Kent Academic Repository Full text document (pdf)

Citation for published version

Talukder, M. A. H (2022) Analysis of experimental designs with unequal group variances. Doctor of Philosophy (PhD) thesis, University of Kent.

DOI

https://doi.org/10.22024/UniKent\%2F01.02.94683

Link to record in KAR

https://kar.kent.ac.uk/94683/

Document Version

UNSPECIFIED

Copyright \& reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk
If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html

ANALYSIS OF EXPERIMENTAL DESIGNS WITH UNEQUAL GROUP VARIANCES

M. A. H. TALUKDER

Submitted in fulfilment of the requirements for the degree of Ph.D. in Statistics
at the
University of Kent at Canterbury

1976

ABSTRACT

This thesis deals with weighted (generalised) least squares estimation and analysis for some common experimental designs with the error variance heteroscedastic with respect to the levels of one factor, namely, the treatments or (for split-plot designs) sub-plot treatments. The simple regression model with error variance heteroscedastic with respect to the values of the independent variable, is also considered briefly. The observations in any of the analyses considered are grouped in such a way that the error variance is constant within groups but varies from group to group.

On the assumption that the group variances are known, the weighted least squares estimators of the linear parameters and the corresponding analysis (Aitken, 1934-35; Plackett, 1960, pp. 47-49) are provided for each design or model. An expression for joint confidence intervals of parametric contrasts for the heteroscedastic models is also obtained. The estimators of the linear parameters and other statistics usually involve actual weights, the reciprocals of the group variances.

The actual weights are not usually known. The estimators of the group variances are therefore derived for each design or model. For some designs, the minimum norm quadratic unbiased estimators (Rao, 1970; 1973, pp. 303305) of group variances are independently distributed as multiples of x^{2}. For other designs, almost unbiased estimators (Horn et al., 1975) of group variances have negligible bias and are approximately independently distributed as multiples of x^{2}. Reciprocals of
these estimators are used as the estimated weights.
The weighted least squares estimators of the linear parameters or variance components and other statistics including test-statistics using estimated weights, are generally biased. It is shown in the thesis how a major part of the bias can be removed; the procedure stems from a theorem due to Meier (1953). The estimators and other statistics using estimated weights are adjusted accordingly. A modified form of this theorem is also proved for correlated estimators of the group variances. A small Monte Carlo study conducted for completely randomised designs showed that the performances of the adjusted statistics are more or less satisfactory.

The designs and models covered in this thesis are: completely randomised designs, the general two-way model with proportional cell frequencies, general block designs, randomised complete block designs, latin square designs, split-plot designs with two treatment factors and the linear regression model. For the first three designs, both the fixed-effects models and random or mixed models are considered whereas only the fixed-effects models are dealt with for the remaining three designs.
ABSTRACT (i)

1

$$
1.1
$$

$$
1.2
$$

$$
1.3
$$

2
2.1 2.1.1
2.1 .2
2.1 .3
2.1 .4
2.1 .5
2.1 .6
2.1 .7
2.1.7.1
2.1.7.2
2.1.7.3
2.1.7.4
2.1.7.5
2.2
2.2.1
2.2 .2

3
3.1
3.1 .1
3.1.2
3.1 .3
3.1 .4
3.1 .5
3.1 .6
3.2
3.2.1
INTRODUCTION AND PRELIMINARIES Introduction 1
General principles of weighted (generalised) least squares analysis when error variances are known 9
Methods of estimation of weights 10
COMPLETELY RANDOMISED DESIGNS
One-way fixed-effects models 14
Weighted (generalised) least squares analysis when the group variances are known 14
An exact test for equally replicated treatments when the group variances are not known 17
Estimation of error variances 18
Adjustment of the test-statistics using estimated weights 19
Multiple comparison 23
Summary dispersion measures of the estimators of the linear parameters 25
The Monte Carlo study 27
Sampling experiments 27
Power of Bartlett's chisquared test on the homogen-eity of error variances 28
Confidence intervals of orthogonal contrasts 28
Empirical size and power of some tests of significance 30
Concluding remarks 32One-way mixed models and random modelswith unequal group variances33
Estimation of variance components
and the analysis when error variances are known 33
Adjustment of the F-statistic and the estimator $\tilde{\sigma}_{\tau}^{2}$ using estimated weights 35
GENERAL TWO-WAY MODEL WITH PROPORTIONALCELI FREQUENCIES
Two-way fixed effects model 41
The model 41
Estimation and analysis when the group variances are known 43
Estimation of weights 51
Adjustment of the estimators of the linear parameters 54
Adjustment of the test-statistics 55
Multiple comparison 61
Two-way random models 63Estimation of the variance componentsand the analysis when error variancesare known64
3.2.2 Adjustment of the test-statistics and the estimators of variance components67
3.3 Fixed effects model with equalreplication74
3.3 .1 Test of significance of treatment effects 74
3.3 .2 Test of significance of block effects 743.3.3 Likelihood ratio tests for signifi-cance of interactions and treatmenteffects75
4
4.1
4.2
4.3
4.4
5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
6
6.1
6.2
6.3
6.4
6.5
7
7.1
7.2
7.3
7.4
7.5
7.6
8
GENERAL BLOCK DESIGNS
Estimation and intrablock analysis when group variances are known 79
A special case 84
Canonical forms of the sums of squares 85Estimation and analysis when groupvariances are unknown86

4.5
4.5 Recovery of inter-block information 87
RANDOMISED COMPLETE BLOCK DESIGNS
Estimation and analysis when error variances are known 89
Estimation of weights 91
A Theorem on the expectation of functions of correlated x^{2}-variates 96
Covariance between $s_{j}{ }^{2}$ and $s_{k}{ }^{2}(j \neq k)$ 100
Adjustment of the test-statistics 104
Multiple comparison 108
Summary measures of dispersion 111
LATIN SQUARE DESIGNS
Estimation and analysis when the error variances are known 112
Estimation of weights 119
Covariance between $s_{k}{ }^{2}$ and $s_{m}{ }^{2}(k \neq m)$ 123
Adjustment of the test-statistics 127
Multiple comparison of the treatment parameters 129SPLIT-PLOT DESIGNSEstimation and analysis when theerror variances are known131
Estimation of weights ${ }_{2}$ 141
Covariance between $s_{k}{ }^{2}$ and $s_{m}{ }^{2} \quad(k \neq m)$ 143
Adjustment of the estimators 146
Adjustment of the test-statistics 148
Multiple comparison 154
LINEAR REGRESSION WITH UNEQUAL GROUP VARJANCES8.1
Estimation and analysis when the error variances are known 160
CHAPTER PAGE
8.2 Estimators of weights 162
8.3 Adjustment of the estimators and test-statistics 163
9 CONCLUSIONS
9.1 Summary of the results 170
9.2 Discussion and further work 171
Acknowledgements 173
References 174

INTRODUCTION AND PRELIMINARIES

1.l Introduction

In the classical least squares theory, the error variances are assumed to be equal. For linear homoscedastic models, the least squares estimators of the parameters have some optimality properties as given in the Gauss-Markoff theorem (see John, 1971, p. 34). When the error variances differ and their values or relative values are known, the same properties are satisfied by the corresponding generalised (weighted) least squares estimators.

For variable unknown error variances, when the mean is functionally related to the error variance, variance-stabilizing transformations can be used to remove heteroscedasticity (see Bartlett, 1947, and others). Hoyle (1973) gave a detailed account, with bibliography, of different types of transformation and their uses. It has been observed from experience that such transformations often normalise the data so that the F -test remains valid.

However, the error variances may sometimes be different even if there is no reason to believe that the errors are non-normal. In animal-breeding experiments, the breeds
litters may originate from different species and the error breed to breed.
variance may vary from species to specs. If several persons having different skills take measurements on the same objects, then it is not unreasonable to assume that the
different variances for different persons. errors of measurement have, the same variance for each person. Batches of chemicals used by an experimenter may have come from different sources and the error variance may differ from source to source.

Sometimes the treatments may not be reproduced exactly for repetition. There are then treatment errors which may have different variances for different treatments. In the data given by Fisher (1966, pp. 67-69) for a set of variety trials, Yates and Cochran (1938) found that one variety, Trebi, of Barley accounted for much of the variation due to varieties. Snedecor and Cochran (1967, p. 324) gave some examples of unequal variances due to treatment errors. Zyskind and Kempthorne (1960) considered treatment errors having unequal variances and found expectations of sums of squares over permutation distributions for some designs.

The concept of inequality of group error variances is thus quite old. In the late thirties, Bartlett (1937) proposed a method for testing the homogeneity of group variances for one-way models. Later on, Hartley (1950) gave a short-cut test. Han (1968) suggested a few methods for testing homogeneity of correlated variances. Russell and Bradley (1958), Johnson (1962), Han (1969), Maloney and Rastogi (1970) and Shukla (1972) dealt with the test of homogeneity of group variances in two-way models and Curnow (1957) with that in split-plot designs for only two sub-plot treatments.

Box (1954a and 1954b) derived some results on distributions of quadratic forms in normal variates and applied these to study the effect of inequality of group error variances on the F -test in one-way and two-way classifications. He found that moderate differences in error variances did not seriously affect the test for equal replications while much larger discrepancies were observed for unequal sample sizes. Draper and Guttman (1966) utilized Box's results from a Bayesian point of view in one-way fixed effects models
when only two different group variances are suspected. For heteroscedastic models, Box showed that the usual ratio of the error mean square to the treatment mean square was approximately distributed as a constant times an F-variate. Assuming some prior distributions of the means and variances of the populations, Draper and Guttman obtained estimators of the constants of such test-statistics. Applying standard analysis to some examples of unequal group variances, they concluded that "serious errors can result if the effects of unequal variances are ignored".

The problem of testing equality of two means when group variances are unknown and unequal, was first discussed by Behrens (1929) and Fisher (1935, 1939); the latter provided a method for such a test with the help of fiducial distributions of the parameters concerned. Welch (1938) suggested an approximate test based on the assumption that a linear function of two independent x^{2}-variates is approximately distributed as a constant multiple of a χ^{2}-variate. Scheffé (1943) gave an exact solution to the Behrens-Fisher problem, in terms of interval estimation on the basis of a t-distribution. Welch (1947) suggested an asymptotic solution in which error of the first kind was held approximately constant.

Ghosh (1961) considered estimation of parametric functions in one-way models with unequal group variances and obtained a generalisation of Scheffés (1943) result. Using Ghosh's result, Ghosh and Behari (1965). derived expressions for point estimators and confidence intervals for treatment contrasts in randomised block designs with groups of treatments having different variances.

Approximate test-criteria for testing equality of
several means when group variances are unequal, were first given by James (1951) and Welch (1951). Using two successive Taylor's series expansions, James derived the following approximate expression for the $\alpha \%$ point: $x^{2}(\alpha)\left[1+\left\{3 x^{2}(\alpha)+t+1\right\} \quad \Sigma\left\{1 /\left(r_{i}-1\right)\right\}\left(1-r_{i} \hat{w}_{i} / \sum r_{i} \hat{w}_{i}\right)^{2} / 2\left(t^{2}-1\right)\right] ;$ the weighted treatment sums of squares, using estimated weights, are to be compared with this quantity for testing equality of treatment means. In this expression $X^{2}(\alpha)$ is the value of χ^{2} with ($t-1$) degrees of freedom (d.f.) at the $\alpha \%$ level of significance, t is the number of treatments, r_{i} is the number of replications for the ith treatment, and the estimated weight \hat{w}_{i} is the reciprocal of the variance of the ith sample. Proceeding in the same way, James (1954) obtained approximate test criteria, again based on the χ^{2} distribution, for tests of linear hypotheses for univariate and multivariate heteroscedastic models.

Welch (1951) provided another asymptotic solution, based on an F-test, to the above problem. He obtained the cumulant generating function of $F=\left\{\chi_{1}^{2} /(t-1)\right\} /\left(\chi_{2}^{2} / f\right)$, the ratio of two mean $\chi^{2 ' s}$, and took the expectation of F over χ_{2}^{2}. He then compared the cumulants, up to order $\left\{1 /\left(r_{i}-1\right)\right\}$, of the terms of the resulting series with the corresponding terms of the cumulant generating function of the weighted treatment sum of squares; he suggested that the statistic $\left\{\sum_{1}^{t} r_{i} \hat{w}_{i} y_{i} \cdot{ }^{2}-\left(\Sigma r_{i} \hat{w}_{i} y_{i} \cdot\right)^{2} / \sum r_{i} \hat{w}_{i}\right\} /(t-1)\left\{1+2(t-2) \sum_{1}^{t}\left(1 /\left(r_{i}-1\right) x\right.\right.$ $\left.\left(1-r_{i} \hat{w}_{i} / \sum r_{i} \hat{w}_{i}\right)^{2} /\left(t^{2}-1\right)\right\}$
with y_{i}, as the mean of the ith sample, is approximately distributed as a central F under the null hypothesis with d.f. $(t-1)$ and $f=\left\{3 \sum_{1}^{t}\left\{1 /\left(r_{i}-1\right)\right\}\left(1-r_{i} \hat{w}_{i} / \sum r_{i} \hat{w}_{i}\right)^{2} /\left(t^{2}-1\right)\right\}^{-1}$. Brown and Forsythe (1974a) proposed an approximate
d.f. solution to the same problem. As both the numerator and the denominator of the statistic $\left.\sum_{1}^{t} r_{i}\left(y_{i} .-y . .\right)^{2} \underset{\{ }{t} \sum_{1}^{t}\left(1-r_{i} / n\right) / \hat{\omega}_{i}\right\}$ with $y . .=\Sigma y_{i} \cdot / t$ and $n=\Sigma r_{i}$,
have the same expectation, they suggested, following
Satterthwaite (1941), that this statistic is approximately distributed as an F with ($t-1$) and $f_{0} d . f$ under the null hypothesis where $f_{0}=1 /\left[\Sigma c_{i}{ }^{2} /\left(r_{i}-1\right)\right]$ with $\left.c_{i}=\left\{1-r_{i} / n\right) / \hat{w}_{i}\right\} /\left\{\sum_{i}\left(1-r_{i} / n\right) / \hat{w}_{i}\right\}$. From a Monte Carlo study, they found that the performances of their test-statistic and that of Welch (1951) were satisfactory for more than 10 observations per group and were not unreasonable for samples of sizes down to 5. They also offered some suggestions for evolving an improved teststatistic which would be useful in all situations including small samples. Brown and Forsythe (1974b) showed that their test-statistic mentioned above could be derived by combining orthogonal contrasts of treatments. The method was extended to two-way designs with unequal cell variances. They also proposed a method of obtaining, joint confidence interval for contrasts between treatment means.

Chakravarti (1965) showed that Hotelling's T ㄹ statistic could be used to test the hypotheses in respect of linear contrasts of the treatments in one-way heteroscedastic models. Such tests are valid when the number of treatments does not exceed the minimum number of replications.

For one-way models with unknown group variances,
Spjøtvoll (1972) derived an approximate expression for the joint confidence interval of all contrasts of the treatment means. If ψ is any such contrast, then this joint confidence interval is

$$
\hat{\psi}-\mathrm{A} \hat{\sigma}_{\hat{\psi}} \leq \psi \leq \hat{\psi}+\mathrm{A} \hat{\sigma}_{\hat{\psi}},
$$

with $\hat{\sigma}_{\hat{\psi}}$ as the estimated standard error of the estimator $\hat{\psi}$ of ψ and $A=\left\{\mathrm{aF}_{\alpha}(\mathrm{t}, \mathrm{b})\right\}^{\frac{1}{2}}$. The expressions for a and b in terms of individual d.f. were obtained by equating the first two cumulants of $\sum_{i} F\left(1, r_{i}-1\right)$ to those of a $F(t, b)$.

For two-way heteroscedastic models, some methods of testing hypotheses were suggested by several authors besides Brown and Forsythe (1974b) mentioned above. Graybill (1954) considered randomised complete block designs assuming the errors to be heteroscedastic between treatment effects and correlated within each block. Subtracting the data for any one treatment from the corresponding data for each of the other treatments, he showed that Hotelling's T ? statistic could be used for testing the treatment differences. The test is valid when there are more blocks than treatments. Siotani (1957) dealt with replicated randomised complete block designs assuming the errors in any one experiment to be correlated and heteroscedastic but independent between the designs. Following Graybill (1954), he obtained tests of significance for main effects and interactions based again on a $\mathrm{T} \frac{2}{}$ statistic.

Robinson and Balaam (1967) considered the same model as that of Graybill (1954) for each of a number of replicated complete block designs and gave a method of analysis, based on likelihood ratio tests, that uses the independent contrasts of observations under each treatment.

Schlesselman (1973) proposed a procedure for choosing a power transformation of observations of the replicated twoway designs when the usual assumptions of analysis of variance are not satisfied. To obtain such transformations, he suggested a weighted combination of Tukey's statistic for
removable non-additivity and the t-statistic for testing the slope of log (sample cell variance) on log (sample cell mean). His method was then empirically compared with that of Box and Cox (1964). Point estimates for both procedures were emprically found to be the same on the average over many sets of data obtained through simulation.

Duby et al. (1975) gave a method for analysing the data of two-way designs when the cell variances are functions of the cell means. The method is based on Waid's (1943) large sample test criterion.

For general heteroscedastic linear models, Williams (1967) derived approximate variances of weighted least squares estimators using estimated weights based on equal replications. Bement and Williams (1968) extended these results to the case of unequal replications.

Williams (1959, pp. 67-70) and Draper and Smith (1966, pp. 77-81) discussed ${ }_{\wedge}^{\text {The }}$ weighted least squares method for estimating the linear parameters of heteroscedastic regression models. Jacquez et al. (1968), Rao and Subrahmaniam (1971) and Jacquez and Norusis (1973) undertook Monte Carlo studies on the efficiency of the weighted estimators of the parameters of linear regression models with unequal group variances.

For the experimental designs considered in this thesis, it is assumed that the error variance is heteroscedastic with respect to the levels of only one factor, namely the treatments or (for split-plot designs) sub-plot treatments. For the regression models, the error variance is assumed to be heteroscedastic with respect to the values of the independent variable. Thus the error variance is constant for the group of observations under each level of treatments or each value of the independent variable and varies from group
to group. The methods are also applicable when the error variance is heteroscedastic with respect to the levels of any other main effect.

When the error variance is the same within a group of observations but varies from group to group under a linear model, some methods are available for estimating the error variances from a sample. The estimators of the error variances may then be used for obtaining the weighted least squares estimators of the linear parameters. Such weighted estimators will generally be biased. Similarly, use of estimated weights introduces unknown bias in other statistics including teststatistics for the analysis of data with heteroscedastic models. In this situation, one method is to remove much of the resulting bias of such weighted estimators and statistics for these to be of practical use.

In this thesis, the weighted least squares analysis (Aitken, 1934-35; Plackett, 1960, pp. 47-49) is given for each of several common designs, assuming the group variances to be known. The estimators (Rao, 1970, 1973, pp. 303-305; Horn et al., 1975) of the error variances are obtained. The weighted least squares estimators of the linear parameters and other statistics using estimated weights are adjusted for removing a major portion of the bias with the help of a theorem due to Meier (1953). A report on a small Monte Carlo study on the adequacy of the adjusted statistics for one-way heteroscedastic models is also given.

1.2 General principle of weighted (generalised) least
 squares analysis when the error variances are known

Let us consider the heteroscedastic linear model

$$
\begin{equation*}
\underset{\sim}{Y}=\underset{\sim}{X}{\underset{\sim}{X}}_{\underset{\sim}{\beta}}^{\mathcal{Y}} \underset{\sim}{\varepsilon} \cdot \tag{I}
\end{equation*}
$$

where $\underset{\sim}{Y}$ is the vector of observations, $\underset{\sim}{X}{ }^{\prime}$ the design matrix, $\underset{\sim}{B}$ the vector of linear parameters and $\underset{\sim}{\mathcal{\sim}}$ the vector of errors such that $E(\underset{\sim}{\varepsilon})=\underset{\sim}{0}$ and $\operatorname{var}(\underset{\sim}{\varepsilon})=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}\right)=\underset{\sim}{V}$, say, the error variances, $\sigma_{i}{ }^{2}$, being the diagonal elements and n the number of observations. The error variances may not be all distinct. The matrix $\underset{\sim}{V}$ is non-singular.

If the error variances are known, then the weighted least squares estimator of the parameter vector $\underset{\sim}{\beta}$ is obtained by minimising the quadratic form $\underset{\sim}{\varepsilon}{\underset{\sim}{V}}^{-1} \underset{\sim}{\varepsilon}=(\underset{\sim}{Y} \underset{\sim}{X}-\underset{\sim}{\mathcal{X}} \underset{\sim}{\beta})^{\prime} \underset{\sim}{V}{ }^{-1}\left(\underset{\sim}{Y}-\underset{\sim}{X}{\underset{\sim}{X}}^{\beta}\right)$. Taking the derivative of the right hand side with respect to $\underset{\sim}{\beta}$ and setting it equal to zero, we get

$$
\begin{equation*}
\underset{\sim}{X}{\underset{\sim}{V}}^{-1} \underset{\sim}{X}{\underset{\sim}{X}}^{\sim} \underset{\sim}{\sim}=\underset{\sim}{X}{\underset{\sim}{V}}^{-1} \underset{\sim}{Y} \tag{2}
\end{equation*}
$$

as the normal equations for finding the weighted estimator $\underset{\sim}{\beta}$ of $\underset{\sim}{\beta}$. Such ${ }_{n}$ equation was first given by Aitken (1934-35) and then the principle was further developed by others, e.g. Goldman and Zellen (1964), to cover different cases. When $\underset{\sim}{V}=\sigma^{2} \underset{\sim}{I}$, this reduces to the normal equations of the simple least squares procedure.

Now define the weightw ${ }_{i}=1 / \sigma_{i}^{2}, i=1,2, \ldots, n$, and $\underset{\sim}{V}{ }^{-1}=\underset{\sim}{W}$, a diagonal matrix with ${\underset{i}{i}}$ as the diagonal elements. Also let $\underset{\sim}{W}{ }^{\delta / 2}{\underset{\sim}{X}}^{\prime}=A_{\sim}^{A}$ and $\underset{\sim}{W}{ }^{\delta / 2} \underset{\sim}{Y}=\underset{\sim}{Z} \quad$ where $\underset{\sim}{W}{ }^{\delta / 2}$ is the diagonal matrix with $\tilde{w}_{i}{ }^{\frac{1}{2}}$ as the diagonal elements. Then $\operatorname{var}(\underset{\sim}{Z})=\underset{\sim}{I}$ and the normal equations (2) become

$$
\underset{\sim}{A} \underset{\sim}{A}{ }^{\prime} \underset{B}{\sim}=\underset{\sim}{A} \underset{\sim}{Z} .
$$

These are the normal equations of the simple least squares in transformed data so that the estimators possess optimality properties as mentioned at the beginning of section ll.

It also follows that the sum of squares (SS) due to the estimates, namely $S S(\beta)={\underset{\sim}{\sim}}_{\sim}^{\beta} \underset{\sim}{A} \underset{\sim}{Z}={\underset{\sim}{\sim}}^{\sim}{\underset{\sim}{X}}_{\sim}^{X} \underset{\sim}{W}{ }_{\sim}^{\delta} \underset{\sim}{Y}$ and the $S S$ due
 with $\underset{\sim}{\sim}=\underset{\sim}{Y}-\underset{\sim}{X}{ }_{\sim}^{\sim} \underset{\sim}{\sim}$, are independent. Moreover, since $E\{S S(\beta)\}=$ $\underset{\sim}{\beta}{ }_{\sim}^{X} \underset{\sim}{X} V_{\sim}^{-1}{\underset{\sim}{X}}^{\prime} \underset{\sim}{\beta}+\operatorname{rank}\left(\underset{\sim}{X}{ }^{\prime}\right)$ and $E\{S S(E)\}=n-\operatorname{rank}\left(\underset{\sim}{X}{ }^{\prime}\right)$, the SS due to estimates and the SS due to error are distributed as non-central and central x^{2} variables respectively with the corresponding degrees of freedom given by rank ($\underset{\sim}{X}$) and n-rank (${\underset{\sim}{\sim}}^{\mathrm{X}}$). Thus the usual F-test can be used to test the hypothesis:

$$
\underset{\sim}{B}=\underset{\sim}{0} .
$$

(See Plackett,1960,pp.47-49)
This hypothesis can also be tested by a x^{2}-test using $S S(\beta)$ only. 1. 3 Methods of estimation of weights

As we are considering group variances, the variance model of the error term in equation (1), when the observations are arranged treatment by treatment, can be written as

$$
\begin{equation*}
\operatorname{var}(\underset{\sim}{\varepsilon})=\underset{\sim}{V}={\underset{\sim}{V}}_{1} \sigma_{1}^{2}+\ldots+\underset{\sim}{V}{ }_{m} \sigma_{m}^{2} . \tag{3}
\end{equation*}
$$

where the quantities σ_{i}^{2} are the group error variances, and the matrices ${ }_{\sim}{ }_{i}$ are diagonal matrices having the form ${\underset{\sim}{i}}^{i}=\operatorname{diag}(0, \ldots, 0,1, \ldots 1,0, \ldots, 0) . \quad$ The matrices $\underset{\sim}{V_{i}}$ are idempotent and orthogonal, and sum to $\underset{\sim}{I}$.

Such a model was given by Nelder (1965, 1968) for variance components under orthogonal block structures. There the matrices ${\underset{\sim}{\sim}}$ defined m strata of the analysis. Similar variance component models were considered by Hartley and Rio (1967) and Patterson and Thompson (1971, 1975).

The following are the methods of estimating $\sigma_{i}{ }^{2}$.
(i) The MINQUE method of Rao (1970, 1973)

Rao defined the minimum norm quadratic unbiased estimator (MINQUE) of $\sigma_{i}{ }^{2}$ by the quadratic form $\underset{\sim}{Y}{\underset{\sim}{i}}_{\underset{\sim}{A}}^{\sim} \underset{\sim}{Y}$ where ${\underset{\sim}{A}}_{A}$ are matrices chosen in such a way that $\underset{\sim}{\operatorname{tr}\left(\underset{\sim}{A_{i}} \underset{\sim}{U}\right)^{2}}$ is minimised for all i. Here

$$
\underset{\sim}{U}=\alpha_{1}{ }_{\sim}^{2}{\underset{\sim}{1}}+\cdots+\alpha_{m}{ }_{\sim}^{2} V_{m}
$$

and the minimisation is subject to the condition that $E\left(\underset{\sim}{Y}{ }_{\sim}^{\prime} \underset{\sim}{A} \underset{\sim}{Y} \underset{\sim}{Y}\right)=\sigma_{i}{ }^{2}$. In general the estimates of $\sigma_{i}{ }^{2}$. depend on the choice of α_{i}. Rao (1973) recommended that $\alpha_{i}{ }^{2}$ should be chosen approximately proportional to $\sigma_{i}{ }^{2}$ wherever possible. In the absence of any prior information about $\sigma_{i}{ }^{2}, \alpha_{i}$ may be taken to be unity.

As $\operatorname{tr}(\underset{\sim}{A} \underset{\sim}{U})^{2}$ is the square Euclidian norm, the method is called 'minimum norm'.

Rao (1970) gave a computational method for obtaining such estimates. Let the projection matrix be $\underset{\sim}{S}=\underset{\sim}{I}-X_{\sim}^{1}$ $\left(\underset{\sim}{X} X^{\prime}\right)^{-} \underset{\sim}{X}=\left(s_{i j}\right), A^{-}$being any generalised inverse of A. Further let $\underset{\sim}{v}$ be the vector of squares of the residuals given by $\underset{\sim}{S} \underset{\sim}{Y}, \underset{\sim}{\delta}$ the vector of variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$ and $\underset{\sim}{F}=\left\{S_{i j}{ }^{2}\right\}$. Then the MINQUE's of $\sigma_{i}{ }^{2}$ are obtained from the equation $\underset{\sim}{F} \underset{\sim}{\delta}=\underset{\sim}{v}$ when $\underset{\sim}{F}$ is non-singular. He also suggested that the group error variances can be estimated by solving the reduced equations obtained by adding the set of equations which correspond to the same variance.

Mallela (1972) derived necessary and sufficient conditions for $\underset{\sim}{F}$ to be non-singular. In this thesis, the coefficient matrix of the reduced equations for estimating the group variances will always be non-singular.

Horn et al. (1975) suggested almost unbiased estimators of variances and showed how these could be obtained from corresponding MINQUE's.
(ii) The method of maximum likelihood

Under the assumption of normality of errors, the likelihood function of the observations is given by

$$
I=(2 \pi)^{-n / 2}|\underset{\sim}{V}|^{-1 / 2} \exp \left\{-\frac{1}{2}\left(\underset{\sim}{Y}-\underset{\sim}{X}{\underset{\sim}{X}}^{\beta}\right)^{\prime} \underset{\sim}{V}{ }^{-1}\left(\underset{\sim}{Y}-\underset{\sim}{X}{\underset{\sim}{\mid}}_{\underset{\sim}{\beta}}\right)\right\}
$$

The maximum likelihood method of estimating the linear parameter vector $\underset{\sim}{\beta}$ gives the same normal equations as the weighted least squares procedure. Following Hartley and Rao (1967), we find the equations for obtaining the maximum likelihood estimators of $\sigma_{i}{ }^{2}$ as

$$
\operatorname{tr}\left({\underset{\sim}{V}}^{-1} \frac{\partial \underset{\sim}{V}}{\partial \sigma_{i}}\right)+\left(\underset{\sim}{Y}-\underset{\sim}{X}{ }_{\sim}^{\prime} \underset{\sim}{\tilde{B}}\right)^{\prime} \frac{\partial\left(\underset{\sim}{V}{ }^{-1}\right)}{\partial \sigma_{i}^{2}}\left(\underset{\sim}{Y}-\underset{\sim}{X}{ }_{\sim}^{\underset{\beta}{\sim}}\right)=\underset{\sim}{0} ; \quad i=1,2, \ldots, m,
$$

where $\underset{\sim}{\sim}$ is the weighted least squares estimator of $\underset{\sim}{\beta}$. The estimated variances are usually in terms of the estimators of the linear parameters and may be evaluated by an iterative method when the process converges.
(iii) The method of modified maximum likelihood

Patterson and Thompson (1971; 1975, pp. 197-207) proposed the method of modified maximum likelihood for estimating variance components $\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}$, as in (3), but with $\underset{\sim}{V}$ singular in general. They suggested partitioning of the data into two parts - one represented by the transformed observations (residuals) $\underset{\sim}{S} \underset{\sim}{Y}$ and the other by $\underset{\sim}{Q} \underset{\sim}{Y}$ where $\underset{\sim}{Q}$ is such that $\operatorname{cov}(\underset{\sim}{\sim}, \underset{\sim}{S Y}, \underset{\sim}{\sim})=\underbrace{0}_{\sim} \quad$ variance components were then estimated by maximising the likelihood of $\underset{\sim}{S}$ and $\underset{\sim}{\beta}$ by maximising that of $\underset{\sim}{Y} \underset{\sim}{Y}$. Patterson and Thompson (1975) suggested that the estimate of σ_{i}^{2} should be obtained by equating $\underset{\sim}{Y}{ }^{\prime}(\underset{\sim}{S V S})^{+} V_{\sim} V_{\sim}(\underset{\sim}{S V S})^{+} \underset{\sim}{Y}$ to its expectation, $i=1,2, \ldots, m$.

An iterative method was suggested for finding the actual estimates. Here $\underset{\sim}{A^{+}}$denotes the unique Moore-Penrose (Moore, 1920, 1935; Penrose, 1955) generalised inverse of $\underset{\sim}{A}$.
(iv) The method of Nelder (1968)

As proposed by Nelder (1968) for the same model (3) in a different context, $\sigma_{i}{ }^{2}$ can be estimated by equating the sums of squares $\underset{\sim}{Y}{\underset{\sim}{R}}^{R}{ }_{\sim}^{V} V_{i} \underset{\sim}{R Y}$ to their expectations, $i=1,2, \ldots, m$, where $\underset{\sim}{R}=\underset{\sim}{I}-\underset{\sim}{X}{ }_{\sim}^{\prime}\left(\underset{\sim}{X V}{ }^{-1}{\underset{\sim}{X}}^{\prime}\right)^{+} \underset{\sim}{X V} V^{-1}$ (see Patterson and Thompson, 1975). Almost all the authors cited above suggested feedback of information for estimating the linear parameters.

It was shown by Patterson and Thompson (1975) that a single iteration in the solution for their estimate is equivalent to the MINQUE procedure and that their method gives the same results as those of Nelder's method.

In view of this fact and also because of the simpler algebraic procedure for obtaining MINQUE possessing some desirable properties, we have considered only the MINQUE method of estimation of the group variances in most of the cases studied in this thesis. The method of maximum likelihood estimation is also considered in some cases where simple expressions could be obtained for such estimators. Almost unbiased estimators (Horn et al.,1975) of error variances are also obtained from corresponding MINQUE's for two designs.

For fixed-effects one-way models with known unequal group variances, estimation and analysis are dealt with by the weighted least squares method. The estimators of the group varjances are obtained and the test-statistics, using estimated weights, are adjusted for removing a major part of the bias of such statistics. A formula for a joint confidence interval of all contrasts of treatments and a report on a small Monte Carlo study are provided for such models. Finally, estimation and analysis for mixed and random models with unequal group error variances are discussed.

2.1 One-way fixed-effects models

2.1.1 Weighted (generalised) least squares analysis when the group variances are known

It is assumed that there are t treatments of which the ith treatment is applied to r_{i} plots in an experiment. Let the observations of such an experiment be expressed by the linear model ${ }^{*}$:

$$
y_{i j}=I_{i}+\varepsilon_{i j} ; j=1,2, \ldots, r_{i}, r_{i}>1 ; \quad i=1,2, \ldots, t(4)
$$

where μ_{i} is the population mean for the ith treatment and $\varepsilon_{i j}$ the error term having mean zero and variance $\sigma_{i}{ }^{2}$ which in general differs from treatment to treatment. The errors are assumed to be independent of one another. For the ith treat-ment, there are r_{i} observations, which are different in general.
*
Suggested by Dr D. A. Preece

Let $n=\sum_{1}^{t} r_{i}$.

$$
\text { If }^{1} \underset{\sim}{Y}=\left(y_{11}, \ldots, y_{1 r_{1}}, \ldots, y_{t 1}, \ldots, y_{t r_{t}}\right)^{\prime} \quad \text { is the }
$$

column vector of observations arranged treatment by treatment, then the above model can be written as

$$
\underset{\sim}{Y}={\underset{\sim}{X}}^{\prime} \underset{\sim}{\beta}+\underset{\sim}{\varepsilon}
$$

where $\underset{\sim}{\beta}$ is the column vector of treatment means, ${\underset{\sim}{\sim}}^{X}$ the design matrix and $\underset{\sim}{\varepsilon}$ the column vector of errors. The design matrix is of full rank $=t$ and

$$
\operatorname{var}(\underset{\sim}{\varepsilon})=\operatorname{diag}\left(\sigma_{1}{ }^{2}, \ldots, \sigma_{1}{ }^{2}, \ldots, \sigma_{t}{ }_{\rho}^{2} . ., \sigma_{t}^{2}\right)=\underset{\sim}{V},
$$

say. The variance model can be written as

$$
\underset{\sim}{V}=\sigma_{1}{ }^{2}{\underset{\sim}{V}}+\ldots+\sigma_{t}{ }^{2}{\underset{\sim}{V}}_{t}
$$

where $\underset{\sim}{v_{i}}=\operatorname{diag}(\underset{i-1}{(0, \ldots, 0,1, \ldots 1,0, \ldots, 0)}$ with unity occurring r_{i} times after $\sum_{k=1} r_{k}$ places in the main diagonal. The matrices $\underset{\sim}{V_{i}}$ are symmetric, idempotent and independent, and sum to $\underset{\sim}{I}$.

By (2) of section 1.2 , the normal equation for
estimating μ_{i} by the weighted least squares method is given by

$$
\begin{aligned}
& r_{i} w_{i} \mu_{i}=w_{i} Y_{i} . \quad ; \quad i=1,2, \ldots, t \\
& \text { Hence, } \hat{\mu}_{i}=y_{i} . \quad ; \quad i=1,2, \ldots t .
\end{aligned}
$$

Here, we have used the convention that the dot suffix of a small letter denotes the mean and that of a capital letter the total over the corresponding variable suffix. This convention will be followed all through. The weight

$$
w_{i}=1 / \sigma_{i}^{2}, i=1,2, \ldots, t
$$

The estimators of the treatment means are thus independent of the weights and also of each other.

The sum of squares (SS) due to the estimates is given by

$$
S S(\text { Est. })=\sum_{1}^{t} w_{i} Y_{i} \cdot{ }^{2} / r_{i}
$$

with t degrees of freedom (d.f.) and that due to error by

$$
S S(E)=\sum_{i j}^{\sum \sum} w_{i} y_{i j}{ }^{2}-\sum_{i} w_{i} Y_{i} \cdot{ }^{2} / r_{i}
$$

$$
=\sum_{i j} w_{i}\left(y_{i j}-y_{i} \cdot\right)^{2}
$$

with ($n-t$)d.f. Under the hypothesis of the equality of the treatment means i.e. $\mu_{i}=\mu$, the model at (4) reduces to $y_{i j}=\mu+\varepsilon_{i j}$. The weighted least squares estimator of the general mean is then given by

$$
\hat{\mu}=\Sigma w_{i} Y_{i} / \Sigma r_{i} w_{i}
$$

and the corresponding sum of squares by

$$
S S \text { due to mean }=\left(\sum w_{i} Y_{i}\right)^{2} / \sum r_{i} w_{i}
$$

with $I d . f$. The sum of squares due to treatments corrected for the mean is thus obtained as.

$$
\begin{aligned}
S S(\text { treat }) & =\Sigma w_{i} Y_{i}{ }^{2} / r_{i}-\left(\sum w_{i} Y_{i}\right)^{2} / \Sigma r_{i} w_{i} \\
& =\Sigma w_{i} r_{i}\left(y_{i}-\tilde{y} . .\right)^{2}
\end{aligned}
$$

with (t-l)d.f., where $\tilde{y} . .=\sum r_{i} w_{i} y_{i} \cdot / \Sigma r_{i} w_{i}$
Since $y_{i}=\mu_{i}+\varepsilon_{i}$. and $\tilde{y} .=\tilde{\mu}+\tilde{\varepsilon}$. from the model at (4) with $\tilde{\mu}=\sum r_{i} w_{i} \mu_{i} / \sum r_{i} w_{i}$ and $\tilde{\varepsilon} \ldots=\sum r_{i} w_{i} \varepsilon_{i} \cdot / \sum r_{i} w_{i}$, we have, $\quad E\{S S($ treat $)\}=\Sigma r_{i} w_{i}\left(\mu_{i}-\tilde{\mu}\right)^{2}+\sum r_{i} w_{i} E\left(\varepsilon_{i} .-\tilde{\varepsilon} . .\right)^{2}$

$$
=\Sigma r_{i} w_{i}\left(\mu_{i}-\tilde{\mu}\right)^{2}+(t-1)
$$

Moreover,

$$
\begin{aligned}
E\{S S(E)\} & =E\left\{\sum_{i j}^{\sum \sum} w_{i}\left(y_{i j} \cdot-y_{i} \cdot\right)^{2}\right\} \\
& =E\left\{\sum_{i j}^{\sum \sum} w_{i}\left(\varepsilon_{i j}-\varepsilon_{i} \cdot\right)^{2}\right\} \\
& =n-t .
\end{aligned}
$$

Analysis of variance table

Source	d.f.	SS	$E(M S)$
Treat.	$t-I$	$\sum_{i} w_{i} r_{i}\left(y_{i}-\tilde{y} . .\right)^{2}$	$1+\sum_{1}^{t} r_{i} w_{i}\left(\mu_{i}-\tilde{\mu}\right)^{2} /(t-1)$
Error	$n-t$	$\sum_{i j} \sum_{i}\left(y_{i j}-y_{i} \cdot\right)^{2}$	1

$$
\text { or a } x^{2}-\operatorname{tes} t
$$

Once an F-test has shown significant differences among the treatments, a normal test can be used to test the difference between the ith and jth treatment means using the fact that $z=\left(y_{i},-y_{j}\right) /\left[1 / r_{i} w_{i}+1 / r_{j} w_{j}\right]^{\frac{1}{2}}$
under the null hypothesis. The
is a standardised normal variate, $\boldsymbol{R}^{\boldsymbol{A}}$ atio of this normal variate to the square root of the error mean square is the corresponding t-variate with $n-t$ d.f.
2.1.2 An exact test for equally replicated treatments
when the group variances are not known.
Let the tr obsenvations be grouped arbitrarily into k replicates. Let ${\underset{\sim}{N}}_{\mathrm{k}}^{\mathrm{k}}=\left(\mathrm{y}_{1 \mathrm{k}}, \ldots, \mathrm{y}_{\mathrm{tk}}\right)^{\prime}$ be the vector of t observations at the kth replicate, $k=1,2, \ldots, r$. Then the vector ${\underset{\sim}{k}}_{k}$ is distributed as multivariate normal with mean vector $\underset{\sim}{\mu}=\left(\mu_{1}, \ldots, \mu_{t}\right)^{l}$ and dispersion matrix ${\underset{\sim}{c}}=\operatorname{diag}\left(\sigma_{1}{ }^{2}, \ldots, \sigma_{t}{ }^{2}\right)$.

Let $\underset{\sim}{C}$ be any $(t-1) x$ matrix of rank ($t-1$) such that $\underset{\sim}{C} \underset{\sim}{1}=\underset{\sim}{0}$ where $\underset{\sim}{1}$ is the vector with unity as its elements.

Let $\underset{\sim}{z} \mathrm{k}=\underset{\sim}{C} \underset{\sim}{y_{k}}$. Then $\underset{\sim}{z} \mathrm{k}$ is distributed as multivariate normal with mean vector, $\underset{\sim}{\sim} \tilde{L}^{\sim}$, and dispersion matrix $\underset{\sim}{C} \underset{\sim}{C} \underset{\sim}{C}$ where $\underset{\sim}{C} \sum_{\sim}^{C}$ is non-diagonal. Hotelling's T^{2} test is applicable here. The vector $\underset{\sim}{z} k$ is the vector of ($t-1$) independent contrasts of t observations of the vector ${\underset{\sim}{x}}_{\mathrm{k}}^{\mathrm{k}}$.

To test the hypothesis of equality of treatment means is the same as to test the hypothesis: $\underset{\sim}{C} \underset{\sim}{\mathbb{L}}=0$. Thus,

$$
\mathrm{T}^{2}=\mathrm{r} \underset{\sim}{z} \cdot{ }^{\prime} \mathrm{s}^{-1} \underset{\sim}{z} .
$$

is the Hotelling's generalised T^{2} statistic with (r-1)d.f. for a (t-l)-dimensional distribution, where
$\underset{\sim}{z} .=\sum_{1}^{r} \underset{\sim}{z} \underset{\sim}{k} / r$ and $\underset{\sim}{S}=\sum_{1}^{r}(\underset{\sim}{z} k-\underset{\sim}{z} \cdot)(\underset{\sim}{z} k-\underset{\sim}{z} \cdot)^{\prime} /(r-1)$
Hence, $T^{2}(r-t+1) /(r-1)(t-1)$ is a central F-variate with $(t-1)$ and $(r-t+l) d . f$. under the null hypothesis.

The test-statistic is independent of the choice of the matrix $\underset{\sim}{C}$ (see Anderson, 1958, pp.110-111). The test is possible only when $r \geqslant t$.

The test was first given by Chakravarti (1965).

2.1.3 Estimation of error variances

For unknown error variances, the above test is not applicable when the replications r_{i} are not all equal and/or when $r<t$. In such situations, one may use estimators of the error variances in place of the actual ones. It is well-known that

$$
s_{i}^{2}=\sum_{j=1}^{r_{i}}\left(y_{i j}-y_{i}\right)^{2} /\left(r_{i}-1\right) \text { is an unbiased estimator }
$$

of $\sigma_{i}{ }^{2}$. It is shown below that $s_{i}{ }^{2}$ is also the MINQUE.
(i) The maximum likelihood estimator

From.section 1.3, we obtain the maximum likelihood estimator of $\sigma_{i}{ }^{2}$ as

$$
\hat{\sigma}_{i}^{2}=\sum_{j=1}^{r_{i}}\left(y_{i j}-y_{i} \cdot\right)^{2} / r_{i}, \quad i=1,2, \ldots, t
$$

This is the familiar maximum likelihood estimator (MLE) of $\sigma_{i}{ }^{2}$ for the ith population when considered singly. The estimators are independent of one another.
(ii) The MINQUE of error variances

$$
\begin{aligned}
& \text { Since } \underset{\sim}{X} \text { is of full rank=t, we have }
\end{aligned}
$$

where $\underset{\sim}{J} r_{i}$ is the square matrix of order r_{i} with unity as its elements.

Hence, the resulting projection matrix $\underset{\sim}{\underset{\sim}{S}}$ is given by

$$
\begin{gathered}
\underset{\sim}{S}=\underset{\sim}{I}-\underset{\sim}{X}\left(\underset{\sim}{X X} X^{\prime}\right)^{-1} \underset{\sim}{X} \\
=\operatorname{diag}\left(I_{\sim}^{X} r_{1}-\underset{\sim}{X} r_{1} / r_{I}, \ldots r_{t}-\underset{\sim}{J} r_{t} / r_{t}\right)
\end{gathered}
$$

where Ir $_{i}$ is the identity matrix of order r_{i}. The elements of the vector $\underset{\sim}{S Y}$ are the observed residuals.

Then the normal equations for obtaining the MINQUE, $\tilde{\sigma}_{i}{ }^{2}$ of $\sigma_{i}{ }^{2}$ are given by $\underset{\sim}{F} \underset{\sim}{\delta}=\underset{\sim}{\nu}$ where F_{\sim}^{\sim} is the matrix of the squares of the elements of the projection matrix, $\underset{\sim}{\delta}$ is the vector of variances with $\tilde{\sigma}_{i}{ }^{2}$ repeated r_{i} times,
and $\underset{\sim}{v}$ is the vector of the squares of the residuals $\left(y_{i j}-y_{i} \cdot\right)^{2}$. The ith set of equations involving $\tilde{\sigma}_{i}{ }^{2}$ is given by

$$
\begin{gathered}
\left(1-1 / r_{i}\right)^{2} \tilde{\sigma}_{i}^{2}+\left(r_{i}-1\right) \tilde{\sigma}_{i}^{2 / r_{r}^{2}=}\left(y_{i 1}-y_{i} \cdot\right)^{2} \\
: \\
\cdot \\
\left(1-1 / r_{i}\right)^{2} \tilde{\sigma}_{i}^{2}+\left(r_{i}-1\right) \tilde{\sigma}_{i}^{2} / r_{i}^{2}=\left(y_{i r_{i}}-y_{i} \cdot\right)^{2}
\end{gathered}
$$

whence, on adding the equations,

$$
\begin{aligned}
\tilde{\sigma}_{i}^{2}= & \sum_{j=1}^{r_{i}}\left(y_{i j}-y_{1}\right)^{2} /\left(r_{i}-1\right) \\
& =s_{i}^{2} \quad ; \quad i=1,2, \ldots, t
\end{aligned}
$$

Thus the MINQUE of $\sigma_{i}{ }^{2}$ is the familiar unbiased estimator, $\mathrm{s}_{\mathrm{i}}{ }^{2}$, of $\sigma_{i}{ }^{2}$ for the ith population when considered individually. We shall denote the MINQUE of $\sigma_{i}{ }^{2}$ by $s_{i}{ }^{2}$. Like maximum likelihood estimators, the estimators $s_{i}{ }^{2}$ are also independent of one another. As is well-known, the variate $\left(r_{i}-1\right) s_{i} / \sigma_{i}^{2}$ is distributed as X^{2} with $\left(r_{i}-1\right)$ d.f.

Feedback of information is not necessary for the treatment estimators since these are independent of error variances. Bartlett's X^{2}-test can be applied to test the homogeneity of error variances in any particular situation.

The F-statistic in the analysis of variance of the weighted least squares and the normal test-statistic for
testing the difference between any two treatment means, involve actual weights, the reciprocals of error variances. If the estimators of error variances are used in place of actual ones in these test statistics, then bias will be introduced. It is difficult to obtain the magnitudes of these biases analytically. But, since the estimators of error variances are independent, bias of order $\sum\left\{I /\left(r_{i}-1\right)\right\}$ can be eliminated by adjusting these statistics with the help of the following theorem due to Meier (1953).

Theorem I. If $x_{i}, i=1,2, \ldots t$, are independently distributed random variables with probability density functions

$$
\left.f_{n_{i}}\left(x_{i}\right)=\frac{\left(\frac{1}{2} n_{i}\right)^{\frac{n_{i}}{2}}}{\Gamma\left(\frac{n_{i}}{2}\right)} x_{i} \frac{\left(n_{i}\right.}{2}-1\right) \quad e^{-\frac{1}{2}} n_{i} x_{i} \quad, \quad 0 \leq x_{i}<\infty
$$

and $R\left(x_{1}, \ldots, x_{t}\right)$ is a rational function with no singularities for $0<x_{1}, \ldots, x_{t}<\infty$ then $E\left[R\left(x_{1}, \ldots, x_{t}\right)\right]$ can be expanded in an asymptotic series in the $1 / n_{i}$. In particular

$$
E\left[R\left(x_{1}, \ldots, x_{t}\right)\right]=R[1, \ldots, 1]+\sum_{i=1}^{t} \frac{1}{n_{i}}\left[\begin{array}{c}
\partial^{2} R \\
\partial x_{i}^{2} \\
i_{a l l} x_{i}=1
\end{array}\right]+0\left(\sum \frac{1}{n_{i}^{2}}\right)
$$

The result is based on Taylor's series expansion of the function $R\left(x_{1}, \ldots, x_{t}\right)$. This theorem implies that the adjusted statistic $R\left[x_{1}, \ldots, x_{t}\right]-\sum_{i=1}^{t}\left[\frac{\partial^{2} R}{\partial x_{i=1}^{2}}\right]_{i=1} \frac{1}{n_{i}}$, being free from terms of order $\left(\sum_{n_{i}}\right)$, approximates the actual value, $R[1, \ldots, 1]$ of the function more closely than $R\left[x_{I}, \ldots, x_{t}\right]$ itself. In practice, actual weights are to be replaced by, the corresm ponding estimated weights in the term $\sum_{i} \frac{1}{n_{i}}\left[\frac{\partial^{2} R}{\partial x_{i}^{2}}\right]_{a l l} x_{i}=1$ In our case, $x_{i}=s_{i}{ }^{2} / \sigma_{i}{ }^{2}$ where $s_{i}{ }^{2}$ is either the MINQUE or the MIE of $\sigma_{i}{ }^{2}$, $i=1,2, \ldots, t$. The estimated weights are: $\hat{w}_{i}=1 / s_{i}{ }^{2}=I / x_{i} \sigma_{i}{ }^{2}$, and $n_{i}=r_{i}-1$.

(i) Adjusted F-statistic

The error SS using estimated weights based on the
MINQUE's of error variances is $\quad \sum_{i} \sum_{j} \hat{w}_{i}\left(y_{i j}-y_{i} \cdot\right)^{2}$

$$
=\sum_{i}\left\{\sum_{j}\left(y_{i j}-y_{i} \cdot\right)^{2} / \sum_{j} \frac{\left(y_{i j}-y_{i} \cdot\right)^{2}}{r_{i}^{-1}}\right\}=n-t,
$$

a constant. Similarly, the error SS using the estimated weights based on the MLE is also a constant. Thus, only the treatment $S S$ is to be adjusted for adjusting the F-statistic.

