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ON MINIMAL IDEALS IN PSEUDO-FINITE SEMIGROUPS

VICTORIA GOULD, CRAIG MILLER, THOMAS QUINN-GREGSON, NIK RUŠKUC

Abstract. A semigroup S is said to be right pseudo-finite if the universal right congru-
ence can be generated by a finite set U ⊆ S × S, and there is a bound on the length
of derivations for an arbitrary pair (s, t) ∈ S × S as a consequence of those in U . This
article explores the existence and nature of a minimal ideal in a right pseudo-finite semi-
group. Continuing the theme started in an earlier work by Dandan et al., we show that in
several natural classes of monoids, right pseudo-finiteness implies the existence of a com-
pletely simple minimal ideal. This is the case for orthodox monoids, completely regular
monoids and right reversible monoids, which include all commutative monoids. We also
show that certain other conditions imply the existence of a minimal ideal, which need not
be completely simple; notably, this is the case for semigroups in which one of the Green’s
pre-orders ≤L or ≤J is left compatible with multiplication. Finally, we establish a num-
ber of examples of pseudo-finite monoids without a minimal ideal. We develop an explicit
construction that yields such examples with additional desired properties, for instance,
regularity or J -triviality.
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1. Introduction

The notion of being pseudo-finite for semigroups arises from a variety of sources and may
be expressed in several different ways, as explained in [5]. The simplest way of approaching
this condition is via the universal relation, regarded as a one-sided congruence. Informally,
a semigroup S is right (resp. left) pseudo-finite if the universal right (resp. left) congruence
on S is finitely generated and there is a bound on the length of sequences required to relate
any two elements. A more precise definition will be given in Section 3.

The property of being (left) pseudo-finite was introduced by White in [17] in the language

of ancestry. This work was motivated by a conjecture of Dales and Żelazko, which states
that a unital Banach algebra in which every maximal left ideal is finitely generated is
necessarily finite dimensional. One of the main results of [17] states that a monoid M
is left pseudo-finite if and only if the augmentation ideal l01(M) is finitely generated [17,
Theorem 1.7].

In [5], Dandan et al. systematically studied the condition of being left pseudo-finite,
within the broader context of semigroups having finitely generated universal left congru-
ence. These two conditions are certainly finiteness conditions (that is, every finite semi-
group satisfies them). The latter condition was shown to be equivalent to several other
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concepts, which have previously been studied in different areas, e.g. the homological finite-
ness property of being type left-FP1 [5, Theorem 3.10]. For a group G, the universal left (or
right) congruence on G is finitely generated if and only if G is a finitely generated group,
and G is left (or right) pseudo-finite if and only if it is finite [5, Proposition 2.7]. In fact, it
was noted in [17] that for weakly right cancellative monoids, which include groups, being
left pseudo-finite coincides with being finite. This is far from true for arbitrary semigroups
and monoids, as will become apparent. For example, any monoid with zero is left (and
right) pseudo-finite. Of course, a zero is precisely a trivial minimal ideal.

If a semigroup contains no proper ideals then it is said to be simple. A minimal
(left/right/two-sided) ideal of a semigroup is a (left/right/two-sided) ideal containing no
proper (left/right/two-sided) ideals. If a semigroup S has a minimal two-sided ideal, it
is unique and is a simple subsemigroup. If a simple semigroup contains minimal left and
right ideals it is said to be completely simple. One strand of [5] concerns the existence and
nature of a minimal ideal in a (left) pseudo-finite semigroup. This was partly motivated by
a question posed to Gould by Dales and White, asking whether every pseudo-finite semi-
group is isomorphic to a direct product of a semigroup with zero by a finite semigroup.
This question was answered negatively in [5, Example 7.7]. On the other hand, it was
shown in [5] that every pseudo-finite semigroup that is inverse or a union of groups nec-
essarily contains a completely simple minimal ideal. It was noted in [5, Remark 8.9] that
[5, Theorem 8.1] (which concerned the universal left congruence being finitely generated)
could potentially be adapted to provide necessary and sufficient conditions for a semigroup
with a completely simple minimal ideal to be pseudo-finite. It was then observed in [5,
Open Question 8.10] that every pseudo-finite semigroup hitherto considered possesses a
completely simple minimal ideal, and the authors raised the question as to whether all
pseudo-finite semigroups have this property. (A positive answer would then yield a com-
plete description of all pseudo-finite semigroups.) This problem was later solved in the
negative: in an article investigating the related condition that every right congruence of
finite index is finitely generated, a counterexample was provided by way of a pseudo-finite
simple (but not completely simple) semigroup [12, Remark 7.3].

The above progress still leaves open the possibility that every pseudo-finite semigroup
possesses a minimal ideal. The aim of the present paper is to systematically explore the
existence and nature of a minimal ideal in a (right) pseudo-finite semigroup. After some
generalities concerning semigroups and their actions in Section 2, the notion of pseudo-
finiteness is introduced in Section 3. The main theme of the paper, i.e. the relationship
between pseudo-finiteness and minimal ideals, is properly started in Section 4. The next
four sections contain the main results of the article. In Sections 5 and 6 we exhibit a number
of natural classes of semigroups within which pseudo-finiteness implies the existence of a
minimal ideal, and, often, a completely simple minimal ideal. It turns out, however, that
in general pseudo-finiteness need not imply the existence of a minimal ideal. We present
a specific transformation semigroup that is pseudo-finite but has no minimal ideal at the
beginning of Section 8. To enable us to provide further such examples, in Section 7 we
introduce a general construction based on an ideal extension of a Rees matrix semigroup.
This construction is then deployed in the remainder of Section 8 to exhibit pseudo-finite
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monoids without a minimal ideal that possess some additional desirable properties. The
article concludes with some open questions and directions for future research in Section 9.

2. Preliminaries: Semigroups, Ideals and Actions

In this section we establish some basic definitions and facts about semigroups and actions.
We refer the reader to [9] for a more comprehensive introduction to semigroup theory, and
to [10] for further details on actions.

Unless stated otherwise, S will always denote a semigroup and S1 the monoid obtained
from S by adjoining an identity (if S is already a monoid, then S1 has a new identity). We
denote the set of idempotents of S by E(S). If S = E(S), it is called a band. A semilattice
is a commutative band.

An element a ∈ S is said to be regular if there exists b ∈ S such that a = aba. The
semigroup S is said to be regular if every element of S is regular. It turns that for every
regular element a ∈ S there exists b ∈ S such that a = aba and b = bab; in this case,
the element b is said to be an inverse of a, and vice versa. If S is regular and each of
its elements has a unique inverse, then S is called inverse. If S is inverse, then its set of
idempotents E(S) forms a semilattice.

A non-empty subset I ⊆ S is said to be a right ideal of S if IS ⊆ I. Left ideals are
defined dually, and an ideal of S is a subset that it is both a right ideal and a left ideal.
A right ideal I of S is said to be generated by X ⊆ I if I = XS1. A right ideal I is said
to finitely generated if it can be generated by a finite set, and I is said to be principal if it
can be generated by a one-element set.

A right congruence on S is an equivalence relation ρ on S such that (a, b) ∈ ρ implies
(ac, bc) ∈ ρ for all a, b, c ∈ S; left congruences are defined analogously. The importance
of one-sided congruences for monoids is that they determine monogenic (single-generated)
actions; one-sided ideals are not sufficient for this.

Green’s relations L, R, H, D and J are standard tools for describing the ideal structure
of a semigroup. Green’s preorder ≤L on S is given by

a≤L b ⇔ S1a ⊆ S1b,

and this leads to the L-relation: aL b if and only if a≤L b and b≤L a. In other words,
a, b ∈ S are L-related if and only if they generate the same principal left ideal. The preorders
≤R and ≤J are defined analogously and yield the equivalences R and J , respectively. Next
we have H = R∩L, and finally D = R◦L(= L◦R = L∨R). It is clear from the definitions
that Green’s relations are equivalences on S. Moreover, the preorder ≤L is right compatible
and hence L is a right congruence, and similarly R is a left congruence on S. It is easy to
see that the following inclusions between Green’s relations hold:

H ⊆ L, H ⊆ R, L ⊆ D, R ⊆ D, D ⊆ J .

Following the standard convention, we will denote the L/R/H/D/J -class of a ∈ S by
La/Ra/Ha/Da/Ja.
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It can be easily shown that every right/left/two-sided ideal is a union of R/L/J -classes.
A semigroup with no proper right/left ideals is called right/left simple. A semigroup is
called simple if it has no proper ideals. Clearly if S is right or left simple, then it is simple.

A right/left/two-sided ideal I of S is said to beminimal if there is no right/left/two-sided
ideal of S properly contained in I. It turns out that, considered as semigroups, minimal
right/left ideals are right/left simple [3, Theorem 2.4], and minimal ideals are simple [3,
Theorem 1.1]. The semigroup S contains at most one minimal ideal, but S may possess
multiple minimal right/left ideals. If S has a minimal right/left ideal, then the minimal
ideal exists and is equal to the union of all the minimal right/left ideals [3, Theorem 2.1].

A completely simple semigroup is a simple semigroup that possesses both minimal right
ideals and minimal left ideals. A semigroup has both minimal right ideals and minimal
left ideals if and only if it has a completely simple minimal ideal [3, Theorem 3.2]. In
particular, every finite semigroup has a completely simple minimal ideal.

Suppose that S is a semigroup with a completely simple minimal ideal K. Then the
minimal right ideals of K are also the minimal right ideals of S; let us denote them by Ri

(i ∈ I). Similarly, let Lj (j ∈ J) be the minimal left ideals of K (and hence of S). The
intersections Hij = Ri ∩Lj are H-classes of S and are isomorphic groups. For h ∈ Hij and
s ∈ S, we have hs ∈ Ri and sh ∈ Lj , due to the minimality of Ri and Lj . In other words,
S acts on the right on each Ri and on the left on each Lj. In fact, Hijs = Hil for some
l ∈ J ; i.e. S acts on the set of H-classes inside an R-class. When S = K, the above facts
may be easily seen from the classic structure theorem outlined below.

Let T be a semigroup, let I and J be two index sets, and let P = (pj,i) be a J×I matrix
with entries from T. The Rees matrix semigroup S = M[T ; I, J ;P ] is the set I × T × J
with multiplication

(i, u, j)(k, v,m) = (i, upj,kv,m).

The Rees-Suschkewitsch Theorem [9, Theorem 3.3.1] states that a semigroup S is com-
pletely simple if and only if it is isomorphic to some M[G; I, J ;P ] where G is a group.
Furthermore, in this situation P can be chosen to be in normal form, i.e. to satisfy
p1,i = pj,1 = 1G for all i ∈ I and j ∈ J ; here 1 ∈ I ∩ J should be viewed as an arbi-
trary fixed element of both I and J.

Semigroup actions are representations of semigroups by transformations of sets. More
precisely, a right action of a semigroup S on a set A is a map A × S → A, (a, s) 7→ as,
such that (as)t = a(st) for all a ∈ A and s, t ∈ S. If S is a monoid and a1 = a for all
a ∈ A, then we have a monoid action. In either case we say that A is a right S-act. If A
is a right S-act, there is a natural associated monoid action of S1 on A; we will make use
of this association without further comment throughout.

