only one of the six datasets (OMIP) did any graph ensemble 

outperform the base clustering algorithms. Based on this evidence, it is 

difficult to justify the use of graph ensemble methods for cytometry data.

The graph ensemble methods required that the number of consensus 

clusters (k) be pre-defined. Selection of k was performed using internal 

performance metrics (Supplementary Figure S7) as described in the 

Supplementary Methods.  To test whether the performance of graph 

ensemble methods was adversely affected by the chosen method for 

selecting k, the performance of graph-based clustering algorithms was 

examined across different values of k using external evaluation metrics. 

HBGF was chosen because it had the best runtime of the three graph 

ensemble methods. Here, performance was optimum for low values of k 

despite the number of ground-truth populations being much larger for the 

Levine-13, Samusik, and OMIP datasets (Supplementary Figure S8). The 

choice of k was therefore assumed not to be a factor in the poor 

performance of graph ensemble methods in this case. Taken together, our 

findings demonstrate that graph ensemble clustering methods for mass and 

flow cytometry data performed worse than one or more contributing base 

clustering solutions.
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GeoWaVe: Ensemble clustering of cytometry data

Fig. 3. Adjusted rand index (ARI) for base clustering 

algorithms (left), graph ensemble methods (middle) and 

GeoWaVe ensemble (right) for the six benchmark 

datasets. The best ARI score for each dataset is shown as a 

dotted orange line, and the best performing method for those 

data is coloured in orange. * The optimal number of clusters 

k was chosen using the ConsensusClusterPlus method 

(Wilkerson and Hayes, 2010).

3.2 GeoWaVe outperforms graph ensemble methods and 

improves upon the performance of base clustering 

algorithms

To validate GeoWaVe, multiple algorithms for clustering the geometric 

medians were tried. Affinity propagation and mean-shift were compared 

because of their ability to select the optimal number of clusters from 

characteristics of the data. k-means and agglomerative hierarchical 

clustering were also tested, with the optimal number of clusters chosen 

from a range of clusters using the ConsensusClusterPlus method 

(Wilkerson and Hayes, 2010). For agglomerative hierarchical clustering a 

variety of linkage methods and distance metrics were tried. Agglomerative 

hierarchical clustering offers an additional advantage to the end use, 

because consensus clusters can be easily visualised as a dendogram and 

clustered heatmap, allowing the investigator to choose an appropriate 

range for the number of consensus clusters driven by their understanding 

of the underlying biology.

GeoWaVe performance was compared to base clustering algorithms 

and graph ensemble methods using external evaluation metrics. GeoWaVe 

outperformed all other methods in five of the six datasets when comparing 

ARI (Figure 3) and FMI (Supplementary Figure S6). GeoWaVe also 

outperformed graph ensemble methods when comparing ARI, FMI and 

AMI but failed to outperform base clustering methods in terms of AMI in 

the Levine-13 and Samusik data.

The effect of the choice of clustering algorithm applied in GeoWaVe 

was data specific. For the Levine-13, Samusik, and OMIP data the choice 

of algorithm was negligible, whereas hierarchical clustering for the 

Levine-32 data was sensitive to the choice of distance metric. Affinity 

propagation gave very poor performance for Sepsis data. Likewise, 

affinity propagation, along with k-means and Ward clustering resulted in 

poor performance for PD data.

3.3 GeoWaVe outperforms graph ensemble methods for the 

detection of under-represented populations

External evaluation metrics used in the prior section offer performance 

criteria that are independent of the labels, i.e. they do not require a like-

to-like matching of cluster and ground-truth labels. Instead, measures of 

similarity between the cluster labels and ground-truth labels were used. 

Aghaeepour et al. (2013), Samusik et al. (2016) and Weber and Robinson 

(2016) alternatively framed such problems in the context of a 

classification task: a one-to-one mapping of ground-truth labels to clusters 

was achieved using the Hungarian algorithm such that the sum of F1 

scores across ground-truth labels is maximised, and the precision (positive 

predictive value), recall (sensitivity) and F1 score (harmonic mean of 

precision and recall) for each ground-truth label are reported.

This procedure was repeated for the clustering algorithms bench-

marked in previous sections and the ensemble clustering solutions. Figure 

4 shows the average F1 score for the base clustering algorithms, graph 

ensemble methods and GeoWaVe along with the standard deviation (error 

bars) showing the variation in F1 score between populations. The F1 

score, precision and recall are reported in Supplementary Figure S9. 