The weighted treatment SS using estimated weights is

$$
\begin{aligned}
& \sum r_{i} \hat{w}_{i}\left(y_{i} \cdot \hat{\tilde{y}} \ldots\right)^{2} \\
&= \frac{r_{i}}{x_{i} \sigma_{i}}{ }^{2} \\
&\left(y_{i} \cdot-\hat{\tilde{y}} \ldots\right)^{2}+\sum_{k \neq i} \frac{r_{k}}{x_{k} \sigma_{k}^{2}}\left(y_{k} \cdot-\hat{\tilde{y}} \ldots\right)^{2}
\end{aligned}
$$

where $\hat{w}_{i}=I / x_{i} \sigma_{i}$ and $\hat{\tilde{y}} \ldots=\sum r_{i} \hat{w}_{i} y_{i} / \sum r_{i} \hat{w}_{i}$.
Now, we have

$$
\frac{\partial}{\partial x_{i}}\left(y_{i} \cdot-\hat{\tilde{y}} \ldots\right)^{2}=\frac{2 r_{i}}{\sigma_{i}{ }^{2} x_{i}{ }^{2} \hat{w}}\left(y_{i} \cdot \hat{\tilde{y}} \ldots\right)^{2}
$$

and $\frac{\partial\left(y_{k} \cdot-\hat{\tilde{y}} \cdot \cdot\right)^{2}}{\partial x_{i}}=\frac{2 r_{i}}{\sigma{ }_{i}^{2}}$
where $\hat{w}=\sum_{l}^{t} r_{i} \hat{w}_{i} \cdot$ Thus

$$
\begin{aligned}
& \frac{\partial(\operatorname{Tr} \cdot S S)}{\partial x_{i}}=-\frac{r_{i}\left(y_{i}-\hat{\tilde{y}} \ldots\right)^{2}}{\sigma_{i}{ }^{2} x_{i}{ }^{2}}+\frac{2 r_{i}{ }^{2}\left(y_{i} \cdot \cdots \hat{\tilde{y}} \ldots\right)^{2}}{\sigma_{i}^{4} x_{i}{ }^{3 \hat{w}}}+ \\
& \frac{2 r_{i}\left(y_{i} \cdot \hat{\sim} y_{n}\right)}{\sigma_{i}{ }^{2} x_{i}{ }^{2} \hat{w}} \sum_{k \neq i} \frac{r_{k}\left(y_{k} \cdot \hat{\tilde{n}} \ldots\right)}{x_{k} \sigma_{k}^{2}} \\
& =-\frac{r_{i}\left(y_{i} \cdot-\hat{\tilde{y}} \cdot .\right)^{2}}{\sigma_{i}{ }^{2} x_{i}{ }^{2}} \text {. }
\end{aligned}
$$

Taking partial derivative of this again and putting $X_{i}=1$ for
all i and simplifying, we get,

$$
\left[\frac{\partial^{2}(\text { Ireat.SS })}{\partial x_{i}^{2}}\right]_{a 1 l x_{i}=1}=2 r_{i} w_{i}\left(y_{i \cdot}-\tilde{\sim} . .\right)^{2}\left(1-\frac{r_{i} w_{i}}{w_{0}}\right)
$$

where

$$
w_{\bullet}=\sum r_{i} w_{i}
$$

Hence, by the above Theorem 1 , treat. SS (adj)

$$
\begin{aligned}
& =\sum_{l}^{t} r_{i} \hat{w}_{i}\left(y_{i} \cdot-\hat{\tilde{y}} \ldots\right)^{2}-\sum_{1}^{t} \frac{2 r_{i} \hat{w}_{i}}{r_{i}-1}\left(y_{i} \cdot-\hat{\tilde{y}} . .\right)^{2}\left(1-\frac{r_{i} \hat{w}_{i}}{\hat{w_{w}}}\right) \\
& =\sum_{1}^{t} r_{i} \hat{w}_{i}\left(y_{i} \cdot-\hat{\tilde{y}} . .\right)^{2}\left\{1-\frac{2}{r_{i}^{-1}}\left(1-\frac{r_{i} \hat{w}_{i}}{\hat{w}}\right)\right\} \cdot
\end{aligned}
$$

Thus, $\hat{F}(a d j)$
with (t-I) and (n-t) def.

approximate

(ii) Adjusted normal test-statistic

Let $\hat{z}=\left\lvert\, y_{\ell .}-y_{k} \cdot 1 /\left\{I /_{r_{\ell}} \hat{w}_{\ell}+I / r_{r_{k}} \hat{w}_{k}\right\}^{\frac{1}{2}}\right.$

approximate normal

be the test-statistic using estimated weights for testing the difference between the $\ell t h$ and kith treatment means.

Then the partial derivatives are given as

$$
=\left.3\right|_{\ell} \cdot-y_{k} \cdot 1\left(1 / r_{\ell} w_{\ell}+I / r_{k} w_{k}\right)^{-5 / 2} / 4 r_{i}{ }^{2} w_{i}^{2} ; \quad i=\ell \text { or } k
$$

Hence, by the Theorem 1 , we have, on simplification,

$$
\hat{z}(a d j)=\hat{z}\left[1-3\left\{1 / r_{\ell}^{2}\left(r_{\ell}-1\right) \hat{w}_{\ell}^{2}+1 / r_{k}^{2}\left(r_{k}-1\right) \hat{w}_{k}^{2}\right\} / 4\left(1 / r_{\ell} \hat{w}_{\ell}+\right.\right.
$$

$$
\begin{aligned}
& \frac{\partial \hat{z}}{\partial x_{i}}=\left|y_{\ell}-y_{k} \cdot\right|\left(-\frac{1}{2}\right)\left(\frac{x_{\ell} \sigma_{\ell}{ }^{2}}{r_{\ell}}+\frac{x_{k} \sigma_{k}{ }^{2}}{r_{k}}\right)^{-3 / 2} \frac{\sigma_{j}{ }^{2}}{r_{i}}
\end{aligned}
$$

It is observed below from the Monte Carlo study that these adjusted test-statistics are more or less robust with respect to differences in error variances. The
Ratio of the adjusted normal statistic to the square root of error mean squares is the corresponding adjusted t-variate with $n-t$ d.f. 2.1.5 Multiple comparison

Scheffé (1959, pp. 68-70) developed a method of multiple comparison assuming the error variances to be constant. For the heteroscedastic models if we proceed in the same way, we find that the probability is (1 - α) that the values of all contrasts, ψ, of the population means, simultaneously satisfy the inequalities
$(\hat{\psi}-\mathrm{S} \mathrm{s} \sigma \hat{\psi}) \leqslant \psi \leqslant(\psi+\mathrm{S} \operatorname{s} \sigma \hat{\psi})$
where $S=\left\{(t-1) F_{\alpha}(t-1, n-t)\right\}^{\frac{1}{2}}$,
s is the square root of the error mean square of the weighted least squares analysis, $\hat{\psi}=\Sigma c_{i} y_{i},\left(\Sigma c_{i}=0\right)$ is an unbiased estimate of $\psi=\sum \mathrm{c}_{\mathrm{i}} \mu_{\mathrm{i}}$ and $\sigma_{\hat{\psi}} \hat{\text {, }}$ is the standard error of $\hat{\psi}$.

This follows from the fact that if $\underset{\sim}{\underset{\psi}{u}}=\left(\hat{\psi}_{1}, \ldots, \tilde{\psi}_{q}\right)^{\prime}$ is an unbiased estimate of $\underset{\sim}{\psi}=\left(\psi_{1}, \ldots, \psi_{q}\right)^{\prime}$, the vector of q independent contrasts of the population means, then the estimates, $\hat{\psi}_{i}$, are independent of s^{2} and

$$
(\hat{\psi}-\underset{\sim}{\psi})^{1}{\underset{\sim}{B}}^{-1}(\underset{\sim}{\underset{\sim}{\psi}}-\underset{\sim}{\psi}) / q s^{2}=F(q, n-t)
$$

where

$$
\underset{\sim}{B}=\operatorname{var}(\underset{\sim}{\psi}) .
$$

From this it follows that the probability is (1- $-\alpha$) that for all $\underset{\sim}{h}$

$$
\left|{\underset{\sim}{h}}^{\prime} \underset{\sim}{\psi}-\underset{\sim}{h^{\prime}} \underset{\sim}{\psi}\right| \leq\left\{q F_{\alpha}(q, n-t)\right\}^{\frac{1}{2}} s \quad\left({\underset{\sim}{n}}_{\sim}^{\prime} \underset{\sim}{B h}\right)^{\frac{1}{2}}
$$

This can be written as $|\hat{\psi}-\psi| \leq\left\{q_{\alpha}(q, n-t)\right\}^{\frac{1}{2}} s \sigma_{\hat{\psi}}$
where $\hat{\psi}=\underset{\sim}{h}{ }_{\sim}^{d} \underset{\sim}{\psi}$ so that $\left.\sigma_{\hat{\psi}}=\{\operatorname{var}(\tilde{\psi})\}^{\frac{1}{2}}=\underset{\sim}{\sim} \underset{\sim}{\left(h_{\sim}^{\prime}\right.} \underset{\sim}{B h}\right)^{\frac{1}{2}}$.

In actual practice, if $\hat{\psi}={ }_{\sum}^{t} c_{i} y_{i}$. with $\sum_{i}^{t} c_{i}=0$, is an estimator of the contrast $\psi=\sum_{\Sigma}^{1} c_{i} \mu_{i}$, then

$$
\sigma_{\hat{\psi}}^{\hat{u}}=\left\{\Sigma\left(c_{i}{ }^{2} \sigma_{i}{ }^{2} / r_{i}\right)\right\}^{\frac{1}{2}}
$$

If we replace $\sigma_{i}{ }^{2}$ by an estimator, $s_{i}{ }^{2}$ or $\hat{\sigma}_{i}{ }^{2}$, then the resulting quantity, $\hat{\sigma}_{\hat{\psi}}$, will not be unbiased for $\sigma_{\hat{\psi}}$. Once again the bias of order $\left\{\underset{i}{ } I /\left(r_{i}-1\right)\right\}$ can be removed from $\hat{\sigma}_{\hat{\psi}}$ with the help of Meier's theorem.

Since

$$
\begin{aligned}
& \text { Since }\left[\frac{\partial^{2} \hat{\sigma}_{\hat{\psi}}}{\partial x_{i}{ }^{2}}\right]_{a 11}=-\frac{1}{4} \frac{c_{i}{ }^{4} \sigma_{i}{ }^{4}}{r_{i}{ }^{2}}\left[\begin{array}{cc}
\sum_{1} & c_{i}{ }^{2} \sigma_{i}{ }^{2} \\
r_{i}
\end{array}\right] \quad-3 / 2 \\
& \hat{\sigma}_{\psi}(\operatorname{adj})=\left\{\Sigma\left(c_{i}{ }^{2} s_{i}{ }^{2} / r_{i}\right)\right\}^{\frac{1}{2}}\left\{1+\frac{1}{4} \sum_{1}^{t} \frac{c_{i}{ }^{4} s_{i}{ }^{4}}{r_{i}^{2}\left(r_{i}-1\right)}\left[\sum_{i}\left(c_{i}{ }^{2} s_{i}{ }^{2} / r_{i}\right)\right]^{-2},\right.
\end{aligned}
$$

using the MINQUE of $\sigma_{i}{ }^{2}$ as the estimator. Since the mean square error s^{2}, computed from sample, is a constant, no adjustment is necessary for that. Thus, the expression for the estimator of the joint confidence interval of all contrasts ψ is given by

$$
\hat{\psi}-\operatorname{Ss} \hat{\sigma}_{\hat{\psi}}(\operatorname{adj}) \leq \psi \leq \hat{\psi}+\operatorname{Ss} \hat{\sigma}_{\hat{\psi}}(\operatorname{adj}) \cdot \cdot \cdot \cdot \cdot(5)
$$

For the example considered by Spjøtvoll (1972), the joint confidence interval at the 10\% level of significance, for the contrast $\mu_{1}-\mu_{2}$, is $[19.3,33.3]$ obtained by the above method using MINQUE of $\sigma_{i}{ }^{2}$. The corresponding joint confidence intervals obtained by Spjøtvoll and by the method of Brown and Forsythe (1974b) are $[17.5,35.1]$ and $[19.8$, 32.8] respectively. The MLE of $\sigma_{i}{ }^{2}$ produces a slightly larger confidence interval.

2.1.6 Summary dispersion measures of the estimators of the linear parameters

Dispersions of the individual treatment estimators are not comparable because of the differences in error variances. In order to have an idea about the overall dispersion of all the estimators, we consider summary measures of dispersion.

The weighted least squares (WLS) estimators of the treatment means are the same as those of the least squares (LS) method but their variances differ between the two procedures. The estimators are uncorrelated in both the methods so that the dispersion matrix of the estimated treatment means is a diagonal one in both the procedures.

Since the covariances are zero, three measures of location of the variances of the estimators may be taken as summary dispersion measures. These are the arithmetic mean (AM), geometric mean (GM) and harmonic mean (HM). All three measures take the variance of each estimator into account and represent dispersion per treatment. The AM is the (I / t) th part of the trace of the dispersion matrix of the estimators and GM the th root of their generalised variance.

The measures and their estimators for the two methods are as follows:
(a) Weighted least squares estimation

Here, $\operatorname{var}\left(y_{i}\right)=\sigma_{i}^{2} / r_{i} ; i=1,2, \cdot \cdot, t$.
Hence,

$$
\begin{aligned}
& A M=\sum \frac{\sigma_{i}^{2}}{r_{i}} / t, \quad G M=\left(\pi \frac{\sigma i^{2}}{r_{i}}\right)^{I / t} \text { and } H M=t / \sum r_{i} w_{i} \\
& \text { with } w_{i}=1 / \sigma_{i}^{2} .
\end{aligned}
$$

Since $A M \geqslant G M \geqslant H M$ on the assumption that each $\sigma{ }_{i}{ }^{2}>0$, the last measure i.e., HM is the smallest of the three in the presence of differences in error variances.

All the measures have the same value when the replications r_{i} are proportional to the corresponding population variances $\sigma_{i}{ }^{2}$ i.e., each $\sigma_{i}{ }^{2} / r_{i}$ is the same constant.

The estimated $A M=(1 / t) \quad \sum_{i}^{t} s_{i}{ }^{2} / r_{i}$ is an unbiased estimator of the AM. The estimated $G M=\left(\pi_{i}{ }^{2}\right)^{l / t}$ is not unbiased for GM. Since $\left[\frac{\partial^{2}(\text { Est. GM })}{\partial x_{i}{ }^{2} \quad \text { all } x_{i}=1}\right]^{t^{2}} \quad\left(\pi \frac{t-1}{r_{i}}\right)^{1 / t}$,
the estimated GM with the adjustment for bias is given by

$$
\text { Est. } G M(\operatorname{adj})=\left(\pi \frac{s_{i}^{2}}{r_{i}}\right)^{1 / t}\left(1+\frac{t-1}{t^{2}} \sum \frac{1}{r_{i}-1}\right)
$$

Also since $\left[\frac{\partial^{2}(\text { Est. HM })}{\partial x_{i}{ }^{2}}\right]=-2 t f_{i}\left(I-f_{i}\right) / \sum_{i} r_{i} w_{i}$, the all $x_{i}=1$
estimated HM with adjustment for bias is Est. HM $(a d j)=\left(t / \Sigma r_{i} \hat{w}_{i}\right)\left\{I+2 \Sigma \hat{f}_{i}\left(I-\hat{f}_{i}\right) /\left(r_{i}-I\right)\right\}$ where $f_{i}=r_{i} w_{i} / \sum r_{i} w_{i}$ and $\hat{f}_{i}=r_{i} \hat{w}_{i} / \sum r_{i} \hat{w}_{i}$.
(b) Least squares estimation.

Here $\operatorname{var}\left(\mathrm{y}_{\mathrm{i}}\right)=\sigma^{2} / r_{i}$, where σ^{2} is assumed to be the constant variance of all the populations. Hence $A M=$ $\frac{\sigma^{2}}{t} \sum \frac{1}{r_{i}}, G M=\sigma^{2}\left(\pi \frac{1}{r_{i}}\right)^{I / t}$ and $H M=t \sigma^{2} / n$ where $n=\Sigma r_{i}$. If MSE $=\Sigma\left(r_{i}-1\right) s_{i}{ }^{2} /(n-t)$ is the mean square error of the LS analysis then the estimated $A M=\frac{\text { MSS }}{t} \sum \frac{l}{r_{i}}$, estimated $G M=\operatorname{MSE}\left(\pi \frac{1}{r_{i}}\right)^{\frac{1}{t}}$ and estimated $H M=t($ MSE $) / n$ are the unbiased estimators of AM, GM and HM respectively.

When the treatments are equally replicated, the estimated AM of the WLS method equals that of the IS method and the leading terms of the estimated $G M(a d j)$ and the estimated HM (adj) of the WLS method do not exceed the
esimated GM and the estimated HM respectively of the LS method.

2.1.7 The Monte Carlo study

In order to observe the adequacy of the theoretical results, a small Monte Carlo study was conducted. Combinations of some sets of values of replications and error variances were considered for each of 3,5 and 8 treatments. The results on all possible combinations of the following 3 replication groups, 3 error variance groups and 3 treatment mean groups for 5 treatments are given below. The 3 replication groups, $(6,6, \ldots 6),(3,5,6,7,9)$ and $(9,7, \dot{6}, 5,3)$, will be denoted by $R(1), R(2)$ and $R(3)$ respectively, the 3 treatment mean groups, (10,10,....,10), (12,11,10,9,8) and $(9,10,12,10,11)$ by $T(1), T(2)$ and $T(3)$ respectively and the 3 error variance groups, (1,1, ..;1), (3,2,1, $\left.\frac{1}{2}, \frac{1}{3}\right)$ and $\left(\frac{1}{2}, 1,4,1, \frac{1}{2}\right)$, by $V(1), V(2)$ and $V(3)$ respectively. Only one table contains results on the probability of exceeding percentage points of the main tests for each of 3,5 and 8 treatments.

2.1.7.1 Sampling experiments

For the linear model (4) of section 2.l.l, the observation, $y_{i j}$ was assumed to be normal with mean, μ_{i}, and variance, $\sigma_{i}{ }^{2}$. For each set of values of r_{i}, μ_{i} and $\sigma_{i}{ }^{2}$, 1000 distinct sample realisations were made at each run and the analysis was carried out for each sample in double precision on the University of London computer, CDC 7600, in FORTRAN. The normal samples were obtained with the help of the subroutines, $G 05 A E F(A, B)$ and $G 05 B B F$, developed in package forms
by the Numerical Algorithm Group (NAG).

2.1.7.2 Power of Bartlett's chisquared test on the homogeneity of error variances

Monte Carlo powers of this test were calculated over 1000 samples each and are given in Table 2 which shows that the powers are almost independent of the treatment differences as is expected. Data of the first row of the table show that the probabilities of exceeding the percentage points in the absence of differences in the error variances, are close to the nominal values. The power of the test is rather small even when the differences in error variances are quite large. The power appears to be larger in the equi-replicate case.

2.1.7.3 Confidence intervals of orthogonal contrasts joint

In order to investigate the behaviour of the confidence intervals of contrasts, two sets of four possible orthogonal contrasts stated in Table 1 below, were considered.

Table l. Two sets of orthogonal contrasts

Set		Contrasts
I	(i) $\mu_{1}-\mu_{2}$	(ii) $\mu_{1}+\mu_{2}-2 \mu_{3}$
	(iii) $\mu_{1}+\mu_{2}+\mu_{3}-3 \mu_{4}$	(iv) $\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}-\mu_{\mu_{5}}$
II	(i) $\mu_{1}-\mu_{5}$	(ii) $\mu_{2}-\mu_{4}$
	(iii) $\mu_{1}+\mu_{5}-\left(\mu_{2}+\mu_{4}\right)$	(iv) $\mu_{3}-\left(\mu_{1}+\mu_{2}+\mu_{4}+\mu_{5}\right)$

For computing confidence intervals of the treatment contrasts, the expression in (5) of section 2.1 .5 was used for Whis method
and that given by Scheffé (1959, p.69) used for LS method.
It has been observed from the sampling experiments width of the
that the mean confidence interval is virtually independent of the treatment differences. Table 3 gives the average confidence intervals of the above contrasts over 1000 samples each when all the treatment means are the same for both the LS and WLS methods. The table shows that the mean intervals by LS procedure are more or less the same as those by WLS method using MINQUE for all. contrasts in the absence of differences in error variances as is to be expected. For the WLS method, the MLE always produces somewhat larger mean confidence interval than the MINQUE. Mean confidence intervals involving fewer means are usually smaller than those involving larger numbers of means except that the last 3 contrasts of set I have approximately the same mean confidence interval by WLS method for most of the replication groups when group variances differ.

In presence of differences in error variances, the WLS method often produces smaller mean confidence intervals than the LS method especially when larger samples are associated with larger variances.

It is observed from the last 3 columns of the table that if the sample sizes are such that the ratios of the error variances and the corresponding replications are the same, then the mean WLS confidence intervals are almost always substantially smaller than those of the LS method. The effect of such proportional replications on the WIS method appears to be the virtual elimination of the inequality of the error variances and of the replications as is evident from comparison of the second and third columns with the last two columns.

2.1.7.4 Empirical size and power of some tests of significance

In order to observe the empirical size (Brown and Forsythe, l974a) under the null hypothesis, and power under the alternative hypotheses, the following tests were considered:
(i) The usual LS F-test ignoring differences in error variances
(ii) The usual t-test for testing the difference between μ_{1} and μ_{2}
(iii) The weighted least squares F-test (adjusted and unadjusted) using both MINQUE and MLE of group variances
(iv) The normal test (adjusted and unadjusted) using both MINQUE and MLE of group variances

Table 4 presents the results of these tests over 1000 samples at 5% and 1% nominal sizes; it gives the empirical sizes under the null hypothesis and the maximum and minimum powers under the alternative hypotheses. As is well-known the usual LS F-test shows marked discrepancies between the empirical and nominal sizes under the null hypothesis. The empirical size is much larger than the nominal one when smaller numbers of replications are associated with larger variances but the former is somewhat smaller than the latter = in the opposite situation. The observed sizes of the WLS F--test (unadjusted) using either MINQUE or MLE of variances are always much larger than the corresponding nominal sizes. For equally replicated treatments, and for situations where larger samples are associated with larger
variances, the differences are negligible when the test is adjusted by Meier's Theorem (Theorem 1). In other cases, there are slight variations especially for a nominal size of 1%. Both the methods of estimation of variances produce the same size in the equi-replicate case but the MLE produces slightly larger sizes than MINQUE when sample sizes are not the same.

Like the LS F -test, the usual t-test for testing the difference between μ_{1} and μ_{2} shows large discrepancies between the empirical and nominal sizes. For the normal test (unadjusted), the discrepancies are even larger. Adjustment of the normal test using the MLE of variances, does not improve the situation to a satisfactory level. The performances of the normal test (adj) using MINQUE of variances are much better although there are still some differences especially for a nominal size of 1%.

Under the alternative hypotheses, the maximum powers of all the F-tests are as large as possible at both levels of significance. Their minimum powers are also large except that the last treatment group coupled with the last error variance group produced moderate minimum power for the WLS F-test (adj) at the lo level of significance. Maximum powers of t and normal tests are also large. The minimum powers of these latter tests are small because the minimum difference between μ_{1} and μ_{2} is small and one sample sjze is small. In general, powers of the WLS tests with adjustment were found to be quite large although these are somewhat less than the corresponding LS tests in some cases.

Table 5 gives the probabilities of exceeding the percentage points, of the main tests under the null hypothesis for each of 3,5 and 8 treatments. The table shows that the WLS F-test (adj) using either MINQUE or MLE is more or less robust with respect to variations in error variances and sample sizes. The performance of the normal test (adj) using MINQUE is also not far from robustness if the sample sizes are not too small. The usual F-test and t-test show wide differences between the nominal and empirical sizes.

2.1.7.5 Concluding remarks

The WLS F-test (adj) using either MINQUE or MLE of the group variances is more or less robust with respect to differences in error variances. The normal test (adj) using MINQUE of variances for testing differences between two treatment means is also not far from robustriess. Performances of these tests are sometimes better if larger samples are associated with larger variances. These tests are therefore recommended for testing appropriate hypotheses when Bartlett's x^{2}-test reveals that the group variances differ.

The WLS formula appropriate for heteroscedastic models, using either MINQUE or MLE of group variances, often gives smaller mean joint confidence intervals of treatment contrasts than the usual LS method, especially when larger samples are associated with larger variances. The WLS method is therefore recommended for estimating joint confidence intervals of treatment contrasts when there are different error variances.

A minimum sample size of 4 can usually be expected to give more or less satisfactory results especially when larger samples are associated with larger variances.
2.2 One-way mixed models and random models with unequal group variances

Let the mixed model be

$$
y_{i j}=\alpha+\tau_{i}+\varepsilon_{i j} \quad j=1,2, \ldots, r_{i} ; \quad i=1,2, \ldots \ldots, t
$$

where α is the general constant, τ_{i} the random effect of the ith treatment having mean zero and variance ${ }^{\sigma_{\tau}}{ }^{2}$ and $\varepsilon_{i j}$ the error term having mean zero and variance ${ }_{i}{ }_{i}{ }^{2}$. Treatment effects τ_{i} are assumed to be independent of one another and of the errors which are also assumed to be independent of one another. This means that the observations $y_{i j}$ are correlated within a treatment and independent between treatments. Let $n=\sum_{l}^{t} r_{i}$ as before.

2.2.1 Estimation of variance components and the analysis when error variances are known

From the above model, we have,

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{i}}=\alpha+\tau_{\mathrm{i}}+\varepsilon_{\mathrm{i} \cdot} \\
& \tilde{\mathrm{y}}_{.}=\alpha+\tilde{\tau}+\tilde{\varepsilon} \ldots
\end{aligned}
$$

under the notation of section 2.l.l with $\tau=\sum r_{i} W_{i} \tau_{i} / \Sigma r_{i} W_{i}$.

$$
\begin{aligned}
& \text { Since } E\left\{\sum_{j}\left(y_{i j}-y_{i}\right)^{2}\right\} \\
& =E\left\{\underset{j}{\sum}\left(\varepsilon_{i j}-\varepsilon_{i} .\right)^{2}\right\} \\
& \begin{array}{c}
=\left(r_{i}-1\right)_{j}^{\sigma_{j}^{2}}, \\
s_{i}^{2}=\sum_{j=1}^{r_{i}}\left(y_{i j}-y_{i}\right)^{2} /\left(r_{i}-1\right) \text { is still unbiased for } \sigma_{i}^{2} \text { for }
\end{array}
\end{aligned}
$$

the mixed model stated above.
To obtain an estimate of $\sigma_{\tau}{ }^{2}$, let us consider the weighted treatment sum of squares, $\sum_{i} r_{i} w_{i}\left(y_{i}-\tilde{y} \ldots\right)^{2}$, which

Since τ_{i} and $\varepsilon_{i j}$ are independent, we have,

$$
\begin{aligned}
& E\left\{\sum r_{i} w_{i}\left(y_{i}-\tilde{y} \ldots\right)^{2}\right\} \\
= & E\left\{\sum r_{i} w_{i}\left(\tau_{i}-\tilde{\tau}\right)+\left(\varepsilon_{i} \cdot-\tilde{\varepsilon} \ldots\right)\right\}^{2} \\
= & (t-1)+\sigma_{\tau}^{2}\left(w .-\frac{\sum r_{i}^{2} w_{i}^{2}}{w_{i}}\right)
\end{aligned}
$$

with $w .=\Sigma r_{i} w_{i}$.

> Hence, an unbiased estimator of $\sigma_{\tau}{ }^{2}$ is given by $\tilde{\sigma}_{\tau}^{2}=\left\{\Sigma r_{i} w_{i}\left(y_{i}-\tilde{y} \ldots\right)^{2}-t+I\right\} /\left(w_{0}-\frac{\sum r_{i}{ }^{2} w_{i}{ }^{2}}{w_{0}}\right)$
when the actual weights $w_{i}=l / \sigma_{i}{ }^{2}$ are known.
Also, E (weighted within sum of squares)

$$
\begin{aligned}
& =E\left\{\sum \sum w_{i}\left(y_{i j}-y_{i}\right)^{2}\right\} \\
& =E\left\{\sum \sum w_{i}\left(\varepsilon_{i j}-\varepsilon_{i}\right)^{2}\right\} \\
& =(n-t)
\end{aligned}
$$

as before.
To show that the above two sums of squares are ingependent, we need only show that $\left(\varepsilon_{i j}-\varepsilon_{i}\right)$ and $\left(\varepsilon_{j}-\tilde{\varepsilon} \ldots\right)$ are independent.

Now $\operatorname{cov}\left(\varepsilon_{i j}-\varepsilon_{i}.\right)\left(\varepsilon_{i}-\tilde{\varepsilon} \cdot.\right)=E\left\{\left(\varepsilon_{i j}-\sum_{j}^{\sum_{i j}} \frac{r_{i}}{}\right)\right.$

$$
\begin{aligned}
& \left(\sum_{j}^{\sum_{i j}}\right. \\
r_{i} & \left.-\frac{\sum r_{i} w_{i} \varepsilon_{i}}{\sum r_{i} w_{i}}\right) \\
= & \frac{\sigma_{i}^{2}}{r_{i}}-\frac{r_{i} w_{i} \sigma_{i}^{2}}{w_{\cdot} r_{i}}-\frac{\sigma_{i}^{2}}{r_{i}}+\frac{r_{i} w_{i} \sigma_{i}^{2}}{w \cdot r_{i}} \\
= & 0 .
\end{aligned}
$$

Hence, under the assumption of normality of errors, the above two quantities are independent.

It follows that $\sum r_{i} w_{i}\left(y_{i},-\tilde{y} . .\right)^{2}$ is distributed as a central x^{2} with $(t-1)$ d.I. under the hypothesis that $\sigma_{\tau}=0$
and that $\sum \sum w_{i}\left(y_{i j}-y_{i}\right)^{2}$ is always distributed as a central x^{2}-variate with ($n-t$) d.f. under the assumption of normality of errors and that the two sums of squares are independent.

Hence,

$$
F=\frac{\sum r_{i} w_{i}\left(y_{i},-\tilde{y} \ldots\right)^{2} /(t-1)}{\sum \sum w_{i}\left(y_{i j}-y_{i}\right)^{2} /(n-t)}
$$

is a central F-variate under the null hypothesis:
$\sigma_{\tau}=0$, with $(t-1)$ and $(n-t) d . f$.
2.2.2 Adjustment of the F-test statistic and the estimator of ${ }_{-}{ }^{2}{ }^{2}$, using estimated weights

Since the estimators $s_{i}{ }^{2}$ of error variances are again independently distributed as gamma variates, Theorem 1 due to Meier may be applied for adjustment of bias.

The expression of the F -statistic is the same as that of section 2.1.1 so that the adjusted F-statistic using estimated weights is also the same, namely
with ($t-1$) and ($n-t$) d.f.
Now the estimator of $\sigma_{\tau}{ }^{2}$ using the estimated weights
$\hat{\tilde{\sigma}}_{\tau}^{\text {is }}{ }^{2}=\left\{\sum r_{i} \hat{w}_{i}\left(y_{i}-\hat{\tilde{y}} \ldots\right)^{2}-t+1\right\} /\left(\hat{w} \cdot-\frac{\sum r_{i}^{2 w_{i}^{2}}}{\hat{w}_{0}}\right)=A / B$ say, with $\hat{w}=\Sigma r_{i} \hat{w}_{i}$. The adjusted estimator is

$$
\hat{\tilde{\sigma}}_{\tau}^{2}(\operatorname{adj})=\hat{\tilde{\sigma}}_{\tau}^{2}-\sum_{1}^{\tau} \frac{1}{r_{i}-1}\left[\frac{\partial^{2} \hat{\tilde{\sigma}}_{\tau}^{2}}{\left.\partial{\frac{x_{i}^{2}}{2}}^{2}\right]}\right.
$$

$$
\text { all } x_{i}=1
$$

where

$$
\begin{aligned}
& {\left[\frac{\partial^{2} \hat{\tilde{\sigma}}_{\tau}^{2}}{\partial x_{i}^{2}}\right]_{a \| x_{i}=1}=\left[\frac{1}{B^{3}}\left\{B^{2} \frac{\partial^{2} A}{\partial x_{i}{ }^{2}}-B A \frac{\partial^{2} B}{\partial x_{i}}{ }^{2}-2 B \frac{\partial A B}{\partial x_{i} \partial x_{i}}+2 A\left(\frac{\partial B}{\partial x_{i}}\right)^{2}\right\}\right]} \\
& \text { all } x_{i}=1
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\frac{\partial^{2} A}{\partial x_{i}^{2}}\right]_{\text {all } x_{i}=1}=2 r_{i} w_{i}\left(1-f_{i}\right)\left(y_{i} \cdot-y . .\right)^{2},\left[\frac{\partial B}{\partial x_{i}}\right]=-r_{i} w_{i}+r_{i} w_{i}} \\
& \left(2 f_{i}-\Sigma r_{i}^{2} w_{i}^{2} / w_{0}^{2}\right) \\
& \text { and }\left[\frac{\partial^{2} B}{\partial x_{i}}{ }^{2}\right]=2 r_{i} w_{i}-2 r_{i} w_{i}\left\{f_{i}+\left(1-f_{i}\right)\right. \\
& \text { all } x_{i}=1 \\
& \left.\left(2 f_{i}-\Sigma r_{i}^{2} w_{i}^{2} / w^{2}\right)\right\}
\end{aligned}
$$

with $f_{i}=r_{i} w_{i} / w$.

For the random model:

$$
y_{i j}=\tau_{i}+\varepsilon_{i j}
$$

with τ_{i} as random variables having mean zero and variance, $\sigma_{\tau}{ }^{2}$, if we proceed in the same way as above, we get the same estimator of $\sigma_{\tau}{ }^{2}$ and the same F-test for testing the significance of σ_{τ}. But the above analysis is not valid if ${ }^{\tau}{ }_{i}$ have non-zero mean because ${ }_{n}$ separate estimator of $\sigma_{\tau}{ }^{2}$ is not available in that case.