Let A be a right S-act. A subset B of A is called a subact of A if bs ∈ B for all b ∈ B
and s ∈ S; that is, B = BS1. A subset U of a A is a generating set for A if A = US1;
A is said to be finitely generated if it has a finite generating set and monogenic if it has
a one-element generating set. An equivalence relation ρ on A is a congruence if (a, b) ∈ ρ
implies (as, bs) ∈ ρ for all s ∈ S. For X ⊆ A × A, the congruence generated by X is the
smallest congruence on A containing X ; we denote this congruence by 〈X〉.
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Lemma 2.1. [10, Lemma I. 4. 37] Let S be a semigroup, let A be a right S-act, and let X
be a subset of A×A. For any a, b ∈ A, we have (a, b) ∈ 〈X〉 if and only if either a = b or
there exists a sequence

a = x1s1, y1s1 = x2s2, . . . , ynsn = b

where (xi, yi) ∈ X or (yi, xi) ∈ X, and si ∈ S1, for all i ∈ {1, . . . , n}.

A sequence of the form given in Lemma 2.1 is referred to as an X-sequence of length n
from a to b; if a = b we say that there is an X-sequence of length 0 from a to b.

Every semigroup S is a right S-act via right multiplication. The subacts of this right
S-act are precisely the right ideals of S, and its congruences are the right congruences on
S. Left/right dualising the preceding discussion, we arrive at the notion of left semigroup
acts and their basic properties.

3. Pseudo-finiteness: Introduction

Previously the notion of pseudo-finiteness has only been considered for semigroups. How-
ever, we will see it is both natural and useful to define this notion for S-acts as well.

3.1. Fundamental definitions. Let S be a semigroup and let A be a right S-act. Con-
sider a set X ⊆ A×A such that ωA = 〈X〉, where ωA denotes the universal relation on A.
For any a, b ∈ A let dX(a, b) denote the smallest n ∈ N

0 such that there is an X-sequence
of length n from a to b. It is easy to see that dX : A×A → N

0 is a metric.

Definition 3.1. Let S be a semigroup and let A be a right S-act.

• If ωA = 〈X〉, we call the diameter of the metric space (A, dX) the X-diameter of A and
denote it by D(X,A); in other words,

D(X,A) = sup{dX(a, b) : a, b ∈ A}.

• If ωA is finitely generated, we define the diameter of A to be

D(A) = min{D(X,A) : ωA = 〈X〉, |X| < ∞}.

• We say that A is pseudo-finite if it has finite diameter.

Note that if X and Y are two finite generating sets for ωA, then D(X,A) is finite if and
only if D(Y,A) is finite; the proof of this fact is essentially the same as that of [5, Lemma
2.5].

Definition 3.2. Let S be a semigroup.

• If ωS = 〈X〉, the right X-diameter of S, denoted by Dr(X,S), is the X-diameter of S
considered as a right S-act.

• If ωS is finitely generated, the right diameter of S, denoted by Dr(S), is the diameter of
S considered as a right S-act.

• We say that S is right pseudo-finite if it has finite right diameter (or, equivalently, S is
pseudo-finite as a right S-act).
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We dually define the notions of left X-diameter of S and left diameter of S, denoted
by Dl(X,S) and Dl(S), respectively, and the notion of S being left pseudo-finite. In a
subsequent paper we will explore the notion of diameter in more detail, but it is convenient
to have this terminology to draw upon here.

3.2. Finiteness conditions. It is clear that being right pseudo-finite is a semigroup finite-
ness condition, in the sense that every finite semigroup is right pseudo-finite. In fact, for
some classes of semigroups right pseudo-finiteness is equivalent to being finite. Most no-
tably, this is the case for groups, as noted in [5], referring back to [17]. In fact, a more
general result is stated at the end of Section 4 of [17], which we prove here for completeness.

A semigroup S is said to be weakly left cancellative if for any a, b ∈ S the set {s ∈ S1 :
a = bs} is finite. Weakly right cancellative semigroups are defined dually. The class of
weakly left cancellative semigroups includes all left cancellative semigroups (a semigroup
S is left cancellative if ab = ac implies b = c for all a, b, c ∈ S) and hence all groups.

Proposition 3.3. [17, Section 4] A weakly left cancellative semigroup S is right pseudo-
finite if and only if it is finite.

Proof. We have already remarked that being right pseudo-finite is a finiteness condition,
so we only need to prove the direct implication. Let ∅ 6= X ⊆ S be a finite generating set
for ωS, and let Dr(X,S) = n. For c, d ∈ S, denote the set {s ∈ S1 : c = ds} by [c : d]. Each
[c : d] is finite by assumption. Fix b ∈ S. We define sets Ui ⊆ S1 recursively as follows:

U1 =
⋃

x∈X

[b : x], Ui =
⋃

x,y∈X

⋃

u∈Ui−1

[yu : x] (i ≥ 2).

Since X is finite, by an easy induction argument we have that each Ui is finite. Let
U =

⋃n

i=1
Ui, and let V denote the finite set XU. We claim that S = V. Indeed, let a ∈ S.

Then there exists an X-sequence

b = x1s1, y1s1 = x2s2, . . . , yksk = a

where k ≤ n. We have that s1 ∈ [b : x1] ⊆ U1, and hence s2 ∈ [y1s1 : x2] ⊆ U2. Continuing
in this way, we deduce that sk ∈ Uk ⊆ U, and hence a = yksk ∈ V, as required. �

The next result, following similar lines, is framed in terms of the so-called Green’s
∗-equivalences. The equivalence relation L∗ on a semigroup S, introduced in [11], is defined
by the rule that (a, b) ∈ L∗ if and only a, b are L-related in some oversemigroup T. We say
that S is L∗-simple if it has a single L∗-class; R∗-simple semigroups are defined analogously.

Proposition 3.4. An L∗-simple semigroup S is right pseudo-finite if and only if it is finite.

Proof. Again, we just prove the direct implication. Since S is L∗-simple, by [13, Theorem
1] there exists an oversemigroup T such that S is contained in a single L-class of T. (One
can take T to be the dual of the full transformation monoid on S1, in which maps are
composed from right to left.)
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Now let n = Dr(S), and let X ⊆ S be a finite generating set for ωS such that Dr(X,S) =
n. For each pair x, y ∈ X, since x and y are L-related in T we can choose α(x, y) ∈ T such
that x = α(x, y)y. Fix b ∈ S. The set

U = {α(x1, y1) . . . α(xk, yk)b : xi, yi ∈ X, k ≤ n} ⊆ T

is finite since it consists of products of a finite number of elements of length at most n+1.
We claim that S ⊆ U. Indeed, for any a ∈ S there exists an X-sequence

a = x1s1, y1s1 = x2s2, . . . , yksk = b

where k ≤ n. Letting αi = α(xi, yi), we have that

a = x1s1 = α1y1s1 = α1x2s2 = α1α2y2s2 = · · · = α1 . . . αkyksk = α1 . . . αkb ∈ U,

as required. �

Remark 3.5. There is an intriguing connection between Propositions 3.3 and 3.4. On the
one hand, there are considerable similarities in the structure of the proofs, even though
they deal with fairly different sets of assumptions. On the other hand, if the single L-class
of T in the proof of Proposition 3.4 happens to be the L-class of the identity, then this
implies that S is left cancellative, thus recovering a special case of Proposition 3.3.

3.3. Diagonal acts. Given a semigroup S, one can define a right action of S on the set
S × S by (a, b)c = (ac, bc) for all a, b, c ∈ S. With this action, S × S is called the diagonal
right S-act. The diagonal left S-act is defined dually. Diagonal acts first appear, implicitly,
in the work of Bulman-Fleming and McDowell [1]. They were formally defined and studied
by Robertson et al. in [14], and the same authors then made use of this notion in relation to
wreath products [15]. The importance of diagonal acts for the theory of right pseudo-finite
semigroups is encapsulated in the following result.

Proposition 3.6. For a non-trivial semigroup S, the diagonal right S-act is finitely gener-
ated if and only S has right diameter 1. In particular, if the diagonal right S-act is finitely
generated, then S is right pseudo-finite.

Proof. Suppose first that the diagonal right S-act is generated by a finite set U. This means
that for any a, b ∈ S there exist (u, v) ∈ U and s ∈ S1 such that (a, b) = (u, v)s. But then
a = us, vs = b is a U -sequence of length 1, and hence Dr(S) = 1. Conversely, if Dr(S) = 1,
let X be a generating set for ωS such that Dr(X,S) = 1. Setting

U = {(x, y) : (x, y) ∈ X or (y, x) ∈ X},

it follows readily that S × S = US1. �

Gallagher [6, 7] systematically studied finitely generated diagonal acts, a class that turns
out to be quite rich and rather curious. As a source of examples, we summarise his findings
regarding certain monoids of transformations and binary relations:

Theorem 3.7. [7, Table 1] Let X be an infinite set.

(1) The monoid BX , consisting of all binary relations on X, has cyclic diagonal right act
and cyclic diagonal left act.
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(2) The full transformation monoid TX has cyclic diagonal right act and cyclic diagonal
left act.

(3) The partial transformation monoid PX has cyclic diagonal right act and cyclic diag-
onal left act.

(4) The monoid FX , consisting of all transformations on X whose kernel classes are
finite, has cyclic diagonal right act, but its diagonal left act is not finitely generated.

3.4. Basic properties. We begin this subsection by remarking that, given an S-act A,
any finite generating set for ωA is contained in one of the form X ×X for some finite set
X ⊆ A. We shall often abuse terminology by saying that ωA is generated by X , by which
we mean that ωA is generated by X ×X . Similarly, we shall speak of the X-diameter of
A, meaning the (X ×X)-diameter.

We now establish some basic results concerning pseudo-finiteness of acts and semgroups.

Lemma 3.8. Let S be a semigroup. Every pseudo-finite right S-act is finitely generated.
In particular, if S is right pseudo-finite then it is finitely generated as a right ideal.

Proof. Let A be a pseudo-finite right S-act. If A is trivial then it is certainly finitely
generated, so suppose that A has at least two elements. There exists X ⊆ A such that
A has finite X-diameter. Let a ∈ A, and pick any b ∈ A, b 6= a. Then there exists an
X-sequence of positive length connecting a to b, so that a = xs for some x ∈ X and s ∈ S1.
Thus A is generated by X. �

Lemma 3.9. Let S be a semigroup. Let A be a finitely generated right S-act and let B be
a subact of A. If B is pseudo-finite then so is A.

Proof. We have that A = US1 for some finite set U ⊆ A. Suppose that ωB = 〈X〉 for
some finite set X ⊆ B. Since B is pseudo-finite, the X-diameter D(X,B) is finite. For
any a ∈ A, there exist some u ∈ U and s ∈ S1 such that a = us. Then xs ∈ B for any
x ∈ X. It follows that ωA = 〈Y 〉, where Y = X ∪ U, and that D(Y,A) ≤ D(X,B) + 2.
Thus D(A) ≤ D(Y,A) is finite, and hence A is pseudo-finite. �

Lemma 3.10. Let S be a semigroup. Let A be an S-act and let B be a homomorphic
image of A. If A is pseudo-finite then so is B.

