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Abstract—This paper presents COMPROF and COMPLACE,
a novel profiling tool and thread placement technique for shared-
memory architectures that requires no recompilation or user
intervention. We use dynamic binary instrumentation to intercept
memory operations and estimate inter-thread communication
overhead, deriving (and possibly visualising) a communication
graph of data-sharing between threads. We then use this graph
to map threads to cores in order to optimise memory traffic
through the memory system. Different paths through a system’s
memory hierarchy have different latency, throughput and energy
properties, COMPLACE exploits this heterogeneity to provide
automatic performance and energy improvements for multi-
threaded programs. We demonstrate COMPLACE on the NAS
Parallel Benchmark (NPB) suite where, using our technique, we
are able to achieve improvements of up to 12% in the execution
time and up to 10% in the energy consumption (compared to
default Linux scheduling) while not requiring any modification
or recompilation of the application code.

Index Terms—NUMA, Thread Placement, Data Placement,
Cache Optimisation, Energy Optimisation

I. INTRODUCTION

Inter-thread communication is an important determiner of an
application’s performance, particularly in HPC systems. As
compute capacity is “scaled-out”, inter-core communication
often becomes the main bottleneck, resulting in CPUs being
significantly under-utilised. This situation is possible whether
the communication is via explicit message-passing (e.g. MPI
applications) or implicit memory updates (in shared-memory
NUMA systems). GPU designers have mitigated this situation
and increased utilisation through hardware thread multiplexing
– a technique with limited mileage for CPU workloads. There
is a relatively limited set of existing tools to profile and
understand communication, particularly on shared-memory
systems. Under these circumstances developers face an uphill
battle optimising their applications, and runtime systems lack
the visibility necessary to schedule them efficiently. In our
view the key to achieving scale for a large class of applications
lies in studying and manipulating communication.

Significant research has also been invested in improving
energy footprints of computer applications, with a special
focus on large-scale highly-parallel applications that have

become essential in both science and industry. Such appli-
cations usually run for a long time and consume lots of
resources, resulting in potentially huge energy footprints. Re-
ducing this footprint as much as possible while still retaining
acceptable performance is of paramount interest. Inefficient
communication can result in slow and energy-inefficient routes
being taken through a memory or communication network,
sometimes with overheads several orders of magnitude higher
than the fastest inter-node path.

This paper presents a novel profiling tool, COMPROF, for
understanding patterns of communication between threads in
a parallel application. This allows us to profile the applica-
tion and build a graph of inter-thread communication. We
also present a runtime optimisation algorithm that uses the
communication graph to map the application threads to the
cores of a system. We package these techniques together into
a new profiling tool and thread placement technique, called
COMPLACE. The objective of the placement algorithm is
to group the threads that communicate intensively between
themselves so that they share memory resources. This allows
us to improve data placement and avoid thread communication
over slow caches, thus improving both performance and energy
efficiency of parallel applications. By using dynamic binary
translation instead of simulation we achieve lower-overhead
profiling than existing work. The concrete research contribu-
tions of this paper are:

1) a novel communication profiling method, deriving thread
communication graphs of parallel application;

2) a runtime optimisation algorithm that takes as an input
the communication graph and decides on placement of
threads to the cores of a system, aiming to both increase
the performance and reduce energy consumption; and,

3) demonstrations of the performance and energy con-
sumption improvements on the Ocean benchmark from
Parsec, and a set of realistic benchmarks from the NAS
Parallel Benchmark (NPB) suite [3].



L1+L2

L3

RAM

Threads

Fig. 1. A hypothetical graph of four threads is with the amount of write-to-
read communication depicted via edge thickness. Shown below is a mapping
to a two-node, four-core NUMA machine that maximises the amount of
communication via low-latency caches and RAM.