Table 2. Monte Carlo powers of Bartlett's chi-squared test on the homogeneity of error variances

```Error variance group```	Treatment and replication groups								
	$T(1)$			T (2)			T(3)		
	$R(1)$	R ( 2 )	$\mathrm{R}(3)$	$R(1)$	$R(2)$	$R(3)$	R (I)	R (2)	$R(3)$
	5\% $\quad 1 \%$	5\% 1\%	5\% $10 \%$	5\% $1 \%$	5\% 1\%	5\% 1\%	5\% $1 \%$	5\% 1\%	5\% $1 \%$
$V(1)$	. 059.010	.063 .015	.049 .012	.041 .007	.045 .011	.053 .014	.054 .004	.047 .015	.049 .009
$\mathrm{V}(2)$	.553 .302	.502 .273	. 414.161	.557 .288	.529 .259	.401 .177	.540 .284	.502 .275	.414 .180
V (3)	.546 .322	.532 .321	.535 .314	.550 .335	.504 .301	.499 .305	.559 .316	.532 .309	.546 .315

## Widths of

Table 3. Mean confidence intervals of two sets of orthogonal contrasts; letters is denote least squares method and WLS weighted least squares procedure; numbers 1 and 2 after WLS stand for MINQUE and MLE respectively of group variances


Table 4. Probabilities of exceeding percentage points under null hypothesis and maximum and minimum powers under alternative hyfotheses, for $5 \%$ and $1:$ nominal sizes, of some tests of significance; letters LS-F stand for the usual IS F-test, WLS-F for weighted least squares F-test lising estimated weights, for usual t-test and Nor for normal test using estimated weights; numbers 1 and 2 denote estimated weights based on MINQUE and MLE respectively of error variances


Table 5. Probabilities of exceeding percentage points under the null hypothesis, for $5 \%$ and $1 \%$ nominal sizes, of the usual $F$ - and t-tests, the WLS F-test (adj) using MINQUE or MLE of error variances and the normal test (adj) using MINQUE, for 3, 5 and 8 treatments.

No. of   treat-   ments	Error variances	Replications	L S F-test		WLS F-test(adj) using				$\begin{aligned} & \text { t-test } \\ & \text { for } \mu_{1}= \\ & \mu_{2} \end{aligned}$	Normal test   (adj) using MINQUE for $\mu_{1}=\mu_{2}$	
					MINQUE		MLE				
			5\%	1\%	5\%	1\%		1\%	5\% 1\%	5\%	1\%
3	( $2,1, \frac{1}{2}$ )	$(4,4,4)$	. 059	. 015	. 038	. 008	. 038	. 008	. 076.019	. 066	. 027
		$(8,6,4)$	. 040	. 004	. 040	. 011	. 039	. 012	.059 .012	. 061	. 015
		$(4,6,8)$	. 098	. 030	. 045	. 015	. 047	. 018	. 114.042	. 058	. 027
5	( $3,2,1, \frac{1}{2}, \frac{1}{3}$ )	$(6,6,6,6,6)$	. 073	. 020	. 039	. 013	. 039	. 013	.143 .052	. 062	. 018
		$(9,7,6,5,3)$	. 037	. 004	. 041	. 012	. 045	. 013	.093 .036	. 062	. 021
		( $3,5,6,7,9$ )	. 182	. 077	. 056	. 028	. 062	. 032	. 247 . 124	. 075	. 040
8	$\begin{aligned} & (4,3,2,1,1, \\ & \left.\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right) \end{aligned}$	$\begin{aligned} & (6,6,6,6,6 \\ & 6,6,6) \end{aligned}$	. 077	. 025	. 056	. 024	. 056	. 024	.223 .099	. 053	. 013
		$\begin{gathered} (16,14,12,10, \\ 10,8,6,4) \end{gathered}$	. 031	. 010	. 054	. 022	. 059	. 024	. 130.055	. 057	. 021
		$\begin{aligned} & (4,6,8,10,10 \\ & 12,14,16) \end{aligned}$	. 234	. 110		. 022	. 06	. 025	. 293.167	. 063	. 021

CELL
GENERAL TWO-WAY MODEL WITH PROPORTIONAL FREQUENCIES

In this chapter, two-way models having proportional cell frequencies and unequal group variances are considered. On the assumption that the error variances are known, estimators of the linear parameters of the fixed-effects models are obtained and the analysis is given for two sets of constraints on the linear parameters. The MLE and MINQUE of group variances are derived. The estimators and teststatistics using estimated weights are adjusted for bias. Formulae for estimating joint confidence intervals are provided for contrasts of both main effects and interactions.

Two-way random models with unequal group variances are also considered for estimation of variance components; the corresponding analysis is given for both known and unknown weights. Finally, some simpler tests are discussed for two-way fixed-effects models with equally replicated treatments.

### 3.1 Two-way fixed-effects model

3.1.1 The model

In order to keep uniformity with the general terminology of the thesis, we shall refer to one of the two factors as treatments and the other as blocks. The model will cover experiments where block effects constitute a factor in which the experimenter is interested in addition to the treatments. For example, in an experiment where several persons work with the same set of machines, the experimenter may be interested in observing differences between machines as well as persons
and both factors may be of equal interest, even though one is designated "blocks".

When the block effects are meant to eliminate from observations heterogeneity in any direction, they will not usually be of interest. In a variety trial in the field, varieties are of prime importance and blocks are introduced mainly to remove the heterogeneity.

We shall consider the non-additive model:

$$
\begin{gather*}
y_{i j k}=\beta_{i}+\tau_{j}+\delta_{i j}+\varepsilon_{i j k}  \tag{6}\\
i=1,2, \ldots, b ; j=1,2, \ldots, t ; k=1,2, \ldots, n_{i j}
\end{gather*}
$$

where $\beta_{i}$ is the effect of the ith block, $\tau_{j}$ the effect of the $j$ th treatment, $\delta_{i j}$ the effect of the interaction between the ith block and jth treatment and $\varepsilon_{i j k}$ the error term having mean zero and variance $\sigma_{j}{ }^{2}$. The errors are assumed to be independent of one another. The variances of the errors under the same treatment are assumed to be the same but differ from treatment to treatment. The number $n_{i j}(\geqslant 1)$ of observations in the (i,j)th cell is assumed to be proportional to the marginal totals, that is,

$$
n_{i j}=N_{i} \cdot N \cdot_{j} / \mathbb{N}
$$

where $N_{i}=\sum_{j} n_{i j}, N_{0}=\sum_{i} n_{i j}$ and $N .=\sum_{i j} n_{i j}$. This includes the case of equal number of observations per cell.

Let there be two types of constraint on the linear parameters of the model:

Constraints (I)

$$
\begin{aligned}
0 & =\sum_{i} \delta_{i j} \text { for all } j \\
& =\sum_{j} n_{i j} w_{j} \delta_{i j} \text { for all } i \\
& =\sum_{i} \sum_{j} n_{i j}{ }^{w} j^{\delta}{ }_{i j} \\
0 & =\sum \delta_{i j} \text { for all } j \\
& =\sum \delta_{i j} \text { for all } i \\
& =\sum j \sum_{i j} \delta_{i j}
\end{aligned}
$$

where the quantities $w_{j}=1 / \sigma_{j}{ }^{2}$ are the weights. The constraints (I) which are more arbitrary than the usual constraints (II), facilitate the test for block effects as is shown below. There is no constraint on the block effects $\beta_{i}$ which include the general parameter. Different sets of constraints imply different values of the parameters.
3.1.2 Estimation and analysis when the group variances are known

Let $\underset{\sim}{Y}$ be the vector of observations arranged treatment by treatment. Then the model (6) above can be written, in matrix notation, as

$$
\underset{\sim}{Y}=\underset{\sim}{X} \underset{\sim}{\underset{\sim}{\beta}}+\underset{\sim}{\varepsilon}
$$

where ${\underset{\sim}{x}}^{\prime}$ is the design matrix, $\underset{\sim}{\beta}$ the vector of all linear Rank $x^{\prime}=b t$. parameters and $\underset{\sim}{\varepsilon}$ the vector of errors. . The vector $\underset{\sim}{Y}$ is given by

$$
\underset{\sim}{Y}=\left(y_{111}, \ldots, \mathrm{y}_{1 \ln _{11}}, \mathrm{y}_{211} \ldots, \mathrm{y}_{2 \ln _{21}}, \ldots, \mathrm{y}_{\mathrm{bt} 1}, \ldots, \mathrm{y}_{\mathrm{btn}}^{\mathrm{bt}}{ }\right)^{\prime}
$$

so that

$$
\operatorname{var}(y)=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{1}^{2}, \ldots, \sigma_{t}^{2}, \ldots, \sigma_{t}^{2}\right)=\underset{\sim}{V}
$$

say. Then $\underset{\sim}{\mid-1}=\operatorname{diag}\left(w_{1}, \ldots, w_{1}, \ldots, w_{t}, \ldots, w_{t}\right)$.
From equation (2) of section 1.2, we get the normal
equations given at (7) for estimating the linear parameters.


From these the individual normal equations are obtained as

$$
\begin{aligned}
& \tau_{j}: N \cdot{ }_{j} w_{j} \hat{\tau}_{j}+w_{j} \sum_{i}^{\sum n_{i j}} \tilde{\beta}_{j}+w_{j} \sum_{i} n_{i j} \tilde{\delta}_{i j}^{1}=w_{j} Y^{j} \cdot ; \quad j=1,2, \ldots, t \\
& \beta_{i}: \quad \sum_{j} n_{i j}{ }^{w}{ }_{j} \hat{\tau}_{j}+\sum_{j} n_{i j}{ }^{w}{ }_{j} \tilde{\beta}_{i+\sum_{j} n_{i j} w_{j}} \tilde{\delta}_{i j}^{\prime}=\sum_{j}^{w}{ }_{j} Y_{i j} \cdot ; \quad i=1,2, \ldots, b \\
& \delta_{i j}: n_{i j} w_{j} \hat{\tau}_{j}+n_{i j} w_{j} \tilde{\beta}_{i}+n_{i j} w_{j} \delta^{\prime}{ }_{i j}=w_{j} Y_{i j} . \quad i=1,2, \ldots, b \\
& j=1,2, \ldots, t
\end{aligned}
$$

Using the constraints given by

$$
\begin{array}{rlrl}
{ }_{j}^{\sum \mathbb{N}} \cdot{ }_{j}{ }^{W}{ }_{j} \hat{\tau}_{j}=0=\sum_{i} N_{i} \tilde{\beta}_{i} & =\sum_{j} n_{i j}{ }^{w}{ }_{j} \tilde{\delta}_{i j}^{\prime} & \text { for all } i \\
& =\sum_{i} n_{i j} \tilde{\delta}_{i j}^{\prime} \quad \text { for all } j
\end{array}
$$

along with the proportionality conditions, we get the estimators as.

$$
\begin{aligned}
\hat{\tau}_{j} & =y \cdot_{j} \cdot ; j=1,2, \ldots, t \\
\tilde{\beta}_{i} & =\frac{\sum_{j} w_{j} n_{i j} y_{i j}}{\sum_{j} n_{i j} w_{j}}=\tilde{y}_{i} \ldots, \quad i=1,2, \ldots, b
\end{aligned}
$$

say, and

$$
\tilde{\delta}_{i j}^{1}=\left(y_{i j} \cdot-\tilde{y}_{i} \cdots-y \cdot_{j}\right)
$$

Finally, $\tilde{\varepsilon}_{i j k}=\left(y_{i j k}-\tilde{\beta}_{i}-\hat{\tau}_{j}-\tilde{\delta}_{i j}^{\prime}\right)=\left(y_{i j k}-y_{i j}.\right)$
from the last normal equation. Here, we have used the usual convention that the dot suffix of a small letter denotes the mean and that of a capital letter the total over the corresponding variable suffix. This convention will be followed in the sequel.

The corresponding sums of squares for the above three types of estimators are $\sum_{j}\left(w_{j} Y \cdot{ }_{j}^{2} \cdot / N_{r j}\right), \sum_{i}\left\{\left(\sum_{j} w_{j} Y_{i j} \cdot\right)^{2} / \sum_{j}\left(n_{i j} w_{j}\right)\right\}$ and $\sum_{i j} n_{i j} w_{j} y_{i j} \cdot\left(y_{i j} \cdot-\tilde{y}_{i} \cdots-y \cdot j \cdot\right)$ in that order.

To obtain the sums of squares corrected for the mean, let us assume that $\beta_{i}=\beta$ for all i, $\tau_{j}=0$ for all $j$ and
$\delta_{i j}=0$ for all $i$ and $j$. Then the model reduces to

$$
y_{i j k}=\beta+\varepsilon_{i j k}
$$

The weighted least squares estimator of the general
mean $\beta$ is given by

$$
\tilde{\beta}=\Sigma W_{j} Y \cdot{ }_{j} \cdot / \Sigma N \cdot{ }_{j} W_{j}=\tilde{y} \cdots
$$

say, and the corresponding sum of squares by

$$
\left({ }_{j}^{\sum} W_{j} Y \cdot{ }_{j} \cdot\right)^{2} / \quad \sum_{j}^{N N} \cdot{ }_{j} W_{j}
$$

with 1 d.f. Then the above three sums of squares (SS) corrected for the mean are:

$$
\begin{aligned}
\text { SS (Treat.) } & =\sum_{j}\left(w_{j} Y^{2} \cdot{ }_{j} \cdot / N \cdot{ }_{j}\right)-\left(\sum w_{j} Y \cdot{ }_{j} \cdot\right)^{2} / \Sigma N{ }_{j}{ }_{j}{ }_{j} \\
& =\sum \sum N \cdot{ }_{j} w_{j}\left(y \cdot{ }_{j} \cdot-\tilde{y} \cdot \ldots\right)^{2}
\end{aligned}
$$

with ( $t-1$ ) d.f.

$$
\begin{aligned}
\operatorname{SS}(\text { Block }) & \left.=\sum\left\{\sum_{j} w_{j} Y_{i j}\right)^{2} / \sum_{j} n_{i j} w_{j}\right\}-\left(\sum_{j} Y_{j} \cdot\right)^{2} \sum_{j}^{N} \cdot{ }_{j}{ }^{w}{ }_{j} \\
& =\sum_{i} \sum_{j} n_{i j} w_{j}\left(\tilde{y}_{i} \cdots-\tilde{y} \ldots\right)^{2}
\end{aligned}
$$

- with (b-I) d.f. and

$$
\begin{aligned}
S S(\text { Int. }) & =\Sigma \Sigma n_{i j} w_{j} y_{i j \cdot}\left(y_{i j} \cdot-\tilde{y}_{i^{\bullet}}-y \cdot j \cdot\right)+\left(\sum_{j} w_{j} Y \cdot j \cdot\right)^{2} / \Sigma N \cdot{ }_{j} w_{j} \\
& =\Sigma \Sigma n_{i j} w_{j}\left(y_{i j} \cdot-\tilde{y}_{i} \ldots-y \cdot j \cdot+\tilde{y} \ldots\right)^{2}
\end{aligned}
$$

with (b-1)(t-1) d.f.
To get the corrected SS due to the interactions, we are to add the $S S$ due to the mean because the $S S$ due to all linear parameters is a fixed quantity.

Finally, the sum of squares due to error is given by

$$
S S(E)=\tilde{\sim}_{\sim}^{\prime}{\underset{\sim}{V}}^{-1} \underset{\sim}{\varepsilon}=\sum \sum \sum w_{j} \tilde{\varepsilon}_{i j k}^{2}=\sum \sum \sum w_{j}\left(y_{i j k}-y_{i j}\right)^{2}
$$

with (N.. - bt) d.f.
It follows that the estimators of the linear parameters are not unbiased under any of the two given sets of
constraints. If we define $\tilde{\delta}_{i j}=\left(y_{i j} \cdot-\tilde{y}_{i} \ldots-y_{j} \bullet+\tilde{y} \ldots\right)$, then $\hat{\delta}_{i j}$ is unbiased for the interaction effect $\delta_{i j}$ under constraints (I). The estimated treatment contrasts are unbiased for the corresponding parametric contrasts under both sets of constraints. The estimated block effects contrasts are unbiased for the corresponding parametric contrasts under constraints (I) only.

The variances of the estimators are:

$$
\operatorname{Var}\left(\hat{\tau}_{j}\right)=\sigma_{j}{ }^{2} / N_{j} \quad, \quad \operatorname{Var}\left(\tilde{\beta}_{i}\right)=1 / \sum_{j} n_{i j}{ }^{W}{ }_{j}
$$

and $\operatorname{Var}\left(\tilde{\delta}_{j, j}\right)=\sigma_{j}{ }^{2}\left(1 / n_{i j}-I / N N_{j}\right)-\left(I \sum_{j} n_{i j} w_{j}-1 / \sum_{j} N_{j} w_{j}\right) \cdot$
The treatment estimators are independent of one another and also the estimated block parameters are independent of one another under the usual assumption of normality of errors. The interaction estimators $\tilde{\delta}_{i j}$ are not independent since

$$
\begin{array}{ll}
\operatorname{Cov}\left(\tilde{\delta}_{i j}, \tilde{\delta}_{i k}\right)=-\left(1 / \sum_{j} n_{i j} w_{j}-1 / \sum N \cdot{ }_{j} w_{j}\right) & \text { for } j \neq k \\
\operatorname{Cov}\left(\tilde{\delta}_{i j}, \tilde{\delta}_{\ell j}\right)=-\left(1 / N \cdot{ }_{j} w_{j}-1 / \sum N \cdot{ }_{j} w_{j}\right) & \text { for } i \neq \ell
\end{array}
$$

and

$$
\operatorname{Cov}\left(\tilde{\delta}_{j, j}, \tilde{\delta}_{l k}\right)=1 / \sum_{j} \mathbb{N} \cdot j_{j}{ }_{j} \quad \text { for } i \neq \ell \text { and } j \neq k
$$

Expectations of the sums of squares under the two sets of constraints are given below.

Under constraints (I), we have from model (6)

$$
\begin{aligned}
& y_{i j}=\beta_{i}+\tau_{j}+\delta_{i j}+\varepsilon_{i j} ; y_{\cdot j}=\beta \cdot+{ }_{j}^{\tau}+\varepsilon_{j} \cdot ; \\
& \tilde{y}_{i} \ldots=\beta_{i}+\tilde{\tau}+\tilde{\varepsilon}_{i} \ldots \text { and } \tilde{y} \ldots=\beta \cdot+\tau+\tilde{\varepsilon}_{\ldots} .
\end{aligned}
$$

where $\beta_{0}=\sum \beta_{i} / b, \quad \tilde{\varepsilon}_{i} \ldots=\sum_{j} n_{i j} w_{j} \varepsilon_{i j} / \sum_{j} n_{i j}{ }^{w}, \tilde{\varepsilon} \ldots=$ $\sum_{j}^{\sum_{N}} \cdot j^{W}{ }_{j} \varepsilon_{\cdot} \cdot / \Sigma_{N} \cdot{ }_{j} W_{j}$ and $\tilde{\tau}=\sum_{j} N_{0} j^{W}{ }_{j} \tau_{j} /{ }_{j}^{N} \cdot{ }_{j} W_{j}$. Thus we have
$E\{S S$ (Treatments) $\}=\Sigma N \cdot{ }_{j}{ }^{W}{ }_{j}\left(\tau_{j}-\tilde{\tau}\right)^{2}+\mathbb{E}\left\{\Sigma N \cdot{ }_{j}{ }^{W}{ }_{j}\left(\varepsilon_{\cdot} \cdot \tilde{j} \cdot \tilde{\varepsilon} \ldots\right)^{2}\right\}$

$$
=(t-1)+\sum N \cdot{ }_{j} W_{j}\left(\tau_{j}-\tilde{\tau}\right)^{2}
$$

$E\{S S(B l o c k s)\}=\Sigma \Sigma n_{i j}{ }^{W}{ }_{j}\left(\beta_{i}-\beta_{0}\right)^{2}+E\left\{\sum_{i j} \sum_{i j}{ }^{W}{ }_{j}\left(\tilde{\varepsilon}_{i} \ldots-\tilde{\varepsilon}_{0} \ldots\right)^{2}\right.$ $=(b-1)+\Sigma \Sigma n_{i j}{ }^{w}{ }_{j}\left(\beta_{j}-\beta_{0}\right)^{2}$
and
$E_{\{S S}$ (Interactions) $\}=\Sigma \Sigma n_{i j}{ }^{W} \delta_{j} \delta_{j}{ }^{2}+\mathbb{E}\left\{\Sigma \Sigma n_{i j} W_{j}\left(\varepsilon_{i j}-\tilde{\varepsilon}_{i},-\right.\right.$

$$
\left.\left.\varepsilon_{\cdot j}+\tilde{\varepsilon} \ldots\right)^{2}\right\}
$$

$$
=(b-1)(t-1)+\Sigma \Sigma n_{i j} W_{j} \delta_{i j}{ }^{2}
$$

since $E\left\{\sum \Sigma n_{i j} w_{j}\left(\varepsilon_{i j}-\tilde{\varepsilon}_{i} \ldots\right)^{2}\right\}=b(t-1) \quad$ and
$E\left\{\Sigma \Sigma n_{i j}{ }_{j}\left(\varepsilon_{i j}-\tilde{\varepsilon}_{i} \ldots\right)\left(\varepsilon_{j},-\tilde{\varepsilon}_{\ldots} \ldots\right)\right\}=(t-1)$. Finally,
$E\{S S$ (Error) $\}=\sum_{i j} w_{j} E\left\{\sum_{k=1}^{\sum_{i j}}\left(\varepsilon_{i j k}-\varepsilon_{i j} \cdot\right)^{2\}}=(N \ldots-b t)\right.$. Under constraints (II), we have from model (6)

$$
\begin{aligned}
& \mathrm{y}_{i j} \cdot=\beta_{i}+\tau_{j}+\delta_{i j}+\varepsilon_{i j} \cdot ; \mathrm{y}_{\cdot}{ }_{j}=\beta_{\cdot}+\tau_{j}+\varepsilon_{\cdot j} \cdot ; \\
& \tilde{\mathrm{y}}_{i} \cdot=\beta_{i}+\tilde{\tau}+\tilde{\delta}_{i} \cdot+\tilde{\varepsilon}_{i} . \text { and } \tilde{\mathrm{y}} \ldots=\beta_{.}+\tilde{\tau}+\tilde{\varepsilon} \ldots
\end{aligned}
$$

where $\tilde{\delta}_{i}=\sum_{j} n_{i j}{ }^{w}{ }_{j} \delta_{i j}{ }_{j}{ }_{j} n_{i j}{ }^{w}{ }_{j}$. Thus we have
$\mathrm{E}\{\mathrm{SS}($ Treatments $)\}=(t-1)+\Sigma N \cdot{ }_{j} \mathrm{w}_{j}\left(\tau{ }_{j}-\tilde{\tau}\right)^{2}$ as above,
$\operatorname{E}\{S S($ Blocks $)\}=\sum \sum n_{i j}{ }^{\mathrm{w}}{ }_{j}\left(\beta_{i}-\beta_{.}+\tilde{\delta}_{i} \cdot\right)^{2}+$

$$
\begin{gathered}
\left.E\left\{\Sigma \Sigma n_{i j} w_{j} \tilde{\varepsilon}_{i} \ldots-\tilde{\varepsilon}_{\ldots} \ldots\right)^{2}\right\} \\
=(b-1)+\sum_{i j} n_{i j}{ }^{w}{ }_{j}\left(\beta_{i}-\beta \cdot+\tilde{\delta}_{i} \cdot\right)^{2},
\end{gathered}
$$

E $\{S S$ (Interactions) $\} \approx \Sigma n_{i j}{ }^{w}{ }_{j}\left({ }_{i j}{ }_{i j}-\tilde{\delta}_{i} .\right)^{2}+$

$$
\begin{aligned}
& \left.E\left\{\Sigma \Sigma n_{i j}{ }_{j} \varepsilon_{i j} \cdot \tilde{\varepsilon}_{i} \ldots-\varepsilon_{\cdot j}+\tilde{\varepsilon}_{\ldots} \ldots\right)^{2}\right\} \\
& =(b-1)(t-1)+\Sigma \Sigma n_{i j} w_{j}\left(\delta_{i j}-\tilde{\delta}_{i} \cdot\right)^{2}
\end{aligned}
$$

and

$$
\mathrm{E}\{\mathrm{SS} \text { (Error) }\}=\mathrm{N} . .-\mathrm{bt} \text { as above. }
$$

Analysis of variance table

Source of variation	d.f.	SS	$\begin{aligned} & E(M S) \text { under } \\ & \text { constraints (I) } \end{aligned}$	E(MS) under constraints (II)
Blocks   Treatments   Interactions   Error	$\begin{gathered} b-1 \\ (t-1) \\ (b-1)(t-1) \\ N . .-b t \end{gathered}$	$\begin{gathered} \sum \Sigma n_{i j}{ }^{w}{ }_{j}\left(\tilde{y}_{i} \ldots-\tilde{y} \ldots\right)^{2} \\ \sum N \cdot{ }_{j} w_{j}(y \cdot \ldots \cdot \tilde{y} \ldots)^{2} \\ \sum \Sigma n_{i j} w_{j}\left(y_{i j} \cdot \tilde{-y_{i}} \ldots-\right. \\ \left.y_{\cdot j} \cdot+\tilde{y} \ldots\right)^{2} \\ \sum \Sigma \sum w_{j}\left(y_{i j k}-y_{i j} \cdot\right)^{2} \end{gathered}$	$\begin{aligned} & I+\sum \sum n_{i j}{ }^{w_{j}}\left(\beta_{i}-\beta \cdot\right)^{2} /(b-I) \\ & I+\sum N \cdot_{j} w_{j}\left(\tau_{j}-\tilde{\tau}\right)^{2} /(t-1) \\ & I+\sum \sum n_{i j}{ }^{w}{ }_{j} \delta_{i j}{ }^{2} /(b-l)(t-l) \end{aligned}$ $1$	$\begin{aligned} & I+\sum \sum n_{i j} w_{j}\left(\beta_{i}-\beta \cdot+\tilde{\delta}_{i}\right)^{2} /(b-1) \\ & I+\sum N N_{j} w_{j}\left(\tau_{j}-\tilde{\tau}\right)^{2} /(t-1) \\ & I+\sum \sum n_{i j} w_{j}\left(\delta_{i j}-\tilde{\delta}_{i} \cdot\right)^{2} \\ & \\ & /(b-1)(t-1) \end{aligned}$
Total (corrected)	N.. - 1	$\begin{gathered} \Sigma \Sigma \Sigma w_{j} \mathrm{y}_{i j k}^{2}-\left(\Sigma \mathrm{w}_{j} \mathrm{Y}_{\mathrm{j}} .\right)^{2} \\ た \mathbb{N}_{\cdot j} \mathrm{w}_{j} \end{gathered}$		

It is evident from this table that the differences in block effects cannot be tested in the presence of interactions under constraints (II).

When the F-test indicates significant differences among the treatments, block effects or interaction effects, the difference between any two of the treatments, block effects or interaction effects can be tested by the normal test. In fact the variates

$$
\begin{aligned}
& Z_{1}=\left(\hat{\tau}_{j}-\hat{\tau}_{k}\right) /\left(1 / \mathbb{N} \cdot j^{W}{ }_{j}+1 / \mathbb{N} \cdot{ }_{k} W_{k}\right)^{\frac{1}{2}} \\
& Z_{2}=\left(\tilde{\beta}_{i}-\tilde{\beta}_{\ell}\right) /\left\{{ }_{N} \cdot .\left(1 / \mathbb{N}_{i} \cdot+1 / \mathbb{N}_{\ell} \cdot\right) / \Sigma N N_{j}{ }^{W_{j}}\right\}^{\frac{1}{2}}
\end{aligned}
$$

and
are all standardised normal undu the null typotheses.
Ratios of these normal variates to the square root of the error mean square are the corresponding t-variates with N..-btd.f.

### 3.1.3 Estimation of weights

The estimators of the linear parameters and the teststatistics involve weights, the reciprocals of the error variances which are usually unknown. One procedure in such a situation is to use the estimated weights in place of actual weights and remove the major part of the resulting bias of the estimators and other statistics as done for oneway models.
(i) Maximum likelihood estimators of the error variances

The likelihood function of the model (6) is given by $L=(2 \pi)^{-N \cdot / 2} \pi_{j}\left(\sigma_{j}{ }^{2}\right)^{-N} \cdot{ }_{j} / 2 \exp \left\{-\frac{1}{2} \sum_{j}\left(1 / \sigma_{j}^{2}\right) \sum_{i k}\left(y_{i j k}-\beta_{i}-\tau_{j}-\delta_{i j}\right)^{2}\right\}$.

Taking partial derivative of $\log _{e} L$ with respect to the linear parameters, we get the same normal equations as those for the weighted least squares procedure and hence the same estimators.

Also, we have

$$
\frac{\partial \log _{e} L}{\partial \sigma_{j}^{2}}=-\frac{N 0_{j}}{2} \frac{7}{\sigma_{j}^{2}}-\frac{(-1)}{2 \sigma_{j}^{4}} \sum \sum\left(y_{i j k}-\hat{\beta}_{i}-\sim_{j}-\tilde{\delta}_{i j}\right)^{2}=0
$$

whence the maximum likelihood estimator (MLE) of $\sigma_{j}{ }^{2}$ is

$$
\hat{o}_{j}^{2}=\frac{1}{N_{\cdot j}}{\sum \sum \sum\left(y_{i j k}-y_{i j \cdot}\right)^{2} ; \quad j=1,2, \ldots t, ~}_{i k}, \quad{ }_{i j}
$$

since $\hat{\beta}_{i}+{ }^{+\tau}{ }_{j}+\tilde{\delta}_{i j}^{\prime}=y_{i j}$. from the last normal equation of the weighted least squares in section 3.1.2. For $j \neq j^{\prime}, \hat{\sigma}_{j}^{2}$ and $\hat{\sigma}_{j \prime}{ }^{2}$ are independent.
(ii) The MINQUE of error variances

From the model of section 3.1.2, we have


To find a generalised inverse of ( $\mathrm{XX}_{\sim}^{\prime}$ ), we consider the bt x bt matrix obtained by deleting the first $(b+t)$ rows and $(b+t)$ columns of (XX $\underset{\sim}{\prime}$ ). Let it be denoted by $\underset{\sim}{D}$. Then $\underset{\sim}{D}$ is diagonal and has full rank. Its inverse is given by

$$
{\underset{\sim}{D}}^{-1}=\operatorname{diag}\left(1 / n_{11}, \ldots, 1 / n_{b l}, \ldots, 1 / n_{l t}, \ldots, l / n_{b t}\right) .
$$

Then according to Roo (1973, p.225), a generalised inverse of (XX') is obtained if we increase the order of ${\underset{\sim}{\sim}}^{-1}$ by inserting rows and columns of zero from where the dependent rows and columns were removed. Thus, a generalised inverse of ( $\mathrm{XX}^{\prime}$ ) is given by

$$
\left.(\underset{\sim \sim}{X X})^{\prime}\right)=\left[\begin{array}{ccc}
0 & \cdot & 0 \\
\sim & \ddots & \tilde{D^{-1}} \\
0 & \ddots & D^{-1}
\end{array}\right]
$$

From this, we have

$$
\left.\begin{array}{rl}
\underset{\sim}{X} \\
\underset{\sim}{X} \\
\underset{\sim}{X} X^{\prime}
\end{array}\right) \underset{\sim}{X}=\operatorname{diag}\left(\underset{\sim}{J} n_{11} / n_{11}, \ldots, J_{n_{b l}} / n_{b l}, \ldots, J_{\sim}^{n_{1 t}} / n_{1 t}, \ldots,\right.
$$

where $\underset{\sim}{J}$ m is the square matrix of order $m$ with unity as its elements.

The projection matrix $\left.\underset{\sim}{S}=\underset{\sim}{I}-\underset{\sim}{X} X_{\sim}^{\prime}(\underset{\sim}{X})^{\prime}\right)_{\sim}^{X}$ is thus given by

$$
\underset{\sim}{S}=\operatorname{diag}\left(I_{\sim}^{n_{11}}-J_{\sim}^{n_{11}} / n_{11}, I n_{21}-J_{\sim}^{n_{21}} / n_{21}, \ldots, I_{\sim}^{n_{b t}}-\underset{\sim}{n_{b t}} / n_{b t}\right)
$$

where $I_{n}$ is the identity matrix of order $n$. The product SY gives the observed residuals.

Let $\underset{\sim}{F}$ be the matrix whose elements are the squares of the elements of the projection matrix, $\underset{\sim}{\vee}$ the vector of squared residuals and $\underset{\sim}{\delta}$ the vector of the variances ( $\sigma_{j}{ }^{2}$ being repeated N.j times). Then according to Rao (1970), the MINQUE of ${ }^{\circ}{ }_{j}{ }^{2}$ are obtained from the equation $\underset{\sim}{\mathrm{F}} \underset{\sim}{\delta}=\underset{\sim}{\mathrm{V}}$.

Adding the equations involving $\sigma_{j}{ }^{2}$ and simplifying, we get

$$
\sum_{i=1}^{b}\left(n_{i j}-1\right) s_{j}^{2}=\sum_{i} \sum_{k}\left(y_{i j k}-y_{i j .}\right)^{2}
$$

or

$$
\left.s_{j}^{2}=\sum_{i}^{b} \sum_{k}^{n_{i j}}\left(y_{i j k}-y_{i j}\right)^{2} / \mathbb{N} ._{j}-b\right) ; j=1,2, \ldots, t .
$$

Unlike the MLE, $s_{j}{ }^{2}$ is unbiased for $\sigma_{j}{ }^{2}$. Here also, the estimators $s_{j}^{2}$ and $s_{j}^{2}$, are independent when $j \neq j$.
If the number of observations in any cell is unity,
then the contributions from that cell to the degrees of freedom and to the SS for calculating either MLE or MINQUE of $\sigma_{j}{ }^{2}$, will be zero. Thus, in order to get an estimate
of $\sigma_{j}{ }^{2}$, the inequality $n_{i j}>1$ must be satisfied for at least one cell for the jth treatment.

As the estimators $s_{j}{ }^{2}$ are independent, Bartlett's $x^{2}$-test can be applied for testing the homogeneity of error variances in this case also.

It is obvious that the variate $\sum_{j=1}\left(y_{i j k}-y_{i j .}\right)^{2}$ is distributed as $\chi^{2} \sigma_{j}{ }^{2}$ with $\left(n_{i j}-1\right)$ d.f. so that $(N \cdot j-b) s{ }_{j}{ }^{2} / \sigma_{j}{ }^{2}$ is distributed as $X^{2}$ with (N.j-b)d.f.

### 3.1.4 Adjustment of the estimators of the linear parameters

Since the estimators of the treatment parameters do not involve weights, no adjustment is necessary for these. Estimators of the block effects involve weights which also occur in the expressions of the estimators of interactions. To remove a major portion of the bias when estimated weights are used in the estimators of the linear parameters, the estimators have to be adjusted by Theorem 1 due to Meier. Let $x_{j}=s_{j}{ }^{2} / \sigma_{j}{ }^{2}$. Then the estimated weight $\hat{\mathrm{w}}_{j}=I / \mathrm{s}_{j}^{2}=I / \mathrm{x}_{j} \sigma_{j}{ }^{2}$. The MLE of $\sigma_{j}^{2}$ may also be used in defining $\hat{w}_{j}$. The estimators, using estimated weights, of block and interaction effects are

$$
\hat{\tilde{\beta}}_{i}=\hat{\tilde{y}}_{i} .=\sum_{j} n_{i j} \hat{w}_{j} y_{i j} \cdot / \sum_{j} n_{i j} \hat{w}_{j}
$$

and

$$
\hat{\tilde{\delta}}_{i j}=\left(y_{i j}-\hat{z}_{i} \cdots-y_{j} \cdot+\hat{\tilde{y}}_{\ldots .}\right)
$$

with $\hat{\tilde{y}} \ldots={ }_{j}^{\sum_{N}} \cdot{ }_{j} \hat{w}_{j} \mathrm{y} \cdot{ }_{j} \cdot / \frac{\sum_{j}}{N} \cdot{ }_{j} \hat{\mathrm{w}}_{j} \quad$.

$$
\text { Since }\left[\frac{\partial^{2 \hat{\tilde{\beta}}_{i}}}{\partial x_{j}^{2}}\right]_{\text {all } x_{j}=1}=2 f_{j}\left(1-f_{j}\right)\left(y_{i j} \cdot-\tilde{y}_{i} \ldots\right)
$$

the adjusted estimator of $\beta_{i}$ is given by

$$
\hat{\tilde{\beta}}_{i}(a d j)=\hat{\tilde{y}}_{i} \ldots-2 \sum_{j=1}^{t} \hat{f}_{j}\left(1-\hat{f}_{j}\right)\left(y_{i j} \cdot-\hat{\tilde{y}}_{i} \ldots\right) /\left(N_{j}-b\right)
$$

with $f_{j}=n_{i j} w_{j} / \sum_{j} n_{i j} w_{j}=N \cdot{ }_{j} w_{j} / N \cdot{ }_{j} w_{j}$ by the proportionality condition, ( $\left.N_{j}-b\right)$ as the $d . f$. for the estimator of $\sigma_{j}^{2}$ and $\hat{\mathrm{f}}_{j}=\mathrm{N} \cdot{ }_{j} \hat{\mathrm{w}}_{\mathrm{j}} / \Sigma \mathrm{N} \cdot{ }_{j} \hat{\mathrm{w}}_{\mathrm{j}} \cdot \quad$ Similarly,

$$
\hat{\tilde{y}} \ldots(a d j)=\hat{\tilde{y}} \ldots-2 \sum_{l}^{t} \hat{f}_{j}\left(I-\hat{f}_{j}\right)(y \cdot \hat{\tilde{\sim}} \cdot \hat{y}, \ldots) /\left(N_{j}-b\right)
$$

so that $\hat{\tilde{\delta}}_{i j}(a d j)=y_{i j}-\hat{\tilde{y}}_{i} \ldots(a d j)-y_{j} \cdot+\hat{\tilde{y}} \ldots(\operatorname{adj})$.

### 3.1.5 Adjustment of the test-statistics

(i) Adjustment of F-statistics

The error sum of squares (SS) using estimated weights based on the MINQUE of error variances is

$$
\sum_{j}\left\{\sum \sum\left(y_{i j k}-y_{i j} \cdot\right)^{2} /\left[\sum_{i k}\left(y_{i j k}-y_{i j}\right)^{2} /\left(N_{\cdot j}-b\right)\right]\right\}=N \ldots-b t,
$$

a constant. Similarly, the SS due to error, using the estimated weights based on MLE of error variances is also a constant. Hence, no adjustment of the error SS is necessary for removal of bias of the F-statistics. The SS(treat.) using estimated weights is $\Sigma N_{\cdot}{ }_{j}{ }^{W}{ }_{j}\left(y \cdot{ }_{j} \cdot-\hat{y} \ldots\right)^{2}$. This is exactly in the same form as that of the SS(treat.) using estimated weights in the one-way
model with unequal group variances (section 2.1.4).
Hence, the adjusted SS(treat.) using estimated weights will be of the same form as that in the one-way model and it is given by

Adjusted $\operatorname{SS}($ treat $)=\Sigma \mathbb{N} \cdot{ }_{j} \hat{w}_{j}\left(\mathrm{y} \cdot{ }_{j} \cdot-\hat{\tilde{y}} \ldots\right)^{2}\left\{1-2\left(1-\hat{\mathrm{f}}_{\mathrm{j}}\right) /\left(\mathbb{N} \boldsymbol{e}_{j}-\mathrm{b}\right)\right\}$

Thus, the adjusted $F$-statistic for testing treatment differences is given by

$$
\begin{array}{r}
\hat{F}_{1}(a d j)=(N \ldots-b t) \quad \begin{array}{r}
\sum_{j=1}^{t} N \cdot \\
j
\end{array} \hat{w}_{j}\left(y \cdot_{j} \cdot-\hat{\tilde{y}} \ldots\right)^{2}\left\{1-\frac{2\left(1-\hat{f}_{j}\right)}{N_{\cdot}-b}\right\} /(t-1) \\
 \tag{8}\\
\left\{\Sigma \Sigma \Sigma \sum_{\hat{w}_{j}}\left(y_{i j k}-y_{i j} \cdot\right)^{2}\right\} \ldots \ldots \ldots(\varepsilon)
\end{array}
$$

with ( $t-1$ ) and (N.. - bt) d.f.
To find the adjustment for the other two sums of squares, we see that

$$
\frac{\partial \hat{\tilde{y}}_{i} \cdots}{\partial x_{j}}=\frac{n_{i j}}{\sigma} \underset{j}{2}\left(\sum_{j} n_{i j} \hat{w}_{j} y_{i j} \cdot-y_{i j} \cdot \sum_{j} n_{i j} \hat{w}_{j}\right) / x_{j}{ }^{2}\left(\sum_{j} n_{i j} \hat{w}_{j}\right)^{2}
$$

and

$$
\left[\frac{\partial^{2} \hat{\tilde{y}}_{i} \cdots}{\partial x_{j}{ }^{2}}\right]_{\text {all } x_{j}=1}=-2 f_{j}\left(l-f_{j}\right)\left(\tilde{y}_{i} \cdots-y_{i j} \cdot\right)
$$

Similarly,

$$
\frac{\partial \hat{\tilde{y}} \cdot \ldots}{\partial \mathrm{X}_{j}}=\frac{\mathrm{N}_{\mathrm{j}}}{\sigma_{j}^{2}}\left(\sum_{j} N_{j} \cdot j^{\mathrm{w}}{ }_{j} \mathrm{Y}_{\cdot j} \cdot-\mathrm{y} \cdot{ }_{j} \cdot \sum_{j}^{N} \cdot{ }_{j}^{\mathrm{w}}{ }_{j}\right) / \mathrm{x}_{j}{ }^{2}\left(\sum_{j}^{N} \cdot{ }_{j}^{\mathrm{w}}{ }_{j}\right)^{2}
$$

and

$$
\left[\frac{\partial^{2} \hat{\tilde{y}} \ldots}{\partial x_{j}^{2}}\right]_{\text {all } x_{j}=1}=-2 f_{j}\left(1-f_{j}\right)\left(\tilde{y} \ldots-y_{j} \cdot\right)
$$

The estimated block $S S$ is given by

$$
\text { Est. } \operatorname{SS}(\text { block })=\sum_{i j} \sum_{n_{j}} \hat{w}_{j}\left(\hat{\tilde{y}}_{i} . .-\hat{\tilde{y}}_{\ldots} \ldots\right)^{2}
$$

so that

$$
\begin{aligned}
\frac{\partial[E s t . S S(b l)]}{\partial x_{j}}=-\frac{1}{x_{j}{ }^{2} \sigma_{j}^{2}} \sum_{i} n_{i j}\left(\hat{\tilde{y}}_{i} \ldots-\frac{\hat{\tilde{y}}}{\ldots} \ldots\right)^{2}+ & 2 \sum \sum n_{i j} \hat{w}_{j} \\
& \left(\hat{\tilde{y}}_{i} \ldots-\hat{\tilde{y}} \ldots\right) \partial \frac{\left(\hat{\tilde{y}}_{i} \ldots-\hat{\tilde{y}} \ldots\right)}{\partial x_{j}}
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\frac{\partial^{2}\{\operatorname{Est} \cdot \operatorname{SS}(b l)\}}{\partial x_{j}^{2}}\right]_{\text {all } x_{j}=1}} \\
& =2 \sum_{i} n_{i j}{ }^{w}{ }_{j}\left(\tilde{y}_{i} \ldots-\tilde{y} \ldots\right)^{2}+4 \sum_{i}^{n_{i j}}{ }^{w}{ }_{j} f_{j}\left(\tilde{y}_{i} \ldots-\tilde{y} \ldots\right)\left(y_{i j} \cdot-\bar{y} \cdot{ }_{j}-\tilde{y}_{i} \ldots+\tilde{y}_{\ldots}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(y_{i j} \cdot-\tilde{y}_{i} \ldots-y \cdot{ }_{j} \cdot+\tilde{y} \ldots\right),
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \text { Est. } \operatorname{SS}(\mathrm{bl} .)(\mathrm{adj})=\sum_{i j} n_{i j} \hat{w}_{j}\left(\hat{\tilde{y}}_{i} \ldots-\hat{\tilde{y}} \ldots\right)^{2}-\sum_{j} \frac{l}{\mathrm{~N}_{j}-b} \\
& {\left[\frac{\partial^{2} \text { Est.SS(bl) }}{\partial x_{j}{ }^{2}}\right] \text { using estimated weights. }} \\
& 211 x_{j}=1 \\
& =\sum_{i j} \sum_{i j} \hat{\mathrm{w}}_{j}\left(\hat{\tilde{y}}_{i} \ldots-\hat{\tilde{y}} \ldots\right)^{2}\left(1-\frac{2}{\mathrm{~N} \cdot j-b}\right)-2 \sum_{i j} \sum_{i j} \hat{w}_{j} \hat{f}_{j}{ }^{2}\left(y_{i j} \cdot-\hat{\tilde{y}}_{i} \ldots-\right. \\
& \left.y_{e_{j}}+\hat{\tilde{y}} \ldots\right)^{2}\left(\sum_{j}^{\frac{1}{N} \cdot j^{-b}}\right) \\
& -4 \sum_{i j} n_{i j} \hat{\pi}_{j} \hat{f}_{j}\left(\hat{\tilde{y}}_{i} \ldots-\hat{\tilde{y}} \ldots\right)\left(y_{i j} \cdot \hat{\tilde{y}}_{i} \ldots-y \cdot j \cdot+\hat{\tilde{y}} \ldots\right)\left\{\frac{1}{\hat{N}_{\cdot j}-\mathrm{b}}+\left(I-\hat{f}_{j}\right)\right. \\
& \left.\left(\Sigma \frac{l}{N} \cdot_{j}^{-b}\right)\right\} \ldots(9)
\end{aligned}
$$

with (b-1) d.f.
The adjusted $F$-statistic for testing differences in block effects is thus given by

$$
\hat{F}_{2}(a d j)=\frac{(N . .-b t)\{\text { ESt. } \cdot \operatorname{SS}(b l \cdot)(a d j)\}}{(b-l)\left\{\Sigma \Sigma \Sigma \hat{w}_{j}\left(y_{i j k}-y_{i j} \cdot\right)^{2}\right\}}
$$

with (b-1) and (N..-bt) d.f.
The estimated SS due to interactions is given by Est. $\operatorname{SS}($ Int $)=\sum_{i j} \sum_{i j} \hat{w}_{j} y_{i j} \cdot\left(y_{i j} \cdot-\hat{\tilde{y}}_{i} \cdot .-y \cdot j \cdot+\hat{\tilde{y}} \ldots\right)$
so that $\frac{\partial\{\text { Est.SS(Int) \}}}{\partial x_{j}}=\sum_{i} n_{i} \frac{(-1)}{j_{x_{j}}{ }^{2} \sigma_{j}{ }^{2}} y_{i j}\left(y_{i j} \cdot-\hat{\tilde{y}}_{i} \ldots-y \cdot j \cdot+\hat{\tilde{y}} \ldots\right)$
$-\sum_{i j} \sum_{i j} \hat{w}_{j} y_{i j} \frac{\partial\left(\hat{\tilde{y}}_{i} \ldots-\hat{\tilde{y}} \ldots\right)}{\delta x_{j}}$
and $\left[\frac{\partial^{2}\{\text { Est.SS(Int) }}{\partial x_{j}^{2}}\right]_{\text {all } \cdot x_{j}=1}^{2 \sum_{i} n_{i j} w_{j} y_{i j} \cdot\left(y_{i j} \cdot-\tilde{y}_{i} \cdot \cdots-y_{j} \cdot+\tilde{y} \ldots\right)}$

$$
+2 \sum_{i} n_{i j} w_{j} y_{i j} \cdot\left[\frac{\partial\left(\hat{\tilde{y}}_{i} \ldots-\hat{\tilde{y}} \ldots\right)}{\partial x_{j}}\right]
$$

$$
\text { all } x_{j}=1
$$

$$
-\sum_{i j} \sum_{i j} n_{j} y_{i j} \cdot\left[\frac{\partial^{2}\left(\hat{\tilde{y}}_{i} \ldots-\hat{\tilde{y}} \ldots\right)}{\partial_{x_{j}}{ }^{2}}\right]
$$

$$
\text { all } x_{j}=1
$$

Hence, Est. $\operatorname{SS}(\operatorname{Int})(\operatorname{adj})=\sum_{i j} n_{i j} \hat{w}_{j}\left(y_{i j} \cdot-\hat{\tilde{\tilde{y}}}_{\mathrm{i}} \cdot \cdot-y_{\cdot j} \cdot+\hat{\tilde{y}} \ldots\right)^{2}$
$-\sum_{j} \frac{1}{N \cdot j^{-b}}\left[\frac{\partial^{2}\{\operatorname{Est} \cdot \operatorname{SS}(\text { Int })\}}{\partial x_{j}{ }^{2}}\right]$
all $x_{j}=1$
(using estimated weights)

$$
\begin{aligned}
& \left.\hat{f}_{j} \sum_{j} \frac{l}{N_{e_{j}}-b}\right)_{\}}, \ldots(10)
\end{aligned}
$$

on simplification, with (b-l)(t-l)d.f.

The adjusted F-statistic for testing differences in interaction effects is thus given by

$$
\hat{\mathrm{F}}_{3}(\mathrm{adj})=\frac{(\mathrm{N} . .-\mathrm{bt})\{\text { Est. SS }(\text { Int })(\mathrm{adj})\}}{(b-l)(t-1)\left\{\Sigma \Sigma \Sigma \hat{\mathrm{w}}_{j}\left(\mathrm{y}_{i j k}-\mathrm{y}_{i j} \cdot\right)^{2}\right\}}
$$

with $(b-1)(t-1)$ and (N..-bt) d.f.

> approkimati
(ii) Adjustment of the normal test-statistics approximate
The normal test-statistic, using estimated weights, for testing the difference between the $j$ th and $k$ th treatment effects is

$$
\hat{z}_{I}=\left|\hat{\tau}_{j}-\hat{\tau}_{k}\right| /\left\{I / N \cdot \hat{W}_{j}+I / N \cdot \hat{w}_{k}\right\}^{\frac{1}{2}}
$$

This is in the same form as the corresponding normal teststatistic in the one-way model with unequal group variances. Hence, the adjusted normal test-statistic will be of the same form as that in one-way model (section 2.1.4) and it is given by $\hat{z}_{I}(a d j)=\hat{z}_{I}\left\{I-3\left[I / N \cdot{ }_{j}^{2}\left(N \cdot{ }_{j}-b\right) \hat{w}_{j}{ }^{2}+I / N \cdot{ }_{k}^{2}\left(N \cdot{ }_{k}-b\right) \hat{w}_{k}^{2}\right] /\right.$

$$
4\left(I / N \cdot \hat{j}_{j}+I / N \cdot \hat{k}_{k}\right)^{2\}}
$$

aftroximate
The normal test-statistic using estimated weights for testing the difference between the ith and $\ell$ th block effects is
$\hat{z}_{2}=\left|\hat{\tilde{n}}_{i}(a d j)-\hat{\tilde{\beta}}_{\ell}(a d j)\right| /\left(\sum N_{\cdot j} W_{j}\right)^{-\frac{1}{2}}\left(\frac{N_{\cdots}}{N_{i}}+\frac{N_{\cdots}}{N_{\ell}}\right)^{\frac{1}{2}}$ $=H\left(\Sigma N \cdot{ }_{j}{ }_{j}\right)^{\frac{1}{2}}$, say.

Since $\left[\frac{\partial^{2} Z_{2}}{\partial x_{j}{ }^{2}}\right]_{\text {all } x_{j}=1}=\frac{H N \cdot{ }_{j} w_{j}}{\left(\Sigma N \cdot{ }_{j} w_{j}\right)^{\frac{1}{2}}} \quad\left(1-\frac{N \cdot{ }_{j} w_{j}}{4 \Sigma N_{j}{ }^{w}{ }_{j}}\right)$,
it follows that
$\hat{z}_{2}(a d j)=\frac{\left|\hat{\tilde{\beta}}_{i}(a d j)-\hat{\tilde{\beta}}_{l}(a d j)\right|}{\left\{\frac{\hat{N}_{l}}{\sum_{N} \hat{N}_{j}}\left(\frac{1}{N_{i}}+\frac{1}{N_{l}}\right)\right\}^{\frac{1}{2}}}\left\{I-\sum_{j=1}^{t} \frac{\hat{f}_{j}\left(I-\hat{f}_{j} / 4\right)}{N_{\cdot}-b}\right\}$.
Here, $\operatorname{var}\left\{_{i}^{\hat{\beta}}(\operatorname{adj})\right\}$ has been approximated by $\operatorname{var}\left(\tilde{\beta}_{i}\right)=1 / \sum_{j} n_{i j} w_{j}$ since the former is difficult to find analytically. Similarly, if we approximate $\operatorname{var}\left\{\hat{\delta}_{i j}(\operatorname{adj} j)\right\}$ by $\operatorname{var}\left(\tilde{\delta}_{i j}\right)$, the afroximateral test-statistic using estimated weights for testing the difference between the (i,j )th and ( $\ell, k$ )th interaction parameters is given by

The corresponding adjusted normal test-statistic is

$$
\begin{aligned}
& {\left[\hat { z _ { 3 } } \left[1-3 u{ }_{u} \sum_{j, k} I /\left\{4 N \cdot { } ^ { 2 } u ^ { w } u ^ { 2 } ( N \cdot u ^ { - b } ) \left(I / N \cdot j^{W} j^{+}\right.\right.\right.\right.} \\
& \left.1 / N \cdot k_{k} W^{2}\right\} \quad \text { for } j \neq k
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } G_{u}=\hat{f}_{u} \hat{f}_{j}\left\{1-\hat{f}_{u}\left[1+3 \hat{f}_{j} / 4\left(I-\hat{f}_{j}\right)\right]\right\} /\left(I-\hat{f}_{j}\right)\left(N{ }_{c}-b\right) \text {, } \\
& H_{m}=\left[\hat{f}_{m}\left(p_{i}+q_{\ell}+2\right)\left(1-\hat{f}_{m}\right)-3\left\{p_{i}-\hat{f}_{m}{ }^{2}\left(p_{i}+q_{\ell}+2\right)^{2} / 4 \hat{f}_{m}{ }^{2} P\right\}\right] \\
& / P\left(N \cdot m^{-b}\right), \\
& P=\left(p_{i} / \hat{f}_{j}+q_{\ell} / \hat{f}_{k}-p_{i}-q_{\ell}-2\right), p_{i}=\left(N \ldots / N_{i} \cdot-1\right) \\
& \text { and }
\end{aligned}
$$

$$
q_{\ell}=\left(N_{1} / N_{\cdot}-1\right)
$$

Ratios $\ell_{f}$ these adjusted statistics to the square root of error mean square are the corresponding adjusted $t$-variates with N.--bt d.f. 3.1.6 Multiple comparison

The inequality (5) of section 2.1.5, may be used to estimate the joint confidence intervals of contrasts of treatment, block or interaction effects.
(i) Treatment contrasts

Since the estimators of the treatment parameters and their variances are in the same forms as those for the one-way model, the formula with necessaty adjustment obtained in section 2.1.5 is also applicable here. If $\hat{\psi}_{I}=\Sigma c_{j} \hat{\tau}_{j}$ is an estimate of the treatment contrast, $\psi_{I}=\Sigma c_{j} \tau j$, then the estimated joint confidence interval for all $\psi_{I}$ is given by

$$
\hat{\psi}_{I}-S_{I} s \hat{\sigma}_{\hat{\psi}_{1}}(a d j) \leqslant \psi_{I} \leqslant \hat{\psi}_{I}+S_{I} \hat{S}_{\hat{\sigma}_{1}}(a d j)
$$

where $S_{1}=\left\{(t-1) F_{\alpha}(t-1, N \ldots-b t)\right\} \stackrel{\frac{1}{2}}{2} \quad s=$ square root of mean square error and

$$
\begin{gathered}
\hat{\sigma}_{\psi_{1}(a d j)}=\left\{\sum_{j}\left(c_{j}{ }^{2} s_{j}{ }^{2} / N_{\bullet}\right)\right\}^{\frac{1}{2}}\left\{1+\frac{1}{4} \sum_{j=1}^{t} \frac{c_{j}^{4} s_{j}^{4}}{N_{\cdot}{ }_{j}^{2}\left(N \cdot{ }_{j}-b\right)}\right. \\
\left.\left[\sum\left(c_{j}{ }^{2} s_{j}{ }^{2} / N_{\bullet}{ }_{j}\right)\right]^{-2}\right\} \text { using the MINQUE of } \sigma_{j}{ }^{2} \text { as the estimator. } \\
\text { Approximating the variances of } \hat{\sim}_{\sim} \hat{\sim}_{i}(a d j) \text { and } \hat{\tilde{\delta}}_{i j}(a d j)
\end{gathered}
$$ by those of $\tilde{\beta}_{i}$ and $\tilde{\delta}_{i j}$ respectively, we get the estimated joint confidence intervals of $\beta_{\text {-contrasts }}$ and interaction contrasts as follows.

(ii) $\beta$-contrasts

If $\psi_{2}=\Sigma C_{i} \beta_{i}$, then $\operatorname{var}\left(\tilde{\psi}_{2}\right)=\operatorname{var}\left(\sum C_{i} \tilde{\beta}_{i}\right)=$ $\sum_{i}\left(C_{i}{ }^{2} / \sum_{j} n_{i j} w_{j}\right)=d / \sum_{j} N_{j} \cdot{ }_{j}{ }_{j}$ where $d=\sum_{i}\left(C_{i}{ }^{2} N \cdot \cdot / N_{i}\right)$ by the proportionality condition. Thus $\hat{\sigma}_{\tilde{\psi}_{2}}=d^{\frac{1}{2}}\left(\Sigma N \cdot{ }_{j} \hat{W}_{j}\right)^{-\frac{1}{2}}$.

The estimated joint confidence interval for all contrasts $\psi_{2}$ is then given by

$$
\hat{\tilde{\psi}}_{2}-S_{2} s \hat{\sigma}_{\psi_{2}}(\operatorname{adj}) \leq \psi_{2} \leq \hat{\tilde{\psi}}_{2}+S_{2} s \hat{\sigma}_{\psi_{2}}(\operatorname{adj})
$$

where $S_{2}=\left\{(b-1) F_{\alpha}(b-1, N \ldots-b t)\right\}^{\frac{1}{2}}, \hat{\sigma}_{\tilde{\psi}_{2}}(a d j)=$ $\left(\alpha / \sum_{j} N{ }_{j}{ }_{j} \hat{W}_{j}\right)^{\frac{1}{2}}\left\{I+\sum_{j=1}^{t} \frac{f_{j}}{N_{\cdot j}-b}\left(1-\frac{3}{4} \hat{f}_{j}\right)\right\}$ and $\hat{\tilde{\beta}}_{i}(\operatorname{adj})$ are used in computing $\hat{\tilde{\psi}}_{2}$.
(iii) Interaction contrasts

If $\psi_{3}=\sum \sum_{i j} c_{i j} \delta_{i j}$ is the interaction contrast, then
$\operatorname{var}\left(\hat{\psi}_{3}\right)=\operatorname{var}\left(\sum_{i j} c_{i j} \tilde{\delta}_{i j}\right)=\Sigma \Sigma_{c_{i j}}{ }^{2} \operatorname{var}\left(\tilde{\delta}_{i j}\right)+\sum_{i j \neq k} \sum_{i j} c_{i k}$ $\operatorname{cov}\left(\tilde{\delta}_{i j}, \tilde{\delta}_{i k}\right)+\sum_{i \neq \ell j} \sum_{\ell j} C_{i j} c_{\ell j} \operatorname{cov}\left(\tilde{\delta}_{i j}, \tilde{\delta}_{\ell j}\right)+\sum_{i \neq \ell} \sum_{\ell j \neq k} \sum_{i j} c_{i j}^{c} \ell k$
$\operatorname{cov}\left(\tilde{\delta}_{i j}, \tilde{\delta}_{\ell k}\right)=\Sigma Q_{j}\left(\mathbb{N} \cdot{ }_{j}{ }^{W}{ }_{j}\right)^{-1}-Q\left(\Sigma \mathbb{N} \cdot{ }_{j}{ }^{w}{ }_{j}\right)^{-1}$ where $Q_{j}=\sum_{i} c_{i}{ }_{j}^{2}$

$c_{i j} c_{i k}\left(\mathbb{N} . . / N_{i},-I\right)-\sum_{i \neq \ell j}^{\sum} \sum_{i j} c_{i j} c_{l}-\sum_{i \neq \ell}^{\sum} \sum_{j, j \neq k} c_{i j}{ }^{c} \ell k$. Thus the
estimated standard error of $\hat{\psi}_{3}$ is given by

$$
\hat{\sigma}_{\hat{\psi}_{3}}=\left\{\sum_{j} Q_{j}\left(\mathbb{N} \cdot \hat{w}_{j}\right)^{-1}-Q\left(\Sigma N \cdot{ }_{j} \hat{w}_{j}\right)^{-1}\right\}^{\frac{1}{2}} .
$$

The joint confidence interval for all interaction contrasts $\psi_{3}$ is then estimated by

$$
\hat{\psi}_{3}-S_{3} s \hat{\sigma}_{\hat{\psi}_{3}}(a d j) \leqslant \psi_{3} \leqslant \hat{\psi}_{3}+s_{3} s \hat{\sigma}_{\hat{\psi}}^{3}(a d j)
$$

where $S_{3}=\left\{(b-1)(t-1) F_{\alpha}[(b-1)(t-1), N \ldots-b t]\right\}^{\frac{1}{2}}, \hat{\tilde{\delta}}_{i j}(a d j)$ are used in computing $\hat{\psi}_{3}$ and

$$
\begin{array}{r}
\hat{\sigma}_{\hat{\psi}_{3}}(a d j)=h_{1} \frac{1}{2}\left[1+\sum_{j \neq 1}^{t} N ._{j} \hat{w}_{j}\left\{h_{2 j}\left(i+N \cdot{ }_{j} \hat{w}_{j} h_{2 j} / 4 h_{1}\right)\right.\right. \\