GeoWaVe continued to outperform graph ensemble methods across the 

six benchmark datasets but failed to match the F1 score obtained by 

methods such as PHATE combined with k-means in the Levine-13 data 

and Phenograph in the Samusik data. While MCLA graph ensemble 

clustering was more comparable to GeoWaVe in the Sepsis data when 

observing F1 score, GeoWaVe clustering still outperformed MCLA in 

terms of precision, recall and F1 score. GeoWaVe clustering offered 

optimal average F1 scores for Levine-13, Sepsis, OMIP and PD data, and 

outperformed graph ensemble methods across all datasets.

An advantage to matching clusters to ground-truth populations using 

the Hungarian algorithm was the ability to compare the performance at the 

population level. The F1 score for ground-truth populations for the top 

performing algorithm from the base-clustering, graph ensemble 

clustering, and GeoWaVe ensemble clustering are shown as heatmaps in 

Figure 5 and 6. Each row includes a measure of the population size as an 

additional heatmap on the y-axis. The heatmaps demonstrate the superior 

performance of GeoWaVe compared to graph ensemble methods for the 

identification of under-represented populations such as plasmacytoid 

dendritic cells (pDCs) in the Levine-13 dataset, plasma cells, basophils and 

pro-B cells in Levine-32, pDCs in the OMIP data (Figure 5), B cells and 

dendritic cells (DCs) in the PD data, and MAIT cells in the Sepsis data 

(Figure 6).

GeoWaVe matched the performance of base clustering algorithms for 

under-represented cell populations, whereas the graph ensemble clustering 

algorithms failed to do so. GeoWaVe also showed improved performance 

over base clustering algorithms for identifying populations such as 

monocytes, and subsets of T cells in the Levine-32 data, myeloid DCs 

(mDCs) in the Samusik data, MAIT cells in the Sepsis data, and 

eosinophils in the PD data. Despite the success of GeoWave in 

comparison to graph ensemble methods, it still failed to identify some rare 

subsets completely. In contrast, base clustering algorithms showed either 

good performance or identification of at least some of the population. 

Examples include immature B cells in the Levine-13 dataset, CD16+ NK 

cells in the Levine-32 dataset, and plasma cells in the Samusik dataset.
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R.J. Burton et al.

Fig. 4. Performance of base clustering algorithms, graph 

ensembles and GeoWaVe ensembles, after matching 

cluster labels to ground-truth labels using the Hungarian 

linear assignment algorithm (as described by Weber and 

Robinson, 2016) and maximising the sum of F1 scores 

across ground-truth label and cluster label pairings. 

Average F1 scores are reported with error bars showing the 

standard deviation either side of the average. * The optimal 

number of clusters k was chosen using the 

ConsensusClusterPlus method (Wilkerson and Hayes, 2010).

Fig. 5. Heatmap of population F1 scores for the Levine-13 (A), Levine-32 (B), Samusik 

(C), and OMIP (D) data. Population level F1 scores are shown for the top performing 

algorithm amongst base clustering, graph ensemble and GeoWaVe algorithms. Ground-

truth populations (rows) are coloured by F1 score in the central heatmaps, with darker 

colours indicating a lower F1 score. On the right y-axis each row is labelled with an 

additional heatmap that describes the normalised size of the population (total number of 

events) relative to other populations within the same data.

3.4 GeoWaVe is computationally efficient

Across all variations of the GeoWaVe algorithm run on the six benchmark 

datasets, the longest recorded runtime was for the 40 parameters Samusik 

data with 300,000 observations, at a runtime of 2 minutes and 12 seconds 

(Supplementary Tables S3, S4 and S5).

To assess the ability of GeoWaVe to scale to larger data, we tested it 

against synthetic data of increasing size and complexity (see 

Supplementary Methods; Supplementary Figure S10). The runtime 

performance of the GeoWaVe algorithm is affected by two attributes of 

the data: the total number of observations and the overlap between clusters 

obtained by base clustering algorithms. Increasing overlap between 

clusters results in more observations being assigned to multiple consensus 

clusters, and the consensus cluster score (described in Methods) must be 

computed for each of these observations. GeoWaVe employs 

multiprocessing to distribute these calculations across the available cores 

of a machine, resulting in excellent runtime performance as shown for ten 

randomly generated Gaussian data-point clouds in 15 dimensions (Figure 

7). Using GeoWaVe, we were able to generate ensemble clusters in less 

than 10 minutes, even for datasets scaling to millions of observations. We 

believe that such runtimes are reasonable, and allow investigators to run 

experiments with range of hyperparameters.