II. MOTIVATION

Processors with NUMA architectures are, today, a de-facto
standard for building large high-performance systems. In these
architectures, there is a hierarchical grouping of the physical
processor cores, based on the distance between them, where
the distance is measured as a latency in communication (com-
munication being reads/writes to the same data). In such tiered
cache architectures, a write to a cacheline by one core followed
by a read to that same cacheline by a different core, involves
a certain amount of high-latency communication. The amount
of communication will depend on the placement of the data in
RAM and what state various caches hold that line in. When
the two cores share a close cache, that cache may be able
to service the read without involving higher-latency caches;
and if the two cores share local RAM some inter-package
communication can be avoided. Communication via low-
latency caches and local-RAM has better latency, throughput
and energy properties than farther caches and remote-RAM
respectively. Therefore, threads in a parallel application that
share a lot of data should always ideally be placed on the
cores of a system that share as many memory resources as
possible (i.e. the cores which are close-by in the hierarchical
core grouping). On the other hand, if the two threads do not
share much data, it is perfectly acceptable to place them on
distant cores that do not share fast cache, or even that share
no cache or RAM at all. Correct placement of the threads,
especially in memory-intensive applications, can significantly
impact both performance and energy consumption.

To motivate our technique, consider the example application
shown in Figure 1. Lines with arrows show communication
between threads, with the thickness of the line indicating
volume of communication. In this example, we can see that the
communication between Threads 1 and 2 on one side, and 3
and 4 on the other is most intensive. Therefore, in placing these
threads, we should ideally put Threads 1 and 2 (and also 3 and
4) to the cores that share a cache as possible, hoping that most
of the communication will go through this cache, or else will
be served by the local RAM. This is demonstrated on the same
figure. There is still communication (e.g. between Threads 1
and 3 and 1 and 4) that goes over the NUMA boundary, but the

volume of this communication is smaller than for Threads 1
and 3. The default Linux scheduler cannot guess how much the
threads in a parallel application communicate with each other,
and therefore does not base the thread placement decisions
on their communication profile. The goal of our work is
to show an automated method to optimise the amount of
communication happening via local RAM and low-latency
caches without requiring any modification of the application.

III. COMPROF: COMMUNICATION PROFILING
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Fig. 2. Overview of COMPROF. For each cacheline-sized chunk of applica-
tion memory address a 64bit shadow word is allocated. This word contains
the provenance of the value in main memory (the writer thread) as well as a
set of observers of the value (packed into a bitfield). These data are used to
construct the final communication graph.

In this section we introduce COMPROF, a communication
profiling tool which operates on unmodified Linux appli-
cations. COMPROF is first phase of our thread placement
scheme, COMPLACE, which is described in Section IV. We
will also demonstrate in Section V how COMPROF can be
used in isolation to gain valuable black-box insight into an
multi-threaded application. COMPROF uses Dynamic Binary
Instrumentation to profile shared-memory communication. For
our purposes communication is a write by one thread to
an area of memory (a cacheline) followed by the first read
from different thread which witnesses the new value. We use
this definition to approximate the cache-coherence messages
required to propagate a value through a hierarchy of caches.
COMPROF estimates only the logical communication between
application threads, it does not record any hardware-specific
details such as cache behaviour. In our testing COMPROF
causes, approximately, a 20x slowdown of the application.
Architectural simulation, which underpins previous work[6, 2],
is known to be orders of magnitude slower.

Intel’s PIN framework[19] is used to perform dynamic
instrumentation on the target application. Algorithm 1 shows
high-level pseudocode for the instrumentation routines. The
approach is spiritually similar to addresssantisier[24] and
valgrind[23] in that we allocate and maintain shadow state
for blocks of application memory. However, the information
we track (last writer and the set of readers) is used to
estimate hardware communication operations and not to detect
undefined behaviour. In our implementation, the writer field
and reader sets are packed as a bitset into a single 64-bit word,



Algorithm 1 Pseudocode for Communication Profiling
1: procedure INITIALISE
2: for all cacheline← Process Memory Map do
3: last writercacheline ← -1
4: readerscacheline ← {}
5: end for
6: for all i← Thread IDs do
7: for all j ← Thread IDs do
8: commi,j ← 0
9: end for

10: end for
11: end procedure
12:
13: procedure INSTRUMENTREAD(threadid, cacheline)
14: atomically do
15: readerscacheline ← readerscacheline|{threadid}
16: end atomically
17: end procedure
18:
19: procedure INSTRUMENTWRITE(threadid, cacheline)
20: atomically do
21: w ← last writercacheline