Proof. Let ωA = 〈X〉 for some finite set X ⊆ A. Since A is pseudo-finite, the X-diameter
D(X,A) is finite. Let θ : A → B be a surjective homomorphism, and let Y = Xθ. Applying
θ to any X-sequence yields a Y -sequence of the same length. It follows that ωB = 〈Y 〉 and
that D(Y,B) ≤ D(X,A). Thus D(B) ≤ D(Y,B) is finite, and hence B is pseudo-finite. �

Lemma 3.11. Suppose that S is a subsemigroup of T , and let A be a T -act. If A is
pseudo-finite as an S-act, then it is also pseudo-finite as a T -act.

Proof. For any X ⊆ A × A, every X-sequence where A is regarded as an S-act is also an
X-sequence with A regarded as a T -act. �

Turning to right pseudo-finiteness of semigroups, a similar argument to that of Lemma
3.10 proves:

8



Lemma 3.12. [5, Proposition 4.1] Let S be a semigroup and let T be a homomorphic
image of S. If S is right pseudo-finite then so is T.

Lemma 3.13. If S is right pseudo-finite semigroup then so is S1.

Proof. The S1-act S1 contains S as a subact. This subact is pseudo-finite by Lemma 3.11,
and hence S1 is right pseudo-finite by Lemma 3.9. �

The converse of the previous lemma is not true. For instance, let S be any semigroup
with zero that is not finitely generated as a right ideal (such as the infinite semilattice S
with zero in which st = 0 for any s 6= t). Then S is not right pseudo-finite by Lemma 3.8.
However, S1 is right pseudo-finite by [5, Corollary 2.15], since it is a monoid with zero.

4. Pseudo-finiteness and Ideals

We saw in Subsection 3.2 that for certain classes of semigroups, notably groups, right
pseudo-finiteness is equivalent to finiteness. On the other hand, as noted before, any
monoid S with a zero is right pseudo-finite. We have already remarked that having a zero
is the same as having a trivial minimal ideal. It is relatively easy to see that the assumption
that S be a monoid can be weakened to S being finitely generated as a right ideal, and the
assumption of the existence of a zero can be replaced with a finite minimal ideal; see also
[5, Corollary 8.2, Remark 8.9].

The foregoing discussions point to the following natural question: under what conditions,
and in what ways, the presence of a minimal ideal implies right pseudo-finiteness of the
semigroup. This will be one of the guiding questions throughout this paper. The following
easy general result, which relates right pseudo-finiteness of a monoid with pseudo-finiteness
of its right ideals and acts, will prove invaluable in these considerations.

Proposition 4.1. The following are equivalent for a monoid S:

(1) S is right pseudo-finite;
(2) S has a right ideal that is pseudo-finite as a right S-act;
(3) every principal right ideal of S is pseudo-finite as a right S-act;
(4) every finitely generated right ideal of S is pseudo-finite as a right S-act;
(5) every monogenic right S-act is pseudo-finite;
(6) every finitely generated right S-act is pseudo-finite.

Proof. The implications (6)⇒(4)⇒(2) and (6)⇒(5)⇒(3)⇒(2) are straightforward, and an
application of Lemma 3.9 yields (2)⇒(1).

(1)⇒(6). Let A be a finitely generated S-act. We claim that the diameter D(A) of A is
at most 2Dr(S) + 1, which is finite since S is right pseudo-finite. Let X ⊆ S be a finite
generating set for ωS such that Dr(X,S) = Dr(S). Now let U be a finite generating set for
A and put V = UX1. Let a, b ∈ A. Then a = us and b = vt for some u, v ∈ U and s, t ∈ S.
By assumption we have an X-sequence

s = x1s1, y1s1 = x2s2, . . . , yksk = 1
9



where k ≤ Dr(S). Hence, we have a V -sequence

a = (ux1)s1, (uy1)s1 = (ux2)s2, . . . , (uyk)sk = u

from a to u. Similarly, there exists a V -sequence from b to v of length at most Dr(S). Since
u, v ∈ V, we conclude that a and b can be connected by a V -sequence of length at most
2Dr(S) + 1, as required. �

Combining Lemma 3.11 and Proposition 4.1, we have:

Corollary 4.2. Let S be a monoid and let I be a right ideal of S. If I is right pseudo-finite
(as a semigroup), then S is right pseudo-finite.

Consider a right ideal I of a monoid S. If I has an identity, then it is a retract of S.
Indeed, letting 1I denote the identity of I, define a map θ : S → I by sθ = 1Is. For any
s, t ∈ S, we have

(st)θ = 1I(st) = (1Is)t =
(

(1Is)1I
)

t = (1Is)(1It) = (sθ)(tθ),

so θ is a homomorphism. Clearly θ|I is the identity map on I, so θ is a retraction, as
required. (In fact, the converse also holds: if I is a retract of S via a retraction θ : S → I,
then I has identity 1Sθ.) From this observation and Lemma 3.12, along with Corollary 4.2,
we deduce:

Corollary 4.3. Let S be a monoid, and let I be a right ideal of S that has an identity.
Then S is right pseudo-finite if and only if I is right pseudo-finite.

Going in the converse direction, we may wonder in what situations right pseudo-finiteness
of a semigroup implies the existence of minimal ideals, or even minimal ideals of a certain
kind. This is certainly the case in all instances where right pseudo-finiteness implies finite-
ness, as discussed in Subsection 3.2, since we noted earlier that a finite semigroup must
possess a completely simple minimal ideal. Also, if S is right pseudo-finite with exactly
one minimal left ideal L and exactly one minimal right ideal R, then by [3, Theorem 4.2]
we have that L = R is the minimal ideal of S and is also a group. It follows from Corollary
4.3 and Proposition 3.3 that this group must be finite.

Returning to various natural semigroups with cyclic diagonal acts encountered in The-
orem 3.7, we remark that the monoids BX , PX and TX each have a completely simple
minimal ideal. Indeed, the former two both contain a zero element, and the minimal ideal
of TX is a right zero semigroup, consisting of all the constant maps on X (this minimal ideal
is infinite since X is infinite). The monoid FX turns out to be bisimple, meaning that it
has a single D-class, and hence regular (since any bisimple monoid is regular). (The proof
that FX is bisimple is essentially the same as the proof that the similarly-defined monoid
M(X) is bisimple; see [4, Section 8.6]. We note that M(X) = FX when X is countable.)
The monoid FX is not completely simple; indeed, it can be easily deduced from the Rees-
Suschkewitsch representation, given in Section 2, that a monoid is completely simple if and
only if it is a group, and FX is certainly not a group. Thus there exist right pseudo-finite
(regular) monoids with minimal ideals that are not completely simple.
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Given any infinite set X, the Baer–Levi semigroup

BLX = {α ∈ TX : α is injective, |X\Xα| = |X|}

is a right simple, right cancellative semigroup without idempotents (so certainly not com-
petely simple) [4, Theorem 8.2], and is right pseudo-finite [12, Remark 7.3]. It can be easily
shown that BLX is the minimal ideal of the monoid InjX of all injective mappings on X.
Thus, by Corollary 4.2, we have:

Proposition 4.4. For any infinite set X, the monoid InjX is right pseudo-finite.

Remark 4.5. Let X be an infinite set. The monoid InjX is R∗-simple since it coincides
with the R-class of the identity of TX . It follows from the dual of Proposition 3.4 that no
infinite subsemigroup of InjX is left pseudo-finite.

From the preceding discussion a potentially intricate landscape begins to emerge, relating
the property of pseudo-finiteness with the existence and/or nature of minimal ideals. The
aim of this paper is to provide an in-depth exploration of this landscape.

5. Completely Simple Minimal Ideals

For the remainder of the paper we focus on monoids, since if S is right pseudo-finite/has
a minimal ideal, then the same properties are true of S1. In this section we discuss
the relationship between the property of being right pseudo-finite and the existence of a
completely simple minimal ideal. We first establish a result that characterises right pseudo-
finiteness in the presence of a completely simple minimal ideal. We then discover various
classes of semigroup for which being right pseudo-finite implies the existence of such an
ideal.

The following result provides two necessary and sufficient conditions for a monoid with
a completely simple minimal ideal to be right pseudo-finite. The first is new, whereas the
second was indicated in [5, Remark 8.9] where it was noted that the results of that section,
which concerned the universal left congruence being finitely generated, could be modified
to the (left) pseudo-finite case. In fact, the modifications in this instance are significant,
and we give a direct argument below.

The statement features the action of a semigroup on the H-classes in a minimal right
ideal; this was introduced in Section 2.

Theorem 5.1. Let S be a monoid with a completely simple minimal ideal K. Then the
following three statements are equivalent.

(1) S is right pseudo-finite.
(2) S satisfies the following two conditions:

(a) there exists a (completely simple) left ideal K0 of K such that K0 is the union
of finitely many L-classes and K1

0 is right pseudo-finite;
(b) for any R-class R of K, the right S-act R/H is pseudo-finite.

(3) S satisfies the following two conditions:
11



(a) there exists a left ideal K0 of K such that K0 is the union of finitely many L-
classes and any maximal subgroup G = He of K0 has finite (F ∪ V)-diameter,
where F ⊆ G is finite and

V = {fg : f, g ∈ E(K0), f R eL g} ⊆ G;

(b) for any R-class R of K, the right S-act R/H is pseudo-finite.

Proof. (1)⇒(2). We first prove that (2a) holds. Let X ⊆ S be a finite generating set for
ωS, and let n = D(X,S). Fix an idempotent e ∈ K. We may assume that e ∈ X. Let
V = {ex : x ∈ X} ⊆ Re, and let

K0 =
⋃

v∈V

Lv.

Let

Y = {1, ex : x ∈ X} ∪
(

E(K0) ∩Re

)

⊆ (K0 ∩Re)
1.

Clearly Y is finite. We claim that the Y -diameter of K1
0 is no more than 2n + 3. Indeed,

let a, b ∈ K0. Let f be the idempotent in the H-class of ea, and let g be the idempotent in
the H-class of eb. Then f, g ∈ E(K0) ∩ Re ⊆ Y. Now, there exists an X-sequence

a = x1s1, y1s1 = x2s2, . . . , yksk = f

in S, where k ≤ n. Therefore, we have a Y -sequence

a = 1a, ea = eaf = (ex1)(s1f), (ey1)(s1f) = (ex2)(s2f), . . . , (eyk)(sk)f = ef 2 = f

in K0 that has length k + 1. Similarly, there exists a Y -sequence of length at most n + 1
from b to g. Since f, g ∈ Y, we conclude that there exists a Y -sequence of length at most
2n+ 3 from a to b, as required.

For (2b), let R be any R-class of K. Then R is a pseudo-finite as a right S-act by
Proposition 4.1, and hence the quotient R/H is pseudo-finite by Lemma 3.10.

