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Summary: In recent years, the study of species’ occurrence has benefited from the increased availability of large-scale

citizen-science data. Whilst abundance data from standardized monitoring schemes are biased towards well-studied

taxa and locations, opportunistic data are available for many taxonomic groups, from a large number of locations and

across long timescales. Hence, these data provide opportunities to measure species’ changes in occurrence, particularly

through the use of occupancy models, which account for imperfect detection. These opportunistic datasets can be

substantially large, numbering hundreds of thousands of sites, and hence present a challenge from a computational

perspective, especially within a Bayesian framework. In this paper, we develop a unifying framework for Bayesian

inference in occupancy models that account for both spatial and temporal autocorrelation. We make use of the Pólya-

Gamma scheme, which allows for fast inference, and incorporate spatio-temporal random effects using Gaussian

processes (GPs), for which we consider two efficient approximations: Subset of Regressors and Nearest neighbour

GPs. We apply our model to data on two UK butterfly species, one common and widespread and one rare, using

records from the Butterflies for the New Millennium database, producing occupancy indices spanning 45 years. Our

framework can be applied to a wide range of taxa, providing measures of variation in species’ occurrence, which are

used to assess biodiversity change.

Key words: Bayesian analysis; Biodiversity change; Citizen-science data; Occupancy models; Pólya-Gamma; Species

distribution models.
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1. Introduction

1.1 Background and motivation

Robust measures of biodiversity change are vital for monitoring the varying state of species’

populations and evaluating progress of conservation actions, for example towards national

and international targets (Butchart et al., 2010). Data from standardized, long-running

monitoring schemes are used to produce estimates of species’ status and trends, particularly

in terms of changes in abundance. However such data sources are limited taxonomically and

geographically. By their nature of intensive, formal sampling they may be limited in spatial

coverage and therefore cannot always be used to appropriately measure changes in species’

distributions over time.

Conversely, opportunistic records of occurrence are often and increasingly available in

large quantities for extensive geographic areas and time periods, and for a wide variety

of taxa. However opportunistic data are inherently biased (Isaac and Pocock, 2015). Data

are typically presence-only, where records only indicate where and when a species is seen

rather than including information on non-detection, unless complete lists are recorded. Data

recording the distribution of animals and plants are frequently analysed using occupancy

models (MacKenzie et al., 2018), as they allow for imperfect detection. Applying such models

to presence-only data requires non-detections to be inferred from the observations of other

species (Kéry et al., 2010). Data of this nature are not standardised, and result from the

submission and collation of records by citizen scientists who choose where, when and what

to record, but are often available in large quantities. For example the Global Biodiversity

Information Facility (GBIF) consists of more than 1.6 billion occurrence records for at least

one million species (www.gbif.org). In the United Kingdom, extensive occurrence data are

available for many taxonomic groups, and the Biological Recording Centre oversees more

than 80 recording schemes (brc.ac.uk, Pocock et al., 2015). Such data are commonly used to

www.gbif.org
brc.ac.uk
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produce atlases for various taxa (e.g. Blockeel et al., 2014, Randle et al., 2019) and contribute

to national biodiversity assessments, for example the State of Nature report (Hayhow et al.,

2019) and government biodiversity indicators (Department for Environment, Food and Rural

Affairs, UK, 2020).

In addition to imperfect detection, modelling approaches for occurrence data of this type

also need to account for spatial and temporal autocorrelation (Guélat and Kéry, 2018; Strebel

et al., 2022). In this case, Bayesian hierarchical models are an appropriate choice, thanks to

the available tools for accounting for and inferring the effects of site and time-specific ran-

dom effects. However, Bayesian inference is computationally demanding, in particular when

model-fitting involves large numbers of latent variables. Efficient model-fitting is increasingly

important with the ongoing growth in the volume of biological recording data, partly due to

increasing participation through new technologies and platforms for data submission (August

et al., 2015). Fast inference is also motivated by the increasing desire to update species’ trend

estimates frequently, in order to inform the measuring and reporting of biodiversity change.

1.2 Current models

One popular form of model describes dynamic occupancy; see for example Royle and Dorazio

(2008, Chapter 9). This model is designed for data from several years and incorporates param-

eters representing colonisation and extinction. It is therefore mechanistic, with parameters

which may assist in the understanding of spatial and temporal changes in distribution. The

basic model may be extended, for example to allow temporal development to depend upon the

status of neighbouring sites; see Broms et al. (2016). Typically, these informative, complex

models are designed for relatively short studies with small numbers of sites. Both Bayesian

and classical inference methods have been used, in the latter case using unmarked in R (Fiske

and Chandler, 2011); Bayesian inference is discussed in Kéry and Royle (2021, pp 208, 564).
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However for large numbers of sites and occasions computing times can be excessive (see van

Strien et al., 2013), and other approaches are in current use in these cases.