22: rs← readerscacheline

23: last writercacheline ← threadId
24: readerscacheline ← {}
25: end atomically
26: for all r ← rs do
27: ATOMICINCREMENT(commw,r)
28: end for
29: end procedure

facilitating the use of ordinary locked instructions to imple-
ment the atomic sections (see Figure 2). 1 A 64bit shadow
word is needed for every cacheline (512bits on most platforms)
leading to an overhead of 12.5%. COMPROF detects memory
map changes by hooking the mmap and brk syscalls as
well as using callbacks from PIN’s image loader. A shadow
mapping for the stack is created by reading /proc/self/maps
and over-allocating to allow the stack to automatically grow.
Special care must be taken not to instrument code in kernel-
provided code, such as the vdso. COMPROF is conservative in
maintaining a reader set for each write to the memory location.
An alternate implementation could track a single reader and
writer set for each memory location. This risks over-counting
communication but this may not be an issue in practice. Per-
location read and write sets could also be the basis for an
online profiler that estimates these sets via sampling memory
performance counters. We assume that subsequent reads to
a shared variable, with no intervening write, can be served
without any communication related overhead, so COMPROF
does not count them. COMPROF also has a configuration
where it adds additional edges between writers of a new value
and readers of the previous value to simulate flush/invalidation
traffic in the cache hierarchy; although we do not currently
use this data for mapping decisions. Note that COMPROF

1COMPROF simulates sequentially consistent memory. Its results may
be inaccurate under weak memory models, or programs with data races.
We expect the results to still be a good estimate for performance profiling
purposes.

does not consider how closely in time the read follows the
write. If there are many operations in-between, the value may
be evicted from the cache hierarchy in the meantime causing
some potential benefit to be lost.

IV. COMPLACE: AUTOMATED THREAD PLACEMENT

Communication
MapCOMPROF

Application Placement

Placer

Profiling Phase Mapping Phase

Fig. 3. COMPLACE: Automatic Thread Placement

In this section, we describe COMPLACE, our automatic thread
placement scheme which optimises memory and cache coher-
ence traffic. COMPLACE comprises two phases, a profiling
phase (described in Section III), and a mapping phase, where
we give implementation details in Section IV-A. We give a
high level overview of the two phases here:

1) Profiling Phase COMPROF is used to profile the appli-
cation and create a weighted graph of estimated inter-
thread communication. Here communication refers to a
write to an area of memory, followed by a later read of
that area by a different thread. The cacheline size of the
target machine is used to size these areas. The output
of this phase is a mapping from each thread-pair to the
amount of communication between them.

2) Mapping Phase During the application launch, the host
hardware is inspected and its cache topology determined.
A graph-matching algorithm is then applied to the two
topologies to create the thread/core mapping. Finally,
the application is launched and some heuristic is used to
match operating system threads with their corresponding
node in the measured communication graph.

The profiling phase is performed offline (in a separate test
run) only once, but is redone if parameters of the application
(i.e. the number of threads) change. There is no requirement
for the profiling and mapping phases to be run on the same
hardware or even the same architecture. COMPROF may also
be executed on smaller problem instances, so long as the
resulting communication behaviour is representative of larger
sizes. In other implementations of this concept a profiling
phase is run online (during the main run), where it may
be repeated to detect or respond to phase changes in the
application’s behaviour [1].

The effectiveness of the mapping phase depends on the
graph structure of both the application’s communication and
the target hardware. Ideally the communication graph features
sets of tightly-coupled threads of suitable size for mapping to
processor nodes/caches. This also requires the target platform
to have heterogeneous communication between sets of cores,



so that there are efficient communication paths to take advan-
tage of. Examples of this heterogeneity include NUMA and
SMT systems. Applications with clique-like communication
will see little benefit from the mapping phase, since there is
no mapping that favours one communication path over another.
Applications that do not have a deterministic communication
pattern (including many graph algorithms and applications
with dynamic task assignment) will also see no benefit since
the placer uses the previous, profiled data to inform its future
placement decisions. In these cases performance may in fact be
reduced by preventing the scheduler’s built-in balancing logic
from moving threads and thus sharing the load. An online
profiler could address many of these issues and allow per-
phase mappings for applications with phase changes at the cost
of some runtime overhead. Our implementation, which maps
threads at application start has no overhead once initialised.