(2)⇒(3). Condition (3b) is identical to (2b), so we just need to prove that (3a) holds.
Let K0 be as given in (2a). In particular, K0 is the union of finitely many L-classes.
Consider a maximal subgroup G = He of K0. Let T = K1

0 . Since T is right pseudo-finite,
there exists a finite set Y ⊆ T such that ωT = 〈Y 〉 and the Y -diameter of T is finite, say
n. Let F = {e, eye : y ∈ Y }, and let X = V ∪ F where V is as given in the statement.
Clearly F is finite, but V may be infinite. We claim that ωG = 〈X〉 and that X-diameter
of G is no greater than 3n. Indeed, let u, v ∈ G. Then there exists a Y -sequence

u = x1t1, y1t1 = x2t2, . . . , yktk = v (∗)

in T, where k ≤ n. Let x′
i = exie, y

′
i = eyie, t

′
i = etie, let ei, fi, gi be the idempotents in

the H-classes of exi, eyi, tie, respectively, and let ai = eigi and bi = figi. The elements are
arranged in the following egg-box pattern.
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e, x′
i, y

′
i

t′i, ai, bi
· · · exi, ei eyi, fi · · ·

...
tie, gi

...

Note that x′
i, y

′
i ∈ F and ai, bi ∈ V. We claim that we have a sequence

u = x′
1a1t

′
1, y

′
1b1t

′
1 = x′

2a2t
′
2, . . . , y

′
kbkt

′
k = v. (†)

To see this, observe that

x′
iait

′
i = (exie)(eigi)(etie) = (exi)(eei)(gie)(tie) = (exi)eigi(tie) = (exi)(tie).

Similarly, we have y′iait
′
i = (eyi)(tie). Thus, multiplying the sequence (∗) both on the

left and right by e yields the sequence (†). Now, for each i ∈ {1, . . . , k}, there exists an
X-sequence

x′
iait

′
i = x′

i(ait
′
i), e(ait

′
i) = ait

′
i, bit

′
i = e(bit

′
i), y

′
i(bit

′
i) = y′ibit

′
i,

which has length 3. We conclude that there exists an X-sequence of length no greater than
3n from u to v, as required.

(3)⇒(1). Fix e ∈ K0 and let R = Re. By Proposition 4.1, it suffices to prove that R
is pseudo-finite as a right S-act. Let G = He. By (3a), G has finite (F ∪ V )-diameter,
say n, where F and V are as given in the statement. By (3b), the quotient A = R/H =
{[a]H : a ∈ R} is pseudo-finite. Let ωA = 〈Y 〉 for some finite set Y ⊆ A, and let m
be the Y -diameter of A. For each y ∈ Y choose xy ∈ R such that y = [xy]H, and let
X = {xy : y ∈ Y }. We claim that ωR is generated by the finite set

Z = F ∪
(

E(K0) ∩R
)

∪X,

and that the Z-diameter of R is no greater than 2n(m+ 1) +m.
We first claim that for any u, v ∈ R such that uH v, there exists a Z-sequence of length

no greater than 2n from u to v. Indeed, let u and v be as given above. If u = v then
we are done, so assume that u 6= v. Let h be the idempotent in Hu = Hv. We have that
ue, ve ∈ G, so there exists an (F ∪ V )-sequence

ue = u1s1, v1s1 = u2s2, . . . , vksk = ve

where k ≤ n. Since eh = h and uh = u, vh = v, multiplying the above sequence on the
right by h, we obtain an (F ∪ V )-sequence

u = u1s1h, v1s1h = u2s2h, . . . , vkskh = v.

If ui, vi ∈ F for all i ∈ {1, . . . , k}, then we have an F -sequence from u to v, and we are
done. So suppose otherwise, and consider (w, z) ∈ {(ui, vi), (vi, ui)} such that w ∈ V. Then
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w = fg where f, g ∈ E(K0) and f R eL g. Since e, f ∈ E(K0) ∩R, we have a Z-sequence

wsih = f(gsih), e(gsih) = esih.

If z ∈ V then, by the same argument, there exists a Z-sequence of length 1 from zsih to
esih. Otherwise, if z ∈ F, then clearly we have a Z-sequence of length 1 from zsih to esih.
It follows that there is a Z-sequence of length 2 from wsih to zsih. We conclude that there
is a Z-sequence of length no greater than 2n from u to v, establishing the claim.

Now let a, b ∈ R. Then [a]H, [b]H ∈ A, so there exist a Y -sequence

[a]H = y1t1, z1t1 = y2t2, . . . , zltl = [b]H,

where yi, zi ∈ Y, ti ∈ S1 and l ≤ m. Letting xi = xyi and x′
i = xzi , we deduce that

aH x1t1, x
′
1t1H x2t2, . . . , x

′
ltl H b.

Note that xi, x
′
i ∈ X. By the above claim, for each pair (u, v) in

{(a, x1t1), (x
′
iti, xi+1ti+1), (x

′
ltl, b) : 1 ≤ i ≤ l − 1},

there exists a Z-sequence of length no greater than 2n from u to v. By interleaving these
sequences with single steps from xiti to xit

′
i, we obtain a Z-sequence of length no greater

than 2n(m+ 1) +m from a to b. This completes the proof. �

Corollary 5.2. Let S be a right pseudo-finite monoid with a completely simple minimal
ideal K. If K has finitely many R-classes, then its maximal subgroups are finite.

Proof. By Theorem 5.1, there exists a left ideal K0 ofK such thatK0 is the union of finitely
many L-classes and any maximal subgroup G = He ofK0 has finite (F∪V)-diameter, where
F ⊆ G is finite and

V = {fg : f, g ∈ E(K0), f R eL g}.

Since every maximal subgroup of K is isomorphic to G, it suffices to prove that G is
finite. Since K0 is completely simple (and hence regular), Green’s relation R on K0 is the
restriction of Green’s relationR on K [9, Proposition 2.4.2]. Therefore, since K has finitely
many R-classes, so does K0. Since K0 has finitely many L-classes, we conclude that K0 is
the union of finitely many maximal subgroups. Thus E(K0) is finite. It follows that V is
finite. Since F is finite, we have that F ∪ V is finite, and hence G is right pseudo-finite.
Then G is finite by Proposition 3.3. �

Remark 5.3. If a monoid S has a completely simple minimal ideal K whose maximal
subgroups are finite, then S clearly satisfies condition (3a) of Theorem 5.1 (where K0 can
be taken to be any L-class of K), so S is right pseudo-finite if and only if for any R-class
R of K the right S-act R/H is pseudo-finite.

Remark 5.4. It is possible for a right pseudo-finite monoid to have a completely simple
minimal ideal that has finitely many R-classes and infinitely many L-classes. Indeed, as
discussed in Section 3, the full transformation monoid TX on an infinite set X is right
pseudo-finite and has a minimal ideal that is an infinite right zero semigroup, which has a
single R-class and infinitely many L-classes.
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Specialising Theorem 5.1 to completely simple semigroups with 1 adjoined, we obtain:

Corollary 5.5. Let K be a completely simple semigroup and let S = K1. Then S is right
pseudo-finite if and only if:

(1) K has finitely many L-classes; and
(2) any maximal subgroup G = He of K has finite (F ∪ V)-diameter, where F ⊆ G is

finite and V = {fg : f, g ∈ E(K), f R eL g}.

Proof. Notice that the action of a completely simple semigroup K on R/H, where R is an
R-class, satisfies the following property: if [x]H, [y]H ∈ R/H, then for any s ∈ K we have
[x]Hs = [y]Hs. It follows that every equivalence relation on the S-act R/H is a congruence,
or, in other words, the congruence generated by a set is the smallest equivalence relation
containing that set. Hence the full congruence is finitely generated only if R/H is finite.
The rest of the proof is a direct application of Theorem 5.1. �

Remark 5.6. As discussed in Section 2, every completely simple semigroup can be repre-
sented as a Rees matrix semigroup K = M[G; I, J ;P ], where G is a group and P is normal,
meaning that p1,i = pj,1 = 1G for all i ∈ I, j ∈ J, where 1 ∈ I∩J. In this representation, ass-
suming without loss of generality that e = (1, 1G, 1), the set {fg : f, g ∈ E(K), f R eL g}
corresponds to the set of entries {pj,i : i ∈ I, j ∈ J}; see the proof of [9, Theorem 3.2.3].
If this set of entries comprises the whole of G, and if J is finite, Corollary 5.5 implies that
S = K1 is right pseudo-finite. Specialising further, if we take an infinite group G, take I
such that |I| = |G|, set J = {1, 2}, and populate the second row of P with all the elements
of G, we obtain a right pseudo-finite semigroup with a completely simple ideal that has
infinite maximal subgroups.

In what follows we consider some conditions on right pseudo-finite monoids that imply
the existence of a completely simple minimal ideal.

[5, Proposition 5.3] provides necessary and sufficient conditions for an inverse monoid to
be right pseudo-finite. An immediate consequence is:

Proposition 5.7. An inverse monoid is right pseudo-finite if and only if it has a minimal
ideal that is a finite group.

A semigroup is said to be completely regular if it is a union of groups. The class of
completely regular semigroups includes completely simple semigroups, Clifford semigroups
and bands. By [5, Corollary 8.3] we have:

Proposition 5.8. Every right pseudo-finite completely regular monoid has a completely
simple minimal ideal.

A regular semigroup is said to be orthodox if its idempotents form a subsemigroup. We
note that all inverse semigroups are orthodox, but the converse is not true; also, orthodox
semigroups need not be completely regular, and vice versa.

The proof of Theorem 5.10 below makes use of some techniques from classical semigroup
theory. We explain them as we come across them, with the exception of the following
construction of a semilattice of subsemigroups, which we will also need in Section 6.

15



Definition 5.9. A semigroup S is a semilattice Y of subsemigroups Sα, α ∈ Y , if (i)
Sα ∩ Sβ = ∅ for all α 6= β ∈ Y ; (ii) S =

⋃

α∈Y Sα; and (iii) SαSβ ⊆ Sαβ for all α, β ∈ Y .

Notice that if S is a semilattice Y of subsemigroups, then Y is a homomorphic image of S.
Thus, if S is right pseudo-finite, then by Lemma 3.12 so is Y, and hence Y is forced to have
a zero by [5, Proposition 5.3]. It is worth remarking that a completely regular semigroup
is a semilattice of completely simple semigroups, which together with the foregoing remark
yields Proposition 5.8. For orthodox semigroups we must work a little harder.

Theorem 5.10. Let S be an orthodox monoid. Then the following are equivalent:

(1) S is right pseudo-finite;
(2) S has a completely simple minimal ideal K whose (maximal) subgroups are finite,

and the right S-act R/H is pseudo-finite for any R-class R of K.

Proof. (1)⇒(2). Denoting by B the band of idempotents E(S) of S, we have that B is
a semilattice Y of rectangular bands Bα, α ∈ Y [9, Theorem 4.4.1]. Moreover, S/γ is an
inverse monoid, where γ is the least inverse congruence on S. It follows from [9, (6.2.5)] that
E(S/γ) ∼= Y. Now, S/γ is right pseudo-finite by Lemma 3.12, and hence, by [5, Proposition
5.3], the semilattice Y has a least element 0. It follows that the rectangular band B0 is the
minimal ideal of B. Fix an idempotent e in B0. We claim that the L-class Le of S is a
minimal left ideal. Clearly it suffices to prove that Le is a left ideal. So, let a ∈ Le and
s ∈ S. Then a = ae and hence sa = sae. Let f be an idempotent such that saL f. Then it
follows that f = fe. Consequently, by the minimality of B0, we have f ∈ B0. From f = fe
and the fact that B0 is a rectangular band, we obtain f L e. It follows by transitivity that
sa ∈ Le, as required. A dual argument proves that the R-class Re is a minimal right ideal
of S. Since S has both a minimal left ideal and a minimal right ideal, it has a completely
simple minimal ideal, say K.