Alternatively, one can use static models, in which a simple occupancy model is fitted to the

data for each year separately, and the site occupancy probability for each year is described

by a logistic function of site-specific covariates. This approach was proposed by Dennis et al.

(2017), it is fitted using unmarked (Fiske and Chandler, 2011) and classical inference, and it

has also been used in Randle et al. (2019). The static model is appreciably faster in execution.

However, a drawback of analysing the data from each year separately arises regarding records

from early years, which may not be sufficiently numerous to allow the fitting of a static model

in those cases. Similarly, producing occupancy trends for rare or less well-recorded species

may not be possible using the static model and there is no sharing of information between

years, as each year is modelled separately.

The more recent approaches cast the detection and presence process in a binomial pro-

bit or logistic regression framework, taking advantage of fast and efficient Gibbs sampler

schemes. Since posterior inference for both the probit and logistic likelihood are analytically

intractable, the Gibbs sampler relies on data augmentation schemes to obtain tractable

posterior inference. For probit regression, the data augmentation scheme used is due to

Albert and Chib (1993), while for logistic regression the scheme is due to Polson et al. (2013).

One of the first approaches within the occupancy modelling frameword is due to Dorazio

and Rodriguez (2012), who use a probit-regression model formulation for the detection

and occupancy probability. Similarly, Johnson et al. (2013) and Hepler and Erhardt (2021)

present a spatial regression model using a conditional autoregressive (CAR) model. All the

aforementioned approaches focus on a probit link function. However, after the introduction

of the Pólya-Gamma scheme (PG) of Polson et al. (2013), Clark and Altwegg (2019) have

also proposed the use of the logit in occupancy models. The logit link leads to more intuitive
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interpretation of the regression coefficients in terms of log-odds, and hence is the more

natural choice for binary variables, such as site occupancy and detection. Additionally, the

PG scheme has been proved to have optimal mixing properties (Choi and Hobert, 2013).

Moreover, as mentioned later in Section 6, the PG scheme can be more easily extended to

interesting developments, such as variable selection.

Spatial autocorrelation between surveyed sites has typically been incorporated using a

conditional autoregressive (CAR) process (Mardia, 1988). The CAR prior is usually defined

on a lattice, where sites are equally spaced and each site relies on the definition of a

neighbourhood structure. Therefore, the use of the CAR on irregular site locations entails

approximation into a regular grid. For example, Johnson et al. (2013) considered a tessellation

of 100 km2 equally spaced hexagonal survey units and Clark and Altwegg (2019) considered

a continuous grid of 5’ × 5’ cells. However, opportunistic data of the type considered in this

paper, because of their nature, are collected at irregular locations and the degree of error by

approximating them on a lattice can be considerable.

Temporal autocorrelation has been introduced using a first-order vector autoregressive

process (Hepler and Erhardt, 2021), using a spline-basis approach for the spatial effects,

whose coefficients follow a time-dependent random walk (Rushing et al., 2019), or using a

random walk to describe the changes in occupancy across the years (Outhwaite et al., 2018).

Instead, in this paper we model spatial and temporal autocorrelation using a Gaussian

process (GP) approach (Rasmussen and Williams, 2006). The advantage of using a GP is that

it allows us to naturally model spatial autocorrelation between sites sampled at continuous

locations, which is typically the case for opportunistic data, and, in contrast to CAR, allows

for a different degree of correlation between sites according to their distance, even if they are

neighbouring. We also model temporal autocorrelation within a GP framework, and consider

an additive structure for the effect of space and time, also known as the separable case, and
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describe how to implement the non-separable case in our framework, where the spatial and

temporal random effects are not a priori independent.

We cast the occupancy and detection process within a logistic regression framework, and

take advantage of the efficient PG augmentation scheme (Polson et al., 2013) for inference,

which is well-established in the Bayesian literature (Linderman et al., 2015; Holsclaw et al.,

2017) but not in the ecological modelling literature, with some recent exceptions (Clark

and Altwegg, 2019; Griffin et al., 2020) In addition, we describe and compare different

approximations for the GP, Subset of Regressors (SoR) (Smola and Bartlett, 2000) and

Nearest neighbour GPs (NNGPs) (Datta et al., 2016), and demonstrate how they can be

used within a PG framework.

The new model of this paper responds to the need for a computationally efficient approach

to analyse presence-absence data arising from a large number of sites, whilst accounting for

spatial and temporal autocorrelation, and which accommodates species with sparse records

by jointly modelling data collected across different years. We have implemented our model

in the package FastOccupancy, available on Github

(https://github.com/alexdiana1992/FastOccupancy).