A. Thread Placement Implementation

Algorithm 2 Pseudocode for Thread Mapping
1: function MAPTHREADS(threadGraph, coreGraph)
2: while not EMPTY(threadGraph) do
3: thread← REMOVEANYNODE(threadGraph)
4: core← REMOVEANYNODE(hardwareGraph)
5: mappingthread ← core
6: loop
7: pendingEdges← edges in threadGraph
8: connecting an unmapped and a mapped
9: thread

10: if EMPTY(pendingEdges) then
11: break
12: end if
13: threadEdge← maximum weighted edge in
14: pendingEdges
15: start thread← mapped end of threadEdge
16: end thread← unmapped end of threadEdge
17: start core← mappingstart thread

18: coreEdge← maximum weighted edge in
19: coreGraph connecting start core
20: to an unmapped core
21: end core← unmapped end of coreEdge
22: mappingend thread ← end core
23: end loop
24: end while
25: return mapping
26: end function

In COMPLACE, we achieve thread mapping using a naı̈ve
greedy algorithm. Algorithm 2 gives the high-level pseu-
docode. At each iteration a mapping is made so that a suit-
able maximum-weight communication edge will be mapped
to a maximum-weight hardware edge. The hardware graph
is constructed by inspecting procfs to determine the lowest
latency cache each pair of cores share, the level of that cache
determines the edge weight through a simple map. For our
default parameters, we assign values of decreasing orders of
magnitude per cache memory: L1 sharing is assigned 10000,
L2 1000 etc. Our thread mapping was designed for high
performance applications that assign a single worker thread
to each core. It does not handle the case of more threads than

cores. 2 Fewer threads than cores can lead to poor performance
on SMT systems, since the technique prefers to place tightly
coupled threads on adjacent hardware threads so they can
communicate via the L1 data cache. Using SMT threads when
there are free cores can have a significant performance hit.

B. Thread Identification

As the application is launched a small daemon monitors the
procfs directory for the application. It notices threads as they
are created and sets their affinity. Once all the threads are
mapped it sleeps until the application exits. In our implemen-
tation, threads are identified by the order that they are spawned
in. We found this heuristic works well for the applications we
tested. However, more involved options are possible: threads
could be identified also by the parent thread which issued the
spawn call, creating a tree of threads; or the behaviour of new
threads could be monitored for a short time (e.g. using the
ptrace API) to create a behaviour-based identifier.

V. CASE STUDY

In this section, we attempt to demonstrate the profiling and
mapping phases of COMPLACE on the Ocean application
from the SPLASH2X benchmark suite, distributed as part of
the PARSEC3 suite. As part of our evaluation, we use the CP
variant of the Ocean benchmark, which has false aliasing, in
order to show our profiler in action. In Section VI we give a
full performance evaluation of COMPLACE across the NAS
benchmark suite. In this section, we use a 56-thread shared-
memory NUMA machine, as described in Table II.

A. Phase 1: Profiling

Fig. 4. Profiling results for the Ocean benchmark. Nodes show threads, and
edge width shows total communication measured over the run. Edges with a
weight below 10% of the maximum weight have been removed.

As mentioned in Section IV, the first phase of COMPLACE
comprises a profiling stage. Here we use COMPROF to profile
Ocean on a 56 thread NUMA machine. This profiling step
requires no input or interaction from the user, and the profiling
phase treats the application executable as a black-box. Figure 4
shows the resulting communication graph, where each node

2One possibility for supporting this is to introduce penalties for placing a
thread edge on a congested hardware edge. The greedy algorithm would then
optimise over some objective which includes these penalties.



of the graph represents one of the 56 threads. The edges
between the nodes represent the communication measured
over the run: thicker lines between two nodes represent more
communication between those two nodes than two nodes
with a thinner line connecting them. Figure 4 illustrates,
for example, that there is more communication between the
top-leftmost thread and its horizontal neighbour than with
thread and its vertical neighbour. The figure also indicates
that the pattern of communication in the Ocean benchmark
resembles a 2D grid structure. This is not surprising, as,
indeed, Ocean is a simulation that assigns 2D grid partitions
to worker threads and data communication happens along grid
edges after each iteration. It seems as though significantly
more communication is happening along one of the grid axes,
suggesting a cache line aliasing issue3. For example, it could
be that the data communicated between horizontal neighbours
is well-packed into the machine’s cachelines, whereas the
apparent communication between vertical neighbours is an
artefact of unrelated variables having been placed in the same
cacheline. We believe that COMPROF is useful as a standalone
tool for visualisation multi-threaded behaviour and diagnosing
performance issues caused by communication overhead.

B. Phrase 2: Mapping

Key:              L3/NUMA Node            L2             L1            Hardware Thread 

Fig. 5. Automatic thread placement of the ocean benchmark on a 2-node
NUMA system. Physical SMT cores are drawn as white circles and the
enclosing rectangles represents cache levels. Profiled communication is drawn
by connecting lines, the thickness of which is proportional to the amount of
measured communication.