To prove that the maximal subgroups of K are finite, we consider the map

ϕe : S → S, a 7→ eae.

Since K is completely simple and the minimal ideal of S, it is clear that the image of
ϕe is He. Let a, b ∈ S. Since S is regular, there exist idempotents g, h ∈ E(S) such that
eaL g and hR be. But then g, h ∈ B0. Since B0 is a rectangular band, we have geh = gh.
Consequently, we have

(ab)ϕe = e(ab)e = (ea)(be) = (eag)(hbe) = (ea)(gh)(be)

= (ea)(geh)(be) = (eag)e(hbe) = (ea)e(be) = (eae)(ebe)

= (aϕe)(bϕe),

so that ϕe is a homomorphism. Thus He is right pseudo-finite by Lemma 3.12, and hence
He is finite by Proposition 3.3.

By Theorem 5.1, the right S-act R/H is pseudo-finite for any R-class R of K.
(2)⇒(1). This follows from Remark 5.3. �

Example 5.11. In the case of orthodox monoids we cannot make inferences about finite-
ness of the minimal ideal, or of its constituent R- or L-classes. Indeed, let S be any infinite

16



right pseudo-finite orthodox monoid, e.g. an infinite group with a zero adjoined. Let T be
the extension by constants of S; see [8, p. 155]. Then T = S ∪ I, where I = {cu : u ∈ S}
is a right zero semigoup (i.e. cucv = cv), and scu = cu, cus = cus. The semigroup T can be
viewed concretely as follows: for s ∈ S, let ρs : S0 → S0 be the right translation by s, and
let γs : S

0 → S be the constant mapping with value s. Then T is isomorphic to the sub-
semigroup {ρs, γs : s ∈ S} of TS0. It is clear that T is orthodox and that I is a (completely
simple) minimal ideal with infinitely many (trivial) L-classes. Since the action of S on I is
pseudo-finite, it follows from Proposition 4.1 that T is right pseudo-finite. Of course, we
can extend S by left constants, by embedding it into the subsemigroup {λs, γs : s ∈ S}
of the dual transformation monoid T ∗

S0 , where λs is the left translation by S. Finally we
may extend S by the rectangular band of left and right constants, by embedding into the
subsemigroup {(λs, ρs), (γs, γt) : s, t ∈ S} of the direct product T ∗

S0 ×TS0 ; this last monoid
is orthodox with infinitely many R- and L-classes in the minimal ideal, and is both left
and right pseudo-finite.

We now turn our attention to the class of J -trivial monoids. In what follows, a local
zero of an element a in a semigroup S is any idempotent e ∈ E(S) such that ae = ea = e.

Lemma 5.12. Let S be a J -trivial monoid and let a ∈ S. An idempotent e ∈ E(S) is a
local zero of a if and only if e≤J a.

Proof. The forward implication is clear. For the converse, we have that e = sat for some
s, t ∈ S. Then e = e2 = esat. Thus eR es, so e = es since R ⊆ J and S is J -trivial. Then
e = eat, so eR ea and hence e = ea. A dual argument proves that e = ae. �

Theorem 5.13. Let S be a J -trivial monoid in which every element has a local zero. Then
S is right pseudo-finite if and only if it has a zero.

Proof. The reverse implication follows immediately from Corollary 4.2. For the direct
implication, let Dr(S) = n, and let X ⊆ S be a finite generating set for ωS such that
Dr(X,S) = n. For each u ∈ S, choose a local zero u∗ of u. Consider a ∈ S. There exists an
X-sequence

1 = x1s1, y1s1 = x2s2, · · · , yksk = a

where k ≤ n. Then x1, s1 ∈ J1, so x1 = s1 = 1 since S is J -trivial. Let e1 = y∗1.
Then e1≤J y1 = y1s1. Thus, if k = 1 then e1 ≤J a. Suppose that k > 1. For each i ∈
{1, . . . , k− 1}, let ei+1 = (y∗i+1ei)

∗. Let i ∈ {1, . . . , k− 1} and assume that ei ≤J yisi. Then

si+1≥J xi+1si+1 = yisi ≥J ei,

so si+1ei = ei. Then

yi+1si+1≥J y∗i+1yi+1si+1ei = y∗i+1ei ≥J (y∗i+1ei)
∗ = ei+1.

Hence, by finite induction, we have that ek ≤J a. Now, the element ek depends only on
the elements y1, . . . , yk ∈ X. Since X is finite and k ≤ n, it follows that there exists a
finite set V = {v1, . . . , vm} ⊆ E(S) with the following property: for any a ∈ S there
exists i ∈ {1, . . . , m} such that vi ≤J a. Setting z = v1 . . . vm, we have that z≤J vi for each
i ∈ {1, . . . , m}, and hence z≤J a for all a ∈ S. Thus z is a zero of S. �
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A semigroup S is said to be periodic if every monogenic subsemigroup of S is finite
(equivalently, for every a ∈ S there exist q, r ∈ N such that aq+r = aq).

Corollary 5.14. A periodic J -trivial monoid S is right pseudo-finite if and only if it has
a zero.

Proof. Let a ∈ S be arbitrary. Since S is periodic, there exist q, r ∈ N such that aq+r = aq.
Then aq J aq+1, so aq = aq+1 as S is J -trivial. It follows that aq is a local zero of a. The
result now follows from Theorem 5.13. �

In the remainder of this section we consider a wide class of monoids that includes all
commutative monoids, namely right reversible monoids.

Definition 5.15. A monoid S is right reversible if for any a, b ∈ S there exist u, v ∈ S
such that ua = vb.

In addition to commutative monoids, the class of right reversible monoids contains all
inverse monoids, monoids in which the L-classes form a chain, monoids with a left zero,
and left orders in groups.

Before we proceed, we provide the following curious result, giving a sufficient condition
for right reversibility in terms of a generating set for the full right congruence.

Proposition 5.16. Let T be a right reversible submonoid of a monoid S. If ωS has a
generating set X ⊆ T, then S is right reversible.

Proof. Let a, b ∈ S. Then there exists an X-sequence

a = x1s1, y1s1 = x2s2, · · · , yksk = b

where k ∈ N. We prove by induction on k that there exist u, v ∈ T such that ua = vb.
Suppose first that k = 1. Since x1, y1 ∈ T and T is right reversible, there exist u, v ∈ T
such that ux1 = vy1. Then ua = vb. Now let k > 1 and assume that there exist w, z ∈ T
such that wa = z(xksk). Since zxk, yk ∈ T and T is right reversible, there exist u, v ∈ T
such that uzxk = vyk and hence (uw)a = vb. �

If ωS is generated by a single pair of the form (1, s), the assumptions of Proposition 5.16
are satisfied with T the submonoid generated by s, and hence S is right reversible.

We now make a couple of technical definitions.

Definition 5.17. Let S be a monoid. We say that a subset V ⊆ S is an absorbing set for
S if for any a ∈ S there exist u, v ∈ V such that ua = v. We say that S is finitely absorbed
if it has a finite absorbing set.

Definition 5.18. We say that a monoid S has special right radius 2 if there exists a finite
set X ⊆ S such that for any a ∈ S we have an X-sequence

a = x1s1, y1s1 = x2s2, y2s2 = 1

where x1 is right invertible.
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It is clear that any monoid with special right radius 2 is right pseudo-finite. We remark
that monoids with right diameter 1 and monoids with zero have special right radius 2.

We will later see how pseudo-finiteness interacts with right reversibility and the property
of being finitely absorbed. First, we show that the latter condition itself implies that the
monoid is right pseudo-finite (indeed, it satisfies the stronger property of having special
right radius 2).

Definition 5.19. A monoid S is weakly right reversible if for any infinite sequence

Sa1, Sa2, . . .

of principal left ideals of S, there exist i, j ∈ N with i < j such that Sai ∩ Saj 6= ∅.

Proposition 5.20. The following are equivalent for a monoid S:

(1) S is finitely absorbed;
(2) S has a completely simple minimal ideal with finite R-classes;
(3) S is weakly right reversible and has special right radius 2.

Proof. (1)⇒(2). Let V be a finite absorbing set of S. Observe that, for u, v ∈ V, if ua = v
then v ≤L a. Since the set V is finite, we deduce that S has minimal left ideals; the union
of these minimal left ideals is the minimal ideal of S, say K. Choose w ∈ S such that Lw

is a minimal left ideal of S. Now, we have that wLwi for all i ∈ N. Since V is absorbing,
for each i ∈ N there exists (ui, vi) ∈ V such that uiw

i = vi. But since V is finite, we must
have (ui, vi) = (ui+j, vi+j) for some i, j ≥ 1. Letting u = ui = ui+j and v = vi = vi+j , we
have that

vwj = uwiwj = uwi+j = v.

Since v ≤L w, by the choice of w we have that wL v, so that w = tv for some t ∈ S.
It follows that w = tvwj = wj+1, so w is periodic and hence K contains an idempotent.
Thus K is completely simple. For any a ∈ K, there exist u, v ∈ V such that ua = v, so
(wu)a = wv. It follows that every element of K is L-related to some wv, where (u, v) ∈ V
for some u ∈ S. Hence, K has finitely many L-classes. Now consider a maximal subgroup
G = He of K. For any g ∈ G, there exist u, v ∈ V such that ug = v. Now, eue, eve ∈ G
and so g = (eue)−1eve. Thus G = {(eue)−1eve : u, v ∈ V }. Since V is finite, we conclude
that G is finite. It follows that the R-classes of K are finite.

(2)⇒(3). Certainly S is weakly right reversible. Let Re be an R-class in the completely
simple minimal ideal, and let X denote the finite set {1} ∪ Re. For any a, b ∈ S, we have
an X-sequence

a = 1a, ea = (ea)1, (1)1 = 1.

Thus S has special right radius 2.
(3)⇒(1). By assumption S has special right radius 2, so let X ⊆ S be a finite set

witnessing this property. Consider an arbitrary a ∈ S. Then there is an X-sequence

a = x1s1, y1s1 = x2s2, y2s2 = 1 (‡)

where x1 is right invertible, say with x1t = 1. Also, clearly, y2 is right invertible, with right
inverse s2. Considering the sequence of principal right ideals Sx2y2, Sx2y

2
2, . . . and using

19



the fact that S is weakly right reversible, there exist u, v ∈ S and m,n ∈ N such that

ux2y
m+n
2 = vx2y

m
2 .

Similarly, having chosen v, there exist p, q ∈ S and i, j ∈ N such that

pvy1x
i+j
1 = qvy1x

i
1.

Then

(pvy1x
j−1

1 )a = pvy1x
j
1s1 = pvy1x

i+j
1 tis1 = qvy1x

i
1t

is1 = qvy1s1 = qvx2s2

= qvx2y
m
2 s

m+1

2 = qux2y
m+n
2 sm+1

2 = qux2y
n−1

2 .