1.3 Paper Outline

The model of the paper is described in Section 2. Section 3 discusses the theoretical concepts

of our model, such as the PG scheme and the GP approximations. Section 4 presents

simulation studies showing comparisons between different spatial approximations. Section

5 applies the new model to two illustrative data sets on UK butterflies. Section 6 discusses

possible extensions and the paper ends with Discussion in Section 7. Technical details of

the MCMC are covered in the Appendix and additional results, including a simulation

study demonstrating the important of accounting for spatial autocorrelation, are provided

in Supplementary materials.
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2. Model: Bayesian framework and Gaussian processes

For any species, observations are collected at S sites and across Y years. A number of

observations may be collected at each site and year. This number, which does not need to be

defined for the purposes of the model, does not have to be the same for all sites or years and

can be equal to 0 for particular pairs of sites and years. We refer to the unique pairs of sites

and years with at least one observation as sampling units and we index them by j = 1, . . . , J .

If all sites are sampled in all years, then J = S × Y . We assume that the occupancy status

of a site can change between years but not within, which is a standard assumption of similar

models for multi-season occupancy data.

We introduce latent variables zj, j = 1, . . . , J , indicating the occupancy status of sampling

units, with zj = 1 if sampling unit j is occupied and 0 otherwise. We assume that each

sampling unit is occupied with probability ψj, that is, zj ∼ Be(ψj). We index the site and

year of sampling unit j by sj and tj, respectively. Finally, we denote by xs = (x1s, x
2
s) the

location of site s and by wy the time point of year y. For example, if the data were collected

in years 2000, 2001, 2004 and 2005, (w1, . . . , w4) = (2000, 2001, 2004, 2005) and tj = 1, . . . , 4

if sampling unit j belongs to years 2000, 2001, 2004, 2005, respectively.

We denote by N the total number of observations across all sampling units and we define

yi, i = 1, . . . , N , to be the outcome of observation i, that is, yi = 1 if the species is detected

at observation i, and 0 otherwise. Finally, we introduce ki ∈ {1, . . . , J}, i = 1 . . . , N , which

indexes the sampling unit of observation i so that if observation i corresponds to sampling

unit j, then ki = j. Therefore, if sampling unit j is occupied then z{i:ki=j} = 1 and otherwise

z{i:ki=j} = 0. We account for the probability of a false negative observation but assume that

false positive observations do not occur and hence assume that yi ∼ Be(pizki) with pi the

probability of detecting the species given presence.
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We model the probability of detection pi as

logit(pi) = utki +Xiβ
p (1)

where ut is a year-specific r.e. with prior distribution ut ∼ N(µp0, σ
p
0), tki is the index of

the year in which observation i is collected and Xi is the set of covariates for observation i,

i = 1, . . . , N .

We model the probability that sampling unit j is occupied, ψj, as a function of both fixed

effects, such as covariates, and random effects (r.e.), and specifically r.e. that account for

temporal autocorrelation between years, spatial autocorrelation between sites and individual

variation of sites:

logit(ψj) = µψ + btj + asj +XC
j β

ψ + εsj (2)

where µψ is an intercept, bt is a r.e. for year t, as and εs are r.e. for site s, and XC
j is the set

of covariates for sampling unit j. The site-specific random effects (ε1, . . . , εS) are modelled

as independent random variables εs ∼ N(0, σ2
ε ), while the rest of the r.e. are defined below

using GPs.

2.1 Gaussian processes

To define a distribution for the r.e. b and a, we introduce the concept of GPs (Williams

and Rasmussen, 1996). Given a general covariance function k(ξi, ξj), we define the entries

of the covariance matrix between the sets of points ξ1 = (ξ11 , . . . , ξ
1
n) and ξ2 = (ξ21 , . . . , ξ

2
m),

K(ξ1, ξ2), as {K(ξ1, ξ2)}i,j = k(ξ1i , ξ
2
j ). If ξ1 = ξ2, we simplify the notation K(ξ1, ξ1) to K(ξ1)

and we might omit ξ if the dependency is clear. A function f has a GP prior distribution

if, for every combination of values ξ1, . . . , ξn, it holds that (η1, . . . , ηn) ∼ N(0, K(ξ1, . . . , ξn)),

where ηi = f(ξi). In this paper, we consider the exponential covariance function k(ξi, ξj) =

σ2e−
|ξi−ξj |

2

l2 , where σ tunes the overall variability of the GP and l tunes the correlation

between points, and we write the related covariance matrix as Kl,σ. The points ξ1, . . . , ξn
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are called support points. Although, in general, the GP is defined for a function with an

infinite number of support points, in our case, we apply the GP on a function defined on a

finite number of points, as we explain below, and hence this is simply equivalent to assuming

a multivariate normal distribution on (η1, . . . , ηn) = (f(ξ1), . . . , f(ξn)). The advantage of

GPs is that posterior inference is analytically tractable. If a prior η ∼ N(0, K) is used

with a likelihood y ∼ N(η, σ2I), the posterior distribution p(η|y) has the form N( 1
σ2 (K−1 +

σ−2I)−1y, (K−1 +σ−2I)−1). The posterior distribution at new points is also readily available.