The second phase of COMPLACE is to uses the profiler’s
output from Phase 1 to generate thread placement. Figure 5
shows a 56-thread instance after mapping to a two-node
NUMA system. The figure illustrates the two NUMA nodes,
represented by dark-gray rectangles, comprising cores (white
rectangles); each core comprises two threads (circles); thread
communication is represented by edges between the circles
(the thicker the line the more communication between two

3We are deliberately using the CP variant of the benchmark, which does
have false aliasing, to show COMPROF in action.

threads). The figure shows that the mapper has succeeded
in reducing the amount of inter-node memory traffic, with
minimal communication traffic across the NUMA boundary.

C. Ocean Results

L1 LFB L2 L3 Local RAM Remote Cache Remote RAM
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Ch
an

ge
 in

 %
 o

f T
ot

al

High latency memory access sources

Fig. 6. Change in High-latency memory read sources for ocean cp after
applying COMPLACE. Results are sampled from Intel’s “Load Latency
Performance Monitoring” counters with the latency threshold set to 30 cycles.
The percentage of samples from each source was computed for baseline and
COMPLACE separately and the difference between the two percentages is
shown. Uncached and Unknown L3 misses were removed from the data.

We ran this configuration against a baseline of default
Linux thread-placement (without thread pinning) algorithm
and measured time as well as energy consumption as reported
by RAPL (Running Average Power Limit) [9]. We take the
average of 5 runs for each measured value. Table I shows the
averaged results, where the original configuration (baseline)
runtime reports 25.95 seconds versus our optimised configu-
ration produced by COMPLACE of 22.49 seconds. The total
package energy for the baseline configuration was 5220 joules,
versus 4642 joules for the COMPLACE configuration. This
shows approximately a 15% performance and 12% energy
improvement using our technique, validating our approach
to reducing communication overhead. The table also reports
counts of sampled memory reads obtained during the run,
hitting each of the L1, LFB, L2, L3, RAM, local cache and
RAM memories. The samples were obtained from the memory
latency performance monitoring facility of the Broadwell chips
we used. The sampling was configured to measure loads
taking 30 or more cycles. We can clearly see that the number
sampled reads for the COMPLACE configuration of L1 has
decreased by 9,144.8, L2 by 161,719.2 and L3 by 14,870.4,
and the total Remote RAM read has decreased by 27,037.
Figure 6 illustrates how the source of high-latency memory
load operations changed between the two configurations. It is
clear that COMPLACE’s mapping has significantly reduced
inter-node NUMA traffic, where the decrease in remote-RAM
traffic is matched by an equal-sized increase in local-RAM
traffic. These accesses have favourable latency, throughput and
energy properties compared to an access that traverses an inter-
node link. We believe that the effectiveness is primarily due to
reduced inter-node NUMA traffic, though the technique is not



TABLE I
RESULTS USING OCEAN CP WITH AND WITHOUT OUR TECHNIQUE.

Configuration time (s) Pkg Energy(J) RAM Energy (J) L1 LFB L2 L3 Local RAM Remote Cache Remote RAM
Baseline 25.953 5220.19 1042.28 113176.60 2898601.00 150913.00 322234.80 74155.00 10157.80 34668.20

COMPLACE 22.248 4642.71 926.69 104031.80 2736881.80 148534.80 307364.40 95564.20 4048.20 7631.20

NUMA specific and could, on other platforms, reduce traffic
to high-latency caches. We expect the gains to be more modest
in these cases. However, as these savings come without any
user intervention, recompilation of the application, or need to
alter the software’s toolchain or build system, even a modest
improvement is worthwhile.

VI. RESULTS

TABLE II
HARDWARE SETUP

CPU Part Intel Xeon E5-2690
Sockets 2

Cores per socket 14
Threads per core 2

L1d cache 32Kib
L1i cache 32Kib
L2 cache 256Kib
L3 cache 35840Kib

RAM per Socket 128 Gib
RAM type DDR4 @ 2133 MT/s

RAM Configuration 4 × 32 Gib DIMMs per socket
Operating System Scientific Linux 7.9

Kernel Version 3.10.0

In this section we evaluate the performance of COMPLACE
on the NAS Parallel Benchmarks (NPB) suite. Since our
technique is for shared-memory systems we use the OpenMP
implementations that come with the benchmarks. No modifica-
tions were made to the sources, compiler, or build system; we
used problem sizes D and E. We note that some benchmarks
did not build or run correctly at size E, and these were removed
from our results set. We measured total execution time and
RAPL energy measurements together for five iterations and
present the arithmetic mean and standard deviation for our
results in Table III. The target hardware is a two-node, Broad-
well generation NUMA system, described in Table II. We used
the default scheduler and frequency governor configuration for
all runs.

