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ABSTRACT

Detector timing jitter is a key parameter in advanced photon counting applications. Superconducting nanowire single-photon detectors
offer the fastest timing jitter in the visible to telecom wavelength range and have demonstrated single-photon sensitivity in the mid-infrared
spectral region. Here, we report on timing jitter in a NbTiN nanowire device from 1.56 to 3.5 um wavelength, achieving a FWHM jitter
from 13.2 to 30.3 ps. This study has implications for emerging time-correlated single-photon counting applications in the mid-infrared

spectral region.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://

creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0128129

Superconducting nanowire single-photon detectors (SNSPDs)
have been developed over the past two decades to become the
gold standard for time-resolved photon-counting applications.' *
They have demonstrated near unity quantum detection efficiency at
1.55 um,”” sub-3 ps timing jitter at short wavelengths,”” and sub-Hz
dark count rates.'”'' Recently, there has been growing interest
in extending the spectral range of these detectors into the mid-
infrared,'”'* where there is a lack of alternative photon-counting
detector technologies.'” This has been motivated by novel mid-
infrared applications such as exoplanet spectroscopy, * fluorescence
spectroscopy,’” quantum optics,'™'” and light detection and ranging
(LIDAR).””** The timing resolution of the detector is of particular
importance for LIDAR, as it directly impacts the integration time for a
given signal-to-noise ratio and for optical quantum information appli-
cations such as quantum key distribution where it impacts the quan-
tum bit-error rate and range.”””* Moving to the mid-infrared offers
potential advantages for these applications due to the presence of
atmospheric transparency windows™ and lower solar background
flux™® when compared to shorter wavelengths. Therefore, development
of a low jitter single-photon detector at mid-infrared wavelengths is a
task of increasing importance.

Timing jitter, the variation in timing of the output pulse for a
periodic source of incident photons, is an important metric in time-
correlated single-photon counting (TCSPC)*"** and is governed by

the experimental setup and device physics.”” Since the fundamental
limits of timing jitter were probed,” development of SNSPDs with
novel configurations and improved readout electronics has enabled
the reduction in the timing jitter to 10 ps in devices with high detec-
tion efficiency.”’ The large majority of this work, however, has been
performed at wavelengths in the near-infrared or shorter. In our pre-
sent study, we characterize the timing jitter of a NbTiN SNSPD at
wavelengths from 1.56 to 3.5 um.

The SNSPD chosen for this experiment was a NbTiN nanowire
fabricated from a 5nm thick sputtered NbTiN thin film with Ry, of
880 Q/sq. and a T, of 7.0K. A short straight nanowire with a width of
100 nm and a length of 21 yum was fabricated by electron beam lithog-
raphy and reactive-ion etch. Short dimensions were chosen to remove
the majority of the geometric jitter’' and increase the chances of
constriction-free fabrication. A wide meander section was added after
the nanowire to add inductance and prevent latching.’” The SNSPD
was mounted in a “He sorption refrigerator (Chase Research
Cryogenics) and cooled to 900 mK. ZrF, mid-infrared optical fiber
(single mode from 2.3 to 4.1 um) was used to couple light from an
optical parametric oscillator (OPO, Chromacity Ltd—ps pulses at
110 MHz repetition rate) to the device. The device was flood illumi-
nated by placing the end of the optical fiber 2 cm from the device, thus
ensuring even illumination over the active area. As the mid-infrared
idler output from the OPO is broadband, narrow bandpass filters were
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used to select the wavelength of interest. Filters with center wave-
lengths of 2328 £ 15, 2790 £ 50, 3010 =+ 15, and 3500 * 15 nm were
used to pickoff the four wavelengths of interest—more details of this
are given in the supplementary material. A sync signal was obtained
by using the shorter-wavelength OPO signal output by attenuating it
and connecting it to a fast photodiode (Thorlabs DXM30AF). SNSPD
output pulses were readout with a cryogenic amplifier (Cosmic
Microwave CITLF1) mounted inside the cryostat on the 4K plate and
a LNA (RF Bay LNA-1000) at room temperature. Jitter histograms
were acquired with a Becker & Hickl TCSPC card (SPC-150NXX).

The photon count rate (PCR) curves were obtained for the
SNSPD at all of the wavelengths tested and are shown in Fig. 1. For
each wavelength, the output power of the OPO was adjusted by mis-
aligning the output coupler to achieve a count rate of 4 keps. As can be
seen from Fig. 1, saturated internal detection efficiency was observed
at all wavelengths. The slight slope in the PCR curves in the saturated
region can be attributed to inhomogeneities along the length of the
wire, leading to an absorption position-dependent saturation level ™
and photon absorption in the tapered ends of the detector. From the
PCR curves, we selected a bias point of 8.6 A for the jitter measure-
ments where all wavelengths are saturated, as shown in Fig. 1.

Jitter histograms were taken by connecting the output of the
SNSPD and amplifier chain to the input of the TCSPC card and the
output of the photodiode to the sync channel. As the power level of
the OPO signal output (connected to photodiode) changed when the
idler wavelength was tuned, a programmable optical attenuator was
used to match the photodiode photocurrent for each measurement.

The count rate of the SNSPD was again kept to 4 kcps using the
idler output coupler for each measurement. Histograms were inte-
grated for 600 s and the results for the mid-infrared wavelengths are
shown in Fig. 2. For each histogram, an exponentially modified
Gaussian fitting was performed to account for the non-Gaussian tail
observed in the histograms.” This provides a good fit to the data for
obtaining full-width at half-maximum (FWHM) jitter values although
it deviates from the data at longer timescales. This is partially due to
detection in the tapered sections of the nanowires (where it transitions
to the inductor portion) and partially due to the modified Gaussian
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FIG. 1. Normalized photon count rate (PCR) curves for wavelengths of 1.56, 2.3,
2.8, 3, and 3.5 um. The dark count rate is shown in black x’s on the right y-axis.
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not being expected to fit the true jitter histogram according to current
models.” FWHM jitter values are obtained from the fitting and give
results of 18.3 ps for 2.3 um photons, 23.0 ps for 2.8 um photons,
25.4 ps for 3 um, and 30.3 ps for 3.5 um photons.