To account for temporal correlation, we assume that the year-specific r.e. b = (b1, . . . , bY )

are distributed according to a GP with parameters (lT , σT ) and support points (w1, . . . , wY ),

which corresponds to assuming that (b1, . . . , bY ) ∼ N(0, KlT ,σT (w1, . . . , wY )). Similarly, we

account for spatial autocorrelation by assuming that the a = (a1, . . . , aS) are distributed

according to a GP with parameters (lS, σS) and support points the locations (x1, . . . ,xS) of

the sites, which corresponds to assuming that (a1, . . . , aS) ∼ N(0, KlS ,σS(x1, . . . ,xS)).

2.2 Comparison between GP and CAR

As mentioned in the introduction, a popular alternative to the GP prior for modelling

temporal or spatial autocorrelations is the Conditionally AutoRegressive (CAR) prior (Besag

and Kooperberg, 1995). The CAR prior is defined conditionally on a neighbourhood structure

for the observations. Given a neighbourhood matrix, W , where Wij = 1 if the observations ai

and aj are in the same neighbourhood and 0 otherwise, and a spatial dependence parameter

ρ, the CAR model defines a prior for the vector a = (a1, . . . , aS) by defining a prior on the full

conditional distributions ai|a−i ∼ N
(
ρ
∑
j 6=i wijaj

di
, σ

2

di

)
, where di is the number of elements in

the neighbourhood of i. Therefore, the conditional mean of the i-th observation is a weighted

average of the observations in its neighbourhood, that is, the observations j for which

Wij = 1. It follows from these assumptions that a ∼ N(0, Q−1), with the precision matrix

Q = 1
σ2 (D − ρW ), where D is a diagonal matrix with entries Dii = di. Since D and W are
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sparse, this prior leads to sparse precision matrices (but dense covariance matrices in general),

with non-neighbouring elements having entry 0 in the precision matrix, but not necessarily

in the covariance matrix. This leads to the CAR being more computationally efficient than

the GP, since the precision matrix of the GP is in general not sparse except in the case of

the Laplace kernel k(ξ1, ξ2) = a exp (b|ξ1 − ξ2|). However, the CAR assigns equal correlation

to elements in the same neighbourhood, irrespective of their actual distance. We note that

extensions to irregular locations do exist (Rue and Held, 2005), but they are mathematically

more challenging and have not been considered in an occupancy framework. On the other

hand, GPs account for irregular locations, but are computationally more expensive, and

approximation methods have to be considered when the number of observations, in this case

sites or times, are large.

For illustration, in the case of four observations equally spaced on a line, we show the

covariance matrices of a CAR, where each observation is a neighbour of only the observations

immediately adjacent to it, and of a GP. Representing the CAR matrix using the third order

approximation (I − A)−1 = I + A+ A2 + A3, the two matrices have the form

ΣCAR = σ2



1 + ρ2

2
ρ
2

+ 3
8
p3 ρ2

4
ρ3

4

ρ
2

+ 3
8
ρ3 1

2
+ 3

8
ρ2 1

4
ρ+ 5

16
p2 ρ2

4

ρ2

4
1
4
ρ+ 5

16
p2 1

2
+ 3

8
ρ2 ρ

2
+ 3

8
ρ3

ρ3

4
ρ2

4
ρ
2

+ 3
8
p3 1 + ρ2

2


, ΣGP = σ2



1 e−
|1|2

l2 e−
|2|2

l2 e−
|3|2

l2

e−
|1|2

l2 1 e−
|1|2

l2 e−
|2|2

l2

e−
|2|2

l2 e−
|1|2

l2 1 e−
|1|2

l2

e−
|3|2

l2 e−
|2|2

l2 e−
|1|2

l2 1


.

2.3 Hierarchical structure

The following hierarchical structure completes the definition of our model, including the

prior distributions of all parameters.
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

yi ∼ Be(pizki) logit(pi) = utki +Xiβ
p i = 1, . . . , N

ut ∼ N(µp0, σ
p
0) βp ∼ N(0, φpI)

zj ∼ Be(ψj) j = 1, . . . , J

logit(ψj) = µψ + btj + asj +XC
j β

ψ + εsj

µψ ∼ N(µψ0 , σ
ψ
0 ) βψ ∼ N(0, φψI)

(b1, . . . , bY ) ∼ N(0, KlT ,σT (w1, . . . , wY ))

σT ∼ IG(aσb , bσb) lT ∼ Gamma(alT , blT )

(a1, . . . , aS) ∼ N(0, KlS ,σS(x1, . . . ,xS))

σs ∼ IG(aσs , bσs) ls ∼ Gamma(als , bls)

εs ∼ N(0, σ2
ε ) σ2

ε ∼ IG(aε, bε) s = 1, . . . , S.

3. Theory

In this section we define the basic building blocks of our inference strategy. First, we describe

the PG scheme, which is a data augmentation scheme used to obtain analytically tractable

posterior distributions in a logistic regression setting. Next, we define the GP approximation

chosen to efficiently model autocorrelation between a large number of observations.