\\
\left.\left.-N_{r_{j}} \hat{w}_{j} h_{3 j}\right\} / h_{1}\left(N ._{j}-b\right)\right]
\end{array}
$$

with. $\left.\left.h_{I}=\left(\Sigma Q_{j} / \mathbb{N} \cdot{ }_{j} \hat{w}_{j}-Q / \Sigma \mathbb{N} \cdot \hat{j}_{j}\right), \quad h_{2 j}=Q_{j} / \mathbb{N} \cdot \hat{j}_{j}\right)_{j}\right)^{2}+Q /\left(\Sigma \mathbb{N} \cdot{ }_{j} \hat{w}_{j}\right)^{2}$
and

$$
h_{3 j}=Q_{j} /\left(N \cdot{ }_{j} \hat{w}_{j}\right)^{3}+Q /\left(\Sigma \mathbb{N} \cdot \hat{j}_{j}\right)^{3} .
$$

### 3.2 Two-way random models.

Let the random model be

$$
\begin{gathered}
y_{i j k}=\beta_{i}+\tau_{j}+\delta_{i j}+\varepsilon_{i j k} \\
\left(i=1,2, \ldots, b ; j=1,2, \ldots, t ; k=1,2, \ldots, n_{i j}\right)
\end{gathered}
$$

where $\beta_{i}$ is the random effect of the ith block having mean $\mu$ and variance $\sigma_{\beta}{ }^{2}$, $\tau_{j}$ the random effect of the $j$ th treatment having mean zero and variance $\sigma_{\tau}{ }^{2}, \delta_{i j}$ the random effect of the interaction between the isth block effect
and the jth treatment effect, having mean zero and variance $\sigma_{\delta}{ }^{2}$, and $\varepsilon_{i j k}$ the error term having mean zero and variance $\sigma_{j}{ }^{2}$. All the random effects and the errors are assumed to be independent of one another.
3.2.1 Estimation of the variance components and the

## analysis when error variances are known

From the above model we have,

$$
\text { Since, } E\left\{\underset{i k}{ } \sum_{i j k}\left(y_{i j} \cdot\right)^{2}\right\}=\sum_{i} E\left\{\sum_{k}\left(\varepsilon_{i j k}-\varepsilon_{i j} \bullet\right)^{2}\right\}=\sum_{i}^{b}\left(n_{i j}-l\right)
$$

$$
\sigma_{j}^{2}=\left(N \cdot{ }_{j}-b\right) \sigma_{j}^{2} \text {, the quantity } \sum_{i k}\left(y_{i j k}-y_{i j} \cdot\right)^{2} /\left(N_{\cdot j}-b\right) \text { is }
$$

$$
\text { still the unbiased estimator of } \sigma_{j}^{2} ; j=1,2, \ldots, t .
$$

$$
\text { Now } E(\text { Treatments } S S)=E\left\{\sum_{j=1}^{t} N \cdot{ }_{j} w_{j}\left(y \cdot{ }_{j}-\tilde{y} \ldots\right)^{2}\right\}
$$

$$
\begin{aligned}
& =E\left\{\sum_{j} N_{\cdot}{ }_{j} W_{j}\left(\tau_{j} \tilde{\tau}^{\tau}\right)^{2}\right\}+E\left\{\sum_{j} N \cdot_{j} W_{j}\left(\delta \cdot{ }_{j}-\tilde{\delta} \ldots\right)^{2}\right. \\
& +E\left\{\Sigma N N_{j} W_{j}\left(\varepsilon \cdot{ }_{j} \cdot-\tilde{\varepsilon} \ldots\right)^{2}\right. \\
& =(t-1)+\left(w \cdot-\sum N \cdot{ }_{j}{ }^{2} w_{j}{ }^{2} / w_{0}\right)\left(\sigma_{\tau}^{2}+\sigma_{\delta}{ }^{2} / b\right),
\end{aligned}
$$

with we $=\sum_{j} N \cdot j^{W}{ }_{j}$,

$$
\begin{aligned}
& y_{i j}=\beta_{i}+\tau_{j}+\delta_{i j}+\varepsilon_{i j} \quad, \quad y \cdot{ }_{j} \cdot=\beta \cdot+ \\
& { }^{\tau}{ }_{j}+{ }^{\delta} \cdot{ }_{j}+{ }^{\varepsilon} \cdot{ }_{j} \cdot, \\
& \tilde{y}_{i} \ldots=\sum_{j} n_{i j}{ }^{w}{ }_{j} y_{i j} \cdot / \sum_{j} n_{i j} w_{j}=\beta_{i}+\tilde{\tau}+\tilde{\delta}_{i} \cdot+\tilde{\varepsilon}_{i} \ldots \text { and } \tilde{y} \ldots= \\
& \beta \cdot+\tilde{\tau}+\tilde{\delta} \cdot+\tilde{\varepsilon}^{\ldots} \cdot .
\end{aligned}
$$

$$
\text { since } E\left(\beta_{i}-\beta .\right)^{2}=\sigma_{\beta}^{2}(1-1 / b) \text { and } E\left(\tilde{\delta}_{i}-\tilde{\delta} . .\right)^{2}
$$

$$
=o_{\delta}^{2}(1-l / b)\left(\underset{j}{\sum N} \cdot{ }_{j}{ }^{2} w_{j}{ }^{2} / w^{2} \cdot\right)
$$

and

From these expectations, it follows that the unbiased estimators of the other three variance components are given by

$$
\begin{gathered}
\tilde{\sigma}_{\delta}^{2}=b\{\text { Interactions SS }-(b-1)(t-1)\} /\left(w \cdot-\underset{j}{\sum N} \cdot_{j}^{2} w_{j}^{2} / w_{0}\right) \\
\times(b-1), \\
\tilde{\sigma}_{\tau}^{2}=
\end{gathered}
$$

$$
\begin{aligned}
& E \text { (Interactions SS) }=E\left\{\sum_{i j} \sum_{i j}{ }^{W}{ }_{j}\left(y_{i j} \cdot \tilde{y}_{i} \cdots-\bar{y} \cdot{ }_{j} \cdot \tilde{y} \ldots\right)^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\varepsilon_{i j}-\tilde{\varepsilon}_{i} \cdots-\varepsilon \cdot{ }_{j}+\tilde{\varepsilon} \ldots\right)^{2}{ }_{\}} \\
& =(b-1)(t-1)+\sigma_{\delta}{ }^{2}(1-1 / b)\left(w .-\Sigma N ._{j}{ }^{2} w_{j}{ }^{2} / w .\right) \\
& \text { since } E\left(\delta_{i j}-\delta_{\cdot j}\right)^{2}=\sigma_{\delta}{ }^{2}(1-1 / b) ; E\left(\tilde{\delta}_{i} \cdot-\tilde{\delta}_{.} .\right)^{2} \\
& =\sigma_{\delta}{ }^{2}(1-1 / b)\left(\Sigma N .{ }_{j}{ }^{2} w_{j}{ }^{2} / w^{2} .\right) \\
& \text { and } E\left(\delta_{i j}-\delta \cdot{ }_{j}\right)\left(\delta_{i} \cdot-\tilde{\delta} \ldots\right)=\left(N \cdot{ }_{j}{ }_{j} /{ }^{W} / \mathrm{w} \cdot\right)_{\sigma_{\delta}}{ }^{2}(I-I / b) .
\end{aligned}
$$

$$
\begin{aligned}
& E(\text { Blocks SS })=E\left\{\sum_{i j} n_{i j} w_{j}\left(\tilde{y}_{i} \ldots-\tilde{y} \ldots\right)^{2}\right\} \\
& =E\left\{\sum_{i j} \sum_{i j} W_{j}\left(\beta_{i}-\beta .\right)^{2}\right\}+\mathbb{E}\left\{\sum n_{i j} W_{j}\left(\tilde{\delta}_{i} \cdot-\tilde{\delta} \ldots\right)^{2}\right\} \\
& +E\left\{\Sigma \Sigma n_{i j} w_{j}\left(\tilde{\varepsilon}_{i} \ldots-\tilde{\varepsilon} \ldots\right)^{2}\right\} \\
& =(b-1)+\sigma_{\beta}{ }^{2} \sum_{j} \mathbb{N}_{\cdot} \cdot{ }^{w} w_{j}(l-l / b)+\sigma_{\delta}{ }^{2}\left(\sum_{j} \mathbb{N}_{j} \cdot{ }^{2} w_{j}{ }^{2} / w \cdot\right)(l-l / b)
\end{aligned}
$$

and

$$
\begin{array}{r}
\tilde{\sigma}_{\beta}^{2}=\mathrm{b}(\text { Blocks SS }-\mathrm{b}+1) /(\mathrm{b}-1) \mathrm{w} \cdot-\{\text { Interaction } S S-(\mathrm{b}-1)(\mathrm{t}-1)\} \\
/\left(\mathrm{w} \cdot{ }^{2} / \mathrm{\Sigma N} \cdot{ }_{j}^{2}{ }_{\mathrm{w}}^{\mathrm{w}}{ }^{2}-1\right)
\end{array}
$$

when the actual weights, $w_{j}=1 / \sigma_{j}{ }^{2}$, are known.

$$
\begin{aligned}
& \text { Finally } E\{\text { Within (Error) } S S\}=E\left\{\Sigma \Sigma \Sigma w_{j}\left(y_{i j k}-y_{i j} \cdot\right)^{2}\right\} \\
&=E\left\{\Sigma \Sigma \Sigma W_{j}\left(\varepsilon_{i j k}-\varepsilon_{i j} .\right)^{2}\right\} \\
&=(N . .-b t)
\end{aligned}
$$

as before.
It can easily be shown that ( $\varepsilon_{i j k}-\varepsilon_{i j}$ ) is uncorrelated with $\left(\varepsilon \cdot{ }_{j}-\tilde{\varepsilon} \ldots\right),\left(\tilde{\varepsilon}_{i} \ldots-\tilde{\varepsilon} \ldots\right)$ and $\left(\varepsilon_{i j}-\tilde{\varepsilon}_{i} \ldots-\right.$
$\left.\varepsilon_{._{j}}+\tilde{\varepsilon} \ldots\right)$. Hence, by the assumption of normality of errors, the error $S S$ is independent of the treatments $S S$, the blocks SS and the interaction SS. Similarly, the last three sums of squares are also mutually independent. Furthermore, each of these three sums of squares is distributed as non-central $\chi^{2}$ times a constant while the error $S S$ is always distributed as a central $\chi^{2}$.

The hypotheses can thus be tested in the following way. To test the hypothesis, $H_{1}: \sigma_{\delta}=0$, we see that

$$
F=\quad \frac{\text { Interaction } S S /(b-1)(t-1)}{\text { Erroi } S S /(N \ldots-b t)}
$$

is a central F-variate under the hypothesis $H_{l}$ with $(b-1)(t-1)$ and (N..-bt) d.f.

For tests of significance of $\sigma_{\tau}$ and $\sigma_{\beta}$, we are to consider two cases.

Case I: $\quad \sigma_{\delta}=0$.
In this case, it follows that
(i) \{Treatments SS/(t-1) \}/\{ Error SS/(N..-bt)\}
and (ii) \{ Blocks SS/(b-I) \} / \{ Error SS/(N..-bt) \}
are central $F$ with corresponding d.f. under the hypotheses, $H_{2}: \sigma_{\tau}=0$ and $H_{3}: \quad \sigma_{\beta}=0$ respectively.

Case II: $\sigma_{\delta} \neq 0$.
In this case, $\sigma_{\delta}$ occurs in the expectations of both the treatments SS and the blocks SS.

To test the hypothesis $H_{2}: \sigma_{\tau}=0$, we find that \{ Treatments SS/(t-1) \} / \{ Interaction SS/(b-1)(t-1) \} $=F\{t-1,(b-1)(t-1)\}\left[1+\left\{\sigma_{\tau}{ }^{2}\left(w \cdot-\Sigma N_{\cdot j}^{2}{ }^{w}{ }_{j}{ }^{2} / \mathrm{w} \cdot\right) /(t-1)\right\}\right.$ $\left.\left\{1+\sigma_{\delta}{ }^{2}\left(w_{0}-\sum N_{\cdot j}{ }^{2} w_{j}{ }^{2} / w \cdot\right) / b(t-1)\right\}\right]$
$=F[t-1,(b-1)(t-1)]$ under the hypothesis $H_{2}: \sigma_{\tau}=0$. This test is valid also when $\sigma_{\delta}=0$.
On the other hand, since
\{ Blocks SS/(b-1) \}/ \{Interaction SS/(b-1)(t-1) \}
$=F\{b-1,(b-1)(t-1)\}\left[1+\left\{w \cdot \sigma_{\beta}{ }^{2} / b+\sigma_{\delta}{ }^{2} A\right\} /\left\{1+\sigma_{\delta}{ }^{2}\right.\right.$ (w. $\left.\left.\left.-\Sigma^{N} \cdot{ }_{j}{ }^{2} w_{j}{ }^{2} / w \cdot\right) / b(t-1)\right\}\right]$
where $A=\left\{\Sigma N \cdot{ }_{j}{ }^{2} w_{j}{ }^{2}-\left(w,-N_{\cdot j}{ }^{2} w_{j}{ }^{2}\right) /(t-1)\right\} / b w$. , it follows that the hypothesis $H_{3}: \sigma_{\beta}=0$ cannot be tested in this way when $\sigma_{\delta} \neq 0$.
3.2.2 Adjustment of the test-statistics and the estimators of variance components

Since the estimated error variances are independently distributed as multiples of $x^{2}$-variates, the test-statistics and the estimated variance components using estimated weights can be adjusted as before to remove the bias of order
$\left(\sum_{j}^{\left.\frac{1}{\sqrt{1} \cdot j^{-b}}\right)}\right)$
(i) Test-statistics

The F-statistic for testing $H_{1}: \sigma_{\delta}=0$ is the
same as that for testing the significance of interaction effects in section 3.1.2. Hence, the adjusted F-statistic using estimated weights will also be the same (section 3.1.5) i.e.,

with (b-1)(t-1) and (N..-bt) d.f. where the interaction $S S$ (using estimated weights \& adj.) is given by equation (10) of section 3.1.5.

Similarly, for testing $H_{2}: \sigma_{\tau}=0$ when $\sigma_{\delta}=0$, the adjusted $F$-statistic using estimated weights is given, as in equation (8) of section 3.1.5, by
$\hat{F}_{5}(a d j)=\frac{(N . .-b t) \sum N \cdot \hat{j}_{j} \cdot\left(y \cdot j \cdot-\frac{\hat{y}}{y} \ldots\right)^{2}\left\{1-\frac{2\left(1-\hat{f}_{j}\right)}{\hat{N}_{\cdot j}^{-b}}\right\}}{(t-I)\left\{\sum \Sigma \Sigma \hat{w}_{j}\left(y_{i j k}-y_{i j} \cdot\right)^{2}\right\}}$
with (t-1) and (N..-bt) d.f., where $\hat{f}_{j}=N \cdot{ }_{j} \hat{w}_{j} / \sum N \cdot{ }_{j} \hat{W}_{j}$.
When $\sigma_{\delta} \neq 0$, the adjusted $F$-statistic for testing $H_{2}: \sigma_{\tau}=0$ is more complicated. The F-statistic using estimated weights is
$\hat{F}_{6}=\frac{(b-1)\{\text { Treatments SS using estimated weights \}}}{\text { Interaction SS using estimated weights }}$
with ( $t-1$ ) and (b-1)(t-1) d.f.
Both the numerator and the denominator of $\hat{F}_{6}$ depend on estimated weights. Hence

$$
\hat{F}_{6}(\operatorname{adj})=\hat{F}_{6}-\sum_{j} \frac{1}{\hat{N}_{0} j^{-b}}\left[\frac{\left.\partial^{2} \hat{(F}_{6}\right)}{\partial x_{j}{ }^{2}}\right]_{\text {all } x_{j}=1} \text { using estimated weights. }
$$

Denoting the treatments SS and the interaction SS, both using estimated weights, by TSS and ISS respectively, we have

$$
\frac{\left.\partial^{2} \hat{(F}_{6}\right)}{\partial x_{j}^{2}}=\frac{b-1}{(\text { ISS })^{3}}\left\{(\text { ISS })^{2} \frac{\partial^{2} T S S}{\partial x_{j}{ }^{2}}-\text { ISS.TSS } \frac{\partial^{2} \text { ISS }}{\partial x_{j}{ }^{2}}-\right.
$$

$\left.2 \operatorname{ISS} \frac{\partial \text { ISS }}{\partial x_{j}} \frac{\partial \text { ISS }}{\partial x_{j}}+2 \operatorname{TSS}\left[\frac{\partial \text { ISS }}{\partial x_{j}}\right]^{2}\right\}$
where $\left[\frac{\partial(\text { ISS })}{\partial \mathrm{X}_{j}}\right]=-\mathrm{N} \cdot{ }_{j}{ }_{j}\left(\mathrm{y} \cdot{ }_{j} \cdot-\tilde{\mathrm{y}} \ldots\right)^{2}$,

$$
\text { all } x_{j}=1
$$

$$
\left[\frac{\partial(\text { ISS })}{\partial x_{j}}\right]_{\text {all } x_{j}=1}=-\sum_{i} n_{i j}{ }^{w} y_{j} y_{i j} \cdot\left(y_{i j} \cdot \tilde{y_{i} \cdot-y_{0 j} \cdot+y} \ldots\right)+
$$

$$
\begin{equation*}
\sum_{i} \sum_{j} n_{i j}{ }^{w}{ }_{j} y_{i j}{ }^{f} f_{j}\left(y_{i j} \cdot-\tilde{y}_{i} \ldots-y_{j} \cdot+\tilde{y} \ldots\right) \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
& {\left[\frac{\partial^{2}(\mathbb{T S S})}{\partial x_{j}{ }^{2}}\right]=2 N \cdot{ }_{j}{ }^{w}\left(y \cdot{ }_{j} \cdot-\tilde{y} \ldots\right)^{2}\left(l-f_{j}\right) } \\
& \text { all } x_{j}=1 \\
& \text { and } \quad\left[\frac{\partial^{2}(\text { ISS })}{\partial x_{j}{ }^{2}}\right]_{\text {all }}=2\left(1-f_{j}\right) \sum_{i} \sum_{i j} n_{i} w_{j} y_{i j} \cdot\left(y_{i j} \cdot-\tilde{y}_{i} \cdot \cdot-y \cdot{ }_{j} \cdot+\tilde{y} \ldots\right)
\end{aligned}
$$

$$
-2 \sum_{i} \sum_{j} n_{i j}{ }^{w} j^{y_{i j}} f_{j}\left(y_{i j} \cdot \tilde{y}_{i^{\bullet}}-y \cdot{ }_{j} \cdot \tilde{\sim}+\ldots\right)\left(1-f_{j}\right) \cdot . .(12)
$$

When $\sigma_{\delta}=0$, the adjusted F-statistic using estimated weights for testing $H_{3}: \sigma_{\beta}=0$, is given, as in section 3.1.5, by

$$
\hat{\mathrm{F}}_{7}(\mathrm{adj})=\frac{(\mathrm{N} . .-\mathrm{bt})\{\text { Blocks SS (using estimated weights \& adj) \}}}{(b-I)\left\{\Sigma \Sigma \Sigma \hat{\mathrm{w}}_{j}\left(\mathrm{y}_{\mathrm{ijk}}-\mathrm{y}_{\mathrm{ij}} \cdot\right)^{2}\right\}}
$$

with (b-1) and (N...-bt) d.f. and the blocks SS(using estimated weights \& adj.) is given by the equation (9) of section 3.1.5.

As shown in the previous section, the hypothesis $H_{3}$ : $\sigma_{\beta}=0$ cannot be tested in the presence of interaction variance $\sigma_{\delta}^{2}$.
(ii) Adjustment of the estimators of variance components The estimator using estimated weights, of $\sigma{ }_{\delta}{ }^{2}$ is

$$
\hat{\tilde{\sigma}}_{\delta}^{2}=\frac{b}{b-1} \cdot \frac{I S S-(b-1)(t-I)}{\hat{w} \cdot-\left(\sum N_{j}^{2} \hat{w}_{j}^{2} / \hat{w_{0}}\right)}
$$

with $\hat{w} \cdot \sum N \cdot{ }_{j} \hat{w}_{j}$ so that

$$
\hat{\tilde{o}}_{\delta}^{2}(a d j)=\hat{\tilde{\sigma}}_{\delta}^{2}-\sum_{j=1}^{t} \frac{1}{N \cdot j_{j}-b}\left[\frac{\partial^{2}\left(\hat{\tilde{o}}_{\delta}{ }^{2}\right)}{\partial x_{j}{ }^{2}}\right]_{x_{j}=1}^{\text {estimated weights }} \text { using }
$$

where

$$
\begin{aligned}
& \frac{\left.\partial^{2} \hat{\tilde{\sigma}}_{\delta}^{2}\right)}{\partial x_{j}^{2}}=\frac{b}{(b-I) A^{3}}\left[A^{2} \frac{\partial^{2} I S S}{\partial x_{j}^{2}}-A\{I S S-(b-I)(t-I)\}\right. \\
& \left.\frac{\partial^{2} A}{\partial x_{j}}{ }^{2}-2 A \frac{\partial A}{\partial x_{j}} \frac{\partial I S S}{\partial x_{j}}+2\{\operatorname{ISS}-(b-I)(t-1)\}\left(\frac{\partial A}{\partial x_{j}}\right)^{2}\right]
\end{aligned}
$$

with $A=\hat{w}_{0}-\Sigma_{N_{0}}{ }_{j} \hat{w}_{j}{ }^{2} / \hat{w}_{0}$,

$$
\begin{align*}
& {\left[\frac{\partial A}{\partial x_{j}}\right]=-\mathbb{N} \cdot j^{W}{ }_{j}\left(1-\frac{2 N \cdot j^{W} j^{W} \cdot-\Sigma \mathbb{N} \cdot j^{2} w_{j}^{2}}{w_{0}^{2}}\right), \ldots(13)} \\
& \text { all } x_{j}=1 \\
& {\left[\frac{\partial^{2} A}{\partial x_{j}{ }^{2}}\right]=\frac{f_{j}}{w \cdot}\left\{2 w{ }^{2}-6 N \cdot{ }_{j} w_{j} w \cdot+4 N \cdot{ }_{j}{ }^{2} w_{j}{ }^{2}+2 \Sigma N \cdot{ }_{j}{ }^{2}\right.} \\
& \text { all } x_{j}=1 \\
& \left.w_{j}^{2}\left(1-f_{j}\right)\right\} \text {. . . . . . . . . . . . . }  \tag{14}\\
& \text { and }\left[\frac{\partial(I S S)}{\partial x_{j}}\right]_{\text {all } x_{j}=1} \text { and }\left[\frac{\partial^{2} \text { ISS }}{\partial x_{j}^{2}}\right]_{\text {all } x_{j}=1} \text { are given by the equations (11) }
\end{align*}
$$

and (12) respectively.
In the same way, the adjusted estimator using estimated weights, of $\sigma{ }_{\tau}^{2}$ is given by

$$
\left.\left.\hat{\tilde{\sigma}}_{\tau}{ }^{2}(a d j)=\frac{T S S-\operatorname{ISS} /(b-I)}{\hat{w} \cdot-\Sigma \mathbb{N} \cdot{ }_{j}{ }^{2} \hat{w}_{j}{ }^{2} / \hat{w}}-\sum_{l}^{t} \frac{I}{N} \cdot_{j}-b\right] \frac{\partial^{2} \cdot\left(\hat{\tilde{\sigma}}_{\tau}{ }^{2}\right)}{\partial x_{j}{ }^{2}}\right]
$$

all $x_{j}=1$
using estimated weights
where

$$
\begin{aligned}
& \begin{aligned}
& \frac{\partial^{2}\left(\hat{\tilde{\sigma}}_{T}{ }^{2}\right)}{\partial x_{j}^{2}}=\frac{1}{A^{3}}\left\{A^{2} \frac{\partial^{2} B}{\partial x_{j}}{ }^{2}-A B \frac{\partial^{2} A}{\partial x_{j}{ }^{2}}-2 A \frac{\partial A}{\partial x_{j}} \frac{\partial B}{\partial x_{j}}\right. \\
&\left.+2 B\left(\partial A / \partial x_{j}\right)^{2}\right\}, \\
& B= \text { ISS }-I S S /(b-1), \\
& {\left.\left[\frac{\partial B}{\partial x_{j}}\right]_{\text {all }}\right]_{j}=1 }
\end{aligned}
\end{aligned}
$$

$\left.\left(y_{i j} \cdot-\tilde{y}_{i \cdot} \cdot-y_{\cdot j} \cdot+\tilde{y} \ldots\right)-\sum_{i} \sum_{j} n_{i j} w_{j} y_{i j} \cdot f_{j}\left(y_{i j} \cdot-\tilde{y}_{i} \cdots-y_{j} \cdot \tilde{y} \ldots\right)\right]$,
$\left[\frac{\partial^{2} B}{\partial x_{j}}\right]=2 N \cdot{ }_{j}{ }^{W}{ }_{j}\left(y \cdot{ }_{j} \cdot-\tilde{y} \ldots\right)^{2}\left(1-f_{j}\right)-\frac{2}{b-1}\left[\sum_{i} n_{i j}{ }^{w} j_{j}{ }^{y}{ }_{i j} \cdot\right.$ all $x_{j}=1$
$\left(y_{i j} \cdot-\tilde{y}_{i} \cdot \cdot-y_{\cdot j} \cdot+\tilde{y} \ldots\right)-2 \sum_{i} n_{i j} w_{j} y_{i j} \cdot f_{j}\left(y_{i j} \cdot \tilde{-y}_{i \cdot} \cdot-y_{\cdot j} \cdot+\tilde{y} \ldots\right)$
$\left.-2 \sum_{i} \sum_{j} n_{i j} w_{j} y_{i j} \cdot f_{j}\left(l-f_{j}\right)\left(y_{i j} \cdot-\tilde{y}_{i} \cdot \bullet-y_{j} \cdot+\tilde{y} \ldots\right)\right]$
and $\left[\frac{\partial A}{\partial x_{j}}\right]$ and $\left[\frac{\partial^{2} A}{\partial x_{j}^{2}}\right]$ are given by the equations

$$
\text { all } x_{j}=1 \quad \text { all } x_{j}=1
$$

(13) and (14) respectively.

Finally, the estimator using estimated weights, of $\sigma_{\beta}{ }^{2}$, is

$$
\hat{\tilde{\sigma}}_{\beta}^{2}=b(\text { SSS }-b+1) /(b-1) \hat{w} .-\{\operatorname{ISS}-(b-1)(t-1)\} /\left(\hat{w}_{\cdot}^{2} / \Sigma N_{\cdot j}^{2} \hat{w}_{j}^{2}-1\right)
$$

so that

$$
\hat{\tilde{\sigma}}_{\beta}^{2}(a d j)=\hat{\tilde{\sigma}}_{\beta}^{2}-\sum_{j} \frac{1}{\bar{N} \cdot j_{j}^{-b}}\left[\frac{\partial^{2} \hat{\tilde{\sigma}}_{\beta}^{2}}{\partial x_{j}{ }^{2}}\right] \begin{gathered}
\text { estimated weights } \\
\text { all } x_{j}=1
\end{gathered}
$$

where $\frac{\gamma^{2} \hat{\tilde{\sigma}}_{B}{ }^{2}}{\partial x_{j}{ }^{2}}=\frac{b}{(b-1) \hat{w}}\left\{\frac{\partial^{2}(B S S)}{\partial x_{j}{ }^{2}}+\frac{2 \hat{f}_{j} \partial(B S S)}{\partial x_{j}}\right.$
$\left.-2 \hat{f}_{j}\left(1-\hat{f}_{j}\right) \quad(B S S-t+1)\right\}$
$-\left\{\frac{1}{c^{3}} \frac{\partial^{2}(\text { ISS })}{\partial x_{j}{ }^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} C}{\partial x_{j}}{ }^{2}(\right.$ ISS $-\overline{b-1} \overline{t-1})-\frac{2}{C^{2}}$
$\frac{\partial C}{\partial x_{j}} \frac{\partial I S S}{\partial x_{j}}+\frac{2}{C^{3}}\left(\frac{\partial C}{\partial x_{j}}\right)^{2}($ ISS $\left.-\overline{b-1} \overline{t-1})\right\}$
with $C=\left(\hat{w} \cdot{ }^{2} / \Sigma N \cdot{ }_{j}{ }^{\hat{w}_{j}}{ }^{2}-I\right),\left[\frac{\partial C}{\partial X_{j}}\right]=2 N \cdot{ }_{j} w_{j} w \cdot\left(w \cdot N \cdot{ }_{j}{ }^{W}{ }_{j}\right.$ all $x_{j}=1$ $\left.-\Sigma N \cdot{ }_{j}^{2} w_{j}^{2}\right) /\left(\Sigma N \cdot{ }_{j}^{2} w_{j}^{2}\right)^{2}$,

$$
\left[\frac{\partial^{2} C}{\partial x_{j}^{2}}\right]=-2 N \cdot{ }_{j} w_{j}\left\{N \cdot{ }_{j} w_{j} C / \Sigma N \cdot{ }_{j}{ }^{2} w_{j}{ }^{2}+2 w \cdot\left(w \cdot N \cdot{ }_{j} w_{j}\right.\right.
$$

$$
\text { all } x_{j}=1
$$

$\left.\left.-\Sigma N \cdot{ }_{j}{ }^{2}{ }_{j}{ }^{2}\right)\left(I-2 N \cdot{ }_{j}{ }^{2} w_{j}{ }^{2} / \Sigma N \cdot{ }_{j}{ }^{2}{ }_{j}{ }^{2}\right) /\left(\Sigma N \cdot{ }_{j}{ }^{2} w_{j}{ }^{2}\right)^{2}\right\}$,

$$
\begin{aligned}
& {\left[\frac{\partial(B S S)}{\partial x_{j}}\right]=-\sum_{i} n_{i j} w_{j}\left(\tilde{y}_{i} \ldots-\tilde{y} \ldots\right)^{2}-2 \sum_{i} \sum_{j} n_{i j} w_{j} f_{j}\left(\tilde{y}_{i} \ldots-y \ldots\right) } \\
& \text { all } x_{j}=1 \quad\left(y_{i j}-\tilde{y}_{i} \ldots-y_{\mu_{j}}-\tilde{y} \ldots\right)
\end{aligned}
$$

$\left[\frac{\partial^{2}(B S S)}{\partial x_{j}{ }^{2}}\right]=2 \sum_{i} n_{i j} w_{j}\left(\tilde{y}_{i} \ldots-\tilde{y} \ldots\right)^{2}+4 \sum_{i} n_{i j} w_{j} f_{j}\left(\tilde{y}_{i} \ldots \tilde{y} \ldots\right)$ all $x_{j}=1$
$\left(y_{i j}-\tilde{y}_{i} \cdot-\mathrm{y} \cdot{ }_{j} \cdot+\tilde{y} \ldots\right)+2 \sum_{i} \sum_{j} n_{i j} w_{\cdot j} f_{j}{ }^{2}\left(y_{i j} \cdot-\tilde{y}_{i \cdot \bullet}-y \cdot j \cdot+\tilde{y} \ldots\right)^{2}$
$\left.+4 \underset{i}{\sum \sum_{j} n_{i j} W_{j} f_{j}(l-f}{ }_{j}\right)\left(\tilde{y}_{i,}-\tilde{y} \ldots\right)\left(y_{i j} .-\tilde{y}_{i} \ldots-y_{j} \cdot+\tilde{y} \ldots\right)$
and $\left[\frac{\partial(\text { ISS })}{\partial x_{j}}\right]_{\text {all } x_{j}=1}$ and $\left[\frac{\partial^{2} \text { (ISS) }}{\partial x_{j}{ }^{2}}\right]_{x_{j}=1}$
are given by (II)
and (12) respectively.

### 3.3 Fixed effects models with equal replication

While the results of sections 3.1.2 to 3.1.6 are entirely applicable, some simpler tests are available in this case. These were first discussed by Robinson and Balaam (1967) for correlated and heteroscedastic errors.

The model is the same as that of (6) in section 3.1 under the usual constraints (II), with the exception that the quantities $n_{i j}$ are now all equal to $r$. The proportionality condition is thus satisfied.

### 3.3.1 Test of significance of treatment effects

Taking the mean of the observations of the model with respect to the suffix $i$, we get under constraint (II),

$$
y \cdot j k=\beta:+\tau_{j}+\varepsilon \cdot j k=\mu j+\varepsilon \cdot j k, j=1,2, \ldots, t ;
$$

$k=1,2, \ldots, r$; say, where var. $\left(\varepsilon \cdot_{j k}\right)=\sigma_{j}{ }^{2} / b$, which differs from treatment to treatment. Hence, this model is the same as that of the one-way model with unequal group variances. Thus the methods of estimation and analysis described in Chapter 2 may be used.

The methods are also applicable when the number of observations per cell is constant for each treatment but varies from treatment to treatment.
3.3.2 Test of significance of block effects

Taking the mean of the observations under the model at (6) with respect to the suffix $j$, we get,

$$
y_{i . k}=\beta_{i}+\varepsilon_{i, k} \quad i=i, 2, \ldots, b ;
$$

$k=1,2, \ldots, r$, where $\operatorname{var}\left(\varepsilon_{i . k}\right)=\sum_{l}^{t} \sigma_{j}{ }^{2} / t^{2}$ which is a constant so that this model is a homoscedastic one-way one. The usual least squares analysis can be used for testing the significance of block effects. The procedure holds good even if the number of observations is constant within the cells of each block but varies from block to block.
3.3.3 Likelihood ratio tests for significance of interactions and treatment effects

Let $\underset{\sim}{Y}$ ik be the column vector of observations at the kth realisation within the ith block, ie., ${\underset{\sim}{i k}}=\left(y_{i l k}, \ldots\right.$, $\left.y_{i t k}\right)^{\prime} ; \quad i=1,2, \ldots, b ; \quad k=1,2, \ldots, r$. Let $\underset{\sim}{L}$ be $a(t-1) x t$ matrix such that

$$
\underset{\sim}{I} \underset{\sim}{I}=\underset{\sim}{0} \text { and } \underset{\sim}{L I}{ }_{\sim}^{\prime}=I_{\sim}{ }_{t-1}
$$

Then the elements of the vector $\underset{\sim}{\underset{\sim}{i k}} \underset{\sim}{\sim} \underset{\sim}{\underset{\sim}{Y}} \underset{\sim}{ }$ are ( $t-1$ ) orthogonal contrasts amongst the kth set of observations within the ith block. The matrix $\underset{\sim}{L}$ will be called the matrix of orthogonal contrasts.

Then the model at (6) of section 3.1 can be written, in vector notation, as

$$
\underset{\sim}{Z} i k=\underset{\sim}{\tau}+\underset{\sim}{\delta} \underset{i}{ }+\underset{\sim}{e} i k ; i=1,2, \ldots, b ; \quad k=1,2, \ldots, r
$$

where $\underset{\sim}{\tau}=I_{\sim}\left(\tau_{i}, \ldots, \tau_{t}\right)^{\prime},{\underset{\sim}{i}}=\underset{\sim}{L}\left(\delta_{i l}, \ldots, \delta_{i t}\right)^{\prime}$ and ${ }_{\sim}^{e}{ }_{i k}=$ $\underset{\sim}{L}\left(\varepsilon_{i l k}, \ldots, \varepsilon_{i t k}\right)^{\prime}$. It then follows that $\underset{\sim}{e} \underset{i k}{ }$ is distributed as multivariate normal with mean vector ${\underset{\sim}{\sim}}_{0}$ and dispersion matrix $\sum_{\sim}$ where

$$
\underset{\sim}{\sum}=\underset{\sim}{I} \operatorname{diag}\left(\sigma_{I}^{2}, \ldots \sigma_{t}^{\sigma}\right){\underset{\sim}{N}}^{\prime} \text {, which is non-diagonal. }
$$

We can now use the likelihood ratio (IR) tests of the multi-
variate analysis of variance for testing the hypotheses (i) $\underset{\sim}{\tau}=\underset{\sim}{0}$ and (ii) $\underset{\sim}{\delta} \underset{\sim}{0}=\underset{\sim}{0}$ for all i.

Robinson and Balaam (1967) considered independent contrasts of treatment observations instead of orthogonal ones as used here. One advantage of using the orthogonal contrasts is that the LR test-statistics are invariant under such transformation of data.

The LR test-statistics given by them are as follows.
(i) $\quad H_{T}: \underset{\sim}{\tau}=0$ ie., $\tau_{i}=0$ for all $i$.

LR test criterion for testing this hypothesis is
$\lambda^{2 / b r}=\frac{|\underset{\sim}{A}|}{\left|\underset{\sim}{A}+b r \underset{\sim}{Z} \cdot{\underset{\sim}{Z}}^{\prime} \cdots\right|}=\left(1+\frac{r}{r-1} \underset{\sim}{Z} \ldots{\underset{\sim}{S}}^{-1} \underset{\sim}{Z}{ }^{\prime} \ldots\right)^{-1}$


$$
Z_{\sim} \cdot=\sum_{k=1}^{r} Z_{\sim i k} / r .
$$

Since (br $\underset{\sim}{Z} \ldots \mathrm{~S}^{-1}{\underset{\sim}{Z}}^{\prime} \ldots$ ) is Hotelling's $T^{2}$, this is an exact test, ie.,

$$
\lambda^{2 / b r}=\left(1+\frac{t-1}{b r-b-t+2} F_{t-1, b r-b-t+2}\right)^{-1}
$$

under the hypothesis $\mathrm{H}_{\mathrm{T}}$.
(ii) $\quad H_{B T}: \underset{\sim}{\delta} \underset{i}{ }=\underset{\sim}{0}$ for all $i=1,2, \ldots b$ ie., $\delta_{i j}=0$ for all i. and $j$. The LR criterion for this test is given in the notation of Anderson (1958 , p. 208), by

$$
U_{t-1, b-1, b(r-1)}=\frac{|\underset{\sim}{A}|}{|\underset{\sim}{A}+\underset{\sim}{B}|}
$$



Now - $\left\{b r-1-\frac{1}{2}(b+t-1)\right\} \log _{e} U_{t-1, b-1, b(r-1)}$ is distributed asymptotically as $\chi^{2}$ with (b-1)(t-1) d.f. For small sample, further approximations may be used.

To show the invariance of the LR test-statistics, let $M$ be another matrix of orthogonal contrasts of treatment observations.

Then $\underset{\sim}{M}$ is given by

$$
\underset{\sim}{M}=\underset{\sim}{C} \underset{\sim}{\mathrm{I}}
$$

where $\underset{\sim}{C}$ is an orthogonal matrix. This was stated by Shukla (1972) without proof which may be as follows.

Since $\underset{\sim}{M}{ }^{\prime}$ is a $t x(t-1)$ matrix of rank ( $t-1$ ), there exists a non-singular $t \times t$ matrix $\underset{\sim}{C}$, and an orthogonal ( $t-1$ ) $x(t-1)$ matrix $\underset{\sim}{R}$ such that

$$
M^{\prime}={\underset{\sim}{C}}_{0}(\underset{\sim}{\underset{\sim}{T} t-1} \underset{\sim}{0})_{\sim}^{R} \quad \text { (see Rao, 1973, p.20). }
$$

or,

$$
\underset{\sim}{M}=\underset{\sim}{R^{\prime}}(\underset{\sim}{I} t-1 \vdots \underset{\sim}{0}) \underset{\sim}{\underset{\sim}{O}}{ }^{\prime}=\underset{\sim}{E}{\underset{\sim}{1}}
$$

 $(t-1) x t$ matrix of rank ( $t-1$ ).

Now by definition, $\underset{\sim}{0}=\underset{\sim}{M} \underset{\sim}{\mathbb{M}}{ }^{\prime}=\underset{\sim}{E}{\underset{\sim}{C}}_{\mathcal{C}}^{\underset{\sim}{1}}$ which implies that
 Thus ${\underset{\sim}{1}}_{1}$ is again a matrix of orthogonal contrasts. Applying this result once again we find that

$$
\underset{\sim}{C_{1}}=\underset{\sim}{F} \underset{\sim}{T}
$$

where $\underset{\sim}{F}$ is orthogonal and $\underset{\sim}{\mathbb{T}}$ is another matrix of orthogonal contrasts.

It then follows that by a suitable choice of the orthogonal matrix $\underset{\mathcal{C}}{ }$, the matrix $\underset{\sim}{\mathbb{M}}$ can be written as

$$
\underset{\sim}{\mathbb{M}}=\underset{\sim}{\mathrm{C}} \underset{\sim}{\mathrm{I}} .
$$

Now let $\lambda_{I}$ be the value of $\lambda_{\text {when }}^{\underset{\sim}{M}} \underset{\sim}{M}$ is used in place of $I_{\sim}$. Then the vector of newly transformed observations is given by

$$
\underset{\sim}{X}{ }_{i k}=\underset{\sim}{M} \underset{\sim}{Y}{ }_{i k}=\underset{\sim}{C} \underset{\sim}{I} \underset{\sim}{Y}{ }_{i k}=\underset{\sim}{C} Z_{i k}
$$


$2 / b r$

Similarly, the expression of the other LR criterion, $U_{t-1, b-1, b(r-1)}$, also remains unchanged.

The above method is easily generalised to multi-way factorial designs with equal numbers of observations per cell and with unequal group variances.

## GENERAL BLOCK DESIGNS

An additive fixed-effects model with unequal group variances is considered here for general block designs including both extended and incomplete block designs. Estimators of the linear parameters are obtained on the assumption that the group variances are known, and the corresponding analysis is provided. Canonical forms of two sums of squares are derived. When the group variances are not known, adjustment of estimators and test-statistics using estimated weights is suggested for removing bias. Finally, recovery of inter-block information is discussed.
4.1 Estimation and intrablock analysis when group variances are known

Let the additive fixed-effects model be:

$$
\left.\begin{array}{c}
y_{i j k}=\beta_{i}+\tau{ }_{j}+\varepsilon_{i j k} \\
i=1,2, \ldots, b ; j=1,2, \ldots, t \quad ; k=1,2, \ldots, n_{j i} \geqslant 0 ;
\end{array}\right] \ldots(15)
$$

where $\beta_{i}$ is the effect due to the ith block, $\tau j$ the effect due to the $j$ th treatment and $\varepsilon_{i j k}$ the error term having mean zero and variance, $\sigma_{j}{ }^{2}$. The errors are assumed to be independent of one another as before. Both incomplete and extended block designs are included in this model. Block sizes are unequal in general.

Let $Y$ be the vector of observations arranged treatment by treatment; then the model can be written as

$$
\underset{\sim}{y}={\underset{\sim}{\Delta}}^{\prime} \underset{\sim}{\tau}+{\underset{\sim}{D}}^{\prime} \underset{\sim}{\beta}+\underset{\sim}{\varepsilon}
$$

where $\underset{\sim}{\tau}$ and $\underset{\sim}{\beta}$ are the vectors of treatment and block effects respectively with the corresponding design matrices, ${\underset{\sim}{~}}^{\prime}$ and $\mathrm{D}^{\prime}$, and $\underset{\sim}{\varepsilon}$ is the vector of errors. $E(\underset{\sim}{\varepsilon})={\underset{\sim}{\sim}}^{\sim}$ and $\operatorname{var}(\underset{\sim}{\varepsilon})=$ $\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{1}^{2}, \ldots, \sigma_{t}^{2}, \ldots, \sigma_{t}^{2}\right)=\underset{\sim}{V}$, say... The rank of the overall design matrix is ( $b+t-1$ ).

## Further notations:

Let $\underset{\sim}{r}=\left(r_{1}, \ldots, r_{t}\right)^{\prime}$, the vector of replications of the treatments,

$$
\begin{aligned}
& \underset{\sim}{k}=\left(k_{1}, \ldots, k_{b}\right)^{\prime}, \text { the vector of block sizes, } \\
& \underset{\sim}{n}=\underset{\sim}{\Delta} \underset{\sim}{D}=\left(n_{j i}\right), \text { the incidence matrix of treatments }
\end{aligned}
$$

with the blocks,
with elements,

$$
\tilde{B}_{i}=\sum_{j} n_{j i} w_{j} y_{i j}
$$

$$
\tilde{G}=\underset{\sim}{w} \underset{\sim}{T}=\underset{\sim}{I} \underset{\sim}{\prime} \underset{\sim}{\tilde{B}} \text {, the weighted total of all obser- }
$$

$$
\text { vations and } N=\sum_{i} \sum_{j} n_{j i}
$$


 denotes ~
nate diagonal matrix with elements of the vector as the diagonal elements. The superscript; - $\delta$, will denote the inverse of such a diagonal matrix. Also $\sum_{i} n_{j i}=r_{j}$ and $\sum_{j} n_{j i}=k_{i}$.

By (2) of section 1.2 , the normal equations for
finding the weighted least squares estimators of the linear parameters are given by

$$
\begin{aligned}
& \underset{\sim}{w}=\left(w_{1}, \ldots, w_{t}\right)^{\prime} \text {, the vector of weights with } \\
& w_{j}=\left(I / \sigma_{j}{ }^{2}\right), \\
& \begin{array}{l}
\underset{\sim}{T}=\underset{\sim}{\underset{\sim}{B}} \underset{\sim}{Y}, ~ \text { the vector of treatment totals, } \\
\underset{\sim}{V}{\underset{\sim}{V}}^{-1} \underset{\sim}{Y}, \text { the vector of weighted block totals }
\end{array}
\end{aligned}
$$

or,



The two sets of normal equations then become

$$
{\underset{\sim}{w}}^{\delta} \underset{\sim}{r}{ }^{\delta} \underset{\sim}{\sim} \underset{\sim}{\sim}+\underset{\sim}{w}{ }^{\delta} \underset{\sim}{n} \underset{\sim}{\underset{\sim}{\underset{\sim}{w}}}={ }^{\delta} \underset{\sim}{T}
$$

and

$$
{\underset{\sim}{n}}^{\prime} \underset{\sim}{w}{ }^{\delta} \underset{\sim}{\sim}+\left(n_{\sim}^{n} \underset{\sim}{w}\right)^{\delta} \cdot \underset{\sim}{\underset{\sim}{B}}=\underset{\sim}{\tilde{B}}:
$$

Eliminating $\underset{\sim}{\underset{\sim}{\sim}}$ from the first set of equations, we get the reduced normal equations for the treatments as

$$
\left\{\underset{\sim}{r}{ }^{\delta}-\underset{\sim}{n}\left(\underset{\sim}{n}{\underset{\sim}{w}}^{w}\right)^{-\delta}\left(\underset{\sim}{n}{\underset{\sim}{w}}^{\delta}\right)\right\} \underset{\sim}{\sim}=\tilde{\sim}
$$

with $\underset{\sim}{Q}=\underset{\sim}{T}-\underset{\sim}{n}\left(n_{\sim}^{\prime} \underset{\sim}{w}\right)^{\delta}{\underset{\sim}{\sim}}_{\sim}^{\sim}$ as the vector of adjusted treatment totals. a unique solution for the treatment estimates is not possible.

Following Tocher (1952), the singular coefficient matrix may be replaced by a non-singular one in the following way.

We have, $\tilde{G}=\underset{\sim}{w}{ }^{\prime} \underset{\sim}{T}=\underset{\sim}{W}{ }^{\prime}\left(\underset{\sim}{r}{ }_{\sim}^{\mathcal{T}} \underset{\sim}{\sim}+\underset{\sim}{n} \underset{\sim}{\tilde{\beta}}\right)={\underset{\sim}{w}}^{\prime}{\underset{\sim}{r}}^{{\underset{\sim}{\delta}}^{\delta}} \underset{\sim}{\sim}$ assuming the constraint $\left(n_{\sim}^{\prime} w_{\sim}^{w}\right), ~ \underset{\sim}{\underset{\sim}{\sim}}=0$.

$$
=\tilde{\Omega}^{-1} \tilde{\sim}
$$

 It follows that $\underset{\sim}{\sim} \tilde{\sim}^{-1} 1=\underset{\sim}{\sim} \underset{\sim}{\sim}$ so that $\tilde{\sim}_{\sim}^{\sim} \underset{\sim}{\sim} \sim_{\sim}^{\sim}=\underset{\sim}{\sim}$.

$$
\begin{aligned}
& \left.\left(1 / \underset{\sim}{w}{ }_{\sim}^{r}\right)\right\} \underset{\sim}{\tau}
\end{aligned}
$$

Thus the treatment estimators are obtained as
$\tilde{\tau}=\underset{\sim}{\tilde{\Omega}}\left\{\underset{\sim}{\tilde{Q}}+\underset{\sim}{r}\left(\underset{\sim}{\tilde{G} / w_{\sim}^{\prime}} \underset{\sim}{r}\right)\right\}=\underset{\sim}{\tilde{\Omega}} \underset{\sim}{\tilde{Q}}+\underset{\sim}{1}\left(\underset{\sim}{\tilde{G}} \underset{\sim}{w}{ }_{\sim}^{\prime} r\right)$.
It follows from the second set of normal equations that the sum of squares due to all estimates is
with (b+t-l) d.f.
Ignoring the treatment effects, the model reduces to

$$
\underset{\sim}{Y}=\underset{\sim}{D}{ }^{\prime} \underset{\sim}{\beta}+\underset{\sim}{\varepsilon}
$$

The weighted least squares estimator of $\underset{\sim}{\beta}$ is now given by

$$
\underset{\sim}{\tilde{B}}=\left(\underset{\sim}{n}{ }^{\prime} \underset{\sim}{w}\right)^{-\frac{\underbrace{\sim}_{\sim}}{B}}
$$

and the $S S$ due to blocks (uncorrected) ignoring treatment effects by

$$
{\underset{\sim}{\tilde{\beta}}}^{\prime} \underset{\sim}{\sim} \underset{\sim}{\sim}=\underset{\sim}{\sim} \tilde{\sim}^{\prime}\left(\underset{\sim}{n}{ }^{\prime}\right)^{-1} \underset{\sim}{\sim} \underset{\sim}{\sim} \text { with b d.f. }
$$

Similarly, the $S S$ due to treatment (uncorrected) ignoring block effects is given by $\underset{\sim}{T}{\underset{\sim}{r}}^{r^{-\delta}} \underset{\sim}{W} \delta_{\sim}^{T}$ with t d.f. As $\underset{\sim}{I} \underset{\sim}{1} \underset{\sim}{W} \delta^{\tilde{Q}}=\tilde{Q}^{\prime} \underset{\sim}{W}{ }^{\delta} \underset{\sim}{I}=0$, the adjusted treatment sum of souares is
with ( $t-1$ ) d.f., and the $S S$ due to error is

$$
S S(E)=Y^{\prime}{\underset{\sim}{V}}^{-1} \underset{\sim}{Y}-{\underset{\sim}{B}}^{\prime}\left(\underset{\sim}{n}{ }^{\prime} \underset{\sim}{W}\right)^{-\delta} \underset{\sim}{\tilde{B}}-\tilde{Q}^{\prime} \underset{\sim}{\sim} \tilde{\sim}^{\prime} \underset{\sim}{W}{ }_{\sim}^{\delta} \underset{\sim}{Q}
$$

with $(\mathbb{N}-\mathrm{b}-\mathrm{t}+\mathrm{I}) \tilde{\mathrm{d}} . \mathrm{f}$. The above results reduce to those of
Tocher (1952) when $\underset{\sim}{w}=\frac{1}{\sim}$ for homoscedastic models.
The analysis of variance table is given below.

Analysis of variance table

Source	d.f.	SS	SS	$d . f$.	Source
Block \& general mean (unadj)   Treatments (adj)   Error	b $\begin{gathered} t-1 \\ (N-b-t+1) \end{gathered}$		$\begin{gathered} S_{4}=T_{\sim}^{\prime}{\underset{\sim}{r}}^{-\delta} \underset{\sim}{w}{ }_{\sim}^{\delta} \\ S_{5}=S_{1}+S_{2}-S_{4} \\ S_{3} \end{gathered}$	t $b-1$ $N-b-t+1$	Treatments and gen.mean(unadj)   Block   (adj)   Error

## A special case

Let us consider an experiment where the number of blocks is equal to the number of treatments and where the eth block contains $r(>1)$ plots for the fth treatment and only one plot for each of the other ( $t-1$ ) treatments ; $i=1,2, \ldots, t$. Then


$$
\underset{\sim}{r}=(r+t-1) \underset{\sim}{l}=\underset{\sim}{k} \text { and } \underset{\sim}{n^{\prime} w} \underset{\sim}{w}=\left\{(r-1) w_{1}+w .,(r-l) w_{2}+w^{\prime},\right.
$$

$\ldots,(r-1) w_{t}+w^{\prime}$.
Consequently, if $\tilde{\Omega}_{\sim}^{\sim}=\left(a_{i j}\right)$, the elements $a_{i j}$ are given by

$$
\begin{aligned}
& a_{i i}=(r+t-1)\left(1+\frac{w_{i}}{w_{\bullet}}\right)-w_{i} \cdot\left[\frac{r^{2}-1}{(r-1) w_{i}+w_{0}}+\sum_{j=1}^{t} \frac{1}{(r-1) w_{j}+w_{0}}\right] \\
& a_{i j}=w_{j}\left[\frac{r+t-1}{w_{\bullet}}+\frac{r-1}{(r-1) w_{i}+w_{\bullet}}+\frac{r-1}{(r-1) w_{j}+w_{\bullet}}+\sum_{k=1}^{t} \frac{1}{(r-1) w_{k}+w_{\bullet}}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{j i}=w_{i} a_{i j} / w_{j} \\
& (i \neq j=l, 2, \ldots, t)
\end{aligned}
$$

Moreover,

$$
T_{j}=r y_{j j}+\sum_{i \neq j}^{t} y_{i j}
$$

and

$$
\tilde{B}_{i}=r w_{i} y_{i i}+\sum_{j \neq i}^{t} w_{j} y_{i j}
$$

so that the adjusted treatment total for the fth treatment is

$$
\begin{aligned}
& \tilde{q}_{j}=T_{j}-(r-1) \tilde{B}_{j} /\left\{(r-1) w_{j}+w \cdot\right\}-\sum_{k=1}^{t} \tilde{B}_{k} /\{(r-1) \\
& \left.w_{k}+w \cdot\right\}, j=1, \ldots, t .
\end{aligned}
$$

Here $w .=\Sigma w_{j}$.

### 4.3 Canonical forms of the sums of squares

The adjusted $S S$ (treat.) and the $S S$ due to error can be expressed in the same sorts of canonical form as used by Pearce and Jeffers (1971) for homoscedastic models.

We have, $\left.\underset{\sim}{\sim}=\underset{\sim}{\Delta} \underset{\sim}{Y}-\underset{\sim}{\Delta} \underset{\sim}{D}{\underset{\sim}{\prime}}_{\sim}^{\left(n^{\prime} w\right.}\right)^{-}{ }_{\sim}^{\delta} \underset{\sim}{D} \underset{\sim}{V}{ }^{-1} \underset{\sim}{Y}$

$$
\begin{aligned}
& =\underset{\sim}{\Delta}(\underset{\sim}{\sim} \\
& =\underset{\sim}{\underset{\sim}{\underset{\sim}{\sim}}} \underset{\sim}{Y} \\
& \underset{\sim}{D}
\end{aligned}
$$

say, with $\underset{\sim}{\underset{\sim}{\sim}}=I_{\sim}-{\underset{\sim}{\sim}}^{\prime}\left(\underset{\sim}{n}{ }_{\sim}^{\underset{\sim}{w}}\right)^{-\delta} \underset{\sim}{D} \underset{\sim}{V}{ }^{-1}$.
Since $\underset{\sim}{D} \underset{\sim}{V}{ }^{-1} \underset{\sim}{I}=\underset{\sim}{n}{ }_{\sim}^{w}$, it follows that $\underset{\sim}{\underset{\sim}{\sim}} I=\underset{\sim}{0}={\underset{\sim}{\phi}}^{D_{\sim}^{\prime}}$ and $\tilde{\phi} \tilde{\sim}=\tilde{\phi}$. Thus $\underset{\sim}{\phi}$ is idempotent but not symmetric.

Then, $\quad S S$ (treat.) adj. $=\tilde{Q}_{\sim}^{\prime} \tilde{\Omega}_{\sim}^{1}{\underset{\sim}{w}}^{W} \underset{\sim}{\sim}$

$$
\begin{aligned}
& =Y^{\prime} \quad \underset{\sim}{\phi^{\prime}} \Delta_{\sim}{ }_{\sim}^{\sim} \tilde{\sim}^{\prime} \underset{\sim}{W}{ }_{\sim}^{\delta} \underset{\sim}{\Delta} \underset{\sim}{\underset{\phi}{Y}} \underset{\sim}{Y} \text {, } \\
& \underset{\sim}{\tilde{I}}=\{\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\underset{\sim}{\phi}}+\underset{\sim}{I} \underset{\sim}{w} \underset{\sim}{\Delta}(1 / \underset{\sim}{w} \underset{\sim}{r})\}
\end{aligned}
$$



$$
\left.+\underset{\sim}{\Delta} \underset{\sim}{w} \underset{\sim}{1} \underset{\sim}{l}\left(1 / w_{\sim}^{\prime} \underset{\sim}{r}\right)\right\} .
$$

Now let

$$
\tilde{\sim}={\underset{\sim}{V}}^{-1} \underset{\sim}{\dot{\phi}}-\tilde{\sim}^{\prime} \Delta_{\sim}^{\prime}{\underset{\sim}{\Omega}}^{\prime} \underset{\sim}{w}{ }_{\sim}^{\delta} \underset{\sim}{\phi}
$$

It follows that $\underset{\sim}{\underset{\sim}{\underset{~}{~}}} \underset{\sim}{\sim}=\underset{\sim}{\psi}$ and $\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\tilde{I}}=\underset{\sim}{\sim}=\underset{\sim}{\underset{\sim}{D}}{ }^{\prime}$
so that

$$
\begin{aligned}
& Y_{\sim}^{\prime} \underset{\sim}{\mathcal{U}} \underset{\sim}{Y}=\underset{\sim}{Y}{ }_{\sim}^{\prime}{\underset{\sim}{V}}^{-1} \underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{Y}-{\underset{\sim}{Y}}^{\prime} \underset{\sim}{\sim}{ }^{\prime}{\underset{\sim}{\Delta}}^{\prime}{\underset{\sim}{\sim}}_{\sim}^{\prime} \underset{\sim}{\underset{\sim}{W}}{ }^{\delta} \underset{\sim}{\Delta} \underset{\sim}{\dot{\phi}} \underset{\sim}{Y} \\
& ={\underset{\sim}{Y}}^{\prime}{\underset{\sim}{V}}^{-1} \underset{\sim}{Y}-\underset{\sim}{\underset{\sim}{B}}{ }_{\sim}^{\prime}\left(\underset{\sim}{n}{ }_{\sim}^{w}\right)^{-\delta} \underset{\sim}{\underset{B}{\sim}}-S S(\text { treat. }) \text { adj } \\
& =\operatorname{SS}(E)
\end{aligned}
$$

and $\underset{\sim}{Y}\left(\underset{\sim}{V}{ }^{-1} \underset{\sim}{\sim}-\underset{\sim}{\sim}\right) \underset{\sim}{Y}={\underset{\sim}{Y}}^{\prime} \underset{\sim}{\sim} \Delta_{\sim}^{\prime}{\underset{\sim}{\Omega}}^{\prime} \underset{\sim}{W} \underset{\sim}{\delta} \underset{\sim}{\dot{\phi}} \underset{\sim}{Y}$

$$
=\text { Adjusted SS (treatments). }
$$

Thus the adjusted treatments $S S$ and the $S S$ for error can be expressed in terms of matrices, $\underset{\sim}{\dot{\sim}}$ and $\underset{\sim}{\psi}$, which reduce respectively to the matrices $\underset{\sim}{~}$ and $\underset{\sim}{\underset{\sim}{*}}$ defined by Pearce and Jeffers (1971) when $\underset{\sim}{w}=\underset{\sim}{1}$ for homoscedastic models.

### 4.4 Estimation and analysis when group variances are unknown

The quantity $n_{j i}$ denotes the number of times the $j$ th treatment occurs in block i. For each j, we assume that there is at least one value of $i$ for which $n_{j i}>3$. If each treatment is replicated in exactly one block, and each block has only one treatment occurring more than once, then $b=t$. Otherwise, b may be greater or less than t. This includes extended block designs and also the designs where some or all blocks may not contain all the treatments. Block sizes are unequal in general as before.

$$
\begin{aligned}
& =\left(r_{j}-b\right) \sigma_{j}{ }^{2} \text {, } \\
& s_{j}{ }^{2}=\sum_{i k} \sum_{k}\left(y_{i j k}-y_{i j} \cdot\right)^{2} /\left(r_{j}-b\right) \text { is an unbiased }
\end{aligned}
$$

estimator of $\sigma_{j}{ }^{2}, \quad j=1,2, \ldots, t$. For $j \neq j ', s_{j}{ }^{2}$ and $s_{j}{ }^{2}$ are independent. When $n_{j i}=0$ or 1 in a cell, the contribution to the $S S$ for ${ }_{s}{ }_{j}{ }^{2}$ and to its d.f. from this cell will be zero. Bartlett's $x^{2}$-test can be used to test the homogeneity of error variances.