4 Discussion

Cytometry has become a cornerstone to biomedical and healthcare 

research and is widely used in clinical diagnosis. In many pathological 

conditions, the understanding of disease mechanisms and how to exploit 

them for patient benefit relies largely on cytometry, including the 

diagnosis of conditions like leukaemia and HIV infection, and studying 

antigen-specific responses in vaccine trials. Historically, cytometry data 

have been processed and analysed manually. Until recently, this was 

deemed acceptable given that cytometry instruments could only 

accommodate relatively few parameters in any experiment. Over the past 

decade, however, the number of available parameters has increased 

drastically with the advent of multicolour flow cytometry and mass 

cytometry, allowing characterisation of even minor populations at the 

single cell level and the discovery of novel cell types and new functional 

features. Traditional approaches no longer suffice – as the number of 

parameters grows, data analysis is becoming more labour intensive, more 

subjective and harder to standardise and reproduce across studies and 

sites. In response to the technological advances, the domain of cytometry 
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GeoWaVe: Ensemble clustering of cytometry data

bioinformatics is rapidly evolving to provide new computational solutions 

for data analysis and interpretation such as autonomous gating, supervised 

classification and unsupervised clustering. Arguably the most impactful 

technology introduced to this space are clustering algorithms designed 

specifically for cytometry data analysis, such as SPADE, FlowSOM, and 

Phenograph. The top clustering algorithms alone have already amassed 

>12k citations in the scientific literature within a few years and are 

enabling researchers to make rapid progress in their fields – for instance 

in the understanding of the immunopathology of COVID-19 that rapidly 

translated into novel therapies, outcome prediction and vaccine 

development (Hadjadj et al., 2020; Mathew et al., 2020; Arunachalam et 

al., 2020; Bolouri et al., 2021).

Fig. 6. Heatmap of population F1 scores for the Sepsis (A) and Peritoneal Dialysis (PD) 

(B) data. Population level F1 scores are shown for the top performing algorithm amongst 

base clustering, graph ensemble, and GeoWaVe algorithms. Ground-truth populations 

(rows) are coloured by F1 score in the central heatmaps, with darker colours indicating a 

lower F1 score. On the right y-axis each row is labelled with an additional heatmap that 

describes the normalised size of the population (total number of events) relative to other 

populations within the same data.

Fig. 7. Runtime performance of GeoWaVe algorithm on randomly generated 

synthetic data consisting of ten Gaussian data point clouds with an increased number 

of observations. Four synthetic datasets are shown, each with an increasing standard 

deviation (SD) used for the generation of Gaussian data point clouds resulting in more 

overlap between clusters.

We here developed GeoWaVe, an ensemble clustering algorithm, as a 

solution to reduce the variance commonly observed amongst clustering 

methods in the cytometry literature, where results depend upon 

hyperparameter choice and the particular context in which they are 

applied. Presently, there is an absence of a “one size fits all” solution to 

clustering cytometry data, leaving scientists to rely on exploratory analysis 

that risks biasing results through data dredging [28]. Ensemble clustering 

offers an alternative by finding a consensus informed by the results of 

multiple clustering algorithms exposed to the same data. This multi-view 

approach theoretically offers robust, consistent and stable solutions 

(Ghosh and Acharya, 2011; Vega-Pons and Ruiz-Shulcloper, 2011) 

without biasing the analysis with the assumptions of a single algorithm. 

The act of employing ensemble clustering also forces the analyst to 

compare and contrast the results of multiple algorithms, which can be an 

informative exercise.

Ensemble clustering presents many challenges that come to bear when 

applied to complex data such as those generated with cytometry. Unlike 

supervised classification, there are not a defined number of classes 

provided by labelled examples. Different algorithms may generate 

different quantities of clusters, which must be compared and consolidated 

into consensus clusters. Cytometry data also tends to generate large data 

that can be difficult to handle with conventional computer resources. This 

is becoming increasingly relevant for studies that intend on phenotyping 

hundreds or even thousands of subjects.

An existing ensemble approach that can scale to large data and was 

included in this study are the graph-based methods, such as HGPA, 

MCLA and HBGF. These techniques were benchmarked against four 

independent datasets but failed to outperform individual clustering 

algorithms such as FlowSOM, PhenoGraph, or SPADE. In response to 

this, an alternative heuristic ensemble method named GeoWaVe was 

developed, which was suitable to the nature of cytometry data. Given that 

the dimensions of cytometry data are not beyond the comprehension of the 

investigator and meaningful phenotypes can be determined by considering 

sets of features, we propose to summarise each cluster contributing to a 

consensus by its geometric median in the feature space. This can for 

instance be visualised in a heat map. Our study demonstrates that 

clustering the matrix of these geometric medians can generate informative 

consensus clusters.