3.1 Pólya-Gamma scheme

A random variable w has a PG distribution, w ∼ PG(d, c) if w = 1
2π2

∑∞
k=1

gk

(k− 1
2
)2+ c2

4π2

,

where gk ∼ Gamma(d, 1). According to the PG scheme, given a set of n observations

yi ∼ Binomial(di, pi), where logit(pi) = Xiβ, a Gibbs sampler scheme for β is available

by introducing a set of random variables ωi, such that ωi ∼ PG(di, 0). More specifically,

assuming prior distribution β ∼ N(b, B), the full conditional distributions used for the Gibbs
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sampler are:

(ωi|β) ∼ PG(di, Xiβ) i = 1, . . . , n (3)

(β|y, ω) ∼ N((XTΩX +B−1)−1(XTk +B−1b), (XTΩX +B−1)−1) (4)

where Ω = diag(ω1, . . . , ωn) and k = (y1 − d1
2
, . . . , yn − dn

2
). Polson et al. (2013) describe an

efficient algorithm to sample a PG r.v. that does not require truncating the infinite sum in the

definition of the PG distribution. We use the PG scheme to sample jointly from the posterior

distribution of the parameters (ut, β
p) and (µψ, bt, as, β

ψ) in Eq. 1 and Eq. 2, respectively.

3.2 Spatial approximations

As explained in Section 2.1, in the context of continuous observations, inference using GPs

relies on factorisation of the S×S matrix (K−1+σ−2I), where S is the number of observations,

whereas when using the PG scheme to model binary observations, we need to factorise the

matrix (K−1 + XTΩX) in (4), since the prior covariance matrix B of the spatial random

effects in (4) corresponds to the GP matrix K. If the number of points, in our case the

number of sites, is large (≈ 106 in the case study), it becomes computationally prohibitive to

obtain the factorisation of the S×S matrix. Therefore, approximations of the GP have to be

considered. There is a large literature on approximation methods for GPs, so we do not aim to

give a comprehensive review here but instead focus on two popular types of approximations:

low-rank approximations and sparse approximation methods. For an extensive review, we

refer the reader to Liu et al. (2020). In the simulation study in Section 4.1 we compare a

method from the class of low-rank approximations, the SoR, and a method from the class of

sparse approximations, the NNGP. We also consider a very basic approximation, in which the

initial GP on S locations is approximated by introducing another GP computed on a smaller

number of support points (x̃1, . . . , x̃M), where M << S, with respective values (ã1, . . . , ãM),
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and replacing each original value aj with the value of its closest support point ãj̃. We term

this approximation the Closest point (CP) and note that its complexity is O(M3 + S).

Low-rank methods approximate the covariance matrix K as ΛT K̃Λ, where K̃ is an M×M

matrix and Λ is a M×S matrix, where M << S. The Woodbury identity matrix can then be

used to replace the inversion of the S ×S matrix K−1 with the M ×M matrix K̃−1. One of

the most popular approximations in this class is the SoR method, which consists of using the

degenerate covariance function kSOR(x, y) = K(x,x?)(K(x?,x?)︸ ︷︷ ︸
K̃

)−1K(x?, y), where K(x, y)

is a covariance function, defined in Section 2.1, and x? is a set of M points, called inducing

points. A useful alternative representation of the SoR is to express the vector of effects

a ∼ N(0, K(x, x)) as ã = K(x,x?)K̃−1︸ ︷︷ ︸
K?

a?, where a? ∼ N(0, K̃) is a vector of lower dimension

M following an exact GP prior. Using this representation, inference can be performed as in a

standard regression model, where K? is the design matrix and a? is the M -dimensional vector

of regression coefficients. This leads to the posterior precision matrix σ−2(K?)TK? + K̃−1 in

the context of continuous observations and, from (4), (K?)TΩK?+ K̃−1 in the context of the

PG scheme.

However, if in the continuous case (K?)TK? needs to be precomputed only once, in the PG

case (K?)TΩK? has to computed for each new draw of Ω from (3). Since the computation of

(K?)TΩK? has complexity O(SM2), which is much greater than the cost O(M3) to factorise

the precision matrix, this becomes the dominant calculation and the SoR method quickly

becomes unfeasible. To avoid this drawback, we propose to replace the full design matrix K?

of dimension S ×M with a smaller design matrix of dimension S ×M?, by taking the M?

biggest components of each row (or, equivalently, by considering only the M? closest points

between all the M support points). This approximation, which we term approximated SoR

(ASoR), has reduced complexity O(M3 + SM?2). We note that the CP approximation can

be seen as a special case of the ASoR where M? = 1 and K?(x, x?) ≡ 1.
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Sparse approximation methods rely on obtaining a sparse approximation of the precision

matrix K−1 by zeroing some of its elements, so that fast methods for factorising sparse

matrices can be employed. This approach is closely related to working with a Gaussian

Markov random field (GMRF) and Rue and Tjelmeland (2002) have proposed embedding

the irregular point locations in a regular lattice and approximating the GP with a GMRF.