In order to obtain a reference jitter value, a measurement was
taken at 1.56 um with a 1.56 um fiber laser (0.5 ps pulses at a repetition
rate of 50 MHz). This gave a good reference as much of the reported
work on SNSPD timing jitter is performed at this wavelength. A
FWHM value of 16 ps was observed. It is important to note that the
ZrF, optical fiber is not single-mode for this wavelength and multi-
mode behavior is expected below 2.3 um wavelength. It is reasonable
to expect that modal dispersion effects will broaden the timing jitter
histogram for this wavelength.”” A comparison measurement was
made by swapping the ZrF, fiber for the SMF-28 optical fiber. Using
this setup, a FWHM jitter value of 13.2 ps was obtained. This is dis-
cussed in more detail in the supplementary material.

The jitter histograms shown in Fig. 2 and the FWHM jitter values
obtained show an increasing timing jitter as wavelength increases and
photon energy decreases. This data is shown in Fig. 3. The scaling of
jitter with photon wavelength agrees with other published results.”*
The complex nature of the energy downconversion process,
however, means that absolute timing jitter is dependent on many fac-
tors, such as absolute bias current, fraction of depairing current
achieved, and electrical readout characteristics. Therefore, a close com-
parison of absolute values has limited merit, but the general trend we
observe of increasing jitter values at increasing mid-infrared wave-
lengths continues the trend reported at shorter wavelengths in other
work.

Qualitatively, the increase in the timing jitter as photon energy
decreases can be explained by Fano fluctuations’” and the detector
latency concept.”” The energy (E) deposited by the absorbed photon
fluctuates as v/E due to Fano fluctuations and the escape of high
energy phonons during the downconversion process.” This variation
can be translated into the jitter with the model of an energy-
dependent deterministic latency (tj,(E)). This latency increases as
photon energy decreases [see Fig. 7 in Ref. 29 or Fig. 5(b) in Ref. 38],
but the shape of the function is dependent on the underlying physics
of the detection process. From this function, however, it is evident that
fluctuations in E lead to corresponding fluctuations in 7;,, and hence
jitter. A steep Ty, vs E curve will result in a large variation in 7, for a
small variation in E and hence a large timing jitter value. Determining
the exact form of 7, curve that matches all available experimental
data is still an ongoing area of research, but progress has been made in
recent years, both experimentally” and theoretically.””***” This work
provides additional experimental data points further into the mid-
infrared than previously available to aid in model refinement.

The jitter histograms for 2.3, 2.8, and 3 um shown in Fig. 2 all
have an expected shape, that is, a Gaussian with an elongated tail. The
3.5 pum histogram, however, exhibits a secondary peak occurring in the
earlier time bins before the main peak. We believe that this is due to
an optical reflection within the cavity of the OPO. As we change the
cavity length in order to tune the output spectrum (by moving a mir-
ror inside), we observe that this secondary peak shifts in time with
respect to the primary peak. This is observable in the full measurement
timescales for the 2.8 and 3 um histograms as well but is sufficiently
far away as to be easily gated out for the fitting procedure. For the
3.5 um wavelength measurement, it is positioned close to the main
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FIG. 2. Normalized timing jitter histograms (instrument response functions) for wavelengths of 2.3, 2.8, 3, and 3.5 um. The exponentially modified Gaussian fit is shown in red

and the FWHM value is derived from this.
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FIG. 3. FWHM jitter against wavelength (bottom y-axis) and photon energy (top
y-axis). The measured wavelengths (energies) are 1.56 (0.79eV), 2.3 (0.53eV),
2.8 (0.44eV), 3 (0.41€V), and 3.5 um (0.35eV). The error bars are obtained from
the 95% confidence intervals on the exponentially modified Gaussian fit. Note that
the 1.56 1um data point was obtained with SMF-28 fiber to account for modal disper-
sion in the ZrF, fiber.

peak but not, we believe, close enough to adversely affect the fitting
and extraction of the FWHM jitter values. We have fitted the second-
ary peak in the 3 um measurement with an exponentially modified
Gaussian to confirm that it is the same shape and comparable FWHM
to the main peak. We have observed similar multi-peak effects when
stacking optical filters in other experiments.

In this work, we have systematically studied the variation of tim-
ing jitter as photon energy decreases into the mid-infrared in a NbTiN
SNSPD. By utilizing the same device and electrical readout for each
measurement, we were able to directly quantify the effect of photon
energy on the timing jitter for a given device. We conclude that low
SNSPD timing jitter values are easily obtainable into the mid-infrared.
Extrapolating the linear trend we have observed here out to 3.5 um
wavelength, we can infer that it should be possible to achieve jitter in
the tens of picoseconds range for photons at even longer wavelengths.
As with low-jitter devices at 1.55 um, ensuring highly uniform fabrica-
tion to obtain high fractions of the depairing current’ and employing
architectures, such as differential tapered readout,” will ensure that
timing jitter is minimized for a given photon energy.

This work is an important milestone in the development of
SNSPDs for mid-infrared TCSPC applications. In the future, efficient
single-photon detection with low jitter in the mid-infrared will enable
a variety of novel applications, such as imaging, sensing, and commu-
nications, where alternative single-photon detection technologies can-
not currently compete.
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See the supplementary material for details and characterization
of the optical filters and multi-mode dispersion calculations.
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