Our analyses showed that GeoWaVe consistently outperformed HGPA, 

MCLA and HBGF. The use of geometric medians also provided a useful 

visual aid when choosing the number of consensus clusters to be formed. 

By visualising the heat map of geometric medians in combination with t-

SNE, UMAP or PHATE embeddings, a suitable number of partitions can 

easily be estimated. This allows the investigator to introduce informative 

priors and select clusters based on knowledge of the underlying biology. 

If uncertain, a range of partitions can be searched using the 

ConsensusClusterPlus method (Wilkerson and Hayes, 2010). Our 

approach is novel in its computational efficiency, ability to handle 

millions of observations and its communication of the consensus clusters 

to the investigator in a familiar manner that reflects the underlying 

biology.

The use of geometric medians as a heuristic is not without limitations. 

Summarising a cluster using the geometric median tells little of the 

topology, and a significant loss of information may result in misinformed 

consensus clusters that are not representative of the data themselves. 

Additionally, the optimal choice of clustering method applied to the 

matrix of geometric medians is not immediately apparent and performance 

can vary depending on the data – for instance, this choice was important 

to the performance on the Levine-32, Sepsis and PD data, but less relevant 
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R.J. Burton et al.

for the Levine-13, Samusik and OMIP data. Of note, the use of a heuristic 

means that the run-time of GeoWaVe is fast enough to accommodate 

hyperparameter tuning. The investigator is therefore encouraged to 

experiment with different clustering algorithms and hyperparameters and 

inspect the partitions on the geometric median heat maps and embeddings 

generated from a suitable dimension reduction technique. Although this 

fails to remove the exploratory approach to clustering of cytometry data, 

it introduces the multi-view consensus necessary for robust results.

Weber and Robinson (2016) performed a similar assessment of 

clustering algorithms without the focus on consensus methods and framed 

their assessment as a classification problem, inspired by the work by 

Samusik et al. (2016). They chose to use F1 score by first mapping clusters 

to ground-truth labels using the Hungarian algorithm and maximising F1 

scores across reference populations. This methodology was repeated in the 

present study and supported the conclusion that GeoWaVe ensemble 

methods outperform the graph ensemble methods of HGPA, MCLA and 

HBGF. Closer inspection of individual population F1 scores revealed that 

rare cell populations were often not identified by graph ensemble methods. 

Although identification of these subsets was improved in GeoWaVe, 

performance was often worse than individual clustering algorithms and 

some populations, such as platelets in the Levine-13 data, remained 

unidentified. The performance of the base clustering algorithms for many 

rare cell populations was also poor, possibly impacting the performance 

of ensemble outputs. Further work is needed to generate clustering 

methodologies that directly address this limitation.

There is a significant flaw in the assessment of clustering performance 

through F1 score. Mapping clusters to ground-truth labels in such a way 

implies that a one-to-one relationship must exist between the clusters 

generated and the reference populations. Clustering analysis can be 

complicated by sub-structures in data captured as clusters but absent in the 

ground-truth labels. If the purpose of clustering cytometry data is to 

identify a precise number of clusters, then this form of evaluation seems 

justified although one could argue that in such a scenario a supervised 

classification approach might be more suitable. Clustering analysis tends 

to be applied in the interest of discovery when the number of clusters is 

unknown. Despite this flaw it was deemed necessary to replicate the 

methods of Weber and Robinson (2016), which was informative of the 

role population size plays. It showed that although the consensus 

clustering of geometric medians outperforms graph-based methods, there 

is still work to be done to ensure rare cell populations do not go undetected 

with this technique. It would be advisable that if rare cell populations are 

suspected to be present, that the consensus is formed by methods with high 

resolution such as those formed on nearest-neighbour graphs (Levine et 

al., 2015; Samusik et al., 2016; Stassen et al., 2020).

Future work should focus on more diverse ensemble clustering. In this 

work, four classes of algorithm were chosen based on their popularity in 

the cytometry literature and their available implementations. However, 

there is a wide variety of further clustering algorithms that could be 

explored for inclusion in ensemble clustering. There are ongoing efforts 

to address the computational complexity, such as improvements to SC3 

(Quah and Hemberg, 2021). Other solutions to the computational 

complexity may come from advances in the statistical and computational 

literature, such as consensus formed on heuristics of cluster similarity 

using metrics such as the Jaccard index (Khedairia and Khadir, 2022). In 

the meantime, clustering on geometric medians is likely to be a viable 

solution for cytometry data analysis. We are confident that the availability 

of user-friendly but powerful ensemble clustering methods has the 

potential to represent a major advance in big data analysis, with 

implications for an improved understanding of cellular responses, clinical 

conditions, and therapeutic and diagnostic options.
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