Table III gives the averaged results for NPB suite, cat-
egorised by benchmark sizes D and E, where we report
up to 12% performance improvement and up to 10% im-
provement in energy for a number of benchmarks. Figure 7
shows the COMPLACE performance at size D normalised to
baseline performance. Two benchmarks, EP and IS, show no
performance improvement. We also note that no benchmark
is showing significant degradation. We give three possible
reasons for the observed speedup, which we discuss in turn.

• NUMA Data Placement On a NUMA system there is
separate RAM attached to each node. The OS decides
which pages of application memory are served by which

nas.bt nas.cg nas.ep nas.ft nas.is nas.lu nas.mg nas.sp nas.ua
Benchmark

2

0

2

4

6

8

10

12

%
 Im

pr
ov

em
en

t

NAS Benchmark results, Size D
Time
Package Energy
RAM Energy

Fig. 7. Relative improvements from running COMPLACE on the NAS
Benchmark suite, data from Table III, Input Size D. The mean of five runs
was used to compute improvements. Error bars show the computed standard
deviation, assuming results are normally distributed.
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Fig. 8. Relative time improvement from running COMPLACE on the NAS
Benchmark suite (size D) for different NUMA data placement policies.

node. Our results use Linux’s preferred NUMA allocation
policy which attempts to place memory on the first node
that accessed it. This works well except in cases where the
memory is shared. COMPLACE mitigates the problem
of sharing by co-locating threads that communicate (i.e.
share memory) onto a single NUMA node.

• Communication via Caches By Placing threads that
communicate such that they share caches, inter-cache
communication traffic is reduced.

• Working-Set Size Placing threads with similar behaviour
close to each other reduces the overall working set size
for each cache, increasing their hit rates.

Investigating the performance improvement, a single run was
performed with the NUMA memory allocation set to Inter-



TABLE III
COMPLACE RESULTS ON THE OPENMP VERSION OF THE NAS PARALLEL BENCHMARKS. VALUES ARE REPORTED NEXT TO THEIR STANDARD

DEVIATION (SHOWN AS A PERCENTAGE). ORDERED BY TIME IMPROVEMENT.

Benchmark Time (s) Package power (J) RAM Power (J)
Baseline COMPLACE change Baseline COMPLACE change Baseline COMPLACE change

mean std mean std % mean std mean std % mean std mean std %
Size D

nas.cg 385 0.4% 340 0.1% -11.83% 83550 0.3% 78359 0.1% -6.21% 13184 0.3% 12243 0.1% -7.13%
nas.mg 105 1.4% 95 0.7% -9.48% 24347 0.9% 22380 0.3% -8.08% 4799 0.8% 4435 0.3% -7.59%
nas.sp 788 0.3% 730 0.0% -7.45% 188933 0.1% 178739 0.1% -5.40% 34060 0.2% 31924 0.1% -6.27%
nas.ft 528 1.3% 493 1.9% -6.55% 123504 1.0% 115924 1.6% -6.14% 23985 1.1% 22619 2.1% -5.70%

nas.ua 702 0.4% 657 0.4% -6.43% 165876 0.3% 155224 0.2% -6.42% 29111 0.3% 27162 0.2% -6.70%
nas.bt 755 0.3% 723 0.2% -4.15% 196013 0.2% 190017 0.1% -3.06% 23119 0.4% 21960 0.2% -5.01%
nas.lu 541 0.6% 521 1.5% -3.77% 140341 0.4% 134721 1.0% -4.00% 18786 0.4% 17905 1.2% -4.69%
nas.is 31 1.5% 31 0.7% +0.49% 6169 0.2% 6205 0.7% +0.60% 1174 0.4% 1172 0.5% -0.13%

nas.ep 37 0.2% 38 0.4% +0.54% 9514 0.3% 9547 0.4% +0.34% 774 3.0% 770 4.1% -0.52%
Size E