Hence the set of all elements pvy1x
j−1

1 , qux2y
n−1

2 , as a runs through S, is an absorbing set
for S. In fact this set can be chosen to be finite, by noticing that the choices of individual
factors u, v, p, q and exponents j and n, featuring in the above elements, which we have
made along the way, depend only upon the sequence (x1, y1, x2, y2) appearing in (‡). There
are only finitely many such sequences because X is finite. Therefore S is finitely absorbed,
as required. �

The following result provides several equivalent characterisations for a monoid to be
both right pseudo-finite and right reversible.

Theorem 5.21. The following are equivalent for a monoid S:

(1) S is right pseudo-finite and right reversible;
(2) S is finitely absorbed and right reversible;
(3) S has a minimal ideal of the form L × G where L is a left zero semigroup and G is

a finite group;
(4) S is right pseudo-finite and has a single minimal left ideal.

Proof. (1)⇒(2). Suppose that ωS is generated by a finite set X ⊆ S, and let n = D(X,S).
Let S be the set of sequences of elements of X of even length no greater than 2n. Consider
a sequence

(x1, y1, x2, y2, . . . , xk, yk)

in S. Since S is right reversible, there exist u1, v1, . . . , uk, vk ∈ S such that

u1x1 = v1y1, u2v1x2 = v2y2, . . . , ukvk−1xk = vkyk.

Let
V = {uk . . . u2u1, vk : (x1, y1, . . . , xk, yk) ∈ S};

notice that V is finite. We claim that V is an absorbing set of S. Indeed, let a ∈ S. Then
there exists an X-sequence

a = x1s1, y1s1 = x2s2, . . . , yksk = 1

where k ≤ n. Let the elements u1, v1, . . . , uk, vk be chosen as above. Then

u1a = u1x1s1 = v1y1s1.

Suppose for induction that
ui . . . u2u1a = viyisi.
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Then

ui+1ui . . . u2u1a = ui+1viyisi = ui+1vixi+1si+1 = vi+1yi+1si+1,

so that in a finite number of steps

uk . . . u2u1a = vkyksk = vk,

as required.
(2)⇒(3). By Proposition 5.20, S has a completely simple minimal ideal K with finite

R-classes. Let w ∈ K be arbitrary. By right reversibility, for any p ∈ K the exist x, y ∈ S
such that xp = yw. But then pL xp = ywLw. Thus K = Lw. We conclude that K ∼= L×G
where L is a left zero semigroup and G is a finite group.

(3)⇒(4). For any e ∈ L, the set {e} × G ∼= G is a finite right ideal of S. Therefore, by
Proposition 4.1, S is right pseudo-finite. It is obvious that L×G is a minimal left ideal.

(4)⇒(1). Let L be the minimal left ideal of S. Then L is the minimal ideal of S. Let
a, b ∈ S. Picking any u ∈ L, we have that ua, ub ∈ L. Since uaL ub, there exists v ∈ L
such that vua = ub. Thus S is right reversible. �

Corollary 5.22. Let M be a commutative monoid. Then M is right pseudo-finite if and
only it it has a minimal ideal that is a finite group.

Proposition 5.7 is also an immediate corollary of Theorem 5.21.

6. Minimal Ideals

In this section we show that if either of the partial orders ≤L or ≤J is left compatible
with multiplication in a right pseudo-finite monoid S then S must have a minimal ideal.
Each of these two results is derived as a corollary of more technical necessary and sufficient
conditions for a right pseudo-finite monoid to have a minimal left ideal or a minimal two-
sided ideal. For clarity, in what follows the relation ≤L or ≤J always denotes the relation
≤L or ≤J in the parent semigroup. The relation ≤L is always right compatible with
multiplication, but need not be left compatible; the relation ≤J need not be either.

Theorem 6.1. Let S be a right pseudo-finite monoid. The following are equivalent:

(1) S has a minimal left ideal;
(2) S has a left ideal I such that ≤L ∩ (I × I) is left compatible with multiplication in S;
(3) for each a ∈ S there exists k = ka ∈ S such that for any u, v ∈ S,

u≤L v implies that auk≤L avk;

(4) ωS has a finite generating set X ⊆ S, and for each x ∈ X there exists k = kx ∈ S
such that for any u, v ∈ S,

u≤L v implies that xuk≤L xvk.

Proof. (1)⇒(2) Choosing a minimal left ideal Sk of S, it is immediate from the minimality
of Sk that for any a ∈ S and u, v ∈ S we have aukL ukL kL vkL avk, whence (2) trivially
holds.
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(2)⇒(3) Let I be a left ideal satisfying the conditions of (2). Let k ∈ I and a ∈ S. For
any u, v ∈ S with u≤L v we have that uk≤L vk, since ≤L is right compatible, and clearly
uk, vk ∈ I. By assumption, auk≤L avk. Thus (3) holds with ka = k for all a ∈ S.

(3)⇒(4) This is immediate.
(4)⇒(1) Suppose that (4) holds. Let N = D(X,S). It is convenient to assume that

1 ∈ X (we can take k1 = 1). Let a ∈ S. There exists an X-sequence

a = x1t1, y1t1 = x2t2, . . . , yn−1tn−1 = xntn, yntn = 1,

where n ≤ N. Let s ∈ S. Then we have

as = x1s1, y1s1 = x2s2, . . . , yn−1sn−1 = xnsn, ynsn = s,

where si = tis for 1 ≤ i ≤ n. Certainly s≤L sn, so that xnskxn
≤L xnsnkxn

. Suppose for
finite induction that for some 1 < j ≤ n we have

xjxj+1 . . . xnskxn
. . . kxj+1

kxj
≤L xjsjkxn

. . . kxj+1
kxj

.

Then, since xjsj = yj−1sj−1, we have

xjxj+1 . . . xnskxn
. . . kxj+1

kxj
≤L sj−1kxn

. . . kxj+1
kxj

.

It follows that

xj−1xjxj+1 . . . xnskxn
. . . kxj+1

kxj
kxj−1

≤L xj−1sj−1kxn
. . . kxj+1

kxj
kxj−1

.

By finite induction we have

x1x2 . . . xnskxn
. . . kx2

kx1
≤L x1s1kxn

. . . kx2
kx1

= askxn
. . . kx2

kx1
. (§)

Hence, there is a finite set V ⊆ S × S with the following property: for any a ∈ S there
exists (u, v) ∈ V such that

usv≤L asv

for all s ∈ S. Enumerate the elements of V as (p1, q1), . . . , (pm, qm), and let q = q1 . . . qm.
Let k ∈ {1, . . . , m} be such that pkq is minimal under ≤L amongst {pjq : 1 ≤ j ≤ m}. We
claim that L = Spkq is a minimal left ideal of S. Clearly L is a left ideal, so it suffices to
prove that L is the L-class of pkq. So, let t be any element of S and consider tpkq. There
exists (pi, qi) ∈ V such that for any s ∈ S we have

pisqi ≤L (tpk)sqi.

Taking s = q1 . . . qi−1, we have

piq1 . . . qi−1qi ≤L (tpk)q1 . . . qi−1qi.

Then, since ≤L is right compatible, multiplying on the right by qi+1 . . . qm we obtain

piq≤L tpkq.

Then piq≤L pkq. Since pkq is minimal under ≤L amongst {pjq : 1 ≤ j ≤ m}, we have that
piq L pkq. It follows that tpkq L pkq. This completes the proof. �

Theorem 6.1 applies to any monoids such that uS ⊆ Su for any u ∈ S.
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Corollary 6.2. Let S be a right pseudo-finite monoid. If ≤L is left compatible with mul-
tiplication, then S has a minimal ideal that is the union of finitely many minimal left
ideals.

Proof. Let X be as given in the statement of Theorem 6.1. Since ≤L is left compatible by
assumption, in (4) of the statement of Theorem 6.1 we can set kx = 1 for all x ∈ S. Let

Q = {x1 . . . xn : xi ∈ X, n ≤ N}.

Clearly Q is finite. From the equation (§) in the proof of Theorem 6.1 with s = 1, we see
that for any a ∈ S there exists some x = x1 . . . xn ∈ Q such that x ≤L a. It follows that S
has finitely many minimal left ideals (the union of which is the minimal ideal of S). �

Corollary 6.2 yields another proof that a commutative pseudo-finite monoid must have
a minimal (left) ideal.

We now consider the existence of a minimal ideal in a right pseudo-finite monoid.

Theorem 6.3. Let S be a right pseudo-finite monoid. The following are equivalent:

(1) S has a minimal ideal;
(2) S has an ideal I such that ≤J ∩ (I × I) is left compatible with multiplication in I;
(3) for each a ∈ S there exists k = ka ∈ S such that for any u, v ∈ S,

u≤J v implies that auk≤J avk;

(4) ωS has a finite generating set X ⊆ S, and for each x ∈ X there exists k = kx ∈ S
such that for any u, v ∈ S,

u≤J v implies that xuk≤J xvk.

Proof. Suppose that (1) holds. The argument that (2) holds is as in Theorem 6.1. Further,
letting k be any element of the minimal ideal of S, it is clear that (3) holds with ka = k
for all a ∈ S. Clearly (3) implies (4).

To see that (2) implies (4), let I be the ideal witnessing (2). Letting X be a finite
generating set of ωS. Replacing X with {1, w} ∪ wX if necessary, where w ∈ I, we can
assume that X = {1}∪Y , where Y ⊆ I. It is clear that we can put k1 = 1. Now let y ∈ Y
and fix k ∈ I. Let u, v ∈ S with u≤J v, so that u = pvq for some p, q ∈ S. Certainly
uk = pvqk and uk, vqk ∈ I with uk≤J vqk. By assumption, yuk≤J yvqk. Further,
qk≤J k and qk, k ∈ I, so that again by the compatibility assumption, yvqk≤J yvk. By
transitivity of ≤J we have yuk≤J yvk and so (4) holds.

Suppose now that (4) holds. By essentially the same argument as the one in the proof
of (4)⇒(1) of Theorem 6.1, with s = 1 and ≤J instead of ≤L, we obtain a finite set
V ⊆ S with the following property: for any a ∈ S there exists v ∈ V such that v≤J a.
Enumerating the elements of V as q1, . . . , qm and letting q = q1 . . . qm, it follows that q≤J a
for all a ∈ S. Thus Jq is the minimal ideal of S. �

Corollary 6.4. Let S be a right pseudo-finite monoid. If ≤J is left compatible with mul-
tiplication, then S has a minimal ideal.
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To see how Corollary 6.4 may be applied, let S be a semilattice Y of semigroups Sα

where the Sα are simple. It is easy to see that the Sα are the J -classes of S, and that
a≤J b if and only if a ∈ Sα, b ∈ Sβ and α ≤ β. (Here we are using the natural order in a
semilattice given by x ≤ y if and only if x = xy = yx.) Since the order in the semilattice
is compatible, it is immediate that ≤J is compatible in S. This yields another proof that
right pseudo-finite completely regular semigroups (including bands) must have minimal
ideals.