For any experiment under the model (15), the estimators of the linear parameters and other statistics may be calculated with the help of the formulae given above using estimated weights $\hat{\mathrm{w}}_{j}=1 / s_{j}{ }^{2}$ in place of the actual weights. Such estimators and other statistics including test-statistics using estimated weights can then be adjusted for bias by

Theorem 1 (section 2.1.4).

### 4.5 Recovery of inter-block information

Patterson and Thompson (1971) provided a method of modified maximum likelihood for recovery of inter-block information for incomplete block designs when block sizes are unequal. The same method may be used for mixed heteroscedastic models with random block effects as stated below.

The model is the same as that in (15) with the exception that the block effects, $\beta_{i}$, are now random variables with mean, $\beta$, and variances, $\sigma_{\beta}{ }^{2}$. Then the variance of the observation vector $\mathcal{Z}$ is given by

$$
\operatorname{var}(\underset{\sim}{Y})=\operatorname{diag}\left(\sigma_{1}^{2}+\sigma_{\beta}^{2}, \ldots, \sigma_{1}^{2}+\sigma_{\beta}^{2}, \ldots, \sigma_{t}{ }^{2}+\sigma_{\beta}^{2}, \ldots, \sigma_{t}{ }^{2}+\sigma_{\beta}^{2}\right)
$$

$=\underset{\sim}{H}$, say. As

$$
E\left\{\sum_{i}^{\sum k}\left(y_{i j k}-y_{i j} \cdot\right)^{2}\right\}=\left(r_{j}-b\right) \sigma_{j}^{2} ; \text { it }
$$

follows that

$$
s_{j}^{2}=\sum_{i} \sum_{k}\left(y_{i j k}-y_{i j} \cdot\right)^{2} /\left(r_{j}-b\right)
$$

remains an unbiased estimator of $\sigma_{j}{ }^{2}, j=1,2, \ldots, t$; and $s_{j}{ }^{2}$ and $s_{j}{ }^{2}$ are independent when $j \neq j^{\prime}$.

The estimator of $\sigma_{\beta}{ }^{2}$ is obtained from the logarithm of the likelihood function of $\underset{\sim}{S} \underset{\sim}{Y}$ where $\underset{\sim}{S}=\underset{\sim}{I}-\underset{\sim}{\Delta}{ }^{\prime}(\underset{\sim}{\Delta} \underset{\sim}{\Delta})^{-1} \underset{\sim}{\Delta}$, which is given by

$$
I=\text { const. }-\frac{1}{2} \sum_{S} \log _{S}-\frac{1}{2} \underset{\sim}{Y}(\underset{\sim}{S H} \underset{\sim}{S})_{\sim}^{Y} .
$$

Here the quantities $\xi_{s}$ are the non-zero latent roots of $\underset{\sim}{H} \underset{\sim}{S}$ and
${\underset{\sim}{A}}^{-g}$ denotes a generalised inverse of $\underset{\sim}{A}$ as defined by the authors. The modified maximum likelihood estimator of $\sigma_{\beta}{ }^{2}$
is then obtained by solving the equation

$$
\frac{\partial L}{\partial \sigma_{\beta^{2}}^{2}}=-\frac{1}{2} \underset{\sim}{E}+\frac{1}{2} \underset{\sim}{B}=0
$$

where $\left.\underset{\sim}{B}=\underset{\sim}{Y} \underset{\sim \sim \sim}{(S H S})^{-g} \underset{\sim \sim \sim}{(S H S}\right)^{-g} \underset{\sim}{Y} \quad$ and $\underset{\sim}{E}=\operatorname{tr}\left\{\underset{\sim \sim \sim}{(S H S)^{-g}}\right.$ \}
The solution, $\tilde{\sigma}_{\beta}{ }^{2}$, will be in terms of $\sigma_{j}{ }^{2}$. The estimator, $\hat{\tilde{\sigma}}_{\beta}{ }^{2}$, using the estimated weights can be adjusted by using Theorem 1.

Finally, the treatment es.timators using the interblock information are obtained by solving the weighted least squares equations:

$$
\underset{\sim}{\tilde{T}}=\left(\underset{\sim}{\Delta}{\hat{\underset{\sim}{H}}}^{-1} \underset{\sim}{\Delta}\right)^{-1} \underset{\sim}{\Delta} \hat{\sim}^{-1} \underset{\sim}{Y}
$$

where $\underset{\sim}{H}$ is $\underset{\sim}{H}$ when $\sigma_{j}{ }^{2}$ and $\sigma_{\beta}{ }^{2}$ are replaced by their corresponding estimators.

For known group variances, the weighted least squares estimators of the linear parameters and the corresponding analysis are given. The MINQUE and almost unbiased estimators (AUE) of the error variances are derived. A theorem on the expectation of functions of correlated $x^{2}$-variates is proved. The covariance between any two of the AUE's is found to be negligible. The test-statistics using estimated weights are adjusted for removing bias. Finally, expressions for joint confidence intervals of contrasts of both the treatment and block effects are provided.

### 5.1 Estimation and anlysis when the error variances are known

Let the linear model be

$$
\begin{gathered}
y_{i j}=\beta_{i}+{ }_{j}+\varepsilon_{i j} \\
(i=1,2, \ldots, b ; j=1,2, \ldots, t)
\end{gathered}
$$

where $\beta_{i}$ is the effect due to the ith block, ${ }^{\tau}{ }_{j}$ the effect due to the $j$ th treatment and $\varepsilon_{i j}$ the error term having mean zero and variance $\sigma_{j}{ }^{2}$. The errors are assumed to be independent of one another. This is a special case of the model (6) in section 3.1.1 with the restrictions that $n_{i j}=1$ for all $i$ and $j$ and that the interaction term is now the error term.

The weighted least squares estimators (WJS) of the linear parameters and the sums of squares can therefore be
obtained from the corresponding expressions of section 3.1.2 and are given below.

The WLS estimators $\hat{\tau}_{j}=y \bullet_{j}$ and $\hat{\beta}_{i}=\sum_{j} w_{j} y_{i j} / \sum_{j} w_{j}=\tilde{y}_{i}$. are unbiased for the parameters $\tau_{j}$ and ( $\beta_{i}+\sum w_{j} \tau_{j} / w_{j}$ ) respectively. Thus $\tilde{\beta}_{i}$ is biased for $\beta_{i}$ unless $\sum w_{j} \tau_{j}=0$ in the population although any contrast $\Sigma_{c_{i}} \tilde{\beta}_{i}$ is unbiased for the corresponding parametric contrast $\Sigma_{C_{i}} \beta_{i}$.

Furthermore, $\operatorname{var}\left(\hat{\tau}_{j}\right)=\sigma_{j}{ }^{2} / b=1 / b_{j}$ and $\operatorname{var}\left(\tilde{\beta}_{i}\right)=$ (I/ $\Sigma_{W_{j}}$ ) which is a constant.

The three (corrected) sums of squares (SS) for the analysis of variance are
and

$$
\begin{aligned}
& \text { SS (treatments) }=\mathrm{b} \sum \mathrm{w}_{j}(\mathrm{y} \cdot j-\tilde{\mathrm{y}} \ldots)^{2} \\
& \text { SS (blocks) }
\end{aligned}=\mathrm{w} \cdot \sum\left(\tilde{\mathrm{y}}_{\mathrm{i}} \cdot-\tilde{\mathrm{y}} \ldots\right)^{2} .
$$

with d.f. $(t-1),(b-1)$ and $(b-1)(t-1)$ respectively, where $\tilde{y} . .=\Sigma w_{j} y_{j} / w$. and $w_{\bullet}=\Sigma w_{j}$.

Analysis of variance table

Source of variation	d.f.	S.S	E(MS )
Blocks	$\mathrm{b}-1$	$\text { w. } \Sigma\left(\tilde{y}_{i} \cdot-\tilde{y} \ldots\right)^{2}$	$\begin{aligned} & 1+w_{0} \cdot \sum\left(\beta_{i}-\beta_{0}\right)^{2} / \\ & (b-1) \end{aligned}$
Treatments	$t-1$	$b \Sigma w_{j}(y \cdot j-\tilde{y} . .)^{2}$	$\begin{aligned} & 1+b \sum w_{j}(\tau, \tilde{\tau})^{2} / \\ & (t-1) \end{aligned}$
Error	$(b-1)(t-1)$	$\left\lvert\, \begin{aligned} & \Sigma \Sigma w_{j}\left(y_{i j}-\tilde{y}_{i} .\right. \\ & \left.-y \cdot \tilde{j}_{j}+\tilde{y}_{n}\right)^{2} \end{aligned}\right.$	$1$
Total (corrected)	(bt-1)	$\begin{aligned} & \Sigma_{w_{j}} y_{i j}{ }^{2}- \\ & \left(\Sigma_{w_{j}} Y_{j}\right)^{2} / b w \end{aligned}$	

$$
\text { or } x^{2}-\text { test }
$$

When the F-test indicates significant differences among the treatment or block effects, the difference between any two of the treatment or block effects can be tested by the normal test because

$$
z_{1}=\left(\hat{\tau}_{j}-\hat{\tau}_{k}\right) /\left\{\left(I / b w_{j}\right)+\left(I / b w_{k}\right)\right\}^{\frac{1}{2}}
$$

and $z_{2}=\left(\tilde{\beta}_{i}-\tilde{\beta}_{\ell}\right) /\left\{2 / w_{\cdot}\right\}^{\frac{1}{2}}$ are both standardised normal variates under the null hyporteses.

### 5.2 Estimation of weights

If the error variances are not known, these have to be estimated from the sample for use in computing the required statistic $s$.

The maximum likelihood estimator of $\sigma_{j}{ }^{2}$ is given by

$$
\tilde{\sigma}_{j}^{2}=\sum_{i=1}^{b}\left(y_{i j}-\tilde{y}_{i} \cdot-y_{j}+\tilde{y} \ldots\right)^{2} / b,
$$

which involves the error variances. Russell and Bradley (1958) showed that the iterative solution to this equation converges for all $j$. The limiting solution is zero for any one $j=p$, say. The other estimators are

$$
\tilde{\sigma}_{j}^{2}=\sum_{i}\left(y_{i j}-y \cdot j-y_{i p}+y \cdot{ }_{p}\right)^{2} / b \quad, \quad j \neq p, \quad j=1,2, \ldots, t
$$

The non-zero estimators are thus correlated and their distributional properties are difficult to obtain.

The minimum norm quadratic unbiased estimator (MINQUE) of $\sigma_{j}{ }^{2}$ is obtained below.

Let $\underset{\sim}{Y}$ be the vector of observations arranged treatment by treatment; then the model can be written in the form

$$
\begin{aligned}
\underset{\sim}{Y} & =\Delta_{\sim}^{\prime} \underset{\sim}{\tau}+{\underset{\sim}{D}}^{\prime} \underset{\sim}{\beta}+\underset{\sim}{\varepsilon} \\
& \left.=\left(\Delta^{\prime} \vdots D^{\prime}\right)(\underset{\sim}{\mathcal{\beta}})+\underset{\sim}{\varepsilon}\right)
\end{aligned}
$$

as in section 4.I. The over-all design matrix is singular and ${\underset{\sim}{\sim}}^{I_{\sim}} \underset{\sim}{I}=0$ by the constraint. To obtain the projection matrix we need a generalised inverse of the matrix
( $\underset{\sim}{\text { D. }} \underset{\sim}{\Delta})\left({\underset{\sim}{\Delta}}^{\prime} \sum_{\sim}^{D}{ }^{\prime}\right)$, which can be obtained by a method given by Rão (1973, p.225) as used in section 3.1.3. But a simpler method is to re-parameterize the treatments by an orthogonal transformation and thereby transform the design matrix into one of full rank*. For this let us consider Helmert's transformation of treatment parameters given by

$$
\underset{\sim}{\tau}=\underset{\sim}{c} \underset{\sim}{\tau}
$$

where

$$
\begin{aligned}
& =\left(\begin{array}{c}
\stackrel{C}{c}_{1} \\
\underset{\sim}{c} \\
\underset{\sim}{2}
\end{array}\right),
\end{aligned}
$$

say, with ${\underset{\sim}{\sim}}_{2}$ as the last row of $\underset{\sim}{c}$. Since $\underset{\sim}{c}{\underset{\sim}{2}}_{\underset{\sim}{\tau}}^{\tau}=0$ by the constraint, the last element of $\underset{\sim}{\tau}$ is zero so that
${\underset{\sim}{\tau}}_{1}=(\stackrel{\sim}{\because} \underset{0}{0} \cdot)$, say. The matrix $\underset{\sim}{c}$ is orthogonal so that
$\underset{\sim}{c} \underset{\sim}{c}=\underset{\sim}{I}=\underset{\sim}{c} \underset{\sim}{c}{ }_{\sim}^{\prime}$ and furthermore $\underset{\sim}{c_{1}} 1=0$. $\quad$ Hence,

[^0]
\[

$$
\begin{aligned}
& \underset{\sim}{Y}=\underset{\sim}{\Delta}{\underset{\sim}{1}}_{\sim}^{c_{1}^{\prime}} \underset{\sim}{\tau} 0 \\
&=\underset{\sim}{X} \underset{\sim}{D}{ }_{\sim}^{\prime} \underset{\sim}{\beta} \\
& \underset{\sim}{\varepsilon} \\
& \underset{\sim}{\varepsilon}
\end{aligned}
$$
\]

say, with the design matrix $\underset{\sim}{X}=\left(\underset{\sim}{\Delta}{\underset{\sim}{c}}^{C_{i}^{\prime}} \vdots_{\sim}^{D}{ }^{\prime}\right)$, now a matrix of full rank.
whence
where $I_{\sim b}$ is the identity matrix of order $b$ and $\underset{\sim}{J}$ is a matrix with all its elements equal to unity. Thus, we have,
and the projection matrix $\underset{\sim}{S}$ is given by
where $J_{\sim}$ is the square matrix of order $b$ with all its elements equal to l. It is easily observed that $\underset{\sim}{S Y}$ is the vector of residuals.

Now let $\underset{\sim}{F}=\left(f_{i j}\right)$ with $f_{i j}$ as the square of the (ie )th element of the projection matrix $\underset{\sim}{S}, \underset{\sim}{\delta}=\left(\sigma_{1}{ }^{2}, \ldots\right.$, $\left.\sigma_{1}{ }^{2}, \ldots, \sigma_{t}{ }^{2}, \ldots, \sigma_{t}{ }^{2}\right)^{\prime}$, the vector of error variances, each $\sigma_{j}{ }^{2}$ being repeated $b$ times, and $\underset{\sim}{v}=\left\{\left(y_{11}-y_{1} \cdot-y_{\cdot 1}+\right.\right.$ $\left.y ..)^{2}, \ldots .,\left(y_{b t}-y_{b} \cdot-y_{. t}+y \ldots\right)^{2}\right\}^{\prime}$, the vector of squares of residuals. Then the MINQUE's of $\sigma_{j}{ }^{2}$ are obtained from

$$
\underset{\sim}{F} \underset{\sim}{\delta}=\underset{\sim}{V} .
$$

Adding the $b$ equations for $\sigma_{j}{ }^{2}$, we have,

$$
\begin{aligned}
& \frac{1}{b^{2} t^{2}}\left\{b^{2}(b-1) \sigma_{1}^{2}+b^{2}(b-1)_{\sigma_{2}}^{2}+\cdots+b^{2}(b-1)(t-1)^{2} \sigma_{j}^{2}+\ldots+b^{2}(b-1) \sigma_{t}^{2}\right\} \\
= & \sum_{i=1}^{b}\left(y_{i j}-y_{i .}-y ._{j}+y \ldots\right)^{2}
\end{aligned}
$$

or,

$$
\frac{b-1}{t^{2}}\left\{\sigma_{i}^{2}+\cdots+(t-1)^{2} \sigma_{j}^{2}+\cdots+\sigma_{t}^{2}\right\} \quad=s_{j}^{2}
$$

say, $j=l, 2, \ldots, t$ All the $t$ equations can be written together as

$$
\begin{aligned}
& \left\{\left(t^{2}-2 t\right) I_{t}+\underset{\sim}{J}\right\} \quad\left(\hat{\sigma}_{I}{ }^{2}, \ldots, \hat{\sigma}_{t}{ }^{2}\right)^{\prime}= \\
& \frac{t^{2}}{b-1}\left(S_{1}{ }^{2}, \ldots, S_{t}{ }^{2}\right)^{\prime} .
\end{aligned}
$$

If we write the inverse of the coefficient matrix as $\alpha I_{\sim}+\beta J_{\sim}^{J}$, then $\alpha$ and $\beta$ are given by

$$
\alpha=1 / t(t-2) \quad \text { and } \quad \beta=-1 / t^{2}(t-1)(t-2) .
$$

The MINQUE of $\sigma_{j}{ }^{2}$ is then obtained as

$$
\begin{aligned}
& \hat{\sigma}_{j}^{2}=\{1 /(b-1)(t-1)(t-2)\}\left\{( t ^ { 2 } - t ) \sum _ { i = 1 } ^ { b } \left(y_{i j}-y_{i}-\right.\right. \\
&y \cdot j+y \ldots)^{2}-\Sigma \Sigma\left(y_{i j}-y_{i} \cdot-y \cdot j\right. \\
&\left.y \ldots)^{2}\right\}
\end{aligned}
$$

Ehrenberg (1950) mentioned two unbiased estimators of $\sigma_{j}{ }^{2}$ and this is one of them. This was also obtained by Russell and Bradley (1958) in a different way.

These estimators are obviously correlated and difficult to handle algebraically.

A simpler estimator called an almost unbiased estimator (AUE) was provided by Horn et al. (1975). They gave a method of obtaining an AUE from a MINQUE. Later on, Horn and Horn (1975) showed that the AUE possessed a smaller mean square error than the MINQUE in a wide range of situations.

In this case, the method of Horn et al. gives the AUE of $\sigma_{j}{ }^{2}$ as

$$
\begin{aligned}
s_{j}{ }^{2} & =\left(S_{j}{ }^{2} / b\right)\left(1-k_{j j}\right)^{-1} \\
& =\left(S_{j}{ }^{2} / b\right)\{1-(b+t-1) / b t\}^{-1}
\end{aligned}
$$

where $k_{j j}=(b+t-l) / b t$ is the $j t h$ diagonal element of $\left.X_{\sim}^{X}{ }_{\sim}^{X} \underset{\sim}{X}{ }_{\sim}^{\prime}\right)^{-1}{\underset{\sim}{X}}^{X}$. Unlike MINQUE, AUE is always positive. The covariance between $s_{j}{ }^{2}$ and $s_{j}{ }^{2}\left(j \neq j^{\prime}\right)$ is negligible as is shown in section 5.4 .

$$
\text { If we let } u_{i}=y_{i j}-y_{i} \text {. so that } u .=\sum_{l}^{b} u_{i} / b \text {, then }
$$

the random variables $u_{i}$ are independently and normally distributed on the assumption of normality of errors, and $\operatorname{var}\left(u_{i}\right)=(1-2 / t) \sigma_{j}{ }^{2}+\bar{\sigma}^{2} / t$ where $\bar{\sigma}^{2}=\sum_{I}^{t} \sigma_{j}{ }^{2} / t$.

Replacing $\bar{\sigma}^{2}$ by $\sigma_{j}{ }^{2}$ as an approximation, we have $\operatorname{var}\left(u_{i}\right)=\sigma_{j}{ }^{2}(1-I / t)$ so that the distribution of $s_{j}{ }^{2}=$ $\sum_{I}^{b}\left(u_{i}-u_{0}\right)^{2}$ may be approximated by that of $x^{2} \sigma_{j}^{2}(1-1 / t)$ with (b-1) d.f.

$$
\text { Johnson (1962) recommended that } F=S_{j}{ }^{2} / S_{j \prime}{ }^{2}\left(j \neq j^{\prime}\right)
$$

might be regarded as an F-statistic with $(b-1)$ and $(b-1)$ d.f. for testing the hypothesis: $\sigma_{j}=\sigma_{j}$, when $b>5$.

$$
\begin{aligned}
& \text { As } s_{j}^{2} / \sigma_{j}^{2}(1-1 / t)=b s_{j}^{2}\{1-(b+t-l) / b t\} / \sigma_{j}^{2} \\
& (1-1 / t)=(b-1) s_{j}^{2} / \sigma_{j}^{2}
\end{aligned}
$$

we may assume that $(b-1) s_{j}{ }^{2} / \sigma_{j}{ }^{2}$ is approximately a $x^{2}-$ variate with (bl) def.

### 5.3 A Theorem on the expectation of functions of correlated $x^{2}$-variates

When the estimators of the error variances are mutually correlated, the Theorem 1 (section 2.1.4) due to Meier needs to be generalised for use in the adjustment of statistics. The generalised form is given in

Theorem 2. Let $v_{j} x_{j}$ be $x^{2}$-variates with $\nu_{j}$ d.f., $j=1,2$, ...,t. Let these variates be mutually correlated and $v_{j}$ be large. Let $f\left(x_{I}, \ldots, x_{t}\right)$ be a rational function with no singularities in the range $0<x_{1}, \ldots, x_{t}<\infty$. Then asymptotically in $\nu_{j}$,

$$
\begin{aligned}
& E\left\{f\left(x_{1}, \ldots, x_{t}\right)=f(1, \ldots, 1)+\sum_{j=1}^{t} \frac{1}{v_{j}}\left[\frac{\partial^{2} f\left(x_{1}, \ldots, x_{t}\right)}{\partial x_{j}{ }^{2}}\right]\right. \\
& \text { all } x_{j}=1 \\
& +\frac{1}{2} \sum_{j \neq k} E\left(x_{j}-1\right)\left(x_{k}-1\right)\left[\frac{\partial^{2} f\left(x_{1}, \ldots, x_{t}\right)}{\partial x_{j} \delta x_{k}}\right] \\
& \text { all } x_{j}=1 \\
& \left.+ \text { terms of order lower than } 0 \underset{j k}{\{\Sigma}\left(I / \nu_{j k} \nu_{k}\right)^{\frac{1}{2}}\right\} \text {. }
\end{aligned}
$$

Proof: As a rational function, $f$ is the quotient of two polynomials and as such admits partial derivatives of all orders. By the non-singularity assumption, these derivatives are all finite within the range ( $0, \infty$ ). The Taylor's series expansion of $f$ in $x_{j}$ about its expected value $l$ is thus given by

$$
\begin{align*}
& f\left(x_{1}, \ldots, x_{t}\right)=f(1, \ldots, 1)+\sum_{r=1}^{n} \frac{1}{r!}\left[\left(x_{i}-1\right) \frac{\partial}{\partial x_{l}}+\ldots+\right. \\
& \left.\left(x_{t}-1\right) \frac{\partial}{\partial x_{t}}\right] \stackrel{r}{f(1,1, \ldots 1)+R_{n}} \quad . \cdot . \cdot \cdot \cdot \cdot \cdot \cdot \tag{16}
\end{align*}
$$

The term $R_{n}$ is the remainder given by

$$
\begin{aligned}
& R_{n}=\frac{1}{n!}\left[\left(x_{1}-1\right) \frac{\partial}{\partial x_{1}}+\ldots+\left(x_{t}-1\right) \frac{\partial}{\partial x_{t}}\right]^{n} \\
& \left\{f\left(\xi_{1}, \ldots, \xi_{t}\right)-f(1, \ldots, 1)\right\}
\end{aligned}
$$

where $\left|\xi_{j}-1\right|<\left|\quad x_{j}-1\right|$ and the differentiation is done before the resulting expressions are evaluated at $\mathrm{x}_{\mathrm{j}}=1$ and $x_{j}=\xi_{j}$ for all $j$. Using the multinomial expansion, the remainder term can be written as

$$
\begin{aligned}
R_{n}=\frac{1}{n!} \sum\left(x_{h}-1\right)\left(x_{i}-1\right) \ldots\left(x_{j}-1\right)\left(x_{k}-1\right)\left[\begin{array}{c}
(h, \ldots, k) \\
f\left(\xi_{1}, \ldots, \xi_{t}\right) \\
(h, \ldots, k) \\
\\
\\
\\
(1, \ldots, 1)
\end{array}\right]
\end{aligned}
$$

where $f^{(h, . ., k)}$ denotes the nth order partial derivative of $f$ with repsect to the variables in some order (including repetitions) and the sum includes all possible pure and mixed $n$-factor terms in the $x_{j}$ 's. It is shown below that $E\left(R_{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$.

[^1]\[

$$
\begin{aligned}
& \left|E\left(R_{n}\right)\right| \leqslant(1 / n!) \Sigma \mid E\left[\left(x_{h}-1\right) \ldots\left(x_{k}-1\right)\right. \\
& \left.\underset{\left\{f\left(\xi_{1}, \ldots, k\right)\right.}{\left(\xi_{1}, \ldots, \xi_{t}\right)-f(h, \ldots, k)} \begin{array}{l}
(1, \ldots, 1)\}
\end{array}\right] \mid \\
& \leqslant(1 / n!) \Sigma \mid\left[E\left\{\left(x_{h}-1\right)^{2} \ldots\left(x_{k}-1\right)^{2}\right\}\right. \\
& E\left\{\begin{array}{l}
(h, \ldots, k) \\
\left(\xi_{I}, \ldots, \xi_{t}\right)-f(\mathrm{~h}, \ldots, \mathrm{k}) \\
\left.\mathrm{l}, \ldots, 1)\}^{2}\right] \left.^{\frac{1}{2}} \right\rvert\,
\end{array}\right.
\end{aligned}
$$
\]

by the Cauchy-Schwarz inequality. Moreover, since $\left(x_{j}-1\right)^{2} \geqslant 0$, we get
$E\left\{\left(x_{h}-1\right)^{2} \ldots\left(x_{k}-1\right)^{2}\right\} \leqslant\left\{E\left(x_{h}-1\right)^{2 n} \ldots E\left(x_{k}-1\right)^{2 n}\right\}^{1 / n}$,
by the generalised Hölder's inequality (see Roo, 1973, p.55). Consequently,

$$
\begin{aligned}
& \left|E\left(R_{n}\right)\right| \leqslant(1 / n!) \sum \mid\left\{E\left(x_{h}-1\right)^{2 n}\right\}^{1 / 2 n} \ldots\left\{E\left(x_{k}-1\right)^{2 n}\right\} 1 / 2 n \\
& {\left[\begin{array}{l}
(h, \ldots, k) \\
E\left\{f\left(\xi_{1}, \ldots, \xi_{t}\right)-f(1, \ldots, k)\right. \\
[1, \ldots, 1)\}^{2}
\end{array}\right]^{1 / 2}}
\end{aligned}
$$

For large $\nu_{j}$, it follows that $x_{j}$ is normally distributed with mean $=I$ and variance $=2 / \nu_{j}$. The joint distribution of the $x_{j}$ 's is thus asymptotically multi-variate normal having the form

$$
k \exp \left\{-(\underset{\sim}{X}-\underset{\sim}{1}){\underset{\sim}{\mid}}^{-1}(\underset{\sim}{X}-\underset{\sim}{1}) / 2\right\}
$$

where $k$ is a constant; $\underset{\sim}{X}$ is the vector of the variates $X_{j}$, $\underset{\sim}{l}$ the vector of unity and $\sum_{\sim}$ the dispersion matrix of $\underset{\sim}{X}$.
$h$ and
The last expectation in the right side of $\left|E\left(R_{n}\right)\right|$ can therefore be written as As all the partial derivatives of $f$ exist, $f\left(\xi_{1}, \cdots, \xi_{f}\right)$ does not exceed a finite quantity $M$ within the range of integration. Hence, this integral cannot exceed

$$
k\left\{M-f(\underset{\sim}{(1, \ldots, 1)})^{2} \quad s \cdots s \exp \left\{-(\underset{\sim}{X-1})^{\prime} \sum_{\sim}^{-1}(\underset{\sim}{X}-1) / 2\right\} \pi d x_{j}\right.
$$

which is a constant. Thus this expectation is bounded.
Again, by the formula for central moments of the normal distribution, we have,

$$
\begin{aligned}
\left.E:\left(x_{j}-1\right)^{2 n}\right\} & =(2 n)!/ v_{j}^{n} n! \\
& =c\left(1 / v_{j}^{n}\right)(2 n)^{n}
\end{aligned}
$$

for some constant $c$, on neglecting terms of order ( $1 / n$ ). Thus,

$$
\begin{aligned}
& \left|E\left(R_{n}\right)\right| \leqslant\left(C_{j} / n!\right) \sum\left(1 / \nu_{h} \nu_{i} \ldots \nu_{j} \nu_{k}\right)^{1 / 2} n_{n} n / 2 \\
& =\left[\begin{array}{l}
{\left[c_{1} /(n / 2)!\right] \sum\left(1 / \nu_{h} \ldots \nu_{k}\right)^{1 / 2} \text { if } n \text { is even }} \\
{\left[c_{2} / n^{1 / 2}\{(n-1) / 2\}!\right] \Sigma\left(1 / \nu_{h} \ldots \nu_{k}\right)^{1 / 2}} \\
\quad \text { if } n \text { is odd, }
\end{array}\right.
\end{aligned}
$$

up to the same order of approximation, where $c_{0}, c_{1}$ and $c_{2}$ are positive constants. Hence $\left|E\left(R_{n}\right)\right| \rightarrow 0$ as $n \longrightarrow{ }^{\infty}$. This means that $E\left(R_{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$.

It follows from above that the expectation of a term in the multinominal expansion is of order $\left(1 / \nu{ }_{h} \ldots v_{k}\right)^{1 / 2}$.

Hence, the theorem follows if we take the expectation of (16) and keep terms up to $r=2$.

A consequence of the theorem is that the adjusted statistic,

$$
\begin{aligned}
& f\left(x_{1} \ldots, x_{t}\right)-\sum_{j}^{t} \frac{1}{v_{j}}\left[\frac{\partial^{2} f\left(x_{1}, \ldots, x_{t}\right)}{\partial x_{j}^{2}}\right]_{\text {all } x_{j}=1}^{-\frac{1}{2}} \sum_{j \neq k}^{\sum} \\
& E\left(x_{j}-1\right)\left(x_{k}-1\right)\left[\frac{\partial^{2} f\left(x_{1}, \ldots, x_{t}\right)}{\partial x_{j} \delta x_{k}}\right]_{\text {all } x_{j}=1 .},
\end{aligned}
$$

is free from terms of order $\left\{l /\left(v_{j} v_{k}\right)^{l / 2}\right\}$ and thus approximates its theoretical value $f(1, \ldots, l)$, more closely than the statistic $f\left(x_{1}, \ldots, x_{t}\right)$ itself. When $E\left\{\left(x_{j}-1\right)\right.$ $\left.\left(x_{k}-1\right)\right\} i s$ negligible, the adjustment reduces to that obtained by Theorem $I$ due to Meier (1953).
5.4 Covariance between $\mathrm{s}_{j}{ }^{2}$ and $\mathrm{s}_{\mathrm{K}}{ }^{2} \xrightarrow{(j \neq \mathrm{k})}$

$$
\begin{aligned}
& \text { We have, } S_{j}{ }^{2}=\sum_{i=1}^{b}\left(y_{i j}-y_{i} \cdot-y \cdot{ }_{j}+y . .\right)^{2}= \\
& \sum_{i}\left(\varepsilon_{i j}-\varepsilon_{i}-\varepsilon_{j}+\varepsilon_{.}\right)^{2} \text { and } \\
& S_{k}{ }^{2}=\sum_{i=1}^{b}\left(\varepsilon_{i k}-\varepsilon_{i} \cdot-\varepsilon_{\cdot k}+\varepsilon_{\ldots}\right)^{2} \text { so that } \\
& E\left(S_{j}{ }^{2} S_{k}{ }^{2}\right)=E\left\{\underset{i}{ }\left(\varepsilon_{i j}-\varepsilon_{i}-\varepsilon_{0_{j}}+\varepsilon_{\ldots}\right)^{2} \sum_{i}\left(\varepsilon_{i k}-\varepsilon_{i} \cdot-\varepsilon_{k}+\varepsilon_{0}\right)^{2}\right\} \\
& =E\left[\sum_{i}\left(\varepsilon_{i j}-\varepsilon_{\cdot j}\right)^{2} \quad \sum_{i}\left(\varepsilon_{i k}-\varepsilon_{\cdot k}\right)^{2}+\sum_{i}\left(\varepsilon_{i j}-\varepsilon{ }_{j}\right)^{2} \sum_{i}\left(\varepsilon_{i} \cdot-\varepsilon_{\ldots}\right)^{2}\right. \\
& -2 \sum_{i}\left(\varepsilon_{i j}-\varepsilon_{, j}\right)^{2} \sum_{i}\left(\varepsilon_{i k}-\varepsilon_{k}\right)\left(\varepsilon_{i}-\varepsilon_{\ldots}\right)
\end{aligned}
$$

$\left.+\sum_{i}\left(\varepsilon_{I} \cdot-\varepsilon_{0}\right)^{2} \underset{i}{\sum\left(\varepsilon_{i k}-\varepsilon_{\cdot}\right.}\right)^{2}+\left\{\sum_{i}\left(\varepsilon_{i}-\varepsilon_{. .}\right)^{2}\right\}^{2}-2$
$\sum_{i}\left(\varepsilon_{i} \cdot-\varepsilon_{0}\right)^{2} \quad \sum_{i}^{\sum}\left(\varepsilon_{i k}-\varepsilon_{\cdot k}\right)\left(\varepsilon_{i} \cdot-\varepsilon ..\right)$

$\left.\left.+4 \underset{i}{\sum\left(\varepsilon_{i j}-\varepsilon_{\cdot}\right.}\right)\left(\varepsilon_{i},-\varepsilon ..\right) \sum_{i}\left(\varepsilon_{i k}-\varepsilon{ }_{k}\right)\left(\varepsilon_{i} \cdot-\varepsilon \ldots\right)\right]$

To find the expectations of the individual terms we observe that

(ii) $\sum_{i}^{\Sigma\left(\varepsilon_{i k}-\varepsilon \cdot{ }_{k}\right)^{2}=\left(1-\frac{l}{b}\right) \sum_{i} \varepsilon_{i k}{ }^{2} .}$ $-\frac{1}{b} \sum_{i \neq l}^{\sum} \varepsilon_{i k} \varepsilon_{l k}$,
(iii) $\underset{i}{\sum\left(\varepsilon_{i} \cdot-\varepsilon . .\right)^{2}=\left(\frac{1}{t^{2}}-\frac{1}{b t^{2}}\right) \underset{i j}{ } \sum_{i j} \varepsilon^{2}+\frac{1}{2} \sum_{i}^{\sum} \sum_{j \neq k} \sum \varepsilon_{i j} \varepsilon_{i k}-\frac{1}{b t^{2}}, ~}$ $\left(\sum_{i}^{\sum}, j\right) \neq\left(\sum_{\ell, k}^{\sum} \sum_{i j} \varepsilon_{\ell k}\right.$,
(iv) $\left.\sum_{i}^{\sum\left(\varepsilon_{i j}-\varepsilon_{\bullet}\right.}\right)\left(\varepsilon_{i} \cdot-\varepsilon ..\right)=\left(\frac{l}{t}-\frac{l}{b t}\right) \sum_{i} \varepsilon_{i j}{ }^{2}+\frac{1}{t} \sum_{i}^{\sum \varepsilon_{i j_{k}}} \sum_{k j} \varepsilon_{i j}-\frac{1}{b t} \sum_{i \neq \ell}^{\sum}$
$\varepsilon_{i j} \varepsilon_{i j}-\frac{l}{b t} \underset{i}{\sum} \varepsilon_{i j} \sum_{i}^{\sum \neq j} \sum_{i k}$,
and (v) $\left.\sum_{i}^{\sum\left(\varepsilon_{i k}-\varepsilon_{\cdot k}\right.}\right)\left(\varepsilon_{i} \cdot-\varepsilon \ldots\right)=\left(\frac{l}{t}-\frac{1}{b t}\right) \sum_{i} \varepsilon_{i k}{ }^{2}+\frac{1}{t} \sum_{i} \varepsilon_{i k}$

$$
\sum_{j \neq k} \varepsilon_{i j}-\frac{l}{b t} \sum_{i \neq \ell}^{\sum_{l} \varepsilon_{i k} \varepsilon_{l} k}-\frac{1}{b t} \sum_{i}^{\sum_{i k}} \sum_{i j \neq k} \sum_{i j}
$$

Expectations of the nine individual terms are then given as
(a) $E\left\{\sum_{i}\left(\varepsilon_{i j}-\varepsilon_{j}\right)^{2} \sum_{i}\left(\varepsilon_{i k}-\varepsilon_{k}\right)^{2}\right\}=(b-1)^{2} \sigma_{j}{ }^{2} \sigma_{k}{ }^{2}$
(b) $\left.\underset{i}{\mathcal{E}}\left\{\varepsilon_{j}-\varepsilon_{i j}\right)^{2} \underset{i}{\Sigma}\left(\varepsilon_{i} .-\varepsilon . .\right)^{2}\right\}=\left(1-\frac{l}{b}\right)\left(\frac{l}{t^{2}}-\frac{l}{b t^{2}}\right)$

$$
\begin{aligned}
& =\frac{\left(b^{3}-2 b+1\right)}{b t^{2}} \sigma_{j}^{4}+\frac{(b-1)^{2}}{t^{2}} \sigma_{j}^{2} \sum_{k \neq j}^{\sum} \sigma_{k}^{2} .
\end{aligned}
$$

(c) $E\left\{\sum_{i}\left(\varepsilon_{i j}-\varepsilon_{\cdot j}\right)^{2}{ }_{i}^{E}\left(\varepsilon_{i k}-\varepsilon_{\cdot k}\right)\left(\varepsilon_{i} \cdot-\varepsilon ..\right)\right\}=\left(1-\frac{l}{b}\right)\left(\frac{l}{t}-\frac{l}{b t}\right)$

$$
E\left(\sum_{i} \varepsilon_{i j}{ }^{2}{ }_{i}^{\Sigma \varepsilon_{i k}}{ }^{2}\right)=\frac{(b-1)^{2}}{t} \sigma_{j}^{2} \sigma_{k}^{2}
$$

(d) $E\left\{\varepsilon_{i}\left(\varepsilon_{i}-\varepsilon . .\right)^{2} \sum_{i}\left(\varepsilon_{i k}-\varepsilon_{\cdot k}\right)^{2}\right\}=\frac{b^{3}-2 b+1}{b t^{2}} \sigma_{k}^{4}$ $+\frac{(\mathrm{b}-1)^{2}}{\mathrm{t}^{2}} \sigma_{k}^{2} \sum_{\mathrm{j} \neq \mathrm{k}} \sigma_{\mathrm{j}}{ }^{2} \quad$ from (b) by interchanging the
roles of $j$ and $k$.
(e) $E\left\{\sum_{i}\left(\varepsilon_{i} \cdot-\varepsilon . . .\right)^{2}\right\}^{2}=\frac{(b-1)^{2}}{b^{2}} E\left(\varepsilon_{i} \varepsilon_{i} \cdot{ }^{4}\right)+\frac{b^{2}-2 b+3}{b^{2}}$

$$
\begin{aligned}
& E\left(\sum_{i \neq \ell}^{\sum} \varepsilon_{i} \cdot{ }^{2} \varepsilon_{\ell}{ }_{e}^{2}\right) \\
& \left.=\frac{(b-1)^{2}}{b^{2}} \cdot \frac{3 b}{t^{4}}\left(\sum_{j}^{\sum} \sigma_{j}^{2}\right)^{2}+\frac{b^{2}-2 b+3}{b^{2}} \sum_{i} \sigma_{j}^{2}\right)^{2} b(b-1) / t^{4} \\
& =\frac{b^{2}-1}{t^{4}}\left(\sum_{j} \sigma_{j}^{2}\right)^{2}
\end{aligned}
$$

(f) $\left.\mathbb{E}_{\{ } \sum_{i}\left(\varepsilon_{i} \cdot-\varepsilon_{\cdot} \cdot\right)^{2} \underset{i}{\Sigma}\left(\varepsilon_{i k}-\varepsilon_{\cdot k}\right)\left(\varepsilon_{i} \cdot-\varepsilon_{0}\right)\right\}=\left(\frac{1}{t}-\frac{1}{b t}\right)\left(\frac{1}{t^{2}}-\frac{1}{b t^{2}}\right)$

$$
E\left(\sum_{i} \varepsilon_{i, k}{ }^{2}\right)\left(\sum_{i j}^{\sum} \varepsilon_{i j}{ }^{2}\right)+\left(\frac{1}{t^{3}}-\frac{1}{b t^{3}}\right) E\left(\sum_{i} \varepsilon_{i k}{ }^{2} \sum_{j \neq k}^{\sum} \varepsilon_{i j j}{ }^{2}\right)
$$

$$
\begin{aligned}
& +\frac{1}{b^{2} t^{3}} E\left(\sum_{i \neq 1}^{\sum \varepsilon_{i k}^{2}} \varepsilon_{\ell}^{2}{ }_{k}^{2}\right)-\frac{1}{b t^{3}} E\left(\sum_{i}^{\sum \varepsilon} \sum_{i k}^{2} \underset{j \neq k}{\left.\sum \varepsilon \varepsilon_{i j}^{2}\right)+}\right. \\
& \frac{1}{b^{2} t^{3}} E\left(\sum_{i} \varepsilon_{i k}^{2} \sum_{i}^{\sum j \neq k} \varepsilon_{i j}^{2}\right) \\
& \quad=\frac{b^{3}-2 b+1}{b t^{3}} \sigma_{k}^{4}+\frac{b(b-1)}{t^{3}} \sigma_{k}^{2} \sum_{j \neq k}^{2} \sigma_{j}^{2}
\end{aligned}
$$

(g) $E\left\{\sum_{i}\left(\varepsilon_{i j}-\varepsilon_{._{j}}\right)\left(\varepsilon_{i}-\varepsilon_{\ldots}\right) \sum_{i}\left(\varepsilon_{i k}-\varepsilon_{{ }_{k}}\right)^{2}\right\}=\left(I-\frac{1}{b}\right)$

$$
\left(\frac{l}{t}-\frac{l}{b t}\right) E\left(\sum_{i} \varepsilon_{i k}{ }^{2} \sum_{i} \varepsilon_{i j}{ }^{2}\right)=\frac{(b-1)^{2}}{t} \sigma_{j}^{2} \sigma_{k}{ }^{2}
$$

(h) $E\left\{\sum_{i}\left(\varepsilon_{i j}-\varepsilon_{\cdot j}\right)\left(\varepsilon_{i}-\varepsilon_{\ldots}\right) \sum_{i}\left(\varepsilon_{i}-\varepsilon_{\ldots}\right)^{2}\right\}=\frac{b^{3}-2 b+1}{b t^{3}} \sigma_{j}^{4}$ $+\frac{b(b-1)}{t^{3}} \sigma_{j}^{2} \quad \underset{k \neq j}{ } \sigma_{k}^{2}$ from (f) by interchanging the roles of $j$ and $k$.
(i) $E\left\{\sum_{i}\left(\varepsilon_{i j}-\varepsilon_{0}\right)\left(\varepsilon_{i}-\varepsilon_{\ldots}\right) \sum_{i}\left(\varepsilon_{i k}{ }^{-\varepsilon}{ }_{\mathrm{H} k}\right)\left(\varepsilon_{i} \ldots{ }^{\varepsilon} \ldots\right)\right\}=$

$$
\begin{gathered}
\left(\frac{1}{t}-\frac{1}{b} t\right)^{2} E\left(\sum_{i}^{\sum} \varepsilon_{i j}^{2} \sum_{i}^{\sum \varepsilon_{i k}^{2}}\right)+\left(\frac{1}{t^{2}}-\frac{1}{b t^{2}}-\frac{1}{b t^{2}}+\frac{1}{b^{2} t^{2}}\right) \\
E\left(\sum_{i} \varepsilon_{i j}^{2} \varepsilon_{i k}^{2}\right) \\
\\
=\frac{\sigma_{j}^{2} \sigma k^{2}}{t^{2}}\left(b^{2}-b-1+\frac{1}{b}\right)
\end{gathered}
$$

Utilizing the above nine expectations and simplifying, we get

$$
\begin{aligned}
& \frac{1}{b^{2}} E\left(S_{j}{ }^{2} S_{k}{ }^{2}\right)=\frac{\sigma_{j}{ }^{2} \sigma_{k}{ }^{2}}{b^{2}}\left\{(b-1)^{2}-\frac{4(b-1)^{2}}{t}+\frac{4}{t^{2}}\left(b^{2}-b-1+\frac{1}{b}\right)\right\} \\
& +\frac{\left(b^{3}-2 b+1\right)(t-2)}{b^{3} t^{3}}\left(\sigma_{j}^{4}+\sigma_{k}{ }^{4}\right) \\
& +\left\{\frac{(b-1)^{2}}{b^{2} t^{2}}-\frac{2 b(b-1)}{b^{2} t^{3}}\right\}\left(\sigma_{j}{ }^{2}{ }_{k \neq j} \sigma_{j}{ }^{2}+\sigma_{k}{ }^{2} \sum_{j \neq k} \sigma_{j}^{2}\right)+\frac{b^{2}-1}{b^{2} t^{4}}\left(\sum_{i} \sigma_{j}^{2}\right)^{2} \\
& =\sigma_{j}^{2} \sigma_{k}{ }^{2}\left(1-\frac{2}{b}-\frac{4}{t}\right)+\bar{\sigma}_{t}^{2}\left(\sigma_{j}^{2}+\sigma_{k}^{2}\right),
\end{aligned}
$$

neglecting the terms of order $1 / t^{2}, 1 / b^{2}$ or $1 / b t$.

Also,

$$
\begin{gathered}
\frac{1}{b^{2}} E\left(S_{j}^{2}\right) E\left(S_{k}^{2}\right)=\frac{(b-1)^{2}}{b^{2}}\left\{\sigma{ }_{j}^{2}\left(1-\frac{2}{t}\right)+\frac{\bar{\sigma}^{2}}{t}\right\}\left\{\sigma_{k}^{2}\left(1-\frac{2}{t}\right)\right. \\
\left.+\bar{\sigma}^{2} / t\right\} \\
=\sigma_{j}^{2} \sigma_{k}^{2}\left(1-\frac{2}{b}-\frac{4}{t}\right)+\frac{\bar{\sigma}^{2}}{t}\left(\sigma_{j}^{2}+\sigma_{k}^{2}\right)
\end{gathered}
$$

so that

$$
\frac{1}{b^{2}} \operatorname{cov}\left(S_{j}{ }^{2}, S_{k}^{2}\right)=\left\{E\left(S_{j}{ }^{2} S_{k}{ }^{2}\right)-E\left(S_{j}{ }^{2}\right) E\left(S_{k}{ }^{2}\right)\right\} / b^{2}=0
$$

up to the same order of approximation. Thus; we have

$$
\operatorname{cov}\left(s_{j}^{2}, s_{k}^{2}\right)=0
$$

up to the order $1 / t^{2}, 1 / b^{2}$ or $1 / b t$.
It follows from above and section 5.2 that Bartlett's $x^{2}$-test using $s_{j}{ }^{2}$ may be used for testing equality of group variances. The likelihood ratio test and sphericity test (Shukla, 1972) may also be used.

### 5.5 Adjustment of the test-statistics

Let $x_{j}=s_{j}{ }^{2} / \sigma_{j}{ }^{2}$ where $s_{j}{ }^{2}$ is the AUE of $\sigma_{j}{ }^{2}$, $j=l, 2, \ldots, t$. Then the estimated weights are:

It follows from the previous section that $\operatorname{Cov}\left(x_{j}, x_{k}\right)$ $=0$ for $j \neq k$ up to the order $1 / b^{2}, 1 / t^{2}$ or $1 / b t$. Hence, the adjustments of the statistics using estimated weights to remove the bias of order $1 /(b-1)$, by using Theorem 2 will be the same as that by Theorem 1 due to Meier (section 2.1.4). Such adjustment for one test-statistic ( $\hat{F}_{6}$ ) was given in section 3.2 .2 for the more general case of the two-way classification with proportional cell frequencies. The adjusted test-statistics for the special case of randomised block designs are stated below using some of the expressions derived in that section.
(i) Adjusted F-statistics
(a) Significance of treatment effects

The F-statistic using estimated weights for testing the significance of treatment effects is given by

$$
\begin{aligned}
\hat{F}_{1} & =\frac{b \sum_{j} \hat{w}_{j}\left(y \cdot_{j}-\hat{\tilde{y}} \cdot .\right)^{2} /(t-1)}{\Sigma \Sigma \hat{w}_{j}\left(y_{i j}-\hat{\tilde{y}} y_{i} \cdot y \bullet_{j}+\hat{\tilde{y}} . .\right)^{2} /(b-1)(t-1)} \\
& =(b-1) \text { TSS/ESS, }
\end{aligned}
$$

say, with ( $t-1$ ) and (b-1)(t-1) d.f., where TSS and ESS denote, respectively the treatments SS and error SS using estimated weights. Then the adjusted $\operatorname{F}$-statistic is

$$
\hat{F}_{1}(\operatorname{adj})=\hat{F}_{1}-\frac{1}{b-1} \sum_{j=1}^{t}\left[\frac{\partial^{2} \hat{F}_{1}}{\partial x_{j}^{2}}\right]_{a .1} x_{j=1} \quad \text { using estimated }
$$

with

$$
\frac{\partial^{2} \hat{\mathrm{~F}}_{1}}{\partial x_{j}^{2}}=\frac{b-1}{(E S S)^{3}}\left\{(E S S)^{2} \frac{\partial^{2} \text { MSS }}{\partial x_{j}^{2}}-(E S S)(T S S) \frac{\partial^{2} \text { BS }}{\partial x_{j}^{2}}\right.
$$

$$
-2(E S S) \frac{\partial E S S}{\partial x_{j}} \frac{\partial T S S}{\partial x_{j}}+2(\mathbb{T S S})\left(\frac{\partial E S S}{\partial x_{j}}\right)_{\}}^{2} \cdot \cdots \cdot \cdot(17)
$$

where $\left[\frac{\partial(\mathbb{T} S S)}{\partial x_{j}}\right]=-b w_{j}\left(y_{\iota_{j}}-y . .\right)^{2}$,

$$
\text { all } x_{j}=1
$$

$$
\left[\frac{\partial^{2}(\mathbb{T S S})}{\partial x_{j}^{2}}\right]_{\text {all } x_{j}=1}=2 b w_{j}\left(l-f_{j}\right)(y \cdot \tilde{j}-\tilde{y} . .)^{2}
$$

and
with $f_{j}=w_{j} / w_{0}$.
(b) Equality of block effects

$$
\begin{aligned}
& {\left[\frac{\partial^{2}(E S S)}{\partial x_{j}{ }^{2}}\right]=2 \sum_{i} w_{j}\left(1-f_{j}\right) y_{i j}\left(y_{i j}-\tilde{y_{i}} \cdot-y \cdot \tilde{j}+\tilde{y} \ldots\right)} \\
& \text { all } x_{j}=1 \\
& -2 \sum_{i} \sum_{j} w_{j} f_{j}\left(1-f_{j}\right) y_{i j}\left(y_{i j} \tilde{-y} y_{i}-y \cdot \tilde{j}+\tilde{y} . .\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\frac{\partial(E S S)}{\partial x_{j}}\right]=-\sum_{i} w_{j} y_{i j}\left(y_{i j} \tilde{-y_{i}} \cdot-y \cdot{ }_{j}+\tilde{y} \ldots\right)+\sum_{i j}^{\sum} w_{j} f_{j} y_{i j}} \\
& \text { all } x_{j}=1 \\
& \left(y_{i j}-\tilde{y}_{i},-y \cdot{ }_{j}+\tilde{y} . .\right),
\end{aligned}
$$

for testing the equality of block effects is given by

$$
\begin{aligned}
\hat{F}_{2} & =\frac{\hat{w} \cdot \sum\left(\hat{\tilde{y}}_{i} \cdot-\hat{\tilde{y}} \ldots\right) /(b-1)}{\sum_{i j} \sum_{j} \hat{w}_{j}\left(y_{i j}-\hat{\tilde{y}}_{i} \cdot-y \cdot j+\hat{\tilde{y}} \ldots\right)^{2} /(b-1)(t-1)} \\
& =(t-I) \text { BSS/ESS, }
\end{aligned}
$$

say, with $(b-1)$ and $(b-1)(t-1)$ def., where BSS denotes the block SS using estimated weights. The adjusted F-statistic is

$$
\hat{F}_{2}=\hat{F}_{2}-\frac{1}{\hat{b}-1} \sum_{j}\left[\frac{\partial^{2} \hat{F}_{2}}{\partial x_{j}^{2}}\right] \quad \text { all } x_{j}=1 \quad \text { using estimated } \quad \text { weights }, ~
$$

where $\frac{\partial \hat{F}_{2}}{\partial \hat{x}_{j}^{2}}$ is given by (17) above with $(b-1)$ and ISS
replaced by ( $t-1$ ) and BSS respectively. The two additional partial derivatives are

$$
\begin{aligned}
& {\left[\frac{\partial(B S S)}{\partial x_{j}}\right]=-\sum_{i} w_{j}\left(\tilde{y}_{i} \cdot-\tilde{y} . .\right)^{2}-2 \sum_{i} \sum_{j} w_{j} f_{j}\left(\tilde{y}_{i} \cdot \tilde{y} \ldots\right)} \\
& \text { all } x_{j}=1 \\
& \left(y_{i j}-\tilde{y}_{i},-y_{\cdot j}+\tilde{y} \ldots\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\begin{array} { l } 
{ \frac { \partial ^ { 2 } ( B S S ) } { \partial x _ { j } ^ { 2 } } ] = } \\
{ \text { all } x _ { j } = 1 } \\
{ i }
\end{array} w _ { j } ( \tilde { y } _ { i } \cdot - \tilde { y } \ldots ) \left\{\left(\tilde{y}_{i} \cdot \tilde{-y} \ldots\right)+2 f_{j}\left(y_{i j}-\tilde{y}_{i} \cdot\right.\right.\right.} \\
& -y \cdot j+\tilde{y} \ldots)\}+2 \Sigma \sum w_{j} f_{j}\left(y_{i j}-\tilde{y}_{i} \cdot-y \cdot \tilde{y}+\tilde{y} \ldots\left\{f _ { j } \left(y_{i j}-\tilde{y}_{i}\right.\right.\right. \\
& \left.\left.-y \cdot{ }_{j}+\tilde{y} \ldots\right)+2\left(1-f_{j}\right)\left(\tilde{y}_{i} \cdot-\tilde{y} \ldots\right)\right\} 。
\end{aligned}
$$

(ii) Adjustment of the normal test-statistics
(a) A Treatment difference
approximate
The normal test-statistic using estimated
weights for testing the difference between the $j$ th and kth treatments is

$$
\hat{z}_{I}=\left|y \cdot{ }_{j}-y \cdot_{k}\right| /\left\{\frac{1}{b_{b}}+\frac{1}{b \hat{w}_{k}}\right\} \text {. This is in }
$$

the same form as that for testing the difference between two treatments in the one-way model. Hence, the adjusted normal test-statistic is given, from section 2.1.4, by

$$
\begin{aligned}
& \hat{z}_{l}(a d j)=\left\{\left|y \cdot{ }_{j}-y \cdot k\right| /\left(1 / b \hat{w}_{j}+l / b \hat{w}_{k}\right)^{\frac{1}{2}}\right\} \times \\
& \left\{1-\frac{3}{4} \frac{l}{\left(I / \hat{w}_{j}+l / w_{k}\right)^{2}}\left[I /(b--I) \hat{w}_{j}^{2}+l /(b-I) \hat{w}_{k}^{2}\right]\right\}
\end{aligned}
$$

(b) Difference between block effects aphrokimate
The normal test-statistic using estimated weights for testing the difference between the $h$ th and ith block effects is $\hat{z}_{2}=\left|\hat{\tilde{y}}_{h}(a d j)-\hat{\tilde{y}}_{i} \cdot(a d j)\right| /(2 / \hat{w})^{\frac{1}{2}}$ where $\hat{\tilde{y}}_{i}(\mathrm{adj})=\sum \hat{f}_{j} \mathrm{y}_{i j}-\frac{2}{b-I} \sum_{j} \hat{f}_{j}\left(1-\hat{f}_{j}\right)\left(y_{i j}-\hat{\tilde{y}}_{i}\right)$ from section 3.1 .4 with $\hat{f}_{j}=\hat{w}_{j} / \hat{w}$. . This statistic is a special case of the corresponding test-statistic of section 3.1 .5 and so the adjustment of $\hat{z}_{2}$ is obtained as

$$
\hat{z}_{2}(a d j)=\hat{z}_{2}\left\{1-\Sigma \hat{f}_{j}\left(1-\hat{f}_{j} / 4\right) /(b-1)\right\}
$$

### 5.6 Multiple comparison

For this design, the error sum of squares depends on weights. Thus, the square root $s$ of the mean square error as well as $\hat{\sigma}_{\hat{\psi}}$ depends on the estimated weights.

So, the expression (5) of section 2.1.5 for estimating joint confidence intervals of parametric contrasts, needs to be modified. The modified form is

$$
\hat{\psi}-D(a d j) \leqslant \psi \leqslant \hat{\psi}+D(a d j)
$$

where $D=\operatorname{Ss} \hat{\sigma} \hat{\psi}, \frac{\partial^{2} D}{\partial x_{j}}=S\left\{s \frac{\partial^{\hat{\sigma}} \hat{\psi}}{\partial x_{j}{ }^{2}}+\hat{\sigma_{\hat{\psi}}} \frac{\partial^{2} s}{\partial \cdot x_{j}}{ }^{2}+\frac{2 \partial s}{\partial x_{j}} \frac{\partial \hat{\sigma}_{\hat{\psi}}}{\partial x_{j}}\right\}$
and

$$
D(a \alpha j)=D-\sum \frac{1}{r_{j}-1}\left[\frac{\partial^{2} D}{\partial x_{j}^{2}}\right] \quad \text { us }
$$

(i) Treatment contrasts

$$
\text { Let } \hat{\psi}_{1}=\Sigma c_{j} \mathrm{y} \bullet_{j} \text { with } \Sigma c_{j}=0 \text { be an estimate of }
$$ the treatment contrast $\psi_{l}=\Sigma c_{j} \tau_{j}$. Then the joint confidence interval of all contrasts $\psi_{1}$ is given by (18) with $\psi=\psi_{1}, S=\left[(t-1) F_{\alpha}\{(t-1),(b-1)(t-1)\}\right]^{\frac{1}{2}}, r_{j}-1=b-1$, $s=\{\operatorname{ESS} /(b-1)(t-1)\}^{\frac{1}{2}}$ and $\hat{\sigma}_{\hat{\psi}} \quad=\left(\sum c_{j}{ }^{2}{ }_{j}{ }_{j} / b\right)^{\frac{1}{2}}$. The individual derivatives are

$$
\begin{aligned}
& {\left[\frac{\partial s}{\partial x_{j}}\right]=\left[\begin{array}{lll}
\frac{\partial \operatorname{ESS}}{\partial x_{j}} & / 2 & \{\operatorname{ESS}(b-1)(t-1)\}^{\frac{1}{2}}
\end{array}\right],} \\
& \text { all } x_{k}=1 \\
& \text { all. } x_{k}=1 \\
& {\left[\frac{\partial^{2} s}{\partial x_{j}{ }^{2}}\right]=\left[\left\{\frac{\partial^{2} E S S}{\partial x_{j}{ }^{2}}-\left(\frac{\partial E S S}{\partial X_{j}}\right)^{2} / 2 s^{2}(b-1)(t-1)\right\} / 2 s\right.} \\
& \text { all } x_{k}=1 \\
& (b-1)(t-1)],
\end{aligned}
$$

$$
\left[\frac{\partial \hat{\sigma}_{\hat{\psi}_{1}}}{\partial x_{j}}\right]=c_{j}{ }^{2} \sigma_{j}{ }^{2} / 2 b\left(\Sigma c_{j}{ }^{2} \sigma_{j}{ }^{2} / b\right)^{\frac{1}{2}}
$$

$$
\text { all } x_{j}=1
$$

and

$$
\left[\frac{\partial{ }^{2} \hat{\sigma}_{\hat{\psi}}}{}\left[\frac{x_{j}}{2}\right]=-c_{j}^{4} \sigma_{j}^{4} / 4 b^{2}\left(\Sigma c_{j}{ }^{2} \sigma_{j}{ }^{2} / b\right)^{3 / 2},\right.
$$

all $x_{j}=1$
$\left[\frac{\partial \text { ERS }}{\partial x_{j}}\right]_{\text {all } x_{j}=1}$ and $\left[\frac{\partial^{2}{ }^{\text {ERS }}}{\partial x_{j}^{2}}\right]_{\text {all } x_{j}=1}$ being given in the previous
section.
(ii) Block contrasts

In the same way, the joint confidence interval
of all contrasts $\psi_{2}=\Sigma c_{i} \beta_{i}$, of block effects is given by (18) with $\psi=\psi_{2}, S=\left[(b-1) F_{\alpha}\{b-1,(b-1)(t-1)\}\right]^{\frac{1}{2}}$, $r_{j}-1=b-1, \quad s=\{\operatorname{ESS} /(b-1)(t-1)\}^{\frac{1}{2}}$ and $\hat{\sigma_{\psi_{2}}}=\left(\Sigma c_{i}{ }^{2} / \hat{w} \cdot\right)^{\frac{1}{2}}$. The two derivatives $\left[\partial s / \partial x_{j}\right]$ and $\left[\partial^{2} s / \partial x_{j}{ }^{2}\right]$ are given

$$
\text { all } x_{j}=1 \quad \text { all } x_{j}=1
$$

above and the other two derivatives are

$$
\left[\partial \hat{\sigma} \hat{\psi}_{2} / \partial x_{j}\right]_{\text {all. } x_{j}=1}=\left(\Sigma c_{i}^{2}\right)^{\frac{1}{2}} f_{j} / 2 w^{\frac{1}{2}}
$$

and

$$
\left[\partial^{2} \hat{\sigma}_{\hat{\psi}_{2}} / \partial x_{j}{ }^{2}\right]_{\text {all } x_{j}=1}=\left(\Sigma c_{i}{ }^{2}\right)^{\frac{1}{2}} f_{j}\left(3 f_{j} / 4-1\right) / w \cdot^{\frac{1}{2}} .