nas.mg 884 1.4% 775 0.2% -12.33% 202789 0.9% 184820 0.1% -8.86% 39328 0.9% 35812 0.2% -8.94%
nas.sp 14572 1.7% 12943 0.2% -11.18% 3365211 1.3% 3087903 0.1% -8.24% 585699 1.2% 529313 0.1% -9.63%
nas.cg 10479 10.4% 9570 1.1% -8.67% 2113666 6.7% 2002333 0.8% -5.27% 399307 6.2% 379590 0.9% -4.94%
nas.bt 17442 0.8% 17094 1.9% -1.99% 4148724 0.8% 4046591 1.0% -2.46% 653591 1.2% 634519 2.8% -2.92%
nas.lu 9130 0.5% 9103 0.7% -0.30% 2303784 0.5% 2282313 0.7% -0.93% 347081 1.6% 346060 1.3% -0.29%
nas.ep 598 0.4% 598 0.3% +0.00% 152545 0.3% 152371 0.3% -0.11% 12249 3.0% 12223 4.7% -0.21%
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High-Latency Memory Counters for NAS benchmarks

Fig. 9. Change in High-latency memory read sources for the NAS benchmark suite (size D) after applying COMPLACE. Results are sampled from Intel’s
“Load Latency Performance Monitoring” counters with the latency threshold set to 30 cycles. The % of samples from each source was computed for baseline
and COMPLACE separately, and the difference between the two percentages is shown. Uncached and Unknown L3 misses were removed from the data.



leaved. The interleaved policy does not use the location of
requesting cores when placing memory, removing any benefit
of COMPLACE due to data placement. Figure 8 shows the
corresponding time improvement in each case. The benefit
of our technique seems to primarily come from aiding the
preferred data placement policy. There is a small perfor-
mance improvement in the interleaved case, although for FT,
interleaving seems to drastically decrease the performance.
Figure 9 shows sampled high-latency loads using the same
technique described in Section V (Figure 6). For each bench-
mark, the proportion of loads from each source was computed
in both the COMPLACE and non-COMPLACE cases and the
difference plotted. For all benchmarks except EP and IS (the
two that showed no speedup), there is a reduction in the
fraction of loads served by remote RAM or remote caches
(caches on another NUMA node). The pattern of load traffic
moving to faster RAM or caches appears responsible for the
improvements seen in time and energy. It is difficult, in gen-
eral, to determine the relative importance of communication
and working set size on the improvement. LU, MG, and UA
all show a significant increase in L1 hits. In these benchmarks
the bulk of communication happens between immediate thread
neighbours (Figure 10). COMPLACE attempts to place these
neighbours on adjacent SMT threads; the increased L1 traffic
is suggestive of communication happening via L1 data cache.
Figure 10 shows the profiled communication pattern for for
each benchmark. Clear diagonal lines indicate localised com-
munication ideal for COMPLACE. IS shows non-deterministic
communication after several executions, explaining its lack of
improvement with COMPLACE. The similarly unresponsive
EP benchmark has a broadcast-like communication structure
that cannot be placed to exploit efficient communication paths
(since all placements would involve the same number of each
type of path). CG shows a clique-like structure but still has
a strong local element. FT has some, limited local structure.
However, Figure 9 shows that FT derives its benefit solely
from data placement. A more robust account of this behaviour
would require a change to the profiler to track memory sharing
rather than communication (see Section III).

A. Measuring Energy

In all our experiments, we used RAPL (Running Average
Power Limit) [9] to measure energy consumption. RAPL uses
internal event counters to produce a rolling estimate of the
current being drawn by the processor package and, in some
models, the RAM. It appears that our technique does not lead
to an out-sized improvement of energy consumption, which
is surprising. Intuition tells us that different memory paths
should have different energy properties – i.e. more transistor
activity would be required to serve a remote memory request
than a local one. In our testing, RAPL reliably reported
different power (energy divided by time) values for processors
executing at different manually-set processor P-states (the
mechanism to run the processor at different voltage and/or
frequency settings), but reported very similar power values
for a broad range of workloads at a fixed P-state. In one

experiment, we compared batches of 64-bit load instructions
with address offsets select to create hits in L1, L2, L3 and
RAM respectively4. As higher-latency caches were hit, RAPL
reported an average power decrease of the processor package
despite measurements at the wall socket showing a notable
power increase. Consequently, we believe RAPL is not suitable
for quantifying energy of communication.