A related method is the NNGP (Datta et al., 2016). The idea of the NNGP is to replace

the conditional distributions ai|a1, . . . , a−i, with an approximation using only the m closests

neighbours in the previous i− 1 observations, ai|ai?1 , . . . , ai?m . Using this approximation, the

precision matrix K−1 can be expressed as (I −A)D(I −A)T , where A is a sparse triangular

matrix and D is diagonal, hence the product is also a sparse matrix. For more details on

inference with NNGP we refer the reader to Finley et al. (2019). We note that the complexity

of the NNGP is not known in general as it depends on the sparsity pattern of the matrix A.

The NNGP is also a GMRF, as the full conditional of each observation depends only on the

value of the observations in its neighbourhood.

4. Simulation studies

4.1 Approximation of Gaussian processes

We performed a simulation study to compare the three GP approximation methods described

in Section 3.2: the CP, the ASoR and the NNGP. We ran the ASoR method by choosing

M? = 10, since we observed that the performance was very similar to the standard SoR

method if M? was chosen as large as 10. To perform the simulation study, we generated data

over 10 years on S = 4900 sites, spread uniformly over a unit square. We performed 15 runs,

where for each run we fitted the model on 70% of the sites, chosen at random, predicted the

spatial pattern as on the remaining sites and computed the mean absolute error between the

true values ās and the posterior means âs. To tune the CP and the ASoR method, we varied
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the number of inducing points M . The inducing points were chosen by taking a uniform grid

of points across the unit square and varying the grid step. To tune the NNGP, we varied the

number of neighbours considered. Results are shown in Figure (1). The ASoR and the NNGP

method clearly outperform the CP as far as mean absolute error is concerned, although the

CP is faster as expected. The NNGP and the ASoR obtained comparable performances in

terms of both computational time and predictive power. Therefore, we recommend either

the NNGP or the ASoR, since the CP approximation has been found to be too crude, and

consider the ASoR for the case studies presented in this paper.

[Figure 1 about here.]

5. Case studies

We applied our model to data for two UK butterfly species: Ringlet (Aphantopus hyperantus)

and Duke of Burgundy (Hamearis lucina). In doing so we demonstrate the performance of

the new model for both a common, widespread species (Ringlet) and a rare, range-restricted

species (Duke of Burgundy).

Butterfly data were collated through the Butterflies for the New Millennium (BNM)

recording scheme run by Butterfly Conservation, using records collected between 1970 and

2014, during which the database consisted of over 11 million records of UK butterflies (Fox

et al., 2015). BNM data were restricted to records with an exact date and location of 1 km

resolution or finer. For each of the two species, records were then filtered to months within

which records of the focal species had been recorded, and observations of other species used

to form detection histories (Kéry et al., 2010). Thus for Ringlet, the data set featured > 2

million records from 140, 887 unique 1 km squares (defined as sites), of which Ringlet had

been recorded at 47, 561 sites from 218, 225 detections. Conversely the data set for Duke of

Burgundy consisted of approximately 1.5 million records from 128, 197 sites (1 km squares),
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of which Duke of Burgundy had been recorded at 747 sites from 6, 584 detections. On a

machine equipped with an Intel Core i7-10610@1.8Ghz with 16GB of RAM, the model took

19 hours to run on each dataset for 15× 104 burn-in iterations and 25× 104 iterations.

For both species, we considered the interactions between year and easting and between

year and northing as covariates for occupancy probability. For the detection probability we

considered as covariates the relative list length and the first three powers of the Julian date.

The relative list length is obtained by dividing the list length, which is the number of species

recorded for a given site/date (Szabo et al., 2010; van Strien et al., 2013), by the maximum

recorded list length in a neighbouring area of 50 km. All covariates were standardised to have

zero mean and unit variance. We do not consider the main effects for year or easting/northing,

since the effects of year and space on the probability of occupancy are already accounted for

in the processes bt and as and therefore adding these main effects would lead to confounding

between the spatial random effects and the fixed-effect covariates (Reich et al., 2006; Hodges

and Reich, 2010). Finally, we employ the ASoR approximation defined in Section 3.2 with

inducing points taken on a grid of 20km width on the study area, which corresponds to

M = 909 inducing points.

For each species, we calculate the yearly occupancy index (Dennis et al., 2017) at each

MCMC iteration using I
(l)
t = 1

S

∑S
j=1 ψ

(l)
t,j , where ψ

(l)
t,j is the occupancy probability at site s

and year t for iteration l. Posterior summaries of the occupancy index for both species are

shown in Figure 2, and support previous findings suggesting that Ringlet has increased in

occurrence since 1970, whereas Duke of Burgundy has seen a reduction in occurrence (Fox

et al., 2015). The indices for both species show increasing precision with time, reflecting an

increase in underlying recording effort (Dennis et al., 2017), which is also a feature for other

taxa (Isaac and Pocock, 2015).