$$

The quantities $\hat{\tilde{y}}_{i}$. (adj) are used in computing $\hat{\psi}_{2}$.

### 5.7 Summary measures of dispersion

Since the variances of the treatment estimators are in the same forms as those in the one-way model, the estimated summary measures of dispersion of the estimated treatments are obtained from section 2.1.6 as

$$
\begin{aligned}
& \text { Estimated A.M. }=\frac{1}{b t} \sum_{1}^{t} s_{j}{ }^{2} \\
& \text { Estimated G.M. }(a d j)=\frac{1}{b}\left(\underset{1}{t} s_{j}{ }^{2}\right)^{1 / t}\left\{1+\frac{t-1}{t(b-1)}\right\}
\end{aligned}
$$

and

$$
\text { Estimated H.M. }(a d j)=\frac{t}{\mathrm{bw}_{\bullet}}\left\{1+2 \sum_{I}^{t} \hat{f}_{j}\left(1-\hat{f}_{j}\right) /(b-I)\right\}
$$

The estimated block effects have constant variance and so no summary measure of dispersion is needed for them.

## IATIN SQUARE DESIGNS

A method for solving the normal equations to find the weighted least squares estimators of the linear parameters, is given along with a procedure for the corresponding analysis on the assumption that the group variances are known. The treatment estimators are found to be orthogonal to those of other linear parameters whereas the estimated row and column effects are not orthogonal to one another. The MINQUE and AUE of group variances are obtained. The AUE's are found to be approximately independent of one another. Adjustment of the test-statistics using estimated weights, for testing hypotheses about the treatments is provided for removing bias. Similarly, other test-statistics can be adjusted. Finally, expressions for joint confidence intervals of. treatment contrasts are"given.

### 6.1 Estimation and analysis when the error variances are known

Let the model for a $t x t$ latin square design be

$$
y_{i . j k}=\beta_{i}+\gamma_{j}+\tau_{k}+\varepsilon_{i j k}
$$

where $\beta_{i}$ is the effect. of the ith row, $\gamma_{j}$ the effect of the $j$ th column, $\tau_{k}$ the effect of the kth treatment and $\varepsilon_{i j k}$ the error term having mean zero and variance $\sigma_{k}{ }^{2}$. The errors are assumed to be independent of one another:

The suffices, i,j and k, individually assume values from 1 to $t$ but collectively assume only $t^{2}$ sets (triples) of values depending on the design chosen.

Let $\underset{\sim}{Y}$ be the vector of observations arranged treatment by treatment, the observations within each treatment being arranged row by row. Consequently, the column effects are randomly distributed among the observations in $\underset{\sim}{Y}$.

Then the above model can be written as

$$
\begin{equation*}
\underset{\sim}{Y}=\underset{\sim}{\Delta}{ }^{\prime} \underset{\sim}{\tau}+\underset{\sim}{D} \underset{\sim}{\prime} \underset{\sim}{\beta}+\underset{\sim}{D}{ }_{2}^{\prime} \underset{\sim}{\gamma}+\underset{\sim}{\varepsilon} \tag{19}
\end{equation*}
$$

where $\underset{\sim}{\Delta}{ }^{\prime},{\underset{\sim}{1}}_{\prime}^{\prime}$ and $\underset{\sim}{D_{2}^{\prime}}$ are the design matrices for the treatment, row and column parameters respectively, $\underset{\sim}{\tau}$ is the vector of treatment effects, $\underset{\sim}{\beta}$ the vector of row effects, $\underset{\sim}{\gamma}$ the vector of column effects and $\underset{\sim}{\varepsilon}$ the vector of errors. Then $\operatorname{var}(\underset{\sim}{\varepsilon})=\operatorname{diag}\left(\sigma_{1}{ }^{2}, \ldots, \sigma_{1}{ }^{2}, \ldots, \sigma_{t}{ }^{2}, \ldots, \sigma_{t}{ }^{2}\right)$ and ${\underset{\sim}{\sim}}^{\prime} \underset{\sim}{\tau}=0=\underset{\sim}{1} \underset{\sim}{\gamma}, \underset{\sim}{\underset{\sim}{\gamma}}$ being the vector all elements of which are unity.

The weighted least squares normal equations for estimating the linear parameters are given by (20) where

$w_{j}=I / \sigma_{j}{ }^{2}, w_{0}=\Sigma w_{j}$ as before and $\left(i_{j}, \ldots, i_{t}\right)$ and
$\left(\ell_{1}, \ldots, \ell_{t}\right)$ are random permutations of the numbers, 1,2 , ...t, based on the random distribution of the column effects as mentioned above.

From (20), the individual normal equations are

$$
E_{k}: \quad t w_{k} \hat{\tau}_{k}+w_{k} \Sigma \tilde{\beta}_{i}+w_{k} \Sigma \tilde{\gamma}_{j}=w_{k} Y ._{k}, \quad k=1,2, \ldots, t .
$$

$$
\beta_{i}: \sum w_{k} \hat{\tau}_{k}+w \cdot \tilde{\beta}_{i}+\sum w_{h_{j}} \tilde{\gamma}_{j}=\sum_{j k} w_{k} y_{i j k}, \quad i=1,2, \ldots, t .
$$

$$
\gamma_{j}: \sum w_{k} \hat{\tau}_{k}+\sum w_{k_{i}} \tilde{\beta}_{i}+w \cdot \tilde{\gamma}_{j}=\sum_{i k} w_{k} y_{i j k}, \quad j=1,2, \ldots, t .
$$

Here also $\left(h_{1}, \ldots, h_{t}\right)$ and $\left(k_{1}, \ldots, k_{t}\right)$ are some random permutations of the numbers, $1,2, \ldots, \mathbf{t}$, depending on the design matrix.

$$
\text { Using the constraints } \Sigma w_{k} \hat{\tau}_{k}=0=\Sigma \tilde{\beta}_{i}=\Sigma \tilde{\gamma}_{j} \text {, the }
$$ three sets of equations reduce, respectively, to

$$
\begin{array}{ll}
\hat{\tau}_{k}=y \cdot{ }_{k} & k=1,2, \ldots, t \\
\tilde{\beta}_{i}=\tilde{y}_{i} \ldots-\Sigma w_{h_{j}} \tilde{\gamma}_{j} / w . & i=1,2, \ldots, t
\end{array}
$$

and $\quad \tilde{\gamma}_{j}=\tilde{y}_{0_{j}}-\sum w_{k_{i}} \tilde{\beta}_{i} / w . \quad j=1,2, \ldots, t$.
where $\tilde{y}_{i} \ldots=\sum_{j k} w_{k} y_{i j k} / w$. and $\tilde{y}_{\bullet_{j}}=\sum_{i k} w_{k} y_{i j k} / w$. .
Thus the treatment estimators are the ordinary least
squares estimators and are orthogonal to those of row and colum effects. The last two estimators are non-orthogonal. The reduced normal equations for the
column effects are given by
$\tilde{\gamma}_{j}-w_{k_{1}}\left(\sum w_{h_{j}} \tilde{\gamma}_{j}\right) / w^{2} .-\ldots-w_{k_{t}}\left(\Sigma w_{\ell_{j}} \tilde{\gamma}_{j}\right) / w^{2}$.

$$
=\tilde{y}_{j} \cdot-\Sigma w_{k_{i}} \tilde{y}_{i} \ldots / w
$$

$j=l, 2, \ldots, t$. The coefficient matrix is of full rank and the solution can be obtained by the method of pivotal condensation. Similarly, the reduced normal equations for $\tilde{\beta}$ $\beta_{i}$ are

$$
\begin{gathered}
\left.\tilde{\beta}_{i}-\left(\frac{{ }^{w} h_{1}}{w^{2}}\right)_{\left(\Sigma w_{k_{i}}\right.} \tilde{\beta}_{i}\right)-\ldots\left(\frac{w_{t} w_{t}^{2}}{2}\right)\left(\Sigma w_{v_{i}} \tilde{\beta}_{i}\right) \\
=\tilde{y}_{i} \ldots-\Sigma w_{h_{j}} \tilde{y}_{\cdot j} \cdot / w .
\end{gathered}
$$

$i=1,2, \ldots, t$, and the solution can be obtained in a similar way.

The sums of squares (SS) are
SS (treatments) $=\sum_{k}^{(\text {uncorrected) }} \hat{\tau}_{k} W_{k} Y \ldots k=t \sum_{k} w_{k} y{ }_{k}^{2} \quad$ with $t d . f$.
SS (rows \& cols.) $=\sum_{i} \tilde{\beta}_{i} \sum_{j k} w_{k} y_{i j k}+\sum_{j} \tilde{\gamma}_{j} \sum_{i k} w_{k} y_{i j k} \cdot$. (21) with (2t-2) d.f.
and
SS (Error) $=\sum_{i j k} w_{k} y_{i j k}^{2}-S S($ treatments $)-$ SS(Rows \& cols.) with (t-1)(t-2) d.f.

Putting $\beta_{i}=\beta$ for all $i$ and $\gamma_{j}=0=\tau_{k}$ for
all $j$ and $k$ and proceeding in the same way as in section 3.1.1, we get the corrected SS (treatments) to be equal to $t \sum_{k} w_{k}\left(y \cdot{ }_{k}-\tilde{y} \ldots\right)^{2}$ with $(t-1) d . f$. where $\tilde{y} \ldots=\left(\sum_{k} y ._{k} w_{k} / w_{1}\right)$.
we put $\gamma_{j}=0$ for all $j$. Then the model reduces to $y_{i j k}=\beta_{i}+\tau_{k}+\varepsilon_{i j k}$ with the suffix $j$ playing no role. This model is the same as that of randomised block designs with unequal group variances. Hence, from section 5.1, we have,

SS (treatments) ignoring $\gamma_{j}=t^{\sum} \mathrm{w}_{\mathrm{k}}\left(\mathrm{y}_{\mathrm{o}} \cdot{ }_{k}-\tilde{\mathrm{y}} . \ldots\right)^{2}$
with ( $t-1$ )d.f. and
SS (Rows) ignoring $\gamma_{j}=w \cdot \sum_{i}\left(\tilde{y}_{i} \ldots-\tilde{y} \ldots\right)^{2}$
with (t-I) d.f.
It follows that
SS (Columns) adjusted for rows $\left.=(21)-w \cdot{ }_{i}^{\sum_{i}(\tilde{y}} \underset{i}{ } \ldots-y\right)^{2}$. with (t-l) d.f. Similarly,

SS (rows) adjusted for columns $=(21)-w \cdot \Sigma\left(\tilde{y} \cdot{ }_{j} \cdot \tilde{y} \ldots\right)^{2}$ with ( $t-1$ ) d.f.

Analysis of variance table

Source	d.f.	SS	SS	d.f.	Source
Treatments   Row(ignoring cols.)   Col.(adj. for rows)   Error	$t-1$ $t-1$ $t-1$ $(t-1)(t-2)$	$\begin{aligned} & S_{1}=t \sum w_{k}\left(y \ldots \tilde{k}^{\sim} \tilde{y} \ldots\right)^{2} \\ & S_{2}=w \cdot \sum_{i}\left(\tilde{y}_{i} \ldots \sim \tilde{y}_{\ldots}\right)^{2} \\ & (21)-S_{2} \\ & S_{3}(\text { By subtraction }) \end{aligned}$	$S_{3}$	$\begin{gathered} t-1 \\ t-1 \\ t-1 \\ (t-1)(t-2) \end{gathered}$	Treatments   Col.(ignoring rows)   Rows(adj.   for cols.)   Error
Total (corr.)	$t^{2}-1$	$\begin{gathered} \sum w_{k} y_{i j k}^{2}-\left(\sum w_{k}\right. \\ \left.y \cdot \cdot_{k}\right)^{2} / \mathrm{w} \end{gathered}$			

or a $x^{2}$-test
If an F -test $\mathrm{r}^{\text {indicates significant treatment }}$ effects, difference between any two treatments can be tested by the normal test as $z=\left(\hat{\tau}_{\ell}-\hat{\tau}_{k}\right) /\left(1 /\right.$ tw $_{\ell}+$ $\left.I / t_{k}\right)^{\frac{1}{2}}$ is a standardised normal variate under the null hypothesis.

### 6.2 Estimation of weights

Assuming normality of errors, the maximum likelihood estimators of the linear parameters are obtained from the same normal equations as for the weighted least squares (WLS). The estimator of $\sigma{ }_{k}{ }^{2}$ is then given by

$$
\tilde{\sigma}_{k}^{2}=\sum_{i j}\left(y_{i j k}-\hat{\tau}_{k}-\tilde{\beta}_{i}-\tilde{\gamma}_{j}\right)^{2} / t
$$

involving the WLS estimators of the linear parameters. An iterative method may be used if convergent. But such estimators are not likely to be of any use for our purpose.

The MINQUE of $\sigma_{k}{ }^{2}$ is obtained below.
Since the overall design matrix of the model at (19) is singular, let us re-parameterize the treatments and column effects by Helmert's transformation given in section 5.2. Thus

$$
{\underset{\sim}{T}}_{I}=\underset{\sim}{\mathcal{C}} \underset{\sim}{\mathcal{T}} \quad \text { and } \underset{\sim}{\gamma}=\underset{\sim}{\mathcal{C}} \underset{\sim}{\gamma},
$$

say, where $\underset{\sim}{C}$ is the matrix of transformation defined in section 5.2. Then the model (19) reduces to
say, in the extended form of the notation of section 5.2. It follows from the same section that

with ${\underset{\sim}{t}}^{t}$ as the identity matrix of order $t$. Thus, we have
where the off-diagonal elements $\underset{\sim}{M}{ }_{j} j$ in the last term are square symmetric matrices of order $t$ with unity occurring randomly only once in every row and in every column and zero elsewhere on the basis of the random distribution of the column effects as stated in section 6.1. Here $\mathrm{J}_{\mathrm{J}}$ is the square matrix with all its elements equal to unity.

It follows that the projection matrix is given by
where $\underset{\sim}{E}$ is the square matrix of order $t$ with $(t-1)(t-2)$ as the diagonal elements and $(2-t)$ as the off-diagonal elements, and $\underset{\sim}{G} i j$ are the square symmetric matrices
with (2-t) as the diagonal elements and 2 as the offdiagonal elements except that (2-t) occurs in place of 2 randomly once in every row and in every column in the positions of unity of the corresponding $\mathbb{M}_{i j}$ matrices. It is easily verified that $\left(I-X^{\prime}\left(X^{\prime}\right)^{-1} X\right) Y$ is the vector of residuals.

Now let the matrix $F=\left(f_{i j}\right)$ with $f_{i j}$ as the square of the (i,j)th elements of the projection matrix,
$\underset{\sim}{\delta}=\left(\sigma_{1}{ }^{2}, \ldots, \sigma_{1}{ }^{2}, \ldots, \sigma_{t}{ }^{2} ; \sigma_{t}^{2}\right)^{\prime}$ be the vector of error variances, each $\sigma_{k}^{2}$ being repeated $t$ times, and $\underset{\sim}{v}$ the vector of squares of residuals. Then the MINQUE of $\sigma_{k}{ }^{2}$ is obtained by solving the equation $\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\delta}=\mathrm{v}$. Adding the $t$ equations for $\sigma_{k}{ }^{2}$ we get

$$
\begin{aligned}
& \frac{t}{t^{4}}\left[\left\{2(t-2)^{2} \sigma_{1}^{2}+4(t-2) \sigma_{1}^{2}\right\}+\ldots+\left\{(t-2)^{2}(t-1)^{2} \sigma_{k}^{2}\right.\right. \\
& \left.\left.+(t-2)^{2}(t-1) \sigma_{k}^{2}\right\}+\ldots+\left\{2(t-2)^{2} \sigma_{t}{ }^{2}+4(t-2) \sigma_{t}^{2}\right\}\right] \\
& \\
& =\sum_{i j}\left(y_{i j k}-y_{i \ldots}-y \cdot j \cdot-y \cdot{ }_{k}+2 y \ldots\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { or, } \sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\frac{(t-2)(t-1)}{2} \sigma_{k}^{2}+\cdots+\sigma_{t}{ }^{2}=\frac{t^{2}}{2(t-2)} \\
& \sum_{i j}\left(y_{i j k}-y_{i \ldots}-y \cdot j .+y \cdot{ }_{k}+2 y \ldots\right)^{2}=\frac{t^{2} S_{k}^{2}}{2(t-2)}
\end{aligned}
$$

say, $k=1,2, \ldots, t$ All the $t$ equations can be written together as

$$
\left(\frac{t^{2}-3 t}{2} I_{\sim}+J_{\sim}\right)\left(\hat{\sigma}_{1}^{2}, \ldots, \hat{\sigma}_{t}^{2}\right)^{\prime}=\frac{t^{2}}{2(t-2)}\left(S_{1}^{2}, S_{2}^{2}, \ldots, S_{t}^{2}\right)^{\prime}
$$

If we write $\left(\alpha{\underset{\sim}{t}}_{t}+\beta J_{t}\right)$ as the inverse of the coefficient
matrix, then $\alpha$ and $\beta$ are given by

$$
\alpha=2 / t(t-3) \text { and } \beta=-4 / t^{2}(t-1)(t-3)
$$

The MINQUE of $\hat{\sigma}_{k}{ }^{2}$ is then obtained as

$$
\begin{aligned}
& \hat{\sigma}_{k}^{2}=\{1 /(t-1)(t-2)(t-3)\}\left\{( t ^ { 2 } - t ) \sum _ { i j } \left(y_{i j k}-y_{i} \cdots-y \cdot j \cdot\right.\right. \\
& \left.\left.-y \cdot{ }_{i k}+2 y \ldots\right)^{2}-2 \sum_{i j k}\left(y_{i j k}-y_{i \cdot \bullet}-y \cdot j \cdot-y \cdot \cdot k+2 y \cdot \ldots\right)^{2}\right\}
\end{aligned}
$$

As $E\left(S_{k}{ }^{2}\right)=(1 / t) \sigma_{k}{ }^{2}(t-2)(t-3)+2 \bar{\sigma}^{2}(t-2) / t$ so that $E\left(\sum_{l}^{t} S_{k}{ }^{2}\right)=\bar{\sigma}^{2}(t-1)(t-2)$, it follows that $E\left(\hat{\sigma}_{k}{ }^{2}\right)=\sigma_{k}{ }^{2}$ as is expected. Here $\bar{\sigma}^{2}=\Sigma \sigma_{k}{ }^{2} / t$.

These estimators are correlated and not in a convenient form for algebraic treatment. We therefore consider the almost unbiased estimators (AUE) proposed by Horn et al. (1975). The AUE of $\sigma_{k}^{2}$ is given by

$$
\begin{gathered}
s_{k}^{2}=\left(1-h_{k k}\right)^{-1} S_{k}^{2} / t \\
=\left(S_{k}^{2} / t\right) \quad\left\{1-(3 t-2) / t^{2}\right\}^{-1}
\end{gathered}
$$

where $h_{k k}=(3 t-2) / t^{2}$ is the kth diagonal element of ${\underset{\sim}{X}}^{\prime}(\underset{\sim}{X X})^{\prime}{\underset{\sim}{X}}^{X}$.

$$
\text { Now. Let } u_{i j}=y_{i j k}-y_{i} \cdot-y_{\cdot j} \text { so that } u_{l}=
$$

$y . k^{-2 y . . . ~ T h e n ~ t h e ~ r a n d o m ~ v a r i a b l e s ~} u_{i j}$ are normally distributed on the assumption of normality of errors. Since the covariance between any two such variates is of order $\left(1 / t^{2}\right)$, these variables may be considered to be approximately independent of one another for large $t$. Again $\operatorname{var}\left(u_{i j}\right)=\sigma_{k}{ }^{2}\left(1-4 / t+2 / t^{2}\right)+2 \bar{\sigma}^{2} / t$.

If we replace $\sigma^{2}$ by $\sigma_{k}{ }^{2}$ as an approximation, then var $\left(u_{i j}\right)=\sigma_{k}{ }^{2}(1-2 / t)$ on neglecting a term of order $\left(1 / t^{2}\right)$. Consequently, the distribution of $S_{k}{ }^{2}=\sum_{i j}\left(u_{i j}-u . .\right)^{2}$ may be approximated by that of $x^{2} \sigma{ }_{k}{ }^{2}(1-2 / t)$ with $(t-1)$ def.

$$
\text { As } s_{k}^{2} / \sigma_{k}^{2}(1-2 / t)=t \quad s_{k}^{2}\left\{1-(3 t-2) / t^{2}\right\} / \sigma_{k}^{2}(1-2 / t)
$$

$=(t-1) s_{k}{ }^{2} / \sigma_{k}{ }^{2}$, we may assume that $(t-1) s_{k}{ }^{2} / \sigma_{k}{ }^{2}$ is approximately a $x^{2}$-variate with ( $t-1$ ) def.
6.3 Covariance between $s_{k}{ }^{2}$ and $s_{m}{ }^{2}(k \neq m)$

We have, $\left(S_{k}{ }^{2}\right)=\sum_{i j}\left(y_{i j k}-y_{i} \ldots-y \cdot j,-y \cdot k_{k}+2 y \ldots\right)^{2}=$
$\sum_{i j}\left\{\left(\varepsilon_{i j k}-\varepsilon_{\ldots k}\right)-\left(\varepsilon_{i} \ldots-\varepsilon \ldots\right)-\left(\varepsilon_{\mu_{j}}-\varepsilon \ldots\right)^{2}\right.$ and
$S_{m}^{2}=\sum_{i j}\left\{\left(\varepsilon_{i j m}-\varepsilon_{m}\right)-\left(\varepsilon_{i} \ldots-\varepsilon_{\ldots} \ldots\right)-\left(\varepsilon_{j}-\varepsilon \ldots\right)^{2}\right.$ so that
$\frac{1}{t^{2}} E\left(S_{k}{ }^{2} S_{m}{ }^{2}\right)=\frac{1}{t^{2}} 2 E\left[\left\{\sum_{i j}\left(\varepsilon_{i j k}-\varepsilon_{M_{k}}\right)^{2}+\sum_{i}\left(\varepsilon_{i} \ldots-\varepsilon \ldots\right)^{2}\right.\right.$
$+\sum_{j}\left(\varepsilon_{j}-\varepsilon_{\ldots} \ldots\right)^{2}-2 \sum_{i j}\left(\varepsilon_{i j k}-\varepsilon_{\ldots k}\right)\left(\varepsilon_{i} \cdot{ }^{\circ}-\varepsilon \ldots\right)$
$-2 \underset{i j}{\sum}\left(\varepsilon_{i j k}-\varepsilon \cdot{ }_{k}\right)\left(\varepsilon_{j} \cdot-\varepsilon_{\ldots} ..\right)$
$\left.+2_{i j}\left(\varepsilon_{i .} .^{\varepsilon} \ldots\right)\left({ }^{\varepsilon} ._{j^{-}}{ }^{\varepsilon} \ldots\right)\right\} \quad\left\{\sum_{\mathrm{uv}}\left({ }^{\varepsilon} \mathrm{uvm}^{-}{ }^{\varepsilon} \ldots{ }_{\mathrm{m}}\right)^{2}\right.$
$+\sum_{u}\left(\varepsilon_{u} \ldots-\varepsilon \ldots .\right)^{2}+\sum_{v}\left(\varepsilon_{{ }_{v}}-\varepsilon \ldots\right)^{2}$


$$
\left.\left.\left(\varepsilon_{\cdot v}-\varepsilon_{\ldots} \ldots\right)+2 \sum_{u v}\left(\varepsilon_{u} \ldots-\varepsilon_{\ldots}\right)\left(\varepsilon_{V_{v}}-\varepsilon^{\varepsilon} \ldots\right)\right\}\right]
$$

For derivation of the expectation, a break-up of the individual terms will be useful. This is given below.
(a) $\sum_{i j}\left(\varepsilon_{i j k}-\varepsilon_{0_{k}}\right)^{2}=\sum_{i j} \varepsilon_{i j k}^{2}\left(1-\frac{1}{t}\right)-\frac{l}{t} \sum_{i j \neq u v}^{\sum} \varepsilon_{i j k} \varepsilon_{u v k}$
(b) $\quad \sum_{i}\left(\varepsilon_{i \cdot}-\varepsilon \ldots\right)^{2}=\sum_{i j k} \varepsilon_{i j k}^{2}\left(\frac{1}{t^{2}}-\frac{1}{t^{3}}\right)+\frac{1}{t^{2}} \sum_{i}\left(\sum_{j k \neq \ell W}^{\sum} \varepsilon_{i j k} \varepsilon_{i \ell W}\right)$
$-\frac{1}{t^{3}} \sum_{i j k \neq r \ell W} \varepsilon_{i j k} \varepsilon_{r \ell W}$
(c) $\quad \sum\left(\varepsilon \cdot v_{v}-\varepsilon . ..\right)=\sum \varepsilon_{i j m}^{2}\left(\frac{l}{t^{2}}-\frac{l}{t} 3\right)+\frac{l}{t^{2}} \sum_{v}\left(\sum_{i j \neq k u} \sum_{i v j} \varepsilon_{k v u}\right)$
$-\frac{1}{t^{3}} \underset{i j k \neq u v w}{\sum} \varepsilon_{i j k} \varepsilon_{u v w}$
(d) $\sum_{i j}\left(\varepsilon_{i j k^{-}} \varepsilon_{\ldots}\right)\left(\varepsilon_{i \cdot}-\varepsilon \ldots\right)$

$$
\begin{gathered}
=\left(\frac{l}{t}-\frac{l}{t^{2}}\right) \sum_{i j}^{\sum_{i j k}} \varepsilon^{2} \frac{1}{t} \sum_{i j} \varepsilon_{i j k} \sum_{u v \neq j k} \varepsilon_{i u v}-\frac{1}{t^{2}} \sum_{i j \neq u v} \varepsilon_{i j k} \\
\varepsilon_{\text {uvk }}-\frac{1}{t^{2}} \sum_{i j}^{\sum \varepsilon_{i j k} \sum_{i j u} \varepsilon_{i j u \neq i j k}}
\end{gathered}
$$

(e) $\sum_{i j}\left(\varepsilon_{i} \ldots-\varepsilon \ldots\right)\left(\varepsilon \cdot{ }_{j} \cdot-\varepsilon \ldots\right)$

$$
\begin{aligned}
& =\frac{I}{t^{2}} \sum_{i j} \varepsilon_{i j k}^{2}-\frac{1}{t^{3}} \sum_{i j k}^{\varepsilon} \varepsilon_{i j k}^{2}+\frac{1}{t^{2}} \sum_{i j}\left(\sum_{\substack{j k, u w \\
i j k \neq u j w}}^{\varepsilon_{i j k}} \varepsilon_{u j w}\right) \\
& -\frac{I}{t^{3}} \sum_{i j k \neq u v w}^{\sum} \varepsilon_{i j k} \varepsilon_{u v w}
\end{aligned}
$$

The breakup of any other term is equivalent to one of the above.

In all, expectations of 36 terms need to be evaluated. But the expectations of all but the nine terms listed below are of order ( $1 / t^{2}$ ) and can be neglected for our purpose. The expectations of the nine terms that matter are as follows:
(i) $E\left\{\sum_{i j}\left(\varepsilon_{i j k}-\varepsilon_{\mu_{k}}\right)^{2} \sum_{u v}\left(\varepsilon_{u v m}-\varepsilon_{\mu_{m}}\right)^{2 .}\right\}=(t-1)^{2} \sigma_{k}{ }^{2} \sigma_{m}{ }^{2}$
(ii) $E\left\{\sum_{i j}\left(\varepsilon_{i j k}-\varepsilon_{\ldots k}\right)^{2} \sum_{u}\left(\varepsilon_{u} \ldots-\varepsilon_{\ldots} \ldots\right)^{2}\right\}$

$$
=\left(1-\frac{1}{t}\right)\left(\frac{1}{t^{2}}-\frac{1}{t} 3\right)\left\{\sum_{i j} E\left(\varepsilon_{i j k}^{4}\right)+E\left(\sum_{i j}^{\sum_{i j k}} \sum_{u v \neq i j}^{2} \varepsilon_{u v k}^{2}\right)+\right.
$$

$$
\left.+E\left(\sum_{i j}^{\sum} \varepsilon_{i j k}^{2} \sum_{i j u}^{\varepsilon_{i j u}}\right)\right\}+\frac{1}{t^{4}} E\left(\sum_{i j \neq r s}^{\sum} \varepsilon_{i j k}^{2} \varepsilon_{r s k}^{2}\right)
$$ $u \neq k$

$=(t-1)\left(t^{2}+t-1\right) \sigma_{k}^{4} / t^{3}+(t-1)^{2} \sigma_{k}^{2} \sum_{u \neq k} \sigma_{u}^{2} / t^{2}$
(iii) $E\left\{\sum_{i j}\left(\varepsilon_{i j k}-\varepsilon \cdot{ }_{k}\right)^{2} \sum_{V}\left(\varepsilon \cdot v^{\cdot}-\varepsilon \ldots\right)^{2}\right\}=(t-1)\left(t^{2}+t-1\right)$

$$
\sigma_{k}^{2} / t^{3}+(t-1)^{2} \sigma_{k}^{2} \sum_{u \neq k} \sigma_{u}^{2} / t^{2} \quad \text { from (ii) }
$$

(iv) $E\left\{\sum_{i j}\left(\varepsilon_{i j k}-\varepsilon \cdot \cdot_{k}\right)^{2} \sum_{u v}\left(\varepsilon_{u v m}-\varepsilon \ldots{ }_{m}\right)\left(\varepsilon_{u *}-\varepsilon \ldots\right)\right\}$

$$
=\left(1-\frac{l}{t}\right)\left(\frac{1}{t}-\frac{1}{t^{2}}\right) E\left(\begin{array}{c}
\sum \varepsilon \sum_{i j}^{2} \quad \sum \varepsilon e^{2}
\end{array}\right)
$$

$$
=(t-1)^{2} \sigma_{k}^{2} \sigma_{m}^{2} / t
$$

 $=(t-1)^{2} \sigma_{k}{ }^{2} \sigma_{m}^{2} / t \quad$ from (iv)
(vi) $\mathbb{E}\left\{\sum_{u v}\left(\varepsilon_{u v m^{-}}-\varepsilon_{m}\right)^{2} \sum_{i}\left(\varepsilon_{i}{ }^{\bullet}-\varepsilon \ldots\right)^{2}\right\}=(t-1)\left(t^{2}+t-1\right)$

$$
\sigma_{m}^{2} / t^{3}+(t-1)^{2} \sigma_{m}^{2} \sum_{k \neq m} \sigma_{k}^{2} / t^{2} \text { from (ii) }
$$

(vii) $E\left\{\sum_{u v}\left(\varepsilon_{u v m}-\varepsilon \ldots\right)^{2} \sum_{j}\left(\varepsilon_{j} \cdot-\varepsilon \ldots\right)^{2}\right\}=(t-1)\left(t^{2}+t-1\right)$

$$
\sigma_{m}^{2} / t^{3}+(t-1)^{2} \sigma_{m}^{2} \sum_{k \neq m} \sigma_{k}^{2} / t^{2} \quad \text { from (ii) }
$$



$$
=(t-1)^{2} \sigma_{k}{ }^{2} \sigma_{m}{ }^{2} / t \quad \text { from (iv) }
$$

(ix) E\{ $\sum_{u v}\left(\varepsilon_{u v m}-\varepsilon ._{m}\right)^{2} \sum_{i j}\left(\varepsilon_{i j k}-\varepsilon ._{k}\right)\left(\varepsilon_{\cdot j}-\varepsilon \ldots\right)$
$=(t-1)^{2} \sigma_{k}{ }^{2} \sigma_{m}{ }^{2} / t \quad$ from (iv).

Utilizing the above expectations and simplifying, we get,

$$
\begin{aligned}
& \frac{1}{t^{2}} E\left(S_{k}^{2} S_{m}^{2}\right)=\frac{1}{t^{2}}\left[\sigma_{k}^{2} \sigma_{m}^{2}(t-1)^{2}\left(1-\frac{8}{t}\right)+\left(\sigma_{k}^{2} \sum_{m \neq k}^{\sigma}{ }_{m}^{2}\right.\right. \\
& \left.\left.+\sigma_{m}^{2} \sum_{k \neq m} \sigma_{k}^{2}\right) 2(t-1)^{2} / t^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& + \text { terms of order }\left(1 / t^{2}\right) \\
& =\sigma_{k}^{2} \sigma_{m}^{2}(1-10 / t)+2 \bar{\sigma}^{2}\left(\sigma_{k}^{2}+\sigma_{m}^{2}\right) / t,
\end{aligned}
$$

neglecting terms of order $\left(1 / t^{2}\right)$. Again,

$$
\begin{aligned}
& \frac{1}{t^{2}} \mathbb{E}\left(S_{k}{ }^{2}\right) E\left(S_{m}{ }^{2}\right)=\left\{\sigma_{k}^{2}\left(1-5 / t+6 / t^{2}\right)+\left(2 \bar{\sigma}^{2} / t\right)(1-2 / t)\right\}\left\{\sigma_{m}^{2}\right. \\
& \left.\left(1-5 / t+6 / t^{2}\right)+\left(2 \bar{\sigma}^{2} / t\right)(1-2 / t)\right\} \\
& =\sigma_{k}^{2} \sigma_{m}^{2}(1-10 / t)+2 \bar{\sigma}^{2}\left(\sigma_{k}^{2}+\sigma_{m}^{2}\right) / t
\end{aligned}
$$

up to the same order of approximation. Hence,

$$
\frac{1}{t^{2}} \operatorname{cov}\left(S_{k}{ }^{2}, S_{m}{ }^{2}\right)=\frac{1}{t^{2}}\left\{E\left(S_{k}{ }^{2} S_{m}{ }^{2}\right)-E\left(S_{k}{ }^{2}\right) E\left(S_{m}{ }^{2}\right)\right\}=0
$$

and consequently

$$
\operatorname{cov}\left(\mathrm{s}_{\mathrm{k}}^{2}, \mathrm{~s}_{\mathrm{m}}^{2}\right)=0
$$

up to the order $\left(1 / t^{2}\right)$.
It follows from above and the previous section that Bartlett's $x^{2}$-test using $s_{k}{ }^{2}$ may be used as an approximate test for equality of group variances.

### 6.4 Adjustment of the test-statistics

Let $\mathrm{x}_{\mathrm{k}}=\mathrm{s}_{\mathrm{k}}^{2} / \sigma_{\mathrm{k}}{ }^{2}$ where $\mathrm{s}_{\mathrm{k}}{ }^{2}$ is the AUE of $\sigma_{\mathrm{k}}{ }^{2}, \mathrm{k}=1,2$, ..,t. Then the estimated weights are: $\hat{\mathrm{w}}_{\mathrm{k}}=1 / \mathrm{s}_{\mathrm{k}}{ }^{2}=1 / \mathrm{x}_{\mathrm{k}} \sigma_{\mathrm{k}}{ }^{2}$, the number of d.f. is $\nu_{k}=(t-1)$ and $E\left(x_{k}\right)=1$ approximately. It follows from the previous section that $\operatorname{cov}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{m}}\right)=0$ up to the order $\left(1 / t^{2}\right)$ for $k \neq m$. Hence, the adjustment of the statistics can be made with the help of Theorem $l$ of section 2.1.4.
(i) Adjustment of F-statistics

The F-statistic using estimated weights for testing equality of treatment effects is given by

$$
\hat{F}=\frac{t \hat{\mathrm{w}}_{\mathrm{k}}\left(\mathrm{y} \cdot \mathrm{k}_{\mathrm{k}}-\hat{\widetilde{\mathrm{y}}} \ldots\right)^{2} /(\mathrm{t}-1)}{\operatorname{ESS} /(t-1)(t-2)}=(t-2) \mathrm{TSS} / \mathrm{ESS}
$$

say, with ( $t-1$ ) and $(t-1)(t-2)$ d.f., where TSS and ESS denote, respectively, the treatments $S$ S and error $S$ using estimated weights. The treatments sum of squares is in the same form as that for randomised block designs. The adjusted F-statistic is

$$
\hat{F}(a d j)=\hat{F}-\frac{1}{(t-1)} \sum_{k=1}^{t}\left[\frac{\partial^{2} F}{\partial x_{k}^{2}}\right]_{\text {all } x_{k}=1} \text { using estimated weights }
$$

where $\frac{\partial^{2} \hat{F}}{\partial x_{k}}{ }^{2}$ is given by (17) of section 5.5 with (b-I) replaced by $(t-2)$.
Also from section $5.5,\left[\frac{\partial(T S S)}{\partial x_{k}}\right]=-t w_{k}\left(y \ldots \mu_{k}-\tilde{y} \ldots\right)^{2}$ and
all $x_{k}=1$

$$
\left[\frac{\partial^{2}(\text { ISS })}{\partial x_{k}^{2}}\right]_{\text {all } x_{k}=1}=2 t w_{k}\left(1-w_{k} / w_{0}\right)\left(y \cdot k^{-} \tilde{y} \ldots\right)^{2} \text {. When the expression }
$$

for $\operatorname{ESS}$ is obtained for any particular experjment, those for

$$
\left[\frac{\partial(E S S)}{\partial x_{k}}\right]_{\text {all } x_{k}=1} \text { and }\left[\frac{\frac{d}{}_{2}(\text { ESS })}{\partial x_{k}^{2}}\right]_{\text {all } x_{k}=1} \text { can be similarly found. }
$$

Finally, once the adjusted Rows SS and Columns SS are
obtained for an experiment, we can proceed in the same way as above for adjusting the F -statistics in order to test equality of row effects and that of column effects.

## approximate

(ii) Adjustment of normal test-statistic for testing treatment differences

## approximate

The normal test-statistic using estimated weights for testing the difference between kith and moth treatments is $\quad \hat{z}=\left|\mathrm{y} \boldsymbol{\mu}_{\mathrm{k}}-\mathrm{y} \cdots_{\mathrm{m}}\right| /\left(I / \hat{t w}_{k}+I / \hat{t w}_{m}\right)^{\frac{1}{2}}$. This is in the same form as that for the randomised block design. Hence, from section 5.5, we have

$$
\hat{z}(a d j)=\hat{z}\left[1-\{3 / 4(t-1)\}\left(1 / \hat{w}_{k}^{2}+1 \hat{w}_{m}^{2}\right)\left(1 \hat{w}_{k}+1 / \hat{w}_{m}\right)^{-2}\right]
$$

### 6.5 Multiple comparison of treatment parameters

As the error sum of squares depends on weights, the joint confidence interval of all treatment contrast $\psi=$ $\Sigma c_{k} \tau_{k}\left(\Sigma c_{k}=0\right)$ is given by (18) of section 5.6 with $\hat{\psi}=\sum c_{k} y \ldots_{k}, \quad S=\left[(t-1) F{ }_{\alpha}\{t-1,(t-1)(t-2)\}\right]^{\frac{1}{2}}$ and $s=[\text { EST } /(t-1)(t-2)]^{\frac{1}{2}}$. The partial derivatives are $\begin{aligned} {\left[\frac{\partial S}{\partial x_{k}}\right] } & =\left[\frac{\partial E S S}{\partial x_{k}} / 2\{\operatorname{ESS}(t-1)(t-2)\}^{\frac{1}{2}}\right] \\ & \quad \text { all } x_{k}=1\end{aligned}$

$$
\begin{array}{r}
{\left[\frac{\partial^{2} s}{\partial x_{k}^{2}}\right]=\left[\left\{\frac{d^{2} E S S}{\partial x_{k}^{2}}-\left(\frac{\partial E S S}{\partial x_{k}}\right)^{2} / 2 s^{2}(t-1)(t-2)\right\} / 2 s(t-1)(t-2)\right],} \\
\text { all } x_{k}=1
\end{array} \quad \text { all } x_{k}=1,
$$

$$
\begin{gathered}
{\left[\frac{\partial \hat{\sigma}_{\hat{\psi}}}{\partial x_{k}}\right]=c_{k}^{2} \sigma_{k}^{2} / 2 t\left(\sum c_{k}^{2} \sigma_{k}^{2} / t\right)^{\frac{1}{2}}} \\
\text { all } x_{k}=1
\end{gathered}
$$

and

$$
\text { Here } \hat{\sigma}_{\hat{\psi}}^{\hat{u}}=\left(\sum c_{k}^{2} s_{k}^{2} / t\right)^{\frac{1}{2}} .
$$

Also from section 5.7, the three summary measures of dispersion of the treatment estimators are

$$
\begin{aligned}
& \text { Estimated } A M=\sum_{l}^{t} s_{k}^{2} / t^{2} \\
& \text { Estimated } G M(a d j)=(1 / t)\left(\pi_{S_{k}}{ }^{2}\right)^{1 / t}(1+1 / t)
\end{aligned}
$$

and

$$
\text { Estimated } H M(\operatorname{adj})=\left\{1+2 \sum_{l}^{t} \hat{f}_{k}\left(1-\hat{f}_{k}\right) /(t-I)\right\} / \hat{w}
$$

with $\hat{f}_{k}=\hat{w_{k}} / \hat{w}$.

## CHAPTER 7

## SPLIT-PLOT DESIGNS

We consider here the usual split-plot designs with error variance heteroscedastic with respect to the levels of the sub-plot treatments. The weighted least squares estimators of the linear parameters are derived and the corresponding analysis is given on the assumption that the group variances are known. Estimators of the group variances having negligible bias, are obtained. The covariance between any two such estimators is found to be negligible. The estimators of the linear parameters and test-statistics using estimated weights, are adjusted for bias. Expressions for joint confidence intervals of contrasts of linear parameters are provided for each factor and interaction separately.

### 7.1. Estimation and analysis when the error variances

 are knownLet us consider the following model for split-plot experiments having blocks each of which comprises a replicate of the whole-plot treatments; and whole plots each of which comprises a replicate of the sub-plot treatments:

$$
\begin{aligned}
& y_{i j k}=\beta_{i}+\gamma_{j}+\eta_{i j}^{\prime}+\tau_{k}+\delta_{k j}+\varepsilon_{i j k}^{\prime} \\
& (i=1,2, \ldots, b ; \quad j=1,2, \ldots, c ; \quad k=1,2, \ldots, t)
\end{aligned}
$$

where $\beta_{i}$ is the effect due to the ith block, $\gamma_{j}$ the effect due to the $j$ th whole-plot treatment, $\eta^{\prime}{ }_{i j}$ the whole-plot
error, $\tau_{k}$ the effect due to the kth sub-plot treatment, $\delta_{k j}$ the interaction effect between the jth whole-plot treatment and kth sub-plot treatment and $\varepsilon^{\prime}{ }_{i j k}$ the subplot error. The errors are assumed to be all independent of one another. It is also assumed that $E\left(\eta^{\prime}{ }_{i j}\right)=0=$ $E\left(\varepsilon_{i j k}^{\prime}\right), \operatorname{var}\left(\eta_{i j}^{\prime}\right)=\sigma^{\prime 2}$ and $\operatorname{var}\left(\varepsilon_{i j k}^{\prime}\right)=\sigma_{k}^{\prime}{ }_{k}$. Thus the heteroscedasticity of the error variance is assumed to be associated with the levels of the sub-plot treatments. The above model can also be written as

$$
\begin{equation*}
y_{i j k}=\beta_{i}+\gamma_{j}+\tau_{k}+\delta_{k j}+\varepsilon_{i j k} \tag{22}
\end{equation*}
$$

where $\varepsilon_{i j k}=\eta_{i j}^{\prime}+\varepsilon_{i j k}^{\prime}$ so that $\operatorname{var}\left(\varepsilon_{i j k}\right)=\sigma^{\prime 2}+\sigma_{k}^{\prime 2}$ $=o_{k}^{2}$, say. Curnow (1957) considered this model with only two sub-plot treatments; he showed how to test for the equality of the two consequent group variances.

Let the constraints on the linear parameters be:
$\sum_{k}^{\sum} w_{k} \tau_{k}=0=\sum_{j} \gamma_{j}=\sum_{j} \delta_{k j}=\sum_{k} w_{k} \delta_{k j}=\sum \sum w_{k} \delta_{k j}$ where the weight $w_{k}=I / \sigma_{k}{ }^{2}$.

Let $\underset{\sim}{Y}$ be the vector of observations arranged systematically such that

$$
\begin{aligned}
{\underset{\sim}{Y}}^{\prime}= & \left(y_{111}, \ldots, y_{b l l}, \ldots, y_{l c l}, \ldots, y_{b c l}, \ldots, y_{11 t}, \ldots,\right. \\
& \left.y_{b l t}, \ldots, y_{l c t}, \ldots, y_{b c t}\right)
\end{aligned}
$$

Then the model (22) can be written in matrix notation
as

$$
\underset{\sim}{Y}={\underset{\sim}{X}}^{\prime} \underset{\sim}{\beta}+\underset{\sim}{\varepsilon}
$$

where $\underset{\sim}{X}{ }^{\prime}$ is the overall design matrix, $\underset{\sim}{\beta}$ the corresponding vector of all linear parameters and $\underset{\sim}{\varepsilon}$ the vector of all errors. Thus we have,

$$
\operatorname{var}(\varepsilon)=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{I}^{2}, \ldots, \sigma_{t}^{2}, \ldots, \sigma_{t}^{2}\right)=\underset{\sim}{V},
$$

say, and

$$
{\underset{\sim}{V}}^{-1}=\operatorname{diag}\left(w_{1}, \ldots, w_{1}, \ldots, w_{t}, \ldots, w_{t}\right) .
$$

By (2) of section 1.2 , the weighted least squares normal equations are given by (23).


II



From this the individual normal equations are obtained as

$$
\begin{aligned}
& \tau_{k}: \quad b c w_{k} \hat{\tau}_{k}+b w_{k} \Sigma \tilde{\gamma}_{j}+b w_{k} \sum_{j} \tilde{\delta}_{k j}^{\prime}+c w_{k} \sum \tilde{\beta}_{i}=w_{k} y \ldots_{k} ; \\
& \mathrm{k}=1,2, \ldots, \mathrm{t} \\
& \gamma_{j}: b \sum w_{k} \hat{\tau}_{k}+b w \cdot \tilde{\gamma}_{j}+b \sum_{k} w_{k} \tilde{\delta}_{k j}^{\prime}+w . \sum \tilde{\beta}_{i}=\sum_{k} w_{k} Y \cdot{ }_{j k} ; \\
& j=1, \ldots, c \text {. } \\
& \delta^{\prime}{ }_{k j}: b w_{k} \hat{\tau}_{k}+b w_{k} \tilde{\gamma}_{j}+b w_{k} \tilde{\delta}_{k j}^{\prime}+w_{k} \sum \tilde{\beta}{ }_{i}=w_{k} Y \cdot j_{k} \\
& j=1,2, \ldots, c \\
& \mathrm{k}=1,2, \ldots, \mathrm{t} \\
& \beta_{i}: \quad c \sum w_{k} \hat{\tau}_{k}+w \cdot \sum \tilde{\gamma}_{j}+\Sigma \Sigma w_{k} \tilde{\delta}_{k j}^{\prime}+c w \cdot \tilde{\beta}_{i}=\sum_{k} w_{k} Y_{i} \cdot k ; \\
& i=1,2, \ldots, b
\end{aligned}
$$

Using the constraints, $\sum w_{k} \hat{\tau}_{k}=0=\Sigma \tilde{\beta}{ }_{i}=\sum_{j} \tilde{\gamma}_{j}=\sum_{j} \tilde{\delta}_{k j}^{\prime}=\sum_{k} \omega_{k} \tilde{\varepsilon}_{k j}^{\prime}$ $=\sum_{k j} \sum_{k} \tilde{\delta}_{k j}^{\prime}$, we get the estimators as

$$
\hat{\tau}_{k}=y \cdot_{k}, \quad \tilde{\gamma}_{j}=\sum_{k} w_{k} y_{\cdot j} k_{k} / w \cdot=\tilde{y}_{\cdot j} ., \quad \tilde{\beta}_{i}=\sum_{k} w_{k} y_{i \cdot k} / w \cdot=
$$

$\tilde{y}_{i} \ldots$ and $\tilde{\delta}_{k j}^{\prime}=y \cdot{ }_{j k}-y \omega_{k}-\tilde{y}_{\cdot j}$. where $w \cdot=\sum_{k} w_{k} . \quad$ The corresponding sums of squares are bc $\sum_{k} y^{2} \cdot{ }_{k}$, ow. $\sum_{j} \tilde{y}^{2}{ }^{2}{ }_{j}$., cw. $\sum_{i} \tilde{y}_{i}^{2} \ldots$ and $b \sum_{j k} \sum_{k} w_{k}\left(y \cdot j k-y \cdot{ }_{k}-\tilde{y} \cdot{ }_{j}\right)^{2}$ in that order. To obtain the corrected sums of squares, let $\beta_{i}=\beta$ for all i and let us ignore all other main effects and interactions. Then the model reduces to $y_{i j k}=\beta+\varepsilon_{i j k}$. From this, the weighted least squares estimator of $\beta$ is $\tilde{\beta}$ $=\Sigma \mathrm{w}_{\mathrm{k}} \mathrm{y} \cdot ._{\mathrm{k}} / \mathrm{w}$. $=\tilde{y} \tilde{H}^{\prime}$. and the corresponding sum of squares is bow. $\mathrm{y}^{2} \ldots$. Consequently, the corrected sums of squares
(SS) are given by
SS (sub-plot treatments) $=\underset{\mathrm{b}}{\mathrm{c}} \sum_{\mathrm{k}} \mathrm{w}_{\mathrm{k}} \mathrm{y}^{2} \cdot{ }_{k}-\mathrm{bcw} \cdot \tilde{\mathrm{y}}^{2} \ldots=$ bc $\sum_{k} w_{k}\left(y \cdot{ }_{k}-\tilde{y}^{2} \ldots\right)$ with (t-1) d.f.
$S S$ (whole-plot treatments) $=$ bw. $\left(\tilde{y}_{j_{j}}-\tilde{y}_{\ldots}\right)^{2}$ with ( $c-1$ ) d.f.

SS (interactions $)=\mathrm{b} \sum \sum \mathrm{w}_{\mathrm{k}}\left(\mathrm{y} \cdot \mathrm{jk}-\tilde{\mathrm{y}} \cdot{ }_{j} \cdot \mathrm{y} \cdot{ }_{\mathrm{k}}+\tilde{\mathrm{y}} \ldots\right)^{2}$
with ( $c-1)(t-1)$ d.f.
$S S$ (blocks) $=c w \cdot \sum_{i} \tilde{y}_{i} \cdot{ }^{2}-b c w \cdot \tilde{y} \ldots{ }^{2}=c w \cdot \sum_{i}\left(\tilde{y}_{i} \ldots-\tilde{y} \ldots\right)^{2}$ with (b-I) d.f.

To find the SS for whole-plot error we consider the whole-plot weighted totals $\tilde{Y}_{i j}=\sum_{k} w_{k} y_{i j k}=w \cdot \tilde{y}_{i j}$. where $\tilde{y}_{i j}$. is the weighted mean for the (i,j)th whole plot, $i=1,2, \ldots, b ; j=1,2, \ldots, c . \quad$ These totals have constant variance as shown below. The whole-plot totals may therefore be considered to be the data from a simple randomised block design and so the SS for whole-plot error may be written as $\sum_{i} \sum_{j}\left(\tilde{Y}_{i j} \cdot-\sum_{i} \tilde{Y}_{i j} \cdot / b-\sum_{j} \tilde{Y}_{i j} \cdot / c+\sum_{i} \sum_{j} \tilde{Y}_{i j} \cdot / b c\right)^{2}$ $=w{ }^{2} \sum_{i} \sum_{j}\left(\tilde{y}_{i j}-\tilde{y}_{i} \cdots-\tilde{y}_{j} \cdot+\tilde{y} \ldots\right)^{2}$. However, the wholeplot analysis in the above procedure is in sub-plot units and the whole-plot totals are the weighted totals. Hence SS for whole-plot error is given by

$$
\begin{aligned}
\operatorname{SSE}_{I} & =w_{0}^{2} \sum \sum\left(\tilde{y}_{i j}-\tilde{y}_{i} \cdot-\tilde{y}_{\cdot j}+\tilde{y}_{\ldots}\right)^{2} / \sum w_{k} \\
& =w \cdot \sum \sum\left(\tilde{y}_{i j} \cdot-\tilde{y}_{i} \cdot-\tilde{y}_{\cdot j}+\tilde{y} \ldots\right)^{2}
\end{aligned}
$$

with (b-l)(c-l) d.f. This is the blocksxwhole-plot treatments interaction SS (corrected).

Finally, the sub-plot error $S S$ is obtained as

$$
\begin{aligned}
\operatorname{SSE}_{2} & =Y_{\sim}^{\prime} V^{-1} \underset{\sim}{ }-S S E_{1}-S S \text { due to all the estimates } \\
& =\sum_{i} \sum_{j} \sum_{k} w_{k}\left(y_{i j k}-\tilde{\mathrm{y}}_{i j} \cdot-\mathrm{y} \cdot j k+\tilde{y} \cdot{ }_{j} \cdot\right)^{2},
\end{aligned}
$$

on simplification, with $c(b-1)(t-l)$ d.f.
It follows that $\tilde{\mathrm{y}}_{i} \ldots$ is unbiased for $\beta_{i}$ under the constraints. The estimators of the other main effects are not unbiased but their contrasts are unbiased for the corresponding parametric contrasts. If we define $\tilde{\delta}_{k j}=\left(y_{. j k}-\right.$ y.. $\left.k-\tilde{y}_{j}+\tilde{y} \ldots\right)$, then $\tilde{\delta}_{k j}$ is an unbiased estimator of $\delta_{k j}$. The variances of the estimators are:

$$
\operatorname{var}\left(\hat{\tau}_{k}\right)=\sigma_{k}{ }^{2} / b c, \operatorname{var}\left(\tilde{\beta}_{i}\right)=1 / c w ., \operatorname{var}\left(\gamma_{j}\right) .
$$

$=1 / b w \cdot$ and $\operatorname{var}\left(\tilde{\delta}_{k j}\right)=\left(1 / w_{k}-1 / w_{\bullet}\right)(c-1) / b c$.
The estimators of the levels of each of the three factors are independent of one another. But the interaction estimators $\tilde{\delta}_{k j}$ are mutually correlated.

Expectations of the sums of squares under the constraints are as follows:
(a) Whole-plot analysis

> In view of the constraints, the model for the
weighted totals of the whole-plots is given by

$$
\tilde{Y}_{i j} \cdot=w \cdot\left(\beta_{i}+\gamma_{j}+\eta_{i j}^{\prime}+\tilde{\varepsilon}_{i j}^{\prime}\right)
$$

where $\tilde{Y}_{i j} \cdot=\sum_{k} w_{k} y_{i j k}$ and $\tilde{\varepsilon}_{i j}^{\prime} \cdot=\sum_{k} \varepsilon_{i j k}^{\prime} w_{k} / w_{\ldots}$

Dividing both sides by w., we have

$$
y_{i j \cdot}=\beta_{i}+\gamma_{j}+\eta_{i j}^{\prime}+\tilde{\varepsilon}_{j j}^{\prime}=\beta_{i}+\gamma_{j}+\eta_{i j}
$$

say, where $\tilde{y}_{i j} \cdot=\tilde{Y}_{i j} \cdot / \mathrm{w}$. and $\Sigma \gamma_{j}=0$. This is the
model of ordinary randomised complete block designs with $\operatorname{var}\left(\eta_{i j}\right)=\sigma^{\prime 2}+\sum \sigma_{k}{ }^{\prime 2}{w_{k}}^{2} / w_{0}{ }^{2}=\sigma^{2}$, say, which is a constant.

It therefore follows that

$$
\begin{aligned}
E \cdot\{S S(b l o c k s)\} & =w \cdot E\left\{c \sum_{i}\left(\tilde{y}_{i} \ldots-\tilde{y} \ldots\right)^{2}\right\} \\
& =w \cdot c \sum_{i}\left(\beta_{i}-\beta \cdot\right)^{2}+(b-1) \sigma^{2}{ }_{w}
\end{aligned}
$$

$E\{\operatorname{SS}($ whole-plot treatments $)\}=w \cdot E\left\{b \sum_{j}(\tilde{y} \cdot j \cdot \tilde{y} \ldots)^{2}\right\}$

$$
=w \cdot b \sum_{j} \gamma_{j}^{2}+(c-1) \sigma^{2} w
$$

and

$$
\begin{aligned}
E\left(S S E_{1}\right) & =w \cdot E\left\{\sum_{i} \sum_{j}\left(\tilde{y}_{i j} \cdot \tilde{y}_{i} \cdots-\tilde{y}_{\cdot j}+\tilde{y} \ldots\right)^{2}\right\} \\
& =w \cdot(b-1)(c-1) \sigma^{2} .
\end{aligned}
$$

(b) Sub-plot analysis

From the model (22) we have, under the constraints, $y \cdot{ }_{j k}=\beta \cdot+\gamma_{j}+\tau_{k}+\delta_{k j}+\varepsilon \cdot{ }_{j k}, y \cdot{ }_{k k}=\beta \cdot+\tau_{k}+\varepsilon_{\cdot{ }_{k k}}$, $\tilde{y}_{i j}=\beta_{i}+\gamma_{j}+\tilde{\varepsilon}_{i j}, \quad \tilde{y}_{i} \ldots=\beta_{i}+\tilde{\varepsilon}_{i} \ldots, \tilde{y}_{j} \cdot=\beta .+$

$$
\gamma_{j}+\tilde{\varepsilon}_{j j} \text { and }
$$

$\tilde{y}_{\ldots}=\beta .+\tilde{\varepsilon}_{\ldots}$ where $\tilde{\varepsilon}_{i j}=\sum_{w_{k}} \varepsilon_{i j k} / w_{0}, \tilde{\varepsilon}_{i} \ldots=$ $\sum w_{k} \varepsilon_{i \cdot k} / w \cdot, \tilde{\varepsilon}_{\rho_{j}}=\Sigma w_{k} \varepsilon{ }_{j k k} / w \cdot$ and $\tilde{\varepsilon} \ldots=\Sigma w_{k} \varepsilon \ldots_{k} / w$. It then follows that
$E($ subplot treatments $S S)=b c E\left\{\Sigma W_{k}\left(\tau_{k}+\varepsilon \ldots k-\tilde{\varepsilon}_{\ldots} \ldots\right)^{2}\right\}$

$$
=b c \sum w_{k} \tau_{k}^{2}+(t-1)
$$

$E($ Interaction $S S)=b E\left\{\Sigma \Sigma W_{k}\left(\delta_{k j}+\varepsilon \cdot j k-\tilde{\varepsilon} \cdot j\right.\right.$.
$\left.\left.-\varepsilon ._{k}+\tilde{\varepsilon}_{\varepsilon} \ldots\right)^{2}\right\}$

$$
=\mathrm{b} \sum \sum \mathrm{w}_{\mathrm{k}} \delta_{\mathrm{kj}}{ }^{2}+(\mathrm{c}-1)(\mathrm{t}-1)
$$

and

$$
\begin{aligned}
E\left(S S E_{2}\right) & =E\left\{\Sigma \Sigma \sum W_{k}\left(\varepsilon_{i j k}-\tilde{\varepsilon}_{i j}-\varepsilon \cdot j k+\tilde{\varepsilon}_{j} \cdot\right)^{2}\right\} \\
& =c(t-1)(b-1)
\end{aligned}
$$

## Analysis of variance table

Source	d.f.	SS	E(MS)
Blocks   Whole-plot treatments   Error $_{1}$	b-1 $c-1$ $(b-1)(c-1)$	$\begin{aligned} & \text { cw• } \sum_{i}\left(\tilde{y}_{i} \ldots-\tilde{y} \ldots\right)^{2} \\ & \text { bw. } \sum_{j}\left(\tilde{y} \tilde{y}_{j} \cdot-\tilde{y} \ldots\right)^{2} \\ & w \cdot \sum_{i} \sum_{j}\left(\tilde{y}_{i j} \cdot-\tilde{y}_{i} \ldots-\tilde{y}_{\cdot j}++\tilde{y}_{\ldots} . .\right)^{2} \end{aligned}$	$\begin{aligned} & w \cdot \sigma^{2}+c w \cdot \Sigma\left(\beta_{i}-\beta \cdot\right)^{2} /(b-1) \\ & w \cdot \sigma^{2}+b w \cdot \Sigma \gamma_{j}^{2} /(c-1) \\ & w \cdot \sigma^{2} \end{aligned}$
```Sub-plot treatments Interaction Error}```	$\begin{gathered} t-1 \\ (c-1)(t-1) \\ c(b-1)(t-1) \end{gathered}$	$\begin{aligned} & \text { bc } \sum_{k} w_{k}\left(y \cdot{ }_{k}-\tilde{y} \ldots\right)^{2} \\ & b_{\Sigma} \Sigma_{k}\left(y \cdot{ }_{j k}-\tilde{y} \cdot{ }_{j} \cdot-y \cdot{ }_{k}+\tilde{y} \cdot \cdot \cdot\right)^{2} \\ & \Sigma \Sigma \Sigma w_{k}\left(y_{i j k}-\tilde{y}_{i j} \cdot-y \cdot j k+\tilde{y}_{\cdot j}\right)^{2} . \end{aligned}$	$\begin{aligned} & 1+b c \sum w_{k} \tau_{k}^{2} /(t-1) \\ & 1+b \sum \sum w_{k} \delta j_{j}^{2} /(c-1)(t-1) \end{aligned}$
Total (corr.)	bct-I	$\sum \Sigma \Sigma w_{k} y_{i}{ }_{i j k}^{2}-b c w \cdot \frac{y}{y} \ldots{ }^{2}$	