VII. RELATED WORK

There are a number of well-established techniques to col-
lect communication profiles for message-passing applications
[16, 18, 17, 4], which generally rely on intercepting MPI
library calls to trace message passing and collective opera-
tions. Shared-memory communication profiling is less well-
established. Some existing techniques rely on architectural
simulation [6, 2]. [1] attempts to use performance monitoring
counters to infer communication. The results are less precise
as the counters only show a subset of the events of inter-
est and do not include source and destination nodes. [13]
uses page fault information to construct a communication
profile, the resulting data is far coarser in space and time
than competing techniques. [7] suggests using the Translation
Lookaside Buffer (TLB) contents but their work uses features
not present in contemporary architectures. State-of-the-art
shared-memory communication profiling requires architectural
simulation despite the massive overheads involved. Dynamic
binary instrumentation approaches (such as ours) can improve
on this both in performance and precision. Some work has
attempted to characterise application communication, such as
[5, 2, 25]. [15] also defines a number of communication-
based metrics to understand applications. [12] uses “meta-
models” to predict the impact of placement decisions. In [14],
Diener et al. classify affinity-based mapping mechanisms for
shared memory systems. A survey of scheduling techniques for
addressing shared resources in multi-core processors is given
in [27]. [15, 6] use communication data to optimise thread
and data-mapping. We offer a simpler, greedy placement
algorithm that handles thread and (implicitly) data placement.
[20] undertakes the task of manually modifying applications to
improve communication properties. We hope that our profiling
technique can be used by developers to expedite such work
in future. A good overview of both hardware mechanisms
and software tools for controlling energy consumption, with
a special focus on their use in scientific applications, is
given in [8]. Nornir [11] is a C++-based framework for self-
adaptation, that allows implementation of dynamic policies
for enforcing performance and power consumption of parallel
applications De Sensi in [10] proposes a method, based on
multiple linear regression, for predicting power consumption
and performance of applications based on the number of
cores used the frequency of these cores. On the software
side, Torquati et al. [26] propose a technique for controlling

4All processors simultaneously executed an equivalent batch of loads, but
to unique cachelines. The batch size was selected to ensure the instructions fit
in both the processor’s ICache and Uop Cache, loop counts were set ≈0.5ms
delay between expensive timing and synchronisation operations.
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power consumption based on switching between blocking
and non-blocking concurrency protocols for parallel patterns
based on queues (such as parallel pipeline). Melot et al. [22]
propose a method for resource allocation, task mapping and
dynamic voltage and frequency scaling (DVFS) for streaming
applications, in order to achieve energy-efficient execution
within given performance constraints. In [21], static scheduling
for embarrassingly parallel applications is considered, that
takes into account cores grouping for core allocation, mapping
and DVFS, allowing tighter mapping of tasks to cores and
allowing turning off of unused or idle cores.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented COMPLACE, a novel profiling and
thread placement technique for shared-memory systems. Our
COMPLACE tool comprises two phases: i) a novel profiling
tool, COMPROF, for understanding patterns of communication
between threads in a parallel application; and ii) a runtime
optimisation algorithm that uses the communication graph to
map the application threads to the cores of a system. We
demonstrated our COMPLACE tool on the Ocean benchmark
from the SPLASH2X benchmnark suite from Parsec, and also
on the NAS benchmark suite. With our COMPLACE tool,
we were able to achieve improvements of up to 12% in the
execution time and up to 10% in the energy consumption. Our
technique does not require any modification to the source code
of the application, or any recompiling of the application code
and has no runtime overhead. There are a number of future
directions for this work. COMPROF is currently limited to x86
processors, extending the support to new architectures would

to improve ease-of-use for users running non-x86 workloads
(note, however, that the profiling phase does not have to be
run on the same platform as the main running phase). We aim
to gain a better understanding of the obtained RAPL energy
measurements and the relation between communication and
energy-efficiency in HPC workloads. COMPROF could be
extended with a profiling mode designed for memory-sharing
rather than inter-thread communication to drive explicit data-
placement decisions. We want to evaluate our technique on
other platforms and test on graph-based benchmarks. We are
also missing a robust comparison of offline communication
profiling techniques, such as ours, to online ones based on
memory performance counters such as [1].
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