[Figure 2 about here.]
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The estimated occupancy probabilities for the two species are mapped over space for

selected years in Figure 3. Note that the map for the Duke of Burgundy has been zoomed

in to the part of the country where the species can be found, due to its restricted range.

These patterns are consistent with what is known, namely that Ringlet has been expanding

in range and now occupies most of the UK, with the exception of Northern Scotland and

a small portion of northern England, whereas Duke of Burgundy has been contracting in

range and can now only be found at a very small number of locations.

Ringlet has been shown to have increased in both range and abundance (Fox et al., 2015),

which is a likely response to recent climate change (Mason et al., 2015). Duke of Burgundy

is one of the UK’s most threatened species (Fox et al., 2011), with long-term declines in

both abundance and distribution (Fox et al., 2015), but as seen in Figure 2 the decline in

occurrence appears to have stabilised in more recent years, which may be due to conservation

efforts (Ellis et al., 2012).

[Figure 3 about here.]

Relative list length has a positive effect on detection probability with 95% posterior

credible interval (PCI) (1.085, 1.098) and (0.797, 0.866) for Ringlet and Duke of Burgundy,

respectively. The PCIs of the year-specific detection probabilities are shown in Figure 2.

Interestingly, detection probabilities for Ringlet appear relatively stable over time, whereas

estimated detection probabilities for Duke of Burgundy may have increased slightly, possibly

due to increases in recorder effort to observe this rare, but also diminutive, species. In Figure

4 we show the posterior summaries of detection probability at each time t of the year, pt,

for both species, where it can be seen that the detection probability is extremely low outside

the summer months corresponding to each species’ flight period. However, it is important

to consider that in our model we assume that occupancy status of sites does not change

during a year, even though butterflies obviously do not fly throughout the year. Therefore,
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the probability of detection at time pt in our model can be interpreted instead as the product

p0dt, where dt is the probability of butterflies of the species flying at time t and p0 is the

probability of detecting at least one butterfly of that species, conditional on the species flying

at time t, with the latter usually considered as the detection probability.

[Figure 4 about here.]

Convergence has been checked by monitoring traceplots from single chains, which we have

reported in the Supplementary material.

5.1 Goodness of fit

To check the goodness of fit of the model, we have also performed posterior predictive checks

using two test statistics: the number of yearly detections across all sites, T 1
t (y) =

∑
ki=j
tj=t

yi

and the number of detections in a given region r, T 2
r (y) =

∑
ki=j
sj∈r

yi. We have compared

the true value of the statistic in each case with the 95% PCI of the posterior predictive

distribution of the test statistic, T (ỹ), where ỹ has distribution p(ỹ|y) =
∫
p(ỹ|θ)p(θ|y)dθ.

We note that draws ỹ1, . . . , ỹl from p(ỹ|y) can easily be obtained by sampling at each step

of the MCMC ỹ ∼ p(y|θ̄), where θ̄ is the value of the parameters at the each iteration. For

the test statistics T 2
r (y), we took as region the patches used for the spatial approximation.

The resulting goodness of fit plots for both data sets are shown in Figures 5 and 6. Figure

5 shows that the model properly accounts for the variation across years for both species.

It is worth noting that we also ran the model with a constant detection probability across

years and the PCIs of T 1
t (y) did not always contain the true values, suggesting that the fit

of the model is not as good in that case. We show plots of the goodness of fit for the model

with constant detection probability in Figure 2 of the Supplementary material. The lack of

fit of T 2
r (y) is likely a suggestion that detection probability exhibits variation across space

as well as time. However as commented earlier, we do not model variation of the detection

probability across space since we already model spatial variation of the occupancy probability,
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and modelling the spatial variation of both quantities could lead to unidentifiability issues

between the two. We note that using list length instead of relative list length causes a bias

in the goodness of fit and leads to the number of detections in the north being consistently

underestimated. The cause of the bias is that since fewer butterfly species inhabit the North

of the UK, observers in the North are penalized with respect to the ones in the South as it is

more difficult further north to detect a large number of species, and hence their capabilities

are underestimated compared to observers in the South.

[Figure 5 about here.]

[Figure 6 about here.]

6. Potential extensions

We model temporal and spatial r.e. as additive independent effects, as shown in Equation (2).