> or χ^{2}-test
> If the F-test indicates significant main effects and interactions, the difference between any two levels of any one of the factors or between any two interaction parameters can be tested by the normal test. Because, the variates

$$
\begin{aligned}
& z_{1}=\left(\hat{\tau}_{k}-\hat{\tau}_{\ell}\right) /\left(1 / b c w_{k}+1 / b c w_{\ell}\right)^{\frac{1}{2}}, \\
& z_{2}=\left(\tilde{\gamma}_{j}-\tilde{\gamma}_{h}\right) /\left(2 / b_{\bullet}\right)^{\frac{1}{2}} \quad, \quad z_{3}=\left(\tilde{\beta}_{i}-\tilde{\beta}_{m}\right) /\left(2 / c w_{\bullet}\right)^{\frac{1}{2}}
\end{aligned}
$$

and

$$
z_{4}=\left[\begin{array}{ll}
\left(\tilde{\delta}_{k j}-\tilde{\delta}_{u j}\right) /\left\{(c-1)\left(1 / w_{k}+1 / w_{u}\right) / b c\right\}^{\frac{1}{2}} & \text { for } k \neq u \\
\left(\tilde{\delta}_{k j}-\tilde{\delta}_{k v}\right) /\left\{2\left(1 / w_{k}+1 / w \cdot\right) / b\right\}^{\frac{1}{2}} & \text { for } j \neq v \\
\left(\tilde{\delta}_{k j}-\tilde{\delta}_{u v}\right) /\left\{(c-l)\left(I / w_{k}+l / w_{u}\right) / b c+2 / b w \cdot\right\}^{\frac{1}{2}}
\end{array}\right.
$$

are all standardised normal under the null hypotheses.

7.2 Estimation of weights

Since there are no replicated observations in the cells, independent and unbiased estimators of the error variances are not available for the design. But we can obtain approximately independent estimators having negligible bias as follows.

The method of simple least squares yields the estimated error of the usual model as

$$
\hat{\varepsilon}_{i j k}=\left(y_{i j k}-y_{i} \cdots-y \cdot j k+y \ldots\right)
$$

Let $S_{k}{ }^{2}=\sum_{i} \sum_{j}\left(y_{i j k}-y_{i} \ldots-y \cdot j k+y \ldots\right)^{2}$. Then

$$
E\left(S_{k}{ }^{2}\right)=E\left[\sum_{j} \sum_{j}\left\{\left(\varepsilon_{i j k}-\varepsilon_{i} \ldots\right)-\left(\varepsilon_{._{j k}}-\varepsilon \ldots .\right)\right\}{ }^{2}\right]
$$

$$
=b c\left[\sigma_{k}^{2}\left(1-\frac{1}{b}-\frac{2}{c t}+\frac{2}{b c t}\right)+\frac{\bar{\alpha} 2}{c t}\left(1-\frac{1}{b}\right)\right]
$$

or

$$
E\left(S_{k}^{2} / b c\right)=\sigma_{k}^{2}(1-1 / b-1 / c t+1 / b c t),
$$

on replacing $\vec{\sigma}^{2}=\sum \sigma_{k}^{2} / t$ by $\sigma_{k}{ }^{2}$ as an approximation.
Let us now define

$$
s_{k}^{2}=\left(S_{k}^{2} / b c\right)(1-1 / b-1 / c t+1 / b c t)^{-1} ; \quad k=1,2, \ldots, t
$$

Then $s_{k}{ }^{2} \quad$ has a negligible bias as an estimator of $\sigma{ }^{2}$. The bias is of order $\left(1 / c t-1 / b^{2}\right)$. It has been verified that $s_{k}^{2} k_{\text {is }}$ inc almost unbiased estimator (AUE, Horn et al., 1975) of σ_{k}^{2}. To find the approximate distribution of s_{k}, let $u_{i}=y_{i j k}-y_{i} \ldots$ so that $u=y_{j k}-y \ldots$. Then the random variables $u_{i}, i=l, 2, \ldots, b$, are independently and normally distributed under the assumption of normality of errors. Moreover,

$$
\begin{aligned}
\operatorname{var}\left(u_{i}\right) & =E\left(\varepsilon_{i j k}-\varepsilon_{i} \ldots\right)^{2} \\
& =\sigma_{k}^{2}+\bar{\sigma}^{2} / c t-2 \sigma_{k}^{2} / c t \\
& =\sigma_{k}^{2}(1-1 / c t)
\end{aligned}
$$

on replacing $\bar{\sigma}^{-2}$ by σ_{k}^{2} as an approximation as before.
Thus $\sum_{i=1}^{b}\left(y_{i j k}-y_{i} \ldots-y_{j k}+y \ldots\right)^{2}=\sum_{l}^{b}\left(u_{i}-u_{0}\right)^{2}$
is approximately distributed as $x^{2} \sigma_{k}{ }^{2}(I-I / c t)$ with (b-I) d.f. so that $S_{k}{ }^{2} / \sigma_{k}^{2}(I-I / c t)$ is approximately distributed as x^{2} with $c(b-1)$ def.

Since $S_{k}{ }^{2} / \sigma_{k}{ }^{2}(1-1 / c t)=b c s_{k}{ }^{2}(1-1 / b-1 / c t+1 / b c t) /$ $\sigma_{k}{ }^{2}(1-1 / c t)=\left\{c(b-1) s_{k}^{2} / \sigma_{k}^{2}\right\}\{b c /(b c-c)\}(1-1 / b-J / c+$ $I / b c t) /(I-1 / c t)=c(b-1) s_{k}^{2} / \sigma k^{2}$, we may assume that
$c(b-1) s_{k}{ }^{2} / \sigma_{k}{ }^{2}$ is approximately a x^{2}-variate with $c(b-1)$ def.

It is shown in the next section that the covariance between the two estimators, $s_{k}{ }^{2}$ and $s_{m}{ }^{2}(k \neq m)$, is negligible so that, by the normal approximation for large def., they are approximately independent.
7.3 Covariance between s_{k}^{2} and $s_{m}^{2}(k \neq m)$

We have, $s_{k}^{2}=\sum_{i} \sum_{j}\left\{\left(\varepsilon_{i j k}-\varepsilon_{j k}\right)-\left(\varepsilon_{i} \ldots-\varepsilon \ldots\right)\right\}^{2}=$
$\sum_{i} \sum_{j}\left(\varepsilon_{i j k}-\varepsilon \cdot j k\right)^{2}+c \sum_{i}\left(\varepsilon_{i} \ldots-\varepsilon \ldots\right)^{2}-2 c \sum_{i}\left(\varepsilon_{i}, k-\varepsilon \ldots{ }_{k}\right)$
$\left(\varepsilon_{i} \ldots-\varepsilon^{\ldots} \ldots\right)$ and $S_{m}^{2}=\sum_{u v} \sum_{v}\left(\varepsilon_{u v m}-\varepsilon_{0}{ }_{v m}\right)^{2}+c \sum_{u}\left(\varepsilon_{u} \ldots-\right.$
$-\varepsilon \ldots)^{2}-2 \subset \underset{u}{\sum_{u}}\left(\varepsilon_{u \cdot m}-\varepsilon \cdots{ }_{m}\right)\left(\varepsilon_{u} \cdots-\varepsilon \ldots\right)$.
The individual terms may be partitioned as follows:
(a) $\sum_{i} \sum_{j}\left(\varepsilon_{i j k}-\varepsilon \cdot j k\right)^{2}$

$$
=\sum_{i} \sum_{j} \varepsilon_{i j k}^{2}\left(1-\frac{1}{b}\right)-\frac{1}{b} \sum_{j}\left(\sum_{i \neq \ell_{\ell}}^{\sum} \varepsilon_{i j k} \varepsilon_{\ell . j k}\right)
$$

(b) Similarly, $\sum_{u} \sum_{v}\left(\varepsilon_{u v m}-\varepsilon \cdot{ }_{v m}\right)^{2}=\sum_{u} \sum_{v} \varepsilon_{u v m}^{2}\left(1-\frac{l}{b}\right)$

$$
-\frac{1}{b} \sum_{V}\left(\sum_{u \neq 1}^{\sum} \varepsilon_{u v m} \varepsilon_{r v m}\right)
$$

(c) $c \sum_{i}\left(\varepsilon_{i} \ldots-\varepsilon \ldots\right)^{2}$

$$
\begin{gathered}
=\sum_{i} \sum_{j k} \sum_{i j k} \varepsilon_{i k}^{2}\left(\frac{1}{c t^{2}}-\frac{1}{b c t^{2}}\right)+\frac{1}{c t^{2}} \sum_{i}\left(\sum_{i j k}(j k \neq(r s)\right. \\
\left.\varepsilon_{i j k} \varepsilon_{i r s}\right)-\frac{1}{b c t^{2}} \sum_{(i j k) \neq(u v m)} \sum_{i j k} \varepsilon_{u v m}
\end{gathered}
$$

(d) Similarly, $\boldsymbol{c}_{\mathrm{u}}^{\mathrm{E}}\left(\varepsilon_{\mathrm{u}} \ldots-\varepsilon_{\ldots} \ldots\right)^{2}$
(e) $\sum_{i} \sum_{j}\left(\varepsilon_{i, k}-\varepsilon_{. ._{k}}\right)\left(\varepsilon_{i} \ldots-\varepsilon_{\ldots} . .\right.$.
(f) Similarly, $\sum_{\mathrm{v}} \sum_{u}\left(\varepsilon_{u . m}-\varepsilon_{\cdot} ._{m}\right)\left(\varepsilon_{u} \ldots-\varepsilon_{\ldots} ..\right)$

$$
\sum_{\mathrm{u}}^{\Sigma} \sum_{\mathrm{v}}^{\sum_{\mathrm{k} \neq \mathrm{m}}^{\varepsilon}} \varepsilon_{\mathrm{uvk}} .
$$

In all, the expectations of nine terms are to be evaluated. But four of the expectations are negligible up to the order of approximation given below. The other five expectations are as follows
(i) $E\left\{\sum_{i} \sum_{j}\left(\varepsilon_{i j k}-\varepsilon \cdot j k\right)^{2} \sum_{u} \sum_{V}\left(\varepsilon_{u v m}-\varepsilon_{\cdot v m}\right)^{2}\right\}$

$$
=c^{2}(b-1)^{2} \sigma_{k}^{2} \sigma_{m}^{2}
$$

(ii) $E\left\{\sum_{i} \sum_{j}\left(\varepsilon_{i j k}-\varepsilon \cdot j k\right)^{2} c \sum_{u}\left(\varepsilon_{u} \ldots-\varepsilon \ldots\right)^{2}\right\}$

$$
\begin{aligned}
& =\sum_{u v v} \sum_{\varepsilon_{u v m}}^{2}\left(\frac{1}{c t}-\frac{1}{b c t}\right)+\frac{1}{c t} \sum_{u}\left(\sum_{v} \varepsilon_{u v m} \underset{j \neq v}{\sum} \varepsilon_{u j m}\right) \\
& -\frac{1}{b c t} \underset{\substack{\text { (uv) } \neq(i j)}}{\sum \sum \sum_{u v m} \varepsilon_{u j m}-\frac{1}{b c t} \underset{\text { u v }}{\sum \sum} \varepsilon_{\text {um }} .}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i} \sum_{j} \varepsilon_{1 j k}^{2}\left(\frac{l}{c t}-\frac{l}{b c t}\right)+\frac{l}{c t} \sum_{i}\left(\sum_{j} \varepsilon_{i j k} \sum_{v \neq j} \varepsilon_{i v k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\varepsilon_{\text {um }} \varepsilon_{\text {ur }}\right)-\frac{1}{\text { bit }{ }^{2}} \underset{(\operatorname{ivg}) \neq(i j k)}{\sum \sum \sum \sum_{\text {um }} \varepsilon_{i j k}}
\end{aligned}
$$

$$
=(b-1)\left(b^{2} c-b c+2 b-1\right) \quad \sigma_{k}^{2} / b t^{2}+c(b-1)^{2} \sigma_{k}^{2} \sum_{m \neq k} \sigma_{m}^{2} / t^{2}
$$

$$
\text { (iii) } E\left\{\sum_{i} \sum_{j}\left(\varepsilon_{i j k}-\varepsilon \cdot j k\right)^{2} \sum_{u} \sum_{v}\left(\varepsilon_{u v m}-\varepsilon \cdot{ }_{v m}\right)\left(\varepsilon_{u} \cdot \cdot-\varepsilon \ldots\right)\right\}
$$

$$
=c(b-1)^{2} \sigma_{k}^{2} \sigma_{m}^{2} / t
$$

(iv) $E\left\{\sum_{u} \sum_{v}(\varepsilon u v m-\varepsilon \cdot v m)^{2} c \sum_{i}\left(\varepsilon_{i} \ldots-\varepsilon \ldots\right)^{2}\right\}$

$$
=(b-1)\left(b^{2} c-b c+2 b-1\right) \sigma_{m}^{2} / b t^{2}+c(b-1)^{2} \sigma_{m}^{2} \sum_{k \neq m} \sigma_{k}^{2} / t^{2}
$$

from (ii)

(v) $E\left\{\sum_{u v} \sum_{V}\left(\varepsilon u v m^{-} \varepsilon \cdot v m\right)^{2} \sum_{i} \sum_{j}\left(\varepsilon_{i j k}-\varepsilon_{j k}\right)\left(\varepsilon_{i} \ldots-\varepsilon_{0} ..\right)\right\}$

$$
=c(b-1)^{2} \sigma_{k}^{2} \sigma_{m}^{2} / t \quad \text { from (iii) }
$$

Thus $\frac{1}{b^{2} c^{2}} \quad E\left(S_{k}{ }^{2}, S_{m}{ }^{2}\right)=\frac{1}{b^{2} c^{2}}\left\{c^{2}(b-1)^{2} \sigma_{k}{ }^{2} \sigma_{m}{ }^{2}\right.$

$$
+c(b-1)^{2} \sigma_{k_{m \neq k}^{2}} \sum_{m} \sigma_{m}^{2} / t^{2}
$$

$-2 c(b-1)^{2} \sigma_{k}{ }^{2} \sigma_{m}^{2} / t+c(b-1)^{2} \sigma_{m}^{2} \sum_{k \neq m} \sigma_{k}^{2} / t-2 c(b-1)^{2}$

$$
\left.\sigma_{\mathrm{k}}^{2} \quad \sigma_{\mathrm{m}}^{2} / \mathrm{t}^{2}\right\}
$$

$$
\begin{aligned}
& + \text { terms involving reciprocals of cubic expressions in } \\
& \quad \mathrm{b}, \mathrm{c} \text { and/or } \mathrm{t} \\
& =\sigma_{\mathrm{k}}^{2}{\sigma_{m}^{2}}^{2}\left(1+\frac{1}{\mathrm{~b}^{2}}-\frac{2}{\mathrm{~b}}-\frac{4}{\mathrm{ct}}\right)+\frac{\bar{\sigma}^{2}}{c t}\left(\sigma_{k}^{2}+\sigma_{m}^{2}\right) \text {, neglecting }
\end{aligned}
$$

terms involving reciprocals of cubic expressions in b, c and/ or t.

Also $E\left(\frac{S_{k}{ }^{2}}{b c}, \frac{S_{m}{ }^{2}}{b c}\right)=\left\{\sigma_{k}{ }^{2}\left(1-\frac{1}{b}-\frac{2}{c t}+\frac{2}{b c t}\right)\right.$

$$
\left.+\frac{\bar{\sigma}^{2}}{c t}\left(1-\frac{1}{b}\right)\right\}\left\{\sigma_{m}^{2}\left(1-\frac{1}{b}-\frac{2}{c t}+\frac{2}{b c t}\right)+\frac{\bar{\sigma}^{2}}{c t}\left(1-\frac{1}{b}\right)\right\}
$$

$$
=\sigma_{k}^{2} \sigma_{m}^{2}\left(1+\frac{1}{b^{2}}-\frac{2}{b}-\frac{4}{c t}\right)+\frac{\bar{\sigma}^{2}}{c t}\left(\sigma_{k}^{2}+\sigma_{m}^{2}\right)
$$

up to the same order of approximation. Hence $\operatorname{cov}\left(\frac{S_{k}{ }^{2}}{\mathrm{bc}}, \frac{\mathrm{S}_{\mathrm{m}}{ }^{2}}{\mathrm{bc}}\right)=0$ and, consequently, $\operatorname{cov}\left(\mathrm{s}_{\mathrm{k}}{ }^{2}, \mathrm{~s}_{\mathrm{m}}{ }^{2}\right)=0$ to the same order of approximation.

Now let $x_{k}=s_{k}{ }^{2} / \sigma_{k}{ }^{2}, k=1,2, \ldots t$. Then the estimated weights are $\hat{w}_{k}=1 / s_{k}{ }^{2}=1 / x_{k} \sigma_{k}{ }^{2}$, the number of d.f. is $\nu_{j}=c(b-1)$, and $\dot{E}\left(x_{k}\right)=1$ approximately. Let $\hat{w} .=\Sigma_{I}^{t} \hat{w}_{k}$.

It follows from the above that $\operatorname{cov}\left(x_{k}, x_{m}\right)=0$ for $k \neq m$ up to the order of reciprocals of cubic expressions in b, c and/or t. Hence, the use of Theorem 2 (section 5.3) for adjustment of the statistics concerned will pro-duce the same results as those by using Theorem 1 due to Meier (section 2.1.4).

7.4 Adjustment of the estimators

To obtain the adjustment of the statistics concerned, we need the following derivatives:

$$
\frac{\partial \hat{\tilde{y}}_{i j} \cdot}{\partial x_{k}}=\frac{\partial\left(\Sigma \hat{w}_{k} y_{i j k} / \hat{w} \cdot\right)}{\partial x_{k}}=-\frac{1}{\sigma_{k}^{2}}\left(\hat{w} \cdot y_{i j k}-\sum_{k} \hat{w}_{k} y_{i j k}\right) /
$$

$$
x_{k}^{2} \hat{\mathrm{w}}^{2}
$$

and $\frac{\partial^{2} \hat{\tilde{y}}_{i j}}{\partial x_{k}{ }^{2}}=-\frac{2}{\sigma_{k}{ }^{2} x_{k}{ }^{4} w \cdot 4}\left(\hat{w} \cdot y_{i j k}-\Sigma \hat{w}_{k} y_{i j k}\right)\left(w_{k} \hat{w} \cdot-x_{k}{ }^{2} \hat{w}^{2}\right)$
so that

$$
\begin{aligned}
& {\left[\frac{\partial \hat{\tilde{y}}_{i j} \cdot}{\partial x_{k}}\right]_{\text {all } x_{k}=1}=-f_{k}\left(y_{i j k}-\tilde{y}_{i j} \cdot\right) \text { and }\left[\frac{\partial^{2} \hat{\tilde{y}}_{i j}}{\partial x_{k}^{2}}\right]_{\text {all } x_{k}=1}} \\
& =2 f_{k}\left(I-f_{k}\right)\left(y_{i j k}-\tilde{y}_{i j .}\right)
\end{aligned}
$$

where $f_{k}=w_{k} / w, \quad$ Similarly, $\quad\left[\frac{\partial \hat{\tilde{y}}_{i} \ldots}{\partial x_{k}}\right]=-f_{k}\left(y_{i} . k_{k}-\tilde{y} \ldots\right)$,

$$
\text { ali } x_{k}=1 \quad \text { all } x_{k}=1
$$

$$
=-f_{k}\left(y_{j k}-\tilde{y}_{j} \cdot\right),
$$

$$
\left[\frac{\partial^{2} \hat{\tilde{y}}_{j} \cdot}{\partial x_{k}{ }^{2}}\right]=2 f_{k}\left(l-f_{k}\right)\left(y \cdot j k-\tilde{y} \cdot{ }_{j .}\right) ;\left[\frac{\partial y \ldots}{\partial x_{k}}\right]
$$

$$
\text { all } x_{k}=1
$$

$$
\text { all } x_{k}=1
$$

$$
=-f_{k}\left(y ._{k}-\tilde{y} \ldots\right)
$$

and $\left[\frac{\partial^{2} y \ldots}{\partial x_{k}^{2}}\right]=2 f_{k}\left(1-f_{k}\right)\left(y \cdot ._{k}-\tilde{y} \ldots\right)$ where $\hat{\tilde{y}}_{i} \ldots=\Sigma \hat{w}_{k}$
all $\mathrm{x}_{\mathrm{k}}=1$
 As the estimators of the parameters for the sub-plot
treatments do not involve weights, no adjustment is necessary for these. The adjusted forms of the other estimators using estimated weights are

$$
\begin{aligned}
& \hat{\tilde{\beta}}_{i}(a d j)=\hat{\tilde{y}}_{i} . .-\frac{2}{c(b-1)} \sum_{i}^{t} \hat{f}_{k}\left(1-\hat{f}_{k}\right)\left(y_{i \cdot k}-\hat{\tilde{y}}_{i} \ldots\right), \\
& \hat{\tilde{\gamma}}_{j}(a d j)=\hat{\tilde{y}}_{\cdot j}-\frac{2}{c(b-1)} \sum \hat{f}_{k}\left(1-\hat{f}_{k}\right)(y \cdot j k \\
& \left.-\hat{\tilde{y}} \cdot{ }_{j} .\right)
\end{aligned}
$$

and

$$
\hat{\tilde{\delta}}_{k j}(a d j)=\hat{\tilde{\delta}}_{k j}+\frac{2}{c(b-1)} \sum_{k} \hat{f}_{k}\left(1-\hat{I}_{k}\right) \hat{\delta}_{k j}
$$

where $\hat{f}_{k}=\hat{w}_{k} / \hat{w}$. and $\hat{\tilde{\delta}}_{k j}=y \cdot{ }_{j k}-\hat{\tilde{y}}_{\cdot j}-\mathrm{y} \cdot{ }_{k}+\hat{\tilde{y}} \ldots$.

7.5 Adjustment of the test-statistics

(i) Adjustment of the F-statistics
(a) Whole-plot analysis

The F-statistic using estimated weights for testing the significance of whole-plot treatment effects is given by

$$
\begin{aligned}
& =\mathrm{b}(\mathrm{~b}-1) \text { WTSS/WESS, say. The adjusted F-statistic is }
\end{aligned}
$$

given by

$$
\hat{F}_{1}(a d j)=\hat{F}_{1}-\frac{1}{c(b-1)} \sum_{k=1}^{t}\left[\frac{\partial^{2} \hat{F}_{1}}{\partial x_{k}^{2}}\right] \text { using estimated }
$$

where

$$
\left[\begin{array}{c}
{\left[\frac{\partial^{2} \hat{F}_{1}}{\partial x_{k}^{2}}\right]}
\end{array}\right]=\left[\begin{array}{lll}
\frac{b(b-1)}{(\text { WESS })^{3}} & \left\{(\text { WESS })^{2}\right. & \frac{\partial^{2}(\text { WTSS })}{\partial x_{k}^{2}} \\
\text { a.l. } x_{k}=1
\end{array}\right.
$$

$$
\begin{align*}
& -\left(\text { WESS) (WTSS) } \frac{\partial^{2}(\text { WESS })}{\partial x_{k}^{2}}-2 \text { (WESS) } \frac{\partial(\text { WESS })}{\partial x_{k}} \frac{\partial \text { (WTSS) }}{\partial x_{k}}\right. \\
& \left.\left.+2(\text { WTSS })\left(\frac{\partial(\text { WESS })}{\partial x_{k}}\right)^{2}\right\}\right] \tag{24}\\
& \text { a.ll } x_{k}=1
\end{align*}
$$

the individual derivatives being

$$
\begin{aligned}
& {\left[\frac{\partial(\text { WTSS })}{\partial x_{k}}\right]=-2 f_{k} \sum_{j}\left(\tilde{y}_{j} \cdot \tilde{y} \ldots\right)\left(y \cdot j k-\tilde{y} \cdot j \cdot-y \cdot{ }_{k}+\tilde{y} \ldots\right),} \\
& \text { all } x_{k}=1 \\
& {\left[\frac{\partial^{2}(\text { WTSS })}{\partial x_{k}{ }^{2}}\right]=2 \sum_{j} f_{k}{ }^{2}\left(y \cdot j k-y \cdot j \cdot-y \cdot{ }_{k}+\tilde{y} \cdot \ldots\right)^{2}+4 f_{k}\left(I-f_{k}\right) .} \\
& \text { all } \mathrm{x}_{\mathrm{k}}=1 \\
& \sum_{j}\left(\tilde{y} \cdot_{j} \cdot-\tilde{y} \ldots\right)\left(y \cdot_{j k}-\tilde{y} \cdot_{j}-y \ldots_{k}+\tilde{y} \ldots\right),
\end{aligned}
$$

$$
\begin{aligned}
& \text { all } x_{k}=1 \\
& \left(y_{i j k}-y_{i} \cdot{ }_{k}-y{ }_{j k}+y \ldots{ }_{k}\right)\left(\tilde{y}_{i j} \cdot-\tilde{y}_{i \ldots} . \tilde{y}_{j} \cdot+\tilde{y}_{\ldots}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\frac{\left.\partial^{2(W E S S}\right)}{\partial x_{k}^{2}}\right] }=2 f_{k}^{2} \sum_{i} \sum_{j}\left(y_{i, j k}-y_{i, k}-y \cdot j k+y \cdot k^{-}-y_{i j}+\tilde{y}_{i} \ldots \tilde{y} \cdot j\right. \\
& \text { all } x_{k}=1
\end{aligned}
$$

$-\tilde{y} \ldots ..)^{2}+4 f_{k}\left(1-f_{k}\right) \sum_{i j}\left(\tilde{y}_{i j}-\tilde{y}_{i} \ldots-\tilde{y}_{\cdot j}+\tilde{y} \ldots\right)\left(y_{i j k}-y_{i \cdot k}-y \cdot j k\right.$
$+y_{\bullet 0 k}-\tilde{y}_{i j}+\tilde{y}_{i} \ldots+\tilde{y}_{\omega_{j}}-\tilde{y}_{\ldots} .$.
For testing the equality of block effects, the F-statistic using estimated weights, is

$$
\begin{aligned}
& =c(c-1) \text { lBS } / \text { WESt, }
\end{aligned}
$$

say. The adjusted F -statistic is then obtained as

$$
\hat{F}_{2}(a d j)=\hat{F}_{2}-\frac{1}{c(b-1)} \sum_{1}^{t}\left[\frac{\partial^{2} \hat{F}_{2}}{\partial x_{k}^{2}}\right] \quad \text { using estimated }
$$

where $\left[\partial^{2} \hat{\mathrm{~F}}_{2} / \partial \mathrm{x}_{k}{ }^{2}\right]$ is given by the right hand side of

$$
\text { all } x_{k}=1
$$

(24) above with $b(b-1)$ and WTSS replaced by $c(c-1)$ and WBSS respectively, and with $\left[\frac{\partial(\text { TBS })}{\partial x_{k}}\right]=-2 f_{k} \sum_{i}\left(\tilde{y}_{i} \ldots-y \ldots\right)$ all $\mathrm{x}_{\mathrm{k}}=1$ $\left(y_{i} \cdot{ }_{k}-\tilde{y}_{i} \ldots+y \ldots{ }_{k}+\tilde{y} \ldots\right)$

$$
\left[\partial (\text { WEST } / \partial x _ { k }] _ { \text { all } x _ { k } = 1 } \text { and } \left[\partial^{2}\left(\text { NESS } / \partial x_{k}^{2}\right]_{\text {all } x_{k}=1}\right.\right. \text { being given above. }
$$

(b) Sub-plot analysis
effects, the F-statistic using estimated weights is

$$
\begin{aligned}
& \hat{\mathrm{F}}_{3}=c(b-1) \text { bc } \sum_{k} \hat{w}_{k}(y \ldots k-\hat{\tilde{y}} \ldots)^{2} / \sum_{i \sum \sum \sum w_{k}\left(y_{i j k}-\hat{y}_{i j} \cdot-y \cdot j k\right.} \\
& \left.+\hat{\tilde{y}}{ }_{j} .\right)^{2} \\
& =b c^{2}(b-1) T S S / E S S,
\end{aligned}
$$

say, The adjusted F-statistic is

$$
\hat{F}_{3}(a d j)=\hat{F}_{3}-\frac{I}{c(b-1)} \sum_{1}^{t}\left[\partial^{2} \hat{F}_{3} / \partial x_{k}^{2}\right]_{a l l} x_{k}=1 \quad \text { using estimated } \quad \text { weights, }
$$

where $\left[\partial^{2} \hat{F}_{3} / \partial x_{k}^{2}\right]$ is given by the right hand side of all $\mathrm{x}_{\mathrm{k}}=1$
(24) with $b(b-1)$, WISS and WESS replaced by $b c^{2}(b-1)$, TS and ESS respectively. The individual derivatives concerned
are:

$$
\begin{aligned}
& \text { all } x_{k}=1 \\
& \text { all } \mathrm{x}_{\mathrm{k}}=1 \\
& {\left[\frac{\partial(E S S)}{\partial x_{k}}\right]=-w_{k} \sum_{i} \sum_{j}\left(y_{i j k}-y_{i j}-y^{\sim} \cdot j k+\tilde{y}_{j}\right)^{2}} \\
& \text { all } \mathrm{x}_{\mathrm{k}}=1 \\
& +2 \sum \sum \sum w_{k} f_{k}\left(y_{i j k}-\tilde{y}_{i j} \cdot-y \cdot j k+\tilde{y} \cdot{ }_{j} \cdot\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { all } x_{k}=1
\end{aligned}
$$

For testing the significance of the interaction effects, the F-statistic using estimated weights, is

$$
\begin{aligned}
\hat{\mathrm{F}}_{4} & =\frac{b c(b-1)}{c-1} \frac{\sum_{j} \sum_{k} \hat{w}_{k}\left(y \cdot j k-\hat{\tilde{y}} \cdot j \cdot-\hat{\tilde{y}} \cdot{ }_{k}+\hat{\tilde{y}} \ldots\right)^{2}}{\sum \sum \sum \hat{w}_{k}\left(y_{i j k}-\hat{\tilde{y}}\right.}{ }_{i j \cdot-y \cdot j k+\hat{\tilde{y}} \cdot j \cdot)^{2}}^{c-1} \cdot \\
& =\frac{b c(b-1)}{c-\text { ISS } / E S S,}
\end{aligned}
$$

say. The adjusted F-statistic is

$$
\hat{F}_{4}(a d j)=\hat{F}_{4}-\frac{1}{c(b-1)} \sum_{k=1}^{t}\left[\partial^{2} \hat{F}_{4} / \partial x_{k}^{2}\right] \quad \text { using estimated }
$$

where $\left[\partial^{2} \hat{F}_{4} / \partial x_{k}^{2}\right]_{a \| x_{k}=1}$ is given by the right hand side of (24) with $b(b-1)$,WTSS and WESS replaced by $b c(b-1) /(c-1)$, ISS and ESS respectively. The individual derivatives concerned are

$$
\begin{aligned}
& {\left[\frac{\partial I S S}{\partial x_{k}}\right]=-w_{k} \sum_{j}\left(y \cdot j k-\tilde{y} \cdot j \cdot-y \cdot{ }_{k}+\tilde{y} \ldots\right)^{2}+2 \sum_{j} \sum_{k} w_{k} f_{k}} \\
& \text { all } \mathrm{x}_{\mathrm{k}}=1 \\
& \left(y \cdot{ }_{j k}-\tilde{y} ._{j}-y ._{k}+\tilde{y} \ldots\right)^{2} \text {, }
\end{aligned}
$$

$-4 \sum_{j} \sum_{k} w_{k} f_{k}\left(1-3 f_{k} / 2\right)\left(y \cdot j k \tilde{\tilde{y}} \cdot j \cdot-y \cdot{ }_{k}+\tilde{y} \ldots\right)^{2}$,
and $\left[\partial E S S / \partial \mathrm{x}_{\mathrm{k}}\right]_{\text {all } \mathrm{x}_{\mathrm{k}}=1}$ and $\left[\partial^{2} \operatorname{ESS} / \partial \mathrm{x}_{\mathrm{k}}^{2}\right]_{\text {all } \mathrm{x}_{\mathrm{k}}=1}$ are given above.

apfroximath
 (ii) Adjustment of the normal test-statistics

For testing the difference between 2 sub-plot affroximati
treatment effects, the normal test-statistic using estimated weights is in the same form as that for testing the difference between two treatment effects in the one-way model. Hence, aptroximate from section 2.1.4, the adjusted normal test-statistic is

$$
\hat{z}_{1}(a d j)=\hat{z}_{1}\left\{1-3\left(1 / \hat{w}_{k}^{2}+1 / \hat{w}_{\ell}^{2}\right) / 4 c(b-1)\left(1 / \hat{w}_{k}+1 / \hat{w}_{\ell}\right)^{2}\right\}
$$

where

$$
\hat{z}_{l}=\left|\hat{\tau}_{k}-\hat{\tau}_{\ell}\right| /\left(l / b c \hat{w}_{k}+I / b c w_{\ell}\right)^{\frac{1}{2}}
$$

Also for testing the difference between either two approkimate whole-plot treatment effects or two block effects, the normal test-statistic using estimated weights is in the same form as that for testing the difference between two block effects in randomised block designs. Hence, from section 5.5, we have

$$
\begin{gathered}
\hat{z}_{2}(\operatorname{adj})=\left\{\left|\hat{\tilde{\gamma}}_{j}(\operatorname{adj})-\hat{\tilde{\gamma}}_{h}(\operatorname{adj})\right| /(2 / \hat{b w} \cdot)^{\frac{1}{2}}\right\}\left\{1-\sum \hat{f}_{k}\right. \\
\left.\left(1-\hat{f}_{k}\right) / 4 c(b-1)\right\}
\end{gathered}
$$

and

$$
\begin{array}{r}
\hat{z}_{3}(a d j)=\left\{\left|\hat{\tilde{n}}_{i}(a d j)-\hat{\tilde{\beta}}_{m}(a d j)\right| /\left(2 / \hat{c w}_{\bullet}\right)^{\frac{1}{2}}\right\}\left\{1-\sum \hat{f}_{k}\right. \\
\left.\left(1-\hat{f}_{k}\right) / 4 c(b-1)\right\}
\end{array}
$$

where $\hat{\tilde{\gamma}}_{j}(a d j)$ and $\hat{\tilde{\beta}}_{i}(a d j)$ are as given in the previous section.
Finally for testing the difference between two interaction effects, the ${ }_{n}$ normal test-statistic using estimated weights is given, from section 7.1, by

$$
\hat{z}_{4}=\left[\begin{array}{c}
\hat{\tilde{\delta}}_{k j}(a d j)-\hat{\delta}_{u j}(a d j) \left\lvert\, /\left\{(c-1)\left(1 / \hat{w}_{k}+1 / \hat{w}_{u}\right) / b c\right\}^{\frac{1}{2}}\right. \\
\text { for } k \neq u \\
\left|\hat{\delta}_{k j}(a d j)-\hat{\delta}_{k v}(a d j)\right| /\left\{2\left(1 / \hat{w}_{k}+1 / \hat{w}_{v}\right) / b\right\}^{\frac{1}{2}} \text { for } j \neq v \\
\hat{\tilde{\delta}}_{k j}(a d j)-\hat{\delta}_{u v}(a d j) \left\lvert\, /\left\{(c-1)\left(I / \hat{w}_{k}+1 / \hat{w}_{u}\right) / b c+2 / \hat{b w w}^{\prime}\right\}^{\frac{1}{2}}\right. \\
\text { for } k \neq u \text { and } j \neq v
\end{array}\right.
$$

and the adjusted form of this test-statistic by
$\hat{z}_{4}(a d j)=\left[\begin{array}{ll}\hat{z}_{4}\left\{1-3 / 4 c(b-1)\left(1 / \hat{w}_{k}+1 / \hat{w}_{u}\right)\right\} & \text { for } k \neq u \\ \hat{z}_{4}\left\{I-A_{k} / c(b-1)-\sum_{m \neq k}^{t} B_{m} / c(b-1)\right\} & \text { for } j \neq v \\ \hat{z}_{4}\left\{I-\sum_{i \neq k, u} I_{i} / c(b-1)-\sum_{m \neq k, u} H_{m} / c(b-1)\right\} & \end{array}\right.$
where

$$
\begin{aligned}
& A_{k}=3\left(1+\hat{f}_{k}^{2}\right)^{2} / 4\left(1+\hat{f}_{k}\right)^{2}+\hat{f}_{k}^{2}\left(1-\hat{f}_{k}\right) /\left(1+\hat{f}_{k}\right) \\
& B_{m}=3 \hat{f}_{m}^{2} \hat{f}_{k}^{2} / 4\left(1+\hat{f}_{k}\right)^{2}+\hat{f}_{m} \hat{f}_{k}\left(1-\hat{f}_{m} /\left(1+\hat{f}_{k}\right)\right. \\
& L_{i}=3 P_{i} / 4 \hat{w}_{i}^{2} G^{2}+2 \hat{f}_{i}\left(1-\hat{f}_{i}\right) / b \hat{w} \cdot G \\
& H_{m}=3 \hat{f}_{m}^{2} / b^{2} G^{2} \hat{w}^{2}+2 \hat{f}_{m}\left(1-\hat{f}_{m}\right) / b G \hat{w} \\
& G=(c-1)\left(1 / \hat{w}_{k}+1 / \hat{w}_{u}\right) / b c+2 / b \hat{w} .
\end{aligned}
$$

and

$$
P_{i}=\left\{(c-1) / b c+2 \hat{f}_{i}^{2} / b\right\}^{2} .
$$

7.6 Multiple comparison

As the error mean squares for both the whole-plot analysis and sub-plot analysis depend on weights, the formula (18) of section 5.6 is appropriate for finding the
joint confidence interval of contrasts of the linear parameters.
(i) Whole-plot treatment contrasts

The joint confidence interval of all contrasts $\psi_{1}=\Sigma \alpha_{j} \gamma_{j}$ with $\Sigma \alpha_{j}=0$ of the whole-plot treatment parameters is estimated by the formula (18) of section 5.6 with $\psi=\psi_{1}, \quad S=\left[(c-1) F_{\alpha}\{c-1,(b-1)(c-1)\}\right]^{\frac{1}{2}}, \quad s=\{\hat{W} \cdot($ NESS $) /$ $(b-1)(c-1)\}^{\frac{1}{2}}, \quad r_{j}=1=c(b-1)$ and $\hat{\sigma}_{\hat{\psi}}^{1}{ }^{\prime}=\left(\sum d_{j}{ }^{2} / \hat{b w}_{0}\right)^{\frac{1}{2}}$. The quantities $\hat{\tilde{\gamma}}_{j}($ adj $)$ are to be used in computing ψ_{I}. The partial derivatives concerned are
and

$$
\left[\frac{\partial^{2} s}{\partial x_{k}^{2}}\right]_{\text {all } x_{k}=1}=\left[s\left\{\hat{f}_{k}\left(1-\hat{f}_{k}\right) / 4\right)+\frac{\partial^{2} \text { WEST }}{\partial x_{k}^{2}} / 2\right. \text { NESS }
$$

$$
\left.\left.-\left(\frac{\partial \text { WEST }}{\partial x_{k}}\right)^{2} / 4(\text { FESS })^{2}\right\}\right]^{a l l} x_{k}=1
$$

$$
\begin{aligned}
& {\left[\frac{\partial \hat{\sigma}_{\hat{\psi}} 1}{\partial x_{k}}\right]=\frac{1}{2} f_{k}\left(\Sigma \alpha_{j}{ }^{2} / b_{w}\right)^{\frac{1}{2}},} \\
& \text { all } x_{k}=1 \\
& {\left[\frac{\partial^{2} \hat{\sigma}_{\hat{\psi}_{I}}}{\partial \mathrm{x}_{k}{ }^{2}}\right]=\left(\Sigma \mathrm{d}_{j}{ }^{2}\right)^{\frac{1}{2}} f_{k}\left(3 f_{k} / 4-I\right) /\left(\mathrm{bw}_{0}\right)^{\frac{1}{2}},} \\
& {\left[\frac{\partial s}{\partial x_{k}}\right]_{\text {all } x_{k}=1}=\left[s\left\{\left(\partial \text { lESS } / \partial x_{k}\right) / 2 \text { WEtS }-{\hat{f_{k}}}^{2}\right\}\right] \quad \text { all } x_{k}=1}
\end{aligned}
$$

$$
\left[\begin{array}{c}
\left.\frac{\partial \text { WEST }}{\partial \mathrm{x}_{\mathrm{k}}}\right] \text { and }\left[\frac{\partial^{2} \text { WENS }}{\partial \mathrm{x}_{\mathrm{k}}^{2}}\right] \quad \text { being given in the } \\
\text { all } \mathrm{x}_{\mathrm{k}}=1
\end{array} \quad \text { all } \mathrm{x}_{\mathrm{k}}=1 \quad .\right.
$$

previous section. Here $f_{k}=w_{k} / w$. and $\hat{f}_{k}=\hat{w}_{k} / \hat{w}$. .