7. A Rees Matrix Semigroup Extension

In this section we introduce a construction, in the form of a specific ideal extension of a
Rees matrix semigroup, which is then used to exhibit a series of examples illustrating our
findings from the previous sections, and to explore their limitations. We first introduce
the construction in its most general form, and then give a special instance of it that will
be particularly useful in constructing various examples without minimal ideals in the next
section.

Construction 7.1. Let S and T be semigroups. Let I be a left S-act and let J be a right
S-act. Let P = (pj,i) be a J × I matrix with entries from T such that pjs,i = pj,si for
all i ∈ I, j ∈ J and s ∈ S. Let M = S1 ∪ M[T ; I, J ;P ]. Define a multiplication on M,
extending those on S1 and M[T ; I, J ;P ], as follows:

s(i, t, j) = (si, t, j) and (i, t, j)s = (i, t, js)

for all i ∈ I, j ∈ J, s ∈ S1 and t ∈ T. One can check by an exhaustive case analysis
that this multiplication is associative, and hence M is a monoid with identity 1. Here is a
sample case, in which the assumption pjs,i = pj,si is used:

(

(i, t, j)s
)

(k, u, l) = (i, t, js)(k, u, l) = (i, tpjs,ku, l) = (i, tpj,sku, l) = (i, t, j)(sk, u, l)

= (i, t, j)
(

s(k, u, l)
)

.

We denote the monoidM by E(S, T ; I, J ;P ).We permit S to be empty in this construction,
in which case E(S, T ; I, J ;P ) is simply M[T ; I, J ;P ]1.

Remark 7.2. The above construction is closely related to another matrix construction,
introduced by Byleen [2]. Specifically, the monoid E(S, T ; I, J ;P ) can be found as a sub-
semigroup inside some Byleen’s monoid C (U ; β, α;P )1, where U , α, β are as outlined as
follows. Let U = S ∪ T, and define a multiplication on U, extending those on S and T,
by st = ts = s for all s ∈ S and t ∈ T . The left (resp. right) action of S on I (resp. J)
can be extended to a left (resp. right) action β (resp. α) of U on I (resp. J) by setting
ti = i, jt = j for all i ∈ I, j ∈ J , t ∈ T . It is then straightforward to check that all the
conditions are satisfied for forming the Byleen semigroup C (U ; β, α;P ), as specified in [2].
Its elements are I+J∗∪ I∗UJ∗∪ I∗J+ [2, Lemma 1.1]. The monoid E(S, T ; I, J ;P ) embeds
into C (U ; β, α;P )1 via 1 7→ 1, s 7→ s (s ∈ S), (i, t, j) 7→ itj (i ∈ I, j ∈ J , t ∈ T ). This
observation can be used to avoid checking associativity above.
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It turns out that the construction yields a plethora of pseudo-finite monoids. The fol-
lowing result gives a sufficient condition for this to be the case. It is interesting to compare
it with Theorem 5.1, Corollary 5.5 and [5, Theorem 6.5], which all deal with extensions of
Rees matrix semigroups.

Theorem 7.3. Let M = E(S, T ; I, J ;P ). Suppose that the following conditions hold:

(1) T = T 1X for some finite set X ⊆ T ;
(2) there exists a finite subset J0 ⊆ J such that T = {pj,i : j ∈ J0, i ∈ I};
(3) there exists j0 ∈ J0 such that pj0,i ∈ X for all i ∈ I;
(4) J is pseudo-finite as a right S-act.

Then M is right pseudo-finite.

Proof. Without loss of generality we may assume that ωJ is generated by J0 (otherwise,
given a finite generating set J1 ⊆ J of ωJ , let J ′

0 = J0 ∪ J1; then J ′
0 can replace J0

in conditions (2) and (3) of the statement of the result). Let d denote the J0-diameter
D(J0, J), which is finite since J is pseudo-finite.

Fix i0 ∈ I. We prove that the right ideal K = {i0} × XT 1 × J of M is pseudo-finite
as a right M-act, from which it follows that M is right pseudo-finite by Lemma 3.9. Let
U = X ∪X2 ∪X3, and let

H = {(i0, u, j) : u ∈ U, j ∈ J0}.

Since U and J0 are finite, so is H. We shall show that ωK is generated by H and that
D(H,K) ≤ d+2. Let m = (i0, xs, j), n = (i0, yt, k) ∈ K, where x, y ∈ X and s, t ∈ T 1. We
first claim that there exists some u ∈ U with an H-sequence of length no greater than 1
from m to (i0, u, j). If s ∈ X ∪ {1} then m ∈ H, so we can just set u = xs. Otherwise, by
(1) we have s = s′z for some s′ ∈ T and z ∈ X. By (2) there exist j′ ∈ J0 and i ∈ I such
that s′ = pj′,i. We have an H-sequence

m = (i0, x, j
′)(i, z, j), (i0, x, j0)(i, z, j) = (i0, xpj0,iz, j).

Since pj0,i ∈ X by (3), setting u = xpj0,iz establishes the claim. Similarly, there exists
some v ∈ U with an H-sequence of length no greater than 1 from n to (i0, v, k). Now, there
exists a J0-sequence

j = j1s1, k1s1 = j2s2, . . . , klsl = k

where l ≤ d. Thus, we have an H-sequence

(i0, u, j) = (i0, u, j1)s1, (i0, v, k1)s1 = (i0, v, j2)s2, (i0, v, k2)s2 =(i0, v, j3)s3, . . . ,

(i0, v, kl)sl = (i0, v, k).

We conclude that there exists an H-sequence of length no greater than d+2 from m to n,
as required. �

Remark 7.4. The final example invoked in Example 5.11 can be explicitly realised as
E(S, T ; I, J ;P ), where T is trivial, the index sets are I = {is : s ∈ S} and J = {js : s ∈ S},
and the actions are given by tis = its, jst = jst (s, t ∈ S). The right pseudo-finiteness
follows from Theorem 7.3, and left pseudo-finiteness follows by duality.
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Remark 7.5. In Theorem 5.21 we have seen that if a right pseudo-finite monoid S has a
unique minimal left ideal then this has to be completely simple. We can use our construc-
tion to show that there exists a right pseudo-finite monoid with precisely two minimal left
ideals, but the minimal ideal of which is not completely simple. Indeed, take S to be empty,
and let T be any left simple semigroup that is not completely simple. For the index sets,
take I = {it : t ∈ T} and J = {1, 2}, and pick the entries of P to ensure one row is constant
and the other contains all elements of T. The semigroup E(S, T ; I, J ;P ) = M[T ; I, J ;P ]1

has a minimal two-sided ideal M[T ; I, J ;P ], which is a disjoint union of two minimal left
ideals I × T × {j} (j = 1, 2) and is not completely simple.

Construction 7.6. Let S be a semigroup such that S = Y S1 = S1Y for some finite
set Y ⊆ S (that is, S is finitely generated both as a right ideal and a left ideal). Let
I = {is : s ∈ S} ∪ {0}, and define right and left actions of S on I as follows:

ist = ist, tis = its, 0t = t0 = 0 (s, t ∈ S).

Fix x ∈ Y, and let P = (pi,j) be the I × I matrix with entries given by p0,i = pi,0 = x for
all i ∈ I and pis,it = st for all s, t ∈ S. It is easy to see that pis,j = pi,sj for all i, j ∈ I and
s ∈ S. We denote the monoid E(S, S; I, I;P ) by E(S, x). In the case that S is a monoid,
we abbreviate E(S, 1S) to E(S).

Corollary 7.7. For any S and x as in Construction 7.6, the monoid E(S, x) is both right
and left pseudo-finite.

Proof. Let M = E(S, x). We prove that M is right pseudo-finite; the proof of left pseudo-
finiteness is dual.

Let T = {x} ∪ S2. Clearly T is an ideal of S. Notice that the entries of P are precisely
the elements of T. Recalling Construction 7.1, let K = E(S, T ; I, I;P ). It is easy to see that
K is an ideal of M. Therefore, by Corollary 4.2, it suffices to prove that K is right pseudo-
finite. We show that K satisfies the conditions of Theorem 7.3. Let X = {x}∪Y 2∪Y 3 ⊆ T
where Y is as given in Construction 7.6. Clearly X is finite since Y is finite. Using the
fact that S = S1Y, we have that

S = Y ∪ SY = Y ∪ S1Y 2 = Y ∪ Y 2 ∪ SY 2.

It follows that S2 ⊆ Y 2 ∪ Y 3 ∪ S2Y 2 ⊆ T 1X. Thus T = {x} ∪ S2 ⊆ T 1X, and hence
T = T 1X. Thus condition (1) holds.

Now consider t ∈ T. Then t = x or t ∈ S2. In the former case, we have t = p0,i for any
i ∈ I. In the latter case, since S = Y S1 it follows that t = ys for some s ∈ S, and hence
t = piy ,is. Thus condition (2) holds with J0 = {iy : y ∈ X} ∪ {0}. Clearly (3) holds with
j0 = 0. Finally, observe that the S-act I is finitely generated by J0 and contains the trivial
subact {0}, which is certainly pseudo-finite, so I is pseudo-finite by Lemma 3.9. Hence,
by Theorem 7.3, M is right pseudo-finite. �

8. No Minimal Ideal

In this section we discuss pseudo-finite semigroups without minimal ideals. We have
already seen that it is possible for a right pseudo-finite semigroup to have a minimal ideal
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that is not completely simple: the Baer-Levi semigroup BLX and the monoid FX both
have this property, as discussed in Section 4, as does the monoid constructed in Remark
7.5.

Our first example of a pseudo-finite monoid with no minimal ideal will be another trans-
formation monoid.

Example 8.1. Let X be an infinite set, let {Xi : i ∈ N} be a partition of X where
|Xi| = |X| for each i ∈ N, and define

UX =
{

α ∈ TX : Xiα ⊆
⋃

j≥i

Xj for each i ∈ N

}

.

It can be easily shown that UX is a submonoid of TX . We claim that both the diagonal right
act and diagonal left act of UX are cyclic, so that UX is both right and left pseudo-finite,
but that UX has no minimal ideal.

We first prove that the diagonal right act of UX is cyclic. For each i ≥ N, let {Xiα, Xiβ}
be a partition of Xi into two sets with cardinality |X|, and let

αi : Xi → Xiα, βi : Xi → Xiβ

be bijections. Put

α =
⋃

i∈N

αi, β =
⋃

i∈N

βi,

so that α, β ∈ UX . We claim that (α, β) generates the diagonal right act of UX . Indeed, let
(γ, δ) ∈ UX . Define θ ∈ TX by

xθ =

{

xα−1

i γ if x ∈ Xiα

xβ−1

i δ if x ∈ Xiβ.

It is clear that θ ∈ UX and that (γ, δ) = (α, β)θ, as required.
We now consider the diagonal left act of UX . For each i ∈ I, let

ϕi : Xi →
⋃

j≥i

(

(Xi ×Xj) ∪ (Xj ×Xi)
)

be a bijection, and put

ϕ =
⋃

i∈N

ϕi : X → X ×X.