To allow for interaction between time and space we can define a GP prior jointly over time

and space in the following way. Formally, we introduce S×Y r.e., {cys}y=1,...,Y,s=1,...,S, where

cys is the r.e. for year y and site s, and assume a GP prior distribution with support points

(wy,xs)y=1,...,Y,s=1,...,S, such that (c11, . . . , cSY ) ∼ N(0, K), where K((ωy1 ,xs1), (ωy2 ,xs2)) de-

pends on the distance between the time-space points (ωy1 ,xs1) and (ωy2 ,xs2). Similar ap-

proaches have been proposed. For example, (Datta et al., 2016) propose to use NNGP to

assume nonseparable covariance matrices in a GP framework while obtaining scalable com-

putations. We note that our additive modelling approach arises if K((ωy1 ,xs1), (ωy2 ,xs2)) =

KlT ,σT (ωy1 , ωy2) +KlS ,σS(xs1 ,xs2). In the non-separable case, it is paramount to use approx-

imations such as the ones described in Section 3.2, as the covariance matrix is of dimension

SY × SY . For example, in the non-separable case, the complexity of the CP method is

O(M3 + SY ), while the complexity of the ASoR is O(M3 +M?S2Y 2). Moreover, M should
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be chosen bigger in the nonseparable case as the grid is used to approximate time and space

together.

In addition to the optimal mixing properties, another advantage of the PG scheme is

that it allows efficient variable selection, as performed in Griffin et al. (2020), since the

logistic regression equations for the detection and presence processes can be cast in the

linear regression framework using the PG augmentation. Although not considered in this

paper, which aims to introduce the new modelling framework, we note that this approach

can be used to perform variable selection on the occupancy and detection probabilities if

a number of covariates are available as potential predictors for either of the two processes.

Finally, we note that the PG scheme is easily parallelisable with respect to the variables ωi

in (3), which would bring further computational advantages for large data sets.

7. Discussion

We proposed a unifying Bayesian framework for modelling large occupancy data sets, while

accounting for spatio-temporal autocorrelation and for the effect of covariates on the prob-

abilities of occupancy and detection. We employed and developed a number of algorithms

and approximations for fast inference, even for very large data sets, and we used simulation

to assess the performance of our new models.

We compared two popular approximation methods, a low-rank approximation and a sparse

approximation method, according to computational time and predictive power. We found

that although the methods have very different theoretical biases, they tend to perform

similarly in the context of occupancy modelling. We note that the NNGP approximation

has been also considered within an occupancy model framework in a recent paper by Doser

et al. (2022).

Our model incorporates both time and space, and the results for the two case studies

are in accord with what is known for the species involved. The spatial maps of Figure (3)
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demonstrate how the distribution of each species changes over time, similarly to what is

shown in Dennis et al. (2017).

We have illustrated how goodness of fit can be routinely studied. It was interesting to note

the differences between the magnitudes of detection probability for the two species, and this

highlights the potential of using the model for further investigation of this poorly understood

aspect of citizen-science occupancy modelling.

As with all models, several assumptions are made on how the probabilities of species’

presence and the probability of detection vary across sites or years. The validity of results

will depend on how realistic these assumptions are and the general appropriateness of the

model for the data at hand.
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Figure 1: Comparison between the GP approximation methods showing the relationship
between computational time and mean absolute error for each method. The x-axis represents
the computational time and the y-axis represents the mean absolute error. The results of the
ASoR are shown by the solid black line, the results of the NNGP by the solid grey line and
the results of the CP by the dashed line. For the CP, we used grid steps {.2, .175, .15, .125, .1},
for the ASoR, we used grid steps {0.3, 0.25, .2, 0.175, .15}, while for the NNGP we used as
number of neighbours {5, 10, 15, 20, 25, 30}.
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(a) (b)

(c) (d)

Figure 2: Top row: 95% PCI of the occupancy index for (a) Ringlet and (b) Duke of
Burgundy. Bottom row: 95% PCIs of the year-specific detection probabilities at the average
value of the list length covariate for (c) Ringlet and (d) Duke of Burgundy. The dots represent
the posterior medians. Note that different scales are used for the two species.
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Figure 3: Posterior medians of the site-specific occupancy probabilities for Ringlet (top
row) and Duke of Burgundy (bottom row) for 1970 (first column), 1985 (second column),
2000 (third column) and 2014 (fourth column). White areas represent parts of the country
with no records of any butterfly species.
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(a) (b)

Figure 4: Posterior median and 95% PCI of the detection probability p across the year for
the Ringlet (a) and Duke of Burgundy (b) in the year 2000, at the average value of the
relative list length. The black line represents the posterior median. We note that we have
plotted only one year as the coefficients of Julian date are constant across time and hence
the trend in other years is simply a shifted version.
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(a) (b)

Figure 5: Goodness of fit for yearly detections for (a) Ringlet and (b) Duke of Burgundy.
The squares represent the true values, while the error bars represent the 95 % PCI of the
test statistics.



Fast Bayesian inference for large occupancy datasets. 31

(a) (b)

Figure 6: Goodness of fit for space detections for (a) Ringlet and (b) Duke of Burgundy.
Different colours identify where the true statistic is inside the 95 % PCI, above and below
the 99 % PCI and between the 95 % PCI and the 99 % PCI.