(ii) $\quad \beta$-contrasts

Similarly, the joint confidence interval of all β-contrasts $\psi_{2}=\sum g_{i} \beta_{i}$ with $\Sigma g_{i}=0$ is given by (18) of section 5.6 with $\psi=\psi_{2}, S=\left[(b-1) F_{\alpha}\{b-1,(b-1)(c-1)\}\right]^{\frac{1}{2}}$, $s=\{\hat{w} \cdot(\text { WEST }) /(b-1)(c-1)\}^{\frac{1}{2}}, \quad r_{j}-1=c(b-1)$ and $\hat{\sigma}_{\hat{\psi}_{2}}=$ $\left(\sum_{g_{i}} 2 / \hat{w} .\right)^{\frac{1}{2}}$. The quantities $\hat{\tilde{\beta}}_{i}(\operatorname{adj})$ are to be used in computing $\hat{\psi}_{2}$. The two partial derivatives, $\left[\frac{\partial s}{\partial \mathrm{x}_{\mathrm{k}}}\right]$
and $\left[\frac{\partial^{2} s}{\partial x_{k}^{2}}\right]_{\text {all } x_{k}=1}$
are given above in (i) and the other two derivatives are

$$
\left[\frac{\partial \hat{\sigma} \hat{\psi}_{2}}{\partial x_{k}}\right]_{\text {all } x_{k}=1}=\left(\Sigma g_{i}^{2}\right)^{\frac{1}{2}} f_{k} / 2(\mathrm{cw} \cdot)^{\frac{1}{2}}
$$

and

$$
\left[\frac{\partial^{2} \hat{\sigma}_{\hat{\psi}}^{2}}{\partial \mathrm{x}_{\mathrm{k}}^{2}}\right]_{\text {all } \mathrm{x}_{\mathrm{k}}=1}=\left(\sum \mathrm{g}_{\mathrm{i}}^{2}\right)^{\frac{1}{2}} f_{k}\left(3 f_{k} / 4-1\right) /(\mathrm{cw})^{\frac{1}{2}}
$$

(iii) Sub-plot treatment contrasts

The joint confidence interval of all contrasts $\psi_{3}=\sum_{c_{k}} \tau_{k}$ of the subplot treatment parameters is also given by formula (18) of section 5.6 with $\psi=\psi_{3}$,

$$
\begin{aligned}
& \hat{\psi}_{3}=\sum c_{k} y \cdot{ }_{k}, \quad s=\left[(t-1) F_{\alpha}\{t-1, c(b-1)(t-1)\}\right]^{\frac{1}{2}}, \\
& s=\{\operatorname{ESS} / c(b-1)(t-1)\}^{\frac{1}{2}}, \quad r_{j}-1=c(b-1) \text { and } \cdot \hat{\sigma}_{\hat{\psi}_{3}}= \\
& \left\{\sum c_{k}{ }^{2} s_{k} / b c\right\}^{2} .
\end{aligned}
$$

The partial derivatives concerned are

$$
\begin{aligned}
& {\left[\frac{\partial \hat{\sigma}_{\hat{\psi}_{3}}}{\partial x_{k}}\right]=c_{k}{ }^{2} \sigma_{k}{ }^{2} / 2 b c\left(\Sigma c_{k}{ }^{2} \sigma{ }_{k}{ }^{2} / b c\right)^{\frac{1}{2}} \text {, }} \\
& \text { all } x_{k}=1 \\
& {\left[\frac{\partial^{2} \hat{\sigma}_{\hat{\psi}}^{3}}{\partial x_{k}{ }^{2}}\right]_{\text {all } x_{k}=1}=-c_{k}{ }^{4} \sigma_{k}^{4 / 4 b^{2} c^{2}\left(\sum c_{k}^{2} \sigma_{k}{ }^{2 / b c}\right)^{3 / 2}, ~, ~, ~}} \\
& {\left[\frac{\partial s}{\partial x_{k}}\right]_{a 11 x_{k}=1}=\left[\frac{\partial \underline{\operatorname{ESS}}}{\partial x_{k}} / 2\{\operatorname{ESS}(b-1)(c-1) c\}^{\frac{1}{2}}\right]_{\text {all } x_{k}=1}} \\
& \text { and } \\
& {\left[\frac{\partial^{2} s}{\partial x_{k}{ }^{2}}\right]=\left[\left\{\frac{\partial^{2} E S S}{\partial x_{k}^{2}}-\left(\frac{\partial E S S}{\partial x_{k}}\right)^{2} / 2 s^{2} c(b-1)(t-1)\right\}\right.} \\
& \text { all } x_{k}=1 \\
& \begin{array}{r}
\sec (b-1)(t-1)] \\
\operatorname{al1} x_{k}=1
\end{array}
\end{aligned}
$$

the previous section.
(iv) Interaction contrasts

$$
\text { If } \psi_{4}=\Sigma \Sigma c_{k j} \delta_{k j} \text { is an interaction contrast, }
$$

then $\operatorname{var}\left(\hat{\psi}_{4}\right)=\operatorname{var}\left(\sum \sum c_{k j} \tilde{\delta}_{k j}\right)=\sum \sum c_{k j}^{2} \operatorname{var}\left(\tilde{\delta}_{k j}\right)$
$+\sum_{j} \sum_{k \neq u}^{\sum} c_{k j} c_{u j} \operatorname{cov}\left(\tilde{\delta}_{k j}, \tilde{\delta}_{u j}\right)+\sum_{k}^{\sum} \sum_{j \neq v} \sum_{k j} c_{k j} c_{k v}^{\operatorname{cov}}\left(\tilde{\delta}_{k j}, \tilde{\delta}_{k v}\right)$
$+\sum_{k \neq u, j \neq v} \sum_{j=j} c_{k j} c_{u v} \operatorname{cov}\left(\tilde{\delta}_{k j}, \tilde{\delta}_{u v}\right)=\sum_{k} G_{k} / w_{k}-G / w .$,
say, where $G_{k}=\sum_{j} c_{k j}^{2}(c-1) / b c-\sum_{j \neq v}^{\sum} c_{k j} c_{k v} / b c$ and G
$=\Sigma \Sigma c_{k j}^{2}(c-1) / b c+\sum_{j}^{\sum \sum \neq u} \sum c_{k j} c_{u j}(c-1) / b c+\left(\sum_{k} \sum_{j \neq v} \sum_{k j} c_{k v}\right.$
$+\underset{k \neq u}{\left.\sum \sum \sum \sum_{j \neq v} c_{k j} c_{u v}\right)(2 / b-1 / b c) .}$
Thus, using estimated weights, the standard error of $\hat{\psi}_{4}$ is

$$
\hat{\sigma}_{\hat{\psi}_{4}}=\left(\Sigma G_{k} / \hat{w}_{k}-G / \hat{w}_{0}\right)^{\frac{1}{2}} .
$$

The joint confidence interval of all interaction
contrasts ψ_{4} is given by (18) of section 5.6 with

$$
\psi=\psi_{4}, \quad S=\left[(c-1)(t-1) F_{\alpha}\{(c-1)(t-1), c(b-1)(t-1)\}\right]^{\frac{1}{2}},
$$

$s=\{\operatorname{ESS} / \mathrm{c}(b-1)(t-1)\}^{\frac{1}{2}}$, and $r_{j} j^{-1}=c(b-1)$. The quantities $\hat{\tilde{\delta}}_{\mathrm{kj}}(\mathrm{adj})$ are to be used in computing $\hat{\psi}_{4^{\circ}}$ The two partial

$$
\left[\partial s / \partial x_{k}\right]_{\text {all } x_{k}=1} \text { and }\left[\partial^{2} s / \partial x_{k}^{2}\right]_{\text {all } x_{k}=1}
$$

are given above in (iii). The other two partial derivatives concerned are

$$
\begin{gathered}
{\left[\frac{\partial \hat{\sigma}_{\hat{\psi}_{4}}}{\partial \mathrm{x}_{\mathrm{k}}}\right]=\left(G_{k} / w_{k}-G f_{k} / \mathrm{w} \cdot\right) / 2 T} \\
\text { all } \mathrm{x}_{\mathrm{k}}=1
\end{gathered}
$$

and

$$
\left[\frac{\partial^{2^{2} \hat{\sigma}_{\hat{\psi}}}}{\partial x_{k}{ }^{2}}\right]_{\text {all } x_{k}=1}=\left\{G f_{k}\left(1-f_{k}\right) / w \cdot-\left(G_{k}-G f_{k}{ }^{2}\right)^{2} / 4 T w_{k}{ }^{2}\right\} / T^{3 / 2}
$$

with $f_{k}=W_{k} / w$. and $T=\Sigma G_{k} / w_{k}-G / w . \quad$.
Finally, the three summary measures of dispersion given at the end of the previous chapter can be used as those for the estimators of the sub-plot treatments.

IINEAR REGRESSION WITH UNEQUAL GROUP VARIANCES

A linear regression model with error variance heteroscedastic with respect to the levels of the independent variable is considered here. On the assumption that the group variances are known, the expressions for the weighted least squares estimators of the linear parameters and the corresponding analysis are given. The usual variance of a group of observations is taken as the estimator of the corresponding group variance in the population. The estimators of the linear parameters and test-statistics are then adjusted for bias.
8.1 Estimation and analysis when the erior variances are known

Let the simple linear regression model be

$$
\begin{gathered}
y_{i j}=\alpha+\beta x_{i}+\varepsilon_{i j} \\
\left(j=1,2, \ldots, r_{i}, r_{i}>l ; \quad i=l, 2, \ldots, k\right)
\end{gathered}
$$

where α is the intercept, β the regression coefficient, the values x_{i} are the fixed values of the independent variable x and $\varepsilon_{i j}$ is the error term having mean zero and variance $\sigma_{i}{ }^{2}$. The errors are assumed to be independent of one another. Let $n=\Sigma r_{i}$.

By minimising $\sum_{i} \sum_{j}\left(y_{i j}-\alpha-\beta x_{i}\right)^{2} / \sigma{ }_{i}{ }^{2}$, we get the
weighted least squares (WLS) estimators of the linear parameters as

$$
\begin{aligned}
& \tilde{\alpha}=\left(\Sigma w_{i} y_{i} \cdot \Sigma w_{i} x_{i}^{2}-\Sigma w_{i} x_{i} \Sigma w_{i} x_{i} y_{i}\right) /\left\{w \cdot \Sigma w_{i} x_{i}^{2}\right. \\
&\left.-\left(\Sigma w_{i} x_{i}\right)^{2}\right\}
\end{aligned}
$$

and

$$
\tilde{\beta}=\left(w \cdot \sum w_{i} x_{i} y_{i} \cdot-\sum w_{i} x_{i} \sum w_{i} y_{i}\right) /\left\{w_{0} \Sigma w_{i} x_{i}^{2}-\left(\Sigma w_{i} x_{i}\right)^{2}\right\}
$$

where the weight $w_{i}=r_{i} / \sigma_{i}{ }^{2}, i=1,2, \ldots, k$ and $w \cdot=\Sigma w_{i}$. These are also given by Jacquez et al. (1968) for estimated weights. They also empirically compared the efficiency of such estimators with those of ordinary least squares and maximum likelihood estimators. Jacquez and Norusis (1973) empirically compared a few summary dispersion measures of these estimators with those of the least squares estimators. The sum of squares (SS) due to the estimates is

$$
\begin{aligned}
\operatorname{SS}(\text { Est. }) & =\tilde{\alpha} \Sigma w_{i} y_{i} \cdot+\tilde{\beta} \Sigma w_{i} x_{i} y_{i} \\
& =\frac{\left(\Sigma w_{i} y_{i} \cdot\right)^{2}}{w_{0}}+\frac{\left(\Sigma w_{i} x_{i} y_{i} \cdot-\Sigma w_{i} x_{i} \Sigma w_{i} y_{i} / w_{\bullet}\right)^{2}}{\sum w_{i} x_{i}^{2}-\left(\Sigma w_{i} x_{i}\right)^{2} / w}
\end{aligned}
$$

with 2 d.f. Assuming $\beta=0$, the model reduces to $y_{i j}$ $=\alpha+\varepsilon_{i j}$. The WLS estimator of α is $\tilde{\alpha}=\sum w_{i} y_{i} \cdot / w$. and the corresponding $S S=\left(\Sigma w_{i} y_{i} \cdot\right)^{2} / w$. with 1 d.f. Subtracting this from SS (Est.) we get the SS for the regression coefficient as

$$
\begin{aligned}
\operatorname{SS}(\beta)= & \left(\sum w_{i} x_{i} y_{i} \cdot-\sum w_{i} x_{i} \sum w_{i} y_{i} \cdot / w_{\bullet}\right)^{2} /\left\{\Sigma \quad w_{i} x_{i}^{2}-\right. \\
& \left.\left(\sum w_{i} x_{i}\right)^{2} / w \cdot\right\}
\end{aligned}
$$

with 1 d.f. The $S S$ due to error is given by

$$
\begin{aligned}
S S(E) & =\sum \sum \sum_{i} w_{i} y_{i j}{ }^{2} / r_{i}-\operatorname{SS} \text { (Est.) } \\
& =\left\{\sum \sum w_{i} y_{i j}^{2} / r_{i}-\left(\sum w_{i} y_{i} \cdot\right)^{2} / w \cdot\right\}-\left\{w_{0} \sum w_{i} x_{i} y_{i} \cdot-\right.
\end{aligned}
$$

$\left.\left(\Sigma w_{i} x_{i}\right)\left(\Sigma w_{i} y_{i} \cdot\right)\right\}^{2} /\left\{w_{0}^{2} \Sigma w_{i} x_{i}{ }^{2}-\left(\Sigma w_{i} x_{i}\right)^{2} w_{\bullet}\right\}$ with ($n-2$) d.f. As $E\{\operatorname{SS}(\beta)\}=\beta^{2}\left\{\Sigma w_{i} x_{i}{ }^{2}\right.$ $\left.-\left(\Sigma w_{i} x_{i}\right)^{2} / w \cdot\right\}$, we can test the significance of the regression coefficient by an F-test, that is

$$
F=S S(\beta)(n-2) / S S(E)
$$

with 1 and $n-2$ d.f.

$$
\text { Since } E(\tilde{\beta})=\beta \text { and } \operatorname{var}(\tilde{\beta})=1 /\left\{\Sigma w_{i} x_{i}{ }^{2}\right.
$$

$\left.-\left(\Sigma w_{i} x_{i}\right)^{2} / w.\right\}$, the corresponding t-statistic for testing the hypothesis: $\beta=\beta$ o is given by

$$
\begin{aligned}
& t=\left(\tilde{\beta}-\beta_{o}\right)\left\{\sum w_{i} x_{i}^{2}-\left(\sum w_{i} x_{i}\right)^{2} / w \cdot\right\}^{\frac{1}{2}}(n-2)^{\frac{1}{2}} /\{\operatorname{SS}(E)\}^{\frac{1}{2}} \\
& \text { with } \quad(n-2) d \cdot f .
\end{aligned}
$$

This latter hypothesis can also be tested with the help of normal test-statistic because the variate $u=\left(\tilde{\beta}-\beta{ }_{0}\right)$ $\left\{\Sigma w_{i} x_{i}{ }^{2}-\left(\Sigma w_{i} x_{i}\right)^{2} / w \text {. }\right\}^{\frac{1}{2}}$ is standardised normal under the nule hypothesis.

8.2 Estimators of weights

Rao (1970) gave a set of equations for obtaining the MINQUE of $\sigma_{i}{ }^{2}$ for this model as an example. Since such estimates may sometimes be negative, Rao and Subrahmaniam (1971) proposed replacement of the MINQUE of $\sigma_{i}{ }^{2}$ by the corresponding estimate $s_{i}^{2}=\sum_{j}\left(y_{i j}-y_{i} \cdot\right)^{2} /\left(r_{i}-1\right)$ based on the observations of the ith group whenever the MINQUE was less than a small positive quantity. From a Monte Carlo study, they found that for a few replications at many points, the WIS estimators of the linear parameters, using MINQUE (with the above modification), were substantially more efficient than those using $s_{i}{ }^{2}$. However, the gains diminished
when many replicates (>8) were taken especially at fewer points.

It follows from Rao and Subrahmaniam (1971) that the almost unbiased estimator (AUE) of σ_{i}^{2} is $\sum_{j}\left(y_{i j}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2} /$ $r_{i}\left(1-k_{i i}\right)$ where $k_{i i}=l / n+\left(x_{i}-x_{\bullet}\right)^{2} / \Sigma r_{i}\left(x_{i}-x_{\bullet}\right)^{2}$ is the ith diagonal element of ${\underset{\sim}{r}}^{\prime}\left(\underset{\sim}{X X} X_{\sim}^{\prime}\right)^{-1} \underset{\sim}{X}$ with $\underset{\sim}{X}{ }^{\prime}$ as the design matrix of the regression model and where $\hat{\alpha}$ and $\hat{\beta}$ are the usual least squares estimators of α and β respectively. The MINQUE of $\sigma_{i}{ }^{2}$ is too complicated. Even the AUE does not possess the distributional property needed for adjustment of the statistics concerned. We shall therefore use $s_{i}{ }^{2}$ as the estimator of $\sigma_{i}{ }^{2}$. Jacquez et al. (1968) used this estimator for obtaining the estimated weights.

As is well-known, $\left(r_{i}-1\right) s_{i}{ }^{2} / \sigma_{i}{ }^{2}$ is distributed as x^{2} with $\left(r_{i}-1\right)$ d.f., and $s_{i}{ }^{2}$ and $s_{j}{ }^{2}$ are independent when $i \neq j$.

8.3 Adjustment of the estimators and test-statistics

Let $z_{i}=s_{i}{ }^{2} / \sigma_{i}{ }^{2}$ and the estimated weight $\hat{w}_{i}=r_{i} / s_{i}{ }^{2}$,
$i=I, 2, \ldots, k$. Let $\hat{w} .=\Sigma \hat{w}_{i}$. Since the estimators $s_{i}{ }^{2}$ of the error variances are independent, the adjustment of the statistics concerned for removing the major part of the bias, can be made with the help of the Theorem 1 (section 2.1.4) due to Meier.
(i) Adjustment of the estimators of the linear parameters

The estimated regression coefficient using

$$
\begin{aligned}
\hat{\tilde{\beta}} & =\left(\hat{w} \cdot \Sigma \hat{w}_{i} x_{i} y_{i},-\Sigma \hat{w}_{i} x_{i} \Sigma \hat{w}_{i} y_{i} \cdot\right) /\left\{\hat{w} \cdot \Sigma \hat{w}_{i} x_{i}^{2}-\left(\Sigma \hat{w}_{i} x_{i}\right)^{2}\right\} \\
& =G / H,
\end{aligned}
$$

say. The adjusted estimator is

$$
\hat{\tilde{\beta}}(\operatorname{adj})=\hat{\tilde{\beta}}-\sum_{1}^{k} \frac{1}{r_{i}-1}\left[\frac{\partial^{2} \hat{\tilde{\beta}}}{\partial z_{i}^{2}}\right]_{\text {all } z_{i}=1} \text { using estimated weights, }
$$

where

$$
\begin{align*}
& \frac{\partial^{2} \hat{\tilde{\beta}}}{\partial z_{i}^{2}}=\frac{1}{H^{3}}\left\{H^{2} \frac{\partial^{2} G}{\partial z_{i}{ }^{2}}-H G \frac{\partial^{2} H}{\partial z_{i}{ }^{2}}-2 H \frac{\partial G}{\partial z_{i}} \frac{\partial H}{\partial z_{i}}\right. \\
& \left.+2 G\left[\frac{\partial H}{\partial z_{i}}\right]^{2}\right\} . \tag{25}\\
& \cdots
\end{align*}
$$

The individual derivatives are:

$$
\begin{aligned}
& {\left[\frac{\partial G}{\partial z_{i}}\right]_{\text {all }}=-w_{i}=1 \quad\left(\underset{i}{\sum} w_{i} x_{i} y_{i} .+\dot{w} \cdot x_{i} y_{i} .-x_{i} \Sigma w_{i} y_{i} \cdot-y_{i} \cdot \Sigma w_{i} x_{i}\right),} \\
& {\left[\frac{\partial^{2} G}{\partial z_{i}^{2}}\right]=w_{i}\left\{w_{i}\left(x_{i}-1\right) y_{i} \cdot+2\left(\Sigma w_{i} x_{i} y_{i} \cdot+w \cdot x_{i} y_{i} .\right.\right.} \\
& \text { all } z_{i}=1 \\
& \left.-x_{i} \Sigma w_{i} y_{j} . y_{i} \cdot \Sigma w_{i} x_{i}\right\}, \\
& {\left[\frac{\partial H}{\partial z_{i}}\right]_{\text {all } z_{i}=1}=-w_{i}\left(\Sigma w_{i} x_{i}{ }^{2}+w \cdot x_{i}{ }^{2}-2 \Sigma w_{i} x_{i}\right)} \\
& \text { and }\left[\frac{\partial^{2} H}{\partial z_{i}{ }^{2}}\right]=2 w_{i}\left\{w_{i} x_{i}\left(x_{i}-1\right)+\sum w_{i} x_{i}{ }^{2}+w \cdot x_{i}{ }^{2}-2 \sum w_{i} x_{i}\right\} . \\
& \text { all } z_{i}=1
\end{aligned}
$$

The estimated intercept using estimated weights is

$$
\begin{aligned}
\hat{\tilde{\alpha}} & =\left(\Sigma \hat{w}_{i} y_{i} \cdot \Sigma \hat{w}_{i} x_{i}{ }^{2}-\sum \hat{w}_{i} x_{i} \sum \hat{w}_{i} x_{i} y_{i} \cdot\right) /\left\{\hat{w} \cdot \Sigma \hat{w}_{i} x_{i}{ }^{2}-\left(\Sigma \hat{w}_{i} x_{i}\right)^{2}\right\} \\
& =I / H
\end{aligned}
$$

say. The adjusted estimator is
$\hat{\alpha}(a, j)=\hat{\alpha}-\sum_{1}^{k} \frac{1}{r_{i}-1}\left[\frac{\partial^{2} \hat{\alpha}}{\partial z_{i}^{2}}\right]_{a l l} z_{i}=1$ using estimated weights,
where $\left[\frac{\partial \hat{\alpha}^{\hat{\alpha}}}{\partial z_{i}{ }^{2}}\right]$ is given by the right side of (25) with G
replaced by L. The individual derivatives are:

$$
\begin{aligned}
& {\left[\frac{\partial L}{\partial z_{i}}\right]_{\text {all } z_{i}=1}=-w_{i}\left(y_{i} \cdot \Sigma w_{i} x_{i}{ }^{2}+x_{i}{ }^{2} \Sigma w_{i} y_{i} \cdot-x_{i} \Sigma w_{i} x_{i} y_{i} .,\right.} \\
& {\left[\frac{\partial^{2} L}{\partial z_{i}{ }^{2}}\right]=2 w_{i}\left(y_{i} \cdot \Sigma w_{i} x_{i}{ }^{2}+x_{i}{ }^{2} \Sigma w_{i} y_{i} \cdot-x_{i} \Sigma w_{i} x_{i} y_{i} \cdot\right.} \\
& \text { all } z_{i}=1 \\
& \left.-x_{i} y_{i} . \Sigma w_{i} x_{i}\right), \\
& {\left[\frac{\partial H}{\partial z_{i}}\right]_{\text {all } z_{i}=1} \text { and }\left[\frac{\partial^{2} H}{\partial z_{i}^{2}}\right]_{\text {all } z_{i}=1} \text { are given above. }} \\
& \text { (ii) Adjustment of the } \mathrm{F} \text {-statistic }
\end{aligned}
$$

For testing the significance of the regression coefficient, the F-statistic using estimated weights, is given by

$$
\begin{aligned}
& \hat{F}=(n-2) /\left[\{ \hat { w } \cdot \Sigma \Sigma \frac { \hat { w } _ { i } } { r _ { i } } y _ { i j } ^ { 2 } - (\Sigma \hat { w } _ { i } y _ { i } \cdot) ^ { 2 } \} \left\{\hat{w} \cdot \Sigma \hat{w}_{i} x_{i}^{2}-\right.\right. \\
& \left.\left.\left(\Sigma \hat{w}_{i} x_{i}\right)^{2}\right\} /\left\{\hat{w} \cdot \Sigma \hat{w}_{i} x_{i} y_{i} \cdot \sum \hat{w}_{i} x_{i} \Sigma \hat{w}_{i} y_{i} \cdot\right\}^{2}-I\right] \\
& \quad=(n-2) /(T / R-I),
\end{aligned}
$$

say. Then the adjusted F -statistic is

$$
\hat{F}(\operatorname{adj})=\hat{F}-\sum_{1}^{k} \frac{1}{r_{i}-1}\left[\frac{\partial^{2} \hat{F}}{\partial z_{i}^{2}}\right] \quad \text { using estimated weights, }
$$

where

$$
\begin{gathered}
\frac{\partial^{2} \hat{F}}{\partial z_{i}^{2}}=-\frac{n-2}{R^{3}(T / R-1)^{2}}\left[2\left(R \frac{\partial T}{\partial z_{i}}-T \frac{\partial R}{\partial z_{i}}\right)^{2}\right. \\
\\
\\
/ R(T / R-1)+R^{2} \frac{\partial^{2} T}{\partial z_{i}^{2}}-T R \frac{\partial^{2} R}{\partial z_{i}^{2}} \\
-
\end{gathered}
$$

The individual derivatives concerned are:

$$
\begin{aligned}
& {\left[\frac{\partial T}{\partial z_{i}}\right]_{\text {all } z_{i}=1}=-w_{i} M, \quad\left[\frac{\partial R}{\partial z_{i}}\right]_{\text {all } z_{i}=1}=-2 w_{i} P,} \\
& {\left[\frac{\partial^{2}{ }^{T}}{\partial z_{i}^{2}}\right]=w_{i}\left[2 w _ { i } \left\{\left(\Sigma \Sigma \frac{w_{i}}{r_{i}} y_{i j}^{2}+w_{0} \sum_{j} \frac{y_{i j}^{2}}{r_{i}}-2 y_{i} \cdot \Sigma w_{i} y_{i} \cdot\right)\right.\right.} \\
& \text { all. } z_{i}=1 \\
& \left(\Sigma w_{i} x_{i}^{2}+w \cdot x_{i}^{2}-2 x_{i} \Sigma w_{i} x_{i}\right)+\left\{w \cdot \Sigma w_{i} x_{i}^{2}-\left(\Sigma w_{i} x_{i}\right)^{2}\right\} \\
& \left.\left.\left(\sum_{j} y_{i j}^{2} / r_{i}-y_{i}^{2} .\right)\right\}+2 M\right]
\end{aligned}
$$

and

$$
\left[\frac{\partial^{2} R}{\partial z_{i}^{2}}\right]=2 w_{i}\left\{w _ { i } \left(\sum w_{i} x_{i} y_{i} \cdot+w \cdot x_{i} y_{i} \cdot-x_{i} \sum w_{i} y_{i} \cdot-\right.\right.
$$ all $z_{i}=1$

$$
\left.y_{i} \cdot \Sigma w_{i} x_{i}\right)^{2}+2 P_{\}}
$$

where $M=\left\{w \cdot \sum_{i} \sum_{j} w_{i} y_{i}{ }_{j}^{2} / r_{i}-\left(\Sigma w_{i} y_{i} \cdot\right)^{2}\right\}\left\{\Sigma w_{i} x_{i}{ }^{2}+w \cdot x_{i}{ }^{2}-\right.$

$$
\left.2 x_{i} \sum w_{i} x_{i}\right\}+\left\{w \cdot \Sigma w_{i} x_{i}^{2}-\left(\sum w_{i} x_{i}\right)^{2}\right\} \quad\left(\Sigma \Sigma w_{i} y_{i j}{ }^{2} /\right.
$$

and

$$
\left.r_{i}+w_{:} \sum_{j} y_{i j}^{2} / r_{i}-2 y_{i} \sum_{i} w_{i} y_{i}\right)
$$

$$
P=\left(w \cdot \sum w_{i} x_{i} y_{i} \cdot-\sum w_{i} x_{i} \sum w_{i} y_{i} \cdot\right)\left(\Sigma w_{i} x_{i} y_{i} \cdot+w \cdot x_{i} y_{i} \cdot\right.
$$

$$
\left.-x_{i} \sum w_{i} y_{i} \cdot-y_{i} \cdot w_{i} x_{i}\right)
$$

(iii) Adjustment of the t-statistic

For testing the hypothesis: $\beta=\beta_{0}$, the t-statistic using estimated weights is

$$
\hat{t}=\frac{\left|\hat{\tilde{\beta}}(a d j)-\beta_{o}\right|(n-2)^{\frac{1}{2}}\left\{\sum \hat{w}_{i} x_{i}{ }^{2}-\left(\sum \hat{w}_{i} x_{i}\right)^{2} / \hat{w}_{\cdot}\right\}^{\frac{1}{2}}}{\left[\left\{\sum \hat{w}_{i} y_{i j} / r_{i}-\left(\sum \hat{w}_{i} y_{i}\right)^{2} / \hat{w} \cdot\right\}-\left\{\hat{w} \cdot \sum \hat{w}_{i} x_{i} y_{i} \cdot-\sum \hat{w}_{i} x_{i} \sum \hat{w}_{i} y_{i} \cdot\right\}^{2} /\left\{\hat{w}_{\cdot} \sum^{2} w_{i} x_{i}{ }^{2}-\right.\right.}
$$

$$
\left.\left.\left(\Sigma \hat{\mathrm{w}}_{i} \mathrm{x}_{i}\right)^{2} \hat{w}_{\cdot}\right\}\right]^{\frac{1}{2}}
$$

$=(n-2)^{\frac{1}{2}}\left|\hat{\tilde{\beta}}(\operatorname{adj})-\beta_{o}\right|\left\{\hat{w_{0}} \cdot \sum \hat{w}_{i} x_{i}{ }^{2}-\left(\sum \hat{w}_{i} x_{i}\right)^{2}\right\} /(T-R)^{\frac{1}{2}}$
$=(n-2)^{\frac{1}{2}}\left|\hat{\tilde{\beta}}(\operatorname{adj})-\beta_{0}\right| s /(T-R)^{\frac{1}{2}}$,
say. The underlying assumption is that $\operatorname{var}\{\hat{\tilde{\beta}}(\operatorname{adj})\}$ is approximately equal to $\operatorname{var}(\tilde{\beta})$. The adjusted t-statistic has the form

$$
\hat{t}(a d j)=\hat{t}-\sum_{1}^{k} \frac{1}{r_{i}-1}\left[\frac{\partial^{2} \hat{t}}{\partial z_{i}^{2}}\right]_{\text {all } z_{i}=1} \text { using estimated weights, }
$$

where

$$
\begin{aligned}
& \frac{\partial^{2} \hat{t}}{\partial z_{i}}{ }^{2}=\hat{t}\left[\frac{\partial^{2} s}{\partial z_{i}}{ }^{2}-\frac{\partial s}{\partial z_{i}}\left(\frac{\partial T}{\partial z_{i}}-\frac{\partial R}{\partial z_{i}}\right) /(T-R)^{2}-\frac{s}{2}\left\{\frac{\partial T_{T}}{\partial z_{i}{ }^{2}}\right.\right. \\
& \left.\left.-\frac{\partial^{2} R}{\partial z_{i}^{2}}-\frac{3}{2}\left(\frac{\partial T}{\partial z_{i}}-\frac{\partial R}{\partial z_{i}}\right)^{2}\right\} /(T-R)\right], \\
& \text { with }\left[\partial s / \partial z_{i}\right] \quad \text { all } z_{i}=1 \\
& {\left[\partial^{2} s / \partial z_{i}^{2}\right] \quad w_{i}\left(\sum w_{i} x_{i}{ }^{2}+w \cdot x_{i}{ }^{2}-2 x_{i} \sum w_{i} x_{i}\right) \text { and }} \\
& =2 w_{i}\left(\sum w_{i} x_{i}{ }^{2}+w \cdot x_{i}{ }^{2}-2 x_{i} \sum w_{i} x_{i}\right) \text { and other partial }
\end{aligned}
$$

derivatives being given in (ii) above.

$$
\begin{gathered}
\text { (iv) Approximate } \\
\text { The normarmal test-statistic using estimated } \\
\text { areal test-statistic }
\end{gathered}
$$

weights is

$$
\hat{u}=\left|\hat{\tilde{\beta}}(\operatorname{adj})-\beta_{o}\right|\left\{\Sigma \hat{w}_{j} x_{i}^{2}-\left(\Sigma \hat{w}_{i} x_{i}\right)^{2} / \hat{w} \cdot\right\}^{\frac{1}{2}}
$$

and its adjusted form is

$$
\hat{u}(\operatorname{adj})=\hat{u}-\sum_{1}^{k} \frac{1}{r_{i}-1}\left[\frac{\partial^{2} \hat{u}}{\partial z_{i}^{2}}\right]_{\text {all }}^{z_{i}=1} \quad \text { using estimated }
$$

where $\frac{\partial^{2} \hat{u}}{\partial z_{i}}{ }^{2}=\hat{u}\left[\left(\hat{w}_{i} x_{i}{ }^{2}-\hat{f}_{i} B_{i}\right)^{2} / 4 A+\hat{w}_{i}\left\{x_{i}{ }^{2}-\hat{f}_{i} x_{i}{ }^{2}-\left(1-\hat{f}_{i}\right) B_{i}\right\}\right] / A$

$$
\begin{aligned}
& \text { with } A=\sum \hat{w}_{i} x_{i}^{2}-\left(\Sigma \hat{w}_{i} x_{i}\right)^{2} / \hat{w}_{0}, B_{i}=\left(2 x_{i}-\sum \hat{f}_{i} x_{i}\right)\left(\sum \hat{f}_{i} x_{i}\right) \\
& \text { and } \hat{f}_{i}=\hat{w}_{i} / \hat{w}_{0} .
\end{aligned}
$$

CHAPTER 9

CONCLUSIONS

In this chapter the main results of the thesis are summarised and areas for further work indicated.

9.1 Summary of the results

The error variance has been assumed to be heteroscedastic with respect to the levels of sub-plot treatments in split-plot designs and the treatments in all other designs. As a result, the treatment estimators as well as the corresponding sum of squares obtained by the weighted least squares method, have the same form for all designs excepting the nonorthogonal general block designs. Orthogonality of different kinds of estimators of the linear parameters is maintained for all designs except general block designs and latin square designs where the estimated row and column effects are not orthogonal to one another. Three summary dispersion measures are suggested for the treatment estimators.

The expression for computing joint confidence intervals of parametric contrasts depends on both weights and error mean squares of the weighted least squares analysis. The adjusted form of this expression for the first three designs is đifferent from that for the remaining three because the error mean squares are independent of weights for the former designs but depends on them for the latter designs.

As the replicated observations are available for at least one cell under each treatment, the MINQUE of group variances for the first two designs and their unbiased
estimators for the third design, are independently distributed as multiples of χ^{2}. This facilitates adjustment of the estimators of the linear and other parameters and other statistics using estimated weights, for removal of bias. For the other three designs, the AUE's of group variances have negligible bias and are approximately independently distributed as multiples of x^{2} and necessary adjustment of the statistics concerned has therefore been made.

For random models of the first two designs, the test of significance of a variance component is found to be the same as that of significance or equality of the corresponding fixed effects.

For split-plot designs if the weights are large, then the error mean square of the whole plot analysis is expected to be much larger than that of the sub-plot analysis.

The weighted constraints on some linear parameters facilitate certain tests especially for models with an interaction term.

9.2 Discussion and further work

Adjustment of the statistics using estimated weights based on replications is expected to yield better results than that of statistics using other types of weights. It is thus desirable that replicated observations should be taken wherever possible for at least one cell for each group.

The adjustment of most of the statistics using estimated weights has given rise to complicated expressions having limited practical application. Empirical work may reveal that some of the terms of such expressions are negligible
in comparison with other terms, and this may lead to simpler expressions.

A Monte Carlo study for one-way heteroscedastic models showed that performances of the adjusted teststatistics are more or less satisfactory. Such study may be undertaken to observe the adequacy of the adjusted statistics of other designs.

Random or mixed models for the first three designs were considered in this thesis. Other types of mixed or random models may be investigated for these and other designs with unequal group variances. Similarly, multiple regression models with unequal group variances may be considered.

Missing-value techniques and covariance analysis have not been discussed in this thesis. These are other topics for which further work could be undertaken.

The problem of finding the optimum number of replications as a balance between cost and adequacy of the adjusted statistics may be investigated for some designs.

Finally, only a special kind of heteroscedasticity of linear models has been dealt with in this thesis for some common designs. Heteroscedasticity in general is yet to be explored.

ACKNOWLEDGEMENTS

I express my thanks and indebtedness to Professor S. C. Pearce and Dr D. A. Preece for advice and encouragement. I am grateful to the Ford Foundation for financial support. My thanks are also due to my wife who patiently reared a large family despite poor health.

AITKEN, A.C. (1934-35). On least squares and linear combination of observations. Proc. Roy. Soc. Edin. A, 55, 42-48.

ANDERSON, T.W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley and Sons, N.Y.

BARTLETT, M.S. (1937). Properties of sufficiency and statistical tests. Proc. Roy. Soc. A, 160, 268-282.

BARTLETT, M.S. (1947). The use of transformations. Biometrics, 3, 39-52.

BEHRENS, W.U. (1929). Ein Beitrag zur Fehlerberechnung bei wenigen Beobachtungen. Landw. Jb, 68, 807-837.

BEMENT, T.R. and WILLIAMS, J.S.(1969). Variance of weighted regression estimators when sampling errors are independent and heteroscedastic. J. Am. Stat. Assc., 64, 1369-1382.

BOX, G.E.P. (1954a). Some theorems on quadratic forms applied in the study of aralysis of variance problems, I. Effect of inequality of variance in the one-way classification. Ann. Math. Stat., 25, 290-302.

BOX, G.E.P. (1954b). Some theorems on quadratic forms applied in the study of analysis of variance problems, II. Effects of inequality of variance and of correlation between errors in the two-way classification. Ann. Math. Stat., 25, 485-498.

BOX, G.E.P. and COX, D.R. (1964). An analysis of transformations. J. Roy. Stat. Soc. B, 26, 211-252.

BROWN, M.B. and FORSYTHE, A.B. (1974a). The small sample behaviour of some statistics which test the equality of means. Technometrics, 16, 129-132.

BROWN, M.B. and FORSYTHE, A.B. (1974b). The ANOVA and multiple comparisons for data with heterogeneous variances. Biometrics, 30, 719-724.

CHAKRAVARTI, S. (1965). The problem of testing the hypothesis of equality of means of several univariate normal populations when variances are different. Cal. Stat. Ass. Bull., 14, 127-150.

CURNOW, R.N. (1957). Heterogeneous error variances in split-plot experiments. Biometrika, 44, 378-383.

DRAPER, N.R. and GUTTMAN, I. (1966). Unequal group variances in the fixed-effects one-way analysis of variance - a Bayesian sidelight. Biometrika, 53, 27-35.

DRAPER, N.R. and SMITH, H. (1966). Applied Regression Analysis. Wiley and Sons, N.Y.

DUBY, C., MOUGEY, Y. and ULMO, J. (1975). Analyse de plans D'expériences a deux facteurs controlés quand l'écart type est une fonction connve de la moyenne. Revue de Statistique Appliquée, 23, 5-33.

EHRENBERG, A.S.C. (1950). The unbiased estimation of heterogeneous error variances. Biometrika, 37, 347-357.

FISHER, R.A. (1935). The fiducial argument in statistical inference. Ann. Eugen., 6, 391-398.

FISHER, R.A. (1939). The comparison of samples with possibly unequal variances. Ann. Eugen., 9, 174-180.

FISHER, R.A. (1966). The Design of Experiments. (8th Ed.) Oliver and Boyd, Edinburgh.

GHOSH, M.N. (1961). Linear estimation of parameters in the case of unequal variances. Cal. Stat. Ass. Bulletin, 10, 117-130.

GHOSH, M.N. and BEHARI, V. (1965). Analysis of randomised block experiments when treatments have different errors. Cal. Stat. Ass. Bull., 14, 93-105.

GOIDMAN, A.J. and ZELEN, M. (1964). Weak generalised inverses and minimum variance linear unbiased estimation. J. Res. Nat. Bur. Stand., 68B, l5l-172.

GRAYBILL, F.A. (1954). Variance heterogen-eity in a randomised block design. Biometrics, 10, 516-520.

HAN, CHEIEN-PAI (1968). Testing homogen-eity of a set of correlated variances. Biometrika, 55, 317-328.

HAN, CHEIEN - PAI(1969). Testing homogen-eity of variances in a two-way classification. Biometrics, 25, 153-158.

HARTIEY, H.O. (1950). The maximum F-ratio as a short-cut test for heterogeneity of variance. Biometrika, 37, 308-312.

HARTLEY, H.O. and RAO, J.N.K. (1967). Maximum likelihood estimation for the mixed analysis of variance model. Biometrika, 54, 93-108.

HORN, S.D. and HORN, R.A. (1975). Comparison of estimators of heteroscedastic variances in linear models. J. Am. Stat. Assoc., 70, 872-879.

HORN, S.D., HORN, R.A. and DUNCAN, D.B. (1975). Estimating heteroscedastic variances in linear models. J. Am. Stat. Assoc., 70, 380-385.

HOYLE, M.H. (1973). Transformations - An introduction and a bibliography. Int. Stat. Rev., 41, 203-223.

JACQUEZ, J.A., MATHER, F.J. and CRAMFORD, C.R. (1968). Linear regression with non-constant, unknown error variances: Sampling experiments with least squares, weighted least squares and maximum likelihood estimators. Biometrics, 24, 607-626.

JACQUEZ, J.A. and NORUSIS, M. (1973). Sampling experiments on the estimation of parameters in heteroscedastic linear regression. Biometrics, 29, 771-779.

JAMES, G.S. (1951). The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika, 38, 324-329.

JAMES, G.S. (1954). Tests of linear hypothesis in univariate and multivariate analysis when the ratios of the population variances are unknown. Biometrika, 4l, 19-43.

JOHN, P.W.M. (1971). Statistical Design and Analysis of Experiments. Macmillan, N.Y.

JOHNSON, N.L. (1962). Some notes on the investigation of heterogeneity in interactions. Trabajos de Estadistica, 13, 183-199.

MALLELA, P. (1972). Necessary and sufficient conditions for MINQU - estimation of heteroscedastic variances in linear models. J. Am. Stat. Assoc., 67, 486-487.

MALONEY, C.J. and RASTOGI, S.C. (1970). Significance test for Grubb's estimators. Biometrics, 26, 671-676.

MATHEWS, J. and WALKER, R.L. (1965). Mathematical Methods of Physics. Benjamin Inc., N.Y.

MEIER, P. (1953). Variance of a weighted mean. Biometrics, 9, 59-73.

MOORE, E.H. (1920). On the reciprocal of the general algebraic matrix (abstract). Bull. Amer. Math. Soc., 26, 394-395.

MOORE, E.H. (1935). General Analysis. American Philosophical Society, Philadelphia.

NELDER, J.A. (1965). The analysis of randomised experiments with orthogonal block structure: Block structure and the null analysis of variance. Proc. Roy. Soc. A, 283, 147-162.

NELDER, J.A. (1968). The combination of information in generally balanced designs. J. Roy. Stat. Soc. B, 30, 303-311.

PATTERSON, H.D. and THOMPSON, R. (1971). Recovery of interblock information when block sizes are unequal. Biometrika, 58, 545-554.

PATTERSON, H.D. and THOMPSON, R. (1975). Maximum likelihood estimation of components of variance. Proceedings of the 8th International Biometric Conference, Constanta, Romania. Editura Academiei Republicii Socialiste Romania, Bucharest.

PEARCE, S.C. and JEFFERS, J.N.R. (1971). Block designs and missing data. J. Roy. Stat. Soc. B, 33, 131-136.

PENROSE, R. (1955). A generalised inverse for matrices. Proc. Camb. Phil. Soc., 51, 406-413.

PLACKETT, R.L. (1960). Principles of Regression Analysis. Oxford University Press, London.

RAO, C.R. (1970). Estimation of heteroscedastic variances in linear models. J. Am. Stat. Assoc., 65, 161-172.

RAO, C.R. (1973). Linear Statistical Inference and its Applications (2nd Ed.). John Wiley and Sons, N.Y.
RAO, J.N.K. and SUBRAHMANIAM, K. (1971). Combining independent estimators and estimation in linear regression with unequal variances. Biometrics, 27, 971-990.

ROBINSON, J. and BALAAM, L.N. (1967). Variance heterogeneity and error correlation in factorial experiments. Aust. J. Stat., 9, 126-130.

RUSSELL, T.S. and BRADLEY, R.A. (1958). One-way variances in a two-way classification. Biometrika, 45, lll-129.

SATTERTHWAITE, F.E. (1941). Synthesis of variance. Psychometrika, 6, 309-316.
SCHEFFÉ, H. (1943). On solutions of the Behrens-Fisher problem, based on the t-distribution. Ann. Math. Stat., 14, 35-44.
SCHEFFE, H. (1959). The Analysis of Variance. Wiley and Sons, N.Y.

SCHLESSELMAN, J.J. (1973). Data transformation in two-way analysis of variance. J. Am. Stat. Assoc., 68, 369-378.

SHUKLA, G.K. (1972). An invariant test for the homogeneity of variances in a two-way classification. Biometrics, 28, 1063-1072.

SIOTANI, M. (1957). Note on the utilisation of the generalised student ratio in the analysis of variance or dispersion. Ann. Inst. Stat. Math., 9, 157-171.

SNEDECOR, G.W. and COCHRAN, W.G. (1967). Statistical Methods (6th Ed.). Iowa University Press, Iowa.

SPJØTVOIL, E. (1972). Joint confidence intervals for all linear functions of means in the one-way layout with unknown group variances. Biometrika, 59, 683-685.

TOCHER, K.D. (1952). The design and analysis of block experiments. J. Roy. Stat. Soc. B, 14, 45-91.

WALD, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc., 54, 426-482.

WELCH, B.I. (1938). The significance of the difference between two means when population variances are unequal. Biometrika, 29, 350-362.

WELCH, B.L. (1947). The generalisation of 'Student's' problem when several different population variances are involved. Biometrika, 34, 28-35.

WELCH, B.I. (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38, 330-336.

WILLIAMS, E.J. (1959). Regression Analysis. Wiley and Sons, N.Y.

WILLIAMS, J.S. (1967). The variance of weighted regression estimators. J. Am. Stat. Assoc., 62, 1290-1301.

YATES, F. and COCHRAN, W.G. (1938). The analysis of groups of experiments. J. Agri. Sc., 28, 556-580.

ZYSKIND, G. and KEMPTHORNE, O. (1960). Treatment errors in comparative experiments. Wright Air Development Tech. Note, 59, 19-45.

[^0]: * This was suggested by Professor S. C. Pearce.

[^1]: By the generalised triangle inequality, we have