It is straightforward to show that ϕ is a bijection. Set α = ϕp1 and β = ϕp2, where p1, p2
are the projections onto the first and second coordinates, respectively. We claim that (α, β)
generates the diagonal left act of UX . Indeed, let (γ, δ) ∈ UX . Define a map

θ : X → X, x 7→ (xγ, xδ)ϕ−1.

Consider any x ∈ X. Then x ∈ Xi for some i ∈ N, and hence xγ ∈ Xj and xδ ∈ Xk for
some j, k ≥ i. It follows from the definition of ϕ−1 that xθ ∈ Xm, where m = min(j, k).
Thus θ ∈ UX . Furthermore, we have that

xγ = (xγ, xδ)p1 = (xγ, xδ)(ϕ−1ϕ)p1 = x(θα),
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so γ = θα. Similarly, δ = θβ. Thus (γ, δ) = θ(α, β), as required.
Finally, suppose for a contradiction that UX has a minimal ideal, and let α be any

element of the minimal ideal. Fix x ∈ X1 and let xα ∈ Xk. Choose β ∈ UX such that
Xβ ⊆

⋃

i≥k+1
Xi. Now, there exist γ, δ ∈ UX such that α = γβδ. Since (xγ)β ∈

⋃

i≥k+1
Xi,

we have that xα =
(

(xγ)β
)

δ ∈
⋃

i≥k+1
Xi, contradicting the fact that xα ∈ Xk.

A wealth of further examples can be obtained by utilising the constructions from the
previous section, following this easy observation:

Proposition 8.2. For S, T, I, J and P as in Construction 7.1, the monoid M =
E(S, T ; I, J ;P ) has a minimal ideal if and only if T has a minimal ideal.

Proof. Suppose that M has a minimal ideal, say K. Then K must contain an element of
the form (i, a, j). Let t be any element of T. Then (i, a, j) = m(i, t, j)n for some m,n ∈ M.
It follows that a ∈ T 1tT 1, so a ≤J t. Thus Ja is the minimal ideal of T.

Conversely, suppose that T has a minimal ideal, say L. We claim that the ideal K =
I × L × J is minimal in M. Consider (i1, u, j1), (i2, v, j2) ∈ K, where u, v ∈ L, i1, i2 ∈ I,
j1, j2 ∈ J . Since vpj2,i2vpj2,i2v ∈ L, there exist y, z ∈ T 1 such that yvpj2,i2vpj2,i2vz = u.
Note that yv, vz ∈ T , and

(i1, u, j1) = (i1, yv, j2)(i2, v, j2)(i2, vz, j1).

It follows that (i1, u, j1) ≤J (i2, v, j2), and, by symmetry, (i2, v, j2) ≤J (i1, u, j1). Hence
the ideal K is a J -class as well, and hence it is a minimal ideal, as required. �

It now follows that if we plug any T with no minimal ideal into Construction 7.1, while
respecting the conditions of Theorem 7.3, we will obtain a right pseudo-finite monoid with
no minimal ideal. Moreover, if we put S with no minimal ideal into Construction 7.6,
while respecting the conditions stipulated there, we will obtain a monoid with no minimal
ideal that is both right pseudo-finite and left pseudo-finite. These observations allow us
to exhibit examples of pseudo-finite monoids without minimal ideals satisfying various
prescribed properties. This will complement our findings from Sections 5 and 6 and show
their natural limitations.

In Section 5 we discussed a number of subclasses of the class of regular monoids – inverse,
completely regular and orthodox monoids – and they all turned out to have (completely
simple) minimal ideals when pseudo-finite. One therefore may wonder whether this can be
extended to all regular monoids, or at least all idempotent-generated regular monoids. To
answer these questions in the negative we will resort to the variant E(S) from Construction
7.6.

Proposition 8.3. Let S be a monoid. Then the monoid E(S) is regular if and only if S
is regular, and E(S) is idempotent-generated if and only if S is idempotent-generated.

Proof. Let M = E(S). The direct part of the two statements follow from the fact that S1

is a submonoid of M with an ideal complement.
Now suppose that S is regular. Clearly any element of S1 is regular in M, so consider

(i, s, j) ∈ M(S; I, I;P ). There exists t ∈ S such that s = sts, and hence, recalling that
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pj,0 = p0,i = 1S, we have
(i, s, j) = (i, s, j)(0, t, 0)(i, s, j),

completing the proof that S is regular.
Now suppose that S is idempotent-generated. Then certainly S1 is idempotent-generated.

Note that all (i, 1S, 0), (0, 1S, i) (i ∈ I) are idempotents. For any (i, s, j) ∈ M(S; I, I;P ),
we have that

(i, s, j) = (i, 1S, 0)(0, 1S, is)(i1S , 1S, 0)(0, 1S, j),

so that (i, s, j) is a product of idempotents. Thus M is idempotent-generated. �

Taking S to be any (idempotent-generated) regular monoid with no minimal ideal, Corol-
lary 7.7 and Propositions 8.2 and 8.3 together yield:

Corollary 8.4. There exist (idempotent-generated) regular monoids that are both right
pseudo-finite and left pseudo-finite but have no minimal ideal.

Given Corollary 5.14, it is natural to ask whether either of the properties of being periodic
or being J -trivial is sufficient on its own to guarantee the existence of a minimal ideal in
a pseudo-finite semigroup. Again, we apply Construction 7.6 to show that this is not the
case.

Proposition 8.5. There exist J -trivial monoids that are both right pseudo-finite and left
pseudo-finite but have no minimal ideal.

Proof. Let S be a semigroup such that S = XS1 = S1X for some finite set X ⊆ S, and
a /∈ S1aS ∪ SaS1 for each a ∈ S. (For example, we can take S to be the free semigroup
on a finite set X.) Fix x ∈ X and let M = E(S, x). By Corollary 7.7, M is both right
pseudo-finite and left pseudo-finite. Clearly S is J -trivial and has no minimal ideal. Thus
M has no minimal ideal by Proposition 8.2.

We now show that M is J -trivial. Suppose for a contradiction that M is not J -trivial.
Let T = M[S; I, I;P ]. It is clear that the restriction of the J -relation on M to S is
the J -relation on S, which is the equality relation since S is J -trivial, and no elements
of S are J -related to elements of T. Therefore, there must exist two distinct elements
(i, a, j), (k, b, l) ∈ T with (i, a, j)J (k, b, l). Then there exist u, v, u′, v′ ∈ M such that

u(i, a, j)v = (k, b, l), u′(k, b, l)v′ = (i, a, j).

There are two cases to consider.
(1) u ∈ T or v ∈ T. Assume without loss of generality that u = (q, s, r) ∈ T. Then

(k, b, l) = (q, s, r)(i, a, j)v = (q, spria, j)v.

If v ∈ S, then b = spria. If v = (q′, t, r′), then (q, spria, j)v = (q, spriapjq′t, r
′), and hence

b = spriapjq′t. In either case we have that b ≤J a, and b 6= a since a /∈ S1aS ∪ SaS1.
Notice that S1(k, b, l)S1 ⊆ I ×{b}× I. Therefore, since a 6= b, we must have that u′ ∈ T

or v′ ∈ T. Then, by the same argument as above, we have that a ≤J b. But then aJ b,
contradicting the fact that S is J -trivial.

(2) u, v ∈ S1. In this case we have u(i, a, j)v = (ui, a, jv), so ui = k, a = b and jv = l.
Since (i, a, j) 6= (k, b, l), it follows that i 6= k or j 6= l. Assume without loss of generality
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that i 6= k. Then u 6= 1. Now, we must have that u′ ∈ S1, for otherwise, by the argument
in case (1), we would have a 6= b. Therefore, we have that (i, a, j) = (u′k, b, l)v′, whence
i = u′k. Since i 6= k, we conclude that u′ 6= 1. We cannot have i = 0 or k = 0, since this
would imply that i = k = 0. Thus there exist s, t ∈ S with s 6= t such that i = is and
k = it. It follows that s = u′t and t = us. But then sL t and hence sJ t, contradicting the
fact that S is J -trivial. �

Proposition 8.6. For S and x as in Construction 7.6, the monoid M = E(S, x) is periodic
if and only if S is periodic.

Proof. Clearly periodicity is closed under subsemigroups, so S is periodic if M is.
Suppose that S is periodic. Since S is a subsemigroup of M, every monogenic subsemi-

group of M generated by an element of S is contained in S, and is hence finite since S is
periodic. So, consider m = (i, s, j) where i, j ∈ I and s ∈ S. Since S is periodic, there exist
q, r ∈ N such that and (spji)

q+r = (spji)
q. Thus, we have

(i, s, j)q+1+r = (i, (spji)
q+rs, j) = (i, (spji)

qs, j) = (i, s, j)q+1.

This completes the proof. �

Taking S to be any periodic semigroup with no minimal ideal (such as a semilattice with
no zero), Corollary 7.7 and Propositions 8.2 and 8.6 together yield:

Corollary 8.7. There exist periodic monoids that are both right pseudo-finite and left
pseudo-finite but have no minimal ideal.

We conclude this section by showing that there exist weakly right reversible monoids
that are right pseudo-finite but have no minimal ideal.

Proposition 8.8. Let T be any right reversible monoid with no minimal ideal. Let I be
a set such that |I| = |T |, let J = {1, 2}, and let P be a J × I matrix such that p1,i = 1T
for all i ∈ I and every element of T appears in the second row. Then the monoid M =
M[T ; I, J ;P ]1 is right pseudo-finite, weakly right reversible and has no minimal ideal.

Proof. Recall thatM = E(∅, T ; I, J ;P ).Clearly the conditions of Theorem 7.3 are satisfied,
so M is right pseudo-finite. Since T has no minimal ideal, M has no minimal ideal by
Proposition 8.2. We now show that M is weakly right reversible. Consider any infinite
sequence

Mu1,Mu2, . . .

of principal left ideals of M. Since J is finite, there exists j ∈ J such that there is an
infinite subsequence Muk1 ,Muk2, . . . where the third co-ordinate of each ukp is j. For each
p ∈ N, let ukp = (ip, tp, j). Since T is right reversible, for any p, q ∈ N, there exist v, w ∈ T
such that vtp = wtq. Picking any i ∈ I, we then have that

(i, v, 1)ukp = (i, vtp, j) = (i, wtq, j) = (i, w, 1)ukq ,

so that Mukp ∩Mukq 6= ∅. Thus M is weakly right reversible. �
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9. Open Problems and Future Research

We conclude this paper with some open problems and possible directions for future
research.

The notion of diameter has been a useful tool in this paper and is deserving of a more
systematic investigation. As indicated in Section 3.1, this will be the topic of a subsequent
paper.

A natural open problem arising from the work of this paper is to completely describe the
minimal ideals in (right) pseudo-finite semigroups. To put it another way, which simple
semigroups can be the minimal ideal of a pseudo-finite semigroup? Certainly not all simple
semigroups have this property; e.g. any simple monoid that is not pseudo-finite, such as
the bicyclic monoid or any infinite group, by Corollary 4.3.

As noted in Section 1, in [5] several equivalent characterisations were given for a monoid S
to have a finitely generated universal left congruence, including S satisfying the homological
finiteness property of being type left-FP1. This raises the question as to whether the
property of being pseudo-finite could similarly be described in homological terms